/usr/lib/ocaml/netstring/netmech_scram.mli is in libocamlnet-ocaml-dev 4.0.4-1build3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 | (* $Id: netmech_scram.mli 2195 2015-01-01 12:23:39Z gerd $ *)
(** SCRAM mechanism for authentication (RFC 5802) *)
(** This implements SCRAM for SASL and GSSAPI.
{b This module needs the SHA-1 hash function. In order to use it,
initialize crypto support, e.g. by including the [nettls-gnutls]
packages and calling {!Nettls_gnutls.init}.}
As for all SASL mechanisms in OCamlnet, SASLprep is not automatically
called. Users of SCRAM should pass user names and passwords through
{!Netsaslprep.saslprep}.
*)
type ptype = [ `GSSAPI | `SASL | `HTTP ]
(** Profile types:
- [`GSSAPI]: as defined in RFC 5802, the gs2-header is omitted
- [`SASL]: as defined in RFC 5802
- [`HTTP]: at the moment this follows draft-ietf-httpauth-scram-auth-03,
and uses a different [gs2-header]
*)
type profile =
{ ptype : ptype;
hash_function : Netsys_digests.iana_hash_fn; (** Which hash function *)
return_unknown_user : bool; (** Whether servers exhibit the fact that the
user is unknown *)
iteration_count_limit : int; (** Largest supported iteration number *)
}
(** Profile *)
type cb = Netsys_sasl_types.cb
(** Using the same channel binding type as for SASL *)
type server_error =
[ `Invalid_encoding
| `Extensions_not_supported
| `Invalid_proof
| `Channel_bindings_dont_match
| `Server_does_support_channel_binding
| `Channel_binding_not_supported
| `Unsupported_channel_binding_type
| `Unknown_user
| `Invalid_username_encoding
| `No_resources
| `Other_error
| `Extension of string
]
(** Error codes of this protocol *)
type client_session
(** Session context for clients *)
type server_session
(** Session context for servers *)
exception Invalid_encoding of string * string
(** Raised by clients when something cannot be decoded. First string
is an error message, the second string the raw message that cannot
be decoded
*)
exception Invalid_username_encoding of string * string
(** Raised by clients when the username does not match the requirements.
Arguments as for [Invalid_encoding].
*)
exception Extensions_not_supported of string * string
(** Raised by clients when the server enables an unsupported extension.
Arguments as for [Invalid_encoding].
*)
exception Protocol_error of string
(** Raised by clients when the server violates the protocol. The argument
is a message.
*)
exception Invalid_server_signature
(** Raised by clients when the signature sent by the server is invalid
(i.e. the server does not know the client password)
*)
exception Server_error of server_error
(** Raised by clients when the server sent an error code *)
val profile : ?return_unknown_user:bool -> ?iteration_count_limit:int ->
ptype -> Netsys_digests.iana_hash_fn -> profile
(** Creates a profile *)
val string_of_server_error : server_error -> string
val server_error_of_string : string -> server_error
(** Conversion *)
val mechanism_name : profile -> string
(** The official name of the mechanism *)
(** {2 Clients} *)
(** The idea is to create a client session [s] first. The functions
[client_emit_flag] and [client_recv_flag] indicate now whether
the client needs to emit a new message, or whether it needs to
receive a message, respectively. Emission is done by [client_emit_message],
reception by [client_recv_message]. If everything goes well, the
protocol state advances, and finally [client_finish_flag] is true.
This indicates that the client is authenticated and that the server
knows the client's password. If an error occurs, an exception is
raised (see above for possibilities), and [client_error_flag] signals
[true].
*)
val create_client_session :
?nonce: string ->
profile -> string -> string -> client_session
(** [create_client_session p username password]: Creates a new client
session for profile [p] so that the client authenticates as user
[username], and proves its identity with the given [password].
*)
val create_client_session2 :
?nonce:string ->
profile -> string -> string -> string -> client_session
(** [create_client_session p username authzname password]: Like
[create_client_session], but also sets the authorization name
(only processed for the SASL profile).
*)
val client_configure_channel_binding : client_session -> cb -> unit
(** Sets whether to request channel binding.
*)
val client_emit_flag : client_session -> bool
(** Whether [client_emit_message] can now be called *)
val client_recv_flag : client_session -> bool
(** Whether [client_recv_message] can now be called *)
val client_finish_flag : client_session -> bool
(** Whether the client is authenticated and the server verified *)
val client_error_flag : client_session -> bool
(** Whether an error occurred, and the protocol cannot advance anymore *)
val client_channel_binding : client_session -> cb
(** Returns the channel binding *)
val client_emit_message : client_session -> string
(** Emits the next message to be sent to the server *)
val client_emit_message_kv : client_session ->
string option * (string * string) list
(** Emits the next message to be sent to the server. The message is not
encoded as a single string, but as [(gs2_opt, kv)] where
[gs2_opt] is the optional GS2 header (the production [gs2-header] from
the RFC), and [kv] contains the parameters as key/value pairs.
*)
val client_recv_message : client_session -> string -> unit
(** Receives the next message from the server *)
val client_protocol_key : client_session -> string option
(** The 128-bit protocol key for encrypting messages. This is available
as soon as the second client message is emitted.
*)
val client_user_name : client_session -> string
(** The user name *)
val client_authz_name : client_session -> string
(** The authorization name *)
val client_password : client_session -> string
(** The password *)
val client_export : client_session -> string
val client_import : string -> client_session
(** Exports a client session as string, and imports the string again.
The export format is just a marshalled Ocaml value.
*)
val client_prop : client_session -> string -> string
(** Returns a property of the client (or Not_found):
- "snonce"
- "cnonce"
- "salt"
- "i" (iteration_count)
- "protocol_key"
*)
(** {2 Servers} *)
(** The idea is to create a server session [s] first. The functions
[server_emit_flag] and [server_recv_flag] indicate now whether
the server needs to emit a new message, or whether it needs to
receive a message, respectively. Emission is done by [server_emit_message],
reception by [server_recv_message]. If everything goes well, the
protocol state advances, and finally [server_finish_flag] is true.
This indicates that the client could be authenticated.
If an error occurs, {b no} exception is raised, and the protocol
advances nevertheless, and finally the server sends an error token
to the client. After this, [server_error_flag] returns true.
*)
type credentials =
[ `Salted_password of string * string * int
| `Stored_creds of string * string * string * int
]
(** Two forms of providing credentials:
- [`Salted_password(spw,salt,iteration_count)]: get the
salted password with
[spw = salt_password h password salt iteration_count]
- [`Stored(stkey, srvkey, salt, iteration_count)]: get the
pair (stkey, srvkey) with
[stored_key h password salt iteration_count]
*)
val create_server_session :
?nonce:string ->
profile -> (string -> credentials) -> server_session
(** [create_server_session p auth]: Creates a new server session with
profile [p] and authenticator function [auth].
The function is [auth] is called when the credentials of the
client have been received to check whether the client can be
authenticated. It is called as
{[
let credentials = auth username
]}
where [username] is the user name. The function can now raise
[Not_found] if the user is unknown, or it can return the
credentials. Note that the cleartext password needs not to
be known. The credentials contain a salt and an iteration count:
[salt] is a random string, and [iteration_count] a
security parameter that should be at least 4096. Whereas [salt]
should be different for each user, the [iteration_count] can be
chosen as a constant (e.g. 4096). Now [salted_password] can be
computed from the cleartext password and these two extra parameters.
See [salt_password] below.
*)
val create_server_session2 :
?nonce:string ->
profile -> (string -> string -> credentials) -> server_session
(** Same as [create_server_session], but the authentication callback
gets two arguments:
{[
let credentials = auth username authzname
]}
where [authzname] is the passed authorization name (or "" if na).
*)
val create_salt : unit -> string
(** Creates a random string suited as salt *)
val salt_password : Netsys_digests.iana_hash_fn ->
string -> string -> int -> string
(** [let salted_password = salt_password h password salt iteration_count]
Use this now as credentials
[`Salted_password(salted_password,salt,iteration_count)].
As we do not implement [SASLprep] only passwords consisting of
US-ASCII characters are accepted ([Invalid_encoding] otherwise).
*)
val stored_key : Netsys_digests.iana_hash_fn ->
string -> string -> int -> string * string
(** [let stkey,srvkey = stored_key h password salt iteration_count]
Use this now as credentials
[`Stored_creds(stkey,srvkey,salt,iteration_count)].
*)
val server_emit_flag : server_session -> bool
(** Whether [server_emit_message] can now be called *)
val server_recv_flag : server_session -> bool
(** Whether [server_recv_message] can now be called *)
val server_finish_flag : server_session -> bool
(** Whether the client is authenticated *)
val server_error_flag : server_session -> bool
(** Whether an error occurred, and the protocol cannot advance anymore *)
val server_emit_message : server_session -> string
(** Emits the next message to be sent to the client *)
val server_emit_message_kv : server_session -> (string * string) list
(** Emits the next message to be sent to the client. The message is returned
as a list of key/value pairs.
*)
val server_recv_message : server_session -> string -> unit
(** Receives the next message from the client *)
val server_protocol_key : server_session -> string option
(** The 128-bit protocol key for encrypting messages. This is available
as soon as the second client message has been received.
*)
val server_channel_binding : server_session -> cb
(** Returns the channel binding requirement. It is
up to the application to enforce the binding. This information is
available as soon as the second client message has been received
*)
val server_user_name : server_session -> string option
(** The user name as transmitted from the client. This is returned here
even before the authentication is completed!
*)
val server_authz_name : server_session -> string option
(** The authorization name as transmitted from the client. This is returned
here
even before the authentication is completed!
*)
val server_export : server_session -> string
val server_import : string -> server_session
val server_import_any : string -> (string -> credentials) ->
server_session
val server_import_any2 : string -> (string -> string -> credentials) ->
server_session
(** Exports a server session as string, and imports the string again.
[server_import] can only import established sessions.
[server_import_any] can also import unfinished sessions, but one needs
to pass the authentication function as for [server_create_session].
[server_import_any2] uses the modified auth function as in
[server_create_session2].
*)
val server_prop : server_session -> string -> string
(** Returns a property of the client (or Not_found):
- "snonce"
- "cnonce"
- "salt"
- "i" (iteration_count)
- "protocol_key"
*)
(** {2 Confidentiality} *)
type specific_keys =
{ kc : string;
ke : string;
ki : string
}
(** The specific keys to use *)
(** This module implements AES in Ciphertext Stealing mode (see RFC 3962) *)
module AES_CTS : sig
val c : int
val m : int
val encrypt : string -> string -> string
val encrypt_mstrings :
string -> Netxdr_mstring.mstring list -> Netxdr_mstring.mstring list
val decrypt : string -> string -> string
val decrypt_mstrings :
string -> Netxdr_mstring.mstring list -> Netxdr_mstring.mstring list
val tests : (string * string * string) list
val run_tests : unit -> bool
val run_mtests : unit -> bool
end
(** This is the cryptosystem as defined in RFC 3961, so far needed here.
This uses [AES_CTS] as cipher, and SHA1-96 for signing.
*)
module Cryptosystem : sig
exception Integrity_error
val derive_keys : string -> int -> specific_keys
(** [derive_keys protocol_key usage]: Returns the specific keys for
this [protocol_key] and this [usage] numbers. See RFC 4121 for
applicable usage numbers
*)
val encrypt_and_sign : specific_keys -> string -> string
(** Encrypts the plaintext message and adds a signature to the
ciphertext.
Returns [ciphertext_with_signature].
*)
val encrypt_and_sign_mstrings :
specific_keys -> Netxdr_mstring.mstring list -> Netxdr_mstring.mstring list
(** Same, but with data representation as [mstring list] *)
val decrypt_and_verify : specific_keys -> string -> string
(** Decrypts the ciphertext and verifies the attached signature.
Returns the restored plaintext.
For very short plaintexts (< 16 bytes) there will be some
padding at the end ("residue"), as returned as [ec] above.
We ignore this problem generally,
because GSS-API adds a 16-byte header to the plaintext anyway,
so these short messages do not occur.
If the signature is not valid, the exception [Integrity_error]
is raised.
*)
val decrypt_and_verify_mstrings :
specific_keys -> Netxdr_mstring.mstring list -> Netxdr_mstring.mstring list
(** Same, but with data representation as [mstring list] *)
val get_ec : specific_keys -> int -> int
(** [let ec = get_ec e_keys n]:
Returns the required value for the "extra count" field of
RFC 4121 if the plaintext message has size [n]. Here,
[n] is the size of the payload message plus the token
header of 16 bytes, i.e. the function is always called with
[n >= 16].
Here, the returned [ec] value is always 0.
*)
val get_mic : specific_keys -> string -> string
(** Returns a message integrity code *)
val get_mic_mstrings :
specific_keys -> Netxdr_mstring.mstring list -> string
(** Same, but with data representation as [mstring list] *)
end
module Debug : sig
val enable : bool ref
(** Enable debugging of this module *)
end
|