This file is indexed.

/usr/include/madness/tensor/solvers.cc is in libmadness-dev 0.10-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
/*
  This file is part of MADNESS.

  Copyright (C) 2007,2010 Oak Ridge National Laboratory

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

  For more information please contact:

  Robert J. Harrison
  Oak Ridge National Laboratory
  One Bethel Valley Road
  P.O. Box 2008, MS-6367

  email: harrisonrj@ornl.gov
  tel:   865-241-3937
  fax:   865-572-0680

  $Id$
*/
#include <madness/tensor/solvers.h>

namespace madness {


    double OptimizationTargetInterface::test_gradient(Tensor<double>& x, double value_precision, bool doprint) {
        const double eps = pow(value_precision,0.3333);
        if (doprint) {
            printf("\n");
            printf("Testing gradient eps=%.1e\n----------------\n", eps);
            printf("  i            f-                 f+               ganalytic           gnumeric         err\n");
            printf(" ----  ------------------  ------------------  ------------------  ------------------  -------\n");
        }
        Tensor<double> tt = gradient(x);
        int n = int(tt.dim(0));
        double maxerr = 0.0;
        for (int i=0; i<n; ++i) {
            x[i] += eps;
            double fp = value(x);
            x[i] -= 2.0*eps;
            double fm = value(x);
            x[i] += eps;

            double gg = 0.5*(fp-fm)/eps;
            if (doprint)
                printf("% 5d%20.12e%20.12e%20.12e%20.12e  %.1e\n", i, fm, fp, tt(i), gg, std::abs(tt(i)-gg));
            maxerr = std::max(std::abs(gg-tt(i)),maxerr);
        }
        if (doprint) printf("\n");

        return maxerr;
    }


    SteepestDescent::SteepestDescent(const std::shared_ptr<OptimizationTargetInterface>& tar,
                                     double tol,
                                     double value_precision,
                                     double gradient_precision)
        : target(tar)
        , tol(tol)
        , f(tol*1e16)
        , gnorm(tol*1e16)
    {
        if (!target->provides_gradient()) throw "Steepest descent requires the gradient";
    }

    bool SteepestDescent::optimize(Tensor<double>& x) {
        double step = 10.0;
        double  fnew;
        Tensor<double> g;
        target->value_and_gradient(x,f,g);
        gnorm = g.normf();
        for (int i=0; i<100; ++i) {
            while (1) {
                Tensor<double> gnew;
                x.gaxpy(1.0, g, -step);
                target->value_and_gradient(x,fnew,gnew);
                if (fnew < f) {
                    f = fnew;
                    g = gnew;
                    break;
                }
                x.gaxpy(1.0, g, step);
                step *= 0.5;
                print("reducing step size", f, fnew, step);
            }
            Tensor<double> g = target->gradient(x);
            gnorm = g.normf();
            print("iteration",i,"value",f,"gradient",gnorm);
            if (converged()) break;
        }
        return converged();
    }

    bool SteepestDescent::converged() const {return gnorm < tol;}

    double SteepestDescent::gradient_norm() const {return gnorm;}

    double SteepestDescent::value() const {return f;}

    double QuasiNewton::line_search(double a1, double f0, double dxgrad,
            const Tensor<double>& x, const Tensor<double>& dx) const {
        double f1, f2p;
        double hess, a2;
        const char* lsmode = "";

        if (dxgrad*a1 > 0.0) {
            print("    line search gradient +ve ", a1, dxgrad);
            a1 = -a1;
        }

        f1 = target->value(x + a1 * dx);

        // Fit to a parabola using f0, g0, f1
        hess = 2.0*(f1-f0-a1*dxgrad)/(a1*a1);
        a2 = -dxgrad/hess;

        if (std::abs(f1-f0) < value_precision) { // Insufficient precision
            a2 = a1;
            lsmode = "fixed";
        }
        else if (hess > 0.0) { // Positive curvature
            if ((f1 - f0) <= -value_precision) { // Downhill
                lsmode = "downhill";
                if (std::abs(a2) > 4.0*std::abs(a1)) {
                    lsmode = "restrict";
                    a2 = 4.0*a1;
                }
            }
            else { // Uphill
                lsmode = "bracket";
            }
        }
        else { // Negative curvature
            if ((f1 - f0) < value_precision) { // Downhill
                lsmode = "negative";
                a2 = 2e0*a1;
            }
            else {
                lsmode = "punt";
                a2 = a1;
            }
        }

        f2p = f0 + dxgrad*a2 + 0.5*hess*a2*a2;
        printf("   line search grad=%.2e hess=%.2e mode=%s newstep=%.3f\n", dxgrad, hess, lsmode, a2);
        printf("                      predicted %.12e\n", f2p);

        return a2;
    }

    void QuasiNewton::hessian_update_sr1(const Tensor<double>& s,
            const Tensor<double>& y, Tensor<double>& hessian) {
        Tensor<double> q = y - inner(hessian,s);
        double qds = q.trace(s);
        if (std::abs(qds) > 1e-8 * s.normf() * q.normf()) {
            hessian += outer(q,q).scale(1.0/qds);
        }
        else {
            printf("   SR1 not updating\n");
        }
    }


    void QuasiNewton::hessian_update_bfgs(const Tensor<double>& dx,
                const Tensor<double>& dg, Tensor<double>& hessian) {
        /*
          Apply the BFGS update to the approximate Hessian h[][].

          h[][] = Hessian matrix from previous iteration
          dx[]  = Step from previous iteration
          .       (dx[] = x[] - xp[] where xp[] is the previous point)
          dg[]  = gradient difference (dg = g - gp)
        */

        Tensor<double> hdx  = inner(hessian,dx);

        double dxhdx = dx.trace(hdx);
        double dxdx  = dx.trace(dx);
        double dxdg  = dx.trace(dg);
        double dgdg  = dg.trace(dg);

        const int n=hessian.dim(0);
        if ( (dxdx > 0.0) && (dgdg > 0.0) && (std::abs(dxdg/std::sqrt(dxdx*dgdg)) > 1.e-8) ) {
            for (int i=0; i<n; ++i) {
                for (int j=0; j<n; ++j) {
                    hessian(i,j) += dg[i]*dg[j]/dxdg - hdx[i]*hdx[j]/dxhdx;
                }
            }
        }
        else {
            printf("   BFGS not updating dxdg (%e), dgdg (%e), dxhdx (%f), dxdx(%e)\n" , dxdg, dgdg, dxhdx, dxdx);
        }
    }

    Tensor<double> QuasiNewton::new_search_direction(const Tensor<double>& g) const {
        Tensor<double> dx, s;
        double tol = gradient_precision;
        double trust = 1.0; // This applied in spectral basis

        Tensor<double> v, e;
        syev(h, v, e);

        // Transform gradient into spectral basis
        Tensor<double> gv = inner(g,v);

        // Take step applying restriction
        int nneg=0, nsmall=0, nrestrict=0;
        for (int i=0; i<n; ++i) {
            if (e[i] < -tol) {
                if (printtest) printf("   forcing negative eigenvalue to be positive %d %.1e\n", i, e[i]);
                nneg++;
                //e[i] = -2.0*e[i]; // Enforce positive search direction
                e[i] = -0.1*e[i]; // Enforce positive search direction
            }
            else if (e[i] < tol) {
                if (printtest) printf("   forcing small eigenvalue to be positive %d %.1e\n", i, e[i]);
                nsmall++;
                e[i] = tol;
            }

            gv[i] = -gv[i] / e[i];
            if (std::abs(gv[i]) > trust) { // Step restriction
                double gvnew = trust*std::abs(gv(i))/gv[i];
                if (printtest) printf("   restricting step in spectral direction %d %.1e --> %.1e\n", i, gv[i], gvnew);
                nrestrict++;
                gv[i] = gvnew;
            }
        }
        if (nneg || nsmall || nrestrict) printf("   nneg=%d nsmall=%d nrestrict=%d\n", nneg, nsmall, nrestrict);

        // Transform back from spectral basis
        return inner(v,gv);
    }

    QuasiNewton::QuasiNewton(const std::shared_ptr<OptimizationTargetInterface>& tar,
                             int maxiter,
                             double tol,
                             double value_precision,
                             double gradient_precision)
        : update("BFGS")
        , target(tar)
        , maxiter(maxiter)
        , tol(tol)
        , value_precision(value_precision)
        , gradient_precision(gradient_precision)
        , f(tol*1e16)
        , gnorm(tol*1e16)
        , n(0)
        , printtest(false)
    {
        if (!target->provides_gradient()) throw "QuasiNewton requires the gradient";
    }

    void QuasiNewton::set_update(const std::string& method) {
        if (method == "BFGS" || method == "SR1") update=method;
        else throw "QuasiNewton: unknown update mthod";
    }

    void QuasiNewton::set_test(const bool& test_level) {
        printtest = test_level;
    }

    bool QuasiNewton::optimize(Tensor<double>& x) {
//        int maxiter = 20; // !!!!!!!!! dumb
        if (n != x.dim(0)) {
            n = x.dim(0);
            h = Tensor<double>();
        }


       if(printtest)  target->test_gradient(x, value_precision);

        bool h_is_identity = (h.size() == 0);
        if (h_is_identity) {
            h = Tensor<double>(n,n);
            for (int i=0; i<n; ++i) h(i,i) = 1.0;
        }

        // the previous gradient
        Tensor<double> gp;
        // the displacement
        Tensor<double> dx;

        for (int iter=0; iter<maxiter; ++iter) {
            Tensor<double> g;
            target->value_and_gradient(x, f, g);
            gnorm = g.normf();
            printf(" QuasiNewton iteration %2d value %.12e gradient %.2e\n",iter,f,gnorm);
            if (converged()) break;

            if (iter == 1 && h_is_identity) {
                // Default initial Hessian is scaled identity but
                // prefer to reuse any existing approximation.
                h.scale(g.trace(gp)/gp.trace(dx));
            }

            if (iter > 0) {
                if (update == "BFGS") hessian_update_bfgs(dx, g-gp,h);
                else hessian_update_sr1(dx, g-gp,h);
            }

            dx = new_search_direction(g);

            double step = line_search(1.0, f, dx.trace(g), x, dx);

            dx.scale(step);
            x += dx;
            gp = g;
        }

        if (printtest) {
            print("final hessian");
            print(h);
        }
        return converged();
    }

        bool QuasiNewton::converged() const {return gnorm < tol;}

        double QuasiNewton::value() const {return f;}

        double QuasiNewton::gradient_norm() const {return gnorm;}
}