/usr/include/linbox/algorithms/diophantine-solver.inl is in liblinbox-dev 1.3.2-1.1build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 | /* linbox/algorithms/diophantine-solver.inl
* Copyright (C) 2004 David Pritchard
*
* Written by David Pritchard <daveagp@mit.edu>
*
* ========LICENCE========
* This file is part of the library LinBox.
*
* LinBox is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
* ========LICENCE========
*/
#ifndef __LINBOX_diophantine_solver_INL
#define __LINBOX_diophantine_solver_INL
#include "linbox/blackbox/sparse.h"
#include "linbox/blackbox/lambda-sparse.h"
#include "linbox/algorithms/rational-solver.h"
#include "linbox/algorithms/vector-fraction.h"
#include "linbox/solutions/methods.h"
#include "linbox/util/debug.h"
#include "linbox/linbox-config.h"
//#define DEBUG_DIO
//#define INFO_DIO
#define MONTE_CARLO_BOREDOM 21
namespace LinBox
{
template<class QSolver>
template<class IMatrix, class Vector1, class Vector2>
SolverReturnStatus DiophantineSolver<QSolver>::solve
(Vector1& x, Integer& den, const IMatrix& A, const Vector2& b, const int maxPrimes, const SolverLevel level)
{
SolverReturnStatus result = _rationalSolver.solve(x, den, A, b, false, maxPrimes, level);
if (result == SS_INCONSISTENT && level >= SL_CERTIFIED)
lastCertificate.copy(_rationalSolver.lastCertificate);
return result;
}
template<class QSolver>
template<class IMatrix, class Vector1, class Vector2>
SolverReturnStatus DiophantineSolver<QSolver>::randomSolve
(Vector1& x, Integer& den, const IMatrix& A, const Vector2& b, const int maxPrimes, const SolverLevel level)
{
SolverReturnStatus result = _rationalSolver.findRandomSolution(x, den, A, b, maxPrimes, level);
if (result == SS_INCONSISTENT && level >= SL_CERTIFIED)
lastCertificate.copy(_rationalSolver.lastCertificate);
return result;
}
template<class QSolver>
template<class IMatrix, class Vector1, class Vector2>
SolverReturnStatus DiophantineSolver<QSolver>::diophantineSolve
(Vector1& x, Integer& den, const IMatrix& A, const Vector2& b, const int maxPrimes, const SolverLevel level)
{
//here maxPrimes is only used to bound trials of initial solution
SolverReturnStatus status;
//this should eliminate all inconsistent systems; when level == SL_MONTECARLO maybe not.
status = _rationalSolver.monolithicSolve(x, den, A, b, (level >= SL_LASVEGAS), true, maxPrimes, level);
if (status != SS_OK) {
if (status == SS_FAILED && maxPrimes > 2)
std::cout << "ERROR, failed to find original solution and maxPrimes is not too small!" << std::endl;
if (status == SS_INCONSISTENT && level >= SL_CERTIFIED)
lastCertificate.copy(_rationalSolver.lastCertificate);
return status;
}
VectorFraction<Ring> y(_ring,x.size());
y. numer = x;
y. denom = den;
VectorFraction<Ring> y0(y);
Integer ODB = y0.denom, n1; //ODB -- original denominator bound. equal to g(y0) from Muld+Storj.
if (level >= SL_CERTIFIED) {
lastCertificate.copy(_rationalSolver.lastCertificate);
_ring.assign(n1, _rationalSolver.lastZBNumer);
}
Integer upperDenBound = ODB;
Integer lowerDenBound;
if (level >= SL_LASVEGAS)
lowerDenBound = _rationalSolver.lastCertifiedDenFactor;
else
_ring.init(lowerDenBound, 1);
#ifdef DEBUG_DIO
std::cout << "lower bound on denominator: " << lowerDenBound << std::endl;
std::cout << "upper bound on denominator: " << upperDenBound << std::endl;
#endif
numSolutionsNeeded = 1;
numFailedCallsToSolver = 0;
numRevelantSolutions=1;
int boredom = 0; //used in monte carlo, when we assume there's a diophantine solution
while (! _ring.areEqual(upperDenBound, lowerDenBound)) {
_rationalSolver.chooseNewPrime();
status = _rationalSolver.monolithicSolve(x, den, A, b, (level >= SL_LASVEGAS), true, 1, level);
numSolutionsNeeded++;
#ifdef DEBUG_DIO
std::cout << '.' ;
#endif
if (status != SS_OK) {
numFailedCallsToSolver++;
continue;
}
VectorFraction<Ring> yhat(_ring, x.size());
yhat. numer = x;
yhat. denom = den;
// goodCombination first represents whether a decrease in upperDenBound is achieved
bool goodCombination = y.boundedCombineSolution(yhat, ODB, upperDenBound);
if (goodCombination) {
numRevelantSolutions++;
#ifdef DEBUG_DIO
std::cout << "new gcd(denom, y0.denom): " << upperDenBound << std::endl;
#endif
}
// now, goodCombination will be updated as to whether there is an increase in lowerDenBound
if (level == SL_MONTECARLO) {
if (goodCombination)
boredom = 0;
else
boredom++;
if (boredom > MONTE_CARLO_BOREDOM)
break; //exit while loop
goodCombination = false; //since we dont update lowerDenBound, no increase happens
}
else if (level == SL_LASVEGAS) {
#ifdef DEBUG_DIO
goodCombination =
!_ring.isDivisor(lowerDenBound, _rationalSolver.lastCertifiedDenFactor);
#endif
_ring.lcmin(lowerDenBound, _rationalSolver.lastCertifiedDenFactor);
}
else { //level == SL_CERTIFIED
// paranoid check
// if (_ring.isZero(_rationalSolver.lastCertifiedDenFactor)) {
// std::cout << "ERROR: got a 0 den factor" << std::endl;
// return SS_FAILED;
// }
goodCombination = lastCertificate.combineCertificate
(_rationalSolver.lastCertificate, n1, lowerDenBound,
_rationalSolver.lastZBNumer,
_rationalSolver.lastCertifiedDenFactor);
}
#ifdef DEBUG_DIO
if (goodCombination)
std::cout << "new certified denom factor: " << lowerDenBound << std::endl;
#endif
}
#ifdef INFO_DIO
std::cout << "number of solutions needed in total: " << numSolutionsNeeded << std::endl;
std::cout << "number of failed calls to solver: " << numFailedCallsToSolver << std::endl;
#endif
y.combineSolution(y0);
//y.toFVector(x);
x = y.numer;
den = y.denom;
return SS_OK;
}
} //end of namespace LinBox
#undef MONTE_CARLO_BOREDOM
#endif //__LINBOX_diophantine_solver_INL
// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,:0,t0,+0,=s
// Local Variables:
// mode: C++
// tab-width: 8
// indent-tabs-mode: nil
// c-basic-offset: 8
// End:
|