This file is indexed.

/usr/include/opencv2/gpu/gpu.hpp is in libopencv-gpu-dev 2.4.9.1+dfsg-1.5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_GPU_HPP__
#define __OPENCV_GPU_HPP__

#ifndef SKIP_INCLUDES
#include <vector>
#include <memory>
#include <iosfwd>
#endif

#include "opencv2/core/gpumat.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/features2d/features2d.hpp"

namespace cv { namespace gpu {

//////////////////////////////// CudaMem ////////////////////////////////
// CudaMem is limited cv::Mat with page locked memory allocation.
// Page locked memory is only needed for async and faster coping to GPU.
// It is convertable to cv::Mat header without reference counting
// so you can use it with other opencv functions.

// Page-locks the matrix m memory and maps it for the device(s)
CV_EXPORTS void registerPageLocked(Mat& m);
// Unmaps the memory of matrix m, and makes it pageable again.
CV_EXPORTS void unregisterPageLocked(Mat& m);

class CV_EXPORTS CudaMem
{
public:
    enum  { ALLOC_PAGE_LOCKED = 1, ALLOC_ZEROCOPY = 2, ALLOC_WRITE_COMBINED = 4 };

    CudaMem();
    CudaMem(const CudaMem& m);

    CudaMem(int rows, int cols, int type, int _alloc_type = ALLOC_PAGE_LOCKED);
    CudaMem(Size size, int type, int alloc_type = ALLOC_PAGE_LOCKED);


    //! creates from cv::Mat with coping data
    explicit CudaMem(const Mat& m, int alloc_type = ALLOC_PAGE_LOCKED);

    ~CudaMem();

    CudaMem& operator = (const CudaMem& m);

    //! returns deep copy of the matrix, i.e. the data is copied
    CudaMem clone() const;

    //! allocates new matrix data unless the matrix already has specified size and type.
    void create(int rows, int cols, int type, int alloc_type = ALLOC_PAGE_LOCKED);
    void create(Size size, int type, int alloc_type = ALLOC_PAGE_LOCKED);

    //! decrements reference counter and released memory if needed.
    void release();

    //! returns matrix header with disabled reference counting for CudaMem data.
    Mat createMatHeader() const;
    operator Mat() const;

    //! maps host memory into device address space and returns GpuMat header for it. Throws exception if not supported by hardware.
    GpuMat createGpuMatHeader() const;
    operator GpuMat() const;

    //returns if host memory can be mapperd to gpu address space;
    static bool canMapHostMemory();

    // Please see cv::Mat for descriptions
    bool isContinuous() const;
    size_t elemSize() const;
    size_t elemSize1() const;
    int type() const;
    int depth() const;
    int channels() const;
    size_t step1() const;
    Size size() const;
    bool empty() const;


    // Please see cv::Mat for descriptions
    int flags;
    int rows, cols;
    size_t step;

    uchar* data;
    _Atomic_word* refcount;

    uchar* datastart;
    uchar* dataend;

    int alloc_type;
};

//////////////////////////////// CudaStream ////////////////////////////////
// Encapculates Cuda Stream. Provides interface for async coping.
// Passed to each function that supports async kernel execution.
// Reference counting is enabled

class CV_EXPORTS Stream
{
public:
    Stream();
    ~Stream();

    Stream(const Stream&);
    Stream& operator =(const Stream&);

    bool queryIfComplete();
    void waitForCompletion();

    //! downloads asynchronously
    // Warning! cv::Mat must point to page locked memory (i.e. to CudaMem data or to its subMat)
    void enqueueDownload(const GpuMat& src, CudaMem& dst);
    void enqueueDownload(const GpuMat& src, Mat& dst);

    //! uploads asynchronously
    // Warning! cv::Mat must point to page locked memory (i.e. to CudaMem data or to its ROI)
    void enqueueUpload(const CudaMem& src, GpuMat& dst);
    void enqueueUpload(const Mat& src, GpuMat& dst);

    //! copy asynchronously
    void enqueueCopy(const GpuMat& src, GpuMat& dst);

    //! memory set asynchronously
    void enqueueMemSet(GpuMat& src, Scalar val);
    void enqueueMemSet(GpuMat& src, Scalar val, const GpuMat& mask);

    //! converts matrix type, ex from float to uchar depending on type
    void enqueueConvert(const GpuMat& src, GpuMat& dst, int dtype, double a = 1, double b = 0);

    //! adds a callback to be called on the host after all currently enqueued items in the stream have completed
    typedef void (*StreamCallback)(Stream& stream, int status, void* userData);
    void enqueueHostCallback(StreamCallback callback, void* userData);

    static Stream& Null();

    operator bool() const;

private:
    struct Impl;

    explicit Stream(Impl* impl);
    void create();
    void release();

    Impl *impl;

    friend struct StreamAccessor;
};


//////////////////////////////// Filter Engine ////////////////////////////////

/*!
The Base Class for 1D or Row-wise Filters

This is the base class for linear or non-linear filters that process 1D data.
In particular, such filters are used for the "horizontal" filtering parts in separable filters.
*/
class CV_EXPORTS BaseRowFilter_GPU
{
public:
    BaseRowFilter_GPU(int ksize_, int anchor_) : ksize(ksize_), anchor(anchor_) {}
    virtual ~BaseRowFilter_GPU() {}
    virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0;
    int ksize, anchor;
};

/*!
The Base Class for Column-wise Filters

This is the base class for linear or non-linear filters that process columns of 2D arrays.
Such filters are used for the "vertical" filtering parts in separable filters.
*/
class CV_EXPORTS BaseColumnFilter_GPU
{
public:
    BaseColumnFilter_GPU(int ksize_, int anchor_) : ksize(ksize_), anchor(anchor_) {}
    virtual ~BaseColumnFilter_GPU() {}
    virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0;
    int ksize, anchor;
};

/*!
The Base Class for Non-Separable 2D Filters.

This is the base class for linear or non-linear 2D filters.
*/
class CV_EXPORTS BaseFilter_GPU
{
public:
    BaseFilter_GPU(const Size& ksize_, const Point& anchor_) : ksize(ksize_), anchor(anchor_) {}
    virtual ~BaseFilter_GPU() {}
    virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0;
    Size ksize;
    Point anchor;
};

/*!
The Base Class for Filter Engine.

The class can be used to apply an arbitrary filtering operation to an image.
It contains all the necessary intermediate buffers.
*/
class CV_EXPORTS FilterEngine_GPU
{
public:
    virtual ~FilterEngine_GPU() {}

    virtual void apply(const GpuMat& src, GpuMat& dst, Rect roi = Rect(0,0,-1,-1), Stream& stream = Stream::Null()) = 0;
};

//! returns the non-separable filter engine with the specified filter
CV_EXPORTS Ptr<FilterEngine_GPU> createFilter2D_GPU(const Ptr<BaseFilter_GPU>& filter2D, int srcType, int dstType);

//! returns the separable filter engine with the specified filters
CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableFilter_GPU(const Ptr<BaseRowFilter_GPU>& rowFilter,
    const Ptr<BaseColumnFilter_GPU>& columnFilter, int srcType, int bufType, int dstType);
CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableFilter_GPU(const Ptr<BaseRowFilter_GPU>& rowFilter,
    const Ptr<BaseColumnFilter_GPU>& columnFilter, int srcType, int bufType, int dstType, GpuMat& buf);

//! returns horizontal 1D box filter
//! supports only CV_8UC1 source type and CV_32FC1 sum type
CV_EXPORTS Ptr<BaseRowFilter_GPU> getRowSumFilter_GPU(int srcType, int sumType, int ksize, int anchor = -1);

//! returns vertical 1D box filter
//! supports only CV_8UC1 sum type and CV_32FC1 dst type
CV_EXPORTS Ptr<BaseColumnFilter_GPU> getColumnSumFilter_GPU(int sumType, int dstType, int ksize, int anchor = -1);

//! returns 2D box filter
//! supports CV_8UC1 and CV_8UC4 source type, dst type must be the same as source type
CV_EXPORTS Ptr<BaseFilter_GPU> getBoxFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1, -1));

//! returns box filter engine
CV_EXPORTS Ptr<FilterEngine_GPU> createBoxFilter_GPU(int srcType, int dstType, const Size& ksize,
    const Point& anchor = Point(-1,-1));

//! returns 2D morphological filter
//! only MORPH_ERODE and MORPH_DILATE are supported
//! supports CV_8UC1 and CV_8UC4 types
//! kernel must have CV_8UC1 type, one rows and cols == ksize.width * ksize.height
CV_EXPORTS Ptr<BaseFilter_GPU> getMorphologyFilter_GPU(int op, int type, const Mat& kernel, const Size& ksize,
    Point anchor=Point(-1,-1));

//! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported.
CV_EXPORTS Ptr<FilterEngine_GPU> createMorphologyFilter_GPU(int op, int type, const Mat& kernel,
    const Point& anchor = Point(-1,-1), int iterations = 1);
CV_EXPORTS Ptr<FilterEngine_GPU> createMorphologyFilter_GPU(int op, int type, const Mat& kernel, GpuMat& buf,
    const Point& anchor = Point(-1,-1), int iterations = 1);

//! returns 2D filter with the specified kernel
//! supports CV_8U, CV_16U and CV_32F one and four channel image
CV_EXPORTS Ptr<BaseFilter_GPU> getLinearFilter_GPU(int srcType, int dstType, const Mat& kernel, Point anchor = Point(-1, -1), int borderType = BORDER_DEFAULT);

//! returns the non-separable linear filter engine
CV_EXPORTS Ptr<FilterEngine_GPU> createLinearFilter_GPU(int srcType, int dstType, const Mat& kernel,
    Point anchor = Point(-1,-1), int borderType = BORDER_DEFAULT);

//! returns the primitive row filter with the specified kernel.
//! supports only CV_8UC1, CV_8UC4, CV_16SC1, CV_16SC2, CV_32SC1, CV_32FC1 source type.
//! there are two version of algorithm: NPP and OpenCV.
//! NPP calls when srcType == CV_8UC1 or srcType == CV_8UC4 and bufType == srcType,
//! otherwise calls OpenCV version.
//! NPP supports only BORDER_CONSTANT border type.
//! OpenCV version supports only CV_32F as buffer depth and
//! BORDER_REFLECT101, BORDER_REPLICATE and BORDER_CONSTANT border types.
CV_EXPORTS Ptr<BaseRowFilter_GPU> getLinearRowFilter_GPU(int srcType, int bufType, const Mat& rowKernel,
    int anchor = -1, int borderType = BORDER_DEFAULT);

//! returns the primitive column filter with the specified kernel.
//! supports only CV_8UC1, CV_8UC4, CV_16SC1, CV_16SC2, CV_32SC1, CV_32FC1 dst type.
//! there are two version of algorithm: NPP and OpenCV.
//! NPP calls when dstType == CV_8UC1 or dstType == CV_8UC4 and bufType == dstType,
//! otherwise calls OpenCV version.
//! NPP supports only BORDER_CONSTANT border type.
//! OpenCV version supports only CV_32F as buffer depth and
//! BORDER_REFLECT101, BORDER_REPLICATE and BORDER_CONSTANT border types.
CV_EXPORTS Ptr<BaseColumnFilter_GPU> getLinearColumnFilter_GPU(int bufType, int dstType, const Mat& columnKernel,
    int anchor = -1, int borderType = BORDER_DEFAULT);

//! returns the separable linear filter engine
CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableLinearFilter_GPU(int srcType, int dstType, const Mat& rowKernel,
    const Mat& columnKernel, const Point& anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT,
    int columnBorderType = -1);
CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableLinearFilter_GPU(int srcType, int dstType, const Mat& rowKernel,
    const Mat& columnKernel, GpuMat& buf, const Point& anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT,
    int columnBorderType = -1);

//! returns filter engine for the generalized Sobel operator
CV_EXPORTS Ptr<FilterEngine_GPU> createDerivFilter_GPU(int srcType, int dstType, int dx, int dy, int ksize,
                                                       int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
CV_EXPORTS Ptr<FilterEngine_GPU> createDerivFilter_GPU(int srcType, int dstType, int dx, int dy, int ksize, GpuMat& buf,
                                                       int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);

//! returns the Gaussian filter engine
CV_EXPORTS Ptr<FilterEngine_GPU> createGaussianFilter_GPU(int type, Size ksize, double sigma1, double sigma2 = 0,
                                                          int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
CV_EXPORTS Ptr<FilterEngine_GPU> createGaussianFilter_GPU(int type, Size ksize, GpuMat& buf, double sigma1, double sigma2 = 0,
                                                          int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);

//! returns maximum filter
CV_EXPORTS Ptr<BaseFilter_GPU> getMaxFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1,-1));

//! returns minimum filter
CV_EXPORTS Ptr<BaseFilter_GPU> getMinFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1,-1));

//! smooths the image using the normalized box filter
//! supports CV_8UC1, CV_8UC4 types
CV_EXPORTS void boxFilter(const GpuMat& src, GpuMat& dst, int ddepth, Size ksize, Point anchor = Point(-1,-1), Stream& stream = Stream::Null());

//! a synonym for normalized box filter
static inline void blur(const GpuMat& src, GpuMat& dst, Size ksize, Point anchor = Point(-1,-1), Stream& stream = Stream::Null())
{
    boxFilter(src, dst, -1, ksize, anchor, stream);
}

//! erodes the image (applies the local minimum operator)
CV_EXPORTS void erode(const GpuMat& src, GpuMat& dst, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1);
CV_EXPORTS void erode(const GpuMat& src, GpuMat& dst, const Mat& kernel, GpuMat& buf,
                      Point anchor = Point(-1, -1), int iterations = 1,
                      Stream& stream = Stream::Null());

//! dilates the image (applies the local maximum operator)
CV_EXPORTS void dilate(const GpuMat& src, GpuMat& dst, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1);
CV_EXPORTS void dilate(const GpuMat& src, GpuMat& dst, const Mat& kernel, GpuMat& buf,
                       Point anchor = Point(-1, -1), int iterations = 1,
                       Stream& stream = Stream::Null());

//! applies an advanced morphological operation to the image
CV_EXPORTS void morphologyEx(const GpuMat& src, GpuMat& dst, int op, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1);
CV_EXPORTS void morphologyEx(const GpuMat& src, GpuMat& dst, int op, const Mat& kernel, GpuMat& buf1, GpuMat& buf2,
                             Point anchor = Point(-1, -1), int iterations = 1, Stream& stream = Stream::Null());

//! applies non-separable 2D linear filter to the image
CV_EXPORTS void filter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernel, Point anchor=Point(-1,-1), int borderType = BORDER_DEFAULT, Stream& stream = Stream::Null());

//! applies separable 2D linear filter to the image
CV_EXPORTS void sepFilter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernelX, const Mat& kernelY,
                            Point anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
CV_EXPORTS void sepFilter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernelX, const Mat& kernelY, GpuMat& buf,
                            Point anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1,
                            Stream& stream = Stream::Null());

//! applies generalized Sobel operator to the image
CV_EXPORTS void Sobel(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, int ksize = 3, double scale = 1,
                      int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
CV_EXPORTS void Sobel(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, GpuMat& buf, int ksize = 3, double scale = 1,
                      int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null());

//! applies the vertical or horizontal Scharr operator to the image
CV_EXPORTS void Scharr(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, double scale = 1,
                       int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
CV_EXPORTS void Scharr(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, GpuMat& buf, double scale = 1,
                       int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null());

//! smooths the image using Gaussian filter.
CV_EXPORTS void GaussianBlur(const GpuMat& src, GpuMat& dst, Size ksize, double sigma1, double sigma2 = 0,
                             int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
CV_EXPORTS void GaussianBlur(const GpuMat& src, GpuMat& dst, Size ksize, GpuMat& buf, double sigma1, double sigma2 = 0,
                             int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null());

//! applies Laplacian operator to the image
//! supports only ksize = 1 and ksize = 3
CV_EXPORTS void Laplacian(const GpuMat& src, GpuMat& dst, int ddepth, int ksize = 1, double scale = 1, int borderType = BORDER_DEFAULT, Stream& stream = Stream::Null());


////////////////////////////// Arithmetics ///////////////////////////////////

//! implements generalized matrix product algorithm GEMM from BLAS
CV_EXPORTS void gemm(const GpuMat& src1, const GpuMat& src2, double alpha,
    const GpuMat& src3, double beta, GpuMat& dst, int flags = 0, Stream& stream = Stream::Null());

//! transposes the matrix
//! supports matrix with element size = 1, 4 and 8 bytes (CV_8UC1, CV_8UC4, CV_16UC2, CV_32FC1, etc)
CV_EXPORTS void transpose(const GpuMat& src1, GpuMat& dst, Stream& stream = Stream::Null());

//! reverses the order of the rows, columns or both in a matrix
//! supports 1, 3 and 4 channels images with CV_8U, CV_16U, CV_32S or CV_32F depth
CV_EXPORTS void flip(const GpuMat& a, GpuMat& b, int flipCode, Stream& stream = Stream::Null());

//! transforms 8-bit unsigned integers using lookup table: dst(i)=lut(src(i))
//! destination array will have the depth type as lut and the same channels number as source
//! supports CV_8UC1, CV_8UC3 types
CV_EXPORTS void LUT(const GpuMat& src, const Mat& lut, GpuMat& dst, Stream& stream = Stream::Null());

//! makes multi-channel array out of several single-channel arrays
CV_EXPORTS void merge(const GpuMat* src, size_t n, GpuMat& dst, Stream& stream = Stream::Null());

//! makes multi-channel array out of several single-channel arrays
CV_EXPORTS void merge(const vector<GpuMat>& src, GpuMat& dst, Stream& stream = Stream::Null());

//! copies each plane of a multi-channel array to a dedicated array
CV_EXPORTS void split(const GpuMat& src, GpuMat* dst, Stream& stream = Stream::Null());

//! copies each plane of a multi-channel array to a dedicated array
CV_EXPORTS void split(const GpuMat& src, vector<GpuMat>& dst, Stream& stream = Stream::Null());

//! computes magnitude of complex (x(i).re, x(i).im) vector
//! supports only CV_32FC2 type
CV_EXPORTS void magnitude(const GpuMat& xy, GpuMat& magnitude, Stream& stream = Stream::Null());

//! computes squared magnitude of complex (x(i).re, x(i).im) vector
//! supports only CV_32FC2 type
CV_EXPORTS void magnitudeSqr(const GpuMat& xy, GpuMat& magnitude, Stream& stream = Stream::Null());

//! computes magnitude of each (x(i), y(i)) vector
//! supports only floating-point source
CV_EXPORTS void magnitude(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, Stream& stream = Stream::Null());

//! computes squared magnitude of each (x(i), y(i)) vector
//! supports only floating-point source
CV_EXPORTS void magnitudeSqr(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, Stream& stream = Stream::Null());

//! computes angle (angle(i)) of each (x(i), y(i)) vector
//! supports only floating-point source
CV_EXPORTS void phase(const GpuMat& x, const GpuMat& y, GpuMat& angle, bool angleInDegrees = false, Stream& stream = Stream::Null());

//! converts Cartesian coordinates to polar
//! supports only floating-point source
CV_EXPORTS void cartToPolar(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, GpuMat& angle, bool angleInDegrees = false, Stream& stream = Stream::Null());

//! converts polar coordinates to Cartesian
//! supports only floating-point source
CV_EXPORTS void polarToCart(const GpuMat& magnitude, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees = false, Stream& stream = Stream::Null());

//! scales and shifts array elements so that either the specified norm (alpha) or the minimum (alpha) and maximum (beta) array values get the specified values
CV_EXPORTS void normalize(const GpuMat& src, GpuMat& dst, double alpha = 1, double beta = 0,
                          int norm_type = NORM_L2, int dtype = -1, const GpuMat& mask = GpuMat());
CV_EXPORTS void normalize(const GpuMat& src, GpuMat& dst, double a, double b,
                          int norm_type, int dtype, const GpuMat& mask, GpuMat& norm_buf, GpuMat& cvt_buf);


//////////////////////////// Per-element operations ////////////////////////////////////

//! adds one matrix to another (c = a + b)
CV_EXPORTS void add(const GpuMat& a, const GpuMat& b, GpuMat& c, const GpuMat& mask = GpuMat(), int dtype = -1, Stream& stream = Stream::Null());
//! adds scalar to a matrix (c = a + s)
CV_EXPORTS void add(const GpuMat& a, const Scalar& sc, GpuMat& c, const GpuMat& mask = GpuMat(), int dtype = -1, Stream& stream = Stream::Null());

//! subtracts one matrix from another (c = a - b)
CV_EXPORTS void subtract(const GpuMat& a, const GpuMat& b, GpuMat& c, const GpuMat& mask = GpuMat(), int dtype = -1, Stream& stream = Stream::Null());
//! subtracts scalar from a matrix (c = a - s)
CV_EXPORTS void subtract(const GpuMat& a, const Scalar& sc, GpuMat& c, const GpuMat& mask = GpuMat(), int dtype = -1, Stream& stream = Stream::Null());

//! computes element-wise weighted product of the two arrays (c = scale * a * b)
CV_EXPORTS void multiply(const GpuMat& a, const GpuMat& b, GpuMat& c, double scale = 1, int dtype = -1, Stream& stream = Stream::Null());
//! weighted multiplies matrix to a scalar (c = scale * a * s)
CV_EXPORTS void multiply(const GpuMat& a, const Scalar& sc, GpuMat& c, double scale = 1, int dtype = -1, Stream& stream = Stream::Null());

//! computes element-wise weighted quotient of the two arrays (c = a / b)
CV_EXPORTS void divide(const GpuMat& a, const GpuMat& b, GpuMat& c, double scale = 1, int dtype = -1, Stream& stream = Stream::Null());
//! computes element-wise weighted quotient of matrix and scalar (c = a / s)
CV_EXPORTS void divide(const GpuMat& a, const Scalar& sc, GpuMat& c, double scale = 1, int dtype = -1, Stream& stream = Stream::Null());
//! computes element-wise weighted reciprocal of an array (dst = scale/src2)
CV_EXPORTS void divide(double scale, const GpuMat& b, GpuMat& c, int dtype = -1, Stream& stream = Stream::Null());

//! computes the weighted sum of two arrays (dst = alpha*src1 + beta*src2 + gamma)
CV_EXPORTS void addWeighted(const GpuMat& src1, double alpha, const GpuMat& src2, double beta, double gamma, GpuMat& dst,
                            int dtype = -1, Stream& stream = Stream::Null());

//! adds scaled array to another one (dst = alpha*src1 + src2)
static inline void scaleAdd(const GpuMat& src1, double alpha, const GpuMat& src2, GpuMat& dst, Stream& stream = Stream::Null())
{
    addWeighted(src1, alpha, src2, 1.0, 0.0, dst, -1, stream);
}

//! computes element-wise absolute difference of two arrays (c = abs(a - b))
CV_EXPORTS void absdiff(const GpuMat& a, const GpuMat& b, GpuMat& c, Stream& stream = Stream::Null());
//! computes element-wise absolute difference of array and scalar (c = abs(a - s))
CV_EXPORTS void absdiff(const GpuMat& a, const Scalar& s, GpuMat& c, Stream& stream = Stream::Null());

//! computes absolute value of each matrix element
//! supports CV_16S and CV_32F depth
CV_EXPORTS void abs(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());

//! computes square of each pixel in an image
//! supports CV_8U, CV_16U, CV_16S and CV_32F depth
CV_EXPORTS void sqr(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());

//! computes square root of each pixel in an image
//! supports CV_8U, CV_16U, CV_16S and CV_32F depth
CV_EXPORTS void sqrt(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());

//! computes exponent of each matrix element (b = e**a)
//! supports CV_8U, CV_16U, CV_16S and CV_32F depth
CV_EXPORTS void exp(const GpuMat& a, GpuMat& b, Stream& stream = Stream::Null());

//! computes natural logarithm of absolute value of each matrix element: b = log(abs(a))
//! supports CV_8U, CV_16U, CV_16S and CV_32F depth
CV_EXPORTS void log(const GpuMat& a, GpuMat& b, Stream& stream = Stream::Null());

//! computes power of each matrix element:
//    (dst(i,j) = pow(     src(i,j) , power), if src.type() is integer
//    (dst(i,j) = pow(fabs(src(i,j)), power), otherwise
//! supports all, except depth == CV_64F
CV_EXPORTS void pow(const GpuMat& src, double power, GpuMat& dst, Stream& stream = Stream::Null());

//! compares elements of two arrays (c = a <cmpop> b)
CV_EXPORTS void compare(const GpuMat& a, const GpuMat& b, GpuMat& c, int cmpop, Stream& stream = Stream::Null());
CV_EXPORTS void compare(const GpuMat& a, Scalar sc, GpuMat& c, int cmpop, Stream& stream = Stream::Null());

//! performs per-elements bit-wise inversion
CV_EXPORTS void bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null());

//! calculates per-element bit-wise disjunction of two arrays
CV_EXPORTS void bitwise_or(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null());
//! calculates per-element bit-wise disjunction of array and scalar
//! supports 1, 3 and 4 channels images with CV_8U, CV_16U or CV_32S depth
CV_EXPORTS void bitwise_or(const GpuMat& src1, const Scalar& sc, GpuMat& dst, Stream& stream = Stream::Null());

//! calculates per-element bit-wise conjunction of two arrays
CV_EXPORTS void bitwise_and(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null());
//! calculates per-element bit-wise conjunction of array and scalar
//! supports 1, 3 and 4 channels images with CV_8U, CV_16U or CV_32S depth
CV_EXPORTS void bitwise_and(const GpuMat& src1, const Scalar& sc, GpuMat& dst, Stream& stream = Stream::Null());

//! calculates per-element bit-wise "exclusive or" operation
CV_EXPORTS void bitwise_xor(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null());
//! calculates per-element bit-wise "exclusive or" of array and scalar
//! supports 1, 3 and 4 channels images with CV_8U, CV_16U or CV_32S depth
CV_EXPORTS void bitwise_xor(const GpuMat& src1, const Scalar& sc, GpuMat& dst, Stream& stream = Stream::Null());

//! pixel by pixel right shift of an image by a constant value
//! supports 1, 3 and 4 channels images with integers elements
CV_EXPORTS void rshift(const GpuMat& src, Scalar_<int> sc, GpuMat& dst, Stream& stream = Stream::Null());

//! pixel by pixel left shift of an image by a constant value
//! supports 1, 3 and 4 channels images with CV_8U, CV_16U or CV_32S depth
CV_EXPORTS void lshift(const GpuMat& src, Scalar_<int> sc, GpuMat& dst, Stream& stream = Stream::Null());

//! computes per-element minimum of two arrays (dst = min(src1, src2))
CV_EXPORTS void min(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream = Stream::Null());

//! computes per-element minimum of array and scalar (dst = min(src1, src2))
CV_EXPORTS void min(const GpuMat& src1, double src2, GpuMat& dst, Stream& stream = Stream::Null());

//! computes per-element maximum of two arrays (dst = max(src1, src2))
CV_EXPORTS void max(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream = Stream::Null());

//! computes per-element maximum of array and scalar (dst = max(src1, src2))
CV_EXPORTS void max(const GpuMat& src1, double src2, GpuMat& dst, Stream& stream = Stream::Null());

enum { ALPHA_OVER, ALPHA_IN, ALPHA_OUT, ALPHA_ATOP, ALPHA_XOR, ALPHA_PLUS, ALPHA_OVER_PREMUL, ALPHA_IN_PREMUL, ALPHA_OUT_PREMUL,
       ALPHA_ATOP_PREMUL, ALPHA_XOR_PREMUL, ALPHA_PLUS_PREMUL, ALPHA_PREMUL};

//! Composite two images using alpha opacity values contained in each image
//! Supports CV_8UC4, CV_16UC4, CV_32SC4 and CV_32FC4 types
CV_EXPORTS void alphaComp(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, int alpha_op, Stream& stream = Stream::Null());


////////////////////////////// Image processing //////////////////////////////

//! DST[x,y] = SRC[xmap[x,y],ymap[x,y]]
//! supports only CV_32FC1 map type
CV_EXPORTS void remap(const GpuMat& src, GpuMat& dst, const GpuMat& xmap, const GpuMat& ymap,
                      int interpolation, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(),
                      Stream& stream = Stream::Null());

//! Does mean shift filtering on GPU.
CV_EXPORTS void meanShiftFiltering(const GpuMat& src, GpuMat& dst, int sp, int sr,
                                   TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
                                   Stream& stream = Stream::Null());

//! Does mean shift procedure on GPU.
CV_EXPORTS void meanShiftProc(const GpuMat& src, GpuMat& dstr, GpuMat& dstsp, int sp, int sr,
                              TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
                              Stream& stream = Stream::Null());

//! Does mean shift segmentation with elimination of small regions.
CV_EXPORTS void meanShiftSegmentation(const GpuMat& src, Mat& dst, int sp, int sr, int minsize,
                                      TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1));

//! Does coloring of disparity image: [0..ndisp) -> [0..240, 1, 1] in HSV.
//! Supported types of input disparity: CV_8U, CV_16S.
//! Output disparity has CV_8UC4 type in BGRA format (alpha = 255).
CV_EXPORTS void drawColorDisp(const GpuMat& src_disp, GpuMat& dst_disp, int ndisp, Stream& stream = Stream::Null());

//! Reprojects disparity image to 3D space.
//! Supports CV_8U and CV_16S types of input disparity.
//! The output is a 3- or 4-channel floating-point matrix.
//! Each element of this matrix will contain the 3D coordinates of the point (x,y,z,1), computed from the disparity map.
//! Q is the 4x4 perspective transformation matrix that can be obtained with cvStereoRectify.
CV_EXPORTS void reprojectImageTo3D(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, int dst_cn = 4, Stream& stream = Stream::Null());

//! converts image from one color space to another
CV_EXPORTS void cvtColor(const GpuMat& src, GpuMat& dst, int code, int dcn = 0, Stream& stream = Stream::Null());

enum
{
    // Bayer Demosaicing (Malvar, He, and Cutler)
    COLOR_BayerBG2BGR_MHT = 256,
    COLOR_BayerGB2BGR_MHT = 257,
    COLOR_BayerRG2BGR_MHT = 258,
    COLOR_BayerGR2BGR_MHT = 259,

    COLOR_BayerBG2RGB_MHT = COLOR_BayerRG2BGR_MHT,
    COLOR_BayerGB2RGB_MHT = COLOR_BayerGR2BGR_MHT,
    COLOR_BayerRG2RGB_MHT = COLOR_BayerBG2BGR_MHT,
    COLOR_BayerGR2RGB_MHT = COLOR_BayerGB2BGR_MHT,

    COLOR_BayerBG2GRAY_MHT = 260,
    COLOR_BayerGB2GRAY_MHT = 261,
    COLOR_BayerRG2GRAY_MHT = 262,
    COLOR_BayerGR2GRAY_MHT = 263
};
CV_EXPORTS void demosaicing(const GpuMat& src, GpuMat& dst, int code, int dcn = -1, Stream& stream = Stream::Null());

//! swap channels
//! dstOrder - Integer array describing how channel values are permutated. The n-th entry
//!            of the array contains the number of the channel that is stored in the n-th channel of
//!            the output image. E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR
//!            channel order.
CV_EXPORTS void swapChannels(GpuMat& image, const int dstOrder[4], Stream& stream = Stream::Null());

//! Routines for correcting image color gamma
CV_EXPORTS void gammaCorrection(const GpuMat& src, GpuMat& dst, bool forward = true, Stream& stream = Stream::Null());

//! applies fixed threshold to the image
CV_EXPORTS double threshold(const GpuMat& src, GpuMat& dst, double thresh, double maxval, int type, Stream& stream = Stream::Null());

//! resizes the image
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_AREA
CV_EXPORTS void resize(const GpuMat& src, GpuMat& dst, Size dsize, double fx=0, double fy=0, int interpolation = INTER_LINEAR, Stream& stream = Stream::Null());

//! warps the image using affine transformation
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
CV_EXPORTS void warpAffine(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags = INTER_LINEAR,
    int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(), Stream& stream = Stream::Null());

CV_EXPORTS void buildWarpAffineMaps(const Mat& M, bool inverse, Size dsize, GpuMat& xmap, GpuMat& ymap, Stream& stream = Stream::Null());

//! warps the image using perspective transformation
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
CV_EXPORTS void warpPerspective(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags = INTER_LINEAR,
    int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(), Stream& stream = Stream::Null());

CV_EXPORTS void buildWarpPerspectiveMaps(const Mat& M, bool inverse, Size dsize, GpuMat& xmap, GpuMat& ymap, Stream& stream = Stream::Null());

//! builds plane warping maps
CV_EXPORTS void buildWarpPlaneMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, const Mat &T, float scale,
                                   GpuMat& map_x, GpuMat& map_y, Stream& stream = Stream::Null());

//! builds cylindrical warping maps
CV_EXPORTS void buildWarpCylindricalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale,
                                         GpuMat& map_x, GpuMat& map_y, Stream& stream = Stream::Null());

//! builds spherical warping maps
CV_EXPORTS void buildWarpSphericalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale,
                                       GpuMat& map_x, GpuMat& map_y, Stream& stream = Stream::Null());

//! rotates an image around the origin (0,0) and then shifts it
//! supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
//! supports 1, 3 or 4 channels images with CV_8U, CV_16U or CV_32F depth
CV_EXPORTS void rotate(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift = 0, double yShift = 0,
                       int interpolation = INTER_LINEAR, Stream& stream = Stream::Null());

//! copies 2D array to a larger destination array and pads borders with user-specifiable constant
CV_EXPORTS void copyMakeBorder(const GpuMat& src, GpuMat& dst, int top, int bottom, int left, int right, int borderType,
                               const Scalar& value = Scalar(), Stream& stream = Stream::Null());

//! computes the integral image
//! sum will have CV_32S type, but will contain unsigned int values
//! supports only CV_8UC1 source type
CV_EXPORTS void integral(const GpuMat& src, GpuMat& sum, Stream& stream = Stream::Null());
//! buffered version
CV_EXPORTS void integralBuffered(const GpuMat& src, GpuMat& sum, GpuMat& buffer, Stream& stream = Stream::Null());

//! computes squared integral image
//! result matrix will have 64F type, but will contain 64U values
//! supports source images of 8UC1 type only
CV_EXPORTS void sqrIntegral(const GpuMat& src, GpuMat& sqsum, Stream& stream = Stream::Null());

//! computes vertical sum, supports only CV_32FC1 images
CV_EXPORTS void columnSum(const GpuMat& src, GpuMat& sum);

//! computes the standard deviation of integral images
//! supports only CV_32SC1 source type and CV_32FC1 sqr type
//! output will have CV_32FC1 type
CV_EXPORTS void rectStdDev(const GpuMat& src, const GpuMat& sqr, GpuMat& dst, const Rect& rect, Stream& stream = Stream::Null());

//! computes Harris cornerness criteria at each image pixel
CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101);
CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101);
CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, double k,
                             int borderType = BORDER_REFLECT101, Stream& stream = Stream::Null());

//! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria
CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, int borderType=BORDER_REFLECT101);
CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, int borderType=BORDER_REFLECT101);
CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize,
    int borderType=BORDER_REFLECT101, Stream& stream = Stream::Null());

//! performs per-element multiplication of two full (not packed) Fourier spectrums
//! supports 32FC2 matrices only (interleaved format)
CV_EXPORTS void mulSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, bool conjB=false, Stream& stream = Stream::Null());

//! performs per-element multiplication of two full (not packed) Fourier spectrums
//! supports 32FC2 matrices only (interleaved format)
CV_EXPORTS void mulAndScaleSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, float scale, bool conjB=false, Stream& stream = Stream::Null());

//! Performs a forward or inverse discrete Fourier transform (1D or 2D) of floating point matrix.
//! Param dft_size is the size of DFT transform.
//!
//! If the source matrix is not continous, then additional copy will be done,
//! so to avoid copying ensure the source matrix is continous one. If you want to use
//! preallocated output ensure it is continuous too, otherwise it will be reallocated.
//!
//! Being implemented via CUFFT real-to-complex transform result contains only non-redundant values
//! in CUFFT's format. Result as full complex matrix for such kind of transform cannot be retrieved.
//!
//! For complex-to-real transform it is assumed that the source matrix is packed in CUFFT's format.
CV_EXPORTS void dft(const GpuMat& src, GpuMat& dst, Size dft_size, int flags=0, Stream& stream = Stream::Null());

struct CV_EXPORTS ConvolveBuf
{
    Size result_size;
    Size block_size;
    Size user_block_size;
    Size dft_size;
    int spect_len;

    GpuMat image_spect, templ_spect, result_spect;
    GpuMat image_block, templ_block, result_data;

    void create(Size image_size, Size templ_size);
    static Size estimateBlockSize(Size result_size, Size templ_size);
};


//! computes convolution (or cross-correlation) of two images using discrete Fourier transform
//! supports source images of 32FC1 type only
//! result matrix will have 32FC1 type
CV_EXPORTS void convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr = false);
CV_EXPORTS void convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr, ConvolveBuf& buf, Stream& stream = Stream::Null());

struct CV_EXPORTS MatchTemplateBuf
{
    Size user_block_size;
    GpuMat imagef, templf;
    std::vector<GpuMat> images;
    std::vector<GpuMat> image_sums;
    std::vector<GpuMat> image_sqsums;
};

//! computes the proximity map for the raster template and the image where the template is searched for
CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, Stream &stream = Stream::Null());

//! computes the proximity map for the raster template and the image where the template is searched for
CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, MatchTemplateBuf &buf, Stream& stream = Stream::Null());

//! smoothes the source image and downsamples it
CV_EXPORTS void pyrDown(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());

//! upsamples the source image and then smoothes it
CV_EXPORTS void pyrUp(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());

//! performs linear blending of two images
//! to avoid accuracy errors sum of weigths shouldn't be very close to zero
CV_EXPORTS void blendLinear(const GpuMat& img1, const GpuMat& img2, const GpuMat& weights1, const GpuMat& weights2,
                            GpuMat& result, Stream& stream = Stream::Null());

//! Performa bilateral filtering of passsed image
CV_EXPORTS void bilateralFilter(const GpuMat& src, GpuMat& dst, int kernel_size, float sigma_color, float sigma_spatial,
                                int borderMode = BORDER_DEFAULT, Stream& stream = Stream::Null());

//! Brute force non-local means algorith (slow but universal)
CV_EXPORTS void nonLocalMeans(const GpuMat& src, GpuMat& dst, float h, int search_window = 21, int block_size = 7, int borderMode = BORDER_DEFAULT, Stream& s = Stream::Null());

//! Fast (but approximate)version of non-local means algorith similar to CPU function (running sums technique)
class CV_EXPORTS FastNonLocalMeansDenoising
{
public:
    //! Simple method, recommended for grayscale images (though it supports multichannel images)
    void simpleMethod(const GpuMat& src, GpuMat& dst, float h, int search_window = 21, int block_size = 7, Stream& s = Stream::Null());

    //! Processes luminance and color components separatelly
    void labMethod(const GpuMat& src, GpuMat& dst, float h_luminance, float h_color, int search_window = 21, int block_size = 7, Stream& s = Stream::Null());

private:

    GpuMat buffer, extended_src_buffer;
    GpuMat lab, l, ab;
};

struct CV_EXPORTS CannyBuf
{
    void create(const Size& image_size, int apperture_size = 3);
    void release();

    GpuMat dx, dy;
    GpuMat mag;
    GpuMat map;
    GpuMat st1, st2;
    GpuMat unused;
    Ptr<FilterEngine_GPU> filterDX, filterDY;

    CannyBuf() {}
    explicit CannyBuf(const Size& image_size, int apperture_size = 3) {create(image_size, apperture_size);}
    CannyBuf(const GpuMat& dx_, const GpuMat& dy_);
};

CV_EXPORTS void Canny(const GpuMat& image, GpuMat& edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);
CV_EXPORTS void Canny(const GpuMat& image, CannyBuf& buf, GpuMat& edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);
CV_EXPORTS void Canny(const GpuMat& dx, const GpuMat& dy, GpuMat& edges, double low_thresh, double high_thresh, bool L2gradient = false);
CV_EXPORTS void Canny(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& edges, double low_thresh, double high_thresh, bool L2gradient = false);

class CV_EXPORTS ImagePyramid
{
public:
    inline ImagePyramid() : nLayers_(0) {}
    inline ImagePyramid(const GpuMat& img, int nLayers, Stream& stream = Stream::Null())
    {
        build(img, nLayers, stream);
    }

    void build(const GpuMat& img, int nLayers, Stream& stream = Stream::Null());

    void getLayer(GpuMat& outImg, Size outRoi, Stream& stream = Stream::Null()) const;

    inline void release()
    {
        layer0_.release();
        pyramid_.clear();
        nLayers_ = 0;
    }

private:
    GpuMat layer0_;
    std::vector<GpuMat> pyramid_;
    int nLayers_;
};

//! HoughLines

struct HoughLinesBuf
{
    GpuMat accum;
    GpuMat list;
};

CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
CV_EXPORTS void HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines, OutputArray h_votes = noArray());

//! HoughLinesP

//! finds line segments in the black-n-white image using probabalistic Hough transform
CV_EXPORTS void HoughLinesP(const GpuMat& image, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096);

//! HoughCircles

struct HoughCirclesBuf
{
    GpuMat edges;
    GpuMat accum;
    GpuMat list;
    CannyBuf cannyBuf;
};

CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf& buf, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
CV_EXPORTS void HoughCirclesDownload(const GpuMat& d_circles, OutputArray h_circles);

//! finds arbitrary template in the grayscale image using Generalized Hough Transform
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
class CV_EXPORTS GeneralizedHough_GPU : public Algorithm
{
public:
    static Ptr<GeneralizedHough_GPU> create(int method);

    virtual ~GeneralizedHough_GPU();

    //! set template to search
    void setTemplate(const GpuMat& templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1));
    void setTemplate(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter = Point(-1, -1));

    //! find template on image
    void detect(const GpuMat& image, GpuMat& positions, int cannyThreshold = 100);
    void detect(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions);

    void download(const GpuMat& d_positions, OutputArray h_positions, OutputArray h_votes = noArray());

    void release();

protected:
    virtual void setTemplateImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter) = 0;
    virtual void detectImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions) = 0;
    virtual void releaseImpl() = 0;

private:
    GpuMat edges_;
    CannyBuf cannyBuf_;
};

////////////////////////////// Matrix reductions //////////////////////////////

//! computes mean value and standard deviation of all or selected array elements
//! supports only CV_8UC1 type
CV_EXPORTS void meanStdDev(const GpuMat& mtx, Scalar& mean, Scalar& stddev);
//! buffered version
CV_EXPORTS void meanStdDev(const GpuMat& mtx, Scalar& mean, Scalar& stddev, GpuMat& buf);

//! computes norm of array
//! supports NORM_INF, NORM_L1, NORM_L2
//! supports all matrices except 64F
CV_EXPORTS double norm(const GpuMat& src1, int normType=NORM_L2);
CV_EXPORTS double norm(const GpuMat& src1, int normType, GpuMat& buf);
CV_EXPORTS double norm(const GpuMat& src1, int normType, const GpuMat& mask, GpuMat& buf);

//! computes norm of the difference between two arrays
//! supports NORM_INF, NORM_L1, NORM_L2
//! supports only CV_8UC1 type
CV_EXPORTS double norm(const GpuMat& src1, const GpuMat& src2, int normType=NORM_L2);

//! computes sum of array elements
//! supports only single channel images
CV_EXPORTS Scalar sum(const GpuMat& src);
CV_EXPORTS Scalar sum(const GpuMat& src, GpuMat& buf);
CV_EXPORTS Scalar sum(const GpuMat& src, const GpuMat& mask, GpuMat& buf);

//! computes sum of array elements absolute values
//! supports only single channel images
CV_EXPORTS Scalar absSum(const GpuMat& src);
CV_EXPORTS Scalar absSum(const GpuMat& src, GpuMat& buf);
CV_EXPORTS Scalar absSum(const GpuMat& src, const GpuMat& mask, GpuMat& buf);

//! computes squared sum of array elements
//! supports only single channel images
CV_EXPORTS Scalar sqrSum(const GpuMat& src);
CV_EXPORTS Scalar sqrSum(const GpuMat& src, GpuMat& buf);
CV_EXPORTS Scalar sqrSum(const GpuMat& src, const GpuMat& mask, GpuMat& buf);

//! finds global minimum and maximum array elements and returns their values
CV_EXPORTS void minMax(const GpuMat& src, double* minVal, double* maxVal=0, const GpuMat& mask=GpuMat());
CV_EXPORTS void minMax(const GpuMat& src, double* minVal, double* maxVal, const GpuMat& mask, GpuMat& buf);

//! finds global minimum and maximum array elements and returns their values with locations
CV_EXPORTS void minMaxLoc(const GpuMat& src, double* minVal, double* maxVal=0, Point* minLoc=0, Point* maxLoc=0,
                          const GpuMat& mask=GpuMat());
CV_EXPORTS void minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc,
                          const GpuMat& mask, GpuMat& valbuf, GpuMat& locbuf);

//! counts non-zero array elements
CV_EXPORTS int countNonZero(const GpuMat& src);
CV_EXPORTS int countNonZero(const GpuMat& src, GpuMat& buf);

//! reduces a matrix to a vector
CV_EXPORTS void reduce(const GpuMat& mtx, GpuMat& vec, int dim, int reduceOp, int dtype = -1, Stream& stream = Stream::Null());


///////////////////////////// Calibration 3D //////////////////////////////////

CV_EXPORTS void transformPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec,
                                GpuMat& dst, Stream& stream = Stream::Null());

CV_EXPORTS void projectPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec,
                              const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst,
                              Stream& stream = Stream::Null());

CV_EXPORTS void solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat,
                               const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess=false,
                               int num_iters=100, float max_dist=8.0, int min_inlier_count=100,
                               std::vector<int>* inliers=NULL);

//////////////////////////////// Image Labeling ////////////////////////////////

//!performs labeling via graph cuts of a 2D regular 4-connected graph.
CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& bottom, GpuMat& labels,
                         GpuMat& buf, Stream& stream = Stream::Null());

//!performs labeling via graph cuts of a 2D regular 8-connected graph.
CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& topLeft, GpuMat& topRight,
                         GpuMat& bottom, GpuMat& bottomLeft, GpuMat& bottomRight,
                         GpuMat& labels,
                         GpuMat& buf, Stream& stream = Stream::Null());

//! compute mask for Generalized Flood fill componetns labeling.
CV_EXPORTS void connectivityMask(const GpuMat& image, GpuMat& mask, const cv::Scalar& lo, const cv::Scalar& hi, Stream& stream = Stream::Null());

//! performs connected componnents labeling.
CV_EXPORTS void labelComponents(const GpuMat& mask, GpuMat& components, int flags = 0, Stream& stream = Stream::Null());

////////////////////////////////// Histograms //////////////////////////////////

//! Compute levels with even distribution. levels will have 1 row and nLevels cols and CV_32SC1 type.
CV_EXPORTS void evenLevels(GpuMat& levels, int nLevels, int lowerLevel, int upperLevel);
//! Calculates histogram with evenly distributed bins for signle channel source.
//! Supports CV_8UC1, CV_16UC1 and CV_16SC1 source types.
//! Output hist will have one row and histSize cols and CV_32SC1 type.
CV_EXPORTS void histEven(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null());
CV_EXPORTS void histEven(const GpuMat& src, GpuMat& hist, GpuMat& buf, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null());
//! Calculates histogram with evenly distributed bins for four-channel source.
//! All channels of source are processed separately.
//! Supports CV_8UC4, CV_16UC4 and CV_16SC4 source types.
//! Output hist[i] will have one row and histSize[i] cols and CV_32SC1 type.
CV_EXPORTS void histEven(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null());
CV_EXPORTS void histEven(const GpuMat& src, GpuMat hist[4], GpuMat& buf, int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null());
//! Calculates histogram with bins determined by levels array.
//! levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise.
//! Supports CV_8UC1, CV_16UC1, CV_16SC1 and CV_32FC1 source types.
//! Output hist will have one row and (levels.cols-1) cols and CV_32SC1 type.
CV_EXPORTS void histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, Stream& stream = Stream::Null());
CV_EXPORTS void histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buf, Stream& stream = Stream::Null());
//! Calculates histogram with bins determined by levels array.
//! All levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise.
//! All channels of source are processed separately.
//! Supports CV_8UC4, CV_16UC4, CV_16SC4 and CV_32FC4 source types.
//! Output hist[i] will have one row and (levels[i].cols-1) cols and CV_32SC1 type.
CV_EXPORTS void histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream = Stream::Null());
CV_EXPORTS void histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buf, Stream& stream = Stream::Null());

//! Calculates histogram for 8u one channel image
//! Output hist will have one row, 256 cols and CV32SC1 type.
CV_EXPORTS void calcHist(const GpuMat& src, GpuMat& hist, Stream& stream = Stream::Null());
CV_EXPORTS void calcHist(const GpuMat& src, GpuMat& hist, GpuMat& buf, Stream& stream = Stream::Null());

//! normalizes the grayscale image brightness and contrast by normalizing its histogram
CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());
CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, Stream& stream = Stream::Null());
CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, GpuMat& buf, Stream& stream = Stream::Null());

class CV_EXPORTS CLAHE : public cv::CLAHE
{
public:
    using cv::CLAHE::apply;
    virtual void apply(InputArray src, OutputArray dst, Stream& stream) = 0;
};
CV_EXPORTS Ptr<cv::gpu::CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));

//////////////////////////////// StereoBM_GPU ////////////////////////////////

class CV_EXPORTS StereoBM_GPU
{
public:
    enum { BASIC_PRESET = 0, PREFILTER_XSOBEL = 1 };

    enum { DEFAULT_NDISP = 64, DEFAULT_WINSZ = 19 };

    //! the default constructor
    StereoBM_GPU();
    //! the full constructor taking the camera-specific preset, number of disparities and the SAD window size. ndisparities must be multiple of 8.
    StereoBM_GPU(int preset, int ndisparities = DEFAULT_NDISP, int winSize = DEFAULT_WINSZ);

    //! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair
    //! Output disparity has CV_8U type.
    void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null());

    //! Some heuristics that tries to estmate
    // if current GPU will be faster than CPU in this algorithm.
    // It queries current active device.
    static bool checkIfGpuCallReasonable();

    int preset;
    int ndisp;
    int winSize;

    // If avergeTexThreshold  == 0 => post procesing is disabled
    // If avergeTexThreshold != 0 then disparity is set 0 in each point (x,y) where for left image
    // SumOfHorizontalGradiensInWindow(x, y, winSize) < (winSize * winSize) * avergeTexThreshold
    // i.e. input left image is low textured.
    float avergeTexThreshold;

private:
    GpuMat minSSD, leBuf, riBuf;
};

////////////////////////// StereoBeliefPropagation ///////////////////////////
// "Efficient Belief Propagation for Early Vision"
// P.Felzenszwalb

class CV_EXPORTS StereoBeliefPropagation
{
public:
    enum { DEFAULT_NDISP  = 64 };
    enum { DEFAULT_ITERS  = 5  };
    enum { DEFAULT_LEVELS = 5  };

    static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels);

    //! the default constructor
    explicit StereoBeliefPropagation(int ndisp  = DEFAULT_NDISP,
                                     int iters  = DEFAULT_ITERS,
                                     int levels = DEFAULT_LEVELS,
                                     int msg_type = CV_32F);

    //! the full constructor taking the number of disparities, number of BP iterations on each level,
    //! number of levels, truncation of data cost, data weight,
    //! truncation of discontinuity cost and discontinuity single jump
    //! DataTerm = data_weight * min(fabs(I2-I1), max_data_term)
    //! DiscTerm = min(disc_single_jump * fabs(f1-f2), max_disc_term)
    //! please see paper for more details
    StereoBeliefPropagation(int ndisp, int iters, int levels,
        float max_data_term, float data_weight,
        float max_disc_term, float disc_single_jump,
        int msg_type = CV_32F);

    //! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair,
    //! if disparity is empty output type will be CV_16S else output type will be disparity.type().
    void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null());


    //! version for user specified data term
    void operator()(const GpuMat& data, GpuMat& disparity, Stream& stream = Stream::Null());

    int ndisp;

    int iters;
    int levels;

    float max_data_term;
    float data_weight;
    float max_disc_term;
    float disc_single_jump;

    int msg_type;
private:
    GpuMat u, d, l, r, u2, d2, l2, r2;
    std::vector<GpuMat> datas;
    GpuMat out;
};

/////////////////////////// StereoConstantSpaceBP ///////////////////////////
// "A Constant-Space Belief Propagation Algorithm for Stereo Matching"
// Qingxiong Yang, Liang Wang, Narendra Ahuja
// http://vision.ai.uiuc.edu/~qyang6/

class CV_EXPORTS StereoConstantSpaceBP
{
public:
    enum { DEFAULT_NDISP    = 128 };
    enum { DEFAULT_ITERS    = 8   };
    enum { DEFAULT_LEVELS   = 4   };
    enum { DEFAULT_NR_PLANE = 4   };

    static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane);

    //! the default constructor
    explicit StereoConstantSpaceBP(int ndisp    = DEFAULT_NDISP,
                                   int iters    = DEFAULT_ITERS,
                                   int levels   = DEFAULT_LEVELS,
                                   int nr_plane = DEFAULT_NR_PLANE,
                                   int msg_type = CV_32F);

    //! the full constructor taking the number of disparities, number of BP iterations on each level,
    //! number of levels, number of active disparity on the first level, truncation of data cost, data weight,
    //! truncation of discontinuity cost, discontinuity single jump and minimum disparity threshold
    StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane,
        float max_data_term, float data_weight, float max_disc_term, float disc_single_jump,
        int min_disp_th = 0,
        int msg_type = CV_32F);

    //! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair,
    //! if disparity is empty output type will be CV_16S else output type will be disparity.type().
    void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null());

    int ndisp;

    int iters;
    int levels;

    int nr_plane;

    float max_data_term;
    float data_weight;
    float max_disc_term;
    float disc_single_jump;

    int min_disp_th;

    int msg_type;

    bool use_local_init_data_cost;
private:
    GpuMat messages_buffers;

    GpuMat temp;
    GpuMat out;
};

/////////////////////////// DisparityBilateralFilter ///////////////////////////
// Disparity map refinement using joint bilateral filtering given a single color image.
// Qingxiong Yang, Liang Wang, Narendra Ahuja
// http://vision.ai.uiuc.edu/~qyang6/

class CV_EXPORTS DisparityBilateralFilter
{
public:
    enum { DEFAULT_NDISP  = 64 };
    enum { DEFAULT_RADIUS = 3 };
    enum { DEFAULT_ITERS  = 1 };

    //! the default constructor
    explicit DisparityBilateralFilter(int ndisp = DEFAULT_NDISP, int radius = DEFAULT_RADIUS, int iters = DEFAULT_ITERS);

    //! the full constructor taking the number of disparities, filter radius,
    //! number of iterations, truncation of data continuity, truncation of disparity continuity
    //! and filter range sigma
    DisparityBilateralFilter(int ndisp, int radius, int iters, float edge_threshold, float max_disc_threshold, float sigma_range);

    //! the disparity map refinement operator. Refine disparity map using joint bilateral filtering given a single color image.
    //! disparity must have CV_8U or CV_16S type, image must have CV_8UC1 or CV_8UC3 type.
    void operator()(const GpuMat& disparity, const GpuMat& image, GpuMat& dst, Stream& stream = Stream::Null());

private:
    int ndisp;
    int radius;
    int iters;

    float edge_threshold;
    float max_disc_threshold;
    float sigma_range;

    GpuMat table_color;
    GpuMat table_space;
};


//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
struct CV_EXPORTS HOGConfidence
{
   double scale;
   vector<Point> locations;
   vector<double> confidences;
   vector<double> part_scores[4];
};

struct CV_EXPORTS HOGDescriptor
{
    enum { DEFAULT_WIN_SIGMA = -1 };
    enum { DEFAULT_NLEVELS = 64 };
    enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL };

    HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16),
                  Size block_stride=Size(8, 8), Size cell_size=Size(8, 8),
                  int nbins=9, double win_sigma=DEFAULT_WIN_SIGMA,
                  double threshold_L2hys=0.2, bool gamma_correction=true,
                  int nlevels=DEFAULT_NLEVELS);

    size_t getDescriptorSize() const;
    size_t getBlockHistogramSize() const;

    void setSVMDetector(const vector<float>& detector);

    static vector<float> getDefaultPeopleDetector();
    static vector<float> getPeopleDetector48x96();
    static vector<float> getPeopleDetector64x128();

    void detect(const GpuMat& img, vector<Point>& found_locations,
                double hit_threshold=0, Size win_stride=Size(),
                Size padding=Size());

    void detectMultiScale(const GpuMat& img, vector<Rect>& found_locations,
                          double hit_threshold=0, Size win_stride=Size(),
                          Size padding=Size(), double scale0=1.05,
                          int group_threshold=2);

    void computeConfidence(const GpuMat& img, vector<Point>& hits, double hit_threshold,
                                                Size win_stride, Size padding, vector<Point>& locations, vector<double>& confidences);

    void computeConfidenceMultiScale(const GpuMat& img, vector<Rect>& found_locations,
                                                                    double hit_threshold, Size win_stride, Size padding,
                                                                    vector<HOGConfidence> &conf_out, int group_threshold);

    void getDescriptors(const GpuMat& img, Size win_stride,
                        GpuMat& descriptors,
                        int descr_format=DESCR_FORMAT_COL_BY_COL);

    Size win_size;
    Size block_size;
    Size block_stride;
    Size cell_size;
    int nbins;
    double win_sigma;
    double threshold_L2hys;
    bool gamma_correction;
    int nlevels;

protected:
    void computeBlockHistograms(const GpuMat& img);
    void computeGradient(const GpuMat& img, GpuMat& grad, GpuMat& qangle);

    double getWinSigma() const;
    bool checkDetectorSize() const;

    static int numPartsWithin(int size, int part_size, int stride);
    static Size numPartsWithin(Size size, Size part_size, Size stride);

    // Coefficients of the separating plane
    float free_coef;
    GpuMat detector;

    // Results of the last classification step
    GpuMat labels, labels_buf;
    Mat labels_host;

    // Results of the last histogram evaluation step
    GpuMat block_hists, block_hists_buf;

    // Gradients conputation results
    GpuMat grad, qangle, grad_buf, qangle_buf;

    // returns subbuffer with required size, reallocates buffer if nessesary.
    static GpuMat getBuffer(const Size& sz, int type, GpuMat& buf);
    static GpuMat getBuffer(int rows, int cols, int type, GpuMat& buf);

    std::vector<GpuMat> image_scales;
};


////////////////////////////////// BruteForceMatcher //////////////////////////////////

class CV_EXPORTS BruteForceMatcher_GPU_base
{
public:
    enum DistType {L1Dist = 0, L2Dist, HammingDist};

    explicit BruteForceMatcher_GPU_base(DistType distType = L2Dist);

    // Add descriptors to train descriptor collection
    void add(const std::vector<GpuMat>& descCollection);

    // Get train descriptors collection
    const std::vector<GpuMat>& getTrainDescriptors() const;

    // Clear train descriptors collection
    void clear();

    // Return true if there are not train descriptors in collection
    bool empty() const;

    // Return true if the matcher supports mask in match methods
    bool isMaskSupported() const;

    // Find one best match for each query descriptor
    void matchSingle(const GpuMat& query, const GpuMat& train,
        GpuMat& trainIdx, GpuMat& distance,
        const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());

    // Download trainIdx and distance and convert it to CPU vector with DMatch
    static void matchDownload(const GpuMat& trainIdx, const GpuMat& distance, std::vector<DMatch>& matches);
    // Convert trainIdx and distance to vector with DMatch
    static void matchConvert(const Mat& trainIdx, const Mat& distance, std::vector<DMatch>& matches);

    // Find one best match for each query descriptor
    void match(const GpuMat& query, const GpuMat& train, std::vector<DMatch>& matches, const GpuMat& mask = GpuMat());

    // Make gpu collection of trains and masks in suitable format for matchCollection function
    void makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection, const std::vector<GpuMat>& masks = std::vector<GpuMat>());

    // Find one best match from train collection for each query descriptor
    void matchCollection(const GpuMat& query, const GpuMat& trainCollection,
        GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
        const GpuMat& masks = GpuMat(), Stream& stream = Stream::Null());

    // Download trainIdx, imgIdx and distance and convert it to vector with DMatch
    static void matchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, std::vector<DMatch>& matches);
    // Convert trainIdx, imgIdx and distance to vector with DMatch
    static void matchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, std::vector<DMatch>& matches);

    // Find one best match from train collection for each query descriptor.
    void match(const GpuMat& query, std::vector<DMatch>& matches, const std::vector<GpuMat>& masks = std::vector<GpuMat>());

    // Find k best matches for each query descriptor (in increasing order of distances)
    void knnMatchSingle(const GpuMat& query, const GpuMat& train,
        GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k,
        const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());

    // Download trainIdx and distance and convert it to vector with DMatch
    // compactResult is used when mask is not empty. If compactResult is false matches
    // vector will have the same size as queryDescriptors rows. If compactResult is true
    // matches vector will not contain matches for fully masked out query descriptors.
    static void knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
    // Convert trainIdx and distance to vector with DMatch
    static void knnMatchConvert(const Mat& trainIdx, const Mat& distance,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);

    // Find k best matches for each query descriptor (in increasing order of distances).
    // compactResult is used when mask is not empty. If compactResult is false matches
    // vector will have the same size as queryDescriptors rows. If compactResult is true
    // matches vector will not contain matches for fully masked out query descriptors.
    void knnMatch(const GpuMat& query, const GpuMat& train,
        std::vector< std::vector<DMatch> >& matches, int k, const GpuMat& mask = GpuMat(),
        bool compactResult = false);

    // Find k best matches from train collection for each query descriptor (in increasing order of distances)
    void knnMatch2Collection(const GpuMat& query, const GpuMat& trainCollection,
        GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
        const GpuMat& maskCollection = GpuMat(), Stream& stream = Stream::Null());

    // Download trainIdx and distance and convert it to vector with DMatch
    // compactResult is used when mask is not empty. If compactResult is false matches
    // vector will have the same size as queryDescriptors rows. If compactResult is true
    // matches vector will not contain matches for fully masked out query descriptors.
    static void knnMatch2Download(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
    // Convert trainIdx and distance to vector with DMatch
    static void knnMatch2Convert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);

    // Find k best matches  for each query descriptor (in increasing order of distances).
    // compactResult is used when mask is not empty. If compactResult is false matches
    // vector will have the same size as queryDescriptors rows. If compactResult is true
    // matches vector will not contain matches for fully masked out query descriptors.
    void knnMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, int k,
        const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false);

    // Find best matches for each query descriptor which have distance less than maxDistance.
    // nMatches.at<int>(0, queryIdx) will contain matches count for queryIdx.
    // carefully nMatches can be greater than trainIdx.cols - it means that matcher didn't find all matches,
    // because it didn't have enough memory.
    // If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nTrain / 100), 10),
    // otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
    // Matches doesn't sorted.
    void radiusMatchSingle(const GpuMat& query, const GpuMat& train,
        GpuMat& trainIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
        const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());

    // Download trainIdx, nMatches and distance and convert it to vector with DMatch.
    // matches will be sorted in increasing order of distances.
    // compactResult is used when mask is not empty. If compactResult is false matches
    // vector will have the same size as queryDescriptors rows. If compactResult is true
    // matches vector will not contain matches for fully masked out query descriptors.
    static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, const GpuMat& nMatches,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
    // Convert trainIdx, nMatches and distance to vector with DMatch.
    static void radiusMatchConvert(const Mat& trainIdx, const Mat& distance, const Mat& nMatches,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);

    // Find best matches for each query descriptor which have distance less than maxDistance
    // in increasing order of distances).
    void radiusMatch(const GpuMat& query, const GpuMat& train,
        std::vector< std::vector<DMatch> >& matches, float maxDistance,
        const GpuMat& mask = GpuMat(), bool compactResult = false);

    // Find best matches for each query descriptor which have distance less than maxDistance.
    // If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nQuery / 100), 10),
    // otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
    // Matches doesn't sorted.
    void radiusMatchCollection(const GpuMat& query, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
        const std::vector<GpuMat>& masks = std::vector<GpuMat>(), Stream& stream = Stream::Null());

    // Download trainIdx, imgIdx, nMatches and distance and convert it to vector with DMatch.
    // matches will be sorted in increasing order of distances.
    // compactResult is used when mask is not empty. If compactResult is false matches
    // vector will have the same size as queryDescriptors rows. If compactResult is true
    // matches vector will not contain matches for fully masked out query descriptors.
    static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, const GpuMat& nMatches,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
    // Convert trainIdx, nMatches and distance to vector with DMatch.
    static void radiusMatchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, const Mat& nMatches,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);

    // Find best matches from train collection for each query descriptor which have distance less than
    // maxDistance (in increasing order of distances).
    void radiusMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, float maxDistance,
        const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false);

    DistType distType;

private:
    std::vector<GpuMat> trainDescCollection;
};

template <class Distance>
class CV_EXPORTS BruteForceMatcher_GPU;

template <typename T>
class CV_EXPORTS BruteForceMatcher_GPU< L1<T> > : public BruteForceMatcher_GPU_base
{
public:
    explicit BruteForceMatcher_GPU() : BruteForceMatcher_GPU_base(L1Dist) {}
    explicit BruteForceMatcher_GPU(L1<T> /*d*/) : BruteForceMatcher_GPU_base(L1Dist) {}
};
template <typename T>
class CV_EXPORTS BruteForceMatcher_GPU< L2<T> > : public BruteForceMatcher_GPU_base
{
public:
    explicit BruteForceMatcher_GPU() : BruteForceMatcher_GPU_base(L2Dist) {}
    explicit BruteForceMatcher_GPU(L2<T> /*d*/) : BruteForceMatcher_GPU_base(L2Dist) {}
};
template <> class CV_EXPORTS BruteForceMatcher_GPU< Hamming > : public BruteForceMatcher_GPU_base
{
public:
    explicit BruteForceMatcher_GPU() : BruteForceMatcher_GPU_base(HammingDist) {}
    explicit BruteForceMatcher_GPU(Hamming /*d*/) : BruteForceMatcher_GPU_base(HammingDist) {}
};

class CV_EXPORTS BFMatcher_GPU : public BruteForceMatcher_GPU_base
{
public:
    explicit BFMatcher_GPU(int norm = NORM_L2) : BruteForceMatcher_GPU_base(norm == NORM_L1 ? L1Dist : norm == NORM_L2 ? L2Dist : HammingDist) {}
};

////////////////////////////////// CascadeClassifier_GPU //////////////////////////////////////////
// The cascade classifier class for object detection: supports old haar and new lbp xlm formats and nvbin for haar cascades olny.
class CV_EXPORTS CascadeClassifier_GPU
{
public:
    CascadeClassifier_GPU();
    CascadeClassifier_GPU(const std::string& filename);
    ~CascadeClassifier_GPU();

    bool empty() const;
    bool load(const std::string& filename);
    void release();

    /* returns number of detected objects */
    int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, double scaleFactor = 1.2, int minNeighbors = 4, Size minSize = Size());
    int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, Size maxObjectSize, Size minSize = Size(), double scaleFactor = 1.1, int minNeighbors = 4);

    bool findLargestObject;
    bool visualizeInPlace;

    Size getClassifierSize() const;

private:
    struct CascadeClassifierImpl;
    CascadeClassifierImpl* impl;
    struct HaarCascade;
    struct LbpCascade;
    friend class CascadeClassifier_GPU_LBP;
};

////////////////////////////////// FAST //////////////////////////////////////////

class CV_EXPORTS FAST_GPU
{
public:
    enum
    {
        LOCATION_ROW = 0,
        RESPONSE_ROW,
        ROWS_COUNT
    };

    // all features have same size
    static const int FEATURE_SIZE = 7;

    explicit FAST_GPU(int threshold, bool nonmaxSuppression = true, double keypointsRatio = 0.05);

    //! finds the keypoints using FAST detector
    //! supports only CV_8UC1 images
    void operator ()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints);
    void operator ()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints);

    //! download keypoints from device to host memory
    void downloadKeypoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints);

    //! convert keypoints to KeyPoint vector
    void convertKeypoints(const Mat& h_keypoints, std::vector<KeyPoint>& keypoints);

    //! release temporary buffer's memory
    void release();

    bool nonmaxSuppression;

    int threshold;

    //! max keypoints = keypointsRatio * img.size().area()
    double keypointsRatio;

    //! find keypoints and compute it's response if nonmaxSuppression is true
    //! return count of detected keypoints
    int calcKeyPointsLocation(const GpuMat& image, const GpuMat& mask);

    //! get final array of keypoints
    //! performs nonmax suppression if needed
    //! return final count of keypoints
    int getKeyPoints(GpuMat& keypoints);

private:
    GpuMat kpLoc_;
    int count_;

    GpuMat score_;

    GpuMat d_keypoints_;
};

////////////////////////////////// ORB //////////////////////////////////////////

class CV_EXPORTS ORB_GPU
{
public:
    enum
    {
        X_ROW = 0,
        Y_ROW,
        RESPONSE_ROW,
        ANGLE_ROW,
        OCTAVE_ROW,
        SIZE_ROW,
        ROWS_COUNT
    };

    enum
    {
        DEFAULT_FAST_THRESHOLD = 20
    };

    //! Constructor
    explicit ORB_GPU(int nFeatures = 500, float scaleFactor = 1.2f, int nLevels = 8, int edgeThreshold = 31,
                     int firstLevel = 0, int WTA_K = 2, int scoreType = 0, int patchSize = 31);

    //! Compute the ORB features on an image
    //! image - the image to compute the features (supports only CV_8UC1 images)
    //! mask - the mask to apply
    //! keypoints - the resulting keypoints
    void operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints);
    void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints);

    //! Compute the ORB features and descriptors on an image
    //! image - the image to compute the features (supports only CV_8UC1 images)
    //! mask - the mask to apply
    //! keypoints - the resulting keypoints
    //! descriptors - descriptors array
    void operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors);
    void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors);

    //! download keypoints from device to host memory
    void downloadKeyPoints(GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints);

    //! convert keypoints to KeyPoint vector
    void convertKeyPoints(Mat& d_keypoints, std::vector<KeyPoint>& keypoints);

    //! returns the descriptor size in bytes
    inline int descriptorSize() const { return kBytes; }

    inline void setFastParams(int threshold, bool nonmaxSuppression = true)
    {
        fastDetector_.threshold = threshold;
        fastDetector_.nonmaxSuppression = nonmaxSuppression;
    }

    //! release temporary buffer's memory
    void release();

    //! if true, image will be blurred before descriptors calculation
    bool blurForDescriptor;

private:
    enum { kBytes = 32 };

    void buildScalePyramids(const GpuMat& image, const GpuMat& mask);

    void computeKeyPointsPyramid();

    void computeDescriptors(GpuMat& descriptors);

    void mergeKeyPoints(GpuMat& keypoints);

    int nFeatures_;
    float scaleFactor_;
    int nLevels_;
    int edgeThreshold_;
    int firstLevel_;
    int WTA_K_;
    int scoreType_;
    int patchSize_;

    // The number of desired features per scale
    std::vector<size_t> n_features_per_level_;

    // Points to compute BRIEF descriptors from
    GpuMat pattern_;

    std::vector<GpuMat> imagePyr_;
    std::vector<GpuMat> maskPyr_;

    GpuMat buf_;

    std::vector<GpuMat> keyPointsPyr_;
    std::vector<int> keyPointsCount_;

    FAST_GPU fastDetector_;

    Ptr<FilterEngine_GPU> blurFilter;

    GpuMat d_keypoints_;
};

////////////////////////////////// Optical Flow //////////////////////////////////////////

class CV_EXPORTS BroxOpticalFlow
{
public:
    BroxOpticalFlow(float alpha_, float gamma_, float scale_factor_, int inner_iterations_, int outer_iterations_, int solver_iterations_) :
        alpha(alpha_), gamma(gamma_), scale_factor(scale_factor_),
        inner_iterations(inner_iterations_), outer_iterations(outer_iterations_), solver_iterations(solver_iterations_)
    {
    }

    //! Compute optical flow
    //! frame0 - source frame (supports only CV_32FC1 type)
    //! frame1 - frame to track (with the same size and type as frame0)
    //! u      - flow horizontal component (along x axis)
    //! v      - flow vertical component (along y axis)
    void operator ()(const GpuMat& frame0, const GpuMat& frame1, GpuMat& u, GpuMat& v, Stream& stream = Stream::Null());

    //! flow smoothness
    float alpha;

    //! gradient constancy importance
    float gamma;

    //! pyramid scale factor
    float scale_factor;

    //! number of lagged non-linearity iterations (inner loop)
    int inner_iterations;

    //! number of warping iterations (number of pyramid levels)
    int outer_iterations;

    //! number of linear system solver iterations
    int solver_iterations;

    GpuMat buf;
};

class CV_EXPORTS GoodFeaturesToTrackDetector_GPU
{
public:
    explicit GoodFeaturesToTrackDetector_GPU(int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0,
        int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04);

    //! return 1 rows matrix with CV_32FC2 type
    void operator ()(const GpuMat& image, GpuMat& corners, const GpuMat& mask = GpuMat());

    int maxCorners;
    double qualityLevel;
    double minDistance;

    int blockSize;
    bool useHarrisDetector;
    double harrisK;

    void releaseMemory()
    {
        Dx_.release();
        Dy_.release();
        buf_.release();
        eig_.release();
        minMaxbuf_.release();
        tmpCorners_.release();
    }

private:
    GpuMat Dx_;
    GpuMat Dy_;
    GpuMat buf_;
    GpuMat eig_;
    GpuMat minMaxbuf_;
    GpuMat tmpCorners_;
};

inline GoodFeaturesToTrackDetector_GPU::GoodFeaturesToTrackDetector_GPU(int maxCorners_, double qualityLevel_, double minDistance_,
        int blockSize_, bool useHarrisDetector_, double harrisK_)
{
    maxCorners = maxCorners_;
    qualityLevel = qualityLevel_;
    minDistance = minDistance_;
    blockSize = blockSize_;
    useHarrisDetector = useHarrisDetector_;
    harrisK = harrisK_;
}


class CV_EXPORTS PyrLKOpticalFlow
{
public:
    PyrLKOpticalFlow();

    void sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts,
        GpuMat& status, GpuMat* err = 0);

    void dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, GpuMat* err = 0);

    void releaseMemory();

    Size winSize;
    int maxLevel;
    int iters;
    double derivLambda; //unused
    bool useInitialFlow;
    float minEigThreshold; //unused
    bool getMinEigenVals;  //unused

private:
    GpuMat uPyr_[2];
    vector<GpuMat> prevPyr_;
    vector<GpuMat> nextPyr_;
    GpuMat vPyr_[2];
    vector<GpuMat> buf_;
    vector<GpuMat> unused;
    bool isDeviceArch11_;
};


class CV_EXPORTS FarnebackOpticalFlow
{
public:
    FarnebackOpticalFlow()
    {
        numLevels = 5;
        pyrScale = 0.5;
        fastPyramids = false;
        winSize = 13;
        numIters = 10;
        polyN = 5;
        polySigma = 1.1;
        flags = 0;
        isDeviceArch11_ = !DeviceInfo().supports(FEATURE_SET_COMPUTE_12);
    }

    int numLevels;
    double pyrScale;
    bool fastPyramids;
    int winSize;
    int numIters;
    int polyN;
    double polySigma;
    int flags;

    void operator ()(const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s = Stream::Null());

    void releaseMemory()
    {
        frames_[0].release();
        frames_[1].release();
        pyrLevel_[0].release();
        pyrLevel_[1].release();
        M_.release();
        bufM_.release();
        R_[0].release();
        R_[1].release();
        blurredFrame_[0].release();
        blurredFrame_[1].release();
        pyramid0_.clear();
        pyramid1_.clear();
    }

private:
    void prepareGaussian(
            int n, double sigma, float *g, float *xg, float *xxg,
            double &ig11, double &ig03, double &ig33, double &ig55);

    void setPolynomialExpansionConsts(int n, double sigma);

    void updateFlow_boxFilter(
            const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy,
            GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]);

    void updateFlow_gaussianBlur(
            const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy,
            GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]);

    GpuMat frames_[2];
    GpuMat pyrLevel_[2], M_, bufM_, R_[2], blurredFrame_[2];
    std::vector<GpuMat> pyramid0_, pyramid1_;

    bool isDeviceArch11_;
};


// Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method
//
// see reference:
//   [1] C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
//   [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
class CV_EXPORTS OpticalFlowDual_TVL1_GPU
{
public:
    OpticalFlowDual_TVL1_GPU();

    void operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy);

    void collectGarbage();

    /**
     * Time step of the numerical scheme.
     */
    double tau;

    /**
     * Weight parameter for the data term, attachment parameter.
     * This is the most relevant parameter, which determines the smoothness of the output.
     * The smaller this parameter is, the smoother the solutions we obtain.
     * It depends on the range of motions of the images, so its value should be adapted to each image sequence.
     */
    double lambda;

    /**
     * Weight parameter for (u - v)^2, tightness parameter.
     * It serves as a link between the attachment and the regularization terms.
     * In theory, it should have a small value in order to maintain both parts in correspondence.
     * The method is stable for a large range of values of this parameter.
     */
    double theta;

    /**
     * Number of scales used to create the pyramid of images.
     */
    int nscales;

    /**
     * Number of warpings per scale.
     * Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale.
     * This is a parameter that assures the stability of the method.
     * It also affects the running time, so it is a compromise between speed and accuracy.
     */
    int warps;

    /**
     * Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time.
     * A small value will yield more accurate solutions at the expense of a slower convergence.
     */
    double epsilon;

    /**
     * Stopping criterion iterations number used in the numerical scheme.
     */
    int iterations;

    bool useInitialFlow;

private:
    void procOneScale(const GpuMat& I0, const GpuMat& I1, GpuMat& u1, GpuMat& u2);

    std::vector<GpuMat> I0s;
    std::vector<GpuMat> I1s;
    std::vector<GpuMat> u1s;
    std::vector<GpuMat> u2s;

    GpuMat I1x_buf;
    GpuMat I1y_buf;

    GpuMat I1w_buf;
    GpuMat I1wx_buf;
    GpuMat I1wy_buf;

    GpuMat grad_buf;
    GpuMat rho_c_buf;

    GpuMat p11_buf;
    GpuMat p12_buf;
    GpuMat p21_buf;
    GpuMat p22_buf;

    GpuMat diff_buf;
    GpuMat norm_buf;
};


//! Calculates optical flow for 2 images using block matching algorithm */
CV_EXPORTS void calcOpticalFlowBM(const GpuMat& prev, const GpuMat& curr,
                                  Size block_size, Size shift_size, Size max_range, bool use_previous,
                                  GpuMat& velx, GpuMat& vely, GpuMat& buf,
                                  Stream& stream = Stream::Null());

class CV_EXPORTS FastOpticalFlowBM
{
public:
    void operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, int search_window = 21, int block_window = 7, Stream& s = Stream::Null());

private:
    GpuMat buffer;
    GpuMat extended_I0;
    GpuMat extended_I1;
};


//! Interpolate frames (images) using provided optical flow (displacement field).
//! frame0   - frame 0 (32-bit floating point images, single channel)
//! frame1   - frame 1 (the same type and size)
//! fu       - forward horizontal displacement
//! fv       - forward vertical displacement
//! bu       - backward horizontal displacement
//! bv       - backward vertical displacement
//! pos      - new frame position
//! newFrame - new frame
//! buf      - temporary buffer, will have width x 6*height size, CV_32FC1 type and contain 6 GpuMat;
//!            occlusion masks            0, occlusion masks            1,
//!            interpolated forward flow  0, interpolated forward flow  1,
//!            interpolated backward flow 0, interpolated backward flow 1
//!
CV_EXPORTS void interpolateFrames(const GpuMat& frame0, const GpuMat& frame1,
                                  const GpuMat& fu, const GpuMat& fv,
                                  const GpuMat& bu, const GpuMat& bv,
                                  float pos, GpuMat& newFrame, GpuMat& buf,
                                  Stream& stream = Stream::Null());

CV_EXPORTS void createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors);


//////////////////////// Background/foreground segmentation ////////////////////////

// Foreground Object Detection from Videos Containing Complex Background.
// Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian.
// ACM MM2003 9p
class CV_EXPORTS FGDStatModel
{
public:
    struct CV_EXPORTS Params
    {
        int Lc;  // Quantized levels per 'color' component. Power of two, typically 32, 64 or 128.
        int N1c; // Number of color vectors used to model normal background color variation at a given pixel.
        int N2c; // Number of color vectors retained at given pixel.  Must be > N1c, typically ~ 5/3 of N1c.
        // Used to allow the first N1c vectors to adapt over time to changing background.

        int Lcc;  // Quantized levels per 'color co-occurrence' component.  Power of two, typically 16, 32 or 64.
        int N1cc; // Number of color co-occurrence vectors used to model normal background color variation at a given pixel.
        int N2cc; // Number of color co-occurrence vectors retained at given pixel.  Must be > N1cc, typically ~ 5/3 of N1cc.
        // Used to allow the first N1cc vectors to adapt over time to changing background.

        bool is_obj_without_holes; // If TRUE we ignore holes within foreground blobs. Defaults to TRUE.
        int perform_morphing;     // Number of erode-dilate-erode foreground-blob cleanup iterations.
        // These erase one-pixel junk blobs and merge almost-touching blobs. Default value is 1.

        float alpha1; // How quickly we forget old background pixel values seen. Typically set to 0.1.
        float alpha2; // "Controls speed of feature learning". Depends on T. Typical value circa 0.005.
        float alpha3; // Alternate to alpha2, used (e.g.) for quicker initial convergence. Typical value 0.1.

        float delta;   // Affects color and color co-occurrence quantization, typically set to 2.
        float T;       // A percentage value which determines when new features can be recognized as new background. (Typically 0.9).
        float minArea; // Discard foreground blobs whose bounding box is smaller than this threshold.

        // default Params
        Params();
    };

    // out_cn - channels count in output result (can be 3 or 4)
    // 4-channels require more memory, but a bit faster
    explicit FGDStatModel(int out_cn = 3);
    explicit FGDStatModel(const cv::gpu::GpuMat& firstFrame, const Params& params = Params(), int out_cn = 3);

    ~FGDStatModel();

    void create(const cv::gpu::GpuMat& firstFrame, const Params& params = Params());
    void release();

    int update(const cv::gpu::GpuMat& curFrame);

    //8UC3 or 8UC4 reference background image
    cv::gpu::GpuMat background;

    //8UC1 foreground image
    cv::gpu::GpuMat foreground;

    std::vector< std::vector<cv::Point> > foreground_regions;

private:
    FGDStatModel(const FGDStatModel&);
    FGDStatModel& operator=(const FGDStatModel&);

    class Impl;
    std::auto_ptr<Impl> impl_;
};

/*!
 Gaussian Mixture-based Backbround/Foreground Segmentation Algorithm

 The class implements the following algorithm:
 "An improved adaptive background mixture model for real-time tracking with shadow detection"
 P. KadewTraKuPong and R. Bowden,
 Proc. 2nd European Workshp on Advanced Video-Based Surveillance Systems, 2001."
 http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf
*/
class CV_EXPORTS MOG_GPU
{
public:
    //! the default constructor
    MOG_GPU(int nmixtures = -1);

    //! re-initiaization method
    void initialize(Size frameSize, int frameType);

    //! the update operator
    void operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate = 0.0f, Stream& stream = Stream::Null());

    //! computes a background image which are the mean of all background gaussians
    void getBackgroundImage(GpuMat& backgroundImage, Stream& stream = Stream::Null()) const;

    //! releases all inner buffers
    void release();

    int history;
    float varThreshold;
    float backgroundRatio;
    float noiseSigma;

private:
    int nmixtures_;

    Size frameSize_;
    int frameType_;
    int nframes_;

    GpuMat weight_;
    GpuMat sortKey_;
    GpuMat mean_;
    GpuMat var_;
};

/*!
 The class implements the following algorithm:
 "Improved adaptive Gausian mixture model for background subtraction"
 Z.Zivkovic
 International Conference Pattern Recognition, UK, August, 2004.
 http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
*/
class CV_EXPORTS MOG2_GPU
{
public:
    //! the default constructor
    MOG2_GPU(int nmixtures = -1);

    //! re-initiaization method
    void initialize(Size frameSize, int frameType);

    //! the update operator
    void operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate = -1.0f, Stream& stream = Stream::Null());

    //! computes a background image which are the mean of all background gaussians
    void getBackgroundImage(GpuMat& backgroundImage, Stream& stream = Stream::Null()) const;

    //! releases all inner buffers
    void release();

    // parameters
    // you should call initialize after parameters changes

    int history;

    //! here it is the maximum allowed number of mixture components.
    //! Actual number is determined dynamically per pixel
    float varThreshold;
    // threshold on the squared Mahalanobis distance to decide if it is well described
    // by the background model or not. Related to Cthr from the paper.
    // This does not influence the update of the background. A typical value could be 4 sigma
    // and that is varThreshold=4*4=16; Corresponds to Tb in the paper.

    /////////////////////////
    // less important parameters - things you might change but be carefull
    ////////////////////////

    float backgroundRatio;
    // corresponds to fTB=1-cf from the paper
    // TB - threshold when the component becomes significant enough to be included into
    // the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
    // For alpha=0.001 it means that the mode should exist for approximately 105 frames before
    // it is considered foreground
    // float noiseSigma;
    float varThresholdGen;

    //correspondts to Tg - threshold on the squared Mahalan. dist. to decide
    //when a sample is close to the existing components. If it is not close
    //to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
    //Smaller Tg leads to more generated components and higher Tg might make
    //lead to small number of components but they can grow too large
    float fVarInit;
    float fVarMin;
    float fVarMax;

    //initial variance  for the newly generated components.
    //It will will influence the speed of adaptation. A good guess should be made.
    //A simple way is to estimate the typical standard deviation from the images.
    //I used here 10 as a reasonable value
    // min and max can be used to further control the variance
    float fCT; //CT - complexity reduction prior
    //this is related to the number of samples needed to accept that a component
    //actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
    //the standard Stauffer&Grimson algorithm (maybe not exact but very similar)

    //shadow detection parameters
    bool bShadowDetection; //default 1 - do shadow detection
    unsigned char nShadowDetection; //do shadow detection - insert this value as the detection result - 127 default value
    float fTau;
    // Tau - shadow threshold. The shadow is detected if the pixel is darker
    //version of the background. Tau is a threshold on how much darker the shadow can be.
    //Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
    //See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.

private:
    int nmixtures_;

    Size frameSize_;
    int frameType_;
    int nframes_;

    GpuMat weight_;
    GpuMat variance_;
    GpuMat mean_;

    GpuMat bgmodelUsedModes_; //keep track of number of modes per pixel
};

/**
 * Background Subtractor module. Takes a series of images and returns a sequence of mask (8UC1)
 * images of the same size, where 255 indicates Foreground and 0 represents Background.
 * This class implements an algorithm described in "Visual Tracking of Human Visitors under
 * Variable-Lighting Conditions for a Responsive Audio Art Installation," A. Godbehere,
 * A. Matsukawa, K. Goldberg, American Control Conference, Montreal, June 2012.
 */
class CV_EXPORTS GMG_GPU
{
public:
    GMG_GPU();

    /**
     * Validate parameters and set up data structures for appropriate frame size.
     * @param frameSize Input frame size
     * @param min       Minimum value taken on by pixels in image sequence. Usually 0
     * @param max       Maximum value taken on by pixels in image sequence. e.g. 1.0 or 255
     */
    void initialize(Size frameSize, float min = 0.0f, float max = 255.0f);

    /**
     * Performs single-frame background subtraction and builds up a statistical background image
     * model.
     * @param frame        Input frame
     * @param fgmask       Output mask image representing foreground and background pixels
     * @param stream       Stream for the asynchronous version
     */
    void operator ()(const GpuMat& frame, GpuMat& fgmask, float learningRate = -1.0f, Stream& stream = Stream::Null());

    //! Releases all inner buffers
    void release();

    //! Total number of distinct colors to maintain in histogram.
    int maxFeatures;

    //! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms.
    float learningRate;

    //! Number of frames of video to use to initialize histograms.
    int numInitializationFrames;

    //! Number of discrete levels in each channel to be used in histograms.
    int quantizationLevels;

    //! Prior probability that any given pixel is a background pixel. A sensitivity parameter.
    float backgroundPrior;

    //! Value above which pixel is determined to be FG.
    float decisionThreshold;

    //! Smoothing radius, in pixels, for cleaning up FG image.
    int smoothingRadius;

    //! Perform background model update.
    bool updateBackgroundModel;

private:
    float maxVal_, minVal_;

    Size frameSize_;

    int frameNum_;

    GpuMat nfeatures_;
    GpuMat colors_;
    GpuMat weights_;

    Ptr<FilterEngine_GPU> boxFilter_;
    GpuMat buf_;
};

////////////////////////////////// Video Encoding //////////////////////////////////

// Works only under Windows
// Supports olny H264 video codec and AVI files
class CV_EXPORTS VideoWriter_GPU
{
public:
    struct EncoderParams;

    // Callbacks for video encoder, use it if you want to work with raw video stream
    class EncoderCallBack;

    enum SurfaceFormat
    {
        SF_UYVY = 0,
        SF_YUY2,
        SF_YV12,
        SF_NV12,
        SF_IYUV,
        SF_BGR,
        SF_GRAY = SF_BGR
    };

    VideoWriter_GPU();
    VideoWriter_GPU(const std::string& fileName, cv::Size frameSize, double fps, SurfaceFormat format = SF_BGR);
    VideoWriter_GPU(const std::string& fileName, cv::Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR);
    VideoWriter_GPU(const cv::Ptr<EncoderCallBack>& encoderCallback, cv::Size frameSize, double fps, SurfaceFormat format = SF_BGR);
    VideoWriter_GPU(const cv::Ptr<EncoderCallBack>& encoderCallback, cv::Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR);
    ~VideoWriter_GPU();

    // all methods throws cv::Exception if error occurs
    void open(const std::string& fileName, cv::Size frameSize, double fps, SurfaceFormat format = SF_BGR);
    void open(const std::string& fileName, cv::Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR);
    void open(const cv::Ptr<EncoderCallBack>& encoderCallback, cv::Size frameSize, double fps, SurfaceFormat format = SF_BGR);
    void open(const cv::Ptr<EncoderCallBack>& encoderCallback, cv::Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR);

    bool isOpened() const;
    void close();

    void write(const cv::gpu::GpuMat& image, bool lastFrame = false);

    struct CV_EXPORTS EncoderParams
    {
        int       P_Interval;      //    NVVE_P_INTERVAL,
        int       IDR_Period;      //    NVVE_IDR_PERIOD,
        int       DynamicGOP;      //    NVVE_DYNAMIC_GOP,
        int       RCType;          //    NVVE_RC_TYPE,
        int       AvgBitrate;      //    NVVE_AVG_BITRATE,
        int       PeakBitrate;     //    NVVE_PEAK_BITRATE,
        int       QP_Level_Intra;  //    NVVE_QP_LEVEL_INTRA,
        int       QP_Level_InterP; //    NVVE_QP_LEVEL_INTER_P,
        int       QP_Level_InterB; //    NVVE_QP_LEVEL_INTER_B,
        int       DeblockMode;     //    NVVE_DEBLOCK_MODE,
        int       ProfileLevel;    //    NVVE_PROFILE_LEVEL,
        int       ForceIntra;      //    NVVE_FORCE_INTRA,
        int       ForceIDR;        //    NVVE_FORCE_IDR,
        int       ClearStat;       //    NVVE_CLEAR_STAT,
        int       DIMode;          //    NVVE_SET_DEINTERLACE,
        int       Presets;         //    NVVE_PRESETS,
        int       DisableCabac;    //    NVVE_DISABLE_CABAC,
        int       NaluFramingType; //    NVVE_CONFIGURE_NALU_FRAMING_TYPE
        int       DisableSPSPPS;   //    NVVE_DISABLE_SPS_PPS

        EncoderParams();
        explicit EncoderParams(const std::string& configFile);

        void load(const std::string& configFile);
        void save(const std::string& configFile) const;
    };

    EncoderParams getParams() const;

    class CV_EXPORTS EncoderCallBack
    {
    public:
        enum PicType
        {
            IFRAME = 1,
            PFRAME = 2,
            BFRAME = 3
        };

        virtual ~EncoderCallBack() {}

        // callback function to signal the start of bitstream that is to be encoded
        // must return pointer to buffer
        virtual uchar* acquireBitStream(int* bufferSize) = 0;

        // callback function to signal that the encoded bitstream is ready to be written to file
        virtual void releaseBitStream(unsigned char* data, int size) = 0;

        // callback function to signal that the encoding operation on the frame has started
        virtual void onBeginFrame(int frameNumber, PicType picType) = 0;

        // callback function signals that the encoding operation on the frame has finished
        virtual void onEndFrame(int frameNumber, PicType picType) = 0;
    };

private:
    VideoWriter_GPU(const VideoWriter_GPU&);
    VideoWriter_GPU& operator=(const VideoWriter_GPU&);

    class Impl;
    std::auto_ptr<Impl> impl_;
};


////////////////////////////////// Video Decoding //////////////////////////////////////////

namespace detail
{
    class FrameQueue;
    class VideoParser;
}

class CV_EXPORTS VideoReader_GPU
{
public:
    enum Codec
    {
        MPEG1 = 0,
        MPEG2,
        MPEG4,
        VC1,
        H264,
        JPEG,
        H264_SVC,
        H264_MVC,

        Uncompressed_YUV420 = (('I'<<24)|('Y'<<16)|('U'<<8)|('V')),   // Y,U,V (4:2:0)
        Uncompressed_YV12   = (('Y'<<24)|('V'<<16)|('1'<<8)|('2')),   // Y,V,U (4:2:0)
        Uncompressed_NV12   = (('N'<<24)|('V'<<16)|('1'<<8)|('2')),   // Y,UV  (4:2:0)
        Uncompressed_YUYV   = (('Y'<<24)|('U'<<16)|('Y'<<8)|('V')),   // YUYV/YUY2 (4:2:2)
        Uncompressed_UYVY   = (('U'<<24)|('Y'<<16)|('V'<<8)|('Y'))    // UYVY (4:2:2)
    };

    enum ChromaFormat
    {
        Monochrome=0,
        YUV420,
        YUV422,
        YUV444
    };

    struct FormatInfo
    {
        Codec codec;
        ChromaFormat chromaFormat;
        int width;
        int height;
    };

    class VideoSource;

    VideoReader_GPU();
    explicit VideoReader_GPU(const std::string& filename);
    explicit VideoReader_GPU(const cv::Ptr<VideoSource>& source);

    ~VideoReader_GPU();

    void open(const std::string& filename);
    void open(const cv::Ptr<VideoSource>& source);
    bool isOpened() const;

    void close();

    bool read(GpuMat& image);

    FormatInfo format() const;
    void dumpFormat(std::ostream& st);

    class CV_EXPORTS VideoSource
    {
    public:
        VideoSource() : frameQueue_(0), videoParser_(0) {}
        virtual ~VideoSource() {}

        virtual FormatInfo format() const = 0;
        virtual void start() = 0;
        virtual void stop() = 0;
        virtual bool isStarted() const = 0;
        virtual bool hasError() const = 0;

        void setFrameQueue(detail::FrameQueue* frameQueue) { frameQueue_ = frameQueue; }
        void setVideoParser(detail::VideoParser* videoParser) { videoParser_ = videoParser; }

    protected:
        bool parseVideoData(const uchar* data, size_t size, bool endOfStream = false);

    private:
        VideoSource(const VideoSource&);
        VideoSource& operator =(const VideoSource&);

        detail::FrameQueue* frameQueue_;
        detail::VideoParser* videoParser_;
    };

private:
    VideoReader_GPU(const VideoReader_GPU&);
    VideoReader_GPU& operator =(const VideoReader_GPU&);

    class Impl;
    std::auto_ptr<Impl> impl_;
};

//! removes points (CV_32FC2, single row matrix) with zero mask value
CV_EXPORTS void compactPoints(GpuMat &points0, GpuMat &points1, const GpuMat &mask);

CV_EXPORTS void calcWobbleSuppressionMaps(
        int left, int idx, int right, Size size, const Mat &ml, const Mat &mr,
        GpuMat &mapx, GpuMat &mapy);

} // namespace gpu

} // namespace cv

#endif /* __OPENCV_GPU_HPP__ */