/usr/include/mozjs-24/js/HashTable.h is in libmozjs-24-dev 24.2.0-3ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 | /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef js_HashTable_h
#define js_HashTable_h
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Casting.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/PodOperations.h"
#include "mozilla/TypeTraits.h"
#include "mozilla/Util.h"
#include "js/TemplateLib.h"
#include "js/Utility.h"
namespace js {
class TempAllocPolicy;
template <class> struct DefaultHasher;
template <class, class> class HashMapEntry;
namespace detail {
template <class T> class HashTableEntry;
template <class T, class HashPolicy, class AllocPolicy> class HashTable;
}
/*****************************************************************************/
// A JS-friendly, STL-like container providing a hash-based map from keys to
// values. In particular, HashMap calls constructors and destructors of all
// objects added so non-PODs may be used safely.
//
// Key/Value requirements:
// - movable, destructible, assignable
// HashPolicy requirements:
// - see Hash Policy section below
// AllocPolicy:
// - see jsalloc.h
//
// Note:
// - HashMap is not reentrant: Key/Value/HashPolicy/AllocPolicy members
// called by HashMap must not call back into the same HashMap object.
// - Due to the lack of exception handling, the user must call |init()|.
template <class Key,
class Value,
class HashPolicy = DefaultHasher<Key>,
class AllocPolicy = TempAllocPolicy>
class HashMap
{
typedef HashMapEntry<Key, Value> TableEntry;
struct MapHashPolicy : HashPolicy
{
typedef Key KeyType;
static const Key &getKey(TableEntry &e) { return e.key; }
static void setKey(TableEntry &e, Key &k) { const_cast<Key &>(e.key) = k; }
};
typedef detail::HashTable<TableEntry, MapHashPolicy, AllocPolicy> Impl;
Impl impl;
public:
typedef typename HashPolicy::Lookup Lookup;
typedef TableEntry Entry;
// HashMap construction is fallible (due to OOM); thus the user must call
// init after constructing a HashMap and check the return value.
HashMap(AllocPolicy a = AllocPolicy())
: impl(a)
{
MOZ_STATIC_ASSERT(tl::IsRelocatableHeapType<Key>::result,
"Key type must be relocatable");
MOZ_STATIC_ASSERT(tl::IsRelocatableHeapType<Value>::result,
"Value type must be relocatable");
}
bool init(uint32_t len = 16) { return impl.init(len); }
bool initialized() const { return impl.initialized(); }
// Return whether the given lookup value is present in the map. E.g.:
//
// typedef HashMap<int,char> HM;
// HM h;
// if (HM::Ptr p = h.lookup(3)) {
// const HM::Entry &e = *p; // p acts like a pointer to Entry
// assert(p->key == 3); // Entry contains the key
// char val = p->value; // and value
// }
//
// Also see the definition of Ptr in HashTable above (with T = Entry).
typedef typename Impl::Ptr Ptr;
Ptr lookup(const Lookup &l) const { return impl.lookup(l); }
// Like lookup, but does not assert if two threads call lookup at the same
// time. Only use this method when none of the threads will modify the map.
Ptr readonlyThreadsafeLookup(const Lookup &l) const { return impl.readonlyThreadsafeLookup(l); }
// Assuming |p.found()|, remove |*p|.
void remove(Ptr p) { impl.remove(p); }
// Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
// insertion of Key |k| (where |HashPolicy::match(k,l) == true|) using
// |add(p,k,v)|. After |add(p,k,v)|, |p| points to the new Entry. E.g.:
//
// typedef HashMap<int,char> HM;
// HM h;
// HM::AddPtr p = h.lookupForAdd(3);
// if (!p) {
// if (!h.add(p, 3, 'a'))
// return false;
// }
// const HM::Entry &e = *p; // p acts like a pointer to Entry
// assert(p->key == 3); // Entry contains the key
// char val = p->value; // and value
//
// Also see the definition of AddPtr in HashTable above (with T = Entry).
//
// N.B. The caller must ensure that no mutating hash table operations
// occur between a pair of |lookupForAdd| and |add| calls. To avoid
// looking up the key a second time, the caller may use the more efficient
// relookupOrAdd method. This method reuses part of the hashing computation
// to more efficiently insert the key if it has not been added. For
// example, a mutation-handling version of the previous example:
//
// HM::AddPtr p = h.lookupForAdd(3);
// if (!p) {
// call_that_may_mutate_h();
// if (!h.relookupOrAdd(p, 3, 'a'))
// return false;
// }
// const HM::Entry &e = *p;
// assert(p->key == 3);
// char val = p->value;
typedef typename Impl::AddPtr AddPtr;
AddPtr lookupForAdd(const Lookup &l) const {
return impl.lookupForAdd(l);
}
template<typename KeyInput, typename ValueInput>
bool add(AddPtr &p, const KeyInput &k, const ValueInput &v) {
Entry e(k, v);
return impl.add(p, Move(e));
}
bool add(AddPtr &p, const Key &k) {
Entry e(k, Value());
return impl.add(p, Move(e));
}
template<typename KeyInput, typename ValueInput>
bool relookupOrAdd(AddPtr &p, const KeyInput &k, const ValueInput &v) {
Entry e(k, v);
return impl.relookupOrAdd(p, k, Move(e));
}
// |all()| returns a Range containing |count()| elements. E.g.:
//
// typedef HashMap<int,char> HM;
// HM h;
// for (HM::Range r = h.all(); !r.empty(); r.popFront())
// char c = r.front().value;
//
// Also see the definition of Range in HashTable above (with T = Entry).
typedef typename Impl::Range Range;
Range all() const { return impl.all(); }
// Typedef for the enumeration class. An Enum may be used to examine and
// remove table entries:
//
// typedef HashMap<int,char> HM;
// HM s;
// for (HM::Enum e(s); !e.empty(); e.popFront())
// if (e.front().value == 'l')
// e.removeFront();
//
// Table resize may occur in Enum's destructor. Also see the definition of
// Enum in HashTable above (with T = Entry).
typedef typename Impl::Enum Enum;
// Remove all entries. This does not shrink the table. For that consider
// using the finish() method.
void clear() { impl.clear(); }
// Remove all entries without triggering destructors. This method is unsafe.
void clearWithoutCallingDestructors() { impl.clearWithoutCallingDestructors(); }
// Remove all the entries and release all internal buffers. The map must
// be initialized again before any use.
void finish() { impl.finish(); }
// Does the table contain any entries?
bool empty() const { return impl.empty(); }
// Number of live elements in the map.
uint32_t count() const { return impl.count(); }
// Total number of allocation in the dynamic table. Note: resize will
// happen well before count() == capacity().
size_t capacity() const { return impl.capacity(); }
// Don't just call |impl.sizeOfExcludingThis()| because there's no
// guarantee that |impl| is the first field in HashMap.
size_t sizeOfExcludingThis(JSMallocSizeOfFun mallocSizeOf) const {
return impl.sizeOfExcludingThis(mallocSizeOf);
}
size_t sizeOfIncludingThis(JSMallocSizeOfFun mallocSizeOf) const {
return mallocSizeOf(this) + impl.sizeOfExcludingThis(mallocSizeOf);
}
// If |generation()| is the same before and after a HashMap operation,
// pointers into the table remain valid.
unsigned generation() const { return impl.generation(); }
/************************************************** Shorthand operations */
bool has(const Lookup &l) const {
return impl.lookup(l) != NULL;
}
// Overwrite existing value with v. Return false on oom.
template<typename KeyInput, typename ValueInput>
bool put(const KeyInput &k, const ValueInput &v) {
AddPtr p = lookupForAdd(k);
if (p) {
p->value = v;
return true;
}
return add(p, k, v);
}
// Like put, but assert that the given key is not already present.
template<typename KeyInput, typename ValueInput>
bool putNew(const KeyInput &k, const ValueInput &v) {
Entry e(k, v);
return impl.putNew(k, Move(e));
}
// Add (k,defaultValue) if |k| is not found. Return a false-y Ptr on oom.
Ptr lookupWithDefault(const Key &k, const Value &defaultValue) {
AddPtr p = lookupForAdd(k);
if (p)
return p;
(void)add(p, k, defaultValue); // p is left false-y on oom.
return p;
}
// Remove if present.
void remove(const Lookup &l) {
if (Ptr p = lookup(l))
remove(p);
}
// HashMap is movable
HashMap(MoveRef<HashMap> rhs) : impl(Move(rhs->impl)) {}
void operator=(MoveRef<HashMap> rhs) { impl = Move(rhs->impl); }
private:
// HashMap is not copyable or assignable
HashMap(const HashMap &hm) MOZ_DELETE;
HashMap &operator=(const HashMap &hm) MOZ_DELETE;
friend class Impl::Enum;
};
/*****************************************************************************/
// A JS-friendly, STL-like container providing a hash-based set of values. In
// particular, HashSet calls constructors and destructors of all objects added
// so non-PODs may be used safely.
//
// T requirements:
// - movable, destructible, assignable
// HashPolicy requirements:
// - see Hash Policy section below
// AllocPolicy:
// - see jsalloc.h
//
// Note:
// - HashSet is not reentrant: T/HashPolicy/AllocPolicy members called by
// HashSet must not call back into the same HashSet object.
// - Due to the lack of exception handling, the user must call |init()|.
template <class T,
class HashPolicy = DefaultHasher<T>,
class AllocPolicy = TempAllocPolicy>
class HashSet
{
struct SetOps : HashPolicy
{
typedef T KeyType;
static const KeyType &getKey(const T &t) { return t; }
static void setKey(T &t, KeyType &k) { t = k; }
};
typedef detail::HashTable<const T, SetOps, AllocPolicy> Impl;
Impl impl;
public:
typedef typename HashPolicy::Lookup Lookup;
typedef T Entry;
// HashSet construction is fallible (due to OOM); thus the user must call
// init after constructing a HashSet and check the return value.
HashSet(AllocPolicy a = AllocPolicy()) : impl(a)
{
MOZ_STATIC_ASSERT(tl::IsRelocatableHeapType<T>::result,
"Set element type must be relocatable");
}
bool init(uint32_t len = 16) { return impl.init(len); }
bool initialized() const { return impl.initialized(); }
// Return whether the given lookup value is present in the map. E.g.:
//
// typedef HashSet<int> HS;
// HS h;
// if (HS::Ptr p = h.lookup(3)) {
// assert(*p == 3); // p acts like a pointer to int
// }
//
// Also see the definition of Ptr in HashTable above.
typedef typename Impl::Ptr Ptr;
Ptr lookup(const Lookup &l) const { return impl.lookup(l); }
// Assuming |p.found()|, remove |*p|.
void remove(Ptr p) { impl.remove(p); }
// Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
// insertion of T value |t| (where |HashPolicy::match(t,l) == true|) using
// |add(p,t)|. After |add(p,t)|, |p| points to the new element. E.g.:
//
// typedef HashSet<int> HS;
// HS h;
// HS::AddPtr p = h.lookupForAdd(3);
// if (!p) {
// if (!h.add(p, 3))
// return false;
// }
// assert(*p == 3); // p acts like a pointer to int
//
// Also see the definition of AddPtr in HashTable above.
//
// N.B. The caller must ensure that no mutating hash table operations
// occur between a pair of |lookupForAdd| and |add| calls. To avoid
// looking up the key a second time, the caller may use the more efficient
// relookupOrAdd method. This method reuses part of the hashing computation
// to more efficiently insert the key if it has not been added. For
// example, a mutation-handling version of the previous example:
//
// HS::AddPtr p = h.lookupForAdd(3);
// if (!p) {
// call_that_may_mutate_h();
// if (!h.relookupOrAdd(p, 3, 3))
// return false;
// }
// assert(*p == 3);
//
// Note that relookupOrAdd(p,l,t) performs Lookup using |l| and adds the
// entry |t|, where the caller ensures match(l,t).
typedef typename Impl::AddPtr AddPtr;
AddPtr lookupForAdd(const Lookup &l) const { return impl.lookupForAdd(l); }
bool add(AddPtr &p, const T &t) { return impl.add(p, t); }
bool relookupOrAdd(AddPtr &p, const Lookup &l, const T &t) {
return impl.relookupOrAdd(p, l, t);
}
// |all()| returns a Range containing |count()| elements:
//
// typedef HashSet<int> HS;
// HS h;
// for (HS::Range r = h.all(); !r.empty(); r.popFront())
// int i = r.front();
//
// Also see the definition of Range in HashTable above.
typedef typename Impl::Range Range;
Range all() const { return impl.all(); }
// Typedef for the enumeration class. An Enum may be used to examine and
// remove table entries:
//
// typedef HashSet<int> HS;
// HS s;
// for (HS::Enum e(s); !e.empty(); e.popFront())
// if (e.front() == 42)
// e.removeFront();
//
// Table resize may occur in Enum's destructor. Also see the definition of
// Enum in HashTable above.
typedef typename Impl::Enum Enum;
// Remove all entries. This does not shrink the table. For that consider
// using the finish() method.
void clear() { impl.clear(); }
// Remove all the entries and release all internal buffers. The set must
// be initialized again before any use.
void finish() { impl.finish(); }
// Does the table contain any entries?
bool empty() const { return impl.empty(); }
// Number of live elements in the map.
uint32_t count() const { return impl.count(); }
// Total number of allocation in the dynamic table. Note: resize will
// happen well before count() == capacity().
size_t capacity() const { return impl.capacity(); }
// Don't just call |impl.sizeOfExcludingThis()| because there's no
// guarantee that |impl| is the first field in HashSet.
size_t sizeOfExcludingThis(JSMallocSizeOfFun mallocSizeOf) const {
return impl.sizeOfExcludingThis(mallocSizeOf);
}
size_t sizeOfIncludingThis(JSMallocSizeOfFun mallocSizeOf) const {
return mallocSizeOf(this) + impl.sizeOfExcludingThis(mallocSizeOf);
}
// If |generation()| is the same before and after a HashSet operation,
// pointers into the table remain valid.
unsigned generation() const { return impl.generation(); }
/************************************************** Shorthand operations */
bool has(const Lookup &l) const {
return impl.lookup(l) != NULL;
}
// Overwrite existing value with v. Return false on oom.
bool put(const T &t) {
AddPtr p = lookupForAdd(t);
return p ? true : add(p, t);
}
// Like put, but assert that the given key is not already present.
bool putNew(const T &t) {
return impl.putNew(t, t);
}
bool putNew(const Lookup &l, const T &t) {
return impl.putNew(l, t);
}
void remove(const Lookup &l) {
if (Ptr p = lookup(l))
remove(p);
}
// HashSet is movable
HashSet(MoveRef<HashSet> rhs) : impl(Move(rhs->impl)) {}
void operator=(MoveRef<HashSet> rhs) { impl = Move(rhs->impl); }
private:
// HashSet is not copyable or assignable
HashSet(const HashSet &hs) MOZ_DELETE;
HashSet &operator=(const HashSet &hs) MOZ_DELETE;
friend class Impl::Enum;
};
/*****************************************************************************/
// Hash Policy
//
// A hash policy P for a hash table with key-type Key must provide:
// - a type |P::Lookup| to use to lookup table entries;
// - a static member function |P::hash| with signature
//
// static js::HashNumber hash(Lookup)
//
// to use to hash the lookup type; and
// - a static member function |P::match| with signature
//
// static bool match(Key, Lookup)
//
// to use to test equality of key and lookup values.
//
// Normally, Lookup = Key. In general, though, different values and types of
// values can be used to lookup and store. If a Lookup value |l| is != to the
// added Key value |k|, the user must ensure that |P::match(k,l)|. E.g.:
//
// js::HashSet<Key, P>::AddPtr p = h.lookup(l);
// if (!p) {
// assert(P::match(k, l)); // must hold
// h.add(p, k);
// }
// Pointer hashing policy that strips the lowest zeroBits when calculating the
// hash to improve key distribution.
template <typename Key, size_t zeroBits>
struct PointerHasher
{
typedef Key Lookup;
static HashNumber hash(const Lookup &l) {
JS_ASSERT(!JS::IsPoisonedPtr(l));
size_t word = reinterpret_cast<size_t>(l) >> zeroBits;
JS_STATIC_ASSERT(sizeof(HashNumber) == 4);
#if JS_BYTES_PER_WORD == 4
return HashNumber(word);
#else
JS_STATIC_ASSERT(sizeof word == 8);
return HashNumber((word >> 32) ^ word);
#endif
}
static bool match(const Key &k, const Lookup &l) {
JS_ASSERT(!JS::IsPoisonedPtr(k));
JS_ASSERT(!JS::IsPoisonedPtr(l));
return k == l;
}
};
// Default hash policy: just use the 'lookup' value. This of course only
// works if the lookup value is integral. HashTable applies ScrambleHashCode to
// the result of the 'hash' which means that it is 'ok' if the lookup value is
// not well distributed over the HashNumber domain.
template <class Key>
struct DefaultHasher
{
typedef Key Lookup;
static HashNumber hash(const Lookup &l) {
// Hash if can implicitly cast to hash number type.
return l;
}
static bool match(const Key &k, const Lookup &l) {
// Use builtin or overloaded operator==.
return k == l;
}
};
// Specialize hashing policy for pointer types. It assumes that the type is
// at least word-aligned. For types with smaller size use PointerHasher.
template <class T>
struct DefaultHasher<T *> : PointerHasher<T *, tl::FloorLog2<sizeof(void *)>::result>
{};
// For doubles, we can xor the two uint32s.
template <>
struct DefaultHasher<double>
{
typedef double Lookup;
static HashNumber hash(double d) {
JS_STATIC_ASSERT(sizeof(HashNumber) == 4);
uint64_t u = mozilla::BitwiseCast<uint64_t>(d);
return HashNumber(u ^ (u >> 32));
}
static bool match(double lhs, double rhs) {
return mozilla::BitwiseCast<uint64_t>(lhs) == mozilla::BitwiseCast<uint64_t>(rhs);
}
};
/*****************************************************************************/
// Both HashMap and HashSet are implemented by a single HashTable that is even
// more heavily parameterized than the other two. This leaves HashTable gnarly
// and extremely coupled to HashMap and HashSet; thus code should not use
// HashTable directly.
template <class Key, class Value>
class HashMapEntry
{
template <class, class, class> friend class detail::HashTable;
template <class> friend class detail::HashTableEntry;
HashMapEntry(const HashMapEntry &) MOZ_DELETE;
void operator=(const HashMapEntry &) MOZ_DELETE;
public:
template<typename KeyInput, typename ValueInput>
HashMapEntry(const KeyInput &k, const ValueInput &v) : key(k), value(v) {}
HashMapEntry(MoveRef<HashMapEntry> rhs)
: key(Move(rhs->key)), value(Move(rhs->value)) { }
typedef Key KeyType;
typedef Value ValueType;
const Key key;
Value value;
};
} // namespace js
namespace mozilla {
template <typename T>
struct IsPod<js::detail::HashTableEntry<T> > : IsPod<T> {};
template <typename K, typename V>
struct IsPod<js::HashMapEntry<K, V> >
: IntegralConstant<bool, IsPod<K>::value && IsPod<V>::value>
{};
} // namespace mozilla
namespace js {
namespace detail {
template <class T, class HashPolicy, class AllocPolicy>
class HashTable;
template <class T>
class HashTableEntry
{
template <class, class, class> friend class HashTable;
typedef typename mozilla::RemoveConst<T>::Type NonConstT;
HashNumber keyHash;
mozilla::AlignedStorage2<NonConstT> mem;
static const HashNumber sFreeKey = 0;
static const HashNumber sRemovedKey = 1;
static const HashNumber sCollisionBit = 1;
// Assumed by calloc in createTable.
JS_STATIC_ASSERT(sFreeKey == 0);
static bool isLiveHash(HashNumber hash)
{
return hash > sRemovedKey;
}
HashTableEntry(const HashTableEntry &) MOZ_DELETE;
void operator=(const HashTableEntry &) MOZ_DELETE;
~HashTableEntry() MOZ_DELETE;
public:
// NB: HashTableEntry is treated as a POD: no constructor or destructor calls.
void destroyIfLive() {
if (isLive())
mem.addr()->~T();
}
void destroy() {
JS_ASSERT(isLive());
mem.addr()->~T();
}
void swap(HashTableEntry *other) {
Swap(keyHash, other->keyHash);
Swap(mem, other->mem);
}
T &get() { JS_ASSERT(isLive()); return *mem.addr(); }
bool isFree() const { return keyHash == sFreeKey; }
void clearLive() { JS_ASSERT(isLive()); keyHash = sFreeKey; mem.addr()->~T(); }
void clear() { if (isLive()) mem.addr()->~T(); keyHash = sFreeKey; }
bool isRemoved() const { return keyHash == sRemovedKey; }
void removeLive() { JS_ASSERT(isLive()); keyHash = sRemovedKey; mem.addr()->~T(); }
bool isLive() const { return isLiveHash(keyHash); }
void setCollision() { JS_ASSERT(isLive()); keyHash |= sCollisionBit; }
void setCollision(HashNumber bit) { JS_ASSERT(isLive()); keyHash |= bit; }
void unsetCollision() { keyHash &= ~sCollisionBit; }
bool hasCollision() const { return keyHash & sCollisionBit; }
bool matchHash(HashNumber hn) { return (keyHash & ~sCollisionBit) == hn; }
HashNumber getKeyHash() const { return keyHash & ~sCollisionBit; }
template <class U>
void setLive(HashNumber hn, const U &u)
{
JS_ASSERT(!isLive());
keyHash = hn;
new(mem.addr()) T(u);
JS_ASSERT(isLive());
}
};
template <class T, class HashPolicy, class AllocPolicy>
class HashTable : private AllocPolicy
{
typedef typename mozilla::RemoveConst<T>::Type NonConstT;
typedef typename HashPolicy::KeyType Key;
typedef typename HashPolicy::Lookup Lookup;
public:
typedef HashTableEntry<T> Entry;
// A nullable pointer to a hash table element. A Ptr |p| can be tested
// either explicitly |if (p.found()) p->...| or using boolean conversion
// |if (p) p->...|. Ptr objects must not be used after any mutating hash
// table operations unless |generation()| is tested.
class Ptr
{
friend class HashTable;
typedef void (Ptr::* ConvertibleToBool)();
void nonNull() {}
Entry *entry_;
protected:
Ptr(Entry &entry) : entry_(&entry) {}
public:
// Leaves Ptr uninitialized.
Ptr() {
#ifdef JS_DEBUG
entry_ = (Entry *)0xbad;
#endif
}
bool found() const { return entry_->isLive(); }
operator ConvertibleToBool() const { return found() ? &Ptr::nonNull : 0; }
bool operator==(const Ptr &rhs) const { JS_ASSERT(found() && rhs.found()); return entry_ == rhs.entry_; }
bool operator!=(const Ptr &rhs) const { return !(*this == rhs); }
T &operator*() const { return entry_->get(); }
T *operator->() const { return &entry_->get(); }
};
// A Ptr that can be used to add a key after a failed lookup.
class AddPtr : public Ptr
{
friend class HashTable;
HashNumber keyHash;
mozilla::DebugOnly<uint64_t> mutationCount;
AddPtr(Entry &entry, HashNumber hn) : Ptr(entry), keyHash(hn) {}
public:
// Leaves AddPtr uninitialized.
AddPtr() {}
};
// A collection of hash table entries. The collection is enumerated by
// calling |front()| followed by |popFront()| as long as |!empty()|. As
// with Ptr/AddPtr, Range objects must not be used after any mutating hash
// table operation unless the |generation()| is tested.
class Range
{
protected:
friend class HashTable;
Range(Entry *c, Entry *e) : cur(c), end(e), validEntry(true) {
while (cur < end && !cur->isLive())
++cur;
}
Entry *cur, *end;
mozilla::DebugOnly<bool> validEntry;
public:
Range() : cur(NULL), end(NULL), validEntry(false) {}
bool empty() const {
return cur == end;
}
T &front() const {
JS_ASSERT(validEntry);
JS_ASSERT(!empty());
return cur->get();
}
void popFront() {
JS_ASSERT(!empty());
while (++cur < end && !cur->isLive())
continue;
validEntry = true;
}
};
// A Range whose lifetime delimits a mutating enumeration of a hash table.
// Since rehashing when elements were removed during enumeration would be
// bad, it is postponed until the Enum is destructed. Since the Enum's
// destructor touches the hash table, the user must ensure that the hash
// table is still alive when the destructor runs.
class Enum : public Range
{
friend class HashTable;
HashTable &table;
bool rekeyed;
bool removed;
/* Not copyable. */
Enum(const Enum &);
void operator=(const Enum &);
public:
template<class Map> explicit
Enum(Map &map) : Range(map.all()), table(map.impl), rekeyed(false), removed(false) {}
// Removes the |front()| element from the table, leaving |front()|
// invalid until the next call to |popFront()|. For example:
//
// HashSet<int> s;
// for (HashSet<int>::Enum e(s); !e.empty(); e.popFront())
// if (e.front() == 42)
// e.removeFront();
void removeFront() {
table.remove(*this->cur);
removed = true;
this->validEntry = false;
}
// Removes the |front()| element and re-inserts it into the table with
// a new key at the new Lookup position. |front()| is invalid after
// this operation until the next call to |popFront()|.
void rekeyFront(const Lookup &l, const Key &k) {
typename HashTableEntry<T>::NonConstT t(Move(this->cur->get()));
HashPolicy::setKey(t, const_cast<Key &>(k));
table.remove(*this->cur);
table.putNewInfallible(l, Move(t));
rekeyed = true;
this->validEntry = false;
}
void rekeyFront(const Key &k) {
rekeyFront(k, k);
}
// Potentially rehashes the table.
~Enum() {
if (rekeyed) {
table.gen++;
table.checkOverRemoved();
}
if (removed)
table.compactIfUnderloaded();
}
};
// HashTable is movable
HashTable(MoveRef<HashTable> rhs)
: AllocPolicy(*rhs)
{
mozilla::PodAssign(this, &*rhs);
rhs->table = NULL;
}
void operator=(MoveRef<HashTable> rhs) {
if (table)
destroyTable(*this, table, capacity());
mozilla::PodAssign(this, &*rhs);
rhs->table = NULL;
}
private:
// HashTable is not copyable or assignable
HashTable(const HashTable &) MOZ_DELETE;
void operator=(const HashTable &) MOZ_DELETE;
private:
uint32_t hashShift; // multiplicative hash shift
uint32_t entryCount; // number of entries in table
uint32_t gen; // entry storage generation number
uint32_t removedCount; // removed entry sentinels in table
Entry *table; // entry storage
void setTableSizeLog2(unsigned sizeLog2)
{
hashShift = sHashBits - sizeLog2;
}
#ifdef JS_DEBUG
mutable struct Stats
{
uint32_t searches; // total number of table searches
uint32_t steps; // hash chain links traversed
uint32_t hits; // searches that found key
uint32_t misses; // searches that didn't find key
uint32_t addOverRemoved; // adds that recycled a removed entry
uint32_t removes; // calls to remove
uint32_t removeFrees; // calls to remove that freed the entry
uint32_t grows; // table expansions
uint32_t shrinks; // table contractions
uint32_t compresses; // table compressions
uint32_t rehashes; // tombstone decontaminations
} stats;
# define METER(x) x
#else
# define METER(x)
#endif
friend class js::ReentrancyGuard;
mutable mozilla::DebugOnly<bool> entered;
mozilla::DebugOnly<uint64_t> mutationCount;
// The default initial capacity is 32 (enough to hold 16 elements), but it
// can be as low as 4.
static const unsigned sMinCapacityLog2 = 2;
static const unsigned sMinCapacity = 1 << sMinCapacityLog2;
static const unsigned sMaxInit = JS_BIT(23);
static const unsigned sMaxCapacity = JS_BIT(24);
static const unsigned sHashBits = tl::BitSize<HashNumber>::result;
static const uint8_t sMinAlphaFrac = 64; // (0x100 * .25)
static const uint8_t sMaxAlphaFrac = 192; // (0x100 * .75)
static const uint8_t sInvMaxAlpha = 171; // (ceil(0x100 / .75) >> 1)
static const HashNumber sFreeKey = Entry::sFreeKey;
static const HashNumber sRemovedKey = Entry::sRemovedKey;
static const HashNumber sCollisionBit = Entry::sCollisionBit;
static void staticAsserts()
{
// Rely on compiler "constant overflow warnings".
JS_STATIC_ASSERT(((sMaxInit * sInvMaxAlpha) >> 7) < sMaxCapacity);
JS_STATIC_ASSERT((sMaxCapacity * sInvMaxAlpha) <= UINT32_MAX);
JS_STATIC_ASSERT((sMaxCapacity * sizeof(Entry)) <= UINT32_MAX);
}
static bool isLiveHash(HashNumber hash)
{
return Entry::isLiveHash(hash);
}
static HashNumber prepareHash(const Lookup& l)
{
HashNumber keyHash = ScrambleHashCode(HashPolicy::hash(l));
// Avoid reserved hash codes.
if (!isLiveHash(keyHash))
keyHash -= (sRemovedKey + 1);
return keyHash & ~sCollisionBit;
}
static Entry *createTable(AllocPolicy &alloc, uint32_t capacity)
{
// See JS_STATIC_ASSERT(sFreeKey == 0) in HashTableEntry.
return (Entry *)alloc.calloc_(capacity * sizeof(Entry));
}
static void destroyTable(AllocPolicy &alloc, Entry *oldTable, uint32_t capacity)
{
for (Entry *e = oldTable, *end = e + capacity; e < end; ++e)
e->destroyIfLive();
alloc.free_(oldTable);
}
public:
HashTable(AllocPolicy ap)
: AllocPolicy(ap),
hashShift(sHashBits),
entryCount(0),
gen(0),
removedCount(0),
table(NULL),
entered(false),
mutationCount(0)
{}
MOZ_WARN_UNUSED_RESULT bool init(uint32_t length)
{
JS_ASSERT(!initialized());
// Correct for sMaxAlphaFrac such that the table will not resize
// when adding 'length' entries.
if (length > sMaxInit) {
this->reportAllocOverflow();
return false;
}
uint32_t newCapacity = (length * sInvMaxAlpha) >> 7;
if (newCapacity < sMinCapacity)
newCapacity = sMinCapacity;
// FIXME: use JS_CEILING_LOG2 when PGO stops crashing (bug 543034).
uint32_t roundUp = sMinCapacity, roundUpLog2 = sMinCapacityLog2;
while (roundUp < newCapacity) {
roundUp <<= 1;
++roundUpLog2;
}
newCapacity = roundUp;
JS_ASSERT(newCapacity <= sMaxCapacity);
table = createTable(*this, newCapacity);
if (!table)
return false;
setTableSizeLog2(roundUpLog2);
METER(memset(&stats, 0, sizeof(stats)));
return true;
}
bool initialized() const
{
return !!table;
}
~HashTable()
{
if (table)
destroyTable(*this, table, capacity());
}
private:
HashNumber hash1(HashNumber hash0) const
{
return hash0 >> hashShift;
}
struct DoubleHash
{
HashNumber h2;
HashNumber sizeMask;
};
DoubleHash hash2(HashNumber curKeyHash) const
{
unsigned sizeLog2 = sHashBits - hashShift;
DoubleHash dh = {
((curKeyHash << sizeLog2) >> hashShift) | 1,
(HashNumber(1) << sizeLog2) - 1
};
return dh;
}
static HashNumber applyDoubleHash(HashNumber h1, const DoubleHash &dh)
{
return (h1 - dh.h2) & dh.sizeMask;
}
bool overloaded()
{
return entryCount + removedCount >= ((sMaxAlphaFrac * capacity()) >> 8);
}
// Would the table be underloaded if it had the given capacity and entryCount?
static bool wouldBeUnderloaded(uint32_t capacity, uint32_t entryCount)
{
return capacity > sMinCapacity && entryCount <= ((sMinAlphaFrac * capacity) >> 8);
}
bool underloaded()
{
return wouldBeUnderloaded(capacity(), entryCount);
}
static bool match(Entry &e, const Lookup &l)
{
return HashPolicy::match(HashPolicy::getKey(e.get()), l);
}
Entry &lookup(const Lookup &l, HashNumber keyHash, unsigned collisionBit) const
{
JS_ASSERT(isLiveHash(keyHash));
JS_ASSERT(!(keyHash & sCollisionBit));
JS_ASSERT(collisionBit == 0 || collisionBit == sCollisionBit);
JS_ASSERT(table);
METER(stats.searches++);
// Compute the primary hash address.
HashNumber h1 = hash1(keyHash);
Entry *entry = &table[h1];
// Miss: return space for a new entry.
if (entry->isFree()) {
METER(stats.misses++);
return *entry;
}
// Hit: return entry.
if (entry->matchHash(keyHash) && match(*entry, l)) {
METER(stats.hits++);
return *entry;
}
// Collision: double hash.
DoubleHash dh = hash2(keyHash);
// Save the first removed entry pointer so we can recycle later.
Entry *firstRemoved = NULL;
while(true) {
if (JS_UNLIKELY(entry->isRemoved())) {
if (!firstRemoved)
firstRemoved = entry;
} else {
entry->setCollision(collisionBit);
}
METER(stats.steps++);
h1 = applyDoubleHash(h1, dh);
entry = &table[h1];
if (entry->isFree()) {
METER(stats.misses++);
return firstRemoved ? *firstRemoved : *entry;
}
if (entry->matchHash(keyHash) && match(*entry, l)) {
METER(stats.hits++);
return *entry;
}
}
}
// This is a copy of lookup hardcoded to the assumptions:
// 1. the lookup is a lookupForAdd
// 2. the key, whose |keyHash| has been passed is not in the table,
// 3. no entries have been removed from the table.
// This specialized search avoids the need for recovering lookup values
// from entries, which allows more flexible Lookup/Key types.
Entry &findFreeEntry(HashNumber keyHash)
{
JS_ASSERT(!(keyHash & sCollisionBit));
JS_ASSERT(table);
METER(stats.searches++);
// We assume 'keyHash' has already been distributed.
// Compute the primary hash address.
HashNumber h1 = hash1(keyHash);
Entry *entry = &table[h1];
// Miss: return space for a new entry.
if (!entry->isLive()) {
METER(stats.misses++);
return *entry;
}
// Collision: double hash.
DoubleHash dh = hash2(keyHash);
while(true) {
JS_ASSERT(!entry->isRemoved());
entry->setCollision();
METER(stats.steps++);
h1 = applyDoubleHash(h1, dh);
entry = &table[h1];
if (!entry->isLive()) {
METER(stats.misses++);
return *entry;
}
}
}
enum RebuildStatus { NotOverloaded, Rehashed, RehashFailed };
RebuildStatus changeTableSize(int deltaLog2)
{
// Look, but don't touch, until we succeed in getting new entry store.
Entry *oldTable = table;
uint32_t oldCap = capacity();
uint32_t newLog2 = sHashBits - hashShift + deltaLog2;
uint32_t newCapacity = JS_BIT(newLog2);
if (newCapacity > sMaxCapacity) {
this->reportAllocOverflow();
return RehashFailed;
}
Entry *newTable = createTable(*this, newCapacity);
if (!newTable)
return RehashFailed;
// We can't fail from here on, so update table parameters.
setTableSizeLog2(newLog2);
removedCount = 0;
gen++;
table = newTable;
// Copy only live entries, leaving removed ones behind.
for (Entry *src = oldTable, *end = src + oldCap; src < end; ++src) {
if (src->isLive()) {
HashNumber hn = src->getKeyHash();
findFreeEntry(hn).setLive(hn, Move(src->get()));
src->destroy();
}
}
// All entries have been destroyed, no need to destroyTable.
this->free_(oldTable);
return Rehashed;
}
RebuildStatus checkOverloaded()
{
if (!overloaded())
return NotOverloaded;
// Compress if a quarter or more of all entries are removed.
int deltaLog2;
if (removedCount >= (capacity() >> 2)) {
METER(stats.compresses++);
deltaLog2 = 0;
} else {
METER(stats.grows++);
deltaLog2 = 1;
}
return changeTableSize(deltaLog2);
}
// Infallibly rehash the table if we are overloaded with removals.
void checkOverRemoved()
{
if (overloaded()) {
if (checkOverloaded() == RehashFailed)
rehashTableInPlace();
}
}
void remove(Entry &e)
{
JS_ASSERT(table);
METER(stats.removes++);
if (e.hasCollision()) {
e.removeLive();
removedCount++;
} else {
METER(stats.removeFrees++);
e.clearLive();
}
entryCount--;
mutationCount++;
}
void checkUnderloaded()
{
if (underloaded()) {
METER(stats.shrinks++);
(void) changeTableSize(-1);
}
}
// Resize the table down to the largest capacity which doesn't underload the
// table. Since we call checkUnderloaded() on every remove, you only need
// to call this after a bulk removal of items done without calling remove().
void compactIfUnderloaded()
{
int32_t resizeLog2 = 0;
uint32_t newCapacity = capacity();
while (wouldBeUnderloaded(newCapacity, entryCount)) {
newCapacity = newCapacity >> 1;
resizeLog2--;
}
if (resizeLog2 != 0) {
changeTableSize(resizeLog2);
}
}
// This is identical to changeTableSize(currentSize), but without requiring
// a second table. We do this by recycling the collision bits to tell us if
// the element is already inserted or still waiting to be inserted. Since
// already-inserted elements win any conflicts, we get the same table as we
// would have gotten through random insertion order.
void rehashTableInPlace()
{
METER(stats.rehashes++);
removedCount = 0;
for (size_t i = 0; i < capacity(); ++i)
table[i].unsetCollision();
for (size_t i = 0; i < capacity();) {
Entry *src = &table[i];
if (!src->isLive() || src->hasCollision()) {
++i;
continue;
}
HashNumber keyHash = src->getKeyHash();
HashNumber h1 = hash1(keyHash);
DoubleHash dh = hash2(keyHash);
Entry *tgt = &table[h1];
while (true) {
if (!tgt->hasCollision()) {
src->swap(tgt);
tgt->setCollision();
break;
}
h1 = applyDoubleHash(h1, dh);
tgt = &table[h1];
}
}
// TODO: this algorithm leaves collision bits on *all* elements, even if
// they are on no collision path. We have the option of setting the
// collision bits correctly on a subsequent pass or skipping the rehash
// unless we are totally filled with tombstones: benchmark to find out
// which approach is best.
}
public:
void clear()
{
if (mozilla::IsPod<Entry>::value) {
memset(table, 0, sizeof(*table) * capacity());
} else {
uint32_t tableCapacity = capacity();
for (Entry *e = table, *end = table + tableCapacity; e < end; ++e)
e->clear();
}
removedCount = 0;
entryCount = 0;
mutationCount++;
}
void finish()
{
JS_ASSERT(!entered);
if (!table)
return;
destroyTable(*this, table, capacity());
table = NULL;
gen++;
entryCount = 0;
removedCount = 0;
mutationCount++;
}
Range all() const
{
JS_ASSERT(table);
return Range(table, table + capacity());
}
bool empty() const
{
JS_ASSERT(table);
return !entryCount;
}
uint32_t count() const
{
JS_ASSERT(table);
return entryCount;
}
uint32_t capacity() const
{
JS_ASSERT(table);
return JS_BIT(sHashBits - hashShift);
}
uint32_t generation() const
{
JS_ASSERT(table);
return gen;
}
size_t sizeOfExcludingThis(JSMallocSizeOfFun mallocSizeOf) const
{
return mallocSizeOf(table);
}
size_t sizeOfIncludingThis(JSMallocSizeOfFun mallocSizeOf) const
{
return mallocSizeOf(this) + sizeOfExcludingThis(mallocSizeOf);
}
Ptr lookup(const Lookup &l) const
{
ReentrancyGuard g(*this);
HashNumber keyHash = prepareHash(l);
return Ptr(lookup(l, keyHash, 0));
}
Ptr readonlyThreadsafeLookup(const Lookup &l) const
{
HashNumber keyHash = prepareHash(l);
return Ptr(lookup(l, keyHash, 0));
}
AddPtr lookupForAdd(const Lookup &l) const
{
ReentrancyGuard g(*this);
HashNumber keyHash = prepareHash(l);
Entry &entry = lookup(l, keyHash, sCollisionBit);
AddPtr p(entry, keyHash);
p.mutationCount = mutationCount;
return p;
}
template <class U>
bool add(AddPtr &p, const U &rhs)
{
ReentrancyGuard g(*this);
JS_ASSERT(mutationCount == p.mutationCount);
JS_ASSERT(table);
JS_ASSERT(!p.found());
JS_ASSERT(!(p.keyHash & sCollisionBit));
// Changing an entry from removed to live does not affect whether we
// are overloaded and can be handled separately.
if (p.entry_->isRemoved()) {
METER(stats.addOverRemoved++);
removedCount--;
p.keyHash |= sCollisionBit;
} else {
// Preserve the validity of |p.entry_|.
RebuildStatus status = checkOverloaded();
if (status == RehashFailed)
return false;
if (status == Rehashed)
p.entry_ = &findFreeEntry(p.keyHash);
}
p.entry_->setLive(p.keyHash, rhs);
entryCount++;
mutationCount++;
return true;
}
template <class U>
void putNewInfallible(const Lookup &l, const U &u)
{
JS_ASSERT(table);
HashNumber keyHash = prepareHash(l);
Entry *entry = &findFreeEntry(keyHash);
if (entry->isRemoved()) {
METER(stats.addOverRemoved++);
removedCount--;
keyHash |= sCollisionBit;
}
entry->setLive(keyHash, u);
entryCount++;
mutationCount++;
}
template <class U>
bool putNew(const Lookup &l, const U &u)
{
if (checkOverloaded() == RehashFailed)
return false;
putNewInfallible(l, u);
return true;
}
template <class U>
bool relookupOrAdd(AddPtr& p, const Lookup &l, const U &u)
{
p.mutationCount = mutationCount;
{
ReentrancyGuard g(*this);
p.entry_ = &lookup(l, p.keyHash, sCollisionBit);
}
return p.found() || add(p, u);
}
void remove(Ptr p)
{
JS_ASSERT(table);
ReentrancyGuard g(*this);
JS_ASSERT(p.found());
remove(*p.entry_);
checkUnderloaded();
}
#undef METER
};
} // namespace detail
} // namespace js
#endif /* js_HashTable_h */
|