This file is indexed.

/usr/lib/ocaml/ocamlgraph/contraction.mli is in libocamlgraph-ocaml-dev 1.8.6-1build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
(**************************************************************************)
(*                                                                        *)
(*  Ocamlgraph: a generic graph library for OCaml                         *)
(*  Copyright (C) 2004-2010                                               *)
(*  Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles        *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU Library General Public           *)
(*  License version 2.1, with the special exception on linking            *)
(*  described in file LICENSE.                                            *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(**************************************************************************)

(* Copyright (c) 2012 Technische Universitaet Muenchen
 * Markus W. Weissmann <markus.weissmann@in.tum.de>
 * All rights reserved. *)

(** Edge contraction for directed, edge-labeled graphs *)

(* This algorithm should be extensible to undirected, unlabeled graphs! *)

(** Minimal graph signature for edge contraction algorithm *)
module type G = sig
  type t
  module V : Sig.COMPARABLE
  type vertex = V.t
  module E : Sig.EDGE with type vertex = vertex
  type edge = E.t

  val empty : t
  val add_edge_e : t -> edge -> t
  val fold_edges_e : (edge -> 'a -> 'a) -> t -> 'a -> 'a
  val fold_vertex : (vertex -> 'a -> 'a) -> t -> 'a -> 'a
end

module Make
  (G : G) :
sig
  val contract : (G.E.t -> bool) -> G.t -> G.t
    (** [contract p g] will perform edge contraction on the graph [g].
        The edges for which the property [p] holds/is true will get contracted:
        The resulting graph will not have these edges; the start- and end-node
        of these edges will get united. *)
end