/usr/include/odinseq/seqsim.h is in libodin-dev 1.8.8-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 | /***************************************************************************
seqsim.h - description
-------------------
begin : Tue Jun 11 2002
copyright : (C) 2000-2014 by Thies H. Jochimsen
email : thies@jochimsen.de
***************************************************************************/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
#ifndef SEQSIM_H
#define SEQSIM_H
#include <tjutils/tjthread.h>
#include <tjutils/tjnumeric.h> // for RandomDist
#include <odinpara/sample.h>
#include <odinseq/seqclass.h>
/**
* @ingroup odinseq
* \brief Time interval for simulation
*
* Data structure to hold the values for a single interval with constant fields
* - dt: Duration of the interval
* - B1: Complex RF field
* - freq: Transmit/receive frequency
* - phase: Transmit/receive phase in deg
* - rec: Receiver (>0 means on)
* - Gx: Gradient in read direction
* - Gy: Gradient in phase direction
* - Gz: Gradient in slice direction
*/
struct SeqSimInterval {
SeqSimInterval() : dt(0.0), B1(0.0), freq(0.0), phase(0.0), rec(0.0), Gx(0.0), Gy(0.0), Gz(0.0) {}
float dt;
STD_complex B1;
float freq;
float phase;
float rec;
float Gx;
float Gy;
float Gz;
};
/////////////////////////////////////////////////////////////////////
class ProgressMeter; // forward declaration
/**
* @ingroup odinseq_internals
* Interface for Simulators
*/
class SeqSimAbstract : public virtual SeqClass {
public:
virtual ~SeqSimAbstract() {}
/**
* Prepare a simulation (i.e. before successive calls to simulate() ) with the parameters:
* - sample: The virtual sample
* - transmit_coil: Transmitter coil, 0 for none
* - receive_coil: Receiver coil, 0 for none
* - progmeter: Status indicator to trace progress, 0 for none
*/
virtual void prepare_simulation(const Sample& sample, CoilSensitivity* transmit_coil=0, CoilSensitivity* receive_coil=0, ProgressMeter* progmeter=0) = 0;
/**
* Simulation with
* - simvals: The magnetic fields during a time interval
* - gamma: Gyromagnetic ration of the nucleus observed
* Return value: Signal in each receiver channel
*/
virtual cvector simulate(const SeqSimInterval& simvals, double gamma) = 0;
/**
* Call this function after a simulation (i.e. after successive calls to simulate() )
*/
virtual void finalize_simulation() = 0;
};
/////////////////////////////////////////////////////////////////////
/**
* @addtogroup odinseq
* @{
*/
/**
* \brief MAGSI-based Magnetization Simulator
*
* This is a simulator to calculate the time evolution of a magnetization grid
* in 4 dimension (frequency and three spatial dimensions). This simulation of the
* Bloch-Torrey equations is performed by means of the MAGSI algorith
* (c.f. Journal of Magnetic Resonance 180:29-38, 2006).
* Simulation usually involves the following steps:
* - Initialize the simulator by prepare_simulation() using a virtual sample.
* - Iterative simulation by simulate() using a structure with piece-wise constant fields.
* - Finish simulation by calling finalize_simulation().
*/
class SeqSimMagsi : public JcampDxBlock, public ThreadedLoop<SeqSimInterval,cvector,int>, public virtual SeqSimAbstract {
public:
/**
* Constructs a simulator labeled 'object_label'.
*/
SeqSimMagsi(const STD_string& label="unnamedSeqSimMagsi");
/**
* Copy constructor
*/
SeqSimMagsi(const SeqSimMagsi& ssm);
/**
* Destructor
*/
~SeqSimMagsi();
/**
* Assignment operator
*/
SeqSimMagsi& operator = (const SeqSimMagsi& ssm);
/**
* Returns the overall size of the array
*/
unsigned int get_total_size() const {return Mx.total();}
/**
* Set each magnetization to initial state 'initial_vector', which is (0,0,1) by default
*/
SeqSimMagsi& reset_magnetization();
/**
* Set the vector for the initial magnetization
*/
SeqSimMagsi& set_initial_vector(float Mx, float My, float Mz);
/**
* Returns the real part of the transverse magnetisation
*/
const farray& get_Mx() const {return Mx;}
/**
* Returns the imaginary part of the transverse magnetisation
*/
const farray& get_My() const {return My;}
/**
* Returns the longitudinal magnetisation
*/
const farray& get_Mz() const {return Mz;}
/**
* Returns the amplitude of the transverse magnetisation
*/
const farray& get_Mamp() const {return Mamp;}
/**
* Returns the phase of the transverse magnetisation
*/
const farray& get_Mpha() const {return Mpha;}
/**
* Updates all parameter relations
*/
SeqSimMagsi& update();
/**
* Specifies whether simulation should be performed everytime update() is called
*/
SeqSimMagsi& set_online_simulation(bool onlineflag) { online=onlineflag; return *this;}
/**
* Specifies whether intra-voxel magnetzation gradients are considered during simulation
*/
SeqSimMagsi& set_intravoxel_simulation(bool ivflag) { magsi=ivflag; return *this;}
/**
* Specifies the number of threads used during simulation
*/
SeqSimMagsi& set_numof_threads(unsigned int n) { nthreads=n; return *this;}
/**
* Specifies a rotation matrix for the spatial domain, i.e. the magnetization
* array will be rotated in space using the specified rotation matrix.
*/
SeqSimMagsi& set_spat_rotmatrix(const RotMatrix& rotmatrix);
/**
* Returns whether simulation should be performed, i.e. whether the 'online' flag
* is true or 'update' was activated.
*/
bool do_simulation();
// implementing virtual functions of SeqSimAbstract
void prepare_simulation(const Sample& sample, CoilSensitivity* transmit_coil=0, CoilSensitivity* receive_coil=0, ProgressMeter* progmeter=0);
cvector simulate(const SeqSimInterval& simvals, double gamma);
void finalize_simulation();
// implementing virtual functions of ThreadedLoop
bool kernel(const SeqSimInterval& simvals, cvector& signal, int&, unsigned int begin, unsigned int end);
private:
friend class SeqTimecourse;
/**
* Resize the array in the four dimensions according to the given sizes
*/
SeqSimMagsi& resize(unsigned int xsize, unsigned int ysize, unsigned int zsize, unsigned int freqsize=1);
void common_init();
int append_all_members();
SeqSimMagsi& MampMpha2MxMy();
SeqSimMagsi& MxMy2MampMpha();
void update_axes();
void set_axes_cache(const Sample& sample);
JDXfloatArr Mx;
JDXfloatArr My;
JDXfloatArr Mz;
JDXfloatArr Mamp;
JDXfloatArr Mpha;
JDXbool online;
JDXaction update_now;
JDXtriple initial_vector;
bool iactive;
bool magsi;
unsigned int nthreads;
RotMatrix* spat_rotmatrix;
double gamma_cache;
double elapsed_time; // within current time frame
unsigned int time_index_cache;
unsigned int numof_time_intervals_cache;
double* time_intervals_cache;
// cache for update_axes()
float x_low;
float x_upp;
float y_low;
float y_upp;
float z_low;
float z_upp;
float freq_low; // in rad/s
float freq_upp; // in rad/s
// intra-voxel magn gradients
float *dMx[4];
float *dMy[4];
float *dMz[4];
float *dppm[3]; // readonly
// use raw pointers to avoid slower []-operator of STD_vector
unsigned int oneframe_size_cache; // size of one frame
float* xpos_cache;
float* ypos_cache;
float* zpos_cache;
float* freqoffset_cache; // in rad*kHz
unsigned int nframes_ppm_cache;
float* ppm_cache;
unsigned int nframes_spin_density_cache;
float* spin_density_cache;
STD_complex* B1map_transm_cache;
unsigned int num_rec_channel_cache;
STD_complex** B1map_receiv_cache;
unsigned int nframes_Dcoeff_cache;
float* Dcoeff_cache;
bool sim_diffusion;
unsigned int nframes_r1_cache;
float* r1_cache;
unsigned int nframes_r2_cache;
float* r2_cache;
bool* has_relax_cache;
float L[4];
float B0_ppm;
bool simcache_up2date;
void outdate_simcache();
};
/////////////////////////////////////////////////////////////////////
#ifdef STANDALONE_PLUGIN // exclude from Siemens DLLs
/**
* \brief Monte-Carlo-based Magnetization Simulator
*
* Monte-Carlo Simulator for diffusional averaging
*/
class SeqSimMonteCarlo : public ThreadedLoop<SeqSimInterval,cvector,RandomDist>, public virtual SeqSimAbstract {
public:
/**
* Constructs a simulator labeled 'object_label' to simulate 'nparticles' diffusion trajectories using 'nthreads' threads.
*/
SeqSimMonteCarlo(const STD_string& label="unnamedSeqSimMonteCarlo", unsigned int nparticles=10000, unsigned int nthreads=1);
/**
* Copy constructor
*/
SeqSimMonteCarlo(const SeqSimMonteCarlo& ssmc) {common_init(); SeqSimMonteCarlo::operator = (ssmc);}
/**
* Assignment operator
*/
SeqSimMonteCarlo& operator = (const SeqSimMonteCarlo& ssmc);
/**
* Get spatial distribution of particles after simulation
*/
farray get_spatial_dist() const;
// implementing virtual functions of SeqSimAbstract
void prepare_simulation(const Sample& sample, CoilSensitivity* transmit_coil=0, CoilSensitivity* receive_coil=0, ProgressMeter* progmeter=0);
cvector simulate(const SeqSimInterval& simvals, double gamma);
void finalize_simulation();
// implementing virtual functions of ThreadedLoop
bool kernel(const SeqSimInterval& simvals, cvector& signal, RandomDist& local_rng, unsigned int begin, unsigned int end);
private:
struct Particle {
float pos[3];
float Mx, My, Mz;
};
void common_init();
void clear_cache();
unsigned int linear_index(const float pos[3]) const;
STD_vector<Particle> particle;
unsigned int numof_threads;
RandomDist rng; // seed only once per simulator
double gamma_cache;
unsigned int size_cache[3];
// use raw pointers to avoid slower []-operator of STD_vector
float* Dcoeff_cache;
float* ppmMap_cache;
float* R1map_cache;
float* R2map_cache;
float* spinDensity_cache;
float pixelspacing_cache[3];
float B0_ppm_cache;
};
#endif
/////////////////////////////////////////////////////////////////////
/** @}
*/
#endif
|