This file is indexed.

/usr/include/octomap/math/Quaternion.h is in liboctomap-dev 1.6.8+dfsg-2.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/*
 * OctoMap - An Efficient Probabilistic 3D Mapping Framework Based on Octrees
 * http://octomap.github.com/
 *
 * Copyright (c) 2009-2013, K.M. Wurm and A. Hornung, University of Freiburg
 * All rights reserved.
 * License: New BSD
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the University of Freiburg nor the names of its
 *       contributors may be used to endorse or promote products derived from
 *       this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef OCTOMATH_QUATERNION_H
#define OCTOMATH_QUATERNION_H

#include "Vector3.h"

#include <iostream>
#include <vector>


namespace octomath {

  /*!
   * \brief This class represents a Quaternion.
   *
   * The Unit Quaternion is one possible representation of the
   * attitude of an object in tree-dimensional space.
   *
   * This Quaternion class is implemented according to Diebel,
   * James. Representing Attitude: Euler Angle, Unit Quaternions, and
   * Rotation Vectors. Stanford University. 2006. - Technical Report.
   */

  class Quaternion {

  public:

    /*!
     * \brief Default constructor
     *
     * Constructs the (1,0,0,0) Unit Quaternion
     * representing the identity rotation.
     */
    inline Quaternion() { u() = 1;  x() = 0; y() = 0; z() = 0;  }

    /*!
     * \brief Copy constructor
     */
    Quaternion(const Quaternion& other);

    /*!
     * \brief Constructor
     *
     * Constructs a Quaternion from four single
     * values
     */
    Quaternion(float u, float x, float y, float z);

    /*!
     * \brief Constructor
     *
     * @param other a vector containing euler angles
     */
    Quaternion(const Vector3& other);

    /*!
     * \brief Constructor from Euler angles
     *
     * Constructs a Unit Quaternion from Euler angles / Tait Bryan
     * angles (in radians) according to the 1-2-3 convention.
     * @param roll phi/roll angle (rotation about x-axis)
     * @param pitch theta/pitch angle (rotation about y-axis)
     * @param yaw psi/yaw angle (rotation about z-axis)
     */
    Quaternion(double roll, double pitch, double yaw);


     
    //! Constructs a Unit Quaternion from a rotation angle and axis.  
    Quaternion(const Vector3& axis, double angle);


    /*!
     * \brief Conversion to Euler angles
     *
     * Converts the attitude represented by this to
     * Euler angles (roll, pitch, yaw).
     */
    Vector3 toEuler() const;

    void toRotMatrix(std::vector <double>& rot_matrix_3_3) const;


    inline const float& operator() (unsigned int i) const { return data[i]; }
    inline float& operator() (unsigned int i) { return data[i]; }

    float norm () const;
    Quaternion  normalized () const;
    Quaternion& normalize ();


    void operator/= (float x);
    Quaternion& operator= (const Quaternion& other);
    bool operator== (const Quaternion& other) const;

    /*!
     * \brief Quaternion multiplication
     *
     * Standard Quaternion multiplication which is not
     * commutative.
     * @return this * other
     */
    Quaternion operator* (const Quaternion& other) const;

    /*!
     * \brief Quaternion multiplication with extended vector
     *
     * @return q * (0, v)
     */
    Quaternion operator* (const Vector3 &v) const;

    /*!
     * \brief Quaternion multiplication with extended vector
     *
     * @return (0, v) * q
     */
    friend Quaternion operator* (const Vector3 &v, const Quaternion &q);

    /*!
     * \brief Inversion
     *
     * @return A copy of this Quaterion inverted
     */
    inline Quaternion inv() const {  return Quaternion(u(), -x(), -y(), -z()); }


    /*!
     * \brief Inversion
     *
     * Inverts this Quaternion
     * @return a reference to this Quaternion
     */
    Quaternion& inv_IP();

    /*!
     * \brief Rotate a vector
     *
     * Rotates a vector to the body fixed coordinate
     * system according to the attitude represented by
     * this Quaternion.
     * @param v a vector represented in world coordinates
     * @return v represented in body-fixed coordinates
     */
    Vector3 rotate(const Vector3 &v) const;

    inline float& u() { return data[0]; }
    inline float& x() { return data[1]; }
    inline float& y() { return data[2]; }
    inline float& z() { return data[3]; }

    inline const float& u() const { return data[0]; }
    inline const float& x() const { return data[1]; }
    inline const float& y() const { return data[2]; }
    inline const float& z() const { return data[3]; }

    std::istream& read(std::istream &s);
    std::ostream& write(std::ostream &s) const;
    std::istream& readBinary(std::istream &s);
    std::ostream& writeBinary(std::ostream &s) const;

  protected:
    float data[4];

  };

  //! user friendly output in format (u x y z)
  std::ostream& operator<<(std::ostream& s, const Quaternion& q);

}

#endif