This file is indexed.

/usr/include/openturns/swig/NumericalMathFunction_doc.i is in libopenturns-dev 1.5-7build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
%feature("docstring") OT::NumericalMathFunction
"Function.

Available constructors:
    NumericalMathFunction(*filename*)

    NumericalMathFunction(*inputs, outputs, formulas*)

    NumericalMathFunction(*inputs, formulas*)

    NumericalMathFunction(*inputString, formulaString, outputString = 'outputVariable'*)

    NumericalMathFunction(*f, g*)

    NumericalMathFunction(*functionCollection*)

    NumericalMathFunction(*functionCollection, scalarCoefficientColl*)

    NumericalMathFunction(*scalarFunctionCollection, vectorCoefficientColl*)

    NumericalMathFunction(*function, comparisonOperator, threshold*)

    NumericalMathFunction(*function, indices, parametersSet=True*)

    NumericalMathFunction(*function, indices, referencePoint, parametersSet=True*)

    NumericalMathFunction(*inputSample, outputSample*)

Parameters
----------
fileName : String or :class:`~openturns.WrapperFile`
    A string to name the XML file (without the extension '.xml') which contains
    the implementation of the considered function.
inputs : list of strings
    Ordered list of input variables names of the *NumericalMathFunction*.
outputs : list of strings
    Ordered list of output variables names of the *NumericalMathFunction*.
    If it is not specified, default names are created for the output variables.
formulas : list of strings
    Ordered list of analytical formulas between the inputs and the outputs.
    The *NumericalMathFunction* is defined by *ouputs = formulas(inputs)*.
inputString : String
    Description of the *NumericalMathFunction*'s input.
outputString : String
    Description of the *NumericalMathFunction*'s output.
formulaString : String
    Analytical formula of the *NumericalMathFunction*.
    The *NumericalMathFunction* is defined by
    *ouputString = formulaString(inputString)*.
f,g : two :class:`~openturns.NumericalMathFunction`
    The *NumericalMathFunction* is the composition function :math:`f\\\\circ g`.
functionCollection : list of :class:`~openturns.NumericalMathFunction`
    Collection of several *NumericalMathFunction*.
scalarCoefficientColl : float sequence
    Collection of scalar weights.
scalarFunctionCollection : list of :class:`~openturns.NumericalMathFunction`
    Collection of several scalar *NumericalMathFunction*.
vectorCoefficientColl : 2D float sequence
    Collection of vectorial weights.
function : :class:`~openturns.NumericalMathFunction`
    Function from which another function is created.
comparisonOperator : :class:`~openturns.ComparisonOperator`
    Comparison operator.
threshold : float
    Threshold from which values are compared.
indices : list of ints
    Indices of the set variables.
    If *referencePoint* is not mentioned, the variables are set to a null
    value. Otherwise, the variables are set to the *referencePoint*'s values.
parametersSet : bool
    If *True*, the set variables are the ones referenced in *indices*.
    Otherwise, the variables are the ones referenced in the complementary
    vector of *indices*.
referencePoint : float sequence
    If not *referencePoint* take a null vector.
inputSample : 2D float sequence
    Values of the inputs.
outputSample : 2D float sequence
    Values of the outputs.

Examples
--------
Create a *NumericalMathFunction* from a list of analytical formulas and
descriptions of the inputs and the outputs :

>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x0', 'x1'], ['y0', 'y1'],
...                              ['x0 + x1', 'x0 - x1'])
>>> print(f([1, 2]))
[3,-1]


Create a *NumericalMathFunction* from strings:

>>> import openturns as ot
>>> f = ot.NumericalMathFunction('x', '2.0*sqrt(x)', 'y')
>>> print(f(([16],[4])))
    [ y ]
0 : [ 8 ]
1 : [ 4 ]


Create a *NumericalMathFunction* from a Python function:

>>> def a_function(X):
...     return [X[0] + X[1]]
>>> f = ot.PythonFunction(2, 1, a_function)
>>> print(f(((10, 5),(6, 7))))
    [ y0 ]
0 : [ 15 ]
1 : [ 13 ]


See :class:`~openturns.PythonFunction` for further details.

Create a *NumericalMathFunction* from another *NumericalMathFunction*:

>>> f = ot.NumericalMathFunction(ot.Description.BuildDefault(4, 'x'),
...                              ['x0', 'x0 + x1', 'x0 + x2 + x3'])

Then create another function by setting x1=0 and x3=0:

>>> g = ot.NumericalMathFunction(f, [3, 1], True)
>>> print(g.getInputDescription())
[x0,x2]
>>> print(g.getOutputDescription())
[y0,y1,y2]
>>> print(g((1, 2)))
[1,1,3]

Or by setting x1=4 and x3=10:

>>> g = ot.NumericalMathFunction(f, [3, 1], [6, 4, 5, 10], True)
>>> print(g((1, 2)))
[1,5,13]

Or by setting x0=6 and x2=5:

>>> g = ot.NumericalMathFunction(f, [3, 1], [6, 4, 5, 10], False)
>>> print(g.getInputDescription())
[x3,x1]
>>> print(g((1, 2)))
[6,8,12]


Create a *NumericalMathFunction* from another *NumericalMathFunction*
and by using a comparison operator:

>>> analytical = ot.NumericalMathFunction(['x0','x1'], ['y'], ['x0 + x1'])
>>> indicator = ot.NumericalMathFunction(analytical, ot.Less(), 0.0)
>>> print(indicator([2, 3]))
[0]
>>> print(indicator([2, -3]))
[1]

Create a *NumericalMathFunction* from a collection of functions:

>>> functions = list()
>>> functions.append(ot.NumericalMathFunction(['x1', 'x2', 'x3'], ['y1', 'y2'],
...                                      ['x1^2 + x2', 'x1 + x2 + x3']))
>>> functions.append(ot.NumericalMathFunction(['x1', 'x2', 'x3'], ['y1', 'y2'],
...                                      ['x1 + 2 * x2 + x3', 'x1 + x2 - x3']))
>>> myFunction = ot.NumericalMathFunction(functions)
>>> print(myFunction([1., 2., 3.]))
[3,6,8,0]

Create a *NumericalMathFunction* which is the linear combination *linComb*
of the functions defined in  *functionCollection* with scalar weights
defined in *scalarCoefficientColl*:

:math:`functionCollection  = (f_1, \\\\hdots, f_N)`
where :math:`\\\\forall 1 \\\\leq i \\\\leq N, \\\\,     f_i: \\\\Rset^n \\\\rightarrow \\\\Rset^{p}`
and :math:`scalarCoefficientColl = (c_1, \\\\hdots, c_N) \\\\in \\\\Rset^N`
then the linear combination is:

.. math::

    linComb: \\\\left|\\\\begin{array}{rcl}
                  \\\\Rset^n & \\\\rightarrow & \\\\Rset^{p} \\\\\\\\
                  \\\\vect{X} & \\\\mapsto & \\\\displaystyle \\\\sum_i c_if_i (\\\\vect{X})
              \\\\end{array}\\\\right.

>>> myFunction2 = ot.NumericalMathFunction(functions, [2., 4.])
>>> print(myFunction2([1., 2., 3.]))
[38,12]


Create a *NumericalMathFunction* which is the linear combination
*vectLinComb* of the scalar functions defined in
*scalarFunctionCollection* with vectorial weights defined in
*vectorCoefficientColl*:

If :math:`scalarFunctionCollection = (f_1, \\\\hdots, f_N)`
where :math:`\\\\forall 1 \\\\leq i \\\\leq N, \\\\,    f_i: \\\\Rset^n \\\\rightarrow \\\\Rset`
and :math:`vectorCoefficientColl = (\\\\vect{c}_1, \\\\hdots, \\\\vect{c}_N)`
where :math:`\\\\forall 1 \\\\leq i \\\\leq N, \\\\,   \\\\vect{c}_i \\\\in \\\\Rset^p`

.. math::

    vectLinComb: \\\\left|\\\\begin{array}{rcl}
                     \\\\Rset^n & \\\\rightarrow & \\\\Rset^{p} \\\\\\\\
                     \\\\vect{X} & \\\\mapsto & \\\\displaystyle \\\\sum_i \\\\vect{c}_if_i (\\\\vect{X})
                 \\\\end{array}\\\\right.

>>> functions=list()
>>> functions.append(ot.NumericalMathFunction(['x1', 'x2', 'x3'], ['y1'],
...                                           ['x1 + 2 * x2 + x3']))
>>> functions.append(ot.NumericalMathFunction(['x1', 'x2', 'x3'], ['y1'],
...                                           ['x1^2 + x2']))
>>> myFunction2 = ot.NumericalMathFunction(functions, [[2., 4.], [3., 1.]])
>>> print(myFunction2([1, 2, 3]))
[25,35]


Create a *NumericalMathFunction* from values of the inputs and the outputs:

>>> inputSample = [[1.0, 1.0], [2.0, 2.0]]
>>> outputSample = [[4.0], [5.0]]
>>> database = ot.NumericalMathFunction(inputSample, outputSample)
>>> x = [1.8]*database.getInputDimension()
>>> print(database(x))
[5]


Create a *NumericalMathFunction* which is the composition function
:math:`f\\\\circ g`:

>>> g = ot.NumericalMathFunction(['x1', 'x2'], ['y1', 'y2'],
...                              ['x1 + x2','3 * x1 * x2'])
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y'], ['2 * x1 - x2'])
>>> composed = ot.NumericalMathFunction(f, g)
>>> print(composed([3, 4]))
[-22]"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::GetValidFunctions
"Return the list of valid functions.

Returns
-------
list_functions : list of strings
    List of the functions we can use within OpenTURNS.

Examples
--------
>>> import openturns as ot
>>> print(ot.NumericalMathFunction().GetValidFunctions()[0:2])
[sin(arg) -> sine function,cos(arg) -> cosine function]"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::GetValidConstants
"Return the list of valid constants.

Returns
-------
list_constants : list of strings
    List of the constants we can use within OpenTURNS.

Examples
--------
>>> import openturns as ot
>>> print(ot.NumericalMathFunction().GetValidConstants()[0:2])
[_e -> Euler's constant (2.71828...),_pi -> Pi constant (3.14159...)]"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::GetValidOperators
"Return the list of valid operators.

Returns
-------
list_operators : list of strings
    List of the operators we can use within OpenTURNS.

Examples
--------
>>> import openturns as ot
>>> print(ot.NumericalMathFunction().GetValidOperators()[0:2])
[= -> assignement, can only be applied to variable names (priority -1),and -> logical and (priority 1)]"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::enableCache
"Enable the cache mechanism."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::disableCache
"Disable the cache mechanism."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::clearCache
"Empty the content of the cache."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::isCacheEnabled
"Test whether the cache mechanism is enabled or not.

Returns
-------
isCacheEnabled : bool
    Flag telling whether the cache mechanism is enabled.
    It is disabled by default."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getCacheHits
"Accessor to the number of computations saved thanks to the cache mecanism.

Returns
-------
cacheHits : int
    Integer that counts the number of computations saved thanks to the cache
    mecanism."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getCacheInput
"Accessor to all the input numerical points stored in the cache mecanism.

Returns
-------
cacheInput : 2D float sequence
    All the input numerical points stored in the cache mecanism."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getCacheOutput
"Accessor to all the output numerical points stored in the cache mecanism.

Returns
-------
cacheInput : 2D float sequence
    All the output numerical points stored in the cache mecanism."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::addCacheContent
"Add input numerical points and associated output to the cache.

Parameters
----------
input_sample : 2D float sequence
    Input numerical points to be added to the cache.
output_sample : 2D float sequence
    Output numerical points associated with the input_sample to be added to the
    cache."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::enableHistory
"Enable the history mechanism."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::disableHistory
"Disable the history mechanism."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::clearHistory
"Empty the content of the history."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::isHistoryEnabled
"Test whether the history mechanism is enabled or not.

Returns
-------
isHistoryEnabled : bool
    Flag telling whether the history mechanism is enabled.
    It is disabled by default."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getHistoryInput
"Accessor to the history of the input values.

Returns
-------
input_history : 2D float sequence
    All the input numerical points stored in the history mecanism."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getHistoryOutput
"Accessor to the history of the output values.

Returns
-------
output_history : 2D float sequence
    All the output numerical points stored in the history mecanism."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getCallsNumber
"Accessor to the number of times the function has been called.

Returns
-------
calls_number : int
    Integer that counts the number of times the function has been called
    since its creation."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getEvaluationCallsNumber
"Accessor to the number of times the function has been called.

Returns
-------
evaluation_calls_number : int
    Integer that counts the number of times the function has been called
    since its creation."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getGradientCallsNumber
"Accessor to the number of times the gradient of the function has been called.

Returns
-------
gradient_calls_number : int
    Integer that counts the number of times the gradient of the
    NumericalMathFunction has been called since its creation.
    Note that if the gradient is implemented by a finite difference method,
    the gradient calls number is equal to 0 and the different calls are
    counted in the evaluation calls number."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getHessianCallsNumber
"Accessor to the number of times the hessian of the function has been called.

Returns
-------
hessian_calls_number : int
    Integer that counts the number of times the hessian of the
    NumericalMathFunction has been called since its creation.
    Note that if the hessian is implemented by a finite difference method,
    the hessian calls number is equal to 0 and the different calls are counted
    in the evaluation calls number."

// ---------------------------------------------------------------------
%feature("docstring") OT::NumericalMathFunction::getMarginal
"Accessor to marginal.

Parameters
----------
indices : int or list of ints
    Set of indices for which the marginal is extracted.

Returns
-------
marginal : :class:`~openturns.NumericalMathFunction`
    Function corresponding to either :math:`f_i` or
    :math:`(f_i)_{i \\\\in indices}`, with :math:`f:\\\\Rset^n \\\\rightarrow \\\\Rset^p`
    and :math:`f=(f_0 , \\\\dots, f_{p-1})`."
// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getImplementation
"Accessor to the evaluation, gradient and hessian functions.

Returns
-------
function : :class:`~openturns.NumericalMathFunctionImplementation`
    The evaluation, gradient and hessian function.

Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y'],
...                          ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getImplementation())
input  : [x1,x2]
output : [y]
evaluation : 2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6
gradient   :
| d(y) / d(x1) = (1)+(4*x1)+((-4*((x2)*(sin(x1)))))
| d(y) / d(x2) = (8)+((4*(cos(x1)))) 

hessian    :
|    d^2(y) / d(x1)^2 = (4)+((-4*((x2)*(cos(x1)))))
| d^2(y) / d(x2)d(x1) = (-4*(sin(x1))) 
|    d^2(y) / d(x2)^2 = 0"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getEvaluation
"Accessor to the evaluation function.

Returns
-------
function : :class:`~openturns.NumericalMathEvaluationImplementation`
    The evaluation function.

Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y'],
...                          ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getEvaluation())
[x1,x2]->[2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6]"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getGradient
"Accessor to the gradient function.

Returns
-------
gradient : :class:`~openturns.NumericalMathGradientImplementation`
    The gradient function."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getHessianImplementation
"Accessor to the hessian function.

Returns
-------
hessian : :class:`~openturns.NumericalMathHessianImplementation`
    The hessian function."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getInitialEvaluationImplementation
"Accessor to the initial evaluation function.

Returns
-------
function : :class:`~openturns.NumericalMathEvaluationImplementation`
    The initial evaluation function."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getInitialGradientImplementation
"Accessor to the initial gradient function.

Returns
-------
gradient : :class:`~openturns.NumericalMathGradientImplementation`
    The initial gradient function."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getInitialHessianImplementation
"Accessor to the initial hessian function.

Returns
-------
hessian : :class:`~openturns.NumericalMathHessianImplementation`
    The initial hessian function."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::setEvaluationImplementation
"Accessor to the evaluation function.

Parameters
----------
function : :class:`~openturns.NumericalMathEvaluationImplementation`
    The evaluation function."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::setGradient
"Accessor to the gradient function.

Parameters
----------
gradient_function : :class:`~openturns.NumericalMathGradientImplementation`
    The gradient function.

Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y'],
...                          ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> f.setGradient(ot.CenteredFiniteDifferenceGradient(
...  ot.ResourceMap.GetAsNumericalScalar('CenteredFiniteDifferenceGradient-DefaultEpsilon'),
...  f.getEvaluation()))"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::setHessianImplementation
"Accessor to the hessian function.

Parameters
----------
hessian_function : :class:`~openturns.NumericalMathHessianImplementation`
    The hessian function.

Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y'],
...                          ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> f.setHessian(ot.CenteredFiniteDifferenceHessian(
...  ot.ResourceMap.GetAsNumericalScalar('CenteredFiniteDifferenceHessian-DefaultEpsilon'),
...  f.getEvaluation()))"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::gradient
"Return the Jacobian transposed matrix of the function at point.

Parameters
----------
point : float sequence
    Point where the Jacobian transposed matrix is calculated.

Returns
-------
gradient : :class:`~openturns.Matrix`
    The Jacobian transposed matrix of the function at point.

Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y','z'],
...                ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6','x1 + x2'])
>>> print(f.gradient([3.14, 4]))
[[ 13.5345   1       ]
 [  4.00001  1       ]]"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::hessian
"Return the symmetric tensor of the function at point.

Parameters
----------
point : float sequence
    Point where the symmetric tensor of the function is calculated.

Returns
-------
hessian : :class:`~openturns.SymmetricTensor`
    Symmetric tensor of the function at point.

Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y','z'],
...                ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6','x1 + x2'])
>>> print(f.hessian([3.14, 4]))
sheet #0
[[ 20          -0.00637061 ]
 [ -0.00637061  0          ]]
sheet #1
[[  0           0          ]
 [  0           0          ]]"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getDescription
"Accessor to the description of the inputs and outputs.

Returns
-------
description : list of strings
    Description of the inputs and the outputs.

Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y'],
...                          ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getDescription())
[x1,x2,y]"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::setDescription
"Accessor to the description of the inputs and outputs.

Parameters
----------
description : list of strings
    Description of the inputs and the outputs.

Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y'],
...                          ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getDescription())
[x1,x2,y]
>>> f.setDescription(['a','b','y'])
>>> print(f.getDescription())
[a,b,y]"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getInputDescription
"Accessor to the description of the inputs.

Returns
-------
description : list of strings
    Description of the inputs.

Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y'],
...                          ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getInputDescription())
[x1,x2]"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getOutputDescription
"Accessor to the description of the outputs.

Returns
-------
description : list of strings
    Description of the outputs.

Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y'],
...                          ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getOutputDescription())
[y]"
// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getInputDimension
"Accessor to the number of the inputs.

Returns
-------
number_inputs : int
    Number of inputs.

Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y'],
...                          ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getInputDimension())
2"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getOutputDimension
"Accessor to the number of the outputs.

Returns
-------
number_outputs : int
    Number of outputs.

Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y'],
...                          ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getOutputDimension())
1"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::draw
"Draw the output of function as a :class:`~openturns.Graph`.

Available usages:
    draw(*inputMarg, outputMarg, CP, xiMin, xiMax, ptNb*)

    draw(*firstInputMarg, secondInputMarg, outputMarg, CP, xiMin_xjMin, xiMax_xjMax, ptNbs*)

    draw(*xiMin, xiMax, ptNb*)

    draw(*xiMin_xjMin, xiMax_xjMax, ptNbs*)

Parameters
----------
outputMarg, inputMarg : int, :math:`outputMarg, inputMarg \\\\geq 0`
    *outputMarg* is the index of the marginal to draw as a function of the marginal
    with index *inputMarg*.
firstInputMarg, secondInputMarg : int, :math:`firstInputMarg, secondInputMarg \\\\geq 0`
    In the 2D case, the marginal *outputMarg* is drawn as a function of the
    two marginals with indexes *firstInputMarg* and *secondInputMarg*.
CP : float sequence
    Central point.
xiMin, xiMax : float
    Define the interval where the curve is plotted.
xiMin_xjMin, xiMax_xjMax : float sequences of dimension 2.
    In the 2D case, define the intervals where the curves are plotted.
ptNb : int :math:`ptNb > 0` or list of ints of dimension 2 :math:`ptNb_k > 0, k=1,2`
    The number of points to draw the curves.

Notes
-----
We note :math:`f: \\\\Rset^n \\\\rightarrow \\\\Rset^p`
where :math:`\\\\vect{x} = (x_1, \\\\dots, x_n)` and
:math:`f(\\\\vect{x}) = (f_1(\\\\vect{x}), \\\\dots,f_p(\\\\vect{x}))`,
with :math:`n\\\\geq 1` and :math:`p\\\\geq 1`.

- In the first usage:

Draws graph of the given 1D *outputMarg* marginal
:math:`f_k: \\\\Rset^n \\\\rightarrow \\\\Rset` as a function of the given 1D *inputMarg*
marginal with respect to the variation of :math:`x_i` in the interval
:math:`[x_i^{min}, x_i^{max}]`, when all the other components of
:math:`\\\\vect{x}` are fixed to the corresponding ones of the central point *CP*.
Then OpenTURNS draws the graph:
:math:`t\\\\in [x_i^{min}, x_i^{max}] \\\\mapsto f_k(CP_1, \\\\dots, CP_{i-1}, t,  CP_{i+1} \\\\dots, CP_n)`.

- In the second usage:

Draws the iso-curves of the given *outputMarg* marginal :math:`f_k` as a
function of the given 2D *firstInputMarg* and *secondInputMarg* marginals
with respect to the variation of :math:`(x_i, x_j)` in the interval
:math:`[x_i^{min}, x_i^{max}] \\\\times [x_j^{min}, x_j^{max}]`, when all the
other components of :math:`\\\\vect{x}` are fixed to the corresponding ones of the
central point *CP*. Then OpenTURNS draws the graph:
:math:`(t,u) \\\\in [x_i^{min}, x_i^{max}] \\\\times [x_j^{min}, x_j^{max}] \\\\mapsto f_k(CP_1, \\\\dots, CP_{i-1}, t, CP_{i+1}, \\\\dots, CP_{j-1}, u,  CP_{j+1} \\\\dots, CP_n)`.

- In the third usage:

The same as the first usage but only for function :math:`f: \\\\Rset \\\\rightarrow \\\\Rset`.

- In the fourth usage:

The same as the second usage but only for function :math:`f: \\\\Rset^2 \\\\rightarrow \\\\Rset`.


Examples
--------
>>> import openturns as ot
>>> from openturns.viewer import View
>>> f = ot.NumericalMathFunction('x', 'sin(2*_pi*x)*exp(-x^2/2)', 'y')
>>> graph = f.draw(-1.2, 1.2, 100)
>>> View(graph).show()"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getParameters
"**(ditch me?)**"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::setParameters
"**(ditch me?)**"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::parametersGradient
"**(ditch me?)**"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getUseDefaultGradientImplementation
"**(ditch me?)**"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::getUseDefaultHessianImplementation
"**(ditch me?)**"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::setUseDefaultGradientImplementation
"**(ditch me?)**"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalMathFunction::setUseDefaultHessianImplementation
"**(ditch me?)**"