This file is indexed.

/usr/include/openturns/swig/CovarianceModelImplementation_doc.i is in libopenturns-dev 1.5-7build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
%define OT_CovarianceModel_doc
"Covariance model.

Notes
-----
We consider :math:`X: \\\\Omega \\\\times\\\\cD \\\\mapsto \\\\Rset^d` a multivariate
stochastic process of dimension :math:`d`, where :math:`\\\\omega \\\\in \\\\Omega`
is an event, :math:`\\\\cD` is a domain of :math:`\\\\Rset^n`,
:math:`\\\\vect{t}\\\\in \\\\cD` is a multivariate index and
:math:`X(\\\\omega, \\\\vect{t}) \\\\in \\\\Rset^d`.

We note :math:`X_{\\\\vect{t}}: \\\\Omega \\\\rightarrow \\\\Rset^d` the random variable at
index :math:`\\\\vect{t} \\\\in \\\\cD` defined by
:math:`X_{\\\\vect{t}}(\\\\omega)=X(\\\\omega, \\\\vect{t})` and
:math:`X(\\\\omega): \\\\cD  \\\\mapsto \\\\Rset^d` a realization of the process
:math:`X`, for a given :math:`\\\\omega \\\\in \\\\Omega` defined by
:math:`X(\\\\omega)(\\\\vect{t})=X(\\\\omega, \\\\vect{t})`.

If the process is a second order process, we note:

- :math:`m : \\\\cD \\\\mapsto  \\\\Rset^d` its *mean function*, defined by
  :math:`m(\\\\vect{t})=\\\\Expect{X_{\\\\vect{t}}}`,
- :math:`C : \\\\cD \\\\times \\\\cD \\\\mapsto  \\\\cM_{d \\\\times d}(\\\\Rset)` its
  *covariance function*, defined by
  :math:`C(\\\\vect{s}, \\\\vect{t})=\\\\Expect{(X_{\\\\vect{s}}-m(\\\\vect{s}))(X_{\\\\vect{t}}-m(\\\\vect{t}))^t}`,
- :math:`R : \\\\cD \\\\times \\\\cD \\\\mapsto  \\\\mathcal{M}_{d \\\\times d}(\\\\Rset)` its
  *correlation function*, defined for all :math:`(\\\\vect{s}, \\\\vect{t})`,
  by :math:`R(\\\\vect{s}, \\\\vect{t})` such that for all :math:`(i,j)`,
  :math:`R_{ij}(\\\\vect{s}, \\\\vect{t})=C_{ij}(\\\\vect{s}, \\\\vect{t})/\\\\sqrt{C_{ii}(\\\\vect{s}, \\\\vect{t})C_{jj}(\\\\vect{s}, \\\\vect{t})}`.

A CovarianceModel object can be created only through its derived classes:
:class:`~openturns.StationaryCovarianceModel`,
:class:`~openturns.UserDefinedCovarianceModel`,
:class:`~openturns.GeneralizedExponential`,
:class:`~openturns.AbsoluteExponential`,
:class:`~openturns.SquaredExponential`."
%enddef
%feature("docstring") OT::CovarianceModelImplementation
OT_CovarianceModel_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_computeAsScalar_doc
"Compute the covariance function for 1D model.

Available usages:
    computeAsScalar(s, t)

    computeAsScalar(tau)

Parameters
----------
s, t : float sequences
    Inputs.
tau : float sequence
    Input.

Returns
-------
covariance : float
    Covariance.

Notes
-----
*computeAsScalar* evaluates the covariance model
:math:`C : \\\\cD \\\\times \\\\cD \\\\mapsto  \\\\cM_{d \\\\times d}(\\\\Rset)` at
:math:`(s,t)\\\\in \\\\Rset^n`:

.. math::

    C(\\\\vect{s}, \\\\vect{t})=\\\\Expect{(X_{\\\\vect{s}}-m(\\\\vect{s}))(X_{\\\\vect{t}}-m(\\\\vect{t}))^t}

In the second usage, the covariance model must be stationary. Then we note
:math:`C^{stat}(\\\\vect{\\\\tau})` for :math:`C(\\\\vect{s}, \\\\vect{s}+\\\\vect{\\\\tau})` as
this quantity does not depend on :math:`\\\\vect{s}`."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::computeAsScalar
OT_CovarianceModel_computeAsScalar_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_discretize_doc
"Discretize the covariance function on a given RegularGrid/Mesh.

Parameters
----------
meshOrGrid : :class:`~openturns.Mesh` or :class:`~openturns.RegularGrid`
    Mesh or time grid of size :math:`N` associated with the process.

Returns
-------
covarianceMatrix : :class:`~openturns.CovarianceMatrix`
    Covariance matrix :math:`\\\\in\\\\cM_{nd\\\\times nd}(\\\\Rset)` (if the process is of
    dimension :math:`d`).

Notes
-----
This method makes a discretization of the model on *meshOrGrid* composed of
the vertices :math:`(\\\\vect{t}_1, \\\\dots, \\\\vect{t}_{N-1})` and returns the
covariance matrix:

.. math ::

    \\\\mat{C}_{1,\\\\dots,k} = \\\\left(
        \\\\begin{array}{cccc}
        C(\\\\vect{t}_1, \\\\vect{t}_1) &C(\\\\vect{t}_1, \\\\vect{t}_2) & \\\\dots & C(\\\\vect{t}_1, \\\\vect{t}_{k}) \\\\\\\\
        \\\\dots & C(\\\\vect{t}_2, \\\\vect{t}_2)  & \\\\dots & C(\\\\vect{t}_2, \\\\vect{t}_{k}) \\\\\\\\
        \\\\dots & \\\\dots & \\\\dots & \\\\dots \\\\\\\\
        \\\\dots & \\\\dots & \\\\dots & C(\\\\vect{t}_{k}, \\\\vect{t}_{k})
        \\\\end{array} \\\\right)"
%enddef
%feature("docstring") OT::CovarianceModelImplementation::discretize
OT_CovarianceModel_discretize_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_discretizeRow_doc
"**(TODO)**"
%enddef
%feature("docstring") OT::CovarianceModelImplementation::discretizeRow
OT_CovarianceModel_discretizeRow_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_getDimension_doc
"Get the dimension of the *CovarianceModel*.

Returns
-------
dimension : int
    Dimension of the *CovarianceModel*."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getDimension
OT_CovarianceModel_getDimension_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_getParameters_doc
"Get the parameters of the covariance function.

Returns
-------
parameters : float sequence with description
    Parameters of the covariance function."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getParameters
OT_CovarianceModel_getParameters_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_isStationary_doc
"Test whether the model is stationary or not.

Returns
-------
isStationary : bool
    *True* if the model is stationary.

Notes
-----
The covariance function :math:`C` is stationary when it is invariant by
translation:

.. math::

    \\\\forall(\\\\vect{s},\\\\vect{t},\\\\vect{h}) \\\\in \\\\cD, & \\\\, \\\\quad
    C(\\\\vect{s}, \\\\vect{s}+\\\\vect{h}) = C(\\\\vect{t}, \\\\vect{t}+\\\\vect{h})

We note :math:`C^{stat}(\\\\vect{\\\\tau})` for :math:`C(\\\\vect{s}, \\\\vect{s}+\\\\vect{\\\\tau})`."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::isStationary
OT_CovarianceModel_isStationary_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_partialGradient_doc
"Compute the gradient of the covariance function.

Parameters
----------
s, t : float sequences
    Inputs.

Returns
-------
gradient : :class:`~openturns.SymmetricTensor`
    Gradient of the covariance function."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::partialGradient
OT_CovarianceModel_partialGradient_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_setParameters_doc
"Set the parameters of the covariance function.

Returns
-------
parameters : float sequence with description
    Parameters of the covariance function."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::setParameters
OT_CovarianceModel_setParameters_doc