/usr/lib/ocaml/ocamlgraph/minsep.mli is in libocamlgraph-ocaml-dev 1.8.6-1build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | (**************************************************************************)
(* *)
(* Ocamlgraph: a generic graph library for OCaml *)
(* Copyright (C) 2004-2010 *)
(* Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles *)
(* *)
(* This software is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Library General Public *)
(* License version 2.1, with the special exception on linking *)
(* described in file LICENSE. *)
(* *)
(* This software is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *)
(* *)
(**************************************************************************)
(**
Minimal separators of a graph
Based on the article:
Generating all the minimal separators of a graph.
by A. Berry, J.-P. Bordat and O.Cogis
http://www.isima.fr/berry/generating.html
A set [S] of vertices is a minimal separator if it exists 2 distinct
connected components [C] and [D] in [G \ S] such that each vertex of [S] has
a successor in [C] and [D]. *)
(** Minimal signature for computing the minimal separators *)
module type G = sig
type t
module V : Sig.COMPARABLE
val succ: t -> V.t -> V.t list
val iter_succ: (V.t -> unit) -> t -> V.t -> unit
val fold_succ: (V.t -> 'a -> 'a) -> t -> V.t -> 'a -> 'a
val iter_vertex: (V.t -> unit) -> t -> unit
val fold_vertex: (V.t -> 'a -> 'a) -> t -> 'a -> 'a
end
module type MINSEP = sig
module G : G
(** Implementation of a graph *)
module Vertex_Set : Set.S with type elt = G.V.t
(** Implementation of a set of vertex *)
module VSetset : Set.S with type elt = Vertex_Set.t
(** Implementation of a set of [Vertex_Set] *)
val allminsep : G.t -> Vertex_Set.t list
(** [allminsep g] computes the list of all minimal separators of g. *)
val list_of_allminsep : G.t -> G.V.t list list
(** Less efficient that [allminsep] *)
val set_of_allminsep : G.t -> VSetset.t
(** Less efficient that [allminsep] *)
end
(** Implementation for a persistent graph *)
module P(G : sig include G val remove_vertex : t -> V.t -> t end) :
MINSEP with module G = G
(** Implementation for an imperative graph.
Less efficient that the implementation for a persistent graph *)
module I(G : sig
include G
module Mark : Sig.MARK with type graph = t and type vertex = V.t
end) :
MINSEP with module G = G
|