/usr/include/mia-2.2/mia/3d/image.hh is in libmia-2.2-dev 2.2.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 | /* -*- mia-c++ -*-
*
* This file is part of MIA - a toolbox for medical image analysis
* Copyright (c) Leipzig, Madrid 1999-2015 Gert Wollny
*
* MIA is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MIA; if not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef mia_3d_image_hh
#define mia_3d_image_hh
#include <mia/3d/vectorfield.hh>
#include <mia/3d/orientation.hh>
#include <mia/3d/rot.hh>
#include <mia/2d/image.hh>
#include <mia/3d/valueattributetranslator.hh>
#include <mia/core/pixeltype.hh>
#include <mia/core/filter.hh>
NS_MIA_BEGIN
/**
@ingroup basic
@brief The generic base type of a 3D image
The base type of a 3D image with is used to move around the images in the code.
This type is not prepared to hold actual data. Instead the templated type T3DImage derived from this class
is used to hold image data of a certain voxel type.
*/
class EXPORT_3D C3DImage : public CAttributedData{
protected:
/**
Constructor to create the base sceleton of the image
@param data attributes (meta data) that belong to the image but is normally not required for
processing
@param type pixel type of this image
*/
C3DImage(const CAttributedData& data, EPixelType type);
/**
Constructor to create the base sceleton of the image
@param type pixel type of this image
*/
C3DImage(EPixelType type);
/// standard constructor
C3DImage();
public:
/// data type description for the plug-in path component
static const char *data_descr;
/// generic type for the dimension of the image
typedef C3DBounds dimsize_type;
/// Pointer type of the image
typedef std::shared_ptr<C3DImage > Pointer;
virtual ~C3DImage();
/**
\returns the type of the pixels(voxels) in the image
*/
EPixelType get_pixel_type() const;
/**
\returns the number of voxels
*/
virtual size_t size() const = 0;
/**
\returns the 3D size of the image
*/
virtual const C3DBounds& get_size() const = 0;
/**
\returns a clone of the image with shared image data (copy-on-write is employed for iterator access)
*/
virtual Pointer clone() const = 0;
/// \returns the voxel size in world units
C3DFVector get_voxel_size() const;
/// set the voxel size on world units
void set_voxel_size(const C3DFVector& voxel);
/// \returns the origin i.e. world units of the pixel at (0,0,0)
C3DFVector get_origin() const;
/// set the origin i.e. world units of the pixel at (0,0,0)
void set_origin(const C3DFVector& voxel);
/// \returns the rotation about the origin of the image
C3DRotation get_rotation() const;
/// set the rotation about the origin of the image
void set_rotation(const C3DRotation& voxel);
///@returns the orientation of the image
E3DImageOrientation get_orientation() const;
/** Set the orientation of the image
@param orient
@remark orientation is currently not really used
*/
void set_orientation(E3DImageOrientation orient);
private:
EPixelType m_pixel_type;
};
/// define a shortcut to the 3D image shared pointer.
typedef C3DImage::Pointer P3DImage;
/// helper type for image series
typedef std::vector<P3DImage> C3DImageSeries;
typedef std::shared_ptr<C3DImageSeries> P3DImageSeries;
/**
@ingroup basic
@brief Specific type of the 3D images that hold real pixel data
This template defines a 3D image holding a certain type \a T as pixel type.
*/
template <typename T>
class EXPORT_3D T3DImage : public C3DImage {
public:
/// define the super class of this class for generic processing
typedef C3DImage Super;
/// \cond SELFEXPLAINING
typedef typename T3DDatafield<T>::iterator iterator;
typedef typename T3DDatafield<T>::const_iterator const_iterator;
typedef typename T3DDatafield<T>::const_reference const_reference;
typedef typename T3DDatafield<T>::reference reference;
typedef typename T3DDatafield<T>::const_pointer const_pointer;
typedef typename T3DDatafield<T>::pointer pointer;
typedef typename T3DDatafield<T>::value_type value_type;
typedef typename T3DDatafield<T>::difference_type difference_type;
typedef typename T3DDatafield<T>::size_type size_type;
typedef typename T3DDatafield<T>::range_iterator range_iterator;
typedef typename T3DDatafield<T>::const_range_iterator const_range_iterator;
typedef typename T3DDatafield<T>::range_iterator_with_boundary_flag range_iterator_with_boundary_flag;
typedef typename T3DDatafield<T>::const_range_iterator_with_boundary_flag const_range_iterator_with_boundary_flag;
typedef typename T2DDatafield<T>::data_array data_array;
/// \endcond
/**
Construct a new image of a given size and with the given input date.
\param size
\param init_data input data
*/
T3DImage(const C3DBounds& size, const T* init_data);
/**
Construct a new image of a given size and with the given attribute list.
\param size
\param attr
*/
T3DImage(const C3DBounds& size, const CAttributedData& attr);
T3DImage(const C3DBounds& size, const data_array& init_data);
/**
Construct a new image of a given size
\param size
*/
T3DImage(const C3DBounds& size);
//T3DImage(const T3DDatafield<T>& size);
/**
copy constructor
*/
T3DImage(const T3DImage& orig);
/**
standart costructor creates an image of size (0,0,0)
*/
T3DImage();
/// \returns a clone of the image with shared image data
virtual Pointer clone() const;
/** Get some Data along some line parallel to X axis */
void get_data_line_x(int y, int z, std::vector<T>& buffer)const;
/** Get some Data along some line parallel to Y axis */
void get_data_line_y(int x, int z, std::vector<T>& buffer)const;
/** Get some Data along some line parallel to Z axis */
void get_data_line_z(int x, int y, std::vector<T>& buffer)const;
/** Put some Data along some line parallel to X axis */
void put_data_line_x(int y, int z, const std::vector<T> &buffer);
/** Put some Data along some line parallel to Y axis */
void put_data_line_y(int x, int z, const std::vector<T> &buffer);
/** Put some Data along some line parallel to Z axis */
void put_data_line_z(int x, int y, const std::vector<T> &buffer);
/// forwarding function to access the underlying T3DDatafield
T2DImage<T> get_data_plane_xy(size_t z)const;
/// forwarding function to access the underlying T3DDatafield
T2DImage<T> get_data_plane_yz(size_t x)const;
/// forwarding function to access the underlying T3DDatafield
T2DImage<T> get_data_plane_xz(size_t y)const;
/// forwarding function to access the underlying T3DDatafield
void put_data_plane_xy(size_t z, const T2DImage<T>& p);
/// forwarding function to access the underlying T3DDatafield
void put_data_plane_yz(size_t x, const T2DImage<T>& p);
/// forwarding function to access the underlying T3DDatafield
void put_data_plane_xz(size_t y, const T2DImage<T>& p);
/// element access operator - read only
const_reference operator()(size_t x, size_t y, size_t z) const {
return m_image(x,y,z);
}
/// element access operator - read/write
reference operator()(size_t x, size_t y, size_t z){
return m_image(x,y,z);
}
/// element access operator - read only
const_reference operator()(const C3DBounds& l) const{
return m_image(l.x,l.y, l.z);
}
/// element access operator - read/write
reference operator()(const C3DBounds& l){
return m_image(l.x,l.y, l.z);
}
/// constant iterator
const_iterator begin()const {
return m_image.begin();
}
/// constant iterator
const_iterator end()const {
return m_image.end();
}
/// forwarding function to access the specified range of the underlying T3DDatafield
range_iterator begin_range(const C3DBounds& begin, const C3DBounds& end) {
return m_image.begin_range(begin, end);
}
/// forwarding function to access the specified range of the underlying T3DDatafield
range_iterator end_range(const C3DBounds& begin, const C3DBounds& end){
return m_image.end_range(begin, end);
}
/// forwarding function to access the specified range of the underlying T3DDatafield
const_range_iterator begin_range(const C3DBounds& begin, const C3DBounds& end)const {
return m_image.begin_range(begin, end);
}
/// forwarding function to access the specified range of the underlying T3DDatafield
const_range_iterator end_range(const C3DBounds& begin, const C3DBounds& end) const{
return m_image.end_range(begin, end);
}
/** \returns an read/write forward iterator over a subset of the data with indicator for the boundaries. */
range_iterator_with_boundary_flag begin_range_with_boundary_flags(const C3DBounds& begin, const C3DBounds& end){
return m_image.begin_range_with_boundary_flags(begin, end);
}
/** \returns the end of a read/write forward iterator over a subset of the data with indicator for the boundaries. */
range_iterator_with_boundary_flag end_range_with_boundary_flags(const C3DBounds& begin, const C3DBounds& end){
return m_image.end_range_with_boundary_flags(begin, end);
}
/** \returns an read/write forward iterator over a subset of the data with indicator for the boundaries.
The functions ensures, that the field uses a single referenced datafield */
const_range_iterator_with_boundary_flag begin_range_with_boundary_flags(const C3DBounds& begin, const C3DBounds& end)const{
return m_image.begin_range_with_boundary_flags(begin, end);
}
/** \returns the end of a read/write forward iterator over a subset of the data with indicator for the boundaries. */
const_range_iterator_with_boundary_flag end_range_with_boundary_flags(const C3DBounds& begin, const C3DBounds& end)const{
return m_image.end_range_with_boundary_flags(begin, end);
}
/// \returns the all over number of pixels/voxels
size_t size() const;
/// read/write iterator, issues copy-on-write
iterator begin() {
return m_image.begin();
}
/// read/write iterator, issues copy-on-write
iterator end() {
return m_image.end();
}
/// constant iterator starting at the given location
const_iterator begin_at(size_t x, size_t y, size_t z) const {
return m_image.begin_at(x, y, z);
}
/// read/write iterator starting at the given location
iterator begin_at(size_t x, size_t y, size_t z) {
return m_image.begin_at(x, y, z);
}
/** a linear read only access operator */
const_reference operator[](int i)const
{
return m_image[i];
}
/** A linear read/write access operator. The refcount of Data must be 1,
else the program will abort with a failed assertion (if assert is enabled)
*/
reference operator[](int i)
{
return m_image[i];
}
/// read only access to the underlying data
const T3DDatafield<T>& data() const;
/// read/write access to the underlying data
//T3DDatafield<T>& data();
/**
Evaluate the gradient at a given location of the image
\todo evil, remove it
*/
C3DFVector get_gradient(int index) const
{
return m_image.template get_gradient<float>(index);
}
/// \returns the 3D size of the image
virtual const C3DBounds& get_size() const;
private:
T3DDatafield<T> m_image;
};
/**
\brief functor to convert an image with an abitrary pixel type to single floating point pixels
This functor provides the often used funcionality to convert a 3D image from
any pixel representation to a pixel type O representation.
The data is just copied.
For conversion with scaling and proepry clamping you should use the convert filter
provided through C3DFilterPluginHandler.
\tparam O output pixel type
*/
template <typename O>
struct FConvert3DImageToPixeltypeO: public TFilter<T3DImage<O> > {
/**
Operator to do the actual conversion.
\param image input image
\returns the image converted floating point pixel values
*/
template <typename T>
T3DImage<O> operator () (const T3DImage<T> &image) const {
T3DImage<O> result(image.get_size(), image);
copy(image.begin(), image.end(), result.begin());
return result;
}
/**
Operator to do redirect the base class representation through mia::filter
\param image input image
\returns the image converted floating point pixel values
*/
T3DImage<O> operator () (const C3DImage &image) const {
return filter(*this, image);
}
/**
Operator to do redirect the pointer representation through mia::filter
\param image input image pointer
\returns the image converted floating point pixel values
*/
T3DImage<O> operator () (P3DImage image) const {
return filter(*this, *image);
}
};
/**
\brief short name for 3DImage to float pixel repn copy functor
Since copy-conversion to a floating pixel type image is used often
we provide here a typedef for the functor.
*/
typedef FConvert3DImageToPixeltypeO<float> FCopy3DImageToFloatRepn;
/**
@ingroup basic
Stand alone function to evaluate the gradient of an image using finite differences.
The gradient at the boundaries is set to zero.
\param image
\returns a 3D vector field holding the gradient of the input image
*/
EXPORT_3D C3DFVectorfield get_gradient(const C3DImage& image);
/// \brief 3D image with binary values
typedef T3DImage<bool> C3DBitImage;
/// \brief 3D image with signed 8 bit integer values
typedef T3DImage<signed char> C3DSBImage;
/// \brief 3D image with unsigned 8 bit integer values
typedef T3DImage<unsigned char> C3DUBImage;
/// \brief 3D image with signed 16 bit integer values
typedef T3DImage<signed short> C3DSSImage;
/// \brief 3D image with unsigned 16 bit integer values
typedef T3DImage<unsigned short> C3DUSImage;
/// \brief 3D image with signed 32 bit integer values
typedef T3DImage<signed int> C3DSIImage;
/// \brief 3D image with unsigned 32 bit integer values
typedef T3DImage<unsigned int> C3DUIImage;
#ifdef LONG_64BIT
/// \brief 3D image with signed 64 bit integer values
typedef T3DImage<signed long> C3DSLImage;
/// \brief 3D image with unsigned 64 bit integer values
typedef T3DImage<unsigned long> C3DULImage;
#endif
/// \brief 3D image with signed 32 bit floating point values
typedef T3DImage<float> C3DFImage;
/// \brief 3D image with signed 64 bit floating point values
typedef T3DImage<double> C3DDImage;
/**
@cond INTERNAL
@ingroup traits
*/
template <>
struct Binder<C3DImage> {
typedef __bind_all<T3DImage> Derived;
};
/// @endcond
NS_MIA_END
#endif
|