/usr/include/madness/mra/gfit.h is in libmadness-dev 0.10-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 | /*
This file is part of MADNESS.
Copyright (C) 2007,2010 Oak Ridge National Laboratory
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
For more information please contact:
Robert J. Harrison
Oak Ridge National Laboratory
One Bethel Valley Road
P.O. Box 2008, MS-6367
email: harrisonrj@ornl.gov
tel: 865-241-3937
fax: 865-572-0680
$Id: key.h 2907 2012-06-14 10:15:05Z 3ru6ruWu $
*/
#ifndef MADNESS_MRA_GFIT_H__INCLUDED
#define MADNESS_MRA_GFIT_H__INCLUDED
/// \file gfit.h
/// \brief fit isotropic functions to a set of Gaussians with controlled precision
//#include <iostream>
#include <madness/tensor/tensor.h>
#include <madness/constants.h>
namespace madness {
template<typename T, std::size_t NDIM>
class GFit {
public:
/// default ctor does nothing
GFit() {}
/// return a fit for the Coulomb function
static GFit CoulombFit(double lo, double hi, double eps, bool prnt=false) {
GFit fit=BSHFit(0.0,lo,hi,eps/(4.0*constants::pi),prnt);
fit.coeffs_.scale(4.0*constants::pi);
return fit;
}
/// return a fit for the bound-state Helmholtz function
/// the BSH function is defined by
/// f(r) = exp(-\mu r)/r
/// @param[in] mu the exponent of the BSH
/// @param[in] lo the smallest length scale that needs to be precisely represented
/// @param[in] hi the largest length scale that needs to be precisely represented
/// @param[in] eps the precision threshold
/// @parma[in] prnt print level
static GFit BSHFit(double mu, double lo, double hi, double eps, bool prnt=false) {
GFit fit;
if (NDIM==3) bsh_fit(mu,lo,hi,eps,fit.coeffs_,fit.exponents_,prnt);
else bsh_fit_ndim(NDIM,mu,lo,hi,eps,fit.coeffs_,fit.exponents_,prnt);
return fit;
}
/// return a fit for the Slater function
/// the Slater function is defined by
/// f(r) = exp(-\gamma r)
/// @param[in] gamma the exponent of the Slater function
/// @param[in] lo the smallest length scale that needs to be precisely represented
/// @param[in] hi the largest length scale that needs to be precisely represented
/// @param[in] eps the precision threshold
/// @parma[in] prnt print level
static GFit SlaterFit(double gamma, double lo, double hi, double eps, bool prnt=false) {
GFit fit;
slater_fit(gamma,lo,hi,eps,fit.coeffs_,fit.exponents_,prnt);
return fit;
}
/// return a fit for a general isotropic function
/// note that the error is controlled over a uniform grid, the boundaries
/// will be poorly represented in general. Following Beylkin 2005
static GFit GeneralFit() {
MADNESS_EXCEPTION("General GFit still to be implemented",1);
return GFit();
}
/// return the coefficients of the fit
Tensor<T> coeffs() const {return coeffs_;}
/// return the exponents of the fit
Tensor<T> exponents() const {return exponents_;}
void truncate_periodic_expansion(Tensor<double>& c, Tensor<double>& e,
double L, bool discardG0) const {
double tcut = 0.25/L/L;
if (discardG0) {
// Relies on expnts being in decreasing order
for (int i=0; i<e.dim(0); ++i) {
if (e(i) < tcut) {
c = c(Slice(0,i));
e = e(Slice(0,i));
break;
}
}
} else {
// // Relies on expnts being in decreasing order
// int icut = -1;
// for (int i=0; i<e.dim(0); ++i) {
// if (e(i) < tcut) {
// icut = i;
// break;
// }
// }
// if (icut > 0) {
// for (int i=icut+1; i<e.dim(0); ++i) {
// c(icut) += c(i);
// }
// c = c(Slice(0,icut));
// e = e(Slice(0,icut));
// }
}
}
private:
/// ctor taking an isotropic function
/// the function will be represented with a uniform error on a uniform grid
/// @param[in] f a 1d-function that implements T operator()
template<typename funcT>
GFit(const funcT& f) {
}
/// the coefficients of the expansion f(x) = \sum_m coeffs[m] exp(-exponents[m] * x^2)
Tensor<T> coeffs_;
/// the exponents of the expansion f(x) = \sum_m coeffs[m] exp(-exponents[m] * x^2)
Tensor<T> exponents_;
/// fit the function exp(-mu r)/r
/// formulas taken from
/// G. Beylkin and L. Monzon, On approximation of functions by exponential sums,
/// Appl Comput Harmon A, vol. 19, no. 1, pp. 17-48, Jul. 2005.
/// and
/// R. J. Harrison, G. I. Fann, T. Yanai, and G. Beylkin,
/// Multiresolution Quantum Chemistry in Multiwavelet Bases,
/// Lecture Notes in Computer Science, vol. 2660, p. 707, 2003.
static void bsh_fit(double mu, double lo, double hi, double eps,
Tensor<double>& pcoeff, Tensor<double>& pexpnt, bool prnt) {
if (mu < 0.0) throw "cannot handle negative mu in bsh_fit";
if (mu > 0) {
// Restrict hi according to the exponential decay
double r = -log(4*constants::pi*0.01*eps);
r = -log(r * 4*constants::pi*0.01*eps);
if (hi > r) hi = r;
}
double TT;
double slo, shi;
if (eps >= 1e-2) TT = 5;
else if (eps >= 1e-4) TT = 10;
else if (eps >= 1e-6) TT = 14;
else if (eps >= 1e-8) TT = 18;
else if (eps >= 1e-10) TT = 22;
else if (eps >= 1e-12) TT = 26;
else TT = 30;
if (mu > 0) {
slo = -0.5*log(4.0*TT/(mu*mu));
}
else {
slo = log(eps/hi) - 1.0;
}
shi = 0.5*log(TT/(lo*lo));
if (shi <= slo) throw "bsh_fit: logic error in slo,shi";
// Resolution required for quadrature over s
double h = 1.0/(0.2-.50*log10(eps)); // was 0.5 was 0.47
// Truncate the number of binary digits in h's mantissa
// so that rounding does not occur when performing
// manipulations to determine the quadrature points and
// to limit the number of distinct values in case of
// multiple precisions being used at the same time.
h = floor(64.0*h)/64.0;
// Round shi/lo up/down to an integral multiple of quadrature points
shi = ceil(shi/h)*h;
slo = floor(slo/h)*h;
long npt = long((shi-slo)/h+0.5);
//if (prnt)
//std::cout << "mu " << mu << " slo " << slo << " shi " << shi << " npt " << npt << " h " << h << " " << eps << std::endl;
Tensor<double> coeff(npt), expnt(npt);
for (int i=0; i<npt; ++i) {
double s = slo + h*(npt-i); // i+1
coeff[i] = h*2.0/sqrt(constants::pi)*exp(-mu*mu*exp(-2.0*s)/4.0)*exp(s);
coeff[i] = coeff[i]/(4.0*constants::pi);
expnt[i] = exp(2.0*s);
}
#if ONE_TERM
npt=1;
double s=1.0;
coeff[0]=1.0;
expnt[0] = exp(2.0*s);
coeff=coeff(Slice(0,0));
expnt=expnt(Slice(0,0));
print("only one term in gfit",s,coeff[0],expnt[0]);
#endif
// Prune large exponents from the fit ... never necessary due to construction
// Prune small exponents from Coulomb fit. Evaluate a gaussian at
// the range midpoint, and replace it there with the next most
// diffuse gaussian. Then examine the resulting error at the two
// end points ... if this error is less than the desired
// precision, can discard the diffuse gaussian.
if (mu == 0.0) {
double mid = lo + (hi-lo)*0.5;
long i;
for (i=npt-1; i>0; --i) {
double cnew = coeff[i]*exp(-(expnt[i]-expnt[i-1])*mid*mid);
double errlo = coeff[i]*exp(-expnt[i]*lo*lo) -
cnew*exp(-expnt[i-1]*lo*lo);
double errhi = coeff[i]*exp(-expnt[i]*hi*hi) -
cnew*exp(-expnt[i-1]*hi*hi);
if (std::max(std::abs(errlo),std::abs(errhi)) > 0.03*eps) break;
npt--;
coeff[i-1] = coeff[i-1] + cnew;
}
coeff = coeff(Slice(0,npt-1));
expnt = expnt(Slice(0,npt-1));
}
// Modify the coeffs of the largest exponents to satisfy the moment conditions
//
// SETTING NMOM>1 TURNS OUT TO BE A BAD IDEA (AS CURRENTLY IMPLEMENTED)
// [It is accurate and efficient for a one-shot application but it seems to
// introduce fine-scale noise that amplifies during iterative solution of
// the SCF and DFT equations ... the symptom is negative coeffs in the fit]
//
// SET NMOM=0 or 1 (1 recommended) unless you are doing a one-shot application
//
// Determine the effective range of the four largest exponents and compute
// moments of the exact and remainder of the fit. Then adjust the coeffs
// to reproduce the exact moments in that volume.
//
// If nmom!=4 we assume that we will eliminate n=-1 which is stored first
// in the moment list
//
// <r^i|gj> cj = <r^i|exact-remainder>
const long nmom = 1;
if (nmom > 0) {
Tensor<double> q(4), qg(4);
double range = sqrt(-log(1e-6)/expnt[nmom-1]);
if (prnt) print("exponent(nmom-1)",expnt[nmom-1],"has range", range);
bsh_spherical_moments(mu, range, q);
Tensor<double> M(nmom,nmom);
for (int i=nmom; i<npt; ++i) {
Tensor<double> qt(4);
gaussian_spherical_moments(expnt[i], range, qt);
qg += qt*coeff[i];
}
if (nmom != 4) {
q = q(Slice(1,nmom));
qg = qg(Slice(1,nmom));
}
if (prnt) {
print("moments", q);
print("moments", qg);
}
q = q - qg;
for (int j=0; j<nmom; ++j) {
Tensor<double> qt(4);
gaussian_spherical_moments(expnt[j], range, qt);
if (nmom != 4) qt = qt(Slice(1,nmom));
for (int i=0; i<nmom; ++i) {
M(i,j) = qt[i];
}
}
Tensor<double> ncoeff;
gesv(M, q, ncoeff);
if (prnt) {
print("M\n",M);
print("old coeffs", coeff(Slice(0,nmom-1)));
print("new coeffs", ncoeff);
}
coeff(Slice(0,nmom-1)) = ncoeff;
}
if (prnt) {
for (int i=0; i<npt; ++i)
std::cout << i << " " << coeff[i] << " " << expnt[i] << std::endl;
long npt = 300;
//double hi = 1.0;
//if (mu) hi = min(1.0,30.0/mu);
std::cout << " x value abserr relerr" << std::endl;
std::cout << " ------------ ------- -------- -------- " << std::endl;
double step = exp(log(hi/lo)/(npt+1));
for (int i=0; i<=npt; ++i) {
double r = lo*(pow(step,i+0.5));
double exact = exp(-mu*r)/r/4.0/constants::pi;
double test = 0.0;
for (int j=0; j<coeff.dim(0); ++j)
test += coeff[j]*exp(-r*r*expnt[j]);
double err = 0.0;
if (exact) err = (exact-test)/exact;
printf(" %.6e %8.1e %8.1e %8.1e\n",r, exact, exact-test, err);
}
}
pcoeff = coeff;
pexpnt = expnt;
}
/// fit a Slater function using a sum of Gaussians
/// formula inspired by the BSH fit, with the roles of r and mu exchanged
/// see also Eq. (A3) in
/// S. Ten-no, Initiation of explicitly correlated Slater-type geminal theory,
/// Chem. Phys. Lett., vol. 398, no. 1, pp. 56-61, 2004.
static void slater_fit(double gamma, double lo, double hi, double eps,
Tensor<double>& pcoeff, Tensor<double>& pexpnt, bool prnt) {
// empirical number TT for the upper integration limit
double TT;
if (eps >= 1e-2) TT = 5;
else if (eps >= 1e-4) TT = 10;
else if (eps >= 1e-6) TT = 14;
else if (eps >= 1e-8) TT = 18;
else if (eps >= 1e-10) TT = 22;
else if (eps >= 1e-12) TT = 26;
else TT = 30;
// integration limits for quadrature over s: slo and shi
double slo=0.5 * log(eps) - 1.0;
double shi=log(TT/(lo*lo))*0.5;
// Resolution required for quadrature over s
double h = 1.0/(0.2-.5*log10(eps)); // was 0.5 was 0.47
// Truncate the number of binary digits in h's mantissa
// so that rounding does not occur when performing
// manipulations to determine the quadrature points and
// to limit the number of distinct values in case of
// multiple precisions being used at the same time.
h = floor(64.0*h)/64.0;
// Round shi/lo up/down to an integral multiple of quadrature points
shi = ceil(shi/h)*h;
slo = floor(slo/h)*h;
long npt = long((shi-slo)/h+0.5);
Tensor<double> coeff(npt), expnt(npt);
for (int i=0; i<npt; ++i) {
const double s = slo + h*(npt-i); // i+1
coeff[i] = h*exp(-gamma*gamma*exp(2.0*s) + s);
coeff[i]*=2.0*gamma/sqrt(constants::pi);
expnt[i] = 0.25*exp(-2.0*s);
}
// Prune large exponents from the fit ... never necessary due to construction
// Prune small exponents from Coulomb fit. Evaluate a gaussian at
// the range midpoint, and replace it there with the next most
// diffuse gaussian. Then examine the resulting error at the two
// end points ... if this error is less than the desired
// precision, can discard the diffuse gaussian.
if (gamma == 0.0) {
double mid = lo + (hi-lo)*0.5;
long i;
for (i=npt-1; i>0; --i) {
double cnew = coeff[i]*exp(-(expnt[i]-expnt[i-1])*mid*mid);
double errlo = coeff[i]*exp(-expnt[i]*lo*lo) -
cnew*exp(-expnt[i-1]*lo*lo);
double errhi = coeff[i]*exp(-expnt[i]*hi*hi) -
cnew*exp(-expnt[i-1]*hi*hi);
if (std::max(std::abs(errlo),std::abs(errhi)) > 0.03*eps) break;
npt--;
coeff[i-1] = coeff[i-1] + cnew;
}
coeff = coeff(Slice(0,npt-1));
expnt = expnt(Slice(0,npt-1));
}
if (prnt) {
std::cout << "weights and roots for a Slater function with gamma=" << gamma << std::endl;
for (int i=0; i<npt; ++i)
std::cout << i << " " << coeff[i] << " " << expnt[i] << std::endl;
long npt = 300;
//double hi = 1.0;
//if (mu) hi = min(1.0,30.0/mu);
std::cout << " x value abserr relerr" << std::endl;
std::cout << " ------------ ------- -------- -------- " << std::endl;
double step = exp(log(hi/lo)/(npt+1));
for (int i=0; i<=npt; ++i) {
double r = lo*(pow(step,i+0.5));
double exact = exp(-gamma*r);
double test = 0.0;
for (int j=0; j<coeff.dim(0); ++j)
test += coeff[j]*exp(-r*r*expnt[j]);
double err = 0.0;
if (exact) err = (exact-test)/exact;
printf(" %.6e %8.1e %8.1e %8.1e\n",r, exact, exact-test, err);
}
}
pcoeff = coeff;
pexpnt = expnt;
}
void static bsh_fit_ndim(int ndim, double mu, double lo, double hi, double eps,
Tensor<double>& pcoeff, Tensor<double>& pexpnt, bool prnt) {
if (mu > 0) {
// Restrict hi according to the exponential decay
double r = -log(4*constants::pi*0.01*eps);
r = -log(r * 4*constants::pi*0.01*eps);
if (hi > r) hi = r;
}
// Determine range of quadrature by estimating when
// kernel drops to exp(-100)
double slo, shi;
if (mu > 0) {
slo = -0.5*log(4.0*100.0/(mu*mu));
slo = -0.5*log(4.0*(slo*ndim - 2.0*slo + 100.0)/(mu*mu));
}
else {
slo = log(eps/hi) - 1.0;
}
shi = 0.5*log(100.0/(lo*lo));
// Resolution required for quadrature over s
double h = 1.0/(0.2-.50*log10(eps)); // was 0.5 was 0.47
// Truncate the number of binary digits in h's mantissa
// so that rounding does not occur when performing
// manipulations to determine the quadrature points and
// to limit the number of distinct values in case of
// multiple precisions being used at the same time.
h = floor(64.0*h)/64.0;
// Round shi/lo up/down to an integral multiple of quadrature points
shi = ceil(shi/h)*h;
slo = floor(slo/h)*h;
long npt = long((shi-slo)/h+0.5);
if (prnt)
std::cout << "bsh: mu " << mu << " lo " << lo << " hi " << hi
<< " eps " << eps << " slo " << slo << " shi " << shi
<< " npt " << npt << " h " << h << std::endl;
// Compute expansion pruning small coeffs and large exponents
Tensor<double> coeff(npt), expnt(npt);
int nnpt=0;
for (int i=0; i<npt; ++i) {
double s = slo + h*(npt-i); // i+1
double c = exp(-0.25*mu*mu*exp(-2.0*s)+(ndim-2)*s)*0.5/pow(constants::pi,0.5*ndim);
double p = exp(2.0*s);
c = c*h;
if (c*exp(-p*lo*lo) > eps) {
coeff(nnpt) = c;
expnt(nnpt) = p;
++nnpt;
}
}
npt = nnpt;
#if ONE_TERM
npt=1;
double s=1.0;
coeff[0]=1.0;
expnt[0] = exp(2.0*s);
coeff=coeff(Slice(0,0));
expnt=expnt(Slice(0,0));
print("only one term in gfit",s,coeff[0],expnt[0]);
#endif
// Prune small exponents from Coulomb fit. Evaluate a gaussian at
// the range midpoint, and replace it there with the next most
// diffuse gaussian. Then examine the resulting error at the two
// end points ... if this error is less than the desired
// precision, can discard the diffuse gaussian.
if (mu == 0.0) {
double mid = lo + (hi-lo)*0.5;
long i;
for (i=npt-1; i>0; --i) {
double cnew = coeff[i]*exp(-(expnt[i]-expnt[i-1])*mid*mid);
double errlo = coeff[i]*exp(-expnt[i]*lo*lo) -
cnew*exp(-expnt[i-1]*lo*lo);
double errhi = coeff[i]*exp(-expnt[i]*hi*hi) -
cnew*exp(-expnt[i-1]*hi*hi);
if (std::max(std::abs(errlo),std::abs(errhi)) > 0.03*eps) break;
npt--;
coeff[i-1] = coeff[i-1] + cnew;
}
}
// Shrink array to correct size
coeff = coeff(Slice(0,npt-1));
expnt = expnt(Slice(0,npt-1));
if (prnt) {
for (int i=0; i<npt; ++i)
std::cout << i << " " << coeff[i] << " " << expnt[i] << std::endl;
long npt = 300;
std::cout << " x value" << std::endl;
std::cout << " ------------ ---------------------" << std::endl;
double step = exp(log(hi/lo)/(npt+1));
for (int i=0; i<=npt; ++i) {
double r = lo*(pow(step,i+0.5));
double test = 0.0;
for (int j=0; j<coeff.dim(0); ++j)
test += coeff[j]*exp(-r*r*expnt[j]);
printf(" %.6e %20.10e\n",r, test);
}
}
pcoeff = coeff;
pexpnt = expnt;
}
// Returns in q[0..4] int(r^2(n+1)*exp(-alpha*r^2),r=0..R) n=-1,0,1,2
static void gaussian_spherical_moments(double alpha, double R, Tensor<double>& q) {
q[0] = -(-0.1e1 + exp(-alpha * R*R)) / alpha / 0.2e1;
q[1] = (-0.2e1 * R * pow(alpha, 0.3e1 / 0.2e1) + sqrt(constants::pi)
* erf(R * sqrt(alpha)) * alpha * exp(alpha * R*R))
* pow(alpha, -0.5e1 / 0.2e1) * exp(-alpha * R*R) / 0.4e1;
q[2] = -(-0.1e1 + exp(-alpha * R*R) + exp(-alpha * R*R) * alpha * R*R)
* pow(alpha, -0.2e1) / 0.2e1;
q[3] = -(-0.3e1 * sqrt(constants::pi) * erf(R * sqrt(alpha)) * pow(alpha, 0.2e1)
* exp(alpha * R*R) + 0.6e1 * R * pow(alpha, 0.5e1 / 0.2e1)
+ 0.4e1 * pow(R, 0.3e1) * pow(alpha, 0.7e1 / 0.2e1))
* pow(alpha, -0.9e1 / 0.2e1) * exp(-alpha * R*R) / 0.8e1;
}
// Returns in q[0..4] int(r^2(n+1)*exp(-mu*r)/(4*constants::pi*r),r=0..R) n=-1,0,1,2
static void bsh_spherical_moments(double mu, double R, Tensor<double>& q) {
if (mu == 0.0) {
q[0] = R / constants::pi / 0.4e1;
q[1] = pow(R, 0.2e1) / constants::pi / 0.8e1;
q[2] = pow(R, 0.3e1) / constants::pi / 0.12e2;
q[3] = pow(R, 0.4e1) / constants::pi / 0.16e2;
}
else {
q[0] = (exp(mu * R) - 0.1e1) / mu * exp(-mu * R) / constants::pi / 0.4e1;
q[1] = -(-exp(mu * R) + 0.1e1 + mu * R) * pow(mu, -0.2e1) / constants::pi
* exp(-mu * R) / 0.4e1;
q[2] = -(-0.2e1 * exp(mu * R) + 0.2e1 + 0.2e1 * mu * R + R*R *
pow(mu, 0.2e1))*pow(mu, -0.3e1) / constants::pi * exp(-mu * R) / 0.4e1;
q[3] = -(-0.6e1 * exp(mu * R) + 0.6e1 + 0.6e1 * mu * R + 0.3e1 * R*R
* pow(mu, 0.2e1) + pow(R, 0.3e1) * pow(mu, 0.3e1))
* pow(mu, -0.4e1) / constants::pi * exp(-mu * R) / 0.4e1;
}
}
};
}
#endif // MADNESS_MRA_GFIT_H__INCLUDED
|