This file is indexed.

/usr/include/odinpara/geometry.h is in libodin-dev 1.8.8-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
/***************************************************************************
                          geometry.h  -  description
                             -------------------
    begin                : Wed Apr 17 2002
    copyright            : (C) 2000-2014 by Thies H. Jochimsen
    email                : thies@jochimsen.de
 ***************************************************************************/

/***************************************************************************
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 ***************************************************************************/

#ifndef GEOMETRY_H
#define GEOMETRY_H


#include <odinpara/jdxblock.h>
#include <odinpara/jdxnumbers.h>
#include <odinpara/jdxarrays.h>

#include <odinpara/odinpara.h>


/**
  * @addtogroup odinpara
  * @{
  */



/**
  * Enum to specify which boundary of a slice to take for a given direction
  */
enum sliceBoundary {lowerBound=0,upperBound,n_boundaries};


/**
  * The principal slice direction in the anatomical system of reference
  * - sagittal: Slice is perpendicular to left-right direction
  * - coronal: Slice is perpendicular to anterior-posterior direction
  * - axial: Slice is perpendicular to head-foot direction
  */
enum sliceOrientation {sagittal=0,coronal,axial,n_orientations};


/**
  * The geometry mode
  * - slicepack: A stack of equidistant parallel slices
  * - voxel_3d: A single 3D volume
  */
enum geometryMode {slicepack=0,voxel_3d,n_geometry_modes};


////////////////////////////////////////////////////////////////////////////


/**
  * \brief  Rotation Matrix
  *
  * This class represents 3 by 3 rotation matrix
  */
class RotMatrix : public virtual Labeled {
 public:

/**
  * default constructor for a 3 by 3  rotation matrix
  */
  RotMatrix(const STD_string& object_label = "unnamedRotMatrix" );

/**
  * constructs a rotation matrix from an existing rotation matrix
  */
   RotMatrix(const RotMatrix& sct);

/**
  * returns a row of rotation matrix
  */
   dvector& operator [] (unsigned int index) {return matrix[index%3];} // make sure index is lower than 3

/**
  * returns a row of rotation matrix
  */
   const dvector& operator [] (unsigned int index) const {return matrix[index%3];} // make sure index is lower than 3

/**
  * assignment operator
  */
  RotMatrix& operator = (const RotMatrix& sct);

/**
  * returns true if srm is element-wise equal to this. Two elements are
  * considered equal if their difference does not exceed GEO_CHECK_LIMIT.
  *
  */
  bool operator == (const RotMatrix& srm) const;

  // dummy comparison operator for lists
  bool operator <  (const RotMatrix& srm) const;

/**
  * returns the product this * vec
  */
  dvector operator * (const dvector& vec) const;

/**
  * returns the product this * matrix
  */
  RotMatrix operator * (const RotMatrix& matrix) const;

/**
  * Returns the matrix as a 2-dim farray
  */
  operator farray () const;

/**
  * Create anti-clockwise in-plane rotation matrix with angle 'phi' (in rad).
  */
  RotMatrix& set_inplane_rotation(float phi);


/**
  * returns a string describing the rotation matrix
  */
  STD_string print() const;

 private:
  friend class RotMatrixVector;

  class rowVec : public dvector {
   public:
    rowVec() : dvector(3) {};
    ~rowVec() {};
  };

//  bool check_and_correct();

  rowVec matrix[3];

//  static dvector returndummy;
};


////////////////////////////////////////////////////////////////////////////


/**
  * \brief  Geometry Settings
  *
  * Depending on the selected geometryMode, this class describes a pack
  * of parallel and congruent slices, or a 3D volume, .i.e. a voxel.
  *
  * The patients x,y,z coordinate system used for the gradients is as follows:
  * If standing in front of the magnet with the feet of the patient
  * pointing towards you, the axes are oriented
  *
  * - x: from right to left (in the final image left/right will then have the correct polarity)
  * - y: from bottom to top (floor to ceiling)
  * - z: pointing away from you to the patients head
  *
  *
  * The three orientation angles 'heightAngle', 'azimutAngle', and 'inplaneAngle'
  * (in degree) describe the orientation of the slicepack/voxel relative to
  * the x/y/z-coordinate system of the gradients.
  * If all these angles are zero, the read/phase/slice-system
  * of the slicepack/voxel is the same as the x/y/z-system of
  * the gradients. Otherwise, the system is rotated by the following
  * angles (in the given order):
  *
  * - azimutAngle: Anti-clockwise rotation around y-axis.
  * - heightAngle: Angle between slice vector (which is perp. to the slice) and x-z-plane
  * - inplaneAngle: Clockwise rotation around slice vector.
  *
  */
class Geometry : public JcampDxBlock {

public:

/**
  * Constructs a Geometry with the given label
  */
  Geometry(const STD_string& label="unnamedGeometry");

/**
  * Copy constructor
  */
  Geometry(const Geometry& ia);

/**
  * Assignment operator
  */
  Geometry& operator = (const Geometry& ia);

/**
  * Sets the geometry selection mode
  */
  Geometry& set_Mode(geometryMode mode);

/**
  * Returns the geometry selection mode
  */
  geometryMode get_Mode() const {return geometryMode(int(Mode));}


/**
  * Sets the Field Of View in the specified direction
  */
  Geometry& set_FOV(direction dir,double fov);

/**
  * Returns the Field Of View in the specified direction
  */
  double get_FOV(direction dir) const;

/**
  * Sets the spatial offset in the specified direction
  */
  Geometry& set_offset(direction dir,double offset);

/**
  * Returns the spatial offset in the specified direction
  */
  double get_offset(direction dir) const;

/**
  * Sets the number of slices of the current slice pack
  */
  Geometry& set_nSlices(unsigned int nslices);

/**
  * Returns the number of slices of the current slice pack
  */
  unsigned int get_nSlices() const {return nSlices;};

/**
  * Sets the slice thickness of the current slice pack
  */
  Geometry& set_sliceThickness(double thick);

/**
  * Sets the slice interslice distance
  */
  Geometry& set_sliceDistance(double dist);

/**
  * Returns the slice interslice distance
  */
  double get_sliceDistance() const {return sliceDistance;}

/**
  * Returns the normalised vector for the read direction in the laboratory system of reference
  */
  dvector get_readVector() const;

/**
  * Returns the normalised vector for the phase direction in the laboratory system of reference
  */
  dvector get_phaseVector() const;

/**
  * Returns the normalised vector for the slice direction in the laboratory system of reference
  */
  dvector get_sliceVector() const;

/**
  * Returns the vector of spatial offsets in slice direction for the different slices of the slicepack.
  */
  dvector get_sliceOffsetVector() const;

/**
  * Returns the slice thickness for the slices
  */
  double get_sliceThickness() const {return sliceThickness;}


/**
  * Returns a 5-dimensional array that contains the corner points of the slices/voxels where indexing is as follows:
  * (unsigned int slice,sliceBoundary boundary1,sliceBoundary boundary2,sliceBoundary boundary3, axis direction) with
  * - slice: The slice for the point
  * - boundary1: The boundary in the read direction
  * - boundary2: The boundary in the phase direction
  * - boundary3: The boundary in the slice direction, the size is 1 in slicepack mode
  * - direction: The x,y,z index
  *
  * The points are transformed to slice 'backgrslice' the coordinate system of 'background'.
  *
  */
  darray get_cornerPoints(const Geometry& background, unsigned int backgrslice) const;


/**
  * Set the angle parameters to match the specified anatomical slice orientation
  */
  Geometry& set_orientation(sliceOrientation orientation);


/**
  * Returns the principal anatomical slice orientation of slice normal 'svec'.
  */
  static sliceOrientation get_slice_orientation(const dvector& svec);

/**
  * Returns the principal anatomical slice orientation
  */
  sliceOrientation get_orientation() const {return get_slice_orientation(get_sliceVector());}


/**
  * Returns the orientation of the slice, i.e. the three orientation angles
  * 'heightAng', 'azimutAng' and 'inplaneAng'.
  * 'revSlice' returns whether the slice direction (handness) is reversed.
  */
  void get_orientation(double& heightAng, double& azimutAng, double& inplaneAng, bool& revSlice) const;

/**
  * Specifies the orientation of the slice pack by giving the three orientation angles
  * 'heightAng', 'azimutAng' and 'inplaneAng'.
  * Optionally, the slice direction can be reversed by setting 'revSlice' to true.
  */
  Geometry& set_orientation(double heightAng, double azimutAng, double inplaneAng, bool revSlice=false);

/**
  * Specifies the orientation of the slicepack/voxel by giving the three
  * vectors 'readvec', 'phasevec', and 'slicevec' which point in read,
  * phase, and slice direction. The vector 'offset' must contain the spatial
  * offset of the center of the slicepack/voxel.
  */
  Geometry& set_orientation_and_offset(const dvector& readvec, const dvector& phasevec, const dvector& slicevec, const dvector& centervec);



/**
  * Returns a vector pointing to the center of the slicepack/voxel.
  */
  dvector get_center() const;

/**
  * Returns the rotation matrix to convert the gradient strengths in the
  * sequence coordinate system (read,phase,slice) to the laboratory system (x,y,z).
  * If 'transpose' is set to true, the transposed matrix is returned.
  */
  RotMatrix get_gradrotmatrix(bool transpose=false) const;


/**
  * Coordinate transformation from sequence coordinate system (read,phase,slice)
  * of slice 'slice' to laboratory system (x,y,z), or vice versa if
  * 'inverse' is set to 'true'.
  */
  dvector transform(const dvector& rpsvec, bool inverse=false) const;

/**
  * Transpose geometry in-plane, 'reverse_read' and 'reverse_phase'
  * can be used to reverse read/phase direction before transposing.
  */
  Geometry& transpose_inplane(bool reverse_read=false, bool reverse_phase=false);


/**
  * Resets the slicepacks geometry to its inintial state
  */
  Geometry& reset();

/**
  * Updates internal relations of the geometry parameters
  */
  Geometry& update();



 private:

  dvector get_readVector_inplane() const;
  dvector get_phaseVector_inplane() const;

  void append_all_members();

  double deg2rad(double degree) const {return degree/180.0*PII;}

  JDXenum Mode;

  JDXdouble FOVread;
  JDXdouble offsetRead;
  JDXdouble FOVphase;
  JDXdouble offsetPhase;
  JDXdouble FOVslice;
  JDXdouble offsetSlice;

  JDXdouble heightAngle;
  JDXdouble azimutAngle;
  JDXdouble inplaneAngle;
  JDXbool   reverseSlice;

  JDXint    nSlices;
  JDXdouble sliceDistance;
  JDXdouble sliceThickness;
  JDXintArr sliceOrder;

  JDXaction Reset;
  JDXaction Transpose;


  // cache to speed up repetitive calls to transform()
  mutable bool cache_up2date;
  mutable bool inv_trans_cache;
  mutable double rotmat_cache[3][3];
  mutable double offset_cache[3];
};


/** @}
  */


#endif