This file is indexed.

/usr/include/madness/tensor/mxm.h is in libmadness-dev 0.10-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
/*
  This file is part of MADNESS.

  Copyright (C) 2007,2010 Oak Ridge National Laboratory

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

  For more information please contact:

  Robert J. Harrison
  Oak Ridge National Laboratory
  One Bethel Valley Road
  P.O. Box 2008, MS-6367

  email: harrisonrj@ornl.gov
  tel:   865-241-3937
  fax:   865-572-0680


  $Id$
*/

#ifndef MADNESS_TENSOR_MXM_H__INCLUDED
#define MADNESS_TENSOR_MXM_H__INCLUDED

/// \file tensor/mxm.h
/// \brief Internal use only

// This file is ONLY included into tensor.cc ... separated here just
// to shrink file size.  Don't try to include anywhere else

// Due to both flakey compilers and performance concerns,
// we use a simple reference implementation of the mxm
// routines for all except T=double.


/// Matrix * matrix reference implementation (slow but correct)
template <typename T, typename Q, typename S>
static inline void mxm(long dimi, long dimj, long dimk,
                       T* restrict c, const Q* restrict a,
                       const S* restrict b) {
    /*
      c(i,j) = c(i,j) + sum(k) a(i,k)*b(k,j)

      where it is assumed that the last index in each array is has unit
      stride and the dimensions are as provided.
    */

    for (long i=0; i<dimi; ++i) {
        for (long k=0; k<dimk; ++k) {
            for (long j=0; j<dimj; ++j) {
                c[i*dimj+j] += a[i*dimk+k]*b[k*dimj+j];
            }
        }
    }
}


/// Matrix transpose * matrix ... reference implementation (slow but correct)
template <typename T, typename Q, typename S>
static inline
void mTxm(long dimi, long dimj, long dimk,
          T* restrict c, const Q* restrict a,
          const S* restrict b) {
    /*
      c(i,j) = c(i,j) + sum(k) a(k,i)*b(k,j)

      where it is assumed that the last index in each array is has unit
      stride and the dimensions are as provided.

      i loop might be long in anticipated application
    */

    for (long k=0; k<dimk; ++k) {
        for (long j=0; j<dimj; ++j) {
            for (long i=0; i<dimi; ++i) {
                c[i*dimj+j] += a[k*dimi+i]*b[k*dimj+j];
            }
        }
    }
}

/// Matrix * matrix transpose ... reference implementation (slow but correct)
template <typename T, typename Q, typename S>
static inline void mxmT(long dimi, long dimj, long dimk,
                        T* restrict c, const Q* restrict a,
                        const S* restrict b) {
    /*
      c(i,j) = c(i,j) + sum(k) a(i,k)*b(j,k)

      where it is assumed that the last index in each array is has unit
      stride and the dimensions are as provided.

      i loop might be long in anticipated application
    */

    for (long i=0; i<dimi; ++i) {
        for (long j=0; j<dimj; ++j) {
            T sum = 0;
            for (long k=0; k<dimk; ++k) {
                sum += a[i*dimk+k]*b[j*dimk+k];
            }
            c[i*dimj+j] += sum;
        }
    }
}

/// Matrix transpose * matrix transpose reference implementation (slow but correct)
template <typename T, typename Q, typename S>
static inline void mTxmT(long dimi, long dimj, long dimk,
                         T* restrict c, const Q* restrict a,
                         const S* restrict b) {
    /*
      c(i,j) = c(i,j) + sum(k) a(k,i)*b(j,k)

      where it is assumed that the last index in each array is has unit
      stride and the dimensions are as provided.
    */

    for (long i=0; i<dimi; ++i) {
        for (long j=0; j<dimj; ++j) {
            for (long k=0; k<dimk; ++k) {
                c[i*dimj+j] += a[k*dimi+i]*b[j*dimk+k];
            }
        }
    }
}

// The following are restricted to double only

/// Matrix transpose * matrix (hand unrolled version)

template <>
inline void mTxm(long dimi, long dimj, long dimk,
                 double* restrict c, const double* restrict a,
                 const double* restrict b) {
    /*
    c(i,j) = c(i,j) + sum(k) a(k,i)*b(k,j)  <--- NOTE ACCUMULATION INTO C

    where it is assumed that the last index in each array is has unit
    stride and the dimensions are as provided.

    i loop might be long in anticipated application

    4-way unrolled k loop ... empirically fastest on PIII
    compared to 2/3 way unrolling (though not by much).
    */

    long dimk4 = (dimk/4)*4;
    for (long i=0; i<dimi; ++i,c+=dimj) {
        const double* ai = a+i;
        const double* p = b;
        for (long k=0; k<dimk4; k+=4,ai+=4*dimi,p+=4*dimj) {
            double ak0i = ai[0   ];
            double ak1i = ai[dimi];
            double ak2i = ai[dimi+dimi];
            double ak3i = ai[dimi+dimi+dimi];
            const double* bk0 = p;
            const double* bk1 = p+dimj;
            const double* bk2 = p+dimj+dimj;
            const double* bk3 = p+dimj+dimj+dimj;
            for (long j=0; j<dimj; ++j) {
                c[j] += ak0i*bk0[j] + ak1i*bk1[j] + ak2i*bk2[j] + ak3i*bk3[j];
            }
        }
        for (long k=dimk4; k<dimk; ++k) {
            double aki = a[k*dimi+i];
            const double* bk = b+k*dimj;
            for (long j=0; j<dimj; ++j) {
                c[j] += aki*bk[j];
            }
        }
    }
}



/// Matrix * matrix transpose (hand unrolled version)

template <>
inline void mxmT(long dimi, long dimj, long dimk,
                 double* restrict c,
                 const double* restrict a, const double* restrict b) {
    /*
    c(i,j) = c(i,j) + sum(k) a(i,k)*b(j,k)

    where it is assumed that the last index in each array is has unit
    stride and the dimensions are as provided.

    j loop might be long in anticipated application

    Unrolled i loop.  Empirically fastest on PIII compared
    to unrolling j, or both i&j.
    */

    long dimi2 = (dimi/2)*2;
    for (long i=0; i<dimi2; i+=2) {
        const double* ai0 = a+i*dimk;
        const double* ai1 = a+i*dimk+dimk;
        double* restrict ci0 = c+i*dimj;
        double* restrict ci1 = c+i*dimj+dimj;
        for (long j=0; j<dimj; ++j) {
            double sum0 = 0;
            double sum1 = 0;
            const double* bj = b + j*dimk;
            for (long k=0; k<dimk; ++k) {
                sum0 += ai0[k]*bj[k];
                sum1 += ai1[k]*bj[k];
            }
            ci0[j] += sum0;
            ci1[j] += sum1;
        }
    }
    for (long i=dimi2; i<dimi; ++i) {
        const double* ai = a+i*dimk;
        double* restrict ci = c+i*dimj;
        for (long j=0; j<dimj; ++j) {
            double sum = 0;
            const double* bj = b+j*dimk;
            for (long k=0; k<dimk; ++k) {
                sum += ai[k]*bj[k];
            }
            ci[j] += sum;
        }
    }
}

/// Matrix * matrix (hand unrolled version)
template <>
inline void mxm(long dimi, long dimj, long dimk,
                double* restrict c, const double* restrict a, const double* restrict b) {
    /*
    c(i,j) = c(i,j) + sum(k) a(i,k)*b(k,j)

    where it is assumed that the last index in each array is has unit
    stride and the dimensions are as provided.

    4-way unrolled k loop ... empirically fastest on PIII
    compared to 2/3 way unrolling (though not by much).
    */

    long dimk4 = (dimk/4)*4;
    for (long i=0; i<dimi; ++i, c+=dimj,a+=dimk) {
        const double* p = b;
        for (long k=0; k<dimk4; k+=4,p+=4*dimj) {
            double aik0 = a[k  ];
            double aik1 = a[k+1];
            double aik2 = a[k+2];
            double aik3 = a[k+3];
            const double* bk0 = p;
            const double* bk1 = bk0+dimj;
            const double* bk2 = bk1+dimj;
            const double* bk3 = bk2+dimj;
            for (long j=0; j<dimj; ++j) {
                c[j] += aik0*bk0[j] + aik1*bk1[j] + aik2*bk2[j] + aik3*bk3[j];
            }
        }
        for (long k=dimk4; k<dimk; ++k) {
            double aik = a[k];
            for (long j=0; j<dimj; ++j) {
                c[j] += aik*b[k*dimj+j];
            }
        }
    }
}

/// Matrix transpose * matrix transpose (hand tiled and unrolled)
template <>
inline void mTxmT(long dimi, long dimj, long dimk,
                  double* restrict csave, const double* restrict asave, const double* restrict b) {
    /*
    c(i,j) = c(i,j) + sum(k) a(k,i)*b(j,k)

    where it is assumed that the last index in each array is has unit
    stride and the dimensions are as provided.

    Tiled k, copy row of a into temporary, and unroll j once.
    */

    const int ktile=32;
    double ai[ktile];
    long dimj2 = (dimj/2)*2;

    for (long klo=0; klo<dimk; klo+=ktile, asave+=ktile*dimi, b+=ktile) {
        long khi = klo+ktile;
        if (khi > dimk) khi = dimk;
        long nk = khi-klo;

        const double *restrict a = asave;
        double *restrict c = csave;
        for (long i=0; i<dimi; ++i,c+=dimj,++a) {
            const double* q = a;
            for (long k=0; k<nk; ++k,q+=dimi) ai[k] = *q;

            const double* bj0 = b;
            for (long j=0; j<dimj2; j+=2,bj0+=2*dimk) {
                const double* bj1 = bj0+dimk;
                double sum0 = 0;
                double sum1 = 0;
                for (long k=0; k<nk; ++k) {
                    sum0 += ai[k]*bj0[k];
                    sum1 += ai[k]*bj1[k];
                }
                c[j  ] += sum0;
                c[j+1] += sum1;
            }

            for (long j=dimj2; j<dimj; ++j,bj0+=dimk) {
                double sum = 0;
                for (long k=0; k<nk; ++k) {
                    sum += ai[k]*bj0[k];
                }
                c[j] += sum;
            }
        }
    }
}
#endif // MADNESS_TENSOR_MXM_H__INCLUDED