This file is indexed.

/usr/include/linbox/matrix/permutation-matrix.inl is in liblinbox-dev 1.3.2-1.1build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
/* Copyright (C) 2010 LinBox
 * Written by <brice.boyer@imag.fr>
 *
 *
 *
 * ========LICENCE========
 * This file is part of the library LinBox.
 *
  * LinBox is free software: you can redistribute it and/or modify
 * it under the terms of the  GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * ========LICENCE========
 */

/** @internal
 * @file permutation-permutation.inl
 * @brief Implementation of permutation-matrix.h
 */

#ifndef __LINBOX_matrix_permutation_INL
#define __LINBOX_matrix_permutation_INL

#define _LB_DBG

#include <algorithm>
#include "linbox/util/debug.h"

// BlasPermutation
namespace LinBox
{
	template<class _Uint>
	BlasPermutation<_Uint>::BlasPermutation() :
	       	r_(0),n_((_Uint)-1),P_(0),Q_(0),inv_(false)
	{
#ifndef NDEBUG
		std::cout << "NULL permutation created. Beware !" << std::endl;
#endif
	}

	template<class _Uint>
	BlasPermutation<_Uint>::BlasPermutation(size_t n) :
	       	r_(n),n_((_Uint)-1),P_(n),Q_(0),inv_(false)
	{ }


	template<class _Uint>
	BlasPermutation<_Uint>::~BlasPermutation() {}

	// n_ is not computed here.
	template<class _Uint>
	BlasPermutation<_Uint>::BlasPermutation(const _Uint *P, const _Uint & r ) :
	       	r_(r), n_((_Uint)-1),P_(0),Q_(0),inv_(false)
	{
		// std::cout << "CTOR 2" << std::endl;
		// std::cout << "got : perm of " << r << std::endl;
		// for (size_t i = 0 ; i< r ; ++i) std::cout << P[i] << ' ' ;
		// std::cout<<std::endl;
		if (!r) {
			// n_ = 0 ;
			return ;
		}
		P_.resize(r_);
		for (_Uint  i = 0 ; i < r_ ; ++i) {
			P_[i] = P[i] ;
		}

		// std::cout << "return : perm  (" << cleaned_ << ") of " << r_ << std::endl;
		// for (size_t i = 0 ; i< r_ ; ++i) std::cout << P_[i] << ' ' ;
		// std::cout<<std::endl;

		return ;

	}

	// n_ is not computed here.
	template<class _Uint>
	BlasPermutation<_Uint>::BlasPermutation(const std::vector<_Uint> & P) :
	       	r_(P.size()), n_((_Uint)-1),P_(0),Q_(0),inv_(false)
	{
		if ( !r_ )  {
			// n_ = 0 ;
			return ;
		}
		P_ = P;
		return ;

	}

	// n_ is not computed here.
	template<class _Uint>
	BlasPermutation<_Uint>::BlasPermutation(const MatrixPermutation<_Uint> & P) :
	       	r_(P.getSize()), n_((_Uint)/*P.getSize()*/-1),P_(P.getSize()),Q_(P),inv_(false)
	{
		if ( !r_ ) {
			return ;
		}
		std::vector<_Uint> Qinv(n_);
		InvertQ_(Qinv);
		BuildP_(Qinv,Q_);
	}

	// n_ is computed here
	template<class _Uint>
	_Uint
	BlasPermutation<_Uint>::getSize() const
	{
		// std::cout << "getting size (" << r_ << ") :";
		// this->write(std::cout) << std::endl ;

		// std::cout << " was " << n_ << std::endl;
		if ( n_ == (_Uint) -1 ) { //! @warning potentially catastrophic
			if (!r_)
				n_ = 0 ;
			else
				n_ = (*(std::max_element(P_.begin(),P_.end())))+1 ;
		}
		// std::cout << " is " << n_ << std::endl;
		return n_ ;
	}

	template<class _Uint>
	_Uint
	BlasPermutation<_Uint>::getOrder() const
	{
		return r_ ;
	}

	template<class _Uint>
	void BlasPermutation<_Uint>::setOrder( size_t r)
	{
		r_ = r  ;
		n_ = (_Uint) -1 ;
	}


	template<class _Uint>
	MatrixPermutation<_Uint> &
	BlasPermutation<_Uint>::Convert (MatrixPermutation<_Uint> & P)
	{
		getSize() ;   // si c'était pas déjà fait...
		P.resize(n_); // sets P to identity
		for (_Uint i = 0 ; i < n_ ; ++i)
			std::swap(P[i],P[P_[i]]);
		return P ;
	}

	/// compresses BlasPermutation to a smaller \c r_.
	template<class _Uint>
	void BlasPermutation<_Uint>::Compress()
	{
		// std::cout << r_ << std::endl;
		if (!r_) {
			linbox_check(!n_);
			P_.resize(0) ;
			return ;
		}
		_Uint rr = r_-1 ;
		while ( rr && (P_[rr] == 0  )) --rr ;    // removing trailing zeros
		while ( rr && (P_[rr] == rr )) --rr ;    // useless information
		if ((rr == 0) && (P_[0] == 0)) {
			r_ = 0 ;
			n_ = 0  ;
			P_.resize(0) ;
			return ;
		}
		r_ = rr+1 ;
		P_.resize(r_,0);   // done cleaning.
		n_ = -1 ;
		// recomputing n_ if lost.
		// if (n_ != (_Uint) -1) {
			// n_ = getSize();
		// }
		return ;
	}

	template<class _Uint>
	void BlasPermutation<_Uint>::InitQ_() const
	{
		getSize();
		Q_.resize(n_);
		for (_Uint i = 0 ; i < n_ ; ++i) Q_[i] = i ;
	}

	template<class _Uint>
	void BlasPermutation<_Uint>::Transpose()
	{
		Invert();
	}

	template<class _Uint>
	void BlasPermutation<_Uint>::Invert()
	{
		if (!r_) {
			return ;
		}
		if (inv_) {
			inv_ = false ;
			return ;
		}
		inv_ = false ;
		getSize();
		/* if not already computed, build standard permuation Q_ */
		BuildQ_();
		std::vector<_Uint> Qinv(n_) ;
		/* invert standard matrix Q_*/
		InvertQ_(Qinv);
		/*  recover P_ from Qinv) */
		BuildP_(Q_,Qinv);
		/*  free Q_ (no longer representing P_ */
		Q_.resize(0); // Q_ = Qinv ?
		return ;
	}

	// P = convert(Q), using Qinv
	template<class _Uint>
	void BlasPermutation<_Uint>::BuildP_( std::vector<_Uint> &Q, std::vector<_Uint> &Qinv)
	{
		linbox_check( r_ );
		P_.resize(getSize());
		/*  building */
		// std::cout << "Buiding P (" << n_ << ")" << std::endl;
		_Uint pi,qi,qpi ;
		for (_Uint i = 0 ;i < n_ ; ++i) {
			pi  = P_[i]  = Qinv[i];
			if(i == pi) continue ;
			qi  = Q[i];
			qpi = Q[pi] ;
			std::swap(Q[i],Q[pi]);
			std::swap(Qinv[qi],Qinv[qpi]);
		}
		/*  cleaning */
		linbox_check(n_ && (n_ != (_Uint)-1) );
		r_ = n_-1 ;
		Compress();
	}

	// apply P_ to identity to get Q_
	template<class _Uint>
	void BlasPermutation<_Uint>::BuildQ_() const
	{
		if ((_Uint)Q_.size() == n_) return ; // si Q_ est déjà initialisée, alors P_ == Q_
		// set Q_ to identity
		InitQ_();
		// then permute it
		// faster if P_ is ::Compress()ed
		for (_Uint i = 0 ; i < r_ ; ++i) {
			if (P_[i]>i) {
				std::swap(Q_[i],Q_[P_[i]]);
			}
		}
		return ;
	}

	template<class _Uint>
	bool BlasPermutation<_Uint>::CheckP_()
	{
		for (_Uint i = 0 ; i < r_ ; ++i)
			if (P_[i] && P_[i] < i)
				return false ;
		return true ;
	}

	// invert a standard permutation
	template<class _Uint>
	std::vector<_Uint> & BlasPermutation<_Uint>::InvertQ_(std::vector<_Uint> & Qinv)
	{
		linbox_check(n_ != (_Uint) -1);
		for (_Uint i = 0 ; i < n_ ; ++i)
			Qinv[Q_[i]] = i ;
		return Qinv ;
	}

#if 0
	template<class _Uint>
	inline _Uint
	BlasPermutation<_Uint>::operator[](const _Uint & i)
	{
		BuildQ_() ;
		linbox_check( i<Q_.size() ) ;
		return Q_[i] ;
	}
#endif

	template<class _Uint>
	inline  _Uint
	BlasPermutation<_Uint>::operator[](const _Uint  i) const
	{
		if (!r_) return i ;
		getSize() ;
		BuildQ_() ;
		linbox_check(n_ == Q_.size() );
		if (i >= n_)
			return i ;
		return Q_[i] ;
	}


	/* ****** */
	/* output */
	/* ****** */
	template<class _Uint>
	std::ostream & BlasPermutation<_Uint>::write (std::ostream & o, bool Lapack) const
	{
		if (Lapack) {
			o << '['  ;
			_Uint i = 0 ;
			if (r_) {
				if (r_ > 1) {
					for ( ; i < r_-1 ; ++i)
						o << P_[i] << ',';
				}
				o << P_[i] ;
			}
			o  << ']' ;
			if (inv_) o << "^{-1}" ;
			o << '(' << (long int) (n_+1)-(long int)1 << ')' ;
		}
		else {
			// std::cout << "order : " << r_ << std::endl;
			// std::cout << "P_ := " << (std::vector<_Uint>)P_ << std::endl;
			// std::cout << "Q_ := " << (std::vector<_Uint>)Q_ << std::endl;
			// std::cout << Q_.size() << std::endl;
			BuildQ_() ;
			// std::cout << "Q_ := " << (std::vector<_Uint>)Q_ << std::endl;
			// std::cout << Q_.size() << std::endl;
			o << '['  ;
			_Uint i = 0 ;
			if (n_) {
				if (n_ > 1) {
					for ( ; i < n_-1 ; ++i)
						o << Q_[i] << ',';
				}
				o << Q_[i] ;
			}
			o  << ']' ;
			if (inv_) o << "^{-1}" ;
			o << '(' << (long int) (n_+1)-(long int)1 << ')' ;
		}
		return o;
	}

	template<class _Uint>
	std::ostream & operator<<(std::ostream &o, BlasPermutation<_Uint> & P)
	{
		return P.write(o) ;
	}

#if 0

	/* ******* */
	/*  Apply  */
	/* ******* */

	template<class _Uint>
	template<class OutVector, class InVector>
	OutVector &BlasPermutation<_Uint>::apply (OutVector &y, const InVector &x)
	{
		linbox_check((_Uint)x.size() == getSize());
		linbox_check((_Uint)y.size() == getSize());
		y = x ; // no need for Field operations...
		for (_Uint i = 0 ; i < r_ ; ++i)
			std::swap(y[i],y[P_[i]]) ;

		return y ;
	}

	template<class _Uint>
	template<class OutVector, class InVector>
	OutVector &BlasPermutation<_Uint>::applyTranspose (OutVector &y, const InVector &x)
	{
		linbox_check((_Uint)x.size() == getSize());
		linbox_check((_Uint)y.size() == getSize());
		y = x ; // no need for Field operations...
		_Uint i = r_ ;
		for ( ; i-- ; )
			std::swap(y[i],y[P_[i]]) ;

		return y ;
	}

#endif

#if 0
	/* *************** */
	/*  Transposition  */
	/* *************** */

	template<class _Uint>
	void BlasPermutation<_Uint>::TransposeRows(_Uint i, _Uint j)
	{
		if (i == j) return ;
		linbox_check(i<getSize());
		linbox_check(j<getSize());
		BuildQ_() ;
		std::vector<_Uint> Qinv(n_) ;
		InvertQ_(Qinv);
		std::swap(Q_[Qinv[i]],Q_[Qinv[j]]);
		std::swap(Qinv[i],Qinv[j]);
		BuildP_(Qinv,Q_);
		Q_.resize(0);

	}

	template<class _Uint>
	void BlasPermutation<_Uint>::TransposeCols(_Uint i, _Uint j)
	{
		if (i == j) return ;
		linbox_check(i<getSize());
		linbox_check(j<getSize());
		BuildQ_() ;
		std::swap(Q_[i],Q_[j]);
		std::vector<_Uint> Qinv(n_) ;
		InvertQ_(Qinv);
		BuildP_(Qinv,Q_);
		Q_.resize(0);

	}
#endif

}


namespace LinBox
{
	template<class _UnsignedInt>
	MatrixPermutation<_UnsignedInt>::MatrixPermutation() :
	       	n_(0), P_(0)
       	{}

	template<class _UnsignedInt>
	MatrixPermutation<_UnsignedInt>::MatrixPermutation(const _UnsignedInt *P, const _UnsignedInt &n) :
		n_(n), P_(n)
	{
		for (_UnsignedInt i = 0 ; i < n ; ++i)
			P_[i] = P[i] ;
	}

	template<class _UnsignedInt>
	MatrixPermutation<_UnsignedInt>::MatrixPermutation(const std::vector<_UnsignedInt> & P) :
		n_(P.size()), P_(P)
       	{}

	template<class _UnsignedInt>
	inline  _UnsignedInt
	MatrixPermutation<_UnsignedInt>::operator[](const _UnsignedInt  i) const
	{
		return P_[i] ;
	}


	template<class _UnsignedInt>
	_UnsignedInt
	MatrixPermutation<_UnsignedInt>::getSize() const
	{ return n_ ; }

	template<class _UnsignedInt>
	void
	MatrixPermutation<_UnsignedInt>::resize( _UnsignedInt  n)
	{
		if (n < n_) {
#ifdef DEBUG
			/* checking that we do only remove terms
			 * that don't alter the fact P_ is a permuation of [[1,n]].
			 */
			bool lost = false ;
			for (_UnsignedInt i = n ; !lost && i < n_ ; ++i)
				if (P_[i]<n-1) lost = true ;
			if (lost)
				std::cerr << "Warning ! (in " << __FILE__ << " at " << __func__ << " (" << __LINE__ << ") your permutation is no longer consistent" << std::endl;
#endif
		}
		/* resizing to identity */
		P_.resize(n);
		for (_UnsignedInt i = n_ ; i< n ; ++i)
			P_[i] =  i ;
		n_ = n ;

		return ;
	}


	/* ****** */
	/* output */
	/* ****** */
	template<class _UnsignedInt>
	std::ostream & MatrixPermutation<_UnsignedInt>::write (std::ostream & o) const
	{
		o << '['  ;
		for (_UnsignedInt i = 0 ; i < n_ ; ++i)
		{ o << P_[i]  ; if (i< n_-1) o << ','; }
		o << ']' ;
		return o;
	}


	template<class _UnsignedInt>
	std::ostream & operator<<(std::ostream &o, MatrixPermutation<_UnsignedInt> & P)
	{
		return P.write(o) ;
	}

	template<class _UnsignedInt>
	void MatrixPermutation<_UnsignedInt>::Transpose()
	{
		/* not in place */
		std::vector<_UnsignedInt> Q(n_) ;
		for (_UnsignedInt i = 0 ; i < (_UnsignedInt) n_ ; ++i)
			Q[P_[i]] = i ;
		P_ = Q ;
		/* in place */
		//! @todo in place ! (revient à parcourir des cycles)

	}

	template<class _UnsignedInt>
	void MatrixPermutation<_UnsignedInt>::Invert()
	{
		Transpose() ;
	}

	template<class _UnsignedInt>
	MatrixPermutation<_UnsignedInt> & MatrixPermutation<_UnsignedInt>::Transpose(Self_t &Mt)
	{
		//Mt(*this);
		Mt.P_ = P_;
		Mt.n_ = n_;
		Mt.Transpose();
		return Mt ;
	}

	template<class _UnsignedInt>
	MatrixPermutation<_UnsignedInt> & MatrixPermutation<_UnsignedInt>::Invert(Self_t &Mt)
	{
		return Transpose(Mt) ;
	}


	//        Self_t & TransposeCols(_UnsignedInt i, _UnsignedInt j);

	template<class _UnsignedInt>
	template<class OutVector, class InVector>
	OutVector &MatrixPermutation<_UnsignedInt>::apply (OutVector &y, const InVector &x) const
	{
		linbox_check((_UnsignedInt)x.size() == n_);
		linbox_check((_UnsignedInt)y.size() == n_);
		_UnsignedInt i = n_;
		for (;i--;)
			y[i] = x[P_[i]] ; // no need for Field operations...

		return y ;
	}

	template<class _UnsignedInt>
	template<class OutVector, class InVector>
	OutVector &MatrixPermutation<_UnsignedInt>::applyTranspose (OutVector &y, const InVector &x) const
	{
		linbox_check((_UnsignedInt)x.size() == n_);
		linbox_check((_UnsignedInt)y.size() == n_);
		_UnsignedInt i = n_;
		for (;i--;)
			y[P_[i]] = x[i] ; // no need for Field operations...

		return y ;
	}

	template<class _UnsignedInt>
	void MatrixPermutation<_UnsignedInt>::TransposeCols(_UnsignedInt i, _UnsignedInt j)
	{
		linbox_check(i<n_);
		linbox_check(j<n_);
		if (i == j) return ;
		std::swap(P_[i],P_[j]);
	}

	template<class _UnsignedInt>
	void MatrixPermutation<_UnsignedInt>::TransposeRows(_UnsignedInt i, _UnsignedInt j)
	{
		linbox_check(i<n_);
		linbox_check(j<n_);
		if (i == j) return ;
		_UnsignedInt iloc = 0 ;
		_UnsignedInt jloc = 0 ;
		_UnsignedInt l = 0 ;
		for ( ; l < n_ && !(iloc && jloc) ; ++l)
			if (P_[l] == i)
				iloc = l+1;
			else if (P_[l] == j)
				jloc = l+1;
		linbox_check(iloc);
		linbox_check(jloc);
		--iloc ;
		--jloc ;
		std::swap(P_[iloc],P_[jloc]);

	}

}

#endif //__LINBOX_matrix_permutation_INL


// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,:0,t0,+0,=s
// Local Variables:
// mode: C++
// tab-width: 8
// indent-tabs-mode: nil
// c-basic-offset: 8
// End: