/usr/include/openturns/swig/CovarianceModelImplementation_doc.i is in libopenturns-dev 1.5-7build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 | %define OT_CovarianceModel_doc
"Covariance model.
Notes
-----
We consider :math:`X: \\\\Omega \\\\times\\\\cD \\\\mapsto \\\\Rset^d` a multivariate
stochastic process of dimension :math:`d`, where :math:`\\\\omega \\\\in \\\\Omega`
is an event, :math:`\\\\cD` is a domain of :math:`\\\\Rset^n`,
:math:`\\\\vect{t}\\\\in \\\\cD` is a multivariate index and
:math:`X(\\\\omega, \\\\vect{t}) \\\\in \\\\Rset^d`.
We note :math:`X_{\\\\vect{t}}: \\\\Omega \\\\rightarrow \\\\Rset^d` the random variable at
index :math:`\\\\vect{t} \\\\in \\\\cD` defined by
:math:`X_{\\\\vect{t}}(\\\\omega)=X(\\\\omega, \\\\vect{t})` and
:math:`X(\\\\omega): \\\\cD \\\\mapsto \\\\Rset^d` a realization of the process
:math:`X`, for a given :math:`\\\\omega \\\\in \\\\Omega` defined by
:math:`X(\\\\omega)(\\\\vect{t})=X(\\\\omega, \\\\vect{t})`.
If the process is a second order process, we note:
- :math:`m : \\\\cD \\\\mapsto \\\\Rset^d` its *mean function*, defined by
:math:`m(\\\\vect{t})=\\\\Expect{X_{\\\\vect{t}}}`,
- :math:`C : \\\\cD \\\\times \\\\cD \\\\mapsto \\\\cM_{d \\\\times d}(\\\\Rset)` its
*covariance function*, defined by
:math:`C(\\\\vect{s}, \\\\vect{t})=\\\\Expect{(X_{\\\\vect{s}}-m(\\\\vect{s}))(X_{\\\\vect{t}}-m(\\\\vect{t}))^t}`,
- :math:`R : \\\\cD \\\\times \\\\cD \\\\mapsto \\\\mathcal{M}_{d \\\\times d}(\\\\Rset)` its
*correlation function*, defined for all :math:`(\\\\vect{s}, \\\\vect{t})`,
by :math:`R(\\\\vect{s}, \\\\vect{t})` such that for all :math:`(i,j)`,
:math:`R_{ij}(\\\\vect{s}, \\\\vect{t})=C_{ij}(\\\\vect{s}, \\\\vect{t})/\\\\sqrt{C_{ii}(\\\\vect{s}, \\\\vect{t})C_{jj}(\\\\vect{s}, \\\\vect{t})}`.
A CovarianceModel object can be created only through its derived classes:
:class:`~openturns.StationaryCovarianceModel`,
:class:`~openturns.UserDefinedCovarianceModel`,
:class:`~openturns.GeneralizedExponential`,
:class:`~openturns.AbsoluteExponential`,
:class:`~openturns.SquaredExponential`."
%enddef
%feature("docstring") OT::CovarianceModelImplementation
OT_CovarianceModel_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_computeAsScalar_doc
"Compute the covariance function for 1D model.
Available usages:
computeAsScalar(s, t)
computeAsScalar(tau)
Parameters
----------
s, t : float sequences
Inputs.
tau : float sequence
Input.
Returns
-------
covariance : float
Covariance.
Notes
-----
*computeAsScalar* evaluates the covariance model
:math:`C : \\\\cD \\\\times \\\\cD \\\\mapsto \\\\cM_{d \\\\times d}(\\\\Rset)` at
:math:`(s,t)\\\\in \\\\Rset^n`:
.. math::
C(\\\\vect{s}, \\\\vect{t})=\\\\Expect{(X_{\\\\vect{s}}-m(\\\\vect{s}))(X_{\\\\vect{t}}-m(\\\\vect{t}))^t}
In the second usage, the covariance model must be stationary. Then we note
:math:`C^{stat}(\\\\vect{\\\\tau})` for :math:`C(\\\\vect{s}, \\\\vect{s}+\\\\vect{\\\\tau})` as
this quantity does not depend on :math:`\\\\vect{s}`."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::computeAsScalar
OT_CovarianceModel_computeAsScalar_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_discretize_doc
"Discretize the covariance function on a given RegularGrid/Mesh.
Parameters
----------
meshOrGrid : :class:`~openturns.Mesh` or :class:`~openturns.RegularGrid`
Mesh or time grid of size :math:`N` associated with the process.
Returns
-------
covarianceMatrix : :class:`~openturns.CovarianceMatrix`
Covariance matrix :math:`\\\\in\\\\cM_{nd\\\\times nd}(\\\\Rset)` (if the process is of
dimension :math:`d`).
Notes
-----
This method makes a discretization of the model on *meshOrGrid* composed of
the vertices :math:`(\\\\vect{t}_1, \\\\dots, \\\\vect{t}_{N-1})` and returns the
covariance matrix:
.. math ::
\\\\mat{C}_{1,\\\\dots,k} = \\\\left(
\\\\begin{array}{cccc}
C(\\\\vect{t}_1, \\\\vect{t}_1) &C(\\\\vect{t}_1, \\\\vect{t}_2) & \\\\dots & C(\\\\vect{t}_1, \\\\vect{t}_{k}) \\\\\\\\
\\\\dots & C(\\\\vect{t}_2, \\\\vect{t}_2) & \\\\dots & C(\\\\vect{t}_2, \\\\vect{t}_{k}) \\\\\\\\
\\\\dots & \\\\dots & \\\\dots & \\\\dots \\\\\\\\
\\\\dots & \\\\dots & \\\\dots & C(\\\\vect{t}_{k}, \\\\vect{t}_{k})
\\\\end{array} \\\\right)"
%enddef
%feature("docstring") OT::CovarianceModelImplementation::discretize
OT_CovarianceModel_discretize_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_discretizeRow_doc
"**(TODO)**"
%enddef
%feature("docstring") OT::CovarianceModelImplementation::discretizeRow
OT_CovarianceModel_discretizeRow_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_getDimension_doc
"Get the dimension of the *CovarianceModel*.
Returns
-------
dimension : int
Dimension of the *CovarianceModel*."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getDimension
OT_CovarianceModel_getDimension_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_getParameters_doc
"Get the parameters of the covariance function.
Returns
-------
parameters : float sequence with description
Parameters of the covariance function."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getParameters
OT_CovarianceModel_getParameters_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_isStationary_doc
"Test whether the model is stationary or not.
Returns
-------
isStationary : bool
*True* if the model is stationary.
Notes
-----
The covariance function :math:`C` is stationary when it is invariant by
translation:
.. math::
\\\\forall(\\\\vect{s},\\\\vect{t},\\\\vect{h}) \\\\in \\\\cD, & \\\\, \\\\quad
C(\\\\vect{s}, \\\\vect{s}+\\\\vect{h}) = C(\\\\vect{t}, \\\\vect{t}+\\\\vect{h})
We note :math:`C^{stat}(\\\\vect{\\\\tau})` for :math:`C(\\\\vect{s}, \\\\vect{s}+\\\\vect{\\\\tau})`."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::isStationary
OT_CovarianceModel_isStationary_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_partialGradient_doc
"Compute the gradient of the covariance function.
Parameters
----------
s, t : float sequences
Inputs.
Returns
-------
gradient : :class:`~openturns.SymmetricTensor`
Gradient of the covariance function."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::partialGradient
OT_CovarianceModel_partialGradient_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_setParameters_doc
"Set the parameters of the covariance function.
Returns
-------
parameters : float sequence with description
Parameters of the covariance function."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::setParameters
OT_CovarianceModel_setParameters_doc
|