/usr/include/madness/tensor/elem.h is in libmadness-dev 0.10-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 | /*
This file is part of MADNESS.
Copyright (C) 2007,2010 Oak Ridge National Laboratory
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
For more information please contact:
Robert J. Harrison
Oak Ridge National Laboratory
One Bethel Valley Road
P.O. Box 2008, MS-6367
email: harrisonrj@ornl.gov
tel: 865-241-3937
fax: 865-572-0680
*/
#include <madness/madness_config.h>
#ifdef MADNESS_HAS_ELEMENTAL
#include <madness/world/MADworld.h>
#include <madness/tensor/tensor.h>
#include <madness/tensor/tensor_lapack.h>
#include <madness/tensor/distributed_matrix.h>
#include <madness/world/print.h>
#include <madness/world/binsorter.h>
#include <ctime>
#include <elemental.hpp>
namespace madness {
namespace detail {
template <typename T>
struct Value {
int i;
int j;
T t;
Value(int i, int j, T t) : i(i), j(j), t(t) {}
Value(){} // required for use in STL container
template <typename Archive>
void serialize(const Archive& ar) {
ar & i & j & t;
}
};
template <typename T>
class MadToElemDistCopy {
elem::DistMatrix<T>& d;
public:
MadToElemDistCopy(elem::DistMatrix<T>& d) : d(d) {}
void operator()(const Value<T>& v) {
d.Set(v.i, v.j, v.t);
}
};
template <typename T>
class ElemToMadDistCopy {
DistributedMatrix<T>& d;
public:
ElemToMadDistCopy(DistributedMatrix<T>& d) : d(d) {}
void operator()(const Value<T>& v) {
d.set(v.i, v.j, v.t);
}
};
}
/// Backport of more recent Elemental DistMatrix API
template <typename T>
ProcessID Owner(const elem::DistMatrix<T>& d, int i, int j) {
int RowOwner = (i+d.ColAlign()) % d.ColStride(); // is Col/Row Align in later versions ... no ment
int ColOwner = (j+d.RowAlign()) % d.RowStride();
return RowOwner+ColOwner*d.ColStride();
}
/// Copy a MADNESS distributed matrix into an Elemental distributed matrix
/// Should work for any distribution of either
template <typename T>
void copy_to_elemental(const DistributedMatrix<T>& din, elem::DistMatrix<T>& dout) {
BinSorter< detail::Value<T> , detail::MadToElemDistCopy<T> > s(din.get_world(), detail::MadToElemDistCopy<T>(dout));
int64_t ilo, ihi, jlo, jhi;
din.local_colrange(ilo,ihi);
din.local_rowrange(jlo,jhi);
const Tensor<T>& t = din.data();
for (int64_t i=ilo; i<=ihi; i++) {
for (int64_t j=jlo; j<=jhi; j++) {
ProcessID owner = Owner(dout, i, j);
s.insert(owner, detail::Value<T>(i,j,t(i-ilo, j-jlo)));
}
}
s.finish();
}
/// Copy a MADNESS distributed matrix from an Elemental distributed matrix
/// Should work for any distribution of either
template <typename T>
void copy_from_elemental(const elem::DistMatrix<T>& din, DistributedMatrix<T>& dout) {
BinSorter< detail::Value<T> , detail::ElemToMadDistCopy<T> > s(dout.get_world(), detail::ElemToMadDistCopy<T>(dout));
const int64_t colShift = din.ColShift(); // first row we own
const int64_t rowShift = din.RowShift(); // first col we own
const int64_t colStride = din.ColStride();
const int64_t rowStride = din.RowStride();
const int64_t localHeight = din.LocalHeight();
const int64_t localWidth = din.LocalWidth();
for( int64_t jLocal=0; jLocal<localWidth; ++jLocal ) {
for( int64_t iLocal=0; iLocal<localHeight; ++iLocal ) {
const int64_t i = colShift + iLocal*colStride;
const int64_t j = rowShift + jLocal*rowStride;
const ProcessID owner = dout.owner(i,j);
s.insert(owner, detail::Value<T>(i,j,din.GetLocal(iLocal,jLocal)));
}
}
s.finish();
}
/** \brief Generalized real-symmetric or complex-Hermitian eigenproblem.
This function uses the Elemental HermitianGenDefiniteEig routine.
A should be selfadjoint and B positive definite.
\verbatim
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x (TODO)
= 3: B*A*x = (lambda)*x (TODO)
\endverbatim
*/
template <typename T>
void sygv(const DistributedMatrix<T>& A,
const DistributedMatrix<T>& B,
int itype,
DistributedMatrix<T>& X,
Tensor< typename Tensor<T>::scalar_type >& e)
{
const int64_t n = A.coldim();
const int64_t m = A.rowdim();
MADNESS_ASSERT(n==m);
MADNESS_ASSERT(n==B.coldim() && m==B.rowdim());
const int blocksize = 128;
const elem::Grid GG(A.get_world().mpi.comm().Get_mpi_comm() );
elem::SetBlocksize(blocksize);
elem::DistMatrix<T> EA(n,n,GG);
elem::DistMatrix<T> EB(n,n,GG);
copy_to_elemental(A,EA);
copy_to_elemental(B,EB);
elem::HermitianGenDefiniteEigType eigType = elem::AXBX;
elem::UpperOrLower uplo = elem::CharToUpperOrLower('U');
elem::DistMatrix<T> Xd(n,n,GG);
elem::DistMatrix<T,elem::VR,elem::STAR> wd( n, n, GG);
// 0.83+ ???
elem::HermitianGenDefiniteEig(eigType, uplo, EA, EB, wd, Xd, elem::SortType::ASCENDING);
// 0.79-0.82 ?
//elem::HermitianGenDefiniteEig(eigType, uplo, EA, EB, wd, Xd);
//elem::hermitian_eig::Sort(wd, Xd);
A.get_world().mpi.Barrier();
X = DistributedMatrix<T>(A.distribution());
e = Tensor<typename Tensor<T>::scalar_type>(n);
copy_from_elemental(Xd, X);
const int localHeight1 = wd.LocalHeight();
const int colShift1 = wd.ColShift(); // first row we own
const int colStride1= wd.ColStride();
T * buffer = e.ptr();
for( int iLocal=0; iLocal<localHeight1; ++iLocal ) {
const int jLocal=0;
const int i = colShift1 + iLocal*colStride1;
//buffer[i]= wd.Get( iLocal, jLocal);
buffer[i]= wd.GetLocal( iLocal, jLocal);
}
A.get_world().gop.sum(e.ptr(),n);
}
/** \brief Generalized real-symmetric or complex-Hermitian eigenproblem.
This function uses the Elemental HermitianGenDefiniteEig routine.
A should be selfadjoint and B positive definite.
\verbatim
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x (TODO)
= 3: B*A*x = (lambda)*x (TODO)
\endverbatim
*/
template <typename T>
void sygvp(World& world,
const Tensor<T>& a, const Tensor<T>& B, int itype,
Tensor<T>& V, Tensor< typename Tensor<T>::scalar_type >& e) {
TENSOR_ASSERT(a.ndim() == 2, "sygv requires a matrix",a.ndim(),&a);
TENSOR_ASSERT(a.dim(0) == a.dim(1), "sygv requires square matrix",0,&a);
TENSOR_ASSERT(B.ndim() == 2, "sygv requires a matrix",B.ndim(),&a);
TENSOR_ASSERT(B.dim(0) == B.dim(1), "sygv requires square matrix",0,&a);
TENSOR_ASSERT(a.iscontiguous(),"sygvp requires a contiguous matrix (a)",0,&a);
TENSOR_ASSERT(B.iscontiguous(),"sygvp requires a contiguous matrix (B)",0,&B);
world.gop.broadcast(a.ptr(), a.size(), 0);
world.gop.broadcast(B.ptr(), B.size(), 0);
const int n = a.dim(1);
e = Tensor<typename Tensor<T>::scalar_type>(n);
V = Tensor<T>(n,n);
if (a.dim(0) <= 4) {
// Work around bug in elemental/pmrrr/mkl/something for n=2,3
sygv(a, B, itype, V, e);
return;
}
world.gop.fence(); //<<<<<< Essential to quiesce MADNESS threads/comms
const int blocksize = 128;
try {
const elem::Grid GG( world.mpi.comm().Get_mpi_comm() );
elem::SetBlocksize(blocksize);
elem::DistMatrix<T> gd( n, n, GG );
const int colShift = gd.ColShift(); // first row we own
const int rowShift = gd.RowShift(); // first col we own
const int colStride =gd.ColStride();
const int rowStride = gd.RowStride();
const int localHeight = gd.LocalHeight();
const int localWidth = gd.LocalWidth();
{
const T * buffer = a.ptr();
for( int jLocal=0; jLocal<localWidth; ++jLocal )
{
for( int iLocal=0; iLocal<localHeight; ++iLocal )
{
const int i = colShift + iLocal*colStride;
const int j = rowShift + jLocal*rowStride;
//gd.Set( iLocal, jLocal, buffer[i+j*n] );
gd.SetLocal( iLocal, jLocal, buffer[i+j*n] );
}
}
}
//gd.Print("gs");
elem::DistMatrix<T> hd( n, n, GG );
{
const T * buffer = B.ptr();
for( int jLocal=0; jLocal<localWidth; ++jLocal )
{
for( int iLocal=0; iLocal<localHeight; ++iLocal )
{
const int i = colShift + iLocal*colStride;
const int j = rowShift + jLocal*rowStride;
//hd.Set( iLocal, jLocal, buffer[i+j*(n)] );
hd.SetLocal( iLocal, jLocal, buffer[i+j*(n)] );
}
}
}
// hd.Print("hd");
world.mpi.Barrier();
elem::HermitianGenDefiniteEigType eigType = elem::AXBX;
//const char* uu="U";
elem::UpperOrLower uplo = elem::CharToUpperOrLower('U');
elem::DistMatrix<T> Xd( n, n, GG );
elem::DistMatrix<T,elem::VR,elem::STAR> wd( n, n, GG);
// 0.83+ ???
elem::HermitianGenDefiniteEig( eigType, uplo, gd, hd, wd, Xd,elem::SortType::ASCENDING);
// 0.79-0.82 ?
//elem::HermitianGenDefiniteEig( eigType, uplo, gd, hd, wd, Xd);
//elem::hermitian_eig::Sort( wd, Xd );
world.mpi.Barrier();
//Xd.Print("Xs");
//retrive eigenvalues
{
const int localHeight1 = wd.LocalHeight();
const int colShift1 = wd.ColShift(); // first row we own
const int colStride1 =wd.ColStride();
T * buffer = e.ptr();
for( int iLocal=0; iLocal<localHeight1; ++iLocal )
{
const int jLocal=0;
const int i = colShift1 + iLocal*colStride1;
//buffer[i]= wd.Get( iLocal, jLocal);
buffer[i]= wd.GetLocal( iLocal, jLocal);
}
}
//world.gop.broadcast(e.ptr(),e.size(), 0);
world.gop.sum(e.ptr(),n);
//if(myrank ==0) cout<< e << endl;
//retrive eigenvectors
{
T * buffer = V.ptr();
for( int jLocal=0; jLocal<localWidth; ++jLocal )
{
for( int iLocal=0; iLocal<localHeight; ++iLocal )
{
const int i = colShift + iLocal*colStride;
const int j = rowShift + jLocal*rowStride;
//buffer[i+j*n]= Xd.Get( iLocal, jLocal);
buffer[i+j*n]= Xd.GetLocal( iLocal, jLocal);
}
}
}
world.gop.sum(V.ptr(), n*n);
V=madness::transpose(V);
//world.gop.broadcast(V.ptr(),V.size(), 0);
//if(myrank ==0)cout<< V << endl;
}
catch (TensorException S) {
std::cerr << S << std::endl;
}
world.gop.fence(); //<<<<<< Essential to quiesce MADNESS threads/comms
}
/** \brief Solve Ax = b for general A using the Elemental.
The solution is computed through (partially pivoted) Gaussian elimination.
A should be a square matrix (float, double, float_complex,
double_complex) and b should be either a vector, or a matrix with
each vector stored in a column (i.e., b[n,nrhs]).
It will solve Ax=b as written.
b can be a vector or a matrix, the only restriction is that satisfies b.rows()==A.rows()
*/
template <typename T>
void gesvp(World& world, const Tensor<T>& a, const Tensor<T>& b, Tensor<T>& x) {
TENSOR_ASSERT(a.ndim() == 2, "gesv requires matrix",a.ndim(),&a);
int n = a.dim(0), m = a.dim(1), nrhs = b.dim(1);
TENSOR_ASSERT(m == n, "gesv requires square matrix",0,&a);
TENSOR_ASSERT(b.ndim() <= 2, "gesv require a vector or matrix for the RHS",b.ndim(),&b);
TENSOR_ASSERT(a.dim(0) == b.dim(0), "gesv matrix and RHS must conform",b.ndim(),&b);
TENSOR_ASSERT(a.iscontiguous(),"gesvp requires a contiguous matrix (a)",0,&a);
TENSOR_ASSERT(b.iscontiguous(),"gesvp requires a contiguous matrix (b)",0,&b);
world.gop.broadcast(a.ptr(), a.size(), 0);
world.gop.broadcast(b.ptr(), b.size(), 0);
Tensor<T> AT = transpose(a);
world.gop.fence(); //<<<<<< Essential to quiesce MADNESS threads/comms
int blocksize = 128;
try {
const elem::Grid GG( world.mpi.comm().Get_mpi_comm() );
elem::SetBlocksize(blocksize);
elem::DistMatrix<T> gd( n, n, GG );
{
const int colShift = gd.ColShift(); // 1st row local
const int rowShift = gd.RowShift(); // 1st col local
const int colStride =gd.ColStride();
const int rowStride = gd.RowStride();
const int localHeight = gd.LocalHeight();
const int localWidth = gd.LocalWidth();
{
const T * buffer = AT.ptr();
for( int jLocal=0; jLocal<localWidth; ++jLocal )
{
for( int iLocal=0; iLocal<localHeight; ++iLocal )
{
const int i = colShift + iLocal*colStride;
const int j = rowShift + jLocal*rowStride;
//gd.Set( iLocal, jLocal, buffer[i+j*n] );
gd.SetLocal( iLocal, jLocal, buffer[i+j*n] );
}
}
}
}
Tensor<T> bT;
if (nrhs == 1) {
x = Tensor<T>(n);
bT = Tensor<T>(n);
bT = copy(b);
x = copy(b); //creating the correct size
}
else {
x = Tensor<T>(n,nrhs);
bT = transpose(b);
}
for(int i=0; i< x.size(); ++i) {
T * buffer = x.ptr() ;
buffer[i] = 0.0;
}
//cout << "Caught a tensor exception \n";
//cout << bT <<endl;
elem::DistMatrix<T> hd( n, nrhs, GG );
{
const int colShift = hd.ColShift(); // 1st row local
const int rowShift = hd.RowShift(); // 1st col local
const int colStride =hd.ColStride();
const int rowStride = hd.RowStride();
const int localHeight = hd.LocalHeight();
const int localWidth = hd.LocalWidth();
{
const T * buffer = bT.ptr();
for( int jLocal=0; jLocal<localWidth; ++jLocal )
{
for( int iLocal=0; iLocal<localHeight; ++iLocal )
{
const int i = colShift + iLocal*colStride;
const int j = rowShift + jLocal*rowStride;
//hd.Set( iLocal, jLocal, buffer[i+j*(n)]);
hd.SetLocal( iLocal, jLocal, buffer[i+j*(n)]);
}
}
}
}
world.mpi.Barrier();
elem::GaussianElimination(gd, hd);
world.mpi.Barrier();
{
const int colShift = hd.ColShift(); // 1st row local
const int rowShift = hd.RowShift(); // 1st col local
const int colStride =hd.ColStride();
const int rowStride = hd.RowStride();
const int localHeight = hd.LocalHeight();
const int localWidth = hd.LocalWidth();
T * buffer = x.ptr();
for( int jLocal=0; jLocal<localWidth; ++jLocal )
{
for( int iLocal=0; iLocal<localHeight; ++iLocal )
{
const int i = colShift + iLocal*colStride;
const int j = rowShift + jLocal*rowStride;
//buffer[j+i*nrhs]= hd.Get( iLocal, jLocal);
buffer[j+i*nrhs]= hd.GetLocal( iLocal, jLocal);
}
}
}
world.gop.sum(x.ptr(), n*nrhs);
//world.gop.broadcast(x.ptr(),x.size(), 0);
//if(myrank ==0) cout<< x << endl;
}
catch (TensorException S) {
std::cerr << S << std::endl;
}
world.gop.fence(); //<<<<<< Essential to quiesce MADNESS threads/comms
}
}
#else
namespace madness {
// sequential fall back code
template <typename T>
void sygvp(World& world,
const Tensor<T>& a, const Tensor<T>& B, int itype,
Tensor<T>& V, Tensor< typename Tensor<T>::scalar_type >& e) {
sygv(a, B, itype, V, e);
}
// sequential fall back code
template <typename T>
void gesvp(World& world, const Tensor<T>& a, const Tensor<T>& b, Tensor<T>& x) {
gesv(a, b, x);
}
}
#endif //MADNESS_HAS_ELEMENTAL
|