This file is indexed.

/usr/include/ompl/control/ODESolver.h is in libompl-dev 1.0.0+ds2-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
/*********************************************************************
* Software License Agreement (BSD License)
*
*  Copyright (c) 2011, Rice University
*  All rights reserved.
*
*  Redistribution and use in source and binary forms, with or without
*  modification, are permitted provided that the following conditions
*  are met:
*
*   * Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   * Redistributions in binary form must reproduce the above
*     copyright notice, this list of conditions and the following
*     disclaimer in the documentation and/or other materials provided
*     with the distribution.
*   * Neither the name of the Rice University nor the names of its
*     contributors may be used to endorse or promote products derived
*     from this software without specific prior written permission.
*
*  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
*  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
*  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
*  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
*  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
*  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
*  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
*  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
*  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
*  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
*  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
*  POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/

/* Author: Ryan Luna */

#ifndef OMPL_CONTROL_ODESOLVER_
#define OMPL_CONTROL_ODESOLVER_

#include "ompl/control/Control.h"
#include "ompl/control/SpaceInformation.h"
#include "ompl/control/StatePropagator.h"
#include "ompl/util/Console.h"
#include "ompl/util/ClassForward.h"

#include <boost/version.hpp>
#if BOOST_VERSION >= 105300
#include <boost/numeric/odeint.hpp>
namespace odeint = boost::numeric::odeint;
#else
#include <omplext_odeint/boost/numeric/odeint.hpp>
namespace odeint = boost::numeric::omplext_odeint;
#endif
#include <boost/function.hpp>
#include <cassert>
#include <vector>

namespace ompl
{

    namespace control
    {

        /// @cond IGNORE
        OMPL_CLASS_FORWARD(ODESolver);
        /// @endcond

        /// \class ompl::control::ODESolverPtr
        /// \brief A boost shared pointer wrapper for ompl::control::ODESolver

        /// \brief Abstract base class for an object that can solve ordinary differential
        /// equations (ODE) of the type q' = f(q,u) using numerical integration.  Classes
        /// deriving from this must implement the solve method.  The user must supply
        /// the ODE to solve.
        class ODESolver
        {
        public:
            /// \brief Portable data type for the state values
            typedef std::vector<double> StateType;

            /// \brief Callback function that defines the ODE.  Accepts
            /// the current state, input control, and output state.
            typedef boost::function<void(const StateType &, const Control*, StateType &)> ODE;

            /// \brief Callback function to perform an event at the end of numerical
            /// integration.  This functionality is optional.
            typedef boost::function<void(const base::State *state, const Control *control, const double duration, base::State *result)> PostPropagationEvent;

            /// \brief Parameterized constructor.  Takes a reference to SpaceInformation,
            /// an ODE to solve, and the integration step size.
            ODESolver (const SpaceInformationPtr& si, const ODE& ode, double intStep) : si_(si), ode_(ode), intStep_(intStep)
            {
            }

            /// \brief Destructor.
            virtual ~ODESolver ()
            {
            }

            /// \brief Set the ODE to solve
            void setODE (const ODE &ode)
            {
                ode_ = ode;
            }

            /// \brief Return the size of a single numerical integration step
            double getIntegrationStepSize () const
            {
                return intStep_;
            }

            /// \brief Set the size of a single numerical integration step
            void setIntegrationStepSize (double intStep)
            {
                intStep_ = intStep;
            }

            /** \brief Get the current instance of the space information */
            const SpaceInformationPtr& getSpaceInformation() const
            {
                return si_;
            }

            /// \brief Retrieve a StatePropagator object that solves a system of ordinary
            /// differential equations defined by an ODESolver.
            /// An optional PostPropagationEvent can also be specified as a callback after
            /// numerical integration is finished for further operations on the resulting
            /// state.
            static StatePropagatorPtr getStatePropagator (ODESolverPtr solver,
                const PostPropagationEvent &postEvent = NULL)
            {
                class ODESolverStatePropagator : public StatePropagator
                {
                    public:
                        ODESolverStatePropagator (ODESolverPtr solver, const PostPropagationEvent &pe) : StatePropagator (solver->si_), solver_(solver), postEvent_(pe)
                        {
                            if (!solver.get())
                                OMPL_ERROR("ODESolverPtr does not reference a valid ODESolver object");
                        }

                        virtual void propagate (const base::State *state, const Control *control, const double duration, base::State *result) const
                        {
                            ODESolver::StateType reals;
                            si_->getStateSpace()->copyToReals(reals, state);
                            solver_->solve (reals, control, duration);
                            si_->getStateSpace()->copyFromReals(result, reals);

                            if (postEvent_)
                                postEvent_ (state, control, duration, result);
                        }

                    protected:
                        ODESolverPtr solver_;
                        ODESolver::PostPropagationEvent postEvent_;
                };
                return StatePropagatorPtr(dynamic_cast<StatePropagator*>(new ODESolverStatePropagator(solver, postEvent)));
            }

        protected:

            /// \brief Solve the ODE given the initial state, and a control to apply for some duration.
            virtual void solve (StateType &state, const Control *control, const double duration) const = 0;

            /// \brief The SpaceInformation that this ODESolver operates in.
            const SpaceInformationPtr     si_;

            /// \brief Definition of the ODE to find solutions for.
            ODE                           ode_;

            /// \brief The size of the numerical integration step.  Should be small to minimize error.
            double                        intStep_;

            /// @cond IGNORE
            // Functor used by the boost::numeric::odeint stepper object
            struct ODEFunctor
            {
                ODEFunctor (const ODE &o, const Control *ctrl) : ode(o), control(ctrl) {}

                // boost::numeric::odeint will callback to this method during integration to evaluate the system
                void operator () (const StateType &current, StateType &output, double /*time*/)
                {
                    ode (current, control, output);
                }

                ODE ode;
                const Control *control;
            };
            /// @endcond
        };

        /// \brief Basic solver for ordinary differential equations of the type q' = f(q, u),
        /// where q is the current state of the system and u is a control applied to the
        /// system.  StateType defines the container object describing the state of the system.
        /// Solver is the numerical integration method used to solve the equations.  The default
        /// is a fourth order Runge-Kutta method.  This class wraps around the simple stepper
        /// concept from boost::numeric::odeint.
        template <class Solver = odeint::runge_kutta4<ODESolver::StateType> >
        class ODEBasicSolver : public ODESolver
        {
        public:

            /// \brief Parameterized constructor.  Takes a reference to the SpaceInformation,
            /// an ODE to solve, and an optional integration step size - default is 0.01
            ODEBasicSolver (const SpaceInformationPtr &si, const ODESolver::ODE &ode, double intStep = 1e-2) : ODESolver(si, ode, intStep)
            {
            }

        protected:

            /// \brief Solve the ODE using boost::numeric::odeint.
            virtual void solve (StateType &state, const Control *control, const double duration) const
            {
                Solver solver;
                ODESolver::ODEFunctor odefunc (ode_, control);
                odeint::integrate_const (solver, odefunc, state, 0.0, duration, intStep_);
            }
        };

        /// \brief Solver for ordinary differential equations of the type q' = f(q, u),
        /// where q is the current state of the system and u is a control applied to the
        /// system.  StateType defines the container object describing the state of the system.
        /// Solver is the numerical integration method used to solve the equations.  The default
        /// is a fifth order Runge-Kutta Cash-Karp method with a fourth order error bound.
        /// This class wraps around the error stepper concept from boost::numeric::odeint.
        template <class Solver = odeint::runge_kutta_cash_karp54<ODESolver::StateType> >
        class ODEErrorSolver : public ODESolver
        {
        public:
            /// \brief Parameterized constructor.  Takes a reference to the SpaceInformation,
            /// an ODE to solve, and the integration step size - default is 0.01
            ODEErrorSolver (const SpaceInformationPtr &si, const ODESolver::ODE &ode, double intStep = 1e-2) : ODESolver(si, ode, intStep)
            {
            }

            /// \brief Retrieves the error values from the most recent integration
            ODESolver::StateType getError ()
            {
                return error_;
            }

        protected:
            /// \brief Solve the ODE using boost::numeric::odeint.  Save the resulting error values into error_.
            virtual void solve (StateType &state, const Control *control, const double duration) const
            {
                ODESolver::ODEFunctor odefunc (ode_, control);

                if (error_.size () != state.size ())
                    error_.assign (state.size (), 0.0);

                Solver solver;
                solver.adjust_size (state);

                double time = 0.0;
                while (time < duration + std::numeric_limits<float>::epsilon())
                {
                    solver.do_step (odefunc, state, time, intStep_, error_);
                    time += intStep_;
                }
            }

            /// \brief The error values calculated during numerical integration
            mutable ODESolver::StateType error_;
        };

        /// \brief Adaptive step size solver for ordinary differential equations of the type
        /// q' = f(q, u), where q is the current state of the system and u is a control applied
        /// to the system.  The maximum integration error is bounded in this approach.
        /// Solver is the numerical integration method used to solve the equations, and must implement
        /// the error stepper concept from boost::numeric::odeint.  The default
        /// is a fifth order Runge-Kutta Cash-Karp method with a fourth order error bound.
        template <class Solver = odeint::runge_kutta_cash_karp54<ODESolver::StateType> >
        class ODEAdaptiveSolver : public ODESolver
        {
        public:
            /// \brief Parameterized constructor.  Takes a reference to the SpaceInformation,
            /// an ODE to solve, and an optional integration step size - default is 0.01
            ODEAdaptiveSolver (const SpaceInformationPtr &si, const ODESolver::ODE &ode, double intStep = 1e-2) : ODESolver(si, ode, intStep), maxError_(1e-6), maxEpsilonError_(1e-7)
            {
            }

            /// \brief Retrieve the total error allowed during numerical integration
            double getMaximumError () const
            {
                return maxError_;
            }

            /// \brief Set the total error allowed during numerical integration
            void setMaximumError (double error)
            {
                maxError_ = error;
            }

            /// \brief Retrieve the error tolerance during one step of numerical integration (local truncation error)
            double getMaximumEpsilonError () const
            {
                return maxEpsilonError_;
            }

            /// \brief Set the error tolerance during one step of numerical integration (local truncation error)
            void setMaximumEpsilonError (double error)
            {
                maxEpsilonError_ = error;
            }

        protected:

            /// \brief Solve the ordinary differential equation given the input state
            /// of the system, a control to apply to the system, and the duration to
            /// apply the control.  The value of \e state will contain the final
            /// values for the system after integration.
            virtual void solve (StateType &state, const Control *control, const double duration) const
            {
                ODESolver::ODEFunctor odefunc (ode_, control);

#if BOOST_VERSION < 105600
                odeint::controlled_runge_kutta< Solver > solver (odeint::default_error_checker<double>(maxError_, maxEpsilonError_));
#else
                typename boost::numeric::odeint::result_of::make_controlled< Solver >::type solver = make_controlled( 1.0e-6 , 1.0e-6 , Solver() );
#endif
                odeint::integrate_adaptive (solver, odefunc, state, 0.0, duration, intStep_);
            }

            /// \brief The maximum error allowed when performing numerical integration
            double maxError_;

            /// \brief The maximum error allowed during one step of numerical integration
            double maxEpsilonError_;
        };
    }
}

#endif