/usr/include/openvdb/tools/LevelSetAdvect.h is in libopenvdb-dev 3.1.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2015 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
///////////////////////////////////////////////////////////////////////////
//
/// @author Ken Museth
///
/// @file LevelSetAdvect.h
///
/// @brief Hyperbolic advection of narrow-band level sets
#ifndef OPENVDB_TOOLS_LEVEL_SET_ADVECT_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_LEVEL_SET_ADVECT_HAS_BEEN_INCLUDED
#include <tbb/parallel_for.h>
#include <tbb/parallel_reduce.h>
#include <openvdb/Platform.h>
#include "LevelSetTracker.h"
#include "VelocityFields.h" // for EnrightField
#include <openvdb/math/FiniteDifference.h>
#include <boost/math/constants/constants.hpp>
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tools {
/// @brief Hyperbolic advection of narrow-band level sets in an
/// external velocity field
///
/// The @c FieldType template argument below refers to any functor
/// with the following interface (see tools/VelocityFields.h
/// for examples):
///
/// @code
/// class VelocityField {
/// ...
/// public:
/// openvdb::VectorType operator() (const openvdb::Coord& xyz, ValueType time) const;
/// ...
/// };
/// @endcode
///
/// @note The functor method returns the velocity field at coordinate
/// position xyz of the advection grid, and for the specified
/// time. Note that since the velocity is returned in the local
/// coordinate space of the grid that is being advected, the functor
/// typically depends on the transformation of that grid. This design
/// is chosen for performance reasons.
///
/// The @c InterruptType template argument below refers to any class
/// with the following interface:
/// @code
/// class Interrupter {
/// ...
/// public:
/// void start(const char* name = NULL)// called when computations begin
/// void end() // called when computations end
/// bool wasInterrupted(int percent=-1)// return true to break computation
///};
/// @endcode
///
/// @note If no template argument is provided for this InterruptType
/// the util::NullInterrupter is used which implies that all
/// interrupter calls are no-ops (i.e. incurs no computational overhead).
///
template<typename GridT,
typename FieldT = EnrightField<typename GridT::ValueType>,
typename InterruptT = util::NullInterrupter>
class LevelSetAdvection
{
public:
typedef GridT GridType;
typedef LevelSetTracker<GridT, InterruptT> TrackerT;
typedef typename TrackerT::LeafRange LeafRange;
typedef typename TrackerT::LeafType LeafType;
typedef typename TrackerT::BufferType BufferType;
typedef typename TrackerT::ValueType ValueType;
typedef typename FieldT::VectorType VectorType;
/// Main constructor
LevelSetAdvection(GridT& grid, const FieldT& field, InterruptT* interrupt = NULL):
mTracker(grid, interrupt), mField(field),
mSpatialScheme(math::HJWENO5_BIAS),
mTemporalScheme(math::TVD_RK2) {}
virtual ~LevelSetAdvection() {}
/// @return the spatial finite difference scheme
math::BiasedGradientScheme getSpatialScheme() const { return mSpatialScheme; }
/// @brief Set the spatial finite difference scheme
void setSpatialScheme(math::BiasedGradientScheme scheme) { mSpatialScheme = scheme; }
/// @return the temporal integration scheme
math::TemporalIntegrationScheme getTemporalScheme() const { return mTemporalScheme; }
/// @brief Set the spatial finite difference scheme
void setTemporalScheme(math::TemporalIntegrationScheme scheme) { mTemporalScheme = scheme; }
/// @return the spatial finite difference scheme
math::BiasedGradientScheme getTrackerSpatialScheme() const { return mTracker.getSpatialScheme(); }
/// @brief Set the spatial finite difference scheme
void setTrackerSpatialScheme(math::BiasedGradientScheme scheme) { mTracker.setSpatialScheme(scheme); }
/// @return the temporal integration scheme
math::TemporalIntegrationScheme getTrackerTemporalScheme() const { return mTracker.getTemporalScheme(); }
/// @brief Set the spatial finite difference scheme
void setTrackerTemporalScheme(math::TemporalIntegrationScheme scheme) { mTracker.setTemporalScheme(scheme); }
/// @return The number of normalizations performed per track or
/// normalize call.
int getNormCount() const { return mTracker.getNormCount(); }
/// @brief Set the number of normalizations performed per track or
/// normalize call.
void setNormCount(int n) { mTracker.setNormCount(n); }
/// @return the grain-size used for multi-threading
int getGrainSize() const { return mTracker.getGrainSize(); }
/// @brief Set the grain-size used for multi-threading.
/// @note A grain size of 0 or less disables multi-threading!
void setGrainSize(int grainsize) { mTracker.setGrainSize(grainsize); }
/// Advect the level set from its current time, time0, to its
/// final time, time1. If time0>time1 backward advection is performed.
///
/// @return number of CFL iterations used to advect from time0 to time1
size_t advect(ValueType time0, ValueType time1);
private:
// disallow copy construction and copy by assinment!
LevelSetAdvection(const LevelSetAdvection&);// not implemented
LevelSetAdvection& operator=(const LevelSetAdvection&);// not implemented
// This templated private struct implements all the level set magic.
template<typename MapT, math::BiasedGradientScheme SpatialScheme,
math::TemporalIntegrationScheme TemporalScheme>
struct Advect
{
/// Main constructor
Advect(LevelSetAdvection& parent);
/// Shallow copy constructor called by tbb::parallel_for() threads
Advect(const Advect& other);
/// Shallow copy constructor called by tbb::parallel_reduce() threads
Advect(Advect& other, tbb::split);
/// destructor
virtual ~Advect() { if (mIsMaster) this->clearField(); }
/// Advect the level set from its current time, time0, to its final time, time1.
/// @return number of CFL iterations
size_t advect(ValueType time0, ValueType time1);
/// Used internally by tbb::parallel_for()
void operator()(const LeafRange& r) const
{
if (mTask) mTask(const_cast<Advect*>(this), r);
else OPENVDB_THROW(ValueError, "task is undefined - don\'t call this method directly");
}
/// Used internally by tbb::parallel_reduce()
void operator()(const LeafRange& r)
{
if (mTask) mTask(this, r);
else OPENVDB_THROW(ValueError, "task is undefined - don\'t call this method directly");
}
/// This is only called by tbb::parallel_reduce() threads
void join(const Advect& other) { mMaxAbsV = math::Max(mMaxAbsV, other.mMaxAbsV); }
/// Enum to define multi-threading type
enum ThreadingMode { PARALLEL_FOR, PARALLEL_REDUCE }; // for internal use
// method calling tbb
void cook(ThreadingMode mode, size_t swapBuffer = 0);
/// Sample field and return the CFT time step
typename GridT::ValueType sampleField(ValueType time0, ValueType time1);
void clearField();
void sampleXformedField(const LeafRange& r, ValueType time0, ValueType time1);
void sampleAlignedField(const LeafRange& r, ValueType time0, ValueType time1);
// Convex combination of Phi and a forward Euler advection steps:
// Phi(result) = alpha * Phi(phi) + (1-alpha) * (Phi(0) - dt * Speed(speed)*|Grad[Phi(0)]|);
template <int Nominator, int Denominator>
void euler(const LeafRange&, ValueType, Index, Index);
inline void euler01(const LeafRange& r, ValueType t) {this->euler<0,1>(r, t, 0, 1);}
inline void euler12(const LeafRange& r, ValueType t) {this->euler<1,2>(r, t, 1, 1);}
inline void euler34(const LeafRange& r, ValueType t) {this->euler<3,4>(r, t, 1, 2);}
inline void euler13(const LeafRange& r, ValueType t) {this->euler<1,3>(r, t, 1, 2);}
LevelSetAdvection& mParent;
VectorType** mVec;
const ValueType mMinAbsV;
ValueType mMaxAbsV;
const MapT* mMap;
typename boost::function<void (Advect*, const LeafRange&)> mTask;
const bool mIsMaster;
}; // end of private Advect struct
template<math::BiasedGradientScheme SpatialScheme>
size_t advect1(ValueType time0, ValueType time1);
template<math::BiasedGradientScheme SpatialScheme,
math::TemporalIntegrationScheme TemporalScheme>
size_t advect2(ValueType time0, ValueType time1);
template<math::BiasedGradientScheme SpatialScheme,
math::TemporalIntegrationScheme TemporalScheme,
typename MapType>
size_t advect3(ValueType time0, ValueType time1);
TrackerT mTracker;
//each thread needs a deep copy of the field since it might contain a ValueAccessor
const FieldT mField;
math::BiasedGradientScheme mSpatialScheme;
math::TemporalIntegrationScheme mTemporalScheme;
};//end of LevelSetAdvection
template<typename GridT, typename FieldT, typename InterruptT>
inline size_t
LevelSetAdvection<GridT, FieldT, InterruptT>::advect(ValueType time0, ValueType time1)
{
switch (mSpatialScheme) {
case math::FIRST_BIAS:
return this->advect1<math::FIRST_BIAS >(time0, time1);
case math::SECOND_BIAS:
return this->advect1<math::SECOND_BIAS >(time0, time1);
case math::THIRD_BIAS:
return this->advect1<math::THIRD_BIAS >(time0, time1);
case math::WENO5_BIAS:
return this->advect1<math::WENO5_BIAS >(time0, time1);
case math::HJWENO5_BIAS:
return this->advect1<math::HJWENO5_BIAS>(time0, time1);
default:
OPENVDB_THROW(ValueError, "Spatial difference scheme not supported!");
}
return 0;
}
template<typename GridT, typename FieldT, typename InterruptT>
template<math::BiasedGradientScheme SpatialScheme>
inline size_t
LevelSetAdvection<GridT, FieldT, InterruptT>::advect1(ValueType time0, ValueType time1)
{
switch (mTemporalScheme) {
case math::TVD_RK1:
return this->advect2<SpatialScheme, math::TVD_RK1>(time0, time1);
case math::TVD_RK2:
return this->advect2<SpatialScheme, math::TVD_RK2>(time0, time1);
case math::TVD_RK3:
return this->advect2<SpatialScheme, math::TVD_RK3>(time0, time1);
default:
OPENVDB_THROW(ValueError, "Temporal integration scheme not supported!");
}
return 0;
}
template<typename GridT, typename FieldT, typename InterruptT>
template<math::BiasedGradientScheme SpatialScheme,
math::TemporalIntegrationScheme TemporalScheme>
inline size_t
LevelSetAdvection<GridT, FieldT, InterruptT>::advect2(ValueType time0, ValueType time1)
{
const math::Transform& trans = mTracker.grid().transform();
if (trans.mapType() == math::UniformScaleMap::mapType()) {
return this->advect3<SpatialScheme, TemporalScheme, math::UniformScaleMap>(time0, time1);
} else if (trans.mapType() == math::UniformScaleTranslateMap::mapType()) {
return this->advect3<SpatialScheme, TemporalScheme, math::UniformScaleTranslateMap>(time0, time1);
} else if (trans.mapType() == math::UnitaryMap::mapType()) {
return this->advect3<SpatialScheme, TemporalScheme, math::UnitaryMap >(time0, time1);
} else if (trans.mapType() == math::TranslationMap::mapType()) {
return this->advect3<SpatialScheme, TemporalScheme, math::TranslationMap>(time0, time1);
} else {
OPENVDB_THROW(ValueError, "MapType not supported!");
}
return 0;
}
template<typename GridT, typename FieldT, typename InterruptT>
template<math::BiasedGradientScheme SpatialScheme,
math::TemporalIntegrationScheme TemporalScheme,
typename MapT>
inline size_t
LevelSetAdvection<GridT, FieldT, InterruptT>::advect3(ValueType time0, ValueType time1)
{
Advect<MapT, SpatialScheme, TemporalScheme> tmp(*this);
return tmp.advect(time0, time1);
}
///////////////////////////////////////////////////////////////////////
template<typename GridT, typename FieldT, typename InterruptT>
template <typename MapT, math::BiasedGradientScheme SpatialScheme,
math::TemporalIntegrationScheme TemporalScheme>
inline
LevelSetAdvection<GridT, FieldT, InterruptT>::
Advect<MapT, SpatialScheme, TemporalScheme>::
Advect(LevelSetAdvection& parent):
mParent(parent),
mVec(NULL),
mMinAbsV(ValueType(1e-6)),
mMap(parent.mTracker.grid().transform().template constMap<MapT>().get()),
mTask(0),
mIsMaster(true)
{
}
template<typename GridT, typename FieldT, typename InterruptT>
template <typename MapT, math::BiasedGradientScheme SpatialScheme,
math::TemporalIntegrationScheme TemporalScheme>
inline
LevelSetAdvection<GridT, FieldT, InterruptT>::
Advect<MapT, SpatialScheme, TemporalScheme>::
Advect(const Advect& other):
mParent(other.mParent),
mVec(other.mVec),
mMinAbsV(other.mMinAbsV),
mMaxAbsV(other.mMaxAbsV),
mMap(other.mMap),
mTask(other.mTask),
mIsMaster(false)
{
}
template<typename GridT, typename FieldT, typename InterruptT>
template <typename MapT, math::BiasedGradientScheme SpatialScheme,
math::TemporalIntegrationScheme TemporalScheme>
inline
LevelSetAdvection<GridT, FieldT, InterruptT>::
Advect<MapT, SpatialScheme, TemporalScheme>::
Advect(Advect& other, tbb::split):
mParent(other.mParent),
mVec(other.mVec),
mMinAbsV(other.mMinAbsV),
mMaxAbsV(other.mMaxAbsV),
mMap(other.mMap),
mTask(other.mTask),
mIsMaster(false)
{
}
template<typename GridT, typename FieldT, typename InterruptT>
template <typename MapT, math::BiasedGradientScheme SpatialScheme,
math::TemporalIntegrationScheme TemporalScheme>
inline size_t
LevelSetAdvection<GridT, FieldT, InterruptT>::
Advect<MapT, SpatialScheme, TemporalScheme>::
advect(ValueType time0, ValueType time1)
{
size_t countCFL = 0;
if ( math::isZero(time0 - time1) ) return countCFL;
const bool isForward = time0 < time1;
while ((isForward ? time0<time1 : time0>time1) && mParent.mTracker.checkInterrupter()) {
/// Make sure we have enough temporal auxiliary buffers
mParent.mTracker.leafs().rebuildAuxBuffers(TemporalScheme == math::TVD_RK3 ? 2 : 1);
const ValueType dt = this->sampleField(time0, time1);
if ( math::isZero(dt) ) break;//V is essentially zero so terminate
OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN //switch is resolved at compile-time
switch(TemporalScheme) {
case math::TVD_RK1:
// Perform one explicit Euler step: t1 = t0 + dt
// Phi_t1(1) = Phi_t0(0) - dt * VdotG_t0(0)
mTask = boost::bind(&Advect::euler01, _1, _2, dt);
// Cook and swap buffer 0 and 1 such that Phi_t1(0) and Phi_t0(1)
this->cook(PARALLEL_FOR, 1);
break;
case math::TVD_RK2:
// Perform one explicit Euler step: t1 = t0 + dt
// Phi_t1(1) = Phi_t0(0) - dt * VdotG_t0(0)
mTask = boost::bind(&Advect::euler01, _1, _2, dt);
// Cook and swap buffer 0 and 1 such that Phi_t1(0) and Phi_t0(1)
this->cook(PARALLEL_FOR, 1);
// Convex combine explict Euler step: t2 = t0 + dt
// Phi_t2(1) = 1/2 * Phi_t0(1) + 1/2 * (Phi_t1(0) - dt * V.Grad_t1(0))
mTask = boost::bind(&Advect::euler12, _1, _2, dt);
// Cook and swap buffer 0 and 1 such that Phi_t2(0) and Phi_t1(1)
this->cook(PARALLEL_FOR, 1);
break;
case math::TVD_RK3:
// Perform one explicit Euler step: t1 = t0 + dt
// Phi_t1(1) = Phi_t0(0) - dt * VdotG_t0(0)
mTask = boost::bind(&Advect::euler01, _1, _2, dt);
// Cook and swap buffer 0 and 1 such that Phi_t1(0) and Phi_t0(1)
this->cook(PARALLEL_FOR, 1);
// Convex combine explict Euler step: t2 = t0 + dt/2
// Phi_t2(2) = 3/4 * Phi_t0(1) + 1/4 * (Phi_t1(0) - dt * V.Grad_t1(0))
mTask = boost::bind(&Advect::euler34, _1, _2, dt);
// Cook and swap buffer 0 and 2 such that Phi_t2(0) and Phi_t1(2)
this->cook(PARALLEL_FOR, 2);
// Convex combine explict Euler step: t3 = t0 + dt
// Phi_t3(2) = 1/3 * Phi_t0(1) + 2/3 * (Phi_t2(0) - dt * V.Grad_t2(0)
mTask = boost::bind(&Advect::euler13, _1, _2, dt);
// Cook and swap buffer 0 and 2 such that Phi_t3(0) and Phi_t2(2)
this->cook(PARALLEL_FOR, 2);
break;
default:
OPENVDB_THROW(ValueError, "Temporal integration scheme not supported!");
}//end of compile-time resolved switch
OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
time0 += isForward ? dt : -dt;
++countCFL;
mParent.mTracker.leafs().removeAuxBuffers();
this->clearField();
/// Track the narrow band
mParent.mTracker.track();
}//end wile-loop over time
return countCFL;//number of CLF propagation steps
}
template<typename GridT, typename FieldT, typename InterruptT>
template<typename MapT, math::BiasedGradientScheme SpatialScheme,
math::TemporalIntegrationScheme TemporalScheme>
inline typename GridT::ValueType
LevelSetAdvection<GridT, FieldT, InterruptT>::
Advect<MapT, SpatialScheme, TemporalScheme>::
sampleField(ValueType time0, ValueType time1)
{
mMaxAbsV = mMinAbsV;
const size_t leafCount = mParent.mTracker.leafs().leafCount();
if (leafCount==0) return ValueType(0.0);
mVec = new VectorType*[leafCount];
if (mParent.mField.transform() == mParent.mTracker.grid().transform()) {
mTask = boost::bind(&Advect::sampleAlignedField, _1, _2, time0, time1);
} else {
mTask = boost::bind(&Advect::sampleXformedField, _1, _2, time0, time1);
}
this->cook(PARALLEL_REDUCE);
if (math::isExactlyEqual(mMinAbsV, mMaxAbsV)) return ValueType(0.0);//V is essentially zero
#ifndef _MSC_VER // Visual C++ doesn't guarantee thread-safe initialization of local statics
static
#endif
const ValueType CFL = (TemporalScheme == math::TVD_RK1 ? ValueType(0.3) :
TemporalScheme == math::TVD_RK2 ? ValueType(0.9) :
ValueType(1.0))/math::Sqrt(ValueType(3.0));
const ValueType dt = math::Abs(time1 - time0), dx = mParent.mTracker.voxelSize();
return math::Min(dt, ValueType(CFL*dx/math::Sqrt(mMaxAbsV)));
}
template<typename GridT, typename FieldT, typename InterruptT>
template <typename MapT, math::BiasedGradientScheme SpatialScheme,
math::TemporalIntegrationScheme TemporalScheme>
inline void
LevelSetAdvection<GridT, FieldT, InterruptT>::
Advect<MapT, SpatialScheme, TemporalScheme>::
sampleXformedField(const LeafRange& range, ValueType time0, ValueType time1)
{
const bool isForward = time0 < time1;
typedef typename LeafType::ValueOnCIter VoxelIterT;
const MapT& map = *mMap;
mParent.mTracker.checkInterrupter();
for (typename LeafRange::Iterator leafIter = range.begin(); leafIter; ++leafIter) {
VectorType* vec = new VectorType[leafIter->onVoxelCount()];
mVec[leafIter.pos()] = vec;
for (VoxelIterT iter = leafIter->cbeginValueOn(); iter; ++iter, ++vec) {
const VectorType v = mParent.mField(map.applyMap(iter.getCoord().asVec3d()), time0);
mMaxAbsV = math::Max(mMaxAbsV, ValueType(math::Pow2(v[0])+math::Pow2(v[1])+math::Pow2(v[2])));
*vec = isForward ? v : -v;
}
}
}
template<typename GridT, typename FieldT, typename InterruptT>
template <typename MapT, math::BiasedGradientScheme SpatialScheme,
math::TemporalIntegrationScheme TemporalScheme>
inline void
LevelSetAdvection<GridT, FieldT, InterruptT>::
Advect<MapT, SpatialScheme, TemporalScheme>::
sampleAlignedField(const LeafRange& range, ValueType time0, ValueType time1)
{
const bool isForward = time0 < time1;
typedef typename LeafType::ValueOnCIter VoxelIterT;
mParent.mTracker.checkInterrupter();
for (typename LeafRange::Iterator leafIter = range.begin(); leafIter; ++leafIter) {
VectorType* vec = new VectorType[leafIter->onVoxelCount()];
mVec[leafIter.pos()] = vec;
for (VoxelIterT iter = leafIter->cbeginValueOn(); iter; ++iter, ++vec) {
const VectorType v = mParent.mField(iter.getCoord(), time0);
mMaxAbsV = math::Max(mMaxAbsV, ValueType(math::Pow2(v[0])+math::Pow2(v[1])+math::Pow2(v[2])));
*vec = isForward ? v : -v;
}
}
}
template<typename GridT, typename FieldT, typename InterruptT>
template <typename MapT, math::BiasedGradientScheme SpatialScheme,
math::TemporalIntegrationScheme TemporalScheme>
inline void
LevelSetAdvection<GridT, FieldT, InterruptT>::
Advect<MapT, SpatialScheme, TemporalScheme>::
clearField()
{
if (mVec == NULL) return;
for (size_t n=0, e=mParent.mTracker.leafs().leafCount(); n<e; ++n) delete [] mVec[n];
delete [] mVec;
mVec = NULL;
}
template<typename GridT, typename FieldT, typename InterruptT>
template <typename MapT, math::BiasedGradientScheme SpatialScheme,
math::TemporalIntegrationScheme TemporalScheme>
inline void
LevelSetAdvection<GridT, FieldT, InterruptT>::
Advect<MapT, SpatialScheme, TemporalScheme>::
cook(ThreadingMode mode, size_t swapBuffer)
{
mParent.mTracker.startInterrupter("Advecting level set");
const int grainSize = mParent.mTracker.getGrainSize();
const LeafRange range = mParent.mTracker.leafs().leafRange(grainSize);
if (grainSize == 0) {
(*this)(range);
} else if (mode == PARALLEL_FOR) {
tbb::parallel_for(range, *this);
} else if (mode == PARALLEL_REDUCE) {
tbb::parallel_reduce(range, *this);
} else {
OPENVDB_THROW(ValueError,"Undefined threading mode");
}
mParent.mTracker.leafs().swapLeafBuffer(swapBuffer, grainSize == 0);
mParent.mTracker.endInterrupter();
}
// Convex combination of Phi and a forward Euler advection steps:
// Phi(result) = alpha * Phi(phi) + (1-alpha) * (Phi(0) - dt * V.Grad(0));
template<typename GridT, typename FieldT, typename InterruptT>
template<typename MapT, math::BiasedGradientScheme SpatialScheme,
math::TemporalIntegrationScheme TemporalScheme>
template <int Nominator, int Denominator>
inline void
LevelSetAdvection<GridT, FieldT, InterruptT>::
Advect<MapT, SpatialScheme, TemporalScheme>::
euler(const LeafRange& range, ValueType dt, Index phiBuffer, Index resultBuffer)
{
typedef math::BIAS_SCHEME<SpatialScheme> SchemeT;
typedef typename SchemeT::template ISStencil<GridType>::StencilType StencilT;
typedef typename LeafType::ValueOnCIter VoxelIterT;
typedef math::GradientBiased<MapT, SpatialScheme> GradT;
static const ValueType Alpha = ValueType(Nominator)/ValueType(Denominator);
static const ValueType Beta = ValueType(1) - Alpha;
mParent.mTracker.checkInterrupter();
const MapT& map = *mMap;
StencilT stencil(mParent.mTracker.grid());
for (typename LeafRange::Iterator leafIter = range.begin(); leafIter; ++leafIter) {
const VectorType* v = mVec[leafIter.pos()];
const ValueType* phi = leafIter.buffer(phiBuffer).data();
ValueType* result = leafIter.buffer(resultBuffer).data();
for (VoxelIterT voxelIter = leafIter->cbeginValueOn(); voxelIter; ++voxelIter, ++v) {
const Index i = voxelIter.pos();
stencil.moveTo(voxelIter);
const ValueType a = stencil.getValue() - dt * v->dot(GradT::result(map, stencil,*v));
result[i] = Nominator ? Alpha * phi[i] + Beta * a : a;
}//loop over active voxels in the leaf of the mask
}//loop over leafs of the level set
}
} // namespace tools
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_TOOLS_LEVEL_SET_ADVECT_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2015 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|