/usr/include/octomap/OcTreeKey.h is in liboctomap-dev 1.6.8+dfsg-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 | /*
* OctoMap - An Efficient Probabilistic 3D Mapping Framework Based on Octrees
* http://octomap.github.com/
*
* Copyright (c) 2009-2013, K.M. Wurm and A. Hornung, University of Freiburg
* All rights reserved.
* License: New BSD
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the University of Freiburg nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef OCTOMAP_OCTREE_KEY_H
#define OCTOMAP_OCTREE_KEY_H
/* According to c++ standard including this header has no practical effect
* but it can be used to determine the c++ standard library implementation.
*/
#include <ciso646>
#include <assert.h>
/* Libc++ does not implement the TR1 namespace, all c++11 related functionality
* is instead implemented in the std namespace.
*/
#if defined(__GNUC__) && ! defined(_LIBCPP_VERSION)
#include <tr1/unordered_set>
#include <tr1/unordered_map>
namespace octomap {
namespace unordered_ns = std::tr1;
};
#else
#include <unordered_set>
#include <unordered_map>
namespace octomap {
namespace unordered_ns = std;
}
#endif
namespace octomap {
/**
* OcTreeKey is a container class for internal key addressing. The keys count the
* number of cells (voxels) from the origin as discrete address of a voxel.
* @see OcTreeBaseImpl::coordToKey() and OcTreeBaseImpl::keyToCoord() for conversions.
*/
class OcTreeKey {
public:
OcTreeKey () {}
OcTreeKey (unsigned short int a, unsigned short int b, unsigned short int c)
{ k[0] = a; k[1] = b; k[2] = c; }
OcTreeKey(const OcTreeKey& other){
k[0] = other.k[0]; k[1] = other.k[1]; k[2] = other.k[2];
}
bool operator== (const OcTreeKey &other) const {
return ((k[0] == other[0]) && (k[1] == other[1]) && (k[2] == other[2]));
}
bool operator!= (const OcTreeKey &other) const {
return( (k[0] != other[0]) || (k[1] != other[1]) || (k[2] != other[2]) );
}
OcTreeKey& operator=(const OcTreeKey& other){
k[0] = other.k[0]; k[1] = other.k[1]; k[2] = other.k[2];
return *this;
}
const unsigned short int& operator[] (unsigned int i) const {
return k[i];
}
unsigned short int& operator[] (unsigned int i) {
return k[i];
}
unsigned short int k[3];
/// Provides a hash function on Keys
struct KeyHash{
size_t operator()(const OcTreeKey& key) const{
// a hashing function
return key.k[0] + 1337*key.k[1] + 345637*key.k[2];
}
};
};
/**
* Data structure to efficiently compute the nodes to update from a scan
* insertion using a hash set.
* @note you need to use boost::unordered_set instead if your compiler does not
* yet support tr1!
*/
typedef unordered_ns::unordered_set<OcTreeKey, OcTreeKey::KeyHash> KeySet;
/**
* Data structrure to efficiently track changed nodes as a combination of
* OcTreeKeys and a bool flag (to denote newly created nodes)
*
*/
typedef unordered_ns::unordered_map<OcTreeKey, bool, OcTreeKey::KeyHash> KeyBoolMap;
class KeyRay {
public:
KeyRay () {
ray.resize(100000);
reset();
}
void reset() {
end_of_ray = begin();
}
void addKey(OcTreeKey& k) {
assert(end_of_ray != ray.end());
*end_of_ray = k;
end_of_ray++;
}
unsigned int size() const { return end_of_ray - ray.begin(); }
unsigned int sizeMax() const { return 100000; }
typedef std::vector<OcTreeKey>::iterator iterator;
typedef std::vector<OcTreeKey>::const_iterator const_iterator;
typedef std::vector<OcTreeKey>::reverse_iterator reverse_iterator;
iterator begin() { return ray.begin(); }
iterator end() { return end_of_ray; }
const_iterator begin() const { return ray.begin(); }
const_iterator end() const { return end_of_ray; }
reverse_iterator rbegin() { return (reverse_iterator) end_of_ray; }
reverse_iterator rend() { return ray.rend(); }
public:
std::vector<OcTreeKey> ray;
std::vector<OcTreeKey>::iterator end_of_ray;
};
/**
* Computes the key of a child node while traversing the octree, given
* child index and current key
*
* @param[in] pos index of child node (0..7)
* @param[in] center_offset_key constant offset of octree keys
* @param[in] parent_key current (parent) key
* @param[out] child_key computed child key
*/
inline void computeChildKey (const unsigned int& pos, const unsigned short int& center_offset_key,
const OcTreeKey& parent_key, OcTreeKey& child_key) {
// x-axis
if (pos & 1) child_key[0] = parent_key[0] + center_offset_key;
else child_key[0] = parent_key[0] - center_offset_key - (center_offset_key ? 0 : 1);
// y-axis
if (pos & 2) child_key[1] = parent_key[1] + center_offset_key;
else child_key[1] = parent_key[1] - center_offset_key - (center_offset_key ? 0 : 1);
// z-axis
if (pos & 4) child_key[2] = parent_key[2] + center_offset_key;
else child_key[2] = parent_key[2] - center_offset_key - (center_offset_key ? 0 : 1);
}
/// generate child index (between 0 and 7) from key at given tree depth
inline unsigned char computeChildIdx(const OcTreeKey& key, int depth){
unsigned char pos = 0;
if (key.k[0] & (1 << depth)) pos += 1;
if (key.k[1] & (1 << depth)) pos += 2;
if (key.k[2] & (1 << depth)) pos += 4;
return pos;
}
/**
* Generates a unique key for all keys on a certain level of the tree
*
* @param level from the bottom (= tree_depth - depth of key)
* @param key input indexing key (at lowest resolution / level)
* @return key corresponding to the input key at the given level
*/
inline OcTreeKey computeIndexKey(unsigned short int level, const OcTreeKey& key) {
if (level == 0)
return key;
else {
unsigned short int mask = 65535 << level;
OcTreeKey result = key;
result[0] &= mask;
result[1] &= mask;
result[2] &= mask;
return result;
}
}
} // namespace
#endif
|