/usr/include/linbox/algorithms/rational-solver-sn.inl is in liblinbox-dev 1.3.2-1.1build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 | /* Copyright (C) 2011 LinBox
* Written Bryan Youse <>
*
*
*
* ========LICENCE========
* This file is part of the library LinBox.
*
* LinBox is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
* ========LICENCE========
*/
// rational-solver-sn.inl
// WARNING: this file is included from INSIDE the definition of class LinBox::RationalSolverSN
#ifdef DEBUGRC
#define debug(x) std::cerr << x << std::endl
#define debugneol(x) std::cerr << x
#define debug2(x, y) debug(x); y
#else
#define debug(x)
#define debug2(x, y)
#define debugneol(x)
#endif
#define log_2(x) (log(x)/M_LN2)
int zw_shift(NumericSolver & NS_S, size_t n, FVector &r, FVector &x)
{
// ZW method for calculating shift
// compute ax
FVector ax(n);
NS_S.apply(ax, x);
// compute ax = ax -r, the negative of residual
for(size_t i=0; i<n; i++)
_field.sub(ax[i], ax[i], r[i]);
// compute possible shift
int zw_shift_loc;
double normr1, normr2, normr3, shift1, shift2;
normr1 = zw_dmax(n, &*r.begin(), 1);
normr2 = zw_dmax(n, &*ax.begin(), 1);
normr3 = zw_dmax(n, &*x.begin(), 1);
//cerr << normr1 << " " << normr2 << " " << normr3 << endl;
//try to find a good scalar
if (normr2 <.0000000001)
zw_shift_loc = 30;
else {
shift1 = floor(log_2 (normr1 / normr2)) - 2;
zw_shift_loc = (int)(30 < shift1 ? 30 : shift1);
}
normr3 = normr3 > 2 ? normr3 : 2;
shift2 = floor(53. / log_2 (normr3));
zw_shift_loc = (int)(zw_shift_loc < shift2 ? zw_shift_loc : shift2);
return zw_shift_loc;
}
template <class IMatrix>
int rat_sol(IVector& numx, Int& denx, FVector& xs_int, FVector& xs_frac, IVector &b, IVector &lastb, FVector& r, FVector& lastr, FVector& x, integer &loopBound, IMatrix &IM) {
debug("Matrix norm: " << mnorm);
int thresh_expt = 1; // consider as low as 1 or 2 (at least when n large)
double threshold = 1.0/(1 << thresh_expt);
size_t n = r.size();
// xs_int: integer part of scaled x.
// xs_frac: fractional part of scaled x.
// x * 2^shift = xs_int + xs_frac.
FVector nextx(n), quo(n);
integer denx_i;
typename Field::Element one; _field.init(one, 1);
// need to save original r for zw_shift calculation
// TODO: I took out the ZWSHIFT, still need last r??
if(denx == 1){
// compute first approximate solution x
_numsolver.solve(x, r);
//writeVec(x, "x from first solve");
copy(r.begin(), r.end(), lastr.begin());
copy(b.begin(), b.end(), lastb.begin());
//-- compute xs_int, xs_frac, r (residue)
update_xs(xs_int, xs_frac, x);
if(exact_apply) update_r_exact(b, r, xs_int, IM);
else update_r(r, xs_int);
}
//std::cerr << "while loopbound " << loopBound << std::endl;
while (_ring.compare(denx, loopBound) < 0) {
++iterations;
// x = DM^{-1}*r
_numsolver.solve(nextx, r);
for(size_t i=0; i<n; i++){
// TODO - analyze logic here
// quo[i] = xs_frac[i] / nextx[i] - 1;
//_field.div(quo[i], xs_frac[i], nextx[i]);
//_field.subin(quo[i], one);
_field.sub(quo[i], xs_frac[i], nextx[i]);
}
double q = zw_dmax((int)n, &*quo.begin(), 1);
//writeVec(nextx, "nextx from loop"); // DEBUG PRINTOUTS
//writeVec(xs_frac, "xs_frac from loop");
//writeVec(quo, "quo");
/* fails to write!!
_VDF.write(std::cerr << "nextx from loop: ", nextx) << std::endl;
_VDF.write(std::cerr << "xs_frac from loop: ", xs_frac) << std::endl;
_VDF.write(std::cerr << "quo minus 1: ", quo) << std::endl;
if ( 0 == iterations%500) std::cerr << iterations << " MAX DIFFERENCE: " << q << std::endl;
*/
//if (q == 0.0) (QUIT HERE??)
if (q < threshold) {
HIT++;
// update numx and denx
denx <<= shift;
update_num (numx, xs_int);
if(_VDF.isZero(r))
return 2;
// consider increasing the shift for next iteration
upshift();
// make x = nextx, then compute new residual, xs_int, xs_frac
swap(x, nextx);
copy(r.begin(), r.end(), lastr.begin());
copy(b.begin(), b.end(), lastb.begin());
update_xs(xs_int, xs_frac, x);
if(exact_apply) update_r_exact(b, r, xs_int, IM);
else update_r(r, xs_int);
}
else { // q >= threshold, back-off
MISS++;
// point of no return, quit
if (shift < 2){
/*
std::cerr << "rat_sol failure, no bits in x overlap in nextx." << std::endl;
std::cerr << "Iterations: " << iterations << std::endl;
writeVec(b, "b", 0, 5); writeVec(r, "r", 0, 5);
*/
return -1;
}
downshift();
//-- compute xs_int, xs_frac, r (residue)
// but use last r as input
copy(lastr.begin(), lastr.end(), r.begin());
copy(lastb.begin(), lastb.end(), b.begin());
update_xs(xs_int, xs_frac, x);
if(exact_apply) update_r_exact(b, r, xs_int, IM);
else update_r(r, xs_int);
}
}
return 0;
}// rat_sol
inline void upshift()
{
switch(sstatus){
// exponential increase
case SHIFT_GROW:
shift_prev = shift;
debugneol("G");
shift_max = shift<<=1;
break;
case SHIFT_SEARCH:
shift_prev = shift;
debugneol("S");
shift = (shift + shift_max)>>1;
searchPeak = true;
break;
case SHIFT_PEAK:
debugneol("P");
// maybe increase if we have been successful for a while
break;
case SHIFT_MAX:
debugneol("M");
// machine precision-- can go no higher
break;
case SHIFT_SHRINK:
debugneol("H");
break;
}
if(shift > SHIFT_BOUND){
shift_max = shift = SHIFT_BOUND;
sstatus = SHIFT_MAX;
}
debug("^shift: " << shift << " max: " << shift_max << " prev: " << shift_prev);
}
inline void downshift()
{
/*
shift -= 2;
sstatus = SHIFT_PEAK;
cerr << "peaked at " << shift << endl;
*/
// back up
switch(sstatus){
case SHIFT_GROW:
debugneol("G");
case SHIFT_MAX:
debugneol("M");
case SHIFT_SEARCH:
// TODO - previous shift could fail
debugneol("S");
shift_max = shift;
shift = (shift_prev + shift)>>1;
sstatus = SHIFT_SEARCH;
// searchPeak true means we were going up but got knocked back
if(shift == shift_prev || searchPeak)
sstatus = SHIFT_PEAK;
break;
case SHIFT_SHRINK:
debugneol("H");
shift >>= 1;
break;
case SHIFT_PEAK:
debugneol("P");
shift -= 1;
break;
default:
break;
}
debug("vshift: " << shift << " max: " << shift_max << " prev: " << shift_prev);
} // downshift
inline void update_xs(FVector& xs_int, FVector& xs_frac, FVector& x)
{
Float scalar, tmp;
int64_t shifted = ((int64_t)1 << shift);
_field.init(scalar, (double) shifted);
// make xs_int and xs_frac such that x*scalar = xs_int + xs_frac.
for(size_t i = 0; i < xs_int.size(); ++i){
// TODO: tmp can overflow a double
tmp = x[i]*scalar;
xs_int[i] = floor(tmp + 0.5); // TODO: ceiling?
// TODO: TRY THIS xs_int[i] = ceiling(tmp);
xs_frac[i] = tmp - xs_int[i];
}
return;
}
inline void update_r(FVector& r, FVector& xs_int)
{
Float scalar;
size_t n = r.size();
int64_t shifted = ((int64_t)1 << shift);
_field.init(scalar, (double)shifted);
FVector y(n);
//update r = r * 2^shift - Mat*xs_int
_VDF.mulin(r, scalar);
_numsolver.apply(y, xs_int);
_VDF.subin(r, y);
return;
} // update_r
template <class IMatrix>
inline void update_r_exact(IVector& r_exact, FVector& r, FVector& xs_int, IMatrix &IM){
size_t n = r.size();
IVector x_i(n), y_i(n);
typename Ring::Element scalar = ((int64_t)1 << shift);
// update r = r * 2^shift - Mat*xs_int
// r *= 2 ^shift
_VDR.mulin(r_exact, scalar);
// determine if exact apply is needed
double vnorm = zw_dOOnorm(&*xs_int.begin(), (int)n, 1);
int64_t th = ((int64_t)1 << 52); // double mantissa
Float thresh;
_field.init(thresh, (double)th);
debugneol("vnorm " << vnorm);
// r -= Mat * xs_int
if(_field.mulin(vnorm, mnorm) < thresh){
debugneol("Numeric ");
FVector y(n);
_numsolver.apply(y, xs_int);
for(size_t i = 0; i < n; ++i)
_ring.init(y_i[i], y[i]);
}
else{
SHIFT_BOUND--; // to less this possibility
debugneol("Exact ");
for(size_t i = 0; i < n; ++i)
_ring.init(x_i[i], xs_int[i]);
IM.apply(y_i, x_i);
}
_VDR.subin(r_exact, y_i);
// convert exactly computed residue back to double (for next solve)
typename FVector::iterator rp = r.begin();
typename IVector::iterator rep = r_exact.begin();
for(; rp!= r.end(); ++rp, ++rep)
_field.init(*rp, *rep);
return;
} // update_r_exact
// no longer called...
inline int HadamardBound(integer& B, FMatrix& DM)
{
size_t n = DM.rowdim();
zw_hbound (B, n, n, &*DM.Begin()); // compute the Hadamard bound
B = B * B;
double mnorm_loc = zw_dOOnorm(&*DM.Begin(), n, n);
// [don't know what this comment is about] should be a check for 2 * mnorm + zw_dmax (n, b, 1);
// TODO what is "b"? from copied code it is the RHS array of doubles
// zw_max just seems to get abs(max value of b)
// next line false, just to compile
double *b;
B *= 2 * mnorm_loc + zw_dmax (n, b, 1); // [don't know what this factor is about]
B <<= 1; // [extra factor of 2 for some reason... ]
return B;
}
//update num, *num <- *num * 2^shift + d
inline IVector& update_num (IVector& num, const FVector& d)
{
size_t n = d.size();
IVector d_i(n);
for (size_t i = 0; i < n; ++i) {
_ring.init(d_i[i], d[i]);
}
Int scalar; _ring.init(scalar, 1UL << shift);
// TODO - analyze GMP shifting capability
_VDR.mulin(num, scalar);
_VDR.addin(num, d_i);
return num;
}
//update r = r * shift - M d
inline static int update_r_ll (double* r, int n, const double* M, const double* d, int shift)
{
long long int tmp;
double* p1;
const double* p2;
const double* pd;
for (p1 = r, p2 = M; p1 != r + n; ++ p1) {
tmp = (long long int) *p1;
tmp <<= shift;
for (pd = d; pd != d + n; ++ pd, ++ p2) {
tmp -= (long long int)*pd * (long long int) *p2;
}
*p1 = tmp;
}
return 0;
}
inline static size_t nextPower2(size_t n)
{
size_t p = 1;
while(p < n) p <<= 1;
return p;
}
inline static double highAbs(FMatrix M)
{
double max = 0;
typename FMatrix::Iterator ri = M.Begin();
for(; ri != M.End(); ++ri){
double tmp = fabs(*ri);
if(max < tmp) max = tmp;
}
return max;
}
inline static double zw_dOOnorm(const double* M, int m, int n)
{
double norm = 0;
double old = 0;
const double* p;
for (p = M; p != M + (m * n); ) {
old = norm;
norm = cblas_dasum (n, p ,1);
if (norm < old) norm = old;
p += n;
}
return norm;
}
inline static double zw_dmax (const int N, const double* a, const int inc)
{
return fabs(a[cblas_idamax (N, a, inc)]);
}
inline static int zw_hbound (integer& b, int m, int n, const double* M)
{
double norm = 0;
const double* p;
integer tmp;
b = 1;
for (p = M; p != M + (m * n); ) {
norm = cblas_dnrm2 (n, p ,1);
tmp = norm;
integer::mulin (b, tmp);
p += n;
}
return 0;
}
/* out: vector to print
* tag: prepend this to output
* bound: upper bound on printed value (0 - ignore bound) */
template<class Vec>
std::ostream& writeVec(Vec& out, const char *tag="", integer bound=/*40000000*/0,
size_t numEntries=5, std::ostream &os=std::cerr)
{
os << tag << ": [";
size_t n = (out.size() < numEntries ? out.size() : numEntries);
for( size_t i=0; i<n; ++i){
if(bound && ((integer)(out[i]) > bound || (integer)(out[i]) < -bound)){
os << " entry over bound ]" << std::endl;
return os;
}
else
os << " " << out[i];
}
if(out.size() > numEntries)
os << " ...";
os << " ]" << std::endl;
return os;
}
template<class Vec>
void writeVecFile(Vec& out, const char* file)
{
std::ofstream os;
os.open(file, std::ios::out);
typename Vec::const_iterator vi = out.begin();
for( ; vi != out.end(); ++vi){
os << *vi << std::endl;
}
os.close();
}
// to write diagnostic info to files for further testing
template <class Matrix>
void dumpData(const Matrix &M, const IVector &b, IVector &numx, integer &denx, integer &denBound)
{
#ifdef SPITOUT
std::ofstream matout;
matout.open("debug.mat", std::ios::out);
M.write(matout);
matout.close();
writeVecFile(b, "debug.rhs");
writeVecFile(numx, "debug.num");
std::ofstream dout;
dout.open("debug.den", std::ios::out);
dout << denx << std::endl;
dout << denBound << std::endl;
dout << numx.size() << std::endl;
dout.close();
#endif
}
// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,:0,t0,+0,=s
// Local Variables:
// mode: C++
// tab-width: 8
// indent-tabs-mode: nil
// c-basic-offset: 8
// End:
|