This file is indexed.

/usr/include/mapnik/util/variant.hpp is in libmapnik-dev 3.0.9+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
/*****************************************************************************
 *
 * This file is part of Mapnik (c++ mapping toolkit)
 *
 * Copyright (C) 2015 Artem Pavlenko
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 *****************************************************************************/

#ifndef MAPNIK_UTIL_VARIANT_HPP
#define MAPNIK_UTIL_VARIANT_HPP

#include <mapnik/config.hpp>

#include <utility> // swap
#include <typeinfo>
#include <type_traits>
#include <stdexcept> // runtime_error
#include <new> // operator new
#include <cstddef> // size_t
#include <iosfwd>
#include <string>

#include "recursive_wrapper.hpp"

#include <boost/mpl/vector.hpp> // spirit support

#ifdef _MSC_VER
 // http://msdn.microsoft.com/en-us/library/z8y1yy88.aspx
 #ifdef NDEBUG
  #define VARIANT_INLINE __forceinline
 #else
  #define VARIANT_INLINE __declspec(noinline)
 #endif
#else
 #ifdef NDEBUG
  #define VARIANT_INLINE inline __attribute__((always_inline))
 #else
  #define VARIANT_INLINE __attribute__((noinline))
 #endif
#endif

#define VARIANT_MAJOR_VERSION 0
#define VARIANT_MINOR_VERSION 1
#define VARIANT_PATCH_VERSION 0

// translates to 100
#define VARIANT_VERSION (VARIANT_MAJOR_VERSION*100000) + (VARIANT_MINOR_VERSION*100) + (VARIANT_PATCH_VERSION)

namespace mapnik { namespace util {

// static visitor
template <typename R = void>
struct static_visitor
{
    using result_type = R;
protected:
    static_visitor() {}
    ~static_visitor() {}
};

namespace detail {

static constexpr std::size_t invalid_value = std::size_t(-1);

template <typename T, typename...Types>
struct direct_type;

template <typename T, typename First, typename...Types>
struct direct_type<T, First, Types...>
{
    static constexpr std::size_t index = std::is_same<T, First>::value
        ? sizeof...(Types) : direct_type<T, Types...>::index;
};

template <typename T>
struct direct_type<T>
{
    static constexpr std::size_t index = invalid_value;
};

template <typename T, typename...Types>
struct convertible_type;

template <typename T, typename First, typename...Types>
struct convertible_type<T, First, Types...>
{
    static constexpr std::size_t index = std::is_convertible<T, First>::value
        ? sizeof...(Types) : convertible_type<T, Types...>::index;
};

template <typename T>
struct convertible_type<T>
{
    static constexpr std::size_t index = invalid_value;
};

template <typename T, typename...Types>
struct value_traits
{
    static constexpr std::size_t direct_index = direct_type<T, Types...>::index;
    static constexpr std::size_t index =
        (direct_index == invalid_value) ? convertible_type<T, Types...>::index : direct_index;
};

// check if T is in Types...
template <typename T, typename...Types>
struct has_type;

template <typename T, typename First, typename... Types>
struct has_type<T, First, Types...>
{
    static constexpr bool value = std::is_same<T, First>::value
        || has_type<T, Types...>::value;
};

template <typename T>
struct has_type<T> : std::false_type {};
//

template <typename T, typename...Types>
struct is_valid_type;

template <typename T, typename First, typename... Types>
struct is_valid_type<T, First, Types...>
{
    static constexpr bool value = std::is_convertible<T, First>::value
        || is_valid_type<T, Types...>::value;
};

template <typename T>
struct is_valid_type<T> : std::false_type {};

template <std::size_t N, typename ... Types>
struct select_type
{
    static_assert(N < sizeof...(Types), "index out of bounds");
};

template <std::size_t N, typename T, typename ... Types>
struct select_type<N, T, Types...>
{
    using type = typename select_type<N - 1, Types...>::type;
};

template <typename T, typename ... Types>
struct select_type<0, T, Types...>
{
    using type = T;
};


template <typename T, typename R = void>
struct enable_if_type { using type = R; };

template <typename F, typename V, typename Enable = void>
struct result_of_unary_visit
{
    using type = typename std::result_of<F(V&)>::type;
};

template <typename F, typename V>
struct result_of_unary_visit<F, V, typename enable_if_type<typename F::result_type>::type >
{
    using type = typename F::result_type;
};

template <typename F, typename V, class Enable = void>
struct result_of_binary_visit
{
    using type = typename std::result_of<F(V&,V&)>::type;
};


template <typename F, typename V>
struct result_of_binary_visit<F, V, typename enable_if_type<typename F::result_type>::type >
{
    using type = typename F::result_type;
};


} // namespace detail


template <std::size_t arg1, std::size_t ... others>
struct static_max;

template <std::size_t arg>
struct static_max<arg>
{
    static const std::size_t value = arg;
};

template <std::size_t arg1, std::size_t arg2, std::size_t ... others>
struct static_max<arg1, arg2, others...>
{
    static const std::size_t value = arg1 >= arg2 ? static_max<arg1, others...>::value :
        static_max<arg2, others...>::value;
};

template<typename... Types>
struct variant_helper;

template<typename T, typename... Types>
struct variant_helper<T, Types...>
{
    VARIANT_INLINE static void destroy(const std::size_t id, void * data)
    {
        if (id == sizeof...(Types))
        {
            reinterpret_cast<T*>(data)->~T();
        }
        else
        {
            variant_helper<Types...>::destroy(id, data);
        }
    }

    VARIANT_INLINE static void move(const std::size_t old_id, void * old_value, void * new_value)
    {
        if (old_id == sizeof...(Types))
        {
            new (new_value) T(std::move(*reinterpret_cast<T*>(old_value)));
            //std::memcpy(new_value, old_value, sizeof(T));
            // ^^  DANGER: this should only be considered for relocatable types e.g built-in types
            // Also, I don't see any measurable performance benefit just yet
        }
        else
        {
            variant_helper<Types...>::move(old_id, old_value, new_value);
        }
    }

    VARIANT_INLINE static void copy(const std::size_t old_id, const void * old_value, void * new_value)
    {
        if (old_id == sizeof...(Types))
        {
            new (new_value) T(*reinterpret_cast<const T*>(old_value));
        }
        else
        {
            variant_helper<Types...>::copy(old_id, old_value, new_value);
        }
    }
    VARIANT_INLINE static void direct_swap(const std::size_t id, void * lhs, void * rhs)
    {
        using std::swap; //enable ADL
        if (id == sizeof...(Types))
        {
            // both lhs and rhs hold T
            swap(*reinterpret_cast<T*>(lhs), *reinterpret_cast<T*>(rhs));
        }
        else
        {
            variant_helper<Types...>::direct_swap(id, lhs, rhs);
        }
    }
};

template<> struct variant_helper<>
{
    VARIANT_INLINE static void destroy(const std::size_t, void *) {}
    VARIANT_INLINE static void move(const std::size_t, void *, void *) {}
    VARIANT_INLINE static void copy(const std::size_t, const void *, void *) {}
    VARIANT_INLINE static void direct_swap(const std::size_t, void *, void *) {}
};

namespace detail {

template <typename T>
struct unwrapper
{
    T const& operator() (T const& obj) const
    {
        return obj;
    }

    T& operator() (T & obj) const
    {
        return obj;
    }
};


template <typename T>
struct unwrapper<recursive_wrapper<T>>
{
    auto operator() (recursive_wrapper<T> const& obj) const
        -> typename recursive_wrapper<T>::type const&
    {
        return obj.get();
    }

    auto operator() (recursive_wrapper<T> & obj) const
        -> typename recursive_wrapper<T>::type &
    {
        return obj.get();
    }
};

template <typename T>
struct unwrapper<std::reference_wrapper<T>>
{
    auto operator() (std::reference_wrapper<T> const& obj) const
        -> typename recursive_wrapper<T>::type const&
    {
        return obj.get();
    }
};

template <typename F, typename V, typename R, typename...Types>
struct dispatcher;

template <typename F, typename V, typename R, typename T, typename...Types>
struct dispatcher<F, V, R, T, Types...>
{
    using result_type = R;
    VARIANT_INLINE static result_type apply_const(V const& v, F f)
    {
        if (v.get_type_index() == sizeof...(Types))
        {
            return f(unwrapper<T>()(v. template get<T>()));
        }
        else
        {
            return dispatcher<F, V, R, Types...>::apply_const(v, f);
        }
    }

    VARIANT_INLINE static result_type apply(V & v, F f)
    {
        if (v.get_type_index() == sizeof...(Types))
        {
            return f(unwrapper<T>()(v. template get<T>()));
        }
        else
        {
            return dispatcher<F, V, R, Types...>::apply(v, f);
        }
    }
};

template<typename F, typename V, typename R>
struct dispatcher<F, V, R>
{
    using result_type = R;
    VARIANT_INLINE static result_type apply_const(V const&, F)
    {
        throw std::runtime_error(std::string("unary dispatch: FAIL ") + typeid(V).name());
    }

    VARIANT_INLINE static result_type apply(V &, F)
    {
        throw std::runtime_error(std::string("unary dispatch: FAIL ") + typeid(V).name());
    }
};


template <typename F, typename V, typename R, typename T, typename...Types>
struct binary_dispatcher_rhs;

template <typename F, typename V, typename R, typename T0, typename T1, typename...Types>
struct binary_dispatcher_rhs<F, V, R, T0, T1, Types...>
{
    using result_type = R;
    VARIANT_INLINE static result_type apply_const(V const& lhs, V const& rhs, F f)
    {
        if (rhs.get_type_index() == sizeof...(Types)) // call binary functor
        {
            return f(unwrapper<T0>()(lhs. template get<T0>()),
                     unwrapper<T1>()(rhs. template get<T1>()));
        }
        else
        {
            return binary_dispatcher_rhs<F, V, R, T0, Types...>::apply_const(lhs, rhs, f);
        }
    }

    VARIANT_INLINE static result_type apply(V & lhs, V & rhs, F f)
    {
        if (rhs.get_type_index() == sizeof...(Types)) // call binary functor
        {
            return f(unwrapper<T0>()(lhs. template get<T0>()),
                     unwrapper<T1>()(rhs. template get<T1>()));
        }
        else
        {
            return binary_dispatcher_rhs<F, V, R, T0, Types...>::apply(lhs, rhs, f);
        }
    }

};

template<typename F, typename V, typename R, typename T>
struct binary_dispatcher_rhs<F, V, R, T>
{
    using result_type = R;
    VARIANT_INLINE static result_type apply_const(V const&, V const&, F)
    {
        throw std::runtime_error("binary dispatch: FAIL");
    }
    VARIANT_INLINE static result_type apply(V &, V &, F)
    {
        throw std::runtime_error("binary dispatch: FAIL");
    }
};


template <typename F, typename V, typename R,  typename T, typename...Types>
struct binary_dispatcher_lhs;

template <typename F, typename V, typename R, typename T0, typename T1, typename...Types>
struct binary_dispatcher_lhs<F, V, R, T0, T1, Types...>
{
    using result_type = R;
    VARIANT_INLINE static result_type apply_const(V const& lhs, V const& rhs, F f)
    {
        if (lhs.get_type_index() == sizeof...(Types)) // call binary functor
        {
            return f(lhs. template get<T1>(), rhs. template get<T0>());
        }
        else
        {
            return binary_dispatcher_lhs<F, V, R, T0, Types...>::apply_const(lhs, rhs, f);
        }
    }

    VARIANT_INLINE static result_type apply(V & lhs, V & rhs, F f)
    {
        if (lhs.get_type_index() == sizeof...(Types)) // call binary functor
        {
            return f(lhs. template get<T1>(), rhs. template get<T0>());
        }
        else
        {
            return binary_dispatcher_lhs<F, V, R, T0, Types...>::apply(lhs, rhs, f);
        }
    }

};

template<typename F, typename V, typename R, typename T>
struct binary_dispatcher_lhs<F, V, R, T>
{
    using result_type = R;
    VARIANT_INLINE static result_type apply_const(V const&, V const&, F)
    {
        throw std::runtime_error("binary dispatch: FAIL");
    }

    VARIANT_INLINE static result_type apply(V &, V &, F)
    {
        throw std::runtime_error("binary dispatch: FAIL");
    }
};

template <typename F, typename V, typename R, typename...Types>
struct binary_dispatcher;

template <typename F, typename V, typename R, typename T, typename...Types>
struct binary_dispatcher<F, V, R, T, Types...>
{
    using result_type = R;
    VARIANT_INLINE static result_type apply_const(V const& v0, V const& v1, F f)
    {
        if (v0.get_type_index() == sizeof...(Types))
        {
            if (v0.get_type_index() == v1.get_type_index())
            {
                return f(v0. template get<T>(), v1. template get<T>()); // call binary functor
            }
            else
            {
                return binary_dispatcher_rhs<F, V, R, T, Types...>::apply_const(v0, v1, f);
            }
        }
        else if (v1.get_type_index() == sizeof...(Types))
        {
            return binary_dispatcher_lhs<F, V, R, T, Types...>::apply_const(v0, v1, f);
        }
        return binary_dispatcher<F, V, R, Types...>::apply_const(v0, v1, f);
    }

    VARIANT_INLINE static result_type apply(V & v0, V & v1, F f)
    {
        if (v0.get_type_index() == sizeof...(Types))
        {
            if (v0.get_type_index() == v1.get_type_index())
            {
                return f(v0. template get<T>(), v1. template get<T>()); // call binary functor
            }
            else
            {
                return binary_dispatcher_rhs<F, V, R, T, Types...>::apply(v0, v1, f);
            }
        }
        else if (v1.get_type_index() == sizeof...(Types))
        {
            return binary_dispatcher_lhs<F, V, R, T, Types...>::apply(v0, v1, f);
        }
        return binary_dispatcher<F, V, R, Types...>::apply(v0, v1, f);
    }
};

template<typename F, typename V, typename R>
struct binary_dispatcher<F, V, R>
{
    using result_type = R;
    VARIANT_INLINE static result_type apply_const(V const&, V const&, F)
    {
        throw std::runtime_error("binary dispatch: FAIL");
    }

    VARIANT_INLINE static result_type apply(V &, V &, F)
    {
        throw std::runtime_error("binary dispatch: FAIL");
    }
};

// comparator functors
struct equal_comp
{
    template <typename T>
    bool operator()(T const& lhs, T const& rhs) const
    {
        return lhs == rhs;
    }
};

struct less_comp
{
    template <typename T>
    bool operator()(T const& lhs, T const& rhs) const
    {
        return lhs < rhs;
    }
};

template <typename Variant, typename Comp>
class comparer
{
public:
    explicit comparer(Variant const& lhs) noexcept
        : lhs_(lhs) {}
    comparer& operator=(comparer const&) = delete;
    // visitor
    template<typename T>
    bool operator()(T const& rhs_content) const
    {
        T const& lhs_content = lhs_.template get<T>();
        return Comp()(lhs_content, rhs_content);
    }
private:
    Variant const& lhs_;
};


} // namespace detail

struct no_init {};

template<typename... Types>
class variant
{
private:

    static const std::size_t data_size = static_max<sizeof(Types)...>::value;
    static const std::size_t data_align = static_max<alignof(Types)...>::value;

    using data_type = typename std::aligned_storage<data_size, data_align>::type;
    using helper_type = variant_helper<Types...>;

    std::size_t type_index;
    data_type data;

public:

    // tell spirit that this is an adapted variant
    struct adapted_variant_tag;
    using types = boost::mpl::vector<Types...>;

    VARIANT_INLINE variant()
        : type_index(sizeof...(Types) - 1)
    {
        new (&data) typename detail::select_type<0, Types...>::type();
    }

    VARIANT_INLINE variant(no_init)
        : type_index(detail::invalid_value) {}

    // http://isocpp.org/blog/2012/11/universal-references-in-c11-scott-meyers
    template <typename T, class = typename std::enable_if<
                          detail::is_valid_type<typename std::remove_reference<T>::type, Types...>::value>::type>
    VARIANT_INLINE variant(T && val) noexcept
        : type_index(detail::value_traits<typename std::remove_reference<T>::type, Types...>::index)
    {
        constexpr std::size_t index = sizeof...(Types) - detail::value_traits<typename std::remove_reference<T>::type, Types...>::index - 1;
        using target_type = typename detail::select_type<index, Types...>::type;
        new (&data) target_type(std::forward<T>(val)); // nothrow
    }

    VARIANT_INLINE variant(variant<Types...> const& old)
        : type_index(old.type_index)
    {
        helper_type::copy(old.type_index, &old.data, &data);
    }

    VARIANT_INLINE variant(variant<Types...>&& old) noexcept
        : type_index(old.type_index)
    {
        helper_type::move(old.type_index, &old.data, &data);
    }

private:
    VARIANT_INLINE void copy_assign(variant<Types...> const& rhs)
    {
        helper_type::destroy(type_index, &data);
        type_index = detail::invalid_value;
        helper_type::copy(rhs.type_index, &rhs.data, &data);
        type_index = rhs.type_index;
    }

    VARIANT_INLINE void move_assign(variant<Types...> && rhs)
    {
        helper_type::destroy(type_index, &data);
        type_index = detail::invalid_value;
        helper_type::move(rhs.type_index, &rhs.data, &data);
        type_index = rhs.type_index;
    }

public:
    VARIANT_INLINE variant<Types...>& operator=(variant<Types...> && other)
    {
        move_assign(std::move(other));
        return *this;
    }

    VARIANT_INLINE variant<Types...>& operator=(variant<Types...> const& other)
    {
        copy_assign(other);
        return *this;
    }

    // conversions
    // move-assign
    template <typename T>
    VARIANT_INLINE variant<Types...>& operator=(T && rhs) noexcept
    {
        variant<Types...> temp(std::forward<T>(rhs));
        move_assign(std::move(temp));
        return *this;
    }

    // copy-assign
    template <typename T>
    VARIANT_INLINE variant<Types...>& operator=(T const& rhs)
    {
        variant<Types...> temp(rhs);
        copy_assign(temp);
        return *this;
    }

    template<typename T>
    VARIANT_INLINE bool is() const
    {
        static_assert(detail::has_type<T, Types...>::value, "invalid type in T in `is<T>()` for this variant");
        return (type_index == detail::direct_type<T, Types...>::index);
    }

    VARIANT_INLINE bool valid() const
    {
        return (type_index != detail::invalid_value);
    }

    template<typename T, typename... Args>
    VARIANT_INLINE void set(Args&&... args)
    {
        helper_type::destroy(type_index, &data);
        new (&data) T(std::forward<Args>(args)...);
        type_index = detail::direct_type<T, Types...>::index;
    }

    // get<T>()
    template<typename T, typename std::enable_if<
                         (detail::direct_type<T, Types...>::index != detail::invalid_value)
                         >::type* = nullptr>
    VARIANT_INLINE T& get()
    {
        if (type_index == detail::direct_type<T, Types...>::index)
        {
            return *reinterpret_cast<T*>(&data);
        }
        else
        {
            throw std::runtime_error("in get<T>()");
        }
    }

    template <typename T, typename std::enable_if<
                          (detail::direct_type<T, Types...>::index != detail::invalid_value)
                          >::type* = nullptr>
    VARIANT_INLINE T const& get() const
    {
        if (type_index == detail::direct_type<T, Types...>::index)
        {
            return *reinterpret_cast<T const*>(&data);
        }
        else
        {
            throw std::runtime_error("in get<T>()");
        }
    }

    // get<T>() - T stored as recursive_wrapper<T>
    template <typename T, typename std::enable_if<
                          (detail::direct_type<recursive_wrapper<T>, Types...>::index != detail::invalid_value)
                          >::type* = nullptr>
    VARIANT_INLINE T& get()
    {
        if (type_index == detail::direct_type<recursive_wrapper<T>, Types...>::index)
        {
            return (*reinterpret_cast<recursive_wrapper<T>*>(&data)).get();
        }
        else
        {
            throw std::runtime_error("in get<T>()");
        }
    }

    template <typename T,typename std::enable_if<
                         (detail::direct_type<recursive_wrapper<T>, Types...>::index != detail::invalid_value)
                         >::type* = nullptr>
    VARIANT_INLINE T const& get() const
    {
        if (type_index == detail::direct_type<recursive_wrapper<T>, Types...>::index)
        {
            return (*reinterpret_cast<recursive_wrapper<T> const*>(&data)).get();
        }
        else
        {
            throw std::runtime_error("in get<T>()");
        }
    }

    // get<T>() - T stored as std::reference_wrapper<T>
    template <typename T, typename std::enable_if<
                          (detail::direct_type<std::reference_wrapper<T>, Types...>::index != detail::invalid_value)
                          >::type* = nullptr>
    VARIANT_INLINE T& get()
    {
        if (type_index == detail::direct_type<std::reference_wrapper<T>, Types...>::index)
        {
            return (*reinterpret_cast<std::reference_wrapper<T>*>(&data)).get();
        }
        else
        {
            throw std::runtime_error("in get<T>()");
        }
    }

    template <typename T,typename std::enable_if<
                         (detail::direct_type<std::reference_wrapper<T const>, Types...>::index != detail::invalid_value)
                         >::type* = nullptr>
    VARIANT_INLINE T const& get() const
    {
        if (type_index == detail::direct_type<std::reference_wrapper<T const>, Types...>::index)
        {
            return (*reinterpret_cast<std::reference_wrapper<T const> const*>(&data)).get();
        }
        else
        {
            throw std::runtime_error("in get<T>()");
        }
    }

    VARIANT_INLINE std::size_t get_type_index() const
    {
        return type_index;
    }

    VARIANT_INLINE int which() const noexcept
    {
        return static_cast<int>(sizeof...(Types) - type_index - 1);
    }
    // visitor
    // unary
    template <typename F, typename V>
    auto VARIANT_INLINE
    static visit(V const& v, F f)
        -> decltype(detail::dispatcher<F, V,
                    typename detail::result_of_unary_visit<F,
                    typename detail::select_type<0, Types...>::type>::type, Types...>::apply_const(v, f))
    {
        using R = typename detail::result_of_unary_visit<F, typename detail::select_type<0, Types...>::type>::type;
        return detail::dispatcher<F, V, R, Types...>::apply_const(v, f);
    }
    // non-const
    template <typename F, typename V>
    auto VARIANT_INLINE
    static visit(V & v, F f)
        -> decltype(detail::dispatcher<F, V,
                    typename detail::result_of_unary_visit<F,
                    typename detail::select_type<0, Types...>::type>::type, Types...>::apply(v, f))
    {
        using R = typename detail::result_of_unary_visit<F, typename detail::select_type<0, Types...>::type>::type;
        return detail::dispatcher<F, V, R, Types...>::apply(v, f);
    }

    // binary
    // const
    template <typename F, typename V>
    auto VARIANT_INLINE
    static binary_visit(V const& v0, V const& v1, F f)
        -> decltype(detail::binary_dispatcher<F, V,
                    typename detail::result_of_binary_visit<F,
                    typename detail::select_type<0, Types...>::type>::type, Types...>::apply_const(v0, v1, f))
    {
        using R = typename detail::result_of_binary_visit<F,typename detail::select_type<0, Types...>::type>::type;
        return detail::binary_dispatcher<F, V, R, Types...>::apply_const(v0, v1, f);
    }
    // non-const
    template <typename F, typename V>
    auto VARIANT_INLINE
    static binary_visit(V& v0, V& v1, F f)
        -> decltype(detail::binary_dispatcher<F, V,
                    typename detail::result_of_binary_visit<F,
                    typename detail::select_type<0, Types...>::type>::type, Types...>::apply(v0, v1, f))
    {
        using R = typename detail::result_of_binary_visit<F,typename detail::select_type<0, Types...>::type>::type;
        return detail::binary_dispatcher<F, V, R, Types...>::apply(v0, v1, f);
    }

    ~variant() noexcept
    {
        helper_type::destroy(type_index, &data);
    }

    // comparison operators
    // equality
    VARIANT_INLINE bool operator==(variant const& rhs) const
    {
        if (this->get_type_index() != rhs.get_type_index())
            return false;
        detail::comparer<variant, detail::equal_comp> visitor(*this);
        return visit(rhs, visitor);
    }
    // less than
    VARIANT_INLINE bool operator<(variant const& rhs) const
    {
        if (this->get_type_index() != rhs.get_type_index())
        {
            return this->get_type_index() < rhs.get_type_index();
            // ^^ borrowed from boost::variant
        }
        detail::comparer<variant, detail::less_comp> visitor(*this);
        return visit(rhs, visitor);
    }
};

// unary visitor interface

// const
template <typename V, typename F>
auto VARIANT_INLINE static apply_visitor(F f, V const& v) -> decltype(V::visit(v, f))
{
    return V::visit(v, f);
}
// non-const
template <typename V, typename F>
auto VARIANT_INLINE static apply_visitor(F f, V & v) -> decltype(V::visit(v, f))
{
    return V::visit(v, f);
}

// binary visitor interface
// const
template <typename V, typename F>
auto VARIANT_INLINE static apply_visitor(F f, V const& v0, V const& v1) -> decltype(V::binary_visit(v0, v1, f))
{
    return V::binary_visit(v0, v1, f);
}
// non-const
template <typename V, typename F>
auto VARIANT_INLINE static apply_visitor(F f, V & v0, V & v1) -> decltype(V::binary_visit(v0, v1, f))
{
    return V::binary_visit(v0, v1, f);
}

// getter interface
template<typename ResultType, typename T>
ResultType & get(T & var)
{
    return var.template get<ResultType>();
}

template<typename ResultType, typename T>
ResultType const& get(T const& var)
{
    return var.template get<ResultType>();
}

}}

#endif  // MAPNIK_UTIL_VARIANT_HPP