This file is indexed.

/usr/include/linbox/algorithms/vector-fraction.h is in liblinbox-dev 1.3.2-1.1build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
/* linbox/algorithms/vector-fraction.h
 * Copyright (C) 2004 David Pritchard
 *
 * Written by David Pritchard <daveagp@mit.edu>
 *
 * ========LICENCE========
 * This file is part of the library LinBox.
 *
  * LinBox is free software: you can redistribute it and/or modify
 * it under the terms of the  GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * ========LICENCE========
 */

#ifndef __LINBOX_vector_fraction_H
#define __LINBOX_vector_fraction_H

#include "linbox/linbox-config.h"
#include "linbox/util/debug.h"
#include <stdio.h>
#include "linbox/vector/vector-traits.h"

namespace LinBox
{

	/** utility function to reduce a rational pair to lowest form */
	template<class Domain>
	void reduceIn(Domain& D, std::pair<typename Domain::Element, typename Domain::Element> &frac)
	{
		linbox_check(!D.isZero(frac.second));

		if (D.isZero(frac.first)){
			D.init(frac.second, 1);
			return;
		}

		typename Domain::Element gcd;
		D.gcd(gcd, frac.first, frac.second);
		D.divin(frac.first, gcd);
		D.divin(frac.second, gcd);
	}

	/** utility function to gcd-in a vector of elements over a domain */
	//this could be replaced by a fancier version that combines elements linearly at random
	template<class Domain, class Vector>
	void vectorGcdIn(typename Domain::Element& result, Domain& D, Vector& v) {
		for (typename Vector::iterator i = v.begin(); i != v.end(); i++)
			D.gcdin(result, *i);
	}

	/** utility function, returns gcd of a vector of elements over a domain */
	// this could be replaced by a fancier version that combines elements linearly at random
	template<class Domain, class Vector>
	typename Domain::Element vectorGcd(Domain& D, Vector& v) {
		typename Domain::Element result;
		D.init(result, 0);
		vectorGcdIn(result, D, v);
		return result;
	}


	/**
	 * \brief VectorFraction<Domain> is a vector of rational elements with common reduced denominator.
	 * Here Domain is a ring supporting the gcd, eg NTL_ZZ or PID_integer
	 *	 For compatability with the return type of rationalSolver, it allows conversion from/to
	 *       std::vector<std::pair<Domain::Element> >.
	 *       All functions will return the fraction in reduced form, calling reduce() if necessary.
	 */

	template<class Domain>
	class VectorFraction{
	public:
		typedef typename Domain::Element Element;
		typedef typename std::pair<Element, Element> Fraction;
		typedef typename std::vector<Fraction> FVector;
		typedef typename Vector<Domain>::Dense Vector;

		Vector numer;
		Element denom;
		const Domain& _domain;
		Element zero;

		/**
		 * constructor from vector of rational numbers
		 * reduces individual pairs in-place first unless alreadyReduced=true
		 */
		VectorFraction(const Domain& D, FVector& frac
			       //,bool alreadyReduced = false
			      ) :
			_domain(D)
		{
			bool alreadyReduced = false;
			typename FVector::iterator i;

			D.init(zero, 0);
			D.init(denom, 1);
			if (!alreadyReduced)
				for (i=frac.begin(); i!=frac.end(); i++)
					reduceIn(D, *i);

			for (i=frac.begin(); i!=frac.end(); i++) {
				linbox_check(!D.isZero(i->second));
				D.lcmin(denom, i->second);
			}

			numer = Vector(frac.size());
			typename Vector::iterator j;

			for (i=frac.begin(), j=numer.begin(); i!=frac.end(); i++, j++){
				D.mul(*j, denom, i->first);
				D.divin(*j, i->second);
			}
		}

		/** allocating constructor, returns [0, 0, ... 0]/1 */
		VectorFraction(const Domain& D, size_t n) :
			_domain(D)
		{
			D.init(zero, 0);
			D.init(denom, 1);
			numer = Vector(n);
			typename Vector::iterator j;

			for (j=numer.begin(); j!=numer.end(); j++)
				D.assign(*j, zero);
		}

		/** copy constructor */
		VectorFraction(const VectorFraction<Domain>& VF) :
			_domain(VF._domain)
		{
			copy(VF);
		}

		/** copy without construction */
		void copy(const VectorFraction<Domain>& VF)
		{
			//assumes _domain = VF._domain
			denom = VF.denom;
			numer.resize(VF.numer.size());
			typename Vector::iterator i;
			typename Vector::const_iterator j;

			for (i=numer.begin(), j=VF.numer.begin(); i!=numer.end(); i++, j++)
				_domain.assign(*i, *j);
		}

		/** clear and resize without construction */
		void clearAndResize(size_t size)
		{
			_domain.init(denom, 1);
			typename Vector::iterator i;
			numer.resize(size);
			for (i=numer.begin(); i!=numer.end(); i++)
				_domain.init(*i, 0);
		}

		/**
		 * Replaces *this with a linear combination of *this and other
		 * such that the result has denominator == gcd(this->denom, other.denom)
		 * see Mulders+Storjohann : 'Certified Dense Linear System Solving' Lemma 2.1
		 * return value of true means that there was some improvement (ie denom was reduced)
		 */
		bool combineSolution(const VectorFraction<Domain>& other)
		{
			if (_domain.isDivisor(other.denom, denom)) return false;
			if (_domain.isDivisor(denom, other.denom)) {
				denom = other.denom;
				numer = other.numer;
				return true;
			}
			Element s, t, g;
			_domain.xgcd(g, s, t, denom, other.denom);
			if (_domain.areEqual(g, denom)) ; //do nothing
			else {
				denom = g;
				typename Vector::iterator it=numer.begin();
				typename Vector::const_iterator io=other.numer.begin();
				for (; it != numer.end(); it++, io++) {
					_domain.mulin(*it, s);
					_domain.axpyin(*it, t, *io);
				}
				return true;
			}
			return false;
		}

		/**
		 * Adds in-place to *this a multiple of other
		 * such that the result has gcd(denominator, denBound) == gcd(this->denom, other.denom, denBound)
		 * see Mulders+Storjohann : 'Certified Dense Linear System Solving' Lemma 6.1
		 * return value of true means that there was some improvement (ie gcd(denom, denBound) was reduced)
		 * g is gcd(denom, denBound), and is updated by this function when there is improvement
		 */
		bool boundedCombineSolution(const VectorFraction<Domain>& other, const Element& denBound, Element& g)
		{

			//this means that new solution won't reduce g
			if (_domain.isDivisor(other.denom, g)) return false;

			//short-circuit in case the new solution is completely better than old one
			Element _dtmp;
			if (_domain.isDivisor(g, _domain.gcd(_dtmp, denBound, other.denom))) {
				denom = other.denom;
				numer = other.numer;
				g = _dtmp;
				return true;
			}

			Element A, g2, lincomb;
			_domain.gcd(g, other.denom, g); //we know this reduces g

			// find A s.t. gcd(denBound, denom + A*other.denom) = g
			// strategy: pick random values of A <= d(y_0)
			integer tmp;
			_domain.convert(tmp, denBound);
			typename Domain::RandIter randiter(_domain, tmp); //seed omitted
			// TODO: I don't think this random iterator has high-quality low order bits, which are needed
			do {
				randiter.random(A);
				_domain.assign(lincomb, denom);
				_domain.axpyin(lincomb, A, other.denom);
				_domain.gcd(g2, lincomb, denBound);
			}
			while (!_domain.areEqual(g, g2));

			_domain.assign(denom, lincomb);
			typename Vector::iterator it=numer.begin();
			typename Vector::const_iterator io=other.numer.begin();
			for (; it != numer.end(); it++, io++)
				_domain.axpyin(*it, A, *io);
			return true;
		}

		/**
		 * Adds in-place to *this a multiple of other to create an improved certificate ("z")
		 * n1/d1 = *this . b, n2/d2 = other . b   in reduced form
		 * n1/d1 are updated so that new denominator is lcm(d1, d2);
		 * see Mulders+Storjohann : 'Certified Dense Linear System Solving' Lemma 6.2
		 * return value of true means that there was some improvement (ie d1 was increased)
		 */
		bool combineCertificate(const VectorFraction<Domain>& other, Element& n1, Element& d1,
					const Element& n2, const Element d2)
		{
			//this means that new solution won't reduce g
			if (_domain.isDivisor(d1, d2)) return false;

			//short-circuit in case the new solution is completely better than old one
			if (_domain.isDivisor(d2, d1)) {
				copy(other);
				n1 = n2;
				d1 = d2;
				return true;
			}

			Element A, g, l, n1d2_g, n2d1_g, lincomb, g2, tmpe, one;

			_domain.gcd(g, d1, d2);   //compute gcd
			_domain.mul(l, d1, d2);
			_domain.divin(l, g);      //compute lcm

			_domain.div(n1d2_g, d2, g);
			_domain.mulin(n1d2_g, n1);   //compute n1.d2/g
			_domain.div(n2d1_g, d1, g);
			_domain.mulin(n2d1_g, n2);   //compute n2.d1/g

			// find A s.t. gcd(denBound, denom + A*other.denom) = g
			// strategy: pick random values of A <= lcm(d(denom), d(other.denom))
			integer tmp;
			_domain.mul(tmpe, denom, other.denom);
			_domain.convert(tmp, tmpe);
			_domain.init(one, 1);
			typename Domain::RandIter randiter(_domain, tmp); //seed omitted
			// TODO: I don't think this random iterator has high-quality low order bits, which are needed
			do {
				randiter.random(A);
				_domain.assign(lincomb, n1d2_g);
				_domain.axpyin(lincomb, A, n2d1_g);
				_domain.gcd(g2, lincomb, l);
			}
			while (!_domain.areEqual(one, g2));

			this->axpyin(A, other);
			_domain.lcmin(d1, d2);

			return true;
		}

		/**
		 * this += a * x.   performs a rational axpy with an integer multiplier
		 * returns (*this)
		 */
		VectorFraction<Domain>& axpyin(Element& a, const VectorFraction<Domain>& x)
		{
			Element a_prime, gcd_a_xdenom, xdenom_prime;
			_domain.gcd(gcd_a_xdenom, a, x.denom);
			_domain.div(a_prime, a, gcd_a_xdenom);
			_domain.div(xdenom_prime, x.denom, gcd_a_xdenom);

			Element cdf; //common denominator factor; multiply both sides by this and divide at end
			_domain.gcd(cdf, denom, xdenom_prime);
			_domain.divin(denom, cdf);
			_domain.divin(xdenom_prime, cdf);

			// we perform numer[i] = xdenom_prime * numer[i] + a_prime * denom * x.denom[i]
			// so multiply denom into a_prime and save a multiplication on each entry
			_domain.mulin(a_prime, denom);

			typename Vector::iterator i = this->numer.begin();
			typename Vector::const_iterator j = x.numer.begin();
			for (; i != this->numer.end(); i++, j++) {
				_domain.mulin(*i, xdenom_prime);
				_domain.axpyin(*i, a_prime, *j);
			}

			_domain.mulin(denom, cdf);
			_domain.mulin(denom, xdenom_prime);
			simplify();
			return *this;
		}

		/** write to a stream */
		std::ostream& write(std::ostream& os) const
		{
			os << "[";
			for (typename Vector::const_iterator it=numer.begin(); it != numer.end(); it++) {
				if (it != numer.begin()) os << " ";
				os << *it;
			}
			return os << "]/" << denom;
		}

		/** convert to 'answer' type of lifting container */
		FVector& toFVector(FVector& result) const
		{
			linbox_check(numer.size()==result.size());
			typename Vector::const_iterator it=numer.begin();
			typename FVector::iterator ir=result.begin();
			for (; it != numer.end(); it++, ir++) {
				_domain.assign(ir->first, *it);
				_domain.assign(ir->second, denom);
			}
			return result;
		}

		/** reduces to simplest form, returns (*this) */
		VectorFraction<Domain>& simplify()
		{
			typename Vector::iterator i;
			Element gcd;
			_domain.init(gcd, denom);
			vectorGcdIn(gcd, _domain, numer);

			_domain.divin(denom, gcd);
			for (i=numer.begin(); i!=numer.end(); i++)
				_domain.divin(*i, gcd);
			return (*this);
		}
	};

}

#endif //__LINBOX_vector_fraction_H

// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,:0,t0,+0,=s
// Local Variables:
// mode: C++
// tab-width: 8
// indent-tabs-mode: nil
// c-basic-offset: 8
// End: