/usr/include/odindata/fitting.h is in libodin-dev 1.8.8-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 | /***************************************************************************
fitting.h - description
-------------------
begin : Fri Apr 6 2001
copyright : (C) 2000-2014 by Thies Jochimsen & Michael von Mengershausen
email : thies@jochimsen.de mengers@cns.mpg.de
***************************************************************************/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
#ifndef FITTING_H
#define FITTING_H
#include <tjutils/tjnumeric.h> // for MinimizationFunction
#include <odindata/data.h>
#include <odindata/linalg.h>
#include <odindata/utils.h>
#define DEFAULT_MAX_ITER 1000
#define DEFAULT_TOLERANCE 1e-4
/**
* @addtogroup odindata
* @{
*/
/**
* Structure representing a fitting paramater.
*/
struct fitpar {
fitpar() : val(0.0), err(0.0) {}
/**
* Value of the fitting parameter which is varied during the fit.
*/
float val;
/**
* The error interval of the final result.
*/
float err;
};
////////////////////////////////////////////////////////////////////////
/**
* Base class of all multi-dimensional function classes which
* are used for fitting.
* The function has an independent variable 'x' (the argument to evaluate_f),
* a dependent variable 'y' (the result of evaluate_f) and a number of
* function parameters.
* To use this class, derive from it and overload the virtual
* functions 'evaluate_f' (function value), 'evaluate_df' (first derivative),
* 'numof_fitpars', and 'get_fitpar'.
* Parameters which are modified during the fit should be
* members of type fitpar.
*/
class ModelFunction {
public:
/**
* Returns the function value at position 'x'.
*/
virtual float evaluate_f(float x) const = 0;
/**
* Returns the first derivatives at position 'x'.
*/
virtual fvector evaluate_df(float x) const = 0;
/**
* Returns the number of independent fitting parameters.
*/
virtual unsigned int numof_fitpars() const = 0;
/**
* Returns reference to the i'th fitting parameter.
*/
virtual fitpar& get_fitpar(unsigned int i) = 0;
/**
* Returns the function values for x-values 'xvals'.
*/
Array<float,1> get_function(const Array<float,1>& xvals) const;
// dummy array used for default arguments
static const Array<float,1> defaultArray;
protected:
ModelFunction() {}
virtual ~ModelFunction() {}
fitpar dummy_fitpar;
};
////////////////////////////////////////////////////////////////////////
/**
* Interface class for all function fits
*/
class FunctionFitInterface {
public:
virtual ~FunctionFitInterface() {}
/**
* Prepare a non-linear least-square fit of function 'model_func' for 'nvals' values
*/
virtual bool init(ModelFunction& model_func, unsigned int nvals) = 0;
/**
* The fitting routine that takes the starting values from the model function,
* y-values 'yvals', and optionally the corresponding y-error bars 'ysigma'
* and x-vals 'xvals'. If no error-bars are given, they are all set to 0.1 and if no
* x-vals are given equidistant points with an increment of one are chosen,
* i.e. xvals(i)=i;
* A maximum of 'max_iterations' iterations and the given 'tolerance' is used during the fit.
* Returns true on success.
*/
virtual bool fit(const Array<float,1>& yvals,
const Array<float,1>& ysigma=defaultArray,
const Array<float,1>& xvals=defaultArray,
unsigned int max_iterations=DEFAULT_MAX_ITER, double tolerance=DEFAULT_TOLERANCE) = 0;
// dummy array used for default arguments
static const Array<float,1> defaultArray;
};
////////////////////////////////////////////////////////////////////////
class ModelData; // forward declaration
class GslData4Fit; // forward declaration
/**
* Class which is used for derivative-based fitting of functions.
*/
class FunctionFitDerivative : public virtual FunctionFitInterface {
public:
/**
* Constructs uninitialized function fit
*/
FunctionFitDerivative() : gsldata(0), data4fit(0) {}
/**
* Destructor
*/
~FunctionFitDerivative();
// overloading virtual functions of FunctionFitInterface
bool init(ModelFunction& model_func, unsigned int nvals);
bool fit(const Array<float,1>& yvals,
const Array<float,1>& ysigma=defaultArray,
const Array<float,1>& xvals=defaultArray,
unsigned int max_iterations=DEFAULT_MAX_ITER, double tolerance=DEFAULT_TOLERANCE);
private:
void print_state (size_t iter);
GslData4Fit* gsldata;
ModelData* data4fit;
};
///////////////////////////////////////////////////////////////////////
/**
* A function to fit an exponential curve to an 1D data set.
* It uses the function
*
* A * exp(lambda * x)
*/
struct ExponentialFunction : public ModelFunction {
fitpar A;
fitpar lambda;
// implementing virtual functions of ModelFunction
float evaluate_f(float x) const;
fvector evaluate_df(float x) const;
unsigned int numof_fitpars() const;
fitpar& get_fitpar(unsigned int i);
};
///////////////////////////////////////////////////////////////////////
/**
* A function to fit an exponential curve to an 1D data set.
* It uses the function
*
* A * exp(lambda * x) + C
*/
struct ExponentialFunctionWithOffset : public ModelFunction {
fitpar A;
fitpar lambda;
fitpar C;
// implementing virtual functions of ModelFunction
float evaluate_f(float x) const;
fvector evaluate_df(float x) const;
unsigned int numof_fitpars() const;
fitpar& get_fitpar(unsigned int i);
};
///////////////////////////////////////////////////////////////////////
/**
* A function to fit an Gaussian curve to an 1D data set.
* It uses the function
*
* A * exp( - 2 * ( (x-x0) / fwhm )^2 )
*/
struct GaussianFunction : public ModelFunction {
fitpar A;
fitpar x0;
fitpar fwhm;
// implementing virtual functions of ModelFunction
float evaluate_f(float x) const;
fvector evaluate_df(float x) const;
unsigned int numof_fitpars() const;
fitpar& get_fitpar(unsigned int i);
};
///////////////////////////////////////////////////////////////////////
/**
*
* Class for fitting sinus function to a 1D curve
*
* y= A*sin(m*x + c)
*/
struct SinusFunction : public ModelFunction {
fitpar A;
fitpar m;
fitpar c;
// implementing virtual functions of ModelFunction
float evaluate_f(float x) const;
fvector evaluate_df(float x) const;
unsigned int numof_fitpars() const;
fitpar& get_fitpar(unsigned int i);
};
///////////////////////////////////////////////////////////////////////
/**
*
* Class for fitting gamma variate function to a 1D curve
*
* y= A*x^alpha*exp(-x/beta)
*/
struct GammaVariateFunction : public ModelFunction {
/**
*
* Set parameters from a simplified set of parameters: xmax and ymax are the x- and y-values of the maximum (see Madsen, Phys. Med. Biol. 37, 1992)
*/
void set_pars(float alphaval, float xmax, float ymax);
fitpar A;
fitpar alpha;
fitpar beta;
// implementing virtual functions of ModelFunction
float evaluate_f(float x) const;
fvector evaluate_df(float x) const;
unsigned int numof_fitpars() const;
fitpar& get_fitpar(unsigned int i);
};
///////////////////////////////////////////////////////////////////////
/**
*
* Class for polynomial fitting of function
*
* y= Sum_i a[i] x^i, with i in [0,N_rank]
*
* N_rank is the degree of the polynome to be fitted
*/
template <int N_rank>
struct PolynomialFunction {
fitpar a[N_rank+1];
/**
*
* polynomial fitting routine.
* Fits the function to the y-values 'yvals', and optionally
* the corresponding error bars 'ysigma' and x-values 'xvals'.
* If no error-bars are given they are all set to 1.0 and if no
* x-vals are given equidistant points with an increment of one
* are chosen, i.e. xvals(i)=i;
* Returns true on success.
*/
bool fit(const Array<float,1>& yvals,
const Array<float,1>& ysigma,
const Array<float,1>& xvals);
bool fit(const Array<float,1>& yvals,
const Array<float,1>& ysigma){
firstIndex fi;
Array<float,1> xvals(yvals.size());
xvals=fi;
return fit(yvals,ysigma,xvals);
};
bool fit(const Array<float,1>& yvals){
Array<float,1> ysigma(yvals.size());
ysigma=1.;
return fit(yvals,ysigma);
};
/**
* Returns the polynomial function values for x-values 'xvals'
* using the current polynomial coefficients.
*/
Array<float,1> get_function(const Array<float,1>& xvals) const;
};
template <int N_rank>
bool PolynomialFunction<N_rank>::fit(const Array<float,1>& yvals, const Array<float,1>& ysigma, const Array<float,1>& xvals) {
int npol=N_rank+1;
for(int i=0; i<npol; i++) a[i]=fitpar(); // reset
int npts=yvals.size();
Array<float,1> sigma(npts);
if(ysigma.size()==npts) sigma=ysigma;
else sigma=1.0;
Array<float,1> x(npts);
if(xvals.size()==npts) x=xvals;
else for(int ipt=0; ipt<npts; ipt++) x(ipt)=ipt;
Array<float,2> A(npts,npol);
Array<float,1> b(npts);
for(int ipt=0; ipt<npts; ipt++) {
float weight=secureInv( sigma(ipt));
b(ipt)=weight*yvals(ipt);
for(int ipol=0; ipol<npol; ipol++) {
A(ipt,ipol)=weight*pow(x(ipt),ipol);
}
}
Array<float,1> coeff(solve_linear(A,b));
for(int ipol=0; ipol<npol; ipol++) a[ipol].val=coeff(ipol);
return true;
}
template <int N_rank>
Array<float,1> PolynomialFunction<N_rank>::get_function(const Array<float,1>& xvals) const {
int npts=xvals.size();
Array<float,1> result(npts); result=0.0;
for(int ipt=0; ipt<npts; ipt++) {
for(int ipol=0; ipol<(N_rank+1); ipol++) {
result(ipt)+=a[ipol].val*pow(xvals(ipt),ipol);
}
}
return result;
}
///////////////////////////////////////////////////////////////////////
/**
*
* Class for linear regression of the function
*
* y= m*x + c
*
* For details see Numerical Recepies in C (2nd edition), section 15.2.
*/
struct LinearFunction {
fitpar m;
fitpar c;
/**
*
* Linear fitting routine.
* Fits the function to the y-values 'yvals', and optionally
* the corresponding error bars 'ysigma' and x-values 'xvals'.
* If no error-bars are given they are all set to 1.0 and if no
* x-vals are given equidistant points with an increment of one
* are chosen, i.e. xvals(i)=i;
* Returns true on success.
*/
bool fit(const Array<float,1>& yvals,
const Array<float,1>& ysigma=defaultArray,
const Array<float,1>& xvals=defaultArray);
/**
* Returns the linear function values for x-values 'xvals'
* using the current fit parameters.
*/
Array<float,1> get_function(const Array<float,1>& xvals) const;
// dummy array used for default arguments
static const Array<float,1> defaultArray;
};
///////////////////////////////////////////////////////////////////////
class GslData4DownhillSimplex; // forward declaration
/**
* downhill simplex optimizer
*/
class DownhillSimplex {
public:
/**
* Construct downhill simplex optimizer
* - function: Function to evaluate/minimize
*/
DownhillSimplex(MinimizationFunction& function);
/**
* Destructor
*/
~DownhillSimplex();
/**
* Returns parameter values which minimize function
* - starting_point: Starting from this initial point
* - step_size: The size of the initial trial steps
* - ftol: Tolerannce
* - nmax: Max number of iterations
*/
fvector get_minimum_parameters(const fvector& starting_point, const fvector& step_size, unsigned int max_iterations=DEFAULT_MAX_ITER, double tolerance=DEFAULT_TOLERANCE);
private:
unsigned int ndim;
GslData4DownhillSimplex* gsldata;
};
///////////////////////////////////////////////////////////////////////
/**
* Class for downhill-simplex-based fitting of functions.
*/
class FunctionFitDownhillSimplex : public virtual FunctionFitInterface, public MinimizationFunction {
public:
/**
* Constructs uninitialized function fit
*/
FunctionFitDownhillSimplex();
/**
* Destructor
*/
~FunctionFitDownhillSimplex();
// overloading virtual functions of FunctionFitInterface
bool init(ModelFunction& model_func, unsigned int nvals);
bool fit(const Array<float,1>& yvals,
const Array<float,1>& ysigma=defaultArray,
const Array<float,1>& xvals=defaultArray,
unsigned int max_iterations=DEFAULT_MAX_ITER, double tolerance=DEFAULT_TOLERANCE);
// overloading virtual functions of MinimizationFunction
unsigned int numof_fitpars() const;
float evaluate(const fvector& pars) const;
private:
ModelFunction* func;
DownhillSimplex* ds;
Array<float,1> yvals_cache;
Array<float,1> ysigma_cache;
Array<float,1> xvals_cache;
};
///////////////////////////////////////////////////////////////////////
/**
* Fits an N_rank-dimensional polynomial of order 'polynom_order' to each point of the
* array using the values of its neighbours regarding their reliability
* (i.e. their relative weight for the fit). Parameters are:
* - value_map: The array to be fitted
* - reliability_map: The reliability of each point
* - polynom_order: Order of the polynom
* - kernel_size: Size of the neighbourhood of the pixel which is
* considered for the fit (using a Gaussian kernel with this FWHM)
* - only_zero_reliability: Fit only pixel with zero reliabiliy
*
* This function returns the fitted array
*/
template <int N_rank>
Array<float,N_rank> polyniomial_fit(const Array<float,N_rank>& value_map, const Array<float,N_rank>& reliability_map,
unsigned int polynom_order, float kernel_size, bool only_zero_reliability=false) {
Log<OdinData> odinlog("","polyniomial_fit");
Data<float,N_rank> result(value_map.shape());
result=0.0;
if(!same_shape(value_map,reliability_map)) {
ODINLOG(odinlog,errorLog) << "size mismatch (value_map.shape()=" << value_map.shape() << ") != (reliability_map.shape()=" << reliability_map.shape() << ")" << STD_endl;
return result;
}
if(min(reliability_map)<0.0) {
ODINLOG(odinlog,errorLog) << "reliability_map must be non-negative" << STD_endl;
return result;
}
int minsize=max(value_map.shape());
for(int idim=0; idim<N_rank; idim++) {
int dimsize=value_map.shape()(idim);
if( (dimsize>1) && (dimsize<minsize) ) minsize=dimsize;
}
if(minsize<=0) {
return result;
}
if((minsize-1)<int(polynom_order)) {
polynom_order=minsize-1;
ODINLOG(odinlog,warningLog) << "array size too small, restricting polynom_order to " << polynom_order << STD_endl;
}
TinyVector<int,N_rank> valshape(value_map.shape());
int nvals=value_map.numElements();
TinyVector<int,N_rank> polsize; polsize=polynom_order+1;
Data<int,N_rank> polarr(polsize);
int npol=polarr.numElements();
if(pow(kernel_size,float(N_rank))<float(npol)) {
kernel_size=pow(double(npol),double(1.0/float(N_rank)));
ODINLOG(odinlog,warningLog) << "kernel_size too small for polynome, increasing to " << kernel_size << STD_endl;
}
int neighb_pixel=int(kernel_size);
if(neighb_pixel<=0) neighb_pixel=1;
TinyVector<int,N_rank> neighbsize; neighbsize=2*neighb_pixel+1;
TinyVector<int,N_rank> neighboffset; neighboffset=-neighb_pixel;
Data<int,N_rank> neighbarr(neighbsize); // neighbour grid around root pixel
int nneighb=neighbarr.numElements();
ODINLOG(odinlog,normalDebug) << "nvals/npol/nneighb=" << nvals << "/" << npol << "/" << nneighb << STD_endl;
if(npol>nneighb) {
ODINLOG(odinlog,warningLog) << "polynome order (" << npol << ") larger than number of neighbours (" << nneighb << ")" << STD_endl;
}
Array<float,2> A(npol,npol);
Array<float,1> c(npol);
Array<float,1> b(npol);
TinyVector<int,N_rank> valindex;
TinyVector<int,N_rank> neighbindex;
TinyVector<int,N_rank> currindex;
TinyVector<int,N_rank> diffindex;
TinyVector<int,N_rank> polindex;
TinyVector<int,N_rank> polindex_sum;
float epsilon=0.01;
float relevant_radius=0.5*kernel_size*sqrt(double(N_rank))+epsilon;
// iterate through pixels of value_map
for(int ival=0; ival<nvals; ival++) {
valindex=result.create_index(ival);
if( (!only_zero_reliability) || (reliability_map(valindex)<=0.0) ) { // fit only pixel with zero reliability
A=0.0;
b=0.0;
int n_relevant_neighb_pixel=0;
// iterate through neigbourhood of pixel and accumulate them in a single
// set of equations, weighted by their reliability
for(int ineighb=0; ineighb<nneighb; ineighb++) {
neighbindex=neighbarr.create_index(ineighb);
currindex=valindex+neighboffset+neighbindex;
bool valid_pixel=true;
// is the pixel within value_map ?
for(int irank=0; irank<N_rank; irank++) {
if(currindex(irank)<0 || currindex(irank)>=valshape(irank)) valid_pixel=false;
}
// does the pixel have non-vanishing reliability
float reliability=0.0;
if(valid_pixel) reliability=reliability_map(currindex);
if(reliability<=0.0) valid_pixel=false;
if(valid_pixel) {
diffindex=currindex-valindex; // (xk-x0,yk-y0,...)
float radiussqr=sum(diffindex*diffindex);
float weight=reliability*exp(-2.0*radiussqr/(kernel_size*kernel_size));
if(weight>0.0) {
if(sqrt(radiussqr)<=relevant_radius) n_relevant_neighb_pixel++;
// create b_i,j
for(int ipol=0; ipol<npol; ipol++) {
polindex=polarr.create_index(ipol); // (i,j,..)
float polproduct=1.0;
for(int irank=0; irank<N_rank; irank++) polproduct*=pow(float(diffindex(irank)),float(polindex(irank)));
b(ipol)+=weight*value_map(currindex)*polproduct;
}
// create A_ii',jj'
for(int ipol=0; ipol<npol; ipol++) {
for(int ipol_prime=0; ipol_prime<npol; ipol_prime++) {
polindex_sum=polarr.create_index(ipol)+polarr.create_index(ipol_prime);
float polproduct=1.0;
for(int irank=0; irank<N_rank; irank++) polproduct*=pow(float(diffindex(irank)),float(polindex_sum(irank)));
A(ipol,ipol_prime)+=weight*polproduct;
}
}
}
}
}
if(n_relevant_neighb_pixel>=npol) { // do we have enough pixel for the fit ?
c=solve_linear(A,b);
result(valindex)=c(0);
}
} else result(valindex)=value_map(valindex);
}
return result;
}
/** @}
*/
#endif
|