/usr/include/openvdb/math/Quat.h is in libopenvdb-dev 3.1.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2015 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
#ifndef OPENVDB_MATH_QUAT_H_HAS_BEEN_INCLUDED
#define OPENVDB_MATH_QUAT_H_HAS_BEEN_INCLUDED
#include <iostream>
#include <cmath>
#include "Mat.h"
#include "Mat3.h"
#include "Math.h"
#include "Vec3.h"
#include <openvdb/Exceptions.h>
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace math {
template<typename T> class Quat;
/// Linear interpolation between the two quaternions
template <typename T>
Quat<T> slerp(const Quat<T> &q1, const Quat<T> &q2, T t, T tolerance=0.00001)
{
T qdot, angle, sineAngle;
qdot = q1.dot(q2);
if (fabs(qdot) >= 1.0) {
angle = 0; // not necessary but suppresses compiler warning
sineAngle = 0;
} else {
angle = acos(qdot);
sineAngle = sin(angle);
}
//
// Denominator close to 0 corresponds to the case where the
// two quaternions are close to the same rotation. In this
// case linear interpolation is used but we normalize to
// guarantee unit length
//
if (sineAngle <= tolerance) {
T s = 1.0 - t;
Quat<T> qtemp(s * q1[0] + t * q2[0], s * q1[1] + t * q2[1],
s * q1[2] + t * q2[2], s * q1[3] + t * q2[3]);
//
// Check the case where two close to antipodal quaternions were
// blended resulting in a nearly zero result which can happen,
// for example, if t is close to 0.5. In this case it is not safe
// to project back onto the sphere.
//
double lengthSquared = qtemp.dot(qtemp);
if (lengthSquared <= tolerance * tolerance) {
qtemp = (t < 0.5) ? q1 : q2;
} else {
qtemp *= 1.0 / sqrt(lengthSquared);
}
return qtemp;
} else {
T sine = 1.0 / sineAngle;
T a = sin((1.0 - t) * angle) * sine;
T b = sin(t * angle) * sine;
return Quat<T>(a * q1[0] + b * q2[0], a * q1[1] + b * q2[1],
a * q1[2] + b * q2[2], a * q1[3] + b * q2[3]);
}
}
template<typename T>
class Quat
{
public:
/// Trivial constructor, the quaternion is NOT initialized
Quat() {}
/// Constructor with four arguments, e.g. Quatf q(1,2,3,4);
Quat(T x, T y, T z, T w)
{
mm[0] = x;
mm[1] = y;
mm[2] = z;
mm[3] = w;
}
/// Constructor with array argument, e.g. float a[4]; Quatf q(a);
Quat(T *a)
{
mm[0] = a[0];
mm[1] = a[1];
mm[2] = a[2];
mm[3] = a[3];
}
/// Constructor given rotation as axis and angle, the axis must be
/// unit vector
Quat(const Vec3<T> &axis, T angle)
{
// assert( REL_EQ(axis.length(), 1.) );
T s = T(sin(angle*T(0.5)));
mm[0] = axis.x() * s;
mm[1] = axis.y() * s;
mm[2] = axis.z() * s;
mm[3] = T(cos(angle*T(0.5)));
}
/// Constructor given rotation as axis and angle
Quat(math::Axis axis, T angle)
{
T s = T(sin(angle*T(0.5)));
mm[0] = (axis==math::X_AXIS) * s;
mm[1] = (axis==math::Y_AXIS) * s;
mm[2] = (axis==math::Z_AXIS) * s;
mm[3] = T(cos(angle*T(0.5)));
}
/// Constructor given a rotation matrix
template<typename T1>
Quat(const Mat3<T1> &rot) {
// verify that the matrix is really a rotation
if(!isUnitary(rot)) { // unitary is reflection or rotation
OPENVDB_THROW(ArithmeticError,
"A non-rotation matrix can not be used to construct a quaternion");
}
if (!isApproxEqual(rot.det(), (T1)1)) { // rule out reflection
OPENVDB_THROW(ArithmeticError,
"A reflection matrix can not be used to construct a quaternion");
}
T trace = (T)rot.trace();
if (trace > 0) {
T q_w = 0.5 * std::sqrt(trace+1);
T factor = 0.25 / q_w;
mm[0] = factor * (rot(1,2) - rot(2,1));
mm[1] = factor * (rot(2,0) - rot(0,2));
mm[2] = factor * (rot(0,1) - rot(1,0));
mm[3] = q_w;
} else if (rot(0,0) > rot(1,1) && rot(0,0) > rot(2,2)) {
T q_x = 0.5 * sqrt(rot(0,0)- rot(1,1)-rot(2,2)+1);
T factor = 0.25 / q_x;
mm[0] = q_x;
mm[1] = factor * (rot(0,1) + rot(1,0));
mm[2] = factor * (rot(2,0) + rot(0,2));
mm[3] = factor * (rot(1,2) - rot(2,1));
} else if (rot(1,1) > rot(2,2)) {
T q_y = 0.5 * sqrt(rot(1,1)-rot(0,0)-rot(2,2)+1);
T factor = 0.25 / q_y;
mm[0] = factor * (rot(0,1) + rot(1,0));
mm[1] = q_y;
mm[2] = factor * (rot(1,2) + rot(2,1));
mm[3] = factor * (rot(2,0) - rot(0,2));
} else {
T q_z = 0.5 * sqrt(rot(2,2)-rot(0,0)-rot(1,1)+1);
T factor = 0.25 / q_z;
mm[0] = factor * (rot(2,0) + rot(0,2));
mm[1] = factor * (rot(1,2) + rot(2,1));
mm[2] = q_z;
mm[3] = factor * (rot(0,1) - rot(1,0));
}
}
/// Copy constructor
Quat(const Quat &q)
{
mm[0] = q.mm[0];
mm[1] = q.mm[1];
mm[2] = q.mm[2];
mm[3] = q.mm[3];
}
/// Reference to the component, e.g. q.x() = 4.5f;
T& x() { return mm[0]; }
T& y() { return mm[1]; }
T& z() { return mm[2]; }
T& w() { return mm[3]; }
/// Get the component, e.g. float f = q.w();
T x() const { return mm[0]; }
T y() const { return mm[1]; }
T z() const { return mm[2]; }
T w() const { return mm[3]; }
// Number of elements
static unsigned numElements() { return 4; }
/// Array style reference to the components, e.g. q[3] = 1.34f;
T& operator[](int i) { return mm[i]; }
/// Array style constant reference to the components, e.g. float f = q[1];
T operator[](int i) const { return mm[i]; }
/// Cast to T*
operator T*() { return mm; }
operator const T*() const { return mm; }
/// Alternative indexed reference to the elements
T& operator()(int i) { return mm[i]; }
/// Alternative indexed constant reference to the elements,
T operator()(int i) const { return mm[i]; }
/// Return angle of rotation
T angle() const
{
T sqrLength = mm[0]*mm[0] + mm[1]*mm[1] + mm[2]*mm[2];
if ( sqrLength > 1.0e-8 ) {
return T(T(2.0) * acos(mm[3]));
} else {
return T(0.0);
}
}
/// Return axis of rotation
Vec3<T> axis() const
{
T sqrLength = mm[0]*mm[0] + mm[1]*mm[1] + mm[2]*mm[2];
if ( sqrLength > 1.0e-8 ) {
T invLength = T(T(1)/sqrt(sqrLength));
return Vec3<T>( mm[0]*invLength, mm[1]*invLength, mm[2]*invLength );
} else {
return Vec3<T>(1,0,0);
}
}
/// "this" quaternion gets initialized to [x, y, z, w]
Quat& init(T x, T y, T z, T w)
{
mm[0] = x; mm[1] = y; mm[2] = z; mm[3] = w;
return *this;
}
/// "this" quaternion gets initialized to identity, same as setIdentity()
Quat& init() { return setIdentity(); }
/// Set "this" quaternion to rotation specified by axis and angle,
/// the axis must be unit vector
Quat& setAxisAngle(const Vec3<T>& axis, T angle)
{
T s = T(sin(angle*T(0.5)));
mm[0] = axis.x() * s;
mm[1] = axis.y() * s;
mm[2] = axis.z() * s;
mm[3] = T(cos(angle*T(0.5)));
return *this;
} // axisAngleTest
/// Set "this" vector to zero
Quat& setZero()
{
mm[0] = mm[1] = mm[2] = mm[3] = 0;
return *this;
}
/// Set "this" vector to identity
Quat& setIdentity()
{
mm[0] = mm[1] = mm[2] = 0;
mm[3] = 1;
return *this;
}
/// Returns vector of x,y,z rotational components
Vec3<T> eulerAngles(RotationOrder rotationOrder) const
{ return math::eulerAngles(Mat3<T>(*this), rotationOrder); }
/// Assignment operator
Quat& operator=(const Quat &q)
{
mm[0] = q.mm[0];
mm[1] = q.mm[1];
mm[2] = q.mm[2];
mm[3] = q.mm[3];
return *this;
}
/// Equality operator, does exact floating point comparisons
bool operator==(const Quat &q) const
{
return (isExactlyEqual(mm[0],q.mm[0]) &&
isExactlyEqual(mm[1],q.mm[1]) &&
isExactlyEqual(mm[2],q.mm[2]) &&
isExactlyEqual(mm[3],q.mm[3]) );
}
/// Test if "this" is equivalent to q with tolerance of eps value
bool eq(const Quat &q, T eps=1.0e-7) const
{
return isApproxEqual(mm[0],q.mm[0],eps) && isApproxEqual(mm[1],q.mm[1],eps) &&
isApproxEqual(mm[2],q.mm[2],eps) && isApproxEqual(mm[3],q.mm[3],eps) ;
} // trivial
/// Add quaternion q to "this" quaternion, e.g. q += q1;
Quat& operator+=(const Quat &q)
{
mm[0] += q.mm[0];
mm[1] += q.mm[1];
mm[2] += q.mm[2];
mm[3] += q.mm[3];
return *this;
}
/// Subtract quaternion q from "this" quaternion, e.g. q -= q1;
Quat& operator-=(const Quat &q)
{
mm[0] -= q.mm[0];
mm[1] -= q.mm[1];
mm[2] -= q.mm[2];
mm[3] -= q.mm[3];
return *this;
}
/// Scale "this" quaternion by scalar, e.g. q *= scalar;
Quat& operator*=(T scalar)
{
mm[0] *= scalar;
mm[1] *= scalar;
mm[2] *= scalar;
mm[3] *= scalar;
return *this;
}
/// Return (this+q), e.g. q = q1 + q2;
Quat operator+(const Quat &q) const
{
return Quat<T>(mm[0]+q.mm[0], mm[1]+q.mm[1], mm[2]+q.mm[2], mm[3]+q.mm[3]);
}
/// Return (this-q), e.g. q = q1 - q2;
Quat operator-(const Quat &q) const
{
return Quat<T>(mm[0]-q.mm[0], mm[1]-q.mm[1], mm[2]-q.mm[2], mm[3]-q.mm[3]);
}
/// Return (this*q), e.g. q = q1 * q2;
Quat operator*(const Quat &q) const
{
Quat<T> prod;
prod.mm[0] = mm[3]*q.mm[0] + mm[0]*q.mm[3] + mm[1]*q.mm[2] - mm[2]*q.mm[1];
prod.mm[1] = mm[3]*q.mm[1] + mm[1]*q.mm[3] + mm[2]*q.mm[0] - mm[0]*q.mm[2];
prod.mm[2] = mm[3]*q.mm[2] + mm[2]*q.mm[3] + mm[0]*q.mm[1] - mm[1]*q.mm[0];
prod.mm[3] = mm[3]*q.mm[3] - mm[0]*q.mm[0] - mm[1]*q.mm[1] - mm[2]*q.mm[2];
return prod;
}
/// Assigns this to (this*q), e.g. q *= q1;
Quat operator*=(const Quat &q)
{
*this = *this * q;
return *this;
}
/// Return (this*scalar), e.g. q = q1 * scalar;
Quat operator*(T scalar) const
{
return Quat<T>(mm[0]*scalar, mm[1]*scalar, mm[2]*scalar, mm[3]*scalar);
}
/// Return (this/scalar), e.g. q = q1 / scalar;
Quat operator/(T scalar) const
{
return Quat<T>(mm[0]/scalar, mm[1]/scalar, mm[2]/scalar, mm[3]/scalar);
}
/// Negation operator, e.g. q = -q;
Quat operator-() const
{ return Quat<T>(-mm[0], -mm[1], -mm[2], -mm[3]); }
/// this = q1 + q2
/// "this", q1 and q2 need not be distinct objects, e.g. q.add(q1,q);
Quat& add(const Quat &q1, const Quat &q2)
{
mm[0] = q1.mm[0] + q2.mm[0];
mm[1] = q1.mm[1] + q2.mm[1];
mm[2] = q1.mm[2] + q2.mm[2];
mm[3] = q1.mm[3] + q2.mm[3];
return *this;
}
/// this = q1 - q2
/// "this", q1 and q2 need not be distinct objects, e.g. q.sub(q1,q);
Quat& sub(const Quat &q1, const Quat &q2)
{
mm[0] = q1.mm[0] - q2.mm[0];
mm[1] = q1.mm[1] - q2.mm[1];
mm[2] = q1.mm[2] - q2.mm[2];
mm[3] = q1.mm[3] - q2.mm[3];
return *this;
}
/// this = q1 * q2
/// q1 and q2 must be distinct objects than "this", e.g. q.mult(q1,q2);
Quat& mult(const Quat &q1, const Quat &q2)
{
mm[0] = q1.mm[3]*q2.mm[0] + q1.mm[0]*q2.mm[3] +
q1.mm[1]*q2.mm[2] - q1.mm[2]*q2.mm[1];
mm[1] = q1.mm[3]*q2.mm[1] + q1.mm[1]*q2.mm[3] +
q1.mm[2]*q2.mm[0] - q1.mm[0]*q2.mm[2];
mm[2] = q1.mm[3]*q2.mm[2] + q1.mm[2]*q2.mm[3] +
q1.mm[0]*q2.mm[1] - q1.mm[1]*q2.mm[0];
mm[3] = q1.mm[3]*q2.mm[3] - q1.mm[0]*q2.mm[0] -
q1.mm[1]*q2.mm[1] - q1.mm[2]*q2.mm[2];
return *this;
}
/// this = scalar*q, q need not be distinct object than "this",
/// e.g. q.scale(1.5,q1);
Quat& scale(T scale, const Quat &q)
{
mm[0] = scale * q.mm[0];
mm[1] = scale * q.mm[1];
mm[2] = scale * q.mm[2];
mm[3] = scale * q.mm[3];
return *this;
}
/// Dot product
T dot(const Quat &q) const
{
return (mm[0]*q.mm[0] + mm[1]*q.mm[1] + mm[2]*q.mm[2] + mm[3]*q.mm[3]);
}
/// Return the quaternion rate corrsponding to the angular velocity omega
/// and "this" current rotation
Quat derivative(const Vec3<T>& omega) const
{
return Quat<T>( +w()*omega.x() -z()*omega.y() +y()*omega.z() ,
+z()*omega.x() +w()*omega.y() -x()*omega.z() ,
-y()*omega.x() +x()*omega.y() +w()*omega.z() ,
-x()*omega.x() -y()*omega.y() -z()*omega.z() );
}
/// this = normalized this
bool normalize(T eps = T(1.0e-8))
{
T d = T(sqrt(mm[0]*mm[0] + mm[1]*mm[1] + mm[2]*mm[2] + mm[3]*mm[3]));
if( isApproxEqual(d, T(0.0), eps) ) return false;
*this *= ( T(1)/d );
return true;
}
/// this = normalized this
Quat unit() const
{
T d = sqrt(mm[0]*mm[0] + mm[1]*mm[1] + mm[2]*mm[2] + mm[3]*mm[3]);
if( isExactlyEqual(d , T(0.0) ) )
OPENVDB_THROW(ArithmeticError,
"Normalizing degenerate quaternion");
return *this / d;
}
/// returns inverse of this
Quat inverse(T tolerance = T(0))
{
T d = mm[0]*mm[0] + mm[1]*mm[1] + mm[2]*mm[2] + mm[3]*mm[3];
if( isApproxEqual(d, T(0.0), tolerance) )
OPENVDB_THROW(ArithmeticError,
"Cannot invert degenerate quaternion");
Quat result = *this/-d;
result.mm[3] = -result.mm[3];
return result;
}
/// Return the conjugate of "this", same as invert without
/// unit quaternion test
Quat conjugate() const
{
return Quat<T>(-mm[0], -mm[1], -mm[2], mm[3]);
}
/// Return rotated vector by "this" quaternion
Vec3<T> rotateVector(const Vec3<T> &v) const
{
Mat3<T> m(*this);
return m.transform(v);
}
/// Predefined constants, e.g. Quat q = Quat::identity();
static Quat zero() { return Quat<T>(0,0,0,0); }
static Quat identity() { return Quat<T>(0,0,0,1); }
/// @return string representation of Classname
std::string
str() const {
std::ostringstream buffer;
buffer << "[";
// For each column
for (unsigned j(0); j < 4; j++) {
if (j) buffer << ", ";
buffer << mm[j];
}
buffer << "]";
return buffer.str();
}
/// Output to the stream, e.g. std::cout << q << std::endl;
friend std::ostream& operator<<(std::ostream &stream, const Quat &q)
{
stream << q.str();
return stream;
}
friend Quat slerp<>(const Quat &q1, const Quat &q2, T t, T tolerance);
void write(std::ostream& os) const {
os.write((char*)&mm, sizeof(T)*4);
}
void read(std::istream& is) {
is.read((char*)&mm, sizeof(T)*4);
}
protected:
T mm[4];
};
/// Returns V, where \f$V_i = v_i * scalar\f$ for \f$i \in [0, 3]\f$
template <typename S, typename T>
Quat<T> operator*(S scalar, const Quat<T> &q) { return q*scalar; }
/// @brief Interpolate between m1 and m2.
/// Converts to quaternion form and uses slerp
/// m1 and m2 must be rotation matrices!
template <typename T, typename T0>
Mat3<T> slerp(const Mat3<T0> &m1, const Mat3<T0> &m2, T t)
{
typedef Mat3<T> MatType;
Quat<T> q1(m1);
Quat<T> q2(m2);
if (q1.dot(q2) < 0) q2 *= -1;
Quat<T> qslerp = slerp<T>(q1, q2, static_cast<T>(t));
MatType m = rotation<MatType>(qslerp);
return m;
}
/// Interpolate between m1 and m4 by converting m1 ... m4 into
/// quaternions and treating them as control points of a Bezier
/// curve using slerp in place of lerp in the De Castlejeau evaluation
/// algorithm. Just like a cubic Bezier curve, this will interpolate
/// m1 at t = 0 and m4 at t = 1 but in general will not pass through
/// m2 and m3. Unlike a standard Bezier curve this curve will not have
/// the convex hull property.
/// m1 ... m4 must be rotation matrices!
template <typename T, typename T0>
Mat3<T> bezLerp(const Mat3<T0> &m1, const Mat3<T0> &m2,
const Mat3<T0> &m3, const Mat3<T0> &m4,
T t)
{
Mat3<T> m00, m01, m02, m10, m11;
m00 = slerp(m1, m2, t);
m01 = slerp(m2, m3, t);
m02 = slerp(m3, m4, t);
m10 = slerp(m00, m01, t);
m11 = slerp(m01, m02, t);
return slerp(m10, m11, t);
}
typedef Quat<float> Quats;
typedef Quat<double> Quatd;
} // namespace math
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif //OPENVDB_MATH_QUAT_H_HAS_BEEN_INCLUDED
// ---------------------------------------------------------------------------
// Copyright (c) 2012-2015 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|