/usr/include/openturns/swig/Analytical_doc.i is in libopenturns-dev 1.5-7build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | %feature("docstring") OT::Analytical
"Base class to find the design point.
Available constructors:
Analytical(*nearestPointAlgorithm, event, physicalStartingPoint*)
Parameters
----------
nearestPointAlgorithm : :class:`~openturns.NearestPointAlgorithm`
Optimization algorithm used to research the design point.
event : :class:`~openturns.Event`
Failure event.
physicalStartingPoint : float sequence
Starting point of the optimization algorithm, declared in the physical
space.
Notes
-----
An event is defined as follows:
:math:`\\\\cD_f = \\\\{\\\\vect{X} \\\\in \\\\Rset^n \\\\, / \\\\, g(\\\\vect{X},\\\\vect{d}) \\\\le 0\\\\}`
where :math:`\\\\vect{X}` denotes a random input vector, representing the sources
of uncertainties, :math:`\\\\vect{d}` is a determinist vector, representing the
fixed variables and :math:`g(\\\\vect{X},\\\\vect{d})` is the limit state function of
the model.
The probability content of the event :math:`\\\\cD_f`:
.. math::
P_f = \\\\int_{g(\\\\vect{X},\\\\vect{d})\\\\le 0}f_\\\\vect{X}(\\\\vect{x})d\\\\vect{x}
may be evaluated with the :class:`~openturns.FORM` or :class:`~openturns.SORM`
methods.
In order to evaluate an approximation of :math:`P_f`, these analytical methods
uses the Nataf isoprobabilistic transformation which maps the probabilistic
model in terms of :math:`\\\\vect{X}` onto an equivalent model in terms of
:math:`n` independant standard normal random :math:`\\\\vect{U}`. In that new
:math:`\\\\vect{u}`-space, the event has the new expression defined from the
transformed limit state function of the model
:math:`G : \\\\cD_f = \\\\{\\\\vect{U} \\\\in \\\\Rset^n \\\\, / \\\\, G(\\\\vect{U}\\\\,,\\\\,\\\\vect{d}) \\\\le 0\\\\}`
and its boundary: :math:`\\\\{\\\\vect{U} \\\\in \\\\Rset^n \\\\, / \\\\,G(\\\\vect{U}\\\\,,\\\\,\\\\vect{d}) = 0\\\\}`.
These analytical methods rely on the assumption that most of the contribution
to :math:`P_f` comes from points located in the vicinity of a particular point
:math:`P^*`, the **design point**, defined in the :math:`\\\\vect{u}`-space as the
point located on the limit state surface and of maximal likelihood.
Given the probabilistic caracteristics of the :math:`\\\\vect{u}`-space,
:math:`P^*` has a geometrical interpretation: it is the point located on the
event boundary and at minimal distance from the center of the
:math:`\\\\vect{u}`-space. Thus, the design point :math:`P^*` is the result of a
constrained optimization problem.
See also
--------
FORM, SORM, StrongMaximumTest
Examples
--------
>>> import openturns as ot
>>> myFunction = ot.NumericalMathFunction(['E', 'F', 'L', 'I'], ['d'], ['-F*L^3/(3*E*I)'])
>>> myDistribution = ot.Normal([50., 1., 10., 5.], [1.]*4, ot.IdentityMatrix(4))
>>> vect = ot.RandomVector(myDistribution)
>>> output = ot.RandomVector(myFunction, vect)
>>> myEvent = ot.Event(output, ot.Less(), -3.0)
>>> # We create a NearestPoint algorithm
>>> myCobyla = ot.Cobyla()
>>> myAlgo = ot.Analytical(myCobyla, myEvent, [50., 1., 10., 5.])"
// ---------------------------------------------------------------------
%feature("docstring") OT::Analytical::getAnalyticalResult
"Accessor to the result.
Returns
-------
result : :class:`~openturns.AnalyticalResult`
Result structure which contains the results of the optimisation problem."
// ---------------------------------------------------------------------
%feature("docstring") OT::Analytical::getNearestPointAlgorithm
"Accessor to the optimization algorithm used to find the design point.
Returns
-------
algorithm : :class:`~openturns.NearestPointAlgorithm`
Optimization algorithm used to research the design point."
// ---------------------------------------------------------------------
%feature("docstring") OT::Analytical::setNearestPointAlgorithm
"Accessor to the optimization algorithm used to find the design point.
Parameters
----------
algorithm : :class:`~openturns.NearestPointAlgorithm`
Optimization algorithm used to research the design point."
// ---------------------------------------------------------------------
%feature("docstring") OT::Analytical::getPhysicalStartingPoint
"Accessor to the starting point of the optimization algorithm.
Returns
-------
point : float sequence
Starting point of the optimization algorithm, declared in the physical
space."
// ---------------------------------------------------------------------
%feature("docstring") OT::Analytical::setPhysicalStartingPoint
"Accessor to the starting point of the optimization algorithm.
Parameters
----------
point : float sequence
Starting point of the optimization algorithm, declared in the physical
space."
// ---------------------------------------------------------------------
%feature("docstring") OT::Analytical::getEvent
"Accessor to the event of which the probability is calculated.
Returns
-------
event : :class:`~openturns.Event`
Event of which the probability is calculated."
// ---------------------------------------------------------------------
%feature("docstring") OT::Analytical::setEvent
"Accessor to the event of which the probability is calculated.
Parameters
----------
event : :class:`~openturns.Event`
Event of which the probability is calculated."
// ---------------------------------------------------------------------
%feature("docstring") OT::Analytical::run
"Perform the research of the design point.
Notes
-----
Performs the research of the design point and creates a
:class:`~openturns.AnalyticalResult`, the structure result which is
accessible with the method getAnalyticalResult.
See also
--------
getAnalyticalResult"
|