/usr/include/mupdf/fitz/math.h is in libmupdf-dev 1.7a-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 | #ifndef MUPDF_FITZ_MATH_H
#define MUPDF_FITZ_MATH_H
#include "mupdf/fitz/system.h"
/* Multiply scaled two integers in the 0..255 range */
static inline int fz_mul255(int a, int b)
{
/* see Jim Blinn's book "Dirty Pixels" for how this works */
int x = a * b + 128;
x += x >> 8;
return x >> 8;
}
/* Expand a value A from the 0...255 range to the 0..256 range */
#define FZ_EXPAND(A) ((A)+((A)>>7))
/* Combine values A (in any range) and B (in the 0..256 range),
* to give a single value in the same range as A was. */
#define FZ_COMBINE(A,B) (((A)*(B))>>8)
/* Combine values A and C (in the same (any) range) and B and D (in the
* 0..256 range), to give a single value in the same range as A and C were. */
#define FZ_COMBINE2(A,B,C,D) (FZ_COMBINE((A), (B)) + FZ_COMBINE((C), (D)))
/* Blend SRC and DST (in the same range) together according to
* AMOUNT (in the 0...256 range). */
#define FZ_BLEND(SRC, DST, AMOUNT) ((((SRC)-(DST))*(AMOUNT) + ((DST)<<8))>>8)
/* Range checking atof */
float fz_atof(const char *s);
/* atoi that copes with NULL */
int fz_atoi(const char *s);
/*
Some standard math functions, done as static inlines for speed.
People with compilers that do not adequately implement inlines may
like to reimplement these using macros.
*/
static inline float fz_abs(float f)
{
return (f < 0 ? -f : f);
}
static inline int fz_absi(int i)
{
return (i < 0 ? -i : i);
}
static inline float fz_min(float a, float b)
{
return (a < b ? a : b);
}
static inline int fz_mini(int a, int b)
{
return (a < b ? a : b);
}
static inline float fz_max(float a, float b)
{
return (a > b ? a : b);
}
static inline int fz_maxi(int a, int b)
{
return (a > b ? a : b);
}
static inline float fz_clamp(float f, float min, float max)
{
return (f > min ? (f < max ? f : max) : min);
}
static inline int fz_clampi(int i, int min, int max)
{
return (i > min ? (i < max ? i : max) : min);
}
static inline double fz_clampd(double d, double min, double max)
{
return (d > min ? (d < max ? d : max) : min);
}
static inline void *fz_clampp(void *p, void *min, void *max)
{
return (p > min ? (p < max ? p : max) : min);
}
#define DIV_BY_ZERO(a, b, min, max) (((a) < 0) ^ ((b) < 0) ? (min) : (max))
/*
fz_point is a point in a two-dimensional space.
*/
typedef struct fz_point_s fz_point;
struct fz_point_s
{
float x, y;
};
/*
fz_rect is a rectangle represented by two diagonally opposite
corners at arbitrary coordinates.
Rectangles are always axis-aligned with the X- and Y- axes.
The relationship between the coordinates are that x0 <= x1 and
y0 <= y1 in all cases except for infinte rectangles. The area
of a rectangle is defined as (x1 - x0) * (y1 - y0). If either
x0 > x1 or y0 > y1 is true for a given rectangle then it is
defined to be infinite.
To check for empty or infinite rectangles use fz_is_empty_rect
and fz_is_infinite_rect.
x0, y0: The top left corner.
x1, y1: The botton right corner.
*/
typedef struct fz_rect_s fz_rect;
struct fz_rect_s
{
float x0, y0;
float x1, y1;
};
/*
fz_rect_min: get the minimum point from a rectangle as an fz_point.
*/
static inline fz_point *fz_rect_min(fz_rect *f)
{
return (fz_point *)&f->x0;
}
/*
fz_rect_max: get the maximum point from a rectangle as an fz_point.
*/
static inline fz_point *fz_rect_max(fz_rect *f)
{
return (fz_point *)&f->x1;
}
/*
fz_irect is a rectangle using integers instead of floats.
It's used in the draw device and for pixmap dimensions.
*/
typedef struct fz_irect_s fz_irect;
struct fz_irect_s
{
int x0, y0;
int x1, y1;
};
/*
A rectangle with sides of length one.
The bottom left corner is at (0, 0) and the top right corner
is at (1, 1).
*/
extern const fz_rect fz_unit_rect;
/*
An empty rectangle with an area equal to zero.
Both the top left and bottom right corner are at (0, 0).
*/
extern const fz_rect fz_empty_rect;
extern const fz_irect fz_empty_irect;
/*
An infinite rectangle with negative area.
The corner (x0, y0) is at (1, 1) while the corner (x1, y1) is
at (-1, -1).
*/
extern const fz_rect fz_infinite_rect;
extern const fz_irect fz_infinite_irect;
/*
fz_is_empty_rect: Check if rectangle is empty.
An empty rectangle is defined as one whose area is zero.
*/
static inline int
fz_is_empty_rect(const fz_rect *r)
{
return ((r)->x0 == (r)->x1 || (r)->y0 == (r)->y1);
}
static inline int
fz_is_empty_irect(const fz_irect *r)
{
return ((r)->x0 == (r)->x1 || (r)->y0 == (r)->y1);
}
/*
fz_is_infinite: Check if rectangle is infinite.
An infinite rectangle is defined as one where either of the
two relationships between corner coordinates are not true.
*/
static inline int
fz_is_infinite_rect(const fz_rect *r)
{
return ((r)->x0 > (r)->x1 || (r)->y0 > (r)->y1);
}
static inline int
fz_is_infinite_irect(const fz_irect *r)
{
return ((r)->x0 > (r)->x1 || (r)->y0 > (r)->y1);
}
/*
fz_matrix is a a row-major 3x3 matrix used for representing
transformations of coordinates throughout MuPDF.
Since all points reside in a two-dimensional space, one vector
is always a constant unit vector; hence only some elements may
vary in a matrix. Below is how the elements map between
different representations.
/ a b 0 \
| c d 0 | normally represented as [ a b c d e f ].
\ e f 1 /
*/
typedef struct fz_matrix_s fz_matrix;
struct fz_matrix_s
{
float a, b, c, d, e, f;
};
/*
fz_identity: Identity transform matrix.
*/
extern const fz_matrix fz_identity;
static inline fz_matrix *fz_copy_matrix(fz_matrix *restrict m, const fz_matrix *restrict s)
{
*m = *s;
return m;
}
/*
fz_concat: Multiply two matrices.
The order of the two matrices are important since matrix
multiplication is not commutative.
Returns result.
Does not throw exceptions.
*/
fz_matrix *fz_concat(fz_matrix *result, const fz_matrix *left, const fz_matrix *right);
/*
fz_scale: Create a scaling matrix.
The returned matrix is of the form [ sx 0 0 sy 0 0 ].
m: Pointer to the matrix to populate
sx, sy: Scaling factors along the X- and Y-axes. A scaling
factor of 1.0 will not cause any scaling along the relevant
axis.
Returns m.
Does not throw exceptions.
*/
fz_matrix *fz_scale(fz_matrix *m, float sx, float sy);
/*
fz_pre_scale: Scale a matrix by premultiplication.
m: Pointer to the matrix to scale
sx, sy: Scaling factors along the X- and Y-axes. A scaling
factor of 1.0 will not cause any scaling along the relevant
axis.
Returns m (updated).
Does not throw exceptions.
*/
fz_matrix *fz_pre_scale(fz_matrix *m, float sx, float sy);
/*
fz_shear: Create a shearing matrix.
The returned matrix is of the form [ 1 sy sx 1 0 0 ].
m: pointer to place to store returned matrix
sx, sy: Shearing factors. A shearing factor of 0.0 will not
cause any shearing along the relevant axis.
Returns m.
Does not throw exceptions.
*/
fz_matrix *fz_shear(fz_matrix *m, float sx, float sy);
/*
fz_pre_shear: Premultiply a matrix with a shearing matrix.
The shearing matrix is of the form [ 1 sy sx 1 0 0 ].
m: pointer to matrix to premultiply
sx, sy: Shearing factors. A shearing factor of 0.0 will not
cause any shearing along the relevant axis.
Returns m (updated).
Does not throw exceptions.
*/
fz_matrix *fz_pre_shear(fz_matrix *m, float sx, float sy);
/*
fz_rotate: Create a rotation matrix.
The returned matrix is of the form
[ cos(deg) sin(deg) -sin(deg) cos(deg) 0 0 ].
m: Pointer to place to store matrix
degrees: Degrees of counter clockwise rotation. Values less
than zero and greater than 360 are handled as expected.
Returns m.
Does not throw exceptions.
*/
fz_matrix *fz_rotate(fz_matrix *m, float degrees);
/*
fz_pre_rotate: Rotate a transformation by premultiplying.
The premultiplied matrix is of the form
[ cos(deg) sin(deg) -sin(deg) cos(deg) 0 0 ].
m: Pointer to matrix to premultiply.
degrees: Degrees of counter clockwise rotation. Values less
than zero and greater than 360 are handled as expected.
Returns m (updated).
Does not throw exceptions.
*/
fz_matrix *fz_pre_rotate(fz_matrix *m, float degrees);
/*
fz_translate: Create a translation matrix.
The returned matrix is of the form [ 1 0 0 1 tx ty ].
m: A place to store the created matrix.
tx, ty: Translation distances along the X- and Y-axes. A
translation of 0 will not cause any translation along the
relevant axis.
Returns m.
Does not throw exceptions.
*/
fz_matrix *fz_translate(fz_matrix *m, float tx, float ty);
/*
fz_pre_translate: Translate a matrix by premultiplication.
m: The matrix to translate
tx, ty: Translation distances along the X- and Y-axes. A
translation of 0 will not cause any translation along the
relevant axis.
Returns m.
Does not throw exceptions.
*/
fz_matrix *fz_pre_translate(fz_matrix *m, float tx, float ty);
/*
fz_invert_matrix: Create an inverse matrix.
inverse: Place to store inverse matrix.
matrix: Matrix to invert. A degenerate matrix, where the
determinant is equal to zero, can not be inverted and the
original matrix is returned instead.
Returns inverse.
Does not throw exceptions.
*/
fz_matrix *fz_invert_matrix(fz_matrix *inverse, const fz_matrix *matrix);
/*
fz_try_invert_matrix: Attempt to create an inverse matrix.
inverse: Place to store inverse matrix.
matrix: Matrix to invert. A degenerate matrix, where the
determinant is equal to zero, can not be inverted.
Returns 1 if matrix is degenerate (singular), or 0 otherwise.
Does not throw exceptions.
*/
int fz_try_invert_matrix(fz_matrix *inverse, const fz_matrix *matrix);
/*
fz_is_rectilinear: Check if a transformation is rectilinear.
Rectilinear means that no shearing is present and that any
rotations present are a multiple of 90 degrees. Usually this
is used to make sure that axis-aligned rectangles before the
transformation are still axis-aligned rectangles afterwards.
Does not throw exceptions.
*/
int fz_is_rectilinear(const fz_matrix *m);
/*
fz_matrix_expansion: Calculate average scaling factor of matrix.
*/
float fz_matrix_expansion(const fz_matrix *m); /* sumatrapdf */
/*
fz_intersect_rect: Compute intersection of two rectangles.
Given two rectangles, update the first to be the smallest
axis-aligned rectangle that covers the area covered by both
given rectangles. If either rectangle is empty then the
intersection is also empty. If either rectangle is infinite
then the intersection is simply the non-infinite rectangle.
Should both rectangles be infinite, then the intersection is
also infinite.
Does not throw exceptions.
*/
fz_rect *fz_intersect_rect(fz_rect *restrict a, const fz_rect *restrict b);
/*
fz_intersect_irect: Compute intersection of two bounding boxes.
Similar to fz_intersect_rect but operates on two bounding
boxes instead of two rectangles.
Does not throw exceptions.
*/
fz_irect *fz_intersect_irect(fz_irect *restrict a, const fz_irect *restrict b);
/*
fz_union_rect: Compute union of two rectangles.
Given two rectangles, update the first to be the smallest
axis-aligned rectangle that encompasses both given rectangles.
If either rectangle is infinite then the union is also infinite.
If either rectangle is empty then the union is simply the
non-empty rectangle. Should both rectangles be empty, then the
union is also empty.
Does not throw exceptions.
*/
fz_rect *fz_union_rect(fz_rect *restrict a, const fz_rect *restrict b);
/*
fz_irect_from_rect: Convert a rect into the minimal bounding box
that covers the rectangle.
bbox: Place to store the returned bbox.
rect: The rectangle to convert to a bbox.
Coordinates in a bounding box are integers, so rounding of the
rects coordinates takes place. The top left corner is rounded
upwards and left while the bottom right corner is rounded
downwards and to the right.
Returns bbox (updated).
Does not throw exceptions.
*/
fz_irect *fz_irect_from_rect(fz_irect *restrict bbox, const fz_rect *restrict rect);
/*
fz_round_rect: Round rectangle coordinates.
Coordinates in a bounding box are integers, so rounding of the
rects coordinates takes place. The top left corner is rounded
upwards and left while the bottom right corner is rounded
downwards and to the right.
This differs from fz_irect_from_rect, in that fz_irect_from_rect
slavishly follows the numbers (i.e any slight over/under calculations
can cause whole extra pixels to be added). fz_round_rect
allows for a small amount of rounding error when calculating
the bbox.
Does not throw exceptions.
*/
fz_irect *fz_round_rect(fz_irect *restrict bbox, const fz_rect *restrict rect);
/*
fz_rect_from_irect: Convert a bbox into a rect.
For our purposes, a rect can represent all the values we meet in
a bbox, so nothing can go wrong.
rect: A place to store the generated rectangle.
bbox: The bbox to convert.
Returns rect (updated).
Does not throw exceptions.
*/
fz_rect *fz_rect_from_irect(fz_rect *restrict rect, const fz_irect *restrict bbox);
/*
fz_expand_rect: Expand a bbox by a given amount in all directions.
Does not throw exceptions.
*/
fz_rect *fz_expand_rect(fz_rect *b, float expand);
/*
fz_include_point_in_rect: Expand a bbox to include a given point.
To create a rectangle that encompasses a sequence of points, the
rectangle must first be set to be the empty rectangle at one of
the points before including the others.
*/
fz_rect *fz_include_point_in_rect(fz_rect *r, const fz_point *p);
/*
fz_translate_irect: Translate bounding box.
Translate a bbox by a given x and y offset. Allows for overflow.
Does not throw exceptions.
*/
fz_irect *fz_translate_irect(fz_irect *a, int xoff, int yoff);
/*
fz_transform_point: Apply a transformation to a point.
transform: Transformation matrix to apply. See fz_concat,
fz_scale, fz_rotate and fz_translate for how to create a
matrix.
point: Pointer to point to update.
Returns transform (unchanged).
Does not throw exceptions.
*/
fz_point *fz_transform_point(fz_point *restrict point, const fz_matrix *restrict transform);
fz_point *fz_transform_point_xy(fz_point *restrict point, const fz_matrix *restrict transform, float x, float y);
/*
fz_transform_vector: Apply a transformation to a vector.
transform: Transformation matrix to apply. See fz_concat,
fz_scale and fz_rotate for how to create a matrix. Any
translation will be ignored.
vector: Pointer to vector to update.
Does not throw exceptions.
*/
fz_point *fz_transform_vector(fz_point *restrict vector, const fz_matrix *restrict transform);
/*
fz_transform_rect: Apply a transform to a rectangle.
After the four corner points of the axis-aligned rectangle
have been transformed it may not longer be axis-aligned. So a
new axis-aligned rectangle is created covering at least the
area of the transformed rectangle.
transform: Transformation matrix to apply. See fz_concat,
fz_scale and fz_rotate for how to create a matrix.
rect: Rectangle to be transformed. The two special cases
fz_empty_rect and fz_infinite_rect, may be used but are
returned unchanged as expected.
Does not throw exceptions.
*/
fz_rect *fz_transform_rect(fz_rect *restrict rect, const fz_matrix *restrict transform);
/*
fz_normalize_vector: Normalize a vector to length one.
*/
void fz_normalize_vector(fz_point *p);
void fz_gridfit_matrix(fz_matrix *m);
float fz_matrix_max_expansion(const fz_matrix *m);
#endif
|