/usr/include/nlopt.hpp is in libnlopt-dev 2.4.2+dfsg-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 | /* Copyright (c) 2007-2011 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
// C++ style wrapper around NLopt API
// nlopt.hpp is AUTOMATICALLY GENERATED from nlopt-in.hpp - edit the latter!
#ifndef NLOPT_HPP
#define NLOPT_HPP
#include <nlopt.h>
#include <vector>
#include <stdexcept>
#include <new>
#include <cstdlib>
#include <cstring>
#include <cmath>
// convenience overloading for below (not in nlopt:: since has nlopt_ prefix)
inline nlopt_result nlopt_get_initial_step(const nlopt_opt opt, double *dx) {
return nlopt_get_initial_step(opt, (const double *) NULL, dx);
}
namespace nlopt {
//////////////////////////////////////////////////////////////////////
// nlopt::* namespace versions of the C enumerated types
// AUTOMATICALLY GENERATED, DO NOT EDIT
// GEN_ENUMS_HERE
enum algorithm {
GN_DIRECT = 0,
GN_DIRECT_L,
GN_DIRECT_L_RAND,
GN_DIRECT_NOSCAL,
GN_DIRECT_L_NOSCAL,
GN_DIRECT_L_RAND_NOSCAL,
GN_ORIG_DIRECT,
GN_ORIG_DIRECT_L,
GD_STOGO,
GD_STOGO_RAND,
LD_LBFGS_NOCEDAL,
LD_LBFGS,
LN_PRAXIS,
LD_VAR1,
LD_VAR2,
LD_TNEWTON,
LD_TNEWTON_RESTART,
LD_TNEWTON_PRECOND,
LD_TNEWTON_PRECOND_RESTART,
GN_CRS2_LM,
GN_MLSL,
GD_MLSL,
GN_MLSL_LDS,
GD_MLSL_LDS,
LD_MMA,
LN_COBYLA,
LN_NEWUOA,
LN_NEWUOA_BOUND,
LN_NELDERMEAD,
LN_SBPLX,
LN_AUGLAG,
LD_AUGLAG,
LN_AUGLAG_EQ,
LD_AUGLAG_EQ,
LN_BOBYQA,
GN_ISRES,
AUGLAG,
AUGLAG_EQ,
G_MLSL,
G_MLSL_LDS,
LD_SLSQP,
LD_CCSAQ,
GN_ESCH,
NUM_ALGORITHMS /* not an algorithm, just the number of them */
};
enum result {
FAILURE = -1, /* generic failure code */
INVALID_ARGS = -2,
OUT_OF_MEMORY = -3,
ROUNDOFF_LIMITED = -4,
FORCED_STOP = -5,
SUCCESS = 1, /* generic success code */
STOPVAL_REACHED = 2,
FTOL_REACHED = 3,
XTOL_REACHED = 4,
MAXEVAL_REACHED = 5,
MAXTIME_REACHED = 6
};
// GEN_ENUMS_HERE
//////////////////////////////////////////////////////////////////////
typedef nlopt_func func; // nlopt::func synoynm
typedef nlopt_mfunc mfunc; // nlopt::mfunc synoynm
// alternative to nlopt_func that takes std::vector<double>
// ... unfortunately requires a data copy
typedef double (*vfunc)(const std::vector<double> &x,
std::vector<double> &grad, void *data);
//////////////////////////////////////////////////////////////////////
// NLopt-specific exceptions (corresponding to error codes):
class roundoff_limited : public std::runtime_error {
public:
roundoff_limited() : std::runtime_error("nlopt roundoff-limited") {}
};
class forced_stop : public std::runtime_error {
public:
forced_stop() : std::runtime_error("nlopt forced stop") {}
};
//////////////////////////////////////////////////////////////////////
class opt {
private:
nlopt_opt o;
void mythrow(nlopt_result ret) const {
switch (ret) {
case NLOPT_FAILURE: throw std::runtime_error("nlopt failure");
case NLOPT_OUT_OF_MEMORY: throw std::bad_alloc();
case NLOPT_INVALID_ARGS: throw std::invalid_argument("nlopt invalid argument");
case NLOPT_ROUNDOFF_LIMITED: throw roundoff_limited();
case NLOPT_FORCED_STOP: throw forced_stop();
default: break;
}
}
typedef struct {
opt *o;
mfunc mf; func f; void *f_data;
vfunc vf;
nlopt_munge munge_destroy, munge_copy; // non-NULL for SWIG wrappers
} myfunc_data;
// free/destroy f_data in nlopt_destroy and nlopt_copy, respectively
static void *free_myfunc_data(void *p) {
myfunc_data *d = (myfunc_data *) p;
if (d) {
if (d->f_data && d->munge_destroy) d->munge_destroy(d->f_data);
delete d;
}
return NULL;
}
static void *dup_myfunc_data(void *p) {
myfunc_data *d = (myfunc_data *) p;
if (d) {
void *f_data;
if (d->f_data && d->munge_copy) {
f_data = d->munge_copy(d->f_data);
if (!f_data) return NULL;
}
else
f_data = d->f_data;
myfunc_data *dnew = new myfunc_data;
if (dnew) {
*dnew = *d;
dnew->f_data = f_data;
}
return (void*) dnew;
}
else return NULL;
}
// nlopt_func wrapper that catches exceptions
static double myfunc(unsigned n, const double *x, double *grad, void *d_) {
myfunc_data *d = reinterpret_cast<myfunc_data*>(d_);
try {
return d->f(n, x, grad, d->f_data);
}
catch (std::bad_alloc&)
{ d->o->forced_stop_reason = NLOPT_OUT_OF_MEMORY; }
catch (std::invalid_argument&)
{ d->o->forced_stop_reason = NLOPT_INVALID_ARGS; }
catch (roundoff_limited&)
{ d->o->forced_stop_reason = NLOPT_ROUNDOFF_LIMITED; }
catch (forced_stop&)
{ d->o->forced_stop_reason = NLOPT_FORCED_STOP; }
catch (...)
{ d->o->forced_stop_reason = NLOPT_FAILURE; }
d->o->force_stop(); // stop gracefully, opt::optimize will re-throw
return HUGE_VAL;
}
// nlopt_mfunc wrapper that catches exceptions
static void mymfunc(unsigned m, double *result,
unsigned n, const double *x, double *grad, void *d_) {
myfunc_data *d = reinterpret_cast<myfunc_data*>(d_);
try {
d->mf(m, result, n, x, grad, d->f_data);
return;
}
catch (std::bad_alloc&)
{ d->o->forced_stop_reason = NLOPT_OUT_OF_MEMORY; }
catch (std::invalid_argument&)
{ d->o->forced_stop_reason = NLOPT_INVALID_ARGS; }
catch (roundoff_limited&)
{ d->o->forced_stop_reason = NLOPT_ROUNDOFF_LIMITED; }
catch (forced_stop&)
{ d->o->forced_stop_reason = NLOPT_FORCED_STOP; }
catch (...)
{ d->o->forced_stop_reason = NLOPT_FAILURE; }
d->o->force_stop(); // stop gracefully, opt::optimize will re-throw
for (unsigned i = 0; i < m; ++i) result[i] = HUGE_VAL;
}
std::vector<double> xtmp, gradtmp, gradtmp0; // scratch for myvfunc
// nlopt_func wrapper, using std::vector<double>
static double myvfunc(unsigned n, const double *x, double *grad, void *d_){
myfunc_data *d = reinterpret_cast<myfunc_data*>(d_);
try {
std::vector<double> &xv = d->o->xtmp;
if (n) std::memcpy(&xv[0], x, n * sizeof(double));
double val=d->vf(xv, grad ? d->o->gradtmp : d->o->gradtmp0, d->f_data);
if (grad && n) {
std::vector<double> &gradv = d->o->gradtmp;
std::memcpy(grad, &gradv[0], n * sizeof(double));
}
return val;
}
catch (std::bad_alloc&)
{ d->o->forced_stop_reason = NLOPT_OUT_OF_MEMORY; }
catch (std::invalid_argument&)
{ d->o->forced_stop_reason = NLOPT_INVALID_ARGS; }
catch (roundoff_limited&)
{ d->o->forced_stop_reason = NLOPT_ROUNDOFF_LIMITED; }
catch (forced_stop&)
{ d->o->forced_stop_reason = NLOPT_FORCED_STOP; }
catch (...)
{ d->o->forced_stop_reason = NLOPT_FAILURE; }
d->o->force_stop(); // stop gracefully, opt::optimize will re-throw
return HUGE_VAL;
}
void alloc_tmp() {
if (xtmp.size() != nlopt_get_dimension(o)) {
xtmp = std::vector<double>(nlopt_get_dimension(o));
gradtmp = std::vector<double>(nlopt_get_dimension(o));
}
}
result last_result;
double last_optf;
nlopt_result forced_stop_reason;
public:
// Constructors etc.
opt() : o(NULL), xtmp(0), gradtmp(0), gradtmp0(0),
last_result(nlopt::FAILURE), last_optf(HUGE_VAL),
forced_stop_reason(NLOPT_FORCED_STOP) {}
~opt() { nlopt_destroy(o); }
opt(algorithm a, unsigned n) :
o(nlopt_create(nlopt_algorithm(a), n)),
xtmp(0), gradtmp(0), gradtmp0(0),
last_result(nlopt::FAILURE), last_optf(HUGE_VAL),
forced_stop_reason(NLOPT_FORCED_STOP) {
if (!o) throw std::bad_alloc();
nlopt_set_munge(o, free_myfunc_data, dup_myfunc_data);
}
opt(const opt& f) : o(nlopt_copy(f.o)),
xtmp(f.xtmp), gradtmp(f.gradtmp), gradtmp0(0),
last_result(f.last_result), last_optf(f.last_optf),
forced_stop_reason(f.forced_stop_reason) {
if (f.o && !o) throw std::bad_alloc();
}
opt& operator=(opt const& f) {
if (this == &f) return *this; // self-assignment
nlopt_destroy(o);
o = nlopt_copy(f.o);
if (f.o && !o) throw std::bad_alloc();
xtmp = f.xtmp; gradtmp = f.gradtmp;
last_result = f.last_result; last_optf = f.last_optf;
forced_stop_reason = f.forced_stop_reason;
return *this;
}
// Do the optimization:
result optimize(std::vector<double> &x, double &opt_f) {
if (o && nlopt_get_dimension(o) != x.size())
throw std::invalid_argument("dimension mismatch");
forced_stop_reason = NLOPT_FORCED_STOP;
nlopt_result ret = nlopt_optimize(o, x.empty() ? NULL : &x[0], &opt_f);
last_result = result(ret);
last_optf = opt_f;
if (ret == NLOPT_FORCED_STOP)
mythrow(forced_stop_reason);
mythrow(ret);
return last_result;
}
// variant mainly useful for SWIG wrappers:
std::vector<double> optimize(const std::vector<double> &x0) {
std::vector<double> x(x0);
last_result = optimize(x, last_optf);
return x;
}
result last_optimize_result() const { return last_result; }
double last_optimum_value() const { return last_optf; }
// accessors:
algorithm get_algorithm() const {
if (!o) throw std::runtime_error("uninitialized nlopt::opt");
return algorithm(nlopt_get_algorithm(o));
}
const char *get_algorithm_name() const {
if (!o) throw std::runtime_error("uninitialized nlopt::opt");
return nlopt_algorithm_name(nlopt_get_algorithm(o));
}
unsigned get_dimension() const {
if (!o) throw std::runtime_error("uninitialized nlopt::opt");
return nlopt_get_dimension(o);
}
// Set the objective function
void set_min_objective(func f, void *f_data) {
myfunc_data *d = new myfunc_data;
if (!d) throw std::bad_alloc();
d->o = this; d->f = f; d->f_data = f_data; d->mf = NULL; d->vf = NULL;
d->munge_destroy = d->munge_copy = NULL;
mythrow(nlopt_set_min_objective(o, myfunc, d)); // d freed via o
}
void set_min_objective(vfunc vf, void *f_data) {
myfunc_data *d = new myfunc_data;
if (!d) throw std::bad_alloc();
d->o = this; d->f = NULL; d->f_data = f_data; d->mf = NULL; d->vf = vf;
d->munge_destroy = d->munge_copy = NULL;
mythrow(nlopt_set_min_objective(o, myvfunc, d)); // d freed via o
alloc_tmp();
}
void set_max_objective(func f, void *f_data) {
myfunc_data *d = new myfunc_data;
if (!d) throw std::bad_alloc();
d->o = this; d->f = f; d->f_data = f_data; d->mf = NULL; d->vf = NULL;
d->munge_destroy = d->munge_copy = NULL;
mythrow(nlopt_set_max_objective(o, myfunc, d)); // d freed via o
}
void set_max_objective(vfunc vf, void *f_data) {
myfunc_data *d = new myfunc_data;
if (!d) throw std::bad_alloc();
d->o = this; d->f = NULL; d->f_data = f_data; d->mf = NULL; d->vf = vf;
d->munge_destroy = d->munge_copy = NULL;
mythrow(nlopt_set_max_objective(o, myvfunc, d)); // d freed via o
alloc_tmp();
}
// for internal use in SWIG wrappers -- variant that
// takes ownership of f_data, with munging for destroy/copy
void set_min_objective(func f, void *f_data,
nlopt_munge md, nlopt_munge mc) {
myfunc_data *d = new myfunc_data;
if (!d) throw std::bad_alloc();
d->o = this; d->f = f; d->f_data = f_data; d->mf = NULL; d->vf = NULL;
d->munge_destroy = md; d->munge_copy = mc;
mythrow(nlopt_set_min_objective(o, myfunc, d)); // d freed via o
}
void set_max_objective(func f, void *f_data,
nlopt_munge md, nlopt_munge mc) {
myfunc_data *d = new myfunc_data;
if (!d) throw std::bad_alloc();
d->o = this; d->f = f; d->f_data = f_data; d->mf = NULL; d->vf = NULL;
d->munge_destroy = md; d->munge_copy = mc;
mythrow(nlopt_set_max_objective(o, myfunc, d)); // d freed via o
}
// Nonlinear constraints:
void remove_inequality_constraints() {
nlopt_result ret = nlopt_remove_inequality_constraints(o);
mythrow(ret);
}
void add_inequality_constraint(func f, void *f_data, double tol=0) {
myfunc_data *d = new myfunc_data;
if (!d) throw std::bad_alloc();
d->o = this; d->f = f; d->f_data = f_data; d->mf = NULL; d->vf = NULL;
d->munge_destroy = d->munge_copy = NULL;
mythrow(nlopt_add_inequality_constraint(o, myfunc, d, tol));
}
void add_inequality_constraint(vfunc vf, void *f_data, double tol=0) {
myfunc_data *d = new myfunc_data;
if (!d) throw std::bad_alloc();
d->o = this; d->f = NULL; d->f_data = f_data; d->mf = NULL; d->vf = vf;
d->munge_destroy = d->munge_copy = NULL;
mythrow(nlopt_add_inequality_constraint(o, myvfunc, d, tol));
alloc_tmp();
}
void add_inequality_mconstraint(mfunc mf, void *f_data,
const std::vector<double> &tol) {
myfunc_data *d = new myfunc_data;
if (!d) throw std::bad_alloc();
d->o = this; d->mf = mf; d->f_data = f_data; d->f = NULL; d->vf = NULL;
d->munge_destroy = d->munge_copy = NULL;
mythrow(nlopt_add_inequality_mconstraint(o, tol.size(), mymfunc, d,
tol.empty() ? NULL : &tol[0]));
}
void remove_equality_constraints() {
nlopt_result ret = nlopt_remove_equality_constraints(o);
mythrow(ret);
}
void add_equality_constraint(func f, void *f_data, double tol=0) {
myfunc_data *d = new myfunc_data;
if (!d) throw std::bad_alloc();
d->o = this; d->f = f; d->f_data = f_data; d->mf = NULL; d->vf = NULL;
d->munge_destroy = d->munge_copy = NULL;
mythrow(nlopt_add_equality_constraint(o, myfunc, d, tol));
}
void add_equality_constraint(vfunc vf, void *f_data, double tol=0) {
myfunc_data *d = new myfunc_data;
if (!d) throw std::bad_alloc();
d->o = this; d->f = NULL; d->f_data = f_data; d->mf = NULL; d->vf = vf;
d->munge_destroy = d->munge_copy = NULL;
mythrow(nlopt_add_equality_constraint(o, myvfunc, d, tol));
alloc_tmp();
}
void add_equality_mconstraint(mfunc mf, void *f_data,
const std::vector<double> &tol) {
myfunc_data *d = new myfunc_data;
if (!d) throw std::bad_alloc();
d->o = this; d->mf = mf; d->f_data = f_data; d->f = NULL; d->vf = NULL;
d->munge_destroy = d->munge_copy = NULL;
mythrow(nlopt_add_equality_mconstraint(o, tol.size(), mymfunc, d,
tol.empty() ? NULL : &tol[0]));
}
// For internal use in SWIG wrappers (see also above)
void add_inequality_constraint(func f, void *f_data,
nlopt_munge md, nlopt_munge mc,
double tol=0) {
myfunc_data *d = new myfunc_data;
if (!d) throw std::bad_alloc();
d->o = this; d->f = f; d->f_data = f_data; d->mf = NULL; d->vf = NULL;
d->munge_destroy = md; d->munge_copy = mc;
mythrow(nlopt_add_inequality_constraint(o, myfunc, d, tol));
}
void add_equality_constraint(func f, void *f_data,
nlopt_munge md, nlopt_munge mc,
double tol=0) {
myfunc_data *d = new myfunc_data;
if (!d) throw std::bad_alloc();
d->o = this; d->f = f; d->f_data = f_data; d->mf = NULL; d->vf = NULL;
d->munge_destroy = md; d->munge_copy = mc;
mythrow(nlopt_add_equality_constraint(o, myfunc, d, tol));
}
void add_inequality_mconstraint(mfunc mf, void *f_data,
nlopt_munge md, nlopt_munge mc,
const std::vector<double> &tol) {
myfunc_data *d = new myfunc_data;
if (!d) throw std::bad_alloc();
d->o = this; d->mf = mf; d->f_data = f_data; d->f = NULL; d->vf = NULL;
d->munge_destroy = md; d->munge_copy = mc;
mythrow(nlopt_add_inequality_mconstraint(o, tol.size(), mymfunc, d,
tol.empty() ? NULL : &tol[0]));
}
void add_equality_mconstraint(mfunc mf, void *f_data,
nlopt_munge md, nlopt_munge mc,
const std::vector<double> &tol) {
myfunc_data *d = new myfunc_data;
if (!d) throw std::bad_alloc();
d->o = this; d->mf = mf; d->f_data = f_data; d->f = NULL; d->vf = NULL;
d->munge_destroy = md; d->munge_copy = mc;
mythrow(nlopt_add_equality_mconstraint(o, tol.size(), mymfunc, d,
tol.empty() ? NULL : &tol[0]));
}
#define NLOPT_GETSET_VEC(name) \
void set_##name(double val) { \
mythrow(nlopt_set_##name##1(o, val)); \
} \
void get_##name(std::vector<double> &v) const { \
if (o && nlopt_get_dimension(o) != v.size()) \
throw std::invalid_argument("dimension mismatch"); \
mythrow(nlopt_get_##name(o, v.empty() ? NULL : &v[0])); \
} \
std::vector<double> get_##name() const { \
if (!o) throw std::runtime_error("uninitialized nlopt::opt"); \
std::vector<double> v(nlopt_get_dimension(o)); \
get_##name(v); \
return v; \
} \
void set_##name(const std::vector<double> &v) { \
if (o && nlopt_get_dimension(o) != v.size()) \
throw std::invalid_argument("dimension mismatch"); \
mythrow(nlopt_set_##name(o, v.empty() ? NULL : &v[0])); \
}
NLOPT_GETSET_VEC(lower_bounds)
NLOPT_GETSET_VEC(upper_bounds)
// stopping criteria:
#define NLOPT_GETSET(T, name) \
T get_##name() const { \
if (!o) throw std::runtime_error("uninitialized nlopt::opt"); \
return nlopt_get_##name(o); \
} \
void set_##name(T name) { \
mythrow(nlopt_set_##name(o, name)); \
}
NLOPT_GETSET(double, stopval)
NLOPT_GETSET(double, ftol_rel)
NLOPT_GETSET(double, ftol_abs)
NLOPT_GETSET(double, xtol_rel)
NLOPT_GETSET_VEC(xtol_abs)
NLOPT_GETSET(int, maxeval)
NLOPT_GETSET(double, maxtime)
NLOPT_GETSET(int, force_stop)
void force_stop() { set_force_stop(1); }
// algorithm-specific parameters:
void set_local_optimizer(const opt &lo) {
nlopt_result ret = nlopt_set_local_optimizer(o, lo.o);
mythrow(ret);
}
NLOPT_GETSET(unsigned, population)
NLOPT_GETSET(unsigned, vector_storage)
NLOPT_GETSET_VEC(initial_step)
void set_default_initial_step(const std::vector<double> &x) {
nlopt_result ret
= nlopt_set_default_initial_step(o, x.empty() ? NULL : &x[0]);
mythrow(ret);
}
void get_initial_step(const std::vector<double> &x, std::vector<double> &dx) const {
if (o && (nlopt_get_dimension(o) != x.size()
|| nlopt_get_dimension(o) != dx.size()))
throw std::invalid_argument("dimension mismatch");
nlopt_result ret = nlopt_get_initial_step(o, x.empty() ? NULL : &x[0],
dx.empty() ? NULL : &dx[0]);
mythrow(ret);
}
std::vector<double> get_initial_step_(const std::vector<double> &x) const {
if (!o) throw std::runtime_error("uninitialized nlopt::opt");
std::vector<double> v(nlopt_get_dimension(o));
get_initial_step(x, v);
return v;
}
};
#undef NLOPT_GETSET
#undef NLOPT_GETSET_VEC
//////////////////////////////////////////////////////////////////////
inline void srand(unsigned long seed) { nlopt_srand(seed); }
inline void srand_time() { nlopt_srand_time(); }
inline void version(int &major, int &minor, int &bugfix) {
nlopt_version(&major, &minor, &bugfix);
}
inline int version_major() {
int major, minor, bugfix;
nlopt_version(&major, &minor, &bugfix);
return major;
}
inline int version_minor() {
int major, minor, bugfix;
nlopt_version(&major, &minor, &bugfix);
return minor;
}
inline int version_bugfix() {
int major, minor, bugfix;
nlopt_version(&major, &minor, &bugfix);
return bugfix;
}
inline const char *algorithm_name(algorithm a) {
return nlopt_algorithm_name(nlopt_algorithm(a));
}
//////////////////////////////////////////////////////////////////////
} // namespace nlopt
#endif /* NLOPT_HPP */
|