/usr/lib/ocaml/mm/audio.mli is in libmm-ocaml-dev 0.2.1-2build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 | (*
* Copyright 2011 The Savonet Team
*
* This file is part of ocaml-mm.
*
* ocaml-mm is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* ocaml-mm is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with ocaml-mm; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* As a special exception to the GNU Library General Public License, you may
* link, statically or dynamically, a "work that uses the Library" with a publicly
* distributed version of the Library to produce an executable file containing
* portions of the Library, and distribute that executable file under terms of
* your choice, without any of the additional requirements listed in clause 6
* of the GNU Library General Public License.
* By "a publicly distributed version of the Library", we mean either the unmodified
* Library as distributed by The Savonet Team, or a modified version of the Library that is
* distributed under the conditions defined in clause 3 of the GNU Library General
* Public License. This exception does not however invalidate any other reasons why
* the executable file might be covered by the GNU Library General Public License.
*
*)
(** Operations on audio data. *)
val samples_of_seconds : int -> float -> int
val seconds_of_samples : int -> int -> float
(** Convert decibels to linear coefficient. *)
val lin_of_dB : float -> float
(** Convert linear coefficient to decibels. *)
val dB_of_lin : float -> float
(** Operations on samples. *)
module Sample : sig
(** A sample. *)
type t = float
(** Clip a sample (ie ensure that it is between [-1.] and [1.]. *)
val clip : t -> t
end
(** Operations on notes. *)
module Note : sig
type t = int
val a4 : int
val c5 : int
val c0 : int
val create : int -> int -> t
val freq : t -> float
val of_freq : float -> t
val name : t -> int
val octave : t -> int
(** Returns note number and octave. *)
val modulo : t -> int * int
val to_string : t -> string
val of_string : string -> t
end
(** Operations on mono buffers (with only one channel). *)
module Mono : sig
(** A mono buffer. *)
type buffer = float array
val create : int -> buffer
val blit : buffer -> int -> buffer -> int -> int -> unit
val copy : buffer -> buffer
val duration : buffer -> int
val append : buffer -> buffer -> buffer
(** Clear a portion of a buffer (fill it with zeroes). *)
val clear : buffer -> int -> int -> unit
val resample : ?mode:[`Nearest | `Linear] -> float -> buffer -> int -> int -> buffer
val clip : buffer -> int -> int -> unit
(** [add b1 o1 b2 o2 len] adds [len] samples of contents of [b2] starting at
[o2] to [b1] starting at [o1]. *)
val add : buffer -> int -> buffer -> int -> int -> unit
val mult : buffer -> int -> buffer -> int -> int -> unit
module Ringbuffer_ext : Ringbuffer.R with type elt = float
module Ringbuffer : Ringbuffer.R with type elt = float
(** Buffers of variable size. These are particularly useful for temporary
buffers. *)
module Buffer_ext : sig
type t
val create : int -> t
val duration : t -> int
val prepare : t -> int -> buffer
end
(** Functions for analyzing audio data. *)
module Analyze : sig
(** Compute the RMS power of a portion of a buffer. *)
val rms : buffer -> int -> int -> float
(** Simple implementation of the FFT algorithm. For fastest implementations
optimized libraries such as fftw are recommended. *)
module FFT : sig
(** Internal data for computing FFT. *)
type t
(** Initialize FFT for an analysis of [2^n] samples. *)
val init : int -> t
(** Duration of the FFT buffer analysis in samples. *)
val duration : t -> int
(** [complex_create buf ofs len] create a array of complex numbers of size
[len] by copying data from [buf] from ofset [ofs] (the imaginary part
is null). *)
val complex_create : buffer -> int -> int -> Complex.t array
(** Perform an FFT analysis. *)
val fft : t -> Complex.t array -> unit
(** Frequency associated to the [k]-th coefficient of an FFT. *)
val band_freq : int -> t -> int -> float
(** Windowing functions. Thses can be used to on complex buffers in order
to improve the quality of the FFT, see
http://en.wikipedia.org/wiki/Windowing_functions. *)
module Window : sig
val cosine : Complex.t array -> unit
val hann : Complex.t array -> unit
val hamming : Complex.t array -> unit
val lanczos : Complex.t array -> unit
val triangular : Complex.t array -> unit
val bartlett_hann : Complex.t array -> unit
val blackman : ?alpha:float -> t -> Complex.t array -> unit
val nuttall : t -> Complex.t array -> unit
val blackman_harris : t -> Complex.t array -> unit
val blackman_nuttall : t -> Complex.t array -> unit
end
val notes : int -> t -> ?window:(Complex.t array -> unit) -> ?note_min:int -> ?note_max:int -> ?volume_min:float -> ?filter_harmonics:bool -> float array -> int -> int -> (Note.t * float) list
val loudest_note : (Note.t * float) list -> (Note.t * float) option
end
end
module Effect : sig
(** A compander following the mu-law (see
http://en.wikipedia.org/wiki/Mu-law).*)
val compand_mu_law : float -> buffer -> int -> int -> unit
class type t =
object
method process : buffer -> int -> int -> unit
end
class amplify : float -> t
class clip : float -> t
class biquad_filter : int -> [ `Band_pass | `High_pass | `Low_pass | `Notch | `All_pass | `Peaking | `Low_shelf | `High_shelf ] -> ?gain:float -> float -> float -> t
(** ADSR (Attack/Decay/Sustain/Release) envelopes. *)
module ADSR : sig
(** An ADSR enveloppe. *)
type t
(** Create an envelope with specified Attack/Decay/Sustain/Release times
in seconds (excepting sustain which is an amplification coefficient
between [0.] and [1.]). Negative sustain means that that notes should
be released just after decay. *)
val make : int -> float * float * float * float -> t
(** Current state in the ADSR envelope. *)
type state
(** Initial state for processing. *)
val init : unit -> state
val release : state -> state
val dead : state -> bool
val process : t -> state -> buffer -> int -> int -> state
end
end
(** Sound generators. *)
module Generator : sig
(** A sound generator. *)
class type t =
object
method set_volume : float -> unit
method set_frequency : float -> unit
(** Fill a buffer with generated sound. *)
method fill : buffer -> int -> int -> unit
(** Same as [fill] but adds the sound to the buffer. *)
method fill_add : buffer -> int -> int -> unit
(** Release the generator (used for generator with envelopes). *)
method release : unit
(** Is the generator still producing sound? This should become false soon
after release has been triggered. *)
method dead : bool
end
(** Generate a sine waveform. *)
class sine : int -> ?volume:float -> ?phase:float -> float -> t
(** Generate a square waveform. *)
class square : int -> ?volume:float -> ?phase:float -> float -> t
(** Generate a saw waveform. *)
class saw : int -> ?volume:float -> ?phase:float -> float -> t
class white_noise : ?volume:float -> int -> t
class chain : t -> Effect.t -> t
class add : t -> t -> t
class mult : t -> t -> t
(** Apply an ADSR envlope on a generator. *)
class adsr : Effect.ADSR.t -> t -> t
end
end
(** An audio buffer. *)
type buffer = Mono.buffer array
(** [create chans len] creates a buffer with [chans] channels and [len] samples
as duration. *)
val create : int -> int -> buffer
(** Create a buffer with the same number of channels and duration as the given
buffer. *)
val create_same : buffer -> buffer
(** Clear the buffer (sets all the samples to zero). *)
val clear : buffer -> int -> int -> unit
(** Copy the given buffer. *)
val copy : buffer -> buffer
val append : buffer -> buffer -> buffer
val channels : buffer -> int
(** Duration of a buffer in samples. *)
val duration : buffer -> int
(** Convert a buffer to a mono buffer by computing the mean of all channels. *)
val to_mono : buffer -> Mono.buffer
(** Convert a mono buffer into a buffer. Notice that the original mono buffer is
not copied an might thus be modified afterwards. *)
val of_mono : Mono.buffer -> buffer
module U8 : sig
val of_audio : buffer -> int -> string -> int -> int -> unit
val to_audio : string -> int -> buffer -> int -> int -> unit
end
module S16LE : sig
val length : int -> int -> int
val duration : int -> int -> int
val of_audio : buffer -> int -> string -> int -> int -> unit
val make : buffer -> int -> int -> string
val to_audio : string -> int -> buffer -> int -> int -> unit
end
val resample : ?mode:[`Nearest | `Linear] -> float -> buffer -> int -> int -> buffer
(** Same as [Array.blit] for audio data. *)
val blit : buffer -> int -> buffer -> int -> int -> unit
val clip : buffer -> int -> int -> unit
(** Amplify a portion of the buffer by a given coefficient. *)
val amplify : float -> buffer -> int -> int -> unit
(** Pan a stereo buffer from left to right (the buffer should have exactly two
channels!). The coefficient should be between [-1.] and [1.]. *)
val pan : float -> buffer -> int -> int -> unit
val add : buffer -> int -> buffer -> int -> int -> unit
val add_coeff : buffer -> int -> float -> buffer -> int -> int -> unit
(** Buffers of variable size. These are particularly useful for temporary
buffers. *)
module Buffer_ext : sig
type t
(** Create an extensible buffer of given channels and initial size in
samples. *)
val create : int -> int -> t
(** Current duration (in samples) of the buffer. *)
val duration : t -> int
(** Make sure that the buffer can hold at least a given number of samples. *)
val prepare : t -> ?channels:int -> int -> buffer
end
(** Circular ringbuffers. *)
module Ringbuffer : sig
(** A ringbuffer. *)
type t
(** Create a ringbuffer of given number of channels and size (in samples). *)
val create : int -> int -> t
val channels : t -> int
val read_space : t -> int
val write_space : t -> int
val read_advance : t -> int -> unit
val write_advance : t -> int -> unit
val peek : t -> buffer -> int -> int -> unit
val read : t -> buffer -> int -> int -> unit
val write : t -> buffer -> int -> int -> unit
val transmit : t -> (buffer -> int -> int -> int) -> int
end
module Ringbuffer_ext : sig
type t
val create : int -> int -> t
val channels : t -> int
val read_space : t -> int
val write_space : t -> int
val read_advance : t -> int -> unit
val write_advance : t -> int -> unit
val peek : t -> buffer -> int -> int -> unit
val read : t -> buffer -> int -> int -> unit
val write : t -> buffer -> int -> int -> unit
val transmit : t -> (buffer -> int -> int -> int) -> int
end
module Analyze : sig
val rms : buffer -> int -> int -> float array
end
(** Audio effects. *)
module Effect : sig
(** A possibly stateful audio effect. *)
class type t =
object
(** Apply the effect on a buffer. *)
method process : buffer -> int -> int -> unit
end
class chain : t -> t -> t
class of_mono : int -> (unit -> Mono.Effect.t) -> t
class type delay_t =
object
inherit t
method set_delay : float -> unit
method set_feedback : float -> unit
end
(** [delay chans samplerate d once feedback] creates a delay operator for
buffer with [chans] channels at [samplerate] samplerate with [d] as delay
in seconds and [feedback] as feedback. If [once] is set to [true] only one
echo will be heard (no feedback). *)
val delay : int -> int -> float -> ?once:bool -> ?ping_pong:bool -> float -> delay_t
(** Hardknee compressor with RMS look-ahead envelope calculation and
adjustable attack/decay. Given parameters are [attack] and [release] in
seconds, [ratio] n means n:1 compression, [threshold] and [knee] in dB,
and [rms_window] in second is the duration for RMS acquisition. [gain] is
an additional pre-gain. *)
class compress : ?attack:float -> ?release:float -> ?threshold:float -> ?ratio:float -> ?knee:float -> ?rms_window:float -> ?gain:float -> int -> int ->
object
inherit t
method set_attack : float -> unit
method set_gain : float -> unit
method set_knee : float -> unit
method set_ratio : float -> unit
method set_release : float -> unit
method set_threshold : float -> unit
method reset : unit
end
(** A biquadratic filter. [gain] in dB is only used by peaking, low and high shelves. *)
class biquad_filter : int -> int -> [ `Band_pass | `High_pass | `Low_pass | `Notch | `All_pass | `Peaking | `Low_shelf | `High_shelf ] -> ?gain:float -> float -> float -> t
val auto_gain_control : int -> int -> ?rms_target:float -> ?rms_window:float -> ?kup:float -> ?kdown:float -> ?rms_threshold:float -> ?volume_init:float -> ?volume_min:float -> ?volume_max:float -> unit -> t
end
(** Sound generators. *)
module Generator : sig
val white_noise : buffer -> int -> int -> unit
class type t =
object
method set_volume : float -> unit
method set_frequency : float -> unit
method fill : buffer -> int -> int -> unit
method fill_add : buffer -> int -> int -> unit
method release : unit
method dead : bool
end
class of_mono : Mono.Generator.t -> t
class chain : t -> Effect.t -> t
end
(** Operation for reading and writing audio data from files, streams or
devices. *)
module IO : sig
(** The file is not valid. *)
exception Invalid_file
(** The operation is not valid on the file/device. *)
exception Invalid_operation
(** Trying to read past the end of the stream. *)
exception End_of_stream
module Reader : sig
class type t =
object
(** Number of channels. *)
method channels : int
(** Sample rate in samples per second. *)
method sample_rate : int
(** Duration in samples. *)
method duration : int
(** Duration in seconds. *)
method duration_time : float
(** Seek to a given sample. *)
method seek : int -> unit
(** Close the file. This method should only be called once. The members of
the object should not be accessed anymore after this method has been
called. *)
method close : unit
method read : buffer -> int -> int -> int
end
(** Create a reader object from a wav file. *)
class of_wav_file : string -> t
end
module Writer : sig
class type t =
object
method write : buffer -> int -> int -> unit
method close : unit
end
(** Create a writer to a file in WAV format with given number of channels,
sample rate and file name.*)
class to_wav_file : int -> int -> string -> t
end
module RW : sig
class type t =
object
method read : buffer -> int -> int -> unit
method write : buffer -> int -> int -> unit
method close : unit
end
class virtual bufferized : int -> min_duration:int -> fill_duration:int -> max_duration:int -> drop_duration:int ->
object
method virtual io_read : buffer -> int -> int -> unit
method virtual io_write : buffer -> int -> int -> unit
method read : buffer -> int -> int -> unit
method write : buffer -> int -> int -> unit
end
end
end
|