This file is indexed.

/usr/lib/ocaml/ocamlgraph/minsep.mli is in libocamlgraph-ocaml-dev 1.8.6-1build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
(**************************************************************************)
(*                                                                        *)
(*  Ocamlgraph: a generic graph library for OCaml                         *)
(*  Copyright (C) 2004-2010                                               *)
(*  Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles        *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU Library General Public           *)
(*  License version 2.1, with the special exception on linking            *)
(*  described in file LICENSE.                                            *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(**************************************************************************)

(**
  Minimal separators of a graph
  
  Based on the article:
  Generating all the minimal separators of a graph.
  by A. Berry, J.-P. Bordat and O.Cogis
  http://www.isima.fr/berry/generating.html
  
  A set [S] of vertices is a minimal separator if it exists 2 distinct
  connected components [C] and [D] in [G \ S] such that each vertex of [S] has
  a successor in [C] and [D]. *)

(** Minimal signature for computing the minimal separators *)
module type G = sig
  type t
  module V : Sig.COMPARABLE
  val succ: t -> V.t -> V.t list
  val iter_succ: (V.t -> unit) -> t -> V.t -> unit
  val fold_succ: (V.t -> 'a -> 'a) -> t -> V.t -> 'a -> 'a
  val iter_vertex: (V.t -> unit) -> t -> unit
  val fold_vertex: (V.t -> 'a -> 'a) -> t -> 'a -> 'a
end

module type MINSEP = sig
  module G : G
    (** Implementation of a graph *)
  module Vertex_Set : Set.S with type elt = G.V.t
    (** Implementation of a set of vertex *)
  module VSetset : Set.S with type elt = Vertex_Set.t
    (** Implementation of a set of [Vertex_Set] *)

  val allminsep : G.t -> Vertex_Set.t list
    (** [allminsep g] computes the list of all minimal separators of g. *)
  val list_of_allminsep : G.t -> G.V.t list list
    (** Less efficient that [allminsep] *)
  val set_of_allminsep : G.t -> VSetset.t
    (** Less efficient that [allminsep] *)
end

(** Implementation for a persistent graph *)
module P(G : sig include G val remove_vertex : t -> V.t -> t end) : 
  MINSEP with module G = G

(** Implementation for an imperative graph.
  Less efficient that the implementation for a persistent graph *)
module I(G : sig 
	   include G 
	   module Mark : Sig.MARK with type graph = t and type vertex = V.t
	 end) : 
  MINSEP with module G = G