This file is indexed.

/usr/include/linbox/blackbox/ntl-hankel.inl is in liblinbox-dev 1.3.2-1.1build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/*-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 *    ntl-hankel.inl     NTL_Hankel.cpp file
 *    Copyright (C) 2003 Austin Lobo, B. David Saunders
 *
 *    Author: Austin Lobo
 *    Linbox version 2001 and 2002
 *
 *    This file is included in the template description of ntl-Hankel.h
 *    it contains the implementations of templatized member functions in the
 *    partial template  specialization for hankel matrices that
 *    are manipulated in fields and rings according to the arithmetic
 *    in the ntl package from V. Shoup
 *
 * ========LICENCE========
 * This file is part of the library LinBox.
 *
 * LinBox is free software: you can redistribute it and/or modify
 * it under the terms of the  GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * ========LICENCE========

 *    Everything is in the Linbox namespace by virtue of the #include
 *    in ntl-Hankel.h
 *-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+*/

#ifndef __LINBOX_bb_ntl_hankel_INL
#define __LINBOX_bb_ntl_hankel_INL

#include <iostream>
#include <fstream>
#include <NTL/ZZ_pX.h>

namespace LinBox
{
	/*-----------------------------------------------------------------
	 *----    Destructor
	 *----------------------------------------------------------------*/
	template <class Field>
	inline Hankel<Field>::~Hankel()
	{
#ifdef DBGMSGS
		std::cout << "Hankel::~Hankel():\tDestroyed a " << this->rowDim << "x"<< this->colDim<<
						 " Hankel matrix "<< std::endl;
#endif
	}//---- Destructor ----



	/*-----------------------------------------------------------------
	 *----    Default Constructor
	 *----------------------------------------------------------------*/
	template <class Field>
	Hankel<Field>::Hankel()
	{
		this->shape.shape(BlackboxSpecifier::HANKEL);
#ifdef DBGMSGS
		std::cout << "Hankel::Hankel():\tCreated a " << this->rowDim << "x"<< this->colDim<<
						" Hankel matrix "<< std::endl;
#endif

	}//----- Zero Param Constructor ---- [Tested 6/14/02 -- Works]




	/*-----------------------------------------------------------------
	 *----- Constructor With User-Supplied First Row And Column
	 *----------------------------------------------------------------*/
	template <class Field>
	Hankel<Field>::Hankel( const Field F,
			       const std::vector<typename Field::Element>&v)
	{
		// Assumes that the input is a vector of ZZ_p else things will FAIL
		if ( (1 & v.size()) == 0)
		{
			std::cout << "There must be an ODD number of entries in the input vector " <<
			"The length given is " << v.size();
		}
		assert( (1 & v.size()) == 1);

		this->rowDim = (1+v.size())/2; // The vector is 0..2n-2;
		this->colDim = (1+v.size())/2;
		this->sysDim = (1+v.size())/2;

		this->pdata.SetMaxLength( v.size());
		//		rpdata.SetMaxLength( v.size());
		for (unsigned int i=0; i< v.size(); i++)
		{
			this->P.setCoeff( this->pdata, i, v[i]);
			//SetCoeff( rpdata, i, v[v.size()-1-i]);
		}

#ifdef DBGMSGS
		std::cout << "Hankel::Hankel(F,V):\tCreated a " << this->rowDim << "x"<< this->colDim<<
						   " Hankel matrix "<< std::endl;
#endif

	}//----- Constructor given a vector----



	/*-----------------------------------------------------------------
	 *-----    Print The Matrix To Screen
	 *----------------------------------------------------------------*/
	template <class Field>
	void Hankel<Field>::print(std::ostream& os) const
	{
		register size_t i, N, j;

		os<< this->rowDim << " " << this->colDim << " " << this->shape.shape() << std::endl;
		N = (this->rowDim-1)<<1;

		if ( N < 20 ) {            // Print small matrices in dense format
			Element tmp;
			for (i = N ; i >= this->colDim-1; i--) {
				for ( j = 0; j < this->colDim ; j++)
					os << " " << this->P.getCoeff(tmp, this->pdata,i-j) ;
				os << std::endl;
			}
		}
		else {
			// Print large matrices' first row and col
			os << "<Hankel<";
			this->P.write(os, this->pdata) << ">>\n";
		} //[v(2n-2),....,v(0)]; where v(0) is the top right entry of the matrix

		return;
	} //---- print()-----




	/*-----------------------------------------------------------------
	 *----    The infamous clone has been created here
	 *----------------------------------------------------------------*/
	//template <class Field, class Vector>
	//BlackboxArchetype<Vector>* Hankel<Field, Vector>::clone() const
	//{
	//return new Hankel(*this);
	//}// ------ This is not tested.


	/*-----------------------------------------------------------------
	 *----    Save To File, Given Destination Filename
	 *----------------------------------------------------------------*/
	template <class Field>
	void Hankel<Field>::print( char *outFileName) const
	{
		// int i, j, N;

		std::cout << "Printing hankel matrix to " << outFileName << std::endl;

		if ( outFileName == NULL )
			print();    // Print to stdout if no file is specified
		else {
			std::ofstream o_fp(outFileName, std::ios::out);
			o_fp << this->rowDim << " " << this->colDim << " " << this->shape.shape() << std::endl ;
			o_fp << "<Hankel<";
			this->P.write(o_fp, this->pdata) << ">>\n";

			o_fp.close();
		}
		return;
	} // print(char *)



	/*-----------------------------------------------------------------
	 *    Make the matrix LOWER triangular with determinant 1.
	 *    i.e. clear the last this->coldim-1 elements in the this->data vector
	 *----------------------------------------------------------------*/
	template <class Field>
	void Hankel<Field>::setToUniModLT()
	{
		int L = int(this->rowDim-1)<<1;
		this->shape.shape(BlackboxSpecifier::UNIMOD_LT);

		Element one,zero;
		this->K.init(one,1);
		this->K.init(zero,0);
		for (int i= int(this->rowDim)-1; i <= L; i++ ) {
			// zero out the below-diagonal entries
			this->P.setCoeff(this->pdata,i,zero);
		}
		// set the antidiagonal to 1
		this->P.setCoeff( this->pdata, this->rowDim-1, one);       // update the corresponding coeff of this->pdata
		//reverse(rpdata,this->pdata);        // no need to construct the transpose
		return;
	}//



	/*-----------------------------------------------------------------
	 *    Make matrix a unimodular UPPER Triangular with det 1
	 *    i.e. clear the first N-1 elements in the this->data vector
	 *    and make the elements below the anti-diagonal all zero
	 *----------------------------------------------------------------*/
	template <class Field>
	void Hankel<Field>::setToUniModUT()
	{
		this->shape.shape(BlackboxSpecifier::UNIMOD_UT);

		Element one,zero;
		this->K.init(one,1);
		this->K.init(zero,0);

		for (size_t i=0; i < this->rowDim-1; i++ ) {
			// zero out the below-antidiagonal entries
			this->P.setCoeff(this->pdata, i , zero);
		}

		// set antidiagonal to 1
		this->P.setCoeff(this->pdata,this->rowDim-1, one);      // update the corresponding coeff of this->pdata
		//reverse(rpdata,this->pdata);    // no need to construct the transpose

		return;
	}//



	/*-----------------------------------------------------------------
	 *    Apply the matrix to a vector Here the input and output
	 *    vectors are both over the SAME prime ZZ_p field as the
	 *    Hankel matrix itself.
	 *----------------------------------------------------------------*/
	template <class Field>
	template<class OutVector, class InVector>
	OutVector& Hankel<Field>::apply( OutVector &v_out,
					 const InVector& v_in) const
	{
		if (v_out.size() != this->rowdim())
			std::cout << "\tHankel::apply()\t output vector not correct size, at "
			<< v_out.size() << ". System rowdim is" <<  this->rowdim() << std::endl;
		if ( v_out.size() != v_in.size())
			std::cout << "\tHankel::apply()\t input vector not correct size at "
			<< v_in.size() << ". System coldim is" <<  this->coldim() << std::endl;
		assert((v_out.size() == this->rowdim()) &&
		       (v_in.size() == this->coldim()))  ;

		NTL::ZZ_pX pxOut, pxIn;
		pxIn.SetMaxLength( v_in.size()-1);
		for (unsigned int i=0; i< v_in.size(); i++)
			this->P.setCoeff( pxIn, i, v_in[i]);

#ifdef DBGMSGS
		std::cout << "\npX in is " << pxIn << std::endl;
		std::cout << "multiplied by " << this->pdata << std::endl;
#endif
		mul(pxOut,pxIn,this->pdata);

#ifdef DBGMSGS
		std::cout <<"pxOut is " << pxOut << std::endl;
#endif
		int N = (int)this->rowdim();
		for ( int i= 0; i < N; i++)
			this->P.getCoeff(v_out[N-1-i], pxOut, N-1+i);

		return v_out;

	}


	/*-----------------------------------------------------------------
	 *    Apply the transposed matrix to a vector Here the input and output
	 *    vectors are both over the SAME prime ZZ_p field as the
	 *    Hankel matrix itself. Calls the multiply from the Toeplitz matrix
	 *    Since Hankel is symmetric, this is the same as apply
	 *----------------------------------------------------------------*/
	template <class Field>
	template <class OutVector, class InVector>
	OutVector& Hankel<Field>::applyTranspose( OutVector &v_out,
						  const InVector& v_in) const
	{
		return(v_out = apply(v_out,v_in));

	}



} // namespace LinBox

#endif //__LINBOX_bb_ntl_hankel_INL

// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,:0,t0,+0,=s
// Local Variables:
// mode: C++
// tab-width: 8
// indent-tabs-mode: nil
// c-basic-offset: 8
// End: