/usr/include/octomap/OcTreeIterator.hxx is in liboctomap-dev 1.6.8+dfsg-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 | /*
* OctoMap - An Efficient Probabilistic 3D Mapping Framework Based on Octrees
* http://octomap.github.com/
*
* Copyright (c) 2009-2013, K.M. Wurm and A. Hornung, University of Freiburg
* All rights reserved.
* License: New BSD
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the University of Freiburg nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef OCTOMAP_OCTREEITERATOR_HXX_
#define OCTOMAP_OCTREEITERATOR_HXX_
/**
* Base class for OcTree iterators. So far, all iterator's are
* const with respect to the tree. This file is included within
* OcTreeBaseImpl.h, you should probably not include this directly.
*/
class iterator_base : public std::iterator<std::forward_iterator_tag, NodeType>{
public:
struct StackElement;
/// Default ctor, only used for the end-iterator
iterator_base() : tree(NULL), maxDepth(0){}
/**
* Constructor of the iterator. Initializes the iterator with the default
* constructor (= end() iterator) if tree is empty or NULL.
*
* @param tree OcTreeBaseImpl on which the iterator is used on
* @param depth Maximum depth to traverse the tree. 0 (default): unlimited
*/
iterator_base(OcTreeBaseImpl<NodeType,INTERFACE> const* tree, unsigned char depth=0)
: tree((tree && tree->root) ? tree : NULL), maxDepth(depth)
{
if (tree && maxDepth == 0)
maxDepth = tree->getTreeDepth();
if (tree && tree->root){ // tree is not empty
StackElement s;
s.node = tree->root;
s.depth = 0;
s.key[0] = s.key[1] = s.key[2] = tree->tree_max_val;
stack.push(s);
} else{ // construct the same as "end", tree must already be NULL
this->maxDepth = 0;
}
}
/// Copy constructor of the iterator
iterator_base(const iterator_base& other)
: tree(other.tree), maxDepth(other.maxDepth), stack(other.stack) {}
/// Comparison between iterators. First compares the tree, then stack size and top element of stack.
bool operator==(const iterator_base& other) const {
return (tree ==other.tree && stack.size() == other.stack.size()
&& (stack.size()==0 || (stack.size() > 0 && (stack.top().node == other.stack.top().node
&& stack.top().depth == other.stack.top().depth
&& stack.top().key == other.stack.top().key ))));
}
/// Comparison between iterators. First compares the tree, then stack size and top element of stack.
bool operator!=(const iterator_base& other) const {
return (tree !=other.tree || stack.size() != other.stack.size()
|| (stack.size() > 0 && ((stack.top().node != other.stack.top().node
|| stack.top().depth != other.stack.top().depth
|| stack.top().key != other.stack.top().key ))));
}
iterator_base& operator=(const iterator_base& other){
tree = other.tree;
maxDepth = other.maxDepth;
stack = other.stack;
return *this;
};
/// Ptr operator will return the current node in the octree which the
/// iterator is referring to
NodeType const* operator->() const { return stack.top().node;}
/// Ptr operator will return the current node in the octree which the
/// iterator is referring to
NodeType* operator->() { return stack.top().node;}
/// Return the current node in the octree which the
/// iterator is referring to
const NodeType& operator*() const { return *(stack.top().node);}
/// Return the current node in the octree which the
/// iterator is referring to
NodeType& operator*() { return *(stack.top().node);}
/// return the center coordinate of the current node
point3d getCoordinate() const {
return tree->keyToCoord(stack.top().key, stack.top().depth);
}
/// @return single coordinate of the current node
double getX() const{
return tree->keyToCoord(stack.top().key[0], stack.top().depth);
}
/// @return single coordinate of the current node
double getY() const{
return tree->keyToCoord(stack.top().key[1], stack.top().depth);
}
/// @return single coordinate of the current node
double getZ() const{
return tree->keyToCoord(stack.top().key[2], stack.top().depth);
}
/// @return the side of the volume occupied by the current node
double getSize() const {return tree->getNodeSize(stack.top().depth); }
/// return depth of the current node
unsigned getDepth() const {return unsigned(stack.top().depth); }
/// @return the OcTreeKey of the current node
const OcTreeKey& getKey() const {return stack.top().key;}
/// @return the OcTreeKey of the current node, for nodes with depth != maxDepth
OcTreeKey getIndexKey() const {
return computeIndexKey(tree->getTreeDepth() - stack.top().depth, stack.top().key);
}
/// Element on the internal recursion stack of the iterator
struct StackElement{
NodeType* node;
OcTreeKey key;
unsigned char depth;
};
protected:
/// One step of depth-first tree traversal.
/// How this is used depends on the actual iterator.
void singleIncrement(){
StackElement top = stack.top();
stack.pop();
if (top.depth == maxDepth)
return;
StackElement s;
s.depth = top.depth +1;
unsigned short int center_offset_key = tree->tree_max_val >> s.depth;
// push on stack in reverse order
for (int i=7; i>=0; --i) {
if (top.node->childExists(i)) {
computeChildKey(i, center_offset_key, top.key, s.key);
s.node = top.node->getChild(i);
//OCTOMAP_DEBUG_STR("Current depth: " << int(top.depth) << " new: "<< int(s.depth) << " child#" << i <<" ptr: "<<s.node);
stack.push(s);
assert(s.depth <= maxDepth);
}
}
}
OcTreeBaseImpl<NodeType,INTERFACE> const* tree; ///< Octree this iterator is working on
unsigned char maxDepth; ///< Maximum depth for depth-limited queries
/// Internal recursion stack. Apparently a stack of vector works fastest here.
std::stack<StackElement,std::vector<StackElement> > stack;
};
/**
* Iterator over the complete tree (inner nodes and leafs).
* See below for example usage.
* Note that the non-trivial call to tree->end_tree() should be done only once
* for efficiency!
*
* @code
* for(OcTreeTYPE::tree_iterator it = tree->begin_tree(),
* end=tree->end_tree(); it!= end; ++it)
* {
* //manipulate node, e.g.:
* std::cout << "Node center: " << it.getCoordinate() << std::endl;
* std::cout << "Node size: " << it.getSize() << std::endl;
* std::cout << "Node value: " << it->getValue() << std::endl;
* }
* @endcode
*/
class tree_iterator : public iterator_base {
public:
tree_iterator() : iterator_base(){}
/**
* Constructor of the iterator.
*
* @param tree OcTreeBaseImpl on which the iterator is used on
* @param depth Maximum depth to traverse the tree. 0 (default): unlimited
*/
tree_iterator(OcTreeBaseImpl<NodeType,INTERFACE> const* tree, unsigned char depth=0) : iterator_base(tree, depth) {};
/// postfix increment operator of iterator (it++)
tree_iterator operator++(int){
tree_iterator result = *this;
++(*this);
return result;
}
/// Prefix increment operator to advance the iterator
tree_iterator& operator++(){
if (!this->stack.empty()){
this->singleIncrement();
}
if (this->stack.empty()){
this->tree = NULL;
}
return *this;
}
/// @return whether the current node is a leaf, i.e. has no children or is at max level
bool isLeaf() const{ return (!this->stack.top().node->hasChildren() || this->stack.top().depth == this->maxDepth); }
};
/**
* Iterator to iterate over all leafs of the tree.
* Inner nodes are skipped. See below for example usage.
* Note that the non-trivial call to tree->end_leafs() should be done only once
* for efficiency!
*
* @code
* for(OcTreeTYPE::leaf_iterator it = tree->begin_leafs(),
* end=tree->end_leafs(); it!= end; ++it)
* {
* //manipulate node, e.g.:
* std::cout << "Node center: " << it.getCoordinate() << std::endl;
* std::cout << "Node size: " << it.getSize() << std::endl;
* std::cout << "Node value: " << it->getValue() << std::endl;
* }
* @endcode
*
*/
class leaf_iterator : public iterator_base {
public:
leaf_iterator() : iterator_base(){}
/**
* Constructor of the iterator.
*
* @param tree OcTreeBaseImpl on which the iterator is used on
* @param depth Maximum depth to traverse the tree. 0 (default): unlimited
*/
leaf_iterator(OcTreeBaseImpl<NodeType, INTERFACE> const* tree, unsigned char depth=0) : iterator_base(tree, depth) {
// tree could be empty (= no stack)
if (this->stack.size() > 0){
// skip forward to next valid leaf node:
// add root another time (one will be removed) and ++
this->stack.push(this->stack.top());
operator ++();
}
}
leaf_iterator(const leaf_iterator& other) : iterator_base(other) {};
/// postfix increment operator of iterator (it++)
leaf_iterator operator++(int){
leaf_iterator result = *this;
++(*this);
return result;
}
/// prefix increment operator of iterator (++it)
leaf_iterator& operator++(){
if (this->stack.empty()){
this->tree = NULL; // TODO check?
} else {
this->stack.pop();
// skip forward to next leaf
while(!this->stack.empty() && this->stack.top().depth < this->maxDepth
&& this->stack.top().node->hasChildren())
{
this->singleIncrement();
}
// done: either stack is empty (== end iterator) or a next leaf node is reached!
if (this->stack.empty())
this->tree = NULL;
}
return *this;
}
};
/**
* Bounding-box leaf iterator. This iterator will traverse all leaf nodes
* within a given bounding box (axis-aligned). See below for example usage.
* Note that the non-trivial call to tree->end_leafs_bbx() should be done only once
* for efficiency!
*
* @code
* for(OcTreeTYPE::leaf_bbx_iterator it = tree->begin_leafs_bbx(min,max),
* end=tree->end_leafs_bbx(); it!= end; ++it)
* {
* //manipulate node, e.g.:
* std::cout << "Node center: " << it.getCoordinate() << std::endl;
* std::cout << "Node size: " << it.getSize() << std::endl;
* std::cout << "Node value: " << it->getValue() << std::endl;
* }
* @endcode
*/
class leaf_bbx_iterator : public iterator_base {
public:
leaf_bbx_iterator() : iterator_base() {};
/**
* Constructor of the iterator. The bounding box corners min and max are
* converted into an OcTreeKey first.
*
* @note Due to rounding and discretization
* effects, nodes may be traversed that have float coordinates appearing
* outside of the (float) bounding box. However, the node's complete volume
* will include the bounding box coordinate. For a more exact control, use
* the constructor with OcTreeKeys instead.
*
* @param tree OcTreeBaseImpl on which the iterator is used on
* @param min Minimum point3d of the axis-aligned boundingbox
* @param max Maximum point3d of the axis-aligned boundingbox
* @param depth Maximum depth to traverse the tree. 0 (default): unlimited
*/
leaf_bbx_iterator(OcTreeBaseImpl<NodeType,INTERFACE> const* tree, const point3d& min, const point3d& max, unsigned char depth=0)
: iterator_base(tree, depth)
{
if (!this->tree->coordToKeyChecked(min, minKey) || !this->tree->coordToKeyChecked(max, maxKey)){
// coordinates invalid, set to end iterator
tree = NULL;
this->maxDepth = 0;
} else{ // else: keys are generated and stored
// advance from root to next valid leaf in bbx:
this->stack.push(this->stack.top());
this->operator ++();
}
}
/**
* Constructor of the iterator. This version uses the exact keys as axis-aligned
* bounding box (including min and max).
*
* @param tree OcTreeBaseImpl on which the iterator is used on
* @param min Minimum OcTreeKey to be included in the axis-aligned boundingbox
* @param max Maximum OcTreeKey to be included in the axis-aligned boundingbox
* @param depth Maximum depth to traverse the tree. 0 (default): unlimited
*/
leaf_bbx_iterator(OcTreeBaseImpl<NodeType,INTERFACE> const* tree, const OcTreeKey& min, const OcTreeKey& max, unsigned char depth=0)
: iterator_base(tree, depth), minKey(min), maxKey(max)
{
// advance from root to next valid leaf in bbx:
this->stack.push(this->stack.top());
this->operator ++();
}
leaf_bbx_iterator(const leaf_bbx_iterator& other) : iterator_base(other) {
minKey = other.minKey;
maxKey = other.maxKey;
}
/// postfix increment operator of iterator (it++)
leaf_bbx_iterator operator++(int){
leaf_bbx_iterator result = *this;
++(*this);
return result;
}
/// prefix increment operator of iterator (++it)
leaf_bbx_iterator& operator++(){
if (this->stack.empty()){
this->tree = NULL; // TODO check?
} else {
this->stack.pop();
// skip forward to next leaf
while(!this->stack.empty() && this->stack.top().depth < this->maxDepth
&& this->stack.top().node->hasChildren())
{
this->singleIncrement();
}
// done: either stack is empty (== end iterator) or a next leaf node is reached!
if (this->stack.empty())
this->tree = NULL;
}
return *this;
};
protected:
void singleIncrement(){
typename iterator_base::StackElement top = this->stack.top();
this->stack.pop();
typename iterator_base::StackElement s;
s.depth = top.depth +1;
unsigned short int center_offset_key = this->tree->tree_max_val >> s.depth;
// push on stack in reverse order
for (int i=7; i>=0; --i) {
if (top.node->childExists(i)) {
computeChildKey(i, center_offset_key, top.key, s.key);
// overlap of query bbx and child bbx?
if ((minKey[0] <= (s.key[0] + center_offset_key)) && (maxKey[0] >= (s.key[0] - center_offset_key))
&& (minKey[1] <= (s.key[1] + center_offset_key)) && (maxKey[1] >= (s.key[1] - center_offset_key))
&& (minKey[2] <= (s.key[2] + center_offset_key)) && (maxKey[2] >= (s.key[2] - center_offset_key)))
{
s.node = top.node->getChild(i);
this->stack.push(s);
assert(s.depth <= this->maxDepth);
}
}
}
}
OcTreeKey minKey;
OcTreeKey maxKey;
};
#endif /* OCTREEITERATOR_HXX_ */
|