This file is indexed.

/usr/lib/ocaml/mm/audio.mli is in libmm-ocaml-dev 0.2.1-2build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
(*
 * Copyright 2011 The Savonet Team
 *
 * This file is part of ocaml-mm.
 *
 * ocaml-mm is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * ocaml-mm is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with ocaml-mm; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * As a special exception to the GNU Library General Public License, you may
 * link, statically or dynamically, a "work that uses the Library" with a publicly
 * distributed version of the Library to produce an executable file containing
 * portions of the Library, and distribute that executable file under terms of
 * your choice, without any of the additional requirements listed in clause 6
 * of the GNU Library General Public License.
 * By "a publicly distributed version of the Library", we mean either the unmodified
 * Library as distributed by The Savonet Team, or a modified version of the Library that is
 * distributed under the conditions defined in clause 3 of the GNU Library General
 * Public License. This exception does not however invalidate any other reasons why
 * the executable file might be covered by the GNU Library General Public License.
 *
 *)

(** Operations on audio data. *)

val samples_of_seconds : int -> float -> int

val seconds_of_samples : int -> int -> float

(** Convert decibels to linear coefficient. *)
val lin_of_dB : float -> float

(** Convert linear coefficient to decibels. *)
val dB_of_lin : float -> float

(** Operations on samples. *)
module Sample : sig
  (** A sample. *)
  type t = float

  (** Clip a sample (ie ensure that it is between [-1.] and [1.]. *)
  val clip : t -> t
end

(** Operations on notes. *)
module Note : sig
  type t = int

  val a4 : int
  val c5 : int
  val c0 : int

  val create : int -> int -> t

  val freq : t -> float

  val of_freq : float -> t

  val name : t -> int

  val octave : t -> int

  (** Returns note number and octave. *)
  val modulo : t -> int * int

  val to_string : t -> string

  val of_string : string -> t
end

(** Operations on mono buffers (with only one channel). *)
module Mono : sig
  (** A mono buffer. *)
  type buffer = float array

  val create : int -> buffer

  val blit : buffer -> int -> buffer -> int -> int -> unit

  val copy : buffer -> buffer

  val duration : buffer -> int

  val append : buffer -> buffer -> buffer

  (** Clear a portion of a buffer (fill it with zeroes). *)
  val clear : buffer -> int -> int -> unit

  val resample : ?mode:[`Nearest | `Linear] -> float -> buffer -> int -> int -> buffer

  val clip : buffer -> int -> int -> unit

  (** [add b1 o1 b2 o2 len] adds [len] samples of contents of [b2] starting at
      [o2] to [b1] starting at [o1]. *)
  val add : buffer -> int -> buffer -> int -> int -> unit

  val mult : buffer -> int -> buffer -> int -> int -> unit

  module Ringbuffer_ext : Ringbuffer.R with type elt = float

  module Ringbuffer : Ringbuffer.R with type elt = float

  (** Buffers of variable size. These are particularly useful for temporary
      buffers. *)
  module Buffer_ext : sig
    type t

    val create : int -> t

    val duration : t -> int

    val prepare : t -> int -> buffer
  end

  (** Functions for analyzing audio data. *)
  module Analyze : sig
    (** Compute the RMS power of a portion of a buffer. *)
    val rms : buffer -> int -> int -> float

    (** Simple implementation of the FFT algorithm. For fastest implementations
	optimized libraries such as fftw are recommended. *)
    module FFT : sig
      (** Internal data for computing FFT. *)
      type t

      (** Initialize FFT for an analysis of [2^n] samples. *)
      val init : int -> t

      (** Duration of the FFT buffer analysis in samples. *)
      val duration : t -> int

      (** [complex_create buf ofs len] create a array of complex numbers of size
	  [len] by copying data from [buf] from ofset [ofs] (the imaginary part
	  is null). *)
      val complex_create : buffer -> int -> int -> Complex.t array

      (** Perform an FFT analysis. *)
      val fft : t -> Complex.t array -> unit

      (** Frequency associated to the [k]-th coefficient of an FFT. *)
      val band_freq : int -> t -> int -> float

      (** Windowing functions. Thses can be used to on complex buffers in order
	  to improve the quality of the FFT, see
	  http://en.wikipedia.org/wiki/Windowing_functions. *)
      module Window : sig
	val cosine : Complex.t array -> unit

	val hann : Complex.t array -> unit

	val hamming : Complex.t array -> unit

	val lanczos : Complex.t array -> unit

	val triangular : Complex.t array -> unit

	val bartlett_hann : Complex.t array -> unit

	val blackman : ?alpha:float -> t -> Complex.t array -> unit

	val nuttall : t -> Complex.t array -> unit

	val blackman_harris : t -> Complex.t array -> unit

	val blackman_nuttall : t -> Complex.t array -> unit
      end

      val notes : int -> t -> ?window:(Complex.t array -> unit) -> ?note_min:int -> ?note_max:int -> ?volume_min:float -> ?filter_harmonics:bool -> float array -> int -> int -> (Note.t * float) list

      val loudest_note : (Note.t * float) list -> (Note.t * float) option

    end
  end

  module Effect : sig
    (** A compander following the mu-law (see
	http://en.wikipedia.org/wiki/Mu-law).*)
    val compand_mu_law : float -> buffer -> int -> int -> unit

    class type t =
    object
      method process : buffer -> int -> int -> unit
    end

    class amplify : float -> t

    class clip : float -> t

    class biquad_filter : int -> [ `Band_pass | `High_pass | `Low_pass | `Notch | `All_pass | `Peaking | `Low_shelf | `High_shelf ] -> ?gain:float -> float -> float -> t

    (** ADSR (Attack/Decay/Sustain/Release) envelopes. *)
    module ADSR : sig
      (** An ADSR enveloppe. *)
      type t

      (** Create an envelope with specified Attack/Decay/Sustain/Release times
          in seconds (excepting sustain which is an amplification coefficient
          between [0.] and [1.]). Negative sustain means that that notes should
          be released just after decay. *)
      val make : int -> float * float * float * float -> t

      (** Current state in the ADSR envelope. *)
      type state

      (** Initial state for processing. *)
      val init : unit -> state

      val release : state -> state

      val dead : state -> bool

      val process : t -> state -> buffer -> int -> int -> state
    end
  end

  (** Sound generators. *)
  module Generator : sig
    (** A sound generator. *)
    class type t =
    object
      method set_volume : float -> unit

      method set_frequency : float -> unit

      (** Fill a buffer with generated sound. *)
      method fill : buffer -> int -> int -> unit

      (** Same as [fill] but adds the sound to the buffer. *)
      method fill_add : buffer -> int -> int -> unit

      (** Release the generator (used for generator with envelopes). *)
      method release : unit

      (** Is the generator still producing sound? This should become false soon
	  after release has been triggered. *)
      method dead : bool
    end

    (** Generate a sine waveform. *)
    class sine : int -> ?volume:float -> ?phase:float -> float -> t

    (** Generate a square waveform. *)
    class square : int -> ?volume:float -> ?phase:float -> float -> t

    (** Generate a saw waveform. *)
    class saw : int -> ?volume:float -> ?phase:float -> float -> t

    class white_noise : ?volume:float -> int -> t

    class chain : t -> Effect.t -> t

    class add : t -> t -> t

    class mult : t -> t -> t

    (** Apply an ADSR envlope on a generator. *)
    class adsr : Effect.ADSR.t -> t -> t
  end
end

(** An audio buffer. *)
type buffer = Mono.buffer array

(** [create chans len] creates a buffer with [chans] channels and [len] samples
    as duration. *)
val create : int -> int -> buffer

(** Create a buffer with the same number of channels and duration as the given
    buffer. *)
val create_same : buffer -> buffer

(** Clear the buffer (sets all the samples to zero). *)
val clear : buffer -> int -> int -> unit

(** Copy the given buffer. *)
val copy : buffer -> buffer

val append : buffer -> buffer -> buffer

val channels : buffer -> int

(** Duration of a buffer in samples. *)
val duration : buffer -> int

(** Convert a buffer to a mono buffer by computing the mean of all channels. *)
val to_mono : buffer -> Mono.buffer

(** Convert a mono buffer into a buffer. Notice that the original mono buffer is
    not copied an might thus be modified afterwards. *)
val of_mono : Mono.buffer -> buffer

module U8 : sig
  val of_audio : buffer -> int -> string -> int -> int -> unit

  val to_audio : string -> int -> buffer -> int -> int -> unit
end

module S16LE : sig
  val length : int -> int -> int

  val duration : int -> int -> int

  val of_audio : buffer -> int -> string -> int -> int -> unit

  val make : buffer -> int -> int -> string

  val to_audio : string -> int -> buffer -> int -> int -> unit
end

val resample : ?mode:[`Nearest | `Linear] -> float -> buffer -> int -> int -> buffer

(** Same as [Array.blit] for audio data. *)
val blit : buffer -> int -> buffer -> int -> int -> unit

val clip : buffer -> int -> int -> unit

(** Amplify a portion of the buffer by a given coefficient. *)
val amplify : float -> buffer -> int -> int -> unit

(** Pan a stereo buffer from left to right (the buffer should have exactly two
    channels!). The coefficient should be between [-1.] and [1.]. *)
val pan : float -> buffer -> int -> int -> unit

val add : buffer -> int -> buffer -> int -> int -> unit

val add_coeff : buffer -> int -> float -> buffer -> int -> int -> unit

(** Buffers of variable size. These are particularly useful for temporary
    buffers. *)
module Buffer_ext : sig
  type t

  (** Create an extensible buffer of given channels and initial size in
      samples. *)
  val create : int -> int -> t

  (** Current duration (in samples) of the buffer. *)
  val duration : t -> int

  (** Make sure that the buffer can hold at least a given number of samples. *)
  val prepare : t -> ?channels:int -> int -> buffer
end

(** Circular ringbuffers. *)
module Ringbuffer : sig
  (** A ringbuffer. *)
  type t

  (** Create a ringbuffer of given number of channels and size (in samples). *)
  val create : int -> int -> t

  val channels : t -> int

  val read_space : t -> int

  val write_space : t -> int

  val read_advance : t -> int -> unit

  val write_advance : t -> int -> unit

  val peek : t -> buffer -> int -> int -> unit

  val read : t -> buffer -> int -> int -> unit

  val write : t -> buffer -> int -> int -> unit

  val transmit : t -> (buffer -> int -> int -> int) -> int
end

module Ringbuffer_ext : sig
  type t

  val create : int -> int -> t

  val channels : t -> int

  val read_space : t -> int

  val write_space : t -> int

  val read_advance : t -> int -> unit

  val write_advance : t -> int -> unit

  val peek : t -> buffer -> int -> int -> unit

  val read : t -> buffer -> int -> int -> unit

  val write : t -> buffer -> int -> int -> unit

  val transmit : t -> (buffer -> int -> int -> int) -> int
end

module Analyze : sig
  val rms : buffer -> int -> int -> float array
end

(** Audio effects. *)
module Effect : sig
  (** A possibly stateful audio effect. *)
  class type t =
  object
    (** Apply the effect on a buffer. *)
    method process : buffer -> int -> int -> unit
  end

  class chain : t -> t -> t

  class of_mono : int -> (unit -> Mono.Effect.t) -> t

  class type delay_t =
  object
    inherit t
    method set_delay : float -> unit
    method set_feedback : float -> unit
  end

  (** [delay chans samplerate d once feedback] creates a delay operator for
      buffer with [chans] channels at [samplerate] samplerate with [d] as delay
      in seconds and [feedback] as feedback. If [once] is set to [true] only one
      echo will be heard (no feedback). *)
  val delay : int -> int -> float -> ?once:bool -> ?ping_pong:bool -> float -> delay_t

  (** Hardknee compressor with RMS look-ahead envelope calculation and
      adjustable attack/decay. Given parameters are [attack] and [release] in
      seconds, [ratio] n means n:1 compression, [threshold] and [knee] in dB,
      and [rms_window] in second is the duration for RMS acquisition. [gain] is
      an additional pre-gain. *)
  class compress : ?attack:float -> ?release:float -> ?threshold:float -> ?ratio:float -> ?knee:float -> ?rms_window:float -> ?gain:float -> int -> int ->
  object
    inherit t
    method set_attack : float -> unit
    method set_gain : float -> unit
    method set_knee : float -> unit
    method set_ratio : float -> unit
    method set_release : float -> unit
    method set_threshold : float -> unit
    method reset : unit
  end

  (** A biquadratic filter. [gain] in dB is only used by peaking, low and high shelves. *)
  class biquad_filter : int -> int -> [ `Band_pass | `High_pass | `Low_pass | `Notch | `All_pass | `Peaking | `Low_shelf | `High_shelf ] -> ?gain:float -> float -> float -> t

  val auto_gain_control : int -> int -> ?rms_target:float -> ?rms_window:float -> ?kup:float -> ?kdown:float -> ?rms_threshold:float -> ?volume_init:float -> ?volume_min:float -> ?volume_max:float -> unit -> t
end

(** Sound generators. *)
module Generator : sig
  val white_noise : buffer -> int -> int -> unit

  class type t =
  object
    method set_volume : float -> unit

    method set_frequency : float -> unit

    method fill : buffer -> int -> int -> unit

    method fill_add : buffer -> int -> int -> unit

    method release : unit

    method dead : bool
  end

  class of_mono : Mono.Generator.t -> t

  class chain : t -> Effect.t -> t
end

(** Operation for reading and writing audio data from files, streams or
    devices. *)
module IO : sig
  (** The file is not valid. *)
  exception Invalid_file

  (** The operation is not valid on the file/device. *)
  exception Invalid_operation

  (** Trying to read past the end of the stream. *)
  exception End_of_stream

  module Reader : sig
    class type t =
    object
    (** Number of channels. *)
      method channels : int

    (** Sample rate in samples per second. *)
      method sample_rate : int

    (** Duration in samples. *)
      method duration : int

    (** Duration in seconds. *)
      method duration_time : float

    (** Seek to a given sample. *)
      method seek : int -> unit

    (** Close the file. This method should only be called once. The members of
	the object should not be accessed anymore after this method has been
	called. *)
      method close : unit

      method read : buffer -> int -> int -> int
    end

  (** Create a reader object from a wav file. *)
    class of_wav_file : string -> t
  end

  module Writer : sig
    class type t =
    object
      method write : buffer -> int -> int -> unit

      method close : unit
    end

    (** Create a writer to a file in WAV format with given number of channels,
        sample rate and file name.*)
    class to_wav_file : int -> int -> string -> t
  end

  module RW : sig
    class type t =
    object
      method read : buffer -> int -> int -> unit

      method write : buffer -> int -> int -> unit

      method close : unit
    end

    class virtual bufferized : int -> min_duration:int -> fill_duration:int -> max_duration:int -> drop_duration:int ->
    object
      method virtual io_read : buffer -> int -> int -> unit

      method virtual io_write : buffer -> int -> int -> unit

      method read : buffer -> int -> int -> unit

      method write : buffer -> int -> int -> unit
    end
  end
end