/usr/include/openvdb/math/Mat.h is in libopenvdb-dev 3.1.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2015 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
/// @file Mat.h
/// @author Joshua Schpok
#ifndef OPENVDB_MATH_MAT_HAS_BEEN_INCLUDED
#define OPENVDB_MATH_MAT_HAS_BEEN_INCLUDED
#include <math.h>
#include <iostream>
#include <boost/format.hpp>
#include <openvdb/Exceptions.h>
#include "Math.h"
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace math {
/// @class Mat "Mat.h"
/// A base class for square matrices.
template<unsigned SIZE, typename T>
class Mat
{
public:
typedef T value_type;
typedef T ValueType;
enum SIZE_ { size = SIZE };
// Number of cols, rows, elements
static unsigned numRows() { return SIZE; }
static unsigned numColumns() { return SIZE; }
static unsigned numElements() { return SIZE*SIZE; }
/// Default ctor. Does nothing. Required because declaring a copy (or
/// other) constructor means the default constructor gets left out.
Mat() { }
/// Copy constructor. Used when the class signature matches exactly.
Mat(Mat const &src) {
for (unsigned i(0); i < numElements(); ++i) {
mm[i] = src.mm[i];
}
}
/// @return string representation of matrix
/// Since output is multiline, optional indentation argument prefixes
/// each newline with that much white space. It does not indent
/// the first line, since you might be calling this inline:
///
/// cout << "matrix: " << mat.str(7)
///
/// matrix: [[1 2]
/// [3 4]]
std::string
str(unsigned indentation = 0) const {
std::string ret;
std::string indent;
// We add +1 since we're indenting one for the first '['
indent.append(indentation+1, ' ');
ret.append("[");
// For each row,
for (unsigned i(0); i < SIZE; i++) {
ret.append("[");
// For each column
for (unsigned j(0); j < SIZE; j++) {
// Put a comma after everything except the last
if (j) ret.append(", ");
ret.append((boost::format("%1%") % mm[(i*SIZE)+j]).str());
}
ret.append("]");
// At the end of every row (except the last)...
if (i < SIZE-1 )
// ...suffix the row bracket with a comma, newline, and
// advance indentation
ret.append((boost::format(",\n%1%") % indent).str());
}
ret.append("]");
return ret;
}
/// Write a Mat to an output stream
friend std::ostream& operator<<(
std::ostream& ostr,
const Mat<SIZE, T>& m)
{
ostr << m.str();
return ostr;
}
void write(std::ostream& os) const {
os.write(reinterpret_cast<const char*>(&mm), sizeof(T)*SIZE*SIZE);
}
void read(std::istream& is) {
is.read(reinterpret_cast<char*>(&mm), sizeof(T)*SIZE*SIZE);
}
protected:
T mm[SIZE*SIZE];
};
template<typename T> class Quat;
template<typename T> class Vec3;
/// @brief Return the rotation matrix specified by the given quaternion.
/// @details The quaternion is normalized and used to construct the matrix.
/// Note that the matrix is transposed to match post-multiplication semantics.
template<class MatType>
MatType
rotation(const Quat<typename MatType::value_type> &q,
typename MatType::value_type eps = static_cast<typename MatType::value_type>(1.0e-8))
{
typedef typename MatType::value_type T;
T qdot(q.dot(q));
T s(0);
if (!isApproxEqual(qdot, T(0.0),eps)) {
s = T(2.0 / qdot);
}
T x = s*q.x();
T y = s*q.y();
T z = s*q.z();
T wx = x*q.w();
T wy = y*q.w();
T wz = z*q.w();
T xx = x*q.x();
T xy = y*q.x();
T xz = z*q.x();
T yy = y*q.y();
T yz = z*q.y();
T zz = z*q.z();
MatType r;
r[0][0]=T(1) - (yy+zz); r[0][1]=xy + wz; r[0][2]=xz - wy;
r[1][0]=xy - wz; r[1][1]=T(1) - (xx+zz); r[1][2]=yz + wx;
r[2][0]=xz + wy; r[2][1]=yz - wx; r[2][2]=T(1) - (xx+yy);
if(MatType::numColumns() == 4) padMat4(r);
return r;
}
/// @brief Return a matrix for rotation by @a angle radians about the given @a axis.
/// @param axis The axis (one of X, Y, Z) to rotate about.
/// @param angle The rotation angle, in radians.
template<class MatType>
MatType
rotation(Axis axis, typename MatType::value_type angle)
{
typedef typename MatType::value_type T;
T c = static_cast<T>(cos(angle));
T s = static_cast<T>(sin(angle));
MatType result;
result.setIdentity();
switch (axis) {
case X_AXIS:
result[1][1] = c;
result[1][2] = s;
result[2][1] = -s;
result[2][2] = c;
return result;
case Y_AXIS:
result[0][0] = c;
result[0][2] = -s;
result[2][0] = s;
result[2][2] = c;
return result;
case Z_AXIS:
result[0][0] = c;
result[0][1] = s;
result[1][0] = -s;
result[1][1] = c;
return result;
default:
throw ValueError("Unrecognized rotation axis");
}
}
/// @brief Return a matrix for rotation by @a angle radians about the given @a axis.
/// @note The axis must be a unit vector.
template<class MatType>
MatType
rotation(const Vec3<typename MatType::value_type> &_axis, typename MatType::value_type angle)
{
typedef typename MatType::value_type T;
T txy, txz, tyz, sx, sy, sz;
Vec3<T> axis(_axis.unit());
// compute trig properties of angle:
T c(cos(double(angle)));
T s(sin(double(angle)));
T t(1 - c);
MatType result;
// handle diagonal elements
result[0][0] = axis[0]*axis[0] * t + c;
result[1][1] = axis[1]*axis[1] * t + c;
result[2][2] = axis[2]*axis[2] * t + c;
txy = axis[0]*axis[1] * t;
sz = axis[2] * s;
txz = axis[0]*axis[2] * t;
sy = axis[1] * s;
tyz = axis[1]*axis[2] * t;
sx = axis[0] * s;
// right handed space
// Contribution from rotation about 'z'
result[0][1] = txy + sz;
result[1][0] = txy - sz;
// Contribution from rotation about 'y'
result[0][2] = txz - sy;
result[2][0] = txz + sy;
// Contribution from rotation about 'x'
result[1][2] = tyz + sx;
result[2][1] = tyz - sx;
if(MatType::numColumns() == 4) padMat4(result);
return MatType(result);
}
/// @brief Return the Euler angles composing the given rotation matrix.
/// @details Optional axes arguments describe in what order elementary rotations
/// are applied. Note that in our convention, XYZ means Rz * Ry * Rx.
/// Because we are using rows rather than columns to represent the
/// local axes of a coordinate frame, the interpretation from a local
/// reference point of view is to first rotate about the x axis, then
/// about the newly rotated y axis, and finally by the new local z axis.
/// From a fixed reference point of view, the interpretation is to
/// rotate about the stationary world z, y, and x axes respectively.
///
/// Irrespective of the Euler angle convention, in the case of distinct
/// axes, eulerAngles() returns the x, y, and z angles in the corresponding
/// x, y, z components of the returned Vec3. For the XZX convention, the
/// left X value is returned in Vec3.x, and the right X value in Vec3.y.
/// For the ZXZ convention the left Z value is returned in Vec3.z and
/// the right Z value in Vec3.y
///
/// Examples of reconstructing r from its Euler angle decomposition
///
/// v = eulerAngles(r, ZYX_ROTATION);
/// rx.setToRotation(Vec3d(1,0,0), v[0]);
/// ry.setToRotation(Vec3d(0,1,0), v[1]);
/// rz.setToRotation(Vec3d(0,0,1), v[2]);
/// r = rx * ry * rz;
///
/// v = eulerAngles(r, ZXZ_ROTATION);
/// rz1.setToRotation(Vec3d(0,0,1), v[2]);
/// rx.setToRotation (Vec3d(1,0,0), v[0]);
/// rz2.setToRotation(Vec3d(0,0,1), v[1]);
/// r = rz2 * rx * rz1;
///
/// v = eulerAngles(r, XZX_ROTATION);
/// rx1.setToRotation (Vec3d(1,0,0), v[0]);
/// rx2.setToRotation (Vec3d(1,0,0), v[1]);
/// rz.setToRotation (Vec3d(0,0,1), v[2]);
/// r = rx2 * rz * rx1;
///
template<class MatType>
Vec3<typename MatType::value_type>
eulerAngles(
const MatType& mat,
RotationOrder rotationOrder,
typename MatType::value_type eps = static_cast<typename MatType::value_type>(1.0e-8))
{
typedef typename MatType::value_type ValueType;
typedef Vec3<ValueType> V;
ValueType phi, theta, psi;
switch(rotationOrder)
{
case XYZ_ROTATION:
if (isApproxEqual(mat[2][0], ValueType(1.0), eps)) {
theta = ValueType(M_PI_2);
phi = ValueType(0.5 * atan2(mat[1][2], mat[1][1]));
psi = phi;
} else if (isApproxEqual(mat[2][0], ValueType(-1.0), eps)) {
theta = ValueType(-M_PI_2);
phi = ValueType(0.5 * atan2(mat[1][2], mat[1][1]));
psi = -phi;
} else {
psi = ValueType(atan2(-mat[1][0],mat[0][0]));
phi = ValueType(atan2(-mat[2][1],mat[2][2]));
theta = ValueType(atan2(mat[2][0],
sqrt( mat[2][1]*mat[2][1] +
mat[2][2]*mat[2][2])));
}
return V(phi, theta, psi);
case ZXY_ROTATION:
if (isApproxEqual(mat[1][2], ValueType(1.0), eps)) {
theta = ValueType(M_PI_2);
phi = ValueType(0.5 * atan2(mat[0][1], mat[0][0]));
psi = phi;
} else if (isApproxEqual(mat[1][2], ValueType(-1.0), eps)) {
theta = ValueType(-M_PI/2);
phi = ValueType(0.5 * atan2(mat[0][1],mat[2][1]));
psi = -phi;
} else {
psi = ValueType(atan2(-mat[0][2], mat[2][2]));
phi = ValueType(atan2(-mat[1][0], mat[1][1]));
theta = ValueType(atan2(mat[1][2],
sqrt(mat[0][2] * mat[0][2] +
mat[2][2] * mat[2][2])));
}
return V(theta, psi, phi);
case YZX_ROTATION:
if (isApproxEqual(mat[0][1], ValueType(1.0), eps)) {
theta = ValueType(M_PI_2);
phi = ValueType(0.5 * atan2(mat[2][0], mat[2][2]));
psi = phi;
} else if (isApproxEqual(mat[0][1], ValueType(-1.0), eps)) {
theta = ValueType(-M_PI/2);
phi = ValueType(0.5 * atan2(mat[2][0], mat[1][0]));
psi = -phi;
} else {
psi = ValueType(atan2(-mat[2][1], mat[1][1]));
phi = ValueType(atan2(-mat[0][2], mat[0][0]));
theta = ValueType(atan2(mat[0][1],
sqrt(mat[0][0] * mat[0][0] +
mat[0][2] * mat[0][2])));
}
return V(psi, phi, theta);
case XZX_ROTATION:
if (isApproxEqual(mat[0][0], ValueType(1.0), eps)) {
theta = ValueType(0.0);
phi = ValueType(0.5 * atan2(mat[1][2], mat[1][1]));
psi = phi;
} else if (isApproxEqual(mat[0][0], ValueType(-1.0), eps)) {
theta = ValueType(M_PI);
psi = ValueType(0.5 * atan2(mat[2][1], -mat[1][1]));
phi = - psi;
} else {
psi = ValueType(atan2(mat[2][0], -mat[1][0]));
phi = ValueType(atan2(mat[0][2], mat[0][1]));
theta = ValueType(atan2(sqrt(mat[0][1] * mat[0][1] +
mat[0][2] * mat[0][2]),
mat[0][0]));
}
return V(phi, psi, theta);
case ZXZ_ROTATION:
if (isApproxEqual(mat[2][2], ValueType(1.0), eps)) {
theta = ValueType(0.0);
phi = ValueType(0.5 * atan2(mat[0][1], mat[0][0]));
psi = phi;
} else if (isApproxEqual(mat[2][2], ValueType(-1.0), eps)) {
theta = ValueType(M_PI);
phi = ValueType(0.5 * atan2(mat[0][1], mat[0][0]));
psi = -phi;
} else {
psi = ValueType(atan2(mat[0][2], mat[1][2]));
phi = ValueType(atan2(mat[2][0], -mat[2][1]));
theta = ValueType(atan2(sqrt(mat[0][2] * mat[0][2] +
mat[1][2] * mat[1][2]),
mat[2][2]));
}
return V(theta, psi, phi);
case YXZ_ROTATION:
if (isApproxEqual(mat[2][1], ValueType(1.0), eps)) {
theta = ValueType(-M_PI_2);
phi = ValueType(0.5 * atan2(-mat[1][0], mat[0][0]));
psi = phi;
} else if (isApproxEqual(mat[2][1], ValueType(-1.0), eps)) {
theta = ValueType(M_PI_2);
phi = ValueType(0.5 * atan2(mat[1][0], mat[0][0]));
psi = -phi;
} else {
psi = ValueType(atan2(mat[0][1], mat[1][1]));
phi = ValueType(atan2(mat[2][0], mat[2][2]));
theta = ValueType(atan2(-mat[2][1],
sqrt(mat[0][1] * mat[0][1] +
mat[1][1] * mat[1][1])));
}
return V(theta, phi, psi);
case ZYX_ROTATION:
if (isApproxEqual(mat[0][2], ValueType(1.0), eps)) {
theta = ValueType(-M_PI_2);
phi = ValueType(0.5 * atan2(-mat[1][0], mat[1][1]));
psi = phi;
} else if (isApproxEqual(mat[0][2], ValueType(-1.0), eps)) {
theta = ValueType(M_PI_2);
phi = ValueType(0.5 * atan2(mat[2][1], mat[2][0]));
psi = -phi;
} else {
psi = ValueType(atan2(mat[1][2], mat[2][2]));
phi = ValueType(atan2(mat[0][1], mat[0][0]));
theta = ValueType(atan2(-mat[0][2],
sqrt(mat[0][1] * mat[0][1] +
mat[0][0] * mat[0][0])));
}
return V(psi, theta, phi);
case XZY_ROTATION:
if (isApproxEqual(mat[1][0], ValueType(-1.0), eps)) {
theta = ValueType(M_PI_2);
psi = ValueType(0.5 * atan2(mat[2][1], mat[2][2]));
phi = -psi;
} else if (isApproxEqual(mat[1][0], ValueType(1.0), eps)) {
theta = ValueType(-M_PI_2);
psi = ValueType(0.5 * atan2(- mat[2][1], mat[2][2]));
phi = psi;
} else {
psi = ValueType(atan2(mat[2][0], mat[0][0]));
phi = ValueType(atan2(mat[1][2], mat[1][1]));
theta = ValueType(atan2(- mat[1][0],
sqrt(mat[1][1] * mat[1][1] +
mat[1][2] * mat[1][2])));
}
return V(phi, psi, theta);
}
OPENVDB_THROW(NotImplementedError, "Euler extraction sequence not implemented");
}
/// @brief Return a rotation matrix that maps @a v1 onto @a v2
/// about the cross product of @a v1 and @a v2.
template<class MatType>
MatType
rotation(
const Vec3<typename MatType::value_type>& _v1,
const Vec3<typename MatType::value_type>& _v2,
typename MatType::value_type eps=1.0e-8)
{
typedef typename MatType::value_type T;
Vec3<T> v1(_v1);
Vec3<T> v2(_v2);
// Check if v1 and v2 are unit length
if (!isApproxEqual(1.0, v1.dot(v1), eps)) {
v1.normalize();
}
if (!isApproxEqual(1.0, v2.dot(v2), eps)) {
v2.normalize();
}
Vec3<T> cross;
cross.cross(v1, v2);
if (isApproxEqual(cross[0], 0.0, eps) &&
isApproxEqual(cross[1], 0.0, eps) &&
isApproxEqual(cross[2], 0.0, eps)) {
// Given two unit vectors v1 and v2 that are nearly parallel, build a
// rotation matrix that maps v1 onto v2. First find which principal axis
// p is closest to perpendicular to v1. Find a reflection that exchanges
// v1 and p, and find a reflection that exchanges p2 and v2. The desired
// rotation matrix is the composition of these two reflections. See the
// paper "Efficiently Building a Matrix to Rotate One Vector to
// Another" by Tomas Moller and John Hughes in Journal of Graphics
// Tools Vol 4, No 4 for details.
Vec3<T> u, v, p(0.0, 0.0, 0.0);
double x = Abs(v1[0]);
double y = Abs(v1[1]);
double z = Abs(v1[2]);
if (x < y) {
if (z < x) {
p[2] = 1;
} else {
p[0] = 1;
}
} else {
if (z < y) {
p[2] = 1;
} else {
p[1] = 1;
}
}
u = p - v1;
v = p - v2;
double udot = u.dot(u);
double vdot = v.dot(v);
double a = -2 / udot;
double b = -2 / vdot;
double c = 4 * u.dot(v) / (udot * vdot);
MatType result;
result.setIdentity();
for (int j = 0; j < 3; j++) {
for (int i = 0; i < 3; i++)
result[i][j] =
a * u[i] * u[j] + b * v[i] * v[j] + c * v[j] * u[i];
}
result[0][0] += 1.0;
result[1][1] += 1.0;
result[2][2] += 1.0;
if(MatType::numColumns() == 4) padMat4(result);
return result;
} else {
double c = v1.dot(v2);
double a = (1.0 - c) / cross.dot(cross);
double a0 = a * cross[0];
double a1 = a * cross[1];
double a2 = a * cross[2];
double a01 = a0 * cross[1];
double a02 = a0 * cross[2];
double a12 = a1 * cross[2];
MatType r;
r[0][0] = c + a0 * cross[0];
r[0][1] = a01 + cross[2];
r[0][2] = a02 - cross[1],
r[1][0] = a01 - cross[2];
r[1][1] = c + a1 * cross[1];
r[1][2] = a12 + cross[0];
r[2][0] = a02 + cross[1];
r[2][1] = a12 - cross[0];
r[2][2] = c + a2 * cross[2];
if(MatType::numColumns() == 4) padMat4(r);
return r;
}
}
/// Return a matrix that scales by @a s.
template<class MatType>
MatType
scale(const Vec3<typename MatType::value_type>& s)
{
// Gets identity, then sets top 3 diagonal
// Inefficient by 3 sets.
MatType result;
result.setIdentity();
result[0][0] = s[0];
result[1][1] = s[1];
result[2][2] = s[2];
return result;
}
/// Return a Vec3 representing the lengths of the passed matrix's upper 3x3's rows.
template<class MatType>
Vec3<typename MatType::value_type>
getScale(const MatType &mat)
{
typedef Vec3<typename MatType::value_type> V;
return V(
V(mat[0][0], mat[0][1], mat[0][2]).length(),
V(mat[1][0], mat[1][1], mat[1][2]).length(),
V(mat[2][0], mat[2][1], mat[2][2]).length());
}
/// @brief Return a copy of the given matrix with its upper 3x3 rows normalized.
/// @details This can be geometrically interpreted as a matrix with no scaling
/// along its major axes.
template<class MatType>
MatType
unit(const MatType &mat, typename MatType::value_type eps = 1.0e-8)
{
Vec3<typename MatType::value_type> dud;
return unit(mat, eps, dud);
}
/// @brief Return a copy of the given matrix with its upper 3x3 rows normalized,
/// and return the length of each of these rows in @a scaling.
/// @details This can be geometrically interpretted as a matrix with no scaling
/// along its major axes, and the scaling in the input vector
template<class MatType>
MatType
unit(
const MatType &in,
typename MatType::value_type eps,
Vec3<typename MatType::value_type>& scaling)
{
typedef typename MatType::value_type T;
MatType result(in);
for (int i(0); i < 3; i++) {
try {
const Vec3<T> u(
Vec3<T>(in[i][0], in[i][1], in[i][2]).unit(eps, scaling[i]));
for (int j=0; j<3; j++) result[i][j] = u[j];
} catch (ArithmeticError&) {
for (int j=0; j<3; j++) result[i][j] = 0;
}
}
return result;
}
/// @brief Set the matrix to a shear along @a axis0 by a fraction of @a axis1.
/// @param axis0 The fixed axis of the shear.
/// @param axis1 The shear axis.
/// @param shear The shear factor.
template <class MatType>
MatType
shear(Axis axis0, Axis axis1, typename MatType::value_type shear)
{
int index0 = static_cast<int>(axis0);
int index1 = static_cast<int>(axis1);
MatType result;
result.setIdentity();
if (axis0 == axis1) {
result[index1][index0] = shear + 1;
} else {
result[index1][index0] = shear;
}
return result;
}
/// Return a matrix as the cross product of the given vector.
template<class MatType>
MatType
skew(const Vec3<typename MatType::value_type> &skew)
{
typedef typename MatType::value_type T;
MatType r;
r[0][0] = T(0); r[0][1] = skew.z(); r[0][2] = -skew.y();
r[1][0] = -skew.z(); r[1][1] = T(0); r[2][1] = skew.x();
r[2][0] = skew.y(); r[2][1] = -skew.x(); r[2][2] = T(0);
if(MatType::numColumns() == 4) padMat4(r);
return r;
}
/// @brief Return an orientation matrix such that z points along @a direction,
/// and y is along the @a direction / @a vertical plane.
template<class MatType>
MatType
aim(const Vec3<typename MatType::value_type>& direction,
const Vec3<typename MatType::value_type>& vertical)
{
typedef typename MatType::value_type T;
Vec3<T> forward(direction.unit());
Vec3<T> horizontal(vertical.unit().cross(forward).unit());
Vec3<T> up(forward.cross(horizontal).unit());
MatType r;
r[0][0]=horizontal.x(); r[0][1]=horizontal.y(); r[0][2]=horizontal.z();
r[1][0]=up.x(); r[1][1]=up.y(); r[1][2]=up.z();
r[2][0]=forward.x(); r[2][1]=forward.y(); r[2][2]=forward.z();
if(MatType::numColumns() == 4) padMat4(r);
return r;
}
/// @brief Write 0s along Mat4's last row and column, and a 1 on its diagonal.
/// @details Useful initialization when we're initializing just the 3x3 block.
template<class MatType>
static MatType&
padMat4(MatType& dest)
{
dest[0][3] = dest[1][3] = dest[2][3] = 0;
dest[3][2] = dest[3][1] = dest[3][0] = 0;
dest[3][3] = 1;
return dest;
}
/// @brief Solve for A=B*B, given A.
/// @details Denman-Beavers square root iteration
template <typename MatType>
inline void
sqrtSolve(const MatType &aA, MatType &aB, double aTol=0.01)
{
unsigned int iterations = (unsigned int)(log(aTol)/log(0.5));
MatType Y[2];
MatType Z[2];
MatType invY;
MatType invZ;
unsigned int current = 0;
Y[0]=aA;
Z[0] = MatType::identity();
unsigned int iteration;
for (iteration=0; iteration<iterations; iteration++)
{
unsigned int last = current;
current = !current;
invY = Y[last].inverse();
invZ = Z[last].inverse();
Y[current]=0.5*(Y[last]+invZ);
Z[current]=0.5*(Z[last]+invY);
}
MatType &R = Y[current];
aB=R;
}
template <typename MatType>
inline void
powSolve(const MatType &aA, MatType &aB, double aPower, double aTol=0.01)
{
unsigned int iterations = (unsigned int)(log(aTol)/log(0.5));
const bool inverted = ( aPower < 0.0 );
if (inverted) {
aPower = -aPower;
}
unsigned int whole = (unsigned int)aPower;
double fraction = aPower - whole;
MatType R;
R = MatType::identity();
MatType partial = aA;
double contribution = 1.0;
unsigned int iteration;
for (iteration=0; iteration< iterations; iteration++)
{
sqrtSolve(partial, partial, aTol);
contribution *= 0.5;
if (fraction>=contribution)
{
R *= partial;
fraction-=contribution;
}
}
partial = aA;
while (whole)
{
if (whole & 1) {
R *= partial;
}
whole>>=1;
if(whole) {
partial*=partial;
}
}
if (inverted) {
aB = R.inverse();
}
else {
aB = R;
}
}
/// @brief Determine if a matrix is an identity matrix.
template<typename MatType>
inline bool
isIdentity(const MatType& m)
{
return m.eq(MatType::identity());
}
/// @brief Determine if a matrix is invertible.
template<typename MatType>
inline bool
isInvertible(const MatType& m)
{
typedef typename MatType::ValueType value_type;
return !isApproxEqual(m.det(), (value_type)0);
}
/// @brief Determine if a matrix is symmetric.
/// @details This implicitly uses math::isApproxEqual() to determine equality.
template<typename MatType>
inline bool
isSymmetric(const MatType& m)
{
return m.eq(m.transpose());
}
/// Determine if a matrix is unitary (i.e., rotation or reflection).
template<typename MatType>
inline bool
isUnitary(const MatType& m)
{
typedef typename MatType::ValueType value_type;
if (!isApproxEqual(std::abs(m.det()), value_type(1.0))) return false;
// check that the matrix transpose is the inverse
MatType temp = m * m.transpose();
return temp.eq(MatType::identity());
}
/// Determine if a matrix is diagonal.
template<typename MatType>
inline bool
isDiagonal(const MatType& mat)
{
int n = MatType::size;
typename MatType::ValueType temp(0);
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (i != j) {
temp+=std::abs(mat(i,j));
}
}
}
return isApproxEqual(temp, typename MatType::ValueType(0.0));
}
/// Return the @f$L_\infty@f$ norm of an N x N matrix.
template<typename MatType>
typename MatType::ValueType
lInfinityNorm(const MatType& matrix)
{
int n = MatType::size;
typename MatType::ValueType norm = 0;
for( int j = 0; j<n; ++j) {
typename MatType::ValueType column_sum = 0;
for (int i = 0; i<n; ++i) {
column_sum += fabs(matrix(i,j));
}
norm = std::max(norm, column_sum);
}
return norm;
}
/// Return the @f$L_1@f$ norm of an N x N matrix.
template<typename MatType>
typename MatType::ValueType
lOneNorm(const MatType& matrix)
{
int n = MatType::size;
typename MatType::ValueType norm = 0;
for( int i = 0; i<n; ++i) {
typename MatType::ValueType row_sum = 0;
for (int j = 0; j<n; ++j) {
row_sum += fabs(matrix(i,j));
}
norm = std::max(norm, row_sum);
}
return norm;
}
/// @brief Decompose an invertible 3x3 matrix into a unitary matrix
/// followed by a symmetric matrix (positive semi-definite Hermitian),
/// i.e., M = U * S.
/// @details If det(U) = 1 it is a rotation, otherwise det(U) = -1,
/// meaning there is some part reflection.
/// See "Computing the polar decomposition with applications"
/// Higham, N.J. - SIAM J. Sc. Stat Comput 7(4):1160-1174
template<typename MatType>
bool
polarDecomposition(const MatType& input, MatType& unitary,
MatType& positive_hermitian, unsigned int MAX_ITERATIONS=100)
{
unitary = input;
MatType new_unitary(input);
MatType unitary_inv;
if (fabs(unitary.det()) < math::Tolerance<typename MatType::ValueType>::value()) return false;
unsigned int iteration(0);
typename MatType::ValueType linf_of_u;
typename MatType::ValueType l1nm_of_u;
typename MatType::ValueType linf_of_u_inv;
typename MatType::ValueType l1nm_of_u_inv;
typename MatType::ValueType l1_error = 100;
double gamma;
do {
unitary_inv = unitary.inverse();
linf_of_u = lInfinityNorm(unitary);
l1nm_of_u = lOneNorm(unitary);
linf_of_u_inv = lInfinityNorm(unitary_inv);
l1nm_of_u_inv = lOneNorm(unitary_inv);
gamma = sqrt( sqrt( (l1nm_of_u_inv * linf_of_u_inv ) / (l1nm_of_u * linf_of_u) ));
new_unitary = 0.5*(gamma * unitary + (1./gamma) * unitary_inv.transpose() );
l1_error = lInfinityNorm(unitary - new_unitary);
unitary = new_unitary;
/// this generally converges in less than ten iterations
if (iteration > MAX_ITERATIONS) return false;
iteration++;
} while (l1_error > math::Tolerance<typename MatType::ValueType>::value());
positive_hermitian = unitary.transpose() * input;
return true;
}
} // namespace math
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_MATH_MAT_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2015 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|