/usr/include/ompl/control/ODESolver.h is in libompl-dev 1.0.0+ds2-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 | /*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2011, Rice University
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Rice University nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
/* Author: Ryan Luna */
#ifndef OMPL_CONTROL_ODESOLVER_
#define OMPL_CONTROL_ODESOLVER_
#include "ompl/control/Control.h"
#include "ompl/control/SpaceInformation.h"
#include "ompl/control/StatePropagator.h"
#include "ompl/util/Console.h"
#include "ompl/util/ClassForward.h"
#include <boost/version.hpp>
#if BOOST_VERSION >= 105300
#include <boost/numeric/odeint.hpp>
namespace odeint = boost::numeric::odeint;
#else
#include <omplext_odeint/boost/numeric/odeint.hpp>
namespace odeint = boost::numeric::omplext_odeint;
#endif
#include <boost/function.hpp>
#include <cassert>
#include <vector>
namespace ompl
{
namespace control
{
/// @cond IGNORE
OMPL_CLASS_FORWARD(ODESolver);
/// @endcond
/// \class ompl::control::ODESolverPtr
/// \brief A boost shared pointer wrapper for ompl::control::ODESolver
/// \brief Abstract base class for an object that can solve ordinary differential
/// equations (ODE) of the type q' = f(q,u) using numerical integration. Classes
/// deriving from this must implement the solve method. The user must supply
/// the ODE to solve.
class ODESolver
{
public:
/// \brief Portable data type for the state values
typedef std::vector<double> StateType;
/// \brief Callback function that defines the ODE. Accepts
/// the current state, input control, and output state.
typedef boost::function<void(const StateType &, const Control*, StateType &)> ODE;
/// \brief Callback function to perform an event at the end of numerical
/// integration. This functionality is optional.
typedef boost::function<void(const base::State *state, const Control *control, const double duration, base::State *result)> PostPropagationEvent;
/// \brief Parameterized constructor. Takes a reference to SpaceInformation,
/// an ODE to solve, and the integration step size.
ODESolver (const SpaceInformationPtr& si, const ODE& ode, double intStep) : si_(si), ode_(ode), intStep_(intStep)
{
}
/// \brief Destructor.
virtual ~ODESolver ()
{
}
/// \brief Set the ODE to solve
void setODE (const ODE &ode)
{
ode_ = ode;
}
/// \brief Return the size of a single numerical integration step
double getIntegrationStepSize () const
{
return intStep_;
}
/// \brief Set the size of a single numerical integration step
void setIntegrationStepSize (double intStep)
{
intStep_ = intStep;
}
/** \brief Get the current instance of the space information */
const SpaceInformationPtr& getSpaceInformation() const
{
return si_;
}
/// \brief Retrieve a StatePropagator object that solves a system of ordinary
/// differential equations defined by an ODESolver.
/// An optional PostPropagationEvent can also be specified as a callback after
/// numerical integration is finished for further operations on the resulting
/// state.
static StatePropagatorPtr getStatePropagator (ODESolverPtr solver,
const PostPropagationEvent &postEvent = NULL)
{
class ODESolverStatePropagator : public StatePropagator
{
public:
ODESolverStatePropagator (ODESolverPtr solver, const PostPropagationEvent &pe) : StatePropagator (solver->si_), solver_(solver), postEvent_(pe)
{
if (!solver.get())
OMPL_ERROR("ODESolverPtr does not reference a valid ODESolver object");
}
virtual void propagate (const base::State *state, const Control *control, const double duration, base::State *result) const
{
ODESolver::StateType reals;
si_->getStateSpace()->copyToReals(reals, state);
solver_->solve (reals, control, duration);
si_->getStateSpace()->copyFromReals(result, reals);
if (postEvent_)
postEvent_ (state, control, duration, result);
}
protected:
ODESolverPtr solver_;
ODESolver::PostPropagationEvent postEvent_;
};
return StatePropagatorPtr(dynamic_cast<StatePropagator*>(new ODESolverStatePropagator(solver, postEvent)));
}
protected:
/// \brief Solve the ODE given the initial state, and a control to apply for some duration.
virtual void solve (StateType &state, const Control *control, const double duration) const = 0;
/// \brief The SpaceInformation that this ODESolver operates in.
const SpaceInformationPtr si_;
/// \brief Definition of the ODE to find solutions for.
ODE ode_;
/// \brief The size of the numerical integration step. Should be small to minimize error.
double intStep_;
/// @cond IGNORE
// Functor used by the boost::numeric::odeint stepper object
struct ODEFunctor
{
ODEFunctor (const ODE &o, const Control *ctrl) : ode(o), control(ctrl) {}
// boost::numeric::odeint will callback to this method during integration to evaluate the system
void operator () (const StateType ¤t, StateType &output, double /*time*/)
{
ode (current, control, output);
}
ODE ode;
const Control *control;
};
/// @endcond
};
/// \brief Basic solver for ordinary differential equations of the type q' = f(q, u),
/// where q is the current state of the system and u is a control applied to the
/// system. StateType defines the container object describing the state of the system.
/// Solver is the numerical integration method used to solve the equations. The default
/// is a fourth order Runge-Kutta method. This class wraps around the simple stepper
/// concept from boost::numeric::odeint.
template <class Solver = odeint::runge_kutta4<ODESolver::StateType> >
class ODEBasicSolver : public ODESolver
{
public:
/// \brief Parameterized constructor. Takes a reference to the SpaceInformation,
/// an ODE to solve, and an optional integration step size - default is 0.01
ODEBasicSolver (const SpaceInformationPtr &si, const ODESolver::ODE &ode, double intStep = 1e-2) : ODESolver(si, ode, intStep)
{
}
protected:
/// \brief Solve the ODE using boost::numeric::odeint.
virtual void solve (StateType &state, const Control *control, const double duration) const
{
Solver solver;
ODESolver::ODEFunctor odefunc (ode_, control);
odeint::integrate_const (solver, odefunc, state, 0.0, duration, intStep_);
}
};
/// \brief Solver for ordinary differential equations of the type q' = f(q, u),
/// where q is the current state of the system and u is a control applied to the
/// system. StateType defines the container object describing the state of the system.
/// Solver is the numerical integration method used to solve the equations. The default
/// is a fifth order Runge-Kutta Cash-Karp method with a fourth order error bound.
/// This class wraps around the error stepper concept from boost::numeric::odeint.
template <class Solver = odeint::runge_kutta_cash_karp54<ODESolver::StateType> >
class ODEErrorSolver : public ODESolver
{
public:
/// \brief Parameterized constructor. Takes a reference to the SpaceInformation,
/// an ODE to solve, and the integration step size - default is 0.01
ODEErrorSolver (const SpaceInformationPtr &si, const ODESolver::ODE &ode, double intStep = 1e-2) : ODESolver(si, ode, intStep)
{
}
/// \brief Retrieves the error values from the most recent integration
ODESolver::StateType getError ()
{
return error_;
}
protected:
/// \brief Solve the ODE using boost::numeric::odeint. Save the resulting error values into error_.
virtual void solve (StateType &state, const Control *control, const double duration) const
{
ODESolver::ODEFunctor odefunc (ode_, control);
if (error_.size () != state.size ())
error_.assign (state.size (), 0.0);
Solver solver;
solver.adjust_size (state);
double time = 0.0;
while (time < duration + std::numeric_limits<float>::epsilon())
{
solver.do_step (odefunc, state, time, intStep_, error_);
time += intStep_;
}
}
/// \brief The error values calculated during numerical integration
mutable ODESolver::StateType error_;
};
/// \brief Adaptive step size solver for ordinary differential equations of the type
/// q' = f(q, u), where q is the current state of the system and u is a control applied
/// to the system. The maximum integration error is bounded in this approach.
/// Solver is the numerical integration method used to solve the equations, and must implement
/// the error stepper concept from boost::numeric::odeint. The default
/// is a fifth order Runge-Kutta Cash-Karp method with a fourth order error bound.
template <class Solver = odeint::runge_kutta_cash_karp54<ODESolver::StateType> >
class ODEAdaptiveSolver : public ODESolver
{
public:
/// \brief Parameterized constructor. Takes a reference to the SpaceInformation,
/// an ODE to solve, and an optional integration step size - default is 0.01
ODEAdaptiveSolver (const SpaceInformationPtr &si, const ODESolver::ODE &ode, double intStep = 1e-2) : ODESolver(si, ode, intStep), maxError_(1e-6), maxEpsilonError_(1e-7)
{
}
/// \brief Retrieve the total error allowed during numerical integration
double getMaximumError () const
{
return maxError_;
}
/// \brief Set the total error allowed during numerical integration
void setMaximumError (double error)
{
maxError_ = error;
}
/// \brief Retrieve the error tolerance during one step of numerical integration (local truncation error)
double getMaximumEpsilonError () const
{
return maxEpsilonError_;
}
/// \brief Set the error tolerance during one step of numerical integration (local truncation error)
void setMaximumEpsilonError (double error)
{
maxEpsilonError_ = error;
}
protected:
/// \brief Solve the ordinary differential equation given the input state
/// of the system, a control to apply to the system, and the duration to
/// apply the control. The value of \e state will contain the final
/// values for the system after integration.
virtual void solve (StateType &state, const Control *control, const double duration) const
{
ODESolver::ODEFunctor odefunc (ode_, control);
#if BOOST_VERSION < 105600
odeint::controlled_runge_kutta< Solver > solver (odeint::default_error_checker<double>(maxError_, maxEpsilonError_));
#else
typename boost::numeric::odeint::result_of::make_controlled< Solver >::type solver = make_controlled( 1.0e-6 , 1.0e-6 , Solver() );
#endif
odeint::integrate_adaptive (solver, odefunc, state, 0.0, duration, intStep_);
}
/// \brief The maximum error allowed when performing numerical integration
double maxError_;
/// \brief The maximum error allowed during one step of numerical integration
double maxEpsilonError_;
};
}
}
#endif
|