/usr/include/openvdb/tree/Tree.h is in libopenvdb-dev 3.1.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2015 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
/// @file tree/Tree.h
#ifndef OPENVDB_TREE_TREE_HAS_BEEN_INCLUDED
#define OPENVDB_TREE_TREE_HAS_BEEN_INCLUDED
#include <iostream>
#include <sstream>
#include <vector>
#include <boost/shared_ptr.hpp>
#include <boost/cstdint.hpp>
#include <tbb/atomic.h>
#include <tbb/concurrent_hash_map.h>
#include <openvdb/Types.h>
#include <openvdb/metadata/Metadata.h>
#include <openvdb/math/Math.h>
#include <openvdb/math/BBox.h>
#include <openvdb/util/Formats.h>
#include <openvdb/util/logging.h>
#include <openvdb/Platform.h>
#include "RootNode.h"
#include "InternalNode.h"
#include "LeafNode.h"
#include "TreeIterator.h"
#include "ValueAccessor.h"
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tree {
/// @brief Base class for typed trees
class OPENVDB_API TreeBase
{
public:
typedef boost::shared_ptr<TreeBase> Ptr;
typedef boost::shared_ptr<const TreeBase> ConstPtr;
TreeBase() {}
virtual ~TreeBase() {}
/// Return the name of this tree's type.
virtual const Name& type() const = 0;
/// Return the name of the type of a voxel's value (e.g., "float" or "vec3d").
virtual Name valueType() const = 0;
/// Return a pointer to a deep copy of this tree
virtual TreeBase::Ptr copy() const = 0;
//
// Tree methods
//
/// @brief Return this tree's background value wrapped as metadata.
/// @note Query the metadata object for the value's type.
virtual Metadata::Ptr getBackgroundValue() const { return Metadata::Ptr(); }
/// @brief Return in @a bbox the axis-aligned bounding box of all
/// leaf nodes and active tiles.
/// @details This is faster than calling evalActiveVoxelBoundingBox,
/// which visits the individual active voxels, and hence
/// evalLeafBoundingBox produces a less tight, i.e. approximate, bbox.
/// @return @c false if the bounding box is empty (in which case
/// the bbox is set to its default value).
virtual bool evalLeafBoundingBox(CoordBBox& bbox) const = 0;
/// @brief Return in @a dim the dimensions of the axis-aligned bounding box
/// of all leaf nodes.
/// @return @c false if the bounding box is empty.
virtual bool evalLeafDim(Coord& dim) const = 0;
/// @brief Return in @a bbox the axis-aligned bounding box of all
/// active voxels and tiles.
/// @details This method produces a more accurate, i.e. tighter,
/// bounding box than evalLeafBoundingBox which is approximate but
/// faster.
/// @return @c false if the bounding box is empty (in which case
/// the bbox is set to its default value).
virtual bool evalActiveVoxelBoundingBox(CoordBBox& bbox) const = 0;
/// @brief Return in @a dim the dimensions of the axis-aligned bounding box of all
/// active voxels. This is a tighter bounding box than the leaf node bounding box.
/// @return @c false if the bounding box is empty.
virtual bool evalActiveVoxelDim(Coord& dim) const = 0;
virtual void getIndexRange(CoordBBox& bbox) const = 0;
#ifndef OPENVDB_2_ABI_COMPATIBLE
/// @brief Replace with background tiles any nodes whose voxel buffers
/// have not yet been allocated.
/// @details Typically, unallocated nodes are leaf nodes whose voxel buffers
/// are not yet resident in memory because delayed loading is in effect.
/// @sa readNonresidentBuffers, io::File::open
virtual void clipUnallocatedNodes() = 0;
#endif
//
// Statistics
//
/// @brief Return the depth of this tree.
///
/// A tree with only a root node and leaf nodes has depth 2, for example.
virtual Index treeDepth() const = 0;
/// Return the number of leaf nodes.
virtual Index32 leafCount() const = 0;
/// Return the number of non-leaf nodes.
virtual Index32 nonLeafCount() const = 0;
/// Return the number of active voxels stored in leaf nodes.
virtual Index64 activeLeafVoxelCount() const = 0;
/// Return the number of inactive voxels stored in leaf nodes.
virtual Index64 inactiveLeafVoxelCount() const = 0;
/// Return the total number of active voxels.
virtual Index64 activeVoxelCount() const = 0;
/// Return the number of inactive voxels within the bounding box of all active voxels.
virtual Index64 inactiveVoxelCount() const = 0;
#ifndef OPENVDB_2_ABI_COMPATIBLE
/// Return the total number of active tiles.
virtual Index64 activeTileCount() const = 0;
#endif
/// Return the total amount of memory in bytes occupied by this tree.
virtual Index64 memUsage() const { return 0; }
//
// I/O methods
//
/// @brief Read the tree topology from a stream.
///
/// This will read the tree structure and tile values, but not voxel data.
virtual void readTopology(std::istream&, bool saveFloatAsHalf = false);
/// @brief Write the tree topology to a stream.
///
/// This will write the tree structure and tile values, but not voxel data.
virtual void writeTopology(std::ostream&, bool saveFloatAsHalf = false) const;
/// Read all data buffers for this tree.
virtual void readBuffers(std::istream&, bool saveFloatAsHalf = false) = 0;
#ifndef OPENVDB_2_ABI_COMPATIBLE
/// Read all of this tree's data buffers that intersect the given bounding box.
virtual void readBuffers(std::istream&, const CoordBBox&, bool saveFloatAsHalf = false) = 0;
/// @brief Read all of this tree's data buffers that are not yet resident in memory
/// (because delayed loading is in effect).
/// @details If this tree was read from a memory-mapped file, this operation
/// disconnects the tree from the file.
/// @sa clipUnallocatedNodes, io::File::open, io::MappedFile
virtual void readNonresidentBuffers() const = 0;
#endif
/// Write out all the data buffers for this tree.
virtual void writeBuffers(std::ostream&, bool saveFloatAsHalf = false) const = 0;
/// @brief Print statistics, memory usage and other information about this tree.
/// @param os a stream to which to write textual information
/// @param verboseLevel 1: print tree configuration only;
/// 2: include node and voxel statistics;
/// 3: include memory usage;
/// 4: include minimum and maximum voxel values
/// @warning @a verboseLevel 4 forces loading of any unallocated nodes.
virtual void print(std::ostream& os = std::cout, int verboseLevel = 1) const;
private:
// Disallow copying of instances of this class.
//TreeBase(const TreeBase& other);
TreeBase& operator=(const TreeBase& other);
};
////////////////////////////////////////
template<typename _RootNodeType>
class Tree: public TreeBase
{
public:
typedef boost::shared_ptr<Tree> Ptr;
typedef boost::shared_ptr<const Tree> ConstPtr;
typedef _RootNodeType RootNodeType;
typedef typename RootNodeType::ValueType ValueType;
typedef typename RootNodeType::LeafNodeType LeafNodeType;
static const Index DEPTH = RootNodeType::LEVEL + 1;
/// @brief ValueConverter<T>::Type is the type of a tree having the same
/// hierarchy as this tree but a different value type, T.
///
/// For example, FloatTree::ValueConverter<double>::Type is equivalent to DoubleTree.
/// @note If the source tree type is a template argument, it might be necessary
/// to write "typename SourceTree::template ValueConverter<T>::Type".
template<typename OtherValueType>
struct ValueConverter {
typedef Tree<typename RootNodeType::template ValueConverter<OtherValueType>::Type> Type;
};
Tree() {}
/// Deep copy constructor
Tree(const Tree& other): TreeBase(other), mRoot(other.mRoot)
{
}
/// @brief Value conversion deep copy constructor
///
/// Deep copy a tree of the same configuration as this tree type but a different
/// ValueType, casting the other tree's values to this tree's ValueType.
/// @throw TypeError if the other tree's configuration doesn't match this tree's
/// or if this tree's ValueType is not constructible from the other tree's ValueType.
template<typename OtherRootType>
explicit Tree(const Tree<OtherRootType>& other): TreeBase(other), mRoot(other.root())
{
}
/// @brief Topology copy constructor from a tree of a different type
///
/// Copy the structure, i.e., the active states of tiles and voxels, of another
/// tree of a possibly different type, but don't copy any tile or voxel values.
/// Instead, initialize tiles and voxels with the given active and inactive values.
/// @param other a tree having (possibly) a different ValueType
/// @param inactiveValue background value for this tree, and the value to which
/// all inactive tiles and voxels are initialized
/// @param activeValue value to which active tiles and voxels are initialized
/// @throw TypeError if the other tree's configuration doesn't match this tree's.
template<typename OtherTreeType>
Tree(const OtherTreeType& other,
const ValueType& inactiveValue,
const ValueType& activeValue,
TopologyCopy):
TreeBase(other),
mRoot(other.root(), inactiveValue, activeValue, TopologyCopy())
{
}
/// @brief Topology copy constructor from a tree of a different type
///
/// @note This topology copy constructor is generally faster than
/// the one that takes both a foreground and a background value.
///
/// Copy the structure, i.e., the active states of tiles and voxels, of another
/// tree of a possibly different type, but don't copy any tile or voxel values.
/// Instead, initialize tiles and voxels with the given background value.
/// @param other a tree having (possibly) a different ValueType
/// @param background the value to which tiles and voxels are initialized
/// @throw TypeError if the other tree's configuration doesn't match this tree's.
template<typename OtherTreeType>
Tree(const OtherTreeType& other, const ValueType& background, TopologyCopy):
TreeBase(other),
mRoot(other.root(), background, TopologyCopy())
{
}
/// Empty tree constructor
Tree(const ValueType& background): mRoot(background) {}
virtual ~Tree() { releaseAllAccessors(); }
/// Return a pointer to a deep copy of this tree
virtual TreeBase::Ptr copy() const { return TreeBase::Ptr(new Tree(*this)); }
/// Return the name of the type of a voxel's value (e.g., "float" or "vec3d")
virtual Name valueType() const { return typeNameAsString<ValueType>(); }
/// Return the name of this type of tree.
static const Name& treeType();
/// Return the name of this type of tree.
virtual const Name& type() const { return this->treeType(); }
bool operator==(const Tree&) const { OPENVDB_THROW(NotImplementedError, ""); }
bool operator!=(const Tree&) const { OPENVDB_THROW(NotImplementedError, ""); }
//@{
/// Return this tree's root node.
RootNodeType& root() { return mRoot; }
const RootNodeType& root() const { return mRoot; }
//@}
//
// Tree methods
//
/// @brief Return @c true if the given tree has the same node and active value
/// topology as this tree, whether or not it has the same @c ValueType.
template<typename OtherRootNodeType>
bool hasSameTopology(const Tree<OtherRootNodeType>& other) const;
virtual bool evalLeafBoundingBox(CoordBBox& bbox) const;
virtual bool evalActiveVoxelBoundingBox(CoordBBox& bbox) const;
virtual bool evalActiveVoxelDim(Coord& dim) const;
virtual bool evalLeafDim(Coord& dim) const;
/// @brief Traverse the type hierarchy of nodes, and return, in @a dims, a list
/// of the Log2Dims of nodes in order from RootNode to LeafNode.
/// @note Because RootNodes are resizable, the RootNode Log2Dim is 0 for all trees.
static void getNodeLog2Dims(std::vector<Index>& dims);
//
// I/O methods
//
/// @brief Read the tree topology from a stream.
///
/// This will read the tree structure and tile values, but not voxel data.
virtual void readTopology(std::istream&, bool saveFloatAsHalf = false);
/// @brief Write the tree topology to a stream.
///
/// This will write the tree structure and tile values, but not voxel data.
virtual void writeTopology(std::ostream&, bool saveFloatAsHalf = false) const;
/// Read all data buffers for this tree.
virtual void readBuffers(std::istream&, bool saveFloatAsHalf = false);
#ifndef OPENVDB_2_ABI_COMPATIBLE
/// Read all of this tree's data buffers that intersect the given bounding box.
virtual void readBuffers(std::istream&, const CoordBBox&, bool saveFloatAsHalf = false);
/// @brief Read all of this tree's data buffers that are not yet resident in memory
/// (because delayed loading is in effect).
/// @details If this tree was read from a memory-mapped file, this operation
/// disconnects the tree from the file.
/// @sa clipUnallocatedNodes, io::File::open, io::MappedFile
virtual void readNonresidentBuffers() const;
#endif
/// Write out all data buffers for this tree.
virtual void writeBuffers(std::ostream&, bool saveFloatAsHalf = false) const;
virtual void print(std::ostream& os = std::cout, int verboseLevel = 1) const;
//
// Statistics
//
/// @brief Return the depth of this tree.
///
/// A tree with only a root node and leaf nodes has depth 2, for example.
virtual Index treeDepth() const { return DEPTH; }
/// Return the number of leaf nodes.
virtual Index32 leafCount() const { return mRoot.leafCount(); }
/// Return the number of non-leaf nodes.
virtual Index32 nonLeafCount() const { return mRoot.nonLeafCount(); }
/// Return the number of active voxels stored in leaf nodes.
virtual Index64 activeLeafVoxelCount() const { return mRoot.onLeafVoxelCount(); }
/// Return the number of inactive voxels stored in leaf nodes.
virtual Index64 inactiveLeafVoxelCount() const { return mRoot.offLeafVoxelCount(); }
/// Return the total number of active voxels.
virtual Index64 activeVoxelCount() const { return mRoot.onVoxelCount(); }
/// Return the number of inactive voxels within the bounding box of all active voxels.
virtual Index64 inactiveVoxelCount() const;
/// Return the total number of active tiles.
Index64 activeTileCount() const { return mRoot.onTileCount(); }
/// Return the minimum and maximum active values in this tree.
void evalMinMax(ValueType &min, ValueType &max) const;
virtual Index64 memUsage() const { return sizeof(*this) + mRoot.memUsage(); }
//
// Voxel access methods (using signed indexing)
//
/// Return the value of the voxel at the given coordinates.
const ValueType& getValue(const Coord& xyz) const;
/// @brief Return the value of the voxel at the given coordinates
/// and update the given accessor's node cache.
template<typename AccessT> const ValueType& getValue(const Coord& xyz, AccessT&) const;
/// @brief Return the tree depth (0 = root) at which the value of voxel (x, y, z) resides.
/// @details If (x, y, z) isn't explicitly represented in the tree (i.e., it is
/// implicitly a background voxel), return -1.
int getValueDepth(const Coord& xyz) const;
/// Set the active state of the voxel at the given coordinates but don't change its value.
void setActiveState(const Coord& xyz, bool on);
/// Set the value of the voxel at the given coordinates but don't change its active state.
void setValueOnly(const Coord& xyz, const ValueType& value);
/// Mark the voxel at the given coordinates as active but don't change its value.
void setValueOn(const Coord& xyz);
/// Set the value of the voxel at the given coordinates and mark the voxel as active.
void setValueOn(const Coord& xyz, const ValueType& value);
/// Set the value of the voxel at the given coordinates and mark the voxel as active.
void setValue(const Coord& xyz, const ValueType& value);
/// @brief Set the value of the voxel at the given coordinates, mark the voxel as active,
/// and update the given accessor's node cache.
template<typename AccessT> void setValue(const Coord& xyz, const ValueType& value, AccessT&);
/// Mark the voxel at the given coordinates as inactive but don't change its value.
void setValueOff(const Coord& xyz);
/// Set the value of the voxel at the given coordinates and mark the voxel as inactive.
void setValueOff(const Coord& xyz, const ValueType& value);
/// @brief Apply a functor to the value of the voxel at the given coordinates
/// and mark the voxel as active.
/// @details Provided that the functor can be inlined, this is typically
/// significantly faster than calling getValue() followed by setValueOn().
/// @param xyz the coordinates of a voxel whose value is to be modified
/// @param op a functor of the form <tt>void op(ValueType&) const</tt> that modifies
/// its argument in place
/// @par Example:
/// @code
/// Coord xyz(1, 0, -2);
/// // Multiply the value of a voxel by a constant and mark the voxel as active.
/// floatTree.modifyValue(xyz, [](float& f) { f *= 0.25; }); // C++11
/// // Set the value of a voxel to the maximum of its current value and 0.25,
/// // and mark the voxel as active.
/// floatTree.modifyValue(xyz, [](float& f) { f = std::max(f, 0.25f); }); // C++11
/// @endcode
/// @note The functor is not guaranteed to be called only once.
/// @see tools::foreach()
template<typename ModifyOp>
void modifyValue(const Coord& xyz, const ModifyOp& op);
/// @brief Apply a functor to the voxel at the given coordinates.
/// @details Provided that the functor can be inlined, this is typically
/// significantly faster than calling getValue() followed by setValue().
/// @param xyz the coordinates of a voxel to be modified
/// @param op a functor of the form <tt>void op(ValueType&, bool&) const</tt> that
/// modifies its arguments, a voxel's value and active state, in place
/// @par Example:
/// @code
/// Coord xyz(1, 0, -2);
/// // Multiply the value of a voxel by a constant and mark the voxel as inactive.
/// floatTree.modifyValueAndActiveState(xyz,
/// [](float& f, bool& b) { f *= 0.25; b = false; }); // C++11
/// // Set the value of a voxel to the maximum of its current value and 0.25,
/// // but don't change the voxel's active state.
/// floatTree.modifyValueAndActiveState(xyz,
/// [](float& f, bool&) { f = std::max(f, 0.25f); }); // C++11
/// @endcode
/// @note The functor is not guaranteed to be called only once.
/// @see tools::foreach()
template<typename ModifyOp>
void modifyValueAndActiveState(const Coord& xyz, const ModifyOp& op);
/// @brief Get the value of the voxel at the given coordinates.
/// @return @c true if the value is active.
bool probeValue(const Coord& xyz, ValueType& value) const;
/// Return @c true if the value at the given coordinates is active.
bool isValueOn(const Coord& xyz) const { return mRoot.isValueOn(xyz); }
/// Return @c true if the value at the given coordinates is inactive.
bool isValueOff(const Coord& xyz) const { return !this->isValueOn(xyz); }
/// Return @c true if this tree has any active tiles.
bool hasActiveTiles() const { return mRoot.hasActiveTiles(); }
/// Set all voxels that lie outside the given axis-aligned box to the background.
void clip(const CoordBBox&);
#ifndef OPENVDB_2_ABI_COMPATIBLE
/// @brief Replace with background tiles any nodes whose voxel buffers
/// have not yet been allocated.
/// @details Typically, unallocated nodes are leaf nodes whose voxel buffers
/// are not yet resident in memory because delayed loading is in effect.
/// @sa readNonresidentBuffers, io::File::open
virtual void clipUnallocatedNodes();
#endif
/// @brief Set all voxels within a given axis-aligned box to a constant value.
/// If necessary, subdivide tiles that intersect the box.
/// @param bbox inclusive coordinates of opposite corners of an axis-aligned box
/// @param value the value to which to set voxels within the box
/// @param active if true, mark voxels within the box as active,
/// otherwise mark them as inactive
/// @note This operation generates a sparse, but not always optimally sparse,
/// representation of the filled box. Follow fill operations with a prune()
/// operation for optimal sparseness.
void fill(const CoordBBox& bbox, const ValueType& value, bool active = true);
/// @brief Reduce the memory footprint of this tree by replacing with tiles
/// any nodes whose values are all the same (optionally to within a tolerance)
/// and have the same active state.
/// @warning Will soon be deprecated!
void prune(const ValueType& tolerance = zeroVal<ValueType>())
{
this->clearAllAccessors();
mRoot.prune(tolerance);
}
/// @brief Add the given leaf node to this tree, creating a new branch if necessary.
/// If a leaf node with the same origin already exists, replace it.
void addLeaf(LeafNodeType& leaf) { mRoot.addLeaf(&leaf); }
/// @brief Add a tile containing voxel (x, y, z) at the specified tree level,
/// creating a new branch if necessary. Delete any existing lower-level nodes
/// that contain (x, y, z).
/// @note @a level must be less than this tree's depth.
void addTile(Index level, const Coord& xyz, const ValueType& value, bool active);
/// @brief Return a pointer to the node of type @c NodeT that contains voxel (x, y, z)
/// and replace it with a tile of the specified value and state.
/// If no such node exists, leave the tree unchanged and return @c NULL.
/// @note The caller takes ownership of the node and is responsible for deleting it.
template<typename NodeT>
NodeT* stealNode(const Coord& xyz, const ValueType& value, bool active);
/// @brief Return a pointer to the leaf node that contains voxel (x, y, z).
/// If no such node exists, create one that preserves the values and
/// active states of all voxels.
/// @details Use this method to preallocate a static tree topology over which to
/// safely perform multithreaded processing.
LeafNodeType* touchLeaf(const Coord& xyz);
//@{
/// @brief Return a pointer to the node of type @c NodeType that contains
/// voxel (x, y, z). If no such node exists, return NULL.
template<typename NodeType> NodeType* probeNode(const Coord& xyz);
template<typename NodeType> const NodeType* probeConstNode(const Coord& xyz) const;
template<typename NodeType> const NodeType* probeNode(const Coord& xyz) const;
//@}
//@{
/// @brief Return a pointer to the leaf node that contains voxel (x, y, z).
/// If no such node exists, return NULL.
LeafNodeType* probeLeaf(const Coord& xyz);
const LeafNodeType* probeConstLeaf(const Coord& xyz) const;
const LeafNodeType* probeLeaf(const Coord& xyz) const { return this->probeConstLeaf(xyz); }
//@}
//@{
/// @brief Adds all nodes of a certain type to a container with the following API:
/// @code
/// struct ArrayT {
/// typedef value_type;// defines the type of nodes to be added to the array
/// void push_back(value_type nodePtr);// method that add nodes to the array
/// };
/// @endcode
/// @details An example of a wrapper around a c-style array is:
/// @code
/// struct MyArray {
/// typedef LeafType* value_type;
/// value_type* ptr;
/// MyArray(value_type* array) : ptr(array) {}
/// void push_back(value_type leaf) { *ptr++ = leaf; }
///};
/// @endcode
/// @details An example that constructs a list of pointer to all leaf nodes is:
/// @code
/// std::vector<const LeafNodeType*> array;//most std contains have the required API
/// array.reserve(tree.leafCount());//this is a fast preallocation.
/// tree.getNodes(array);
/// @endcode
template<typename ArrayT> void getNodes(ArrayT& array) { mRoot.getNodes(array); }
template<typename ArrayT> void getNodes(ArrayT& array) const { mRoot.getNodes(array); }
//@}
/// @brief Steals all nodes of a certain type from the tree and
/// adds them to a container with the following API:
/// @code
/// struct ArrayT {
/// typedef value_type;// defines the type of nodes to be added to the array
/// void push_back(value_type nodePtr);// method that add nodes to the array
/// };
/// @endcode
/// @details An example of a wrapper around a c-style array is:
/// @code
/// struct MyArray {
/// typedef LeafType* value_type;
/// value_type* ptr;
/// MyArray(value_type* array) : ptr(array) {}
/// void push_back(value_type leaf) { *ptr++ = leaf; }
///};
/// @endcode
/// @details An example that constructs a list of pointer to all leaf nodes is:
/// @code
/// std::vector<const LeafNodeType*> array;//most std contains have the required API
/// array.reserve(tree.leafCount());//this is a fast preallocation.
/// tree.stealNodes(array);
/// @endcode
template<typename ArrayT>
void stealNodes(ArrayT& array) { mRoot.stealNodes(array); }
template<typename ArrayT>
void stealNodes(ArrayT& array, const ValueType& value, bool state)
{
mRoot.stealNodes(array, value, state);
}
//
// Aux methods
//
/// @brief Return @c true if this tree contains no nodes other than
/// the root node and no tiles other than background tiles.
bool empty() const { return mRoot.empty(); }
/// Remove all tiles from this tree and all nodes other than the root node.
void clear() { this->clearAllAccessors(); mRoot.clear(); }
/// Clear all registered accessors.
void clearAllAccessors();
//@{
/// @brief Register an accessor for this tree. Registered accessors are
/// automatically cleared whenever one of this tree's nodes is deleted.
void attachAccessor(ValueAccessorBase<Tree, true>&) const;
void attachAccessor(ValueAccessorBase<const Tree, true>&) const;
//@}
//@{
/// Dummy implementations
void attachAccessor(ValueAccessorBase<Tree, false>&) const {}
void attachAccessor(ValueAccessorBase<const Tree, false>&) const {}
//@}
//@{
/// Deregister an accessor so that it is no longer automatically cleared.
void releaseAccessor(ValueAccessorBase<Tree, true>&) const;
void releaseAccessor(ValueAccessorBase<const Tree, true>&) const;
//@}
//@{
/// Dummy implementations
void releaseAccessor(ValueAccessorBase<Tree, false>&) const {}
void releaseAccessor(ValueAccessorBase<const Tree, false>&) const {}
//@}
/// @brief Return this tree's background value wrapped as metadata.
/// @note Query the metadata object for the value's type.
virtual Metadata::Ptr getBackgroundValue() const;
/// @brief Return this tree's background value.
///
/// @note Use tools::changeBackground to efficiently modify the
/// background values. Else use tree.root().setBackground, which
/// is serial and hence slower.
const ValueType& background() const { return mRoot.background(); }
/// Min and max are both inclusive.
virtual void getIndexRange(CoordBBox& bbox) const { mRoot.getIndexRange(bbox); }
/// Densify active tiles, i.e., replace them with leaf-level active voxels.
void voxelizeActiveTiles();
/// @brief Efficiently merge another tree into this tree using one of several schemes.
/// @details This operation is primarily intended to combine trees that are mostly
/// non-overlapping (for example, intermediate trees from computations that are
/// parallelized across disjoint regions of space).
/// @note This operation is not guaranteed to produce an optimally sparse tree.
/// Follow merge() with prune() for optimal sparseness.
/// @warning This operation always empties the other tree.
void merge(Tree& other, MergePolicy = MERGE_ACTIVE_STATES);
/// @brief Union this tree's set of active values with the active values
/// of the other tree, whose @c ValueType may be different.
/// @details The resulting state of a value is active if the corresponding value
/// was already active OR if it is active in the other tree. Also, a resulting
/// value maps to a voxel if the corresponding value already mapped to a voxel
/// OR if it is a voxel in the other tree. Thus, a resulting value can only
/// map to a tile if the corresponding value already mapped to a tile
/// AND if it is a tile value in other tree.
///
/// @note This operation modifies only active states, not values.
/// Specifically, active tiles and voxels in this tree are not changed, and
/// tiles or voxels that were inactive in this tree but active in the other tree
/// are marked as active in this tree but left with their original values.
template<typename OtherRootNodeType>
void topologyUnion(const Tree<OtherRootNodeType>& other);
/// @brief Intersects this tree's set of active values with the active values
/// of the other tree, whose @c ValueType may be different.
/// @details The resulting state of a value is active only if the corresponding
/// value was already active AND if it is active in the other tree. Also, a
/// resulting value maps to a voxel if the corresponding value
/// already mapped to an active voxel in either of the two grids
/// and it maps to an active tile or voxel in the other grid.
///
/// @note This operation can delete branches in this grid if they
/// overlap with inactive tiles in the other grid. Likewise active
/// voxels can be turned into unactive voxels resulting in leaf
/// nodes with no active values. Thus, it is recommended to
/// subsequently call tools::pruneInactive.
template<typename OtherRootNodeType>
void topologyIntersection(const Tree<OtherRootNodeType>& other);
/// @brief Difference this tree's set of active values with the active values
/// of the other tree, whose @c ValueType may be different. So a
/// resulting voxel will be active only if the original voxel is
/// active in this tree and inactive in the other tree.
///
/// @note This operation can delete branches in this grid if they
/// overlap with active tiles in the other grid. Likewise active
/// voxels can be turned into inactive voxels resulting in leaf
/// nodes with no active values. Thus, it is recommended to
/// subsequently call tools::pruneInactive.
template<typename OtherRootNodeType>
void topologyDifference(const Tree<OtherRootNodeType>& other);
/// For a given function @c f, use sparse traversal to compute <tt>f(this, other)</tt>
/// over all corresponding pairs of values (tile or voxel) of this tree and the other tree
/// and store the result in this tree.
/// This method is typically more space-efficient than the two-tree combine2(),
/// since it moves rather than copies nodes from the other tree into this tree.
/// @note This operation always empties the other tree.
/// @param other a tree of the same type as this tree
/// @param op a functor of the form <tt>void op(const T& a, const T& b, T& result)</tt>,
/// where @c T is this tree's @c ValueType, that computes
/// <tt>result = f(a, b)</tt>
/// @param prune if true, prune the resulting tree one branch at a time (this is usually
/// more space-efficient than pruning the entire tree in one pass)
///
/// @par Example:
/// Compute the per-voxel difference between two floating-point trees,
/// @c aTree and @c bTree, and store the result in @c aTree (leaving @c bTree empty).
/// @code
/// {
/// struct Local {
/// static inline void diff(const float& a, const float& b, float& result) {
/// result = a - b;
/// }
/// };
/// aTree.combine(bTree, Local::diff);
/// }
/// @endcode
///
/// @par Example:
/// Compute <tt>f * a + (1 - f) * b</tt> over all voxels of two floating-point trees,
/// @c aTree and @c bTree, and store the result in @c aTree (leaving @c bTree empty).
/// @code
/// namespace {
/// struct Blend {
/// Blend(float f): frac(f) {}
/// inline void operator()(const float& a, const float& b, float& result) const {
/// result = frac * a + (1.0 - frac) * b;
/// }
/// float frac;
/// };
/// }
/// {
/// aTree.combine(bTree, Blend(0.25)); // 0.25 * a + 0.75 * b
/// }
/// @endcode
template<typename CombineOp>
void combine(Tree& other, CombineOp& op, bool prune = false);
#ifndef _MSC_VER
template<typename CombineOp>
void combine(Tree& other, const CombineOp& op, bool prune = false);
#endif
/// Like combine(), but with
/// @param other a tree of the same type as this tree
/// @param op a functor of the form <tt>void op(CombineArgs<ValueType>& args)</tt> that
/// computes <tt>args.setResult(f(args.a(), args.b()))</tt> and, optionally,
/// <tt>args.setResultIsActive(g(args.aIsActive(), args.bIsActive()))</tt>
/// for some functions @c f and @c g
/// @param prune if true, prune the resulting tree one branch at a time (this is usually
/// more space-efficient than pruning the entire tree in one pass)
///
/// This variant passes not only the @em a and @em b values but also the active states
/// of the @em a and @em b values to the functor, which may then return, by calling
/// @c args.setResultIsActive(), a computed active state for the result value.
/// By default, the result is active if either the @em a or the @em b value is active.
///
/// @see openvdb/Types.h for the definition of the CombineArgs struct.
///
/// @par Example:
/// Replace voxel values in floating-point @c aTree with corresponding values
/// from floating-point @c bTree (leaving @c bTree empty) wherever the @c bTree
/// values are larger. Also, preserve the active states of any transferred values.
/// @code
/// {
/// struct Local {
/// static inline void max(CombineArgs<float>& args) {
/// if (args.b() > args.a()) {
/// // Transfer the B value and its active state.
/// args.setResult(args.b());
/// args.setResultIsActive(args.bIsActive());
/// } else {
/// // Preserve the A value and its active state.
/// args.setResult(args.a());
/// args.setResultIsActive(args.aIsActive());
/// }
/// }
/// };
/// aTree.combineExtended(bTree, Local::max);
/// }
/// @endcode
template<typename ExtendedCombineOp>
void combineExtended(Tree& other, ExtendedCombineOp& op, bool prune = false);
#ifndef _MSC_VER
template<typename ExtendedCombineOp>
void combineExtended(Tree& other, const ExtendedCombineOp& op, bool prune = false);
#endif
/// For a given function @c f, use sparse traversal to compute <tt>f(a, b)</tt> over all
/// corresponding pairs of values (tile or voxel) of trees A and B and store the result
/// in this tree.
/// @param a,b two trees with the same configuration (levels and node dimensions)
/// as this tree but with the B tree possibly having a different value type
/// @param op a functor of the form <tt>void op(const T1& a, const T2& b, T1& result)</tt>,
/// where @c T1 is this tree's and the A tree's @c ValueType and @c T2 is the
/// B tree's @c ValueType, that computes <tt>result = f(a, b)</tt>
/// @param prune if true, prune the resulting tree one branch at a time (this is usually
/// more space-efficient than pruning the entire tree in one pass)
///
/// @throw TypeError if the B tree's configuration doesn't match this tree's
/// or if this tree's ValueType is not constructible from the B tree's ValueType.
///
/// @par Example:
/// Compute the per-voxel difference between two floating-point trees,
/// @c aTree and @c bTree, and store the result in a third tree.
/// @code
/// {
/// struct Local {
/// static inline void diff(const float& a, const float& b, float& result) {
/// result = a - b;
/// }
/// };
/// FloatTree resultTree;
/// resultTree.combine2(aTree, bTree, Local::diff);
/// }
/// @endcode
template<typename CombineOp, typename OtherTreeType /*= Tree*/>
void combine2(const Tree& a, const OtherTreeType& b, CombineOp& op, bool prune = false);
#ifndef _MSC_VER
template<typename CombineOp, typename OtherTreeType /*= Tree*/>
void combine2(const Tree& a, const OtherTreeType& b, const CombineOp& op, bool prune = false);
#endif
/// Like combine2(), but with
/// @param a,b two trees with the same configuration (levels and node dimensions)
/// as this tree but with the B tree possibly having a different value type
/// @param op a functor of the form <tt>void op(CombineArgs<T1, T2>& args)</tt>, where
/// @c T1 is this tree's and the A tree's @c ValueType and @c T2 is the B tree's
/// @c ValueType, that computes <tt>args.setResult(f(args.a(), args.b()))</tt>
/// and, optionally,
/// <tt>args.setResultIsActive(g(args.aIsActive(), args.bIsActive()))</tt>
/// for some functions @c f and @c g
/// @param prune if true, prune the resulting tree one branch at a time (this is usually
/// more space-efficient than pruning the entire tree in one pass)
/// This variant passes not only the @em a and @em b values but also the active states
/// of the @em a and @em b values to the functor, which may then return, by calling
/// <tt>args.setResultIsActive()</tt>, a computed active state for the result value.
/// By default, the result is active if either the @em a or the @em b value is active.
///
/// @throw TypeError if the B tree's configuration doesn't match this tree's
/// or if this tree's ValueType is not constructible from the B tree's ValueType.
///
/// @see openvdb/Types.h for the definition of the CombineArgs struct.
///
/// @par Example:
/// Compute the per-voxel maximum values of two single-precision floating-point trees,
/// @c aTree and @c bTree, and store the result in a third tree. Set the active state
/// of each output value to that of the larger of the two input values.
/// @code
/// {
/// struct Local {
/// static inline void max(CombineArgs<float>& args) {
/// if (args.b() > args.a()) {
/// // Transfer the B value and its active state.
/// args.setResult(args.b());
/// args.setResultIsActive(args.bIsActive());
/// } else {
/// // Preserve the A value and its active state.
/// args.setResult(args.a());
/// args.setResultIsActive(args.aIsActive());
/// }
/// }
/// };
/// FloatTree aTree = ...;
/// FloatTree bTree = ...;
/// FloatTree resultTree;
/// resultTree.combine2Extended(aTree, bTree, Local::max);
/// }
/// @endcode
///
/// @par Example:
/// Compute the per-voxel maximum values of a double-precision and a single-precision
/// floating-point tree, @c aTree and @c bTree, and store the result in a third,
/// double-precision tree. Set the active state of each output value to that of
/// the larger of the two input values.
/// @code
/// {
/// struct Local {
/// static inline void max(CombineArgs<double, float>& args) {
/// if (args.b() > args.a()) {
/// // Transfer the B value and its active state.
/// args.setResult(args.b());
/// args.setResultIsActive(args.bIsActive());
/// } else {
/// // Preserve the A value and its active state.
/// args.setResult(args.a());
/// args.setResultIsActive(args.aIsActive());
/// }
/// }
/// };
/// DoubleTree aTree = ...;
/// FloatTree bTree = ...;
/// DoubleTree resultTree;
/// resultTree.combine2Extended(aTree, bTree, Local::max);
/// }
/// @endcode
template<typename ExtendedCombineOp, typename OtherTreeType /*= Tree*/>
void combine2Extended(const Tree& a, const OtherTreeType& b, ExtendedCombineOp& op,
bool prune = false);
#ifndef _MSC_VER
template<typename ExtendedCombineOp, typename OtherTreeType /*= Tree*/>
void combine2Extended(const Tree& a, const OtherTreeType& b, const ExtendedCombineOp&,
bool prune = false);
#endif
/// @brief Use sparse traversal to call the given functor with bounding box
/// information for all active tiles and leaf nodes or active voxels in the tree.
///
/// @note The bounding boxes are guaranteed to be non-overlapping.
/// @param op a functor with a templated call operator of the form
/// <tt>template<Index LEVEL> void operator()(const CoordBBox& bbox)</tt>,
/// where <tt>bbox</tt> is the bounding box of either an active tile
/// (if @c LEVEL > 0), a leaf node or an active voxel.
/// The functor must also provide a templated method of the form
/// <tt>template<Index LEVEL> bool descent()</tt> that returns @c false
/// if bounding boxes below the specified tree level are not to be visited.
/// In such cases of early tree termination, a bounding box is instead
/// derived from each terminating child node.
///
/// @par Example:
/// Visit and process all active tiles and leaf nodes in a tree, but don't
/// descend to the active voxels. The smallest bounding boxes that will be
/// visited are those of leaf nodes or level-1 active tiles.
/// @code
/// {
/// struct ProcessTilesAndLeafNodes {
/// // Descend to leaf nodes, but no further.
/// template<Index LEVEL> inline bool descent() { return LEVEL > 0; }
/// // Use this version to descend to voxels:
/// //template<Index LEVEL> inline bool descent() { return true; }
///
/// template<Index LEVEL>
/// inline void operator()(const CoordBBox &bbox) {
/// if (LEVEL > 0) {
/// // code to process an active tile
/// } else {
/// // code to process a leaf node
/// }
/// }
/// };
/// ProcessTilesAndLeafNodes op;
/// aTree.visitActiveBBox(op);
/// }
/// @endcode
/// @see openvdb/unittest/TestTree.cc for another example.
template<typename BBoxOp> void visitActiveBBox(BBoxOp& op) const { mRoot.visitActiveBBox(op); }
/// Traverse this tree in depth-first order, and at each node call the given functor
/// with a @c DenseIterator (see Iterator.h) that points to either a child node or a
/// tile value. If the iterator points to a child node and the functor returns true,
/// do not descend to the child node; instead, continue the traversal at the next
/// iterator position.
/// @param op a functor of the form <tt>template<typename IterT> bool op(IterT&)</tt>,
/// where @c IterT is either a RootNode::ChildAllIter,
/// an InternalNode::ChildAllIter or a LeafNode::ChildAllIter
///
/// @note There is no iterator that points to a RootNode, so to visit the root node,
/// retrieve the @c parent() of a RootNode::ChildAllIter.
///
/// @par Example:
/// Print information about the nodes and tiles of a tree, but not individual voxels.
/// @code
/// namespace {
/// template<typename TreeT>
/// struct PrintTreeVisitor
/// {
/// typedef typename TreeT::RootNodeType RootT;
/// bool visitedRoot;
///
/// PrintTreeVisitor(): visitedRoot(false) {}
///
/// template<typename IterT>
/// inline bool operator()(IterT& iter)
/// {
/// if (!visitedRoot && iter.parent().getLevel() == RootT::LEVEL) {
/// visitedRoot = true;
/// std::cout << "Level-" << RootT::LEVEL << " node" << std::endl;
/// }
/// typename IterT::NonConstValueType value;
/// typename IterT::ChildNodeType* child = iter.probeChild(value);
/// if (child == NULL) {
/// std::cout << "Tile with value " << value << std::endl;
/// return true; // no child to visit, so stop descending
/// }
/// std::cout << "Level-" << child->getLevel() << " node" << std::endl;
/// return (child->getLevel() == 0); // don't visit leaf nodes
/// }
///
/// // The generic method, above, calls iter.probeChild(), which is not defined
/// // for LeafNode::ChildAllIter. These overloads ensure that the generic
/// // method template doesn't get instantiated for LeafNode iterators.
/// bool operator()(typename TreeT::LeafNodeType::ChildAllIter&) { return true; }
/// bool operator()(typename TreeT::LeafNodeType::ChildAllCIter&) { return true; }
/// };
/// }
/// {
/// PrintTreeVisitor visitor;
/// tree.visit(visitor);
/// }
/// @endcode
template<typename VisitorOp> void visit(VisitorOp& op);
template<typename VisitorOp> void visit(const VisitorOp& op);
/// Like visit(), but using @c const iterators, i.e., with
/// @param op a functor of the form <tt>template<typename IterT> bool op(IterT&)</tt>,
/// where @c IterT is either a RootNode::ChildAllCIter,
/// an InternalNode::ChildAllCIter or a LeafNode::ChildAllCIter
template<typename VisitorOp> void visit(VisitorOp& op) const;
template<typename VisitorOp> void visit(const VisitorOp& op) const;
/// Traverse this tree and another tree in depth-first order, and for corresponding
/// subregions of index space call the given functor with two @c DenseIterators
/// (see Iterator.h), each of which points to either a child node or a tile value
/// of this tree and the other tree. If the A iterator points to a child node
/// and the functor returns a nonzero value with bit 0 set (e.g., 1), do not descend
/// to the child node; instead, continue the traversal at the next A iterator position.
/// Similarly, if the B iterator points to a child node and the functor returns a value
/// with bit 1 set (e.g., 2), continue the traversal at the next B iterator position.
/// @note The other tree must have the same index space and fan-out factors as
/// this tree, but it may have a different @c ValueType and a different topology.
/// @param other a tree of the same type as this tree
/// @param op a functor of the form
/// <tt>template<class AIterT, class BIterT> int op(AIterT&, BIterT&)</tt>,
/// where @c AIterT and @c BIterT are any combination of a
/// RootNode::ChildAllIter, an InternalNode::ChildAllIter or a
/// LeafNode::ChildAllIter with an @c OtherTreeType::RootNode::ChildAllIter,
/// an @c OtherTreeType::InternalNode::ChildAllIter
/// or an @c OtherTreeType::LeafNode::ChildAllIter
///
/// @par Example:
/// Given two trees of the same type, @c aTree and @c bTree, replace leaf nodes of
/// @c aTree with corresponding leaf nodes of @c bTree, leaving @c bTree partially empty.
/// @code
/// namespace {
/// template<typename AIterT, typename BIterT>
/// inline int stealLeafNodes(AIterT& aIter, BIterT& bIter)
/// {
/// typename AIterT::NonConstValueType aValue;
/// typename AIterT::ChildNodeType* aChild = aIter.probeChild(aValue);
/// typename BIterT::NonConstValueType bValue;
/// typename BIterT::ChildNodeType* bChild = bIter.probeChild(bValue);
///
/// const Index aLevel = aChild->getLevel(), bLevel = bChild->getLevel();
/// if (aChild && bChild && aLevel == 0 && bLevel == 0) { // both are leaf nodes
/// aIter.setChild(bChild); // give B's child to A
/// bIter.setValue(bValue); // replace B's child with a constant tile value
/// }
/// // Don't iterate over leaf node voxels of either A or B.
/// int skipBranch = (aLevel == 0) ? 1 : 0;
/// if (bLevel == 0) skipBranch = skipBranch | 2;
/// return skipBranch;
/// }
/// }
/// {
/// aTree.visit2(bTree, stealLeafNodes);
/// }
/// @endcode
template<typename OtherTreeType, typename VisitorOp>
void visit2(OtherTreeType& other, VisitorOp& op);
template<typename OtherTreeType, typename VisitorOp>
void visit2(OtherTreeType& other, const VisitorOp& op);
/// Like visit2(), but using @c const iterators, i.e., with
/// @param other a tree of the same type as this tree
/// @param op a functor of the form
/// <tt>template<class AIterT, class BIterT> int op(AIterT&, BIterT&)</tt>,
/// where @c AIterT and @c BIterT are any combination of a
/// RootNode::ChildAllCIter, an InternalNode::ChildAllCIter
/// or a LeafNode::ChildAllCIter with an
/// @c OtherTreeType::RootNode::ChildAllCIter,
/// an @c OtherTreeType::InternalNode::ChildAllCIter
/// or an @c OtherTreeType::LeafNode::ChildAllCIter
template<typename OtherTreeType, typename VisitorOp>
void visit2(OtherTreeType& other, VisitorOp& op) const;
template<typename OtherTreeType, typename VisitorOp>
void visit2(OtherTreeType& other, const VisitorOp& op) const;
//
// Iteration
//
//@{
/// Return an iterator over children of the root node.
typename RootNodeType::ChildOnCIter beginRootChildren() const { return mRoot.cbeginChildOn(); }
typename RootNodeType::ChildOnCIter cbeginRootChildren() const { return mRoot.cbeginChildOn(); }
typename RootNodeType::ChildOnIter beginRootChildren() { return mRoot.beginChildOn(); }
//@}
//@{
/// Return an iterator over non-child entries of the root node's table.
typename RootNodeType::ChildOffCIter beginRootTiles() const { return mRoot.cbeginChildOff(); }
typename RootNodeType::ChildOffCIter cbeginRootTiles() const { return mRoot.cbeginChildOff(); }
typename RootNodeType::ChildOffIter beginRootTiles() { return mRoot.beginChildOff(); }
//@}
//@{
/// Return an iterator over all entries of the root node's table.
typename RootNodeType::ChildAllCIter beginRootDense() const { return mRoot.cbeginChildAll(); }
typename RootNodeType::ChildAllCIter cbeginRootDense() const { return mRoot.cbeginChildAll(); }
typename RootNodeType::ChildAllIter beginRootDense() { return mRoot.beginChildAll(); }
//@}
//@{
/// Iterator over all nodes in this tree
typedef NodeIteratorBase<Tree, typename RootNodeType::ChildOnIter> NodeIter;
typedef NodeIteratorBase<const Tree, typename RootNodeType::ChildOnCIter> NodeCIter;
//@}
//@{
/// Iterator over all leaf nodes in this tree
typedef LeafIteratorBase<Tree, typename RootNodeType::ChildOnIter> LeafIter;
typedef LeafIteratorBase<const Tree, typename RootNodeType::ChildOnCIter> LeafCIter;
//@}
//@{
/// Return an iterator over all nodes in this tree.
NodeIter beginNode() { return NodeIter(*this); }
NodeCIter beginNode() const { return NodeCIter(*this); }
NodeCIter cbeginNode() const { return NodeCIter(*this); }
//@}
//@{
/// Return an iterator over all leaf nodes in this tree.
LeafIter beginLeaf() { return LeafIter(*this); }
LeafCIter beginLeaf() const { return LeafCIter(*this); }
LeafCIter cbeginLeaf() const { return LeafCIter(*this); }
//@}
typedef TreeValueIteratorBase<Tree, typename RootNodeType::ValueAllIter> ValueAllIter;
typedef TreeValueIteratorBase<const Tree, typename RootNodeType::ValueAllCIter> ValueAllCIter;
typedef TreeValueIteratorBase<Tree, typename RootNodeType::ValueOnIter> ValueOnIter;
typedef TreeValueIteratorBase<const Tree, typename RootNodeType::ValueOnCIter> ValueOnCIter;
typedef TreeValueIteratorBase<Tree, typename RootNodeType::ValueOffIter> ValueOffIter;
typedef TreeValueIteratorBase<const Tree, typename RootNodeType::ValueOffCIter> ValueOffCIter;
//@{
/// Return an iterator over all values (tile and voxel) across all nodes.
ValueAllIter beginValueAll() { return ValueAllIter(*this); }
ValueAllCIter beginValueAll() const { return ValueAllCIter(*this); }
ValueAllCIter cbeginValueAll() const { return ValueAllCIter(*this); }
//@}
//@{
/// Return an iterator over active values (tile and voxel) across all nodes.
ValueOnIter beginValueOn() { return ValueOnIter(*this); }
ValueOnCIter beginValueOn() const { return ValueOnCIter(*this); }
ValueOnCIter cbeginValueOn() const { return ValueOnCIter(*this); }
//@}
//@{
/// Return an iterator over inactive values (tile and voxel) across all nodes.
ValueOffIter beginValueOff() { return ValueOffIter(*this); }
ValueOffCIter beginValueOff() const { return ValueOffCIter(*this); }
ValueOffCIter cbeginValueOff() const { return ValueOffCIter(*this); }
//@}
/// @brief Return an iterator of type @c IterT (for example, begin<ValueOnIter>() is
/// equivalent to beginValueOn()).
template<typename IterT> IterT begin();
/// @brief Return a const iterator of type CIterT (for example, cbegin<ValueOnCIter>()
/// is equivalent to cbeginValueOn()).
template<typename CIterT> CIterT cbegin() const;
protected:
typedef tbb::concurrent_hash_map<ValueAccessorBase<Tree, true>*, bool> AccessorRegistry;
typedef tbb::concurrent_hash_map<ValueAccessorBase<const Tree, true>*, bool> ConstAccessorRegistry;
// Disallow assignment of instances of this class.
Tree& operator=(const Tree&);
/// @brief Notify all registered accessors, by calling ValueAccessor::release(),
/// that this tree is about to be deleted.
void releaseAllAccessors();
//
// Data members
//
RootNodeType mRoot; // root node of the tree
mutable AccessorRegistry mAccessorRegistry;
mutable ConstAccessorRegistry mConstAccessorRegistry;
static tbb::atomic<const Name*> sTreeTypeName;
}; // end of Tree class
template<typename _RootNodeType>
tbb::atomic<const Name*> Tree<_RootNodeType>::sTreeTypeName;
/// @brief Tree3<T, N1, N2>::Type is the type of a three-level tree
/// (Root, Internal, Leaf) with value type T and
/// internal and leaf node log dimensions N1 and N2, respectively.
/// @note This is NOT the standard tree configuration (Tree4 is).
template<typename T, Index N1=4, Index N2=3>
struct Tree3 {
typedef Tree<RootNode<InternalNode<LeafNode<T, N2>, N1> > > Type;
};
/// @brief Tree4<T, N1, N2, N3>::Type is the type of a four-level tree
/// (Root, Internal, Internal, Leaf) with value type T and
/// internal and leaf node log dimensions N1, N2 and N3, respectively.
/// @note This is the standard tree configuration.
template<typename T, Index N1=5, Index N2=4, Index N3=3>
struct Tree4 {
typedef Tree<RootNode<InternalNode<InternalNode<LeafNode<T, N3>, N2>, N1> > > Type;
};
/// @brief Tree5<T, N1, N2, N3, N4>::Type is the type of a five-level tree
/// (Root, Internal, Internal, Internal, Leaf) with value type T and
/// internal and leaf node log dimensions N1, N2, N3 and N4, respectively.
/// @note This is NOT the standard tree configuration (Tree4 is).
template<typename T, Index N1=6, Index N2=5, Index N3=4, Index N4=3>
struct Tree5 {
typedef Tree<RootNode<InternalNode<InternalNode<InternalNode<LeafNode<T, N4>, N3>, N2>, N1> > >
Type;
};
////////////////////////////////////////
inline void
TreeBase::readTopology(std::istream& is, bool /*saveFloatAsHalf*/)
{
int32_t bufferCount;
is.read(reinterpret_cast<char*>(&bufferCount), sizeof(int32_t));
if (bufferCount != 1) OPENVDB_LOG_WARN("multi-buffer trees are no longer supported");
}
inline void
TreeBase::writeTopology(std::ostream& os, bool /*saveFloatAsHalf*/) const
{
int32_t bufferCount = 1;
os.write(reinterpret_cast<char*>(&bufferCount), sizeof(int32_t));
}
inline void
TreeBase::print(std::ostream& os, int /*verboseLevel*/) const
{
os << " Tree Type: " << type()
<< " Active Voxel Count: " << activeVoxelCount() << std::endl
<< " Inactive Voxel Count: " << inactiveVoxelCount() << std::endl
<< " Leaf Node Count: " << leafCount() << std::endl
<< " Non-leaf Node Count: " << nonLeafCount() << std::endl;
}
////////////////////////////////////////
//
// Type traits for tree iterators
//
/// @brief TreeIterTraits provides, for all tree iterators, a begin(tree) function
/// that returns an iterator over a tree of arbitrary type.
template<typename TreeT, typename IterT> struct TreeIterTraits;
template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildOnIter> {
static typename TreeT::RootNodeType::ChildOnIter begin(TreeT& tree) {
return tree.beginRootChildren();
}
};
template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildOnCIter> {
static typename TreeT::RootNodeType::ChildOnCIter begin(const TreeT& tree) {
return tree.cbeginRootChildren();
}
};
template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildOffIter> {
static typename TreeT::RootNodeType::ChildOffIter begin(TreeT& tree) {
return tree.beginRootTiles();
}
};
template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildOffCIter> {
static typename TreeT::RootNodeType::ChildOffCIter begin(const TreeT& tree) {
return tree.cbeginRootTiles();
}
};
template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildAllIter> {
static typename TreeT::RootNodeType::ChildAllIter begin(TreeT& tree) {
return tree.beginRootDense();
}
};
template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildAllCIter> {
static typename TreeT::RootNodeType::ChildAllCIter begin(const TreeT& tree) {
return tree.cbeginRootDense();
}
};
template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::NodeIter> {
static typename TreeT::NodeIter begin(TreeT& tree) { return tree.beginNode(); }
};
template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::NodeCIter> {
static typename TreeT::NodeCIter begin(const TreeT& tree) { return tree.cbeginNode(); }
};
template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::LeafIter> {
static typename TreeT::LeafIter begin(TreeT& tree) { return tree.beginLeaf(); }
};
template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::LeafCIter> {
static typename TreeT::LeafCIter begin(const TreeT& tree) { return tree.cbeginLeaf(); }
};
template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueOnIter> {
static typename TreeT::ValueOnIter begin(TreeT& tree) { return tree.beginValueOn(); }
};
template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueOnCIter> {
static typename TreeT::ValueOnCIter begin(const TreeT& tree) { return tree.cbeginValueOn(); }
};
template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueOffIter> {
static typename TreeT::ValueOffIter begin(TreeT& tree) { return tree.beginValueOff(); }
};
template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueOffCIter> {
static typename TreeT::ValueOffCIter begin(const TreeT& tree) { return tree.cbeginValueOff(); }
};
template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueAllIter> {
static typename TreeT::ValueAllIter begin(TreeT& tree) { return tree.beginValueAll(); }
};
template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueAllCIter> {
static typename TreeT::ValueAllCIter begin(const TreeT& tree) { return tree.cbeginValueAll(); }
};
template<typename RootNodeType>
template<typename IterT>
inline IterT
Tree<RootNodeType>::begin()
{
return TreeIterTraits<Tree, IterT>::begin(*this);
}
template<typename RootNodeType>
template<typename IterT>
inline IterT
Tree<RootNodeType>::cbegin() const
{
return TreeIterTraits<Tree, IterT>::begin(*this);
}
////////////////////////////////////////
template<typename RootNodeType>
void
Tree<RootNodeType>::readTopology(std::istream& is, bool saveFloatAsHalf)
{
this->clearAllAccessors();
TreeBase::readTopology(is, saveFloatAsHalf);
mRoot.readTopology(is, saveFloatAsHalf);
}
template<typename RootNodeType>
void
Tree<RootNodeType>::writeTopology(std::ostream& os, bool saveFloatAsHalf) const
{
TreeBase::writeTopology(os, saveFloatAsHalf);
mRoot.writeTopology(os, saveFloatAsHalf);
}
template<typename RootNodeType>
inline void
Tree<RootNodeType>::readBuffers(std::istream &is, bool saveFloatAsHalf)
{
this->clearAllAccessors();
mRoot.readBuffers(is, saveFloatAsHalf);
}
#ifndef OPENVDB_2_ABI_COMPATIBLE
template<typename RootNodeType>
inline void
Tree<RootNodeType>::readBuffers(std::istream &is, const CoordBBox& bbox, bool saveFloatAsHalf)
{
this->clearAllAccessors();
mRoot.readBuffers(is, bbox, saveFloatAsHalf);
}
template<typename RootNodeType>
inline void
Tree<RootNodeType>::readNonresidentBuffers() const
{
for (LeafCIter it = this->cbeginLeaf(); it; ++it) {
// Retrieving the value of a leaf voxel forces loading of the leaf node's voxel buffer.
it->getValue(Index(0));
}
}
#endif // !OPENVDB_2_ABI_COMPATIBLE
template<typename RootNodeType>
inline void
Tree<RootNodeType>::writeBuffers(std::ostream &os, bool saveFloatAsHalf) const
{
mRoot.writeBuffers(os, saveFloatAsHalf);
}
////////////////////////////////////////
template<typename RootNodeType>
inline void
Tree<RootNodeType>::attachAccessor(ValueAccessorBase<Tree, true>& accessor) const
{
typename AccessorRegistry::accessor a;
mAccessorRegistry.insert(a, &accessor);
}
template<typename RootNodeType>
inline void
Tree<RootNodeType>::attachAccessor(ValueAccessorBase<const Tree, true>& accessor) const
{
typename ConstAccessorRegistry::accessor a;
mConstAccessorRegistry.insert(a, &accessor);
}
template<typename RootNodeType>
inline void
Tree<RootNodeType>::releaseAccessor(ValueAccessorBase<Tree, true>& accessor) const
{
mAccessorRegistry.erase(&accessor);
}
template<typename RootNodeType>
inline void
Tree<RootNodeType>::releaseAccessor(ValueAccessorBase<const Tree, true>& accessor) const
{
mConstAccessorRegistry.erase(&accessor);
}
template<typename RootNodeType>
inline void
Tree<RootNodeType>::clearAllAccessors()
{
for (typename AccessorRegistry::iterator it = mAccessorRegistry.begin();
it != mAccessorRegistry.end(); ++it)
{
if (it->first) it->first->clear();
}
for (typename ConstAccessorRegistry::iterator it = mConstAccessorRegistry.begin();
it != mConstAccessorRegistry.end(); ++it)
{
if (it->first) it->first->clear();
}
}
template<typename RootNodeType>
inline void
Tree<RootNodeType>::releaseAllAccessors()
{
mAccessorRegistry.erase(NULL);
for (typename AccessorRegistry::iterator it = mAccessorRegistry.begin();
it != mAccessorRegistry.end(); ++it)
{
it->first->release();
}
mAccessorRegistry.clear();
mAccessorRegistry.erase(NULL);
for (typename ConstAccessorRegistry::iterator it = mConstAccessorRegistry.begin();
it != mConstAccessorRegistry.end(); ++it)
{
it->first->release();
}
mConstAccessorRegistry.clear();
}
////////////////////////////////////////
template<typename RootNodeType>
inline const typename RootNodeType::ValueType&
Tree<RootNodeType>::getValue(const Coord& xyz) const
{
return mRoot.getValue(xyz);
}
template<typename RootNodeType>
template<typename AccessT>
inline const typename RootNodeType::ValueType&
Tree<RootNodeType>::getValue(const Coord& xyz, AccessT& accessor) const
{
return accessor.getValue(xyz);
}
template<typename RootNodeType>
inline int
Tree<RootNodeType>::getValueDepth(const Coord& xyz) const
{
return mRoot.getValueDepth(xyz);
}
template<typename RootNodeType>
inline void
Tree<RootNodeType>::setValueOff(const Coord& xyz)
{
mRoot.setValueOff(xyz);
}
template<typename RootNodeType>
inline void
Tree<RootNodeType>::setValueOff(const Coord& xyz, const ValueType& value)
{
mRoot.setValueOff(xyz, value);
}
template<typename RootNodeType>
inline void
Tree<RootNodeType>::setActiveState(const Coord& xyz, bool on)
{
mRoot.setActiveState(xyz, on);
}
template<typename RootNodeType>
inline void
Tree<RootNodeType>::setValue(const Coord& xyz, const ValueType& value)
{
mRoot.setValueOn(xyz, value);
}
template<typename RootNodeType>
inline void
Tree<RootNodeType>::setValueOnly(const Coord& xyz, const ValueType& value)
{
mRoot.setValueOnly(xyz, value);
}
template<typename RootNodeType>
template<typename AccessT>
inline void
Tree<RootNodeType>::setValue(const Coord& xyz, const ValueType& value, AccessT& accessor)
{
accessor.setValue(xyz, value);
}
template<typename RootNodeType>
inline void
Tree<RootNodeType>::setValueOn(const Coord& xyz)
{
mRoot.setActiveState(xyz, true);
}
template<typename RootNodeType>
inline void
Tree<RootNodeType>::setValueOn(const Coord& xyz, const ValueType& value)
{
mRoot.setValueOn(xyz, value);
}
template<typename RootNodeType>
template<typename ModifyOp>
inline void
Tree<RootNodeType>::modifyValue(const Coord& xyz, const ModifyOp& op)
{
mRoot.modifyValue(xyz, op);
}
template<typename RootNodeType>
template<typename ModifyOp>
inline void
Tree<RootNodeType>::modifyValueAndActiveState(const Coord& xyz, const ModifyOp& op)
{
mRoot.modifyValueAndActiveState(xyz, op);
}
template<typename RootNodeType>
inline bool
Tree<RootNodeType>::probeValue(const Coord& xyz, ValueType& value) const
{
return mRoot.probeValue(xyz, value);
}
////////////////////////////////////////
template<typename RootNodeType>
inline void
Tree<RootNodeType>::addTile(Index level, const Coord& xyz,
const ValueType& value, bool active)
{
mRoot.addTile(level, xyz, value, active);
}
template<typename RootNodeType>
template<typename NodeT>
inline NodeT*
Tree<RootNodeType>::stealNode(const Coord& xyz, const ValueType& value, bool active)
{
this->clearAllAccessors();
return mRoot.template stealNode<NodeT>(xyz, value, active);
}
template<typename RootNodeType>
inline typename RootNodeType::LeafNodeType*
Tree<RootNodeType>::touchLeaf(const Coord& xyz)
{
return mRoot.touchLeaf(xyz);
}
template<typename RootNodeType>
inline typename RootNodeType::LeafNodeType*
Tree<RootNodeType>::probeLeaf(const Coord& xyz)
{
return mRoot.probeLeaf(xyz);
}
template<typename RootNodeType>
inline const typename RootNodeType::LeafNodeType*
Tree<RootNodeType>::probeConstLeaf(const Coord& xyz) const
{
return mRoot.probeConstLeaf(xyz);
}
template<typename RootNodeType>
template<typename NodeType>
inline NodeType*
Tree<RootNodeType>::probeNode(const Coord& xyz)
{
return mRoot.template probeNode<NodeType>(xyz);
}
template<typename RootNodeType>
template<typename NodeType>
inline const NodeType*
Tree<RootNodeType>::probeNode(const Coord& xyz) const
{
return this->template probeConstNode<NodeType>(xyz);
}
template<typename RootNodeType>
template<typename NodeType>
inline const NodeType*
Tree<RootNodeType>::probeConstNode(const Coord& xyz) const
{
return mRoot.template probeConstNode<NodeType>(xyz);
}
////////////////////////////////////////
template<typename RootNodeType>
inline void
Tree<RootNodeType>::clip(const CoordBBox& bbox)
{
this->clearAllAccessors();
return mRoot.clip(bbox);
}
#ifndef OPENVDB_2_ABI_COMPATIBLE
template<typename RootNodeType>
inline void
Tree<RootNodeType>::clipUnallocatedNodes()
{
this->clearAllAccessors();
for (LeafIter it = this->beginLeaf(); it; ) {
const LeafNodeType* leaf = it.getLeaf();
++it; // advance the iterator before deleting the leaf node
if (!leaf->isAllocated()) {
this->addTile(/*level=*/0, leaf->origin(), this->background(), /*active=*/false);
}
}
}
#endif
template<typename RootNodeType>
inline void
Tree<RootNodeType>::fill(const CoordBBox& bbox, const ValueType& value, bool active)
{
this->clearAllAccessors();
return mRoot.fill(bbox, value, active);
}
template<typename RootNodeType>
Metadata::Ptr
Tree<RootNodeType>::getBackgroundValue() const
{
Metadata::Ptr result;
if (Metadata::isRegisteredType(valueType())) {
typedef TypedMetadata<ValueType> MetadataT;
result = Metadata::createMetadata(valueType());
if (result->typeName() == MetadataT::staticTypeName()) {
MetadataT* m = static_cast<MetadataT*>(result.get());
m->value() = mRoot.background();
}
}
return result;
}
////////////////////////////////////////
template<typename RootNodeType>
inline void
Tree<RootNodeType>::voxelizeActiveTiles()
{
this->clearAllAccessors();
mRoot.voxelizeActiveTiles();
}
template<typename RootNodeType>
inline void
Tree<RootNodeType>::merge(Tree& other, MergePolicy policy)
{
this->clearAllAccessors();
other.clearAllAccessors();
switch (policy) {
case MERGE_ACTIVE_STATES:
mRoot.template merge<MERGE_ACTIVE_STATES>(other.mRoot); break;
case MERGE_NODES:
mRoot.template merge<MERGE_NODES>(other.mRoot); break;
case MERGE_ACTIVE_STATES_AND_NODES:
mRoot.template merge<MERGE_ACTIVE_STATES_AND_NODES>(other.mRoot); break;
}
}
template<typename RootNodeType>
template<typename OtherRootNodeType>
inline void
Tree<RootNodeType>::topologyUnion(const Tree<OtherRootNodeType>& other)
{
this->clearAllAccessors();
mRoot.topologyUnion(other.root());
}
template<typename RootNodeType>
template<typename OtherRootNodeType>
inline void
Tree<RootNodeType>::topologyIntersection(const Tree<OtherRootNodeType>& other)
{
this->clearAllAccessors();
mRoot.topologyIntersection(other.root());
}
template<typename RootNodeType>
template<typename OtherRootNodeType>
inline void
Tree<RootNodeType>::topologyDifference(const Tree<OtherRootNodeType>& other)
{
this->clearAllAccessors();
mRoot.topologyDifference(other.root());
}
////////////////////////////////////////
/// @brief Helper class to adapt a three-argument (a, b, result) CombineOp functor
/// into a single-argument functor that accepts a CombineArgs struct
template<typename AValueT, typename CombineOp, typename BValueT = AValueT>
struct CombineOpAdapter
{
CombineOpAdapter(CombineOp& _op): op(_op) {}
void operator()(CombineArgs<AValueT, BValueT>& args) const {
op(args.a(), args.b(), args.result());
}
CombineOp& op;
};
template<typename RootNodeType>
template<typename CombineOp>
inline void
Tree<RootNodeType>::combine(Tree& other, CombineOp& op, bool prune)
{
CombineOpAdapter<ValueType, CombineOp> extendedOp(op);
this->combineExtended(other, extendedOp, prune);
}
/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like this: <tt>aTree.combine(bTree, MyCombineOp(...))</tt>.
#ifndef _MSC_VER
template<typename RootNodeType>
template<typename CombineOp>
inline void
Tree<RootNodeType>::combine(Tree& other, const CombineOp& op, bool prune)
{
CombineOpAdapter<ValueType, const CombineOp> extendedOp(op);
this->combineExtended(other, extendedOp, prune);
}
#endif
template<typename RootNodeType>
template<typename ExtendedCombineOp>
inline void
Tree<RootNodeType>::combineExtended(Tree& other, ExtendedCombineOp& op, bool prune)
{
this->clearAllAccessors();
mRoot.combine(other.root(), op, prune);
}
/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like this: <tt>aTree.combineExtended(bTree, MyCombineOp(...))</tt>.
#ifndef _MSC_VER
template<typename RootNodeType>
template<typename ExtendedCombineOp>
inline void
Tree<RootNodeType>::combineExtended(Tree& other, const ExtendedCombineOp& op, bool prune)
{
this->clearAllAccessors();
mRoot.template combine<const ExtendedCombineOp>(other.mRoot, op, prune);
}
#endif
template<typename RootNodeType>
template<typename CombineOp, typename OtherTreeType>
inline void
Tree<RootNodeType>::combine2(const Tree& a, const OtherTreeType& b, CombineOp& op, bool prune)
{
CombineOpAdapter<ValueType, CombineOp, typename OtherTreeType::ValueType> extendedOp(op);
this->combine2Extended(a, b, extendedOp, prune);
}
/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like this: <tt>tree.combine2(aTree, bTree, MyCombineOp(...))</tt>.
#ifndef _MSC_VER
template<typename RootNodeType>
template<typename CombineOp, typename OtherTreeType>
inline void
Tree<RootNodeType>::combine2(const Tree& a, const OtherTreeType& b, const CombineOp& op, bool prune)
{
CombineOpAdapter<ValueType, const CombineOp, typename OtherTreeType::ValueType> extendedOp(op);
this->combine2Extended(a, b, extendedOp, prune);
}
#endif
template<typename RootNodeType>
template<typename ExtendedCombineOp, typename OtherTreeType>
inline void
Tree<RootNodeType>::combine2Extended(const Tree& a, const OtherTreeType& b,
ExtendedCombineOp& op, bool prune)
{
this->clearAllAccessors();
mRoot.combine2(a.root(), b.root(), op, prune);
}
/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like the following, where the functor argument is a temporary:
/// <tt>tree.combine2Extended(aTree, bTree, MyCombineOp(...))</tt>.
#ifndef _MSC_VER
template<typename RootNodeType>
template<typename ExtendedCombineOp, typename OtherTreeType>
inline void
Tree<RootNodeType>::combine2Extended(const Tree& a, const OtherTreeType& b,
const ExtendedCombineOp& op, bool prune)
{
this->clearAllAccessors();
mRoot.template combine2<const ExtendedCombineOp>(a.root(), b.root(), op, prune);
}
#endif
////////////////////////////////////////
template<typename RootNodeType>
template<typename VisitorOp>
inline void
Tree<RootNodeType>::visit(VisitorOp& op)
{
this->clearAllAccessors();
mRoot.template visit<VisitorOp>(op);
}
template<typename RootNodeType>
template<typename VisitorOp>
inline void
Tree<RootNodeType>::visit(VisitorOp& op) const
{
mRoot.template visit<VisitorOp>(op);
}
/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like this: <tt>tree.visit(MyVisitorOp(...))</tt>.
template<typename RootNodeType>
template<typename VisitorOp>
inline void
Tree<RootNodeType>::visit(const VisitorOp& op)
{
this->clearAllAccessors();
mRoot.template visit<const VisitorOp>(op);
}
/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like this: <tt>tree.visit(MyVisitorOp(...))</tt>.
template<typename RootNodeType>
template<typename VisitorOp>
inline void
Tree<RootNodeType>::visit(const VisitorOp& op) const
{
mRoot.template visit<const VisitorOp>(op);
}
////////////////////////////////////////
template<typename RootNodeType>
template<typename OtherTreeType, typename VisitorOp>
inline void
Tree<RootNodeType>::visit2(OtherTreeType& other, VisitorOp& op)
{
this->clearAllAccessors();
typedef typename OtherTreeType::RootNodeType OtherRootNodeType;
mRoot.template visit2<OtherRootNodeType, VisitorOp>(other.root(), op);
}
template<typename RootNodeType>
template<typename OtherTreeType, typename VisitorOp>
inline void
Tree<RootNodeType>::visit2(OtherTreeType& other, VisitorOp& op) const
{
typedef typename OtherTreeType::RootNodeType OtherRootNodeType;
mRoot.template visit2<OtherRootNodeType, VisitorOp>(other.root(), op);
}
/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like this: <tt>aTree.visit2(bTree, MyVisitorOp(...))</tt>.
template<typename RootNodeType>
template<typename OtherTreeType, typename VisitorOp>
inline void
Tree<RootNodeType>::visit2(OtherTreeType& other, const VisitorOp& op)
{
this->clearAllAccessors();
typedef typename OtherTreeType::RootNodeType OtherRootNodeType;
mRoot.template visit2<OtherRootNodeType, const VisitorOp>(other.root(), op);
}
/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like this: <tt>aTree.visit2(bTree, MyVisitorOp(...))</tt>.
template<typename RootNodeType>
template<typename OtherTreeType, typename VisitorOp>
inline void
Tree<RootNodeType>::visit2(OtherTreeType& other, const VisitorOp& op) const
{
typedef typename OtherTreeType::RootNodeType OtherRootNodeType;
mRoot.template visit2<OtherRootNodeType, const VisitorOp>(other.root(), op);
}
////////////////////////////////////////
template<typename RootNodeType>
inline const Name&
Tree<RootNodeType>::treeType()
{
if (sTreeTypeName == NULL) {
std::vector<Index> dims;
Tree::getNodeLog2Dims(dims);
std::ostringstream ostr;
ostr << "Tree_" << typeNameAsString<ValueType>();
for (size_t i = 1, N = dims.size(); i < N; ++i) { // start from 1 to skip the RootNode
ostr << "_" << dims[i];
}
Name* s = new Name(ostr.str());
if (sTreeTypeName.compare_and_swap(s, NULL) != NULL) delete s;
}
return *sTreeTypeName;
}
template<typename RootNodeType>
template<typename OtherRootNodeType>
inline bool
Tree<RootNodeType>::hasSameTopology(const Tree<OtherRootNodeType>& other) const
{
return mRoot.hasSameTopology(other.root());
}
template<typename RootNodeType>
Index64
Tree<RootNodeType>::inactiveVoxelCount() const
{
Coord dim(0, 0, 0);
this->evalActiveVoxelDim(dim);
const Index64
totalVoxels = dim.x() * dim.y() * dim.z(),
activeVoxels = this->activeVoxelCount();
assert(totalVoxels >= activeVoxels);
return totalVoxels - activeVoxels;
}
template<typename RootNodeType>
inline bool
Tree<RootNodeType>::evalLeafBoundingBox(CoordBBox& bbox) const
{
bbox.reset(); // default invalid bbox
if (this->empty()) return false; // empty
mRoot.evalActiveBoundingBox(bbox, false);
return true;// not empty
}
template<typename RootNodeType>
inline bool
Tree<RootNodeType>::evalActiveVoxelBoundingBox(CoordBBox& bbox) const
{
bbox.reset(); // default invalid bbox
if (this->empty()) return false; // empty
mRoot.evalActiveBoundingBox(bbox, true);
return true;// not empty
}
template<typename RootNodeType>
inline bool
Tree<RootNodeType>::evalActiveVoxelDim(Coord& dim) const
{
CoordBBox bbox;
bool notEmpty = this->evalActiveVoxelBoundingBox(bbox);
dim = bbox.extents();
return notEmpty;
}
template<typename RootNodeType>
inline bool
Tree<RootNodeType>::evalLeafDim(Coord& dim) const
{
CoordBBox bbox;
bool notEmpty = this->evalLeafBoundingBox(bbox);
dim = bbox.extents();
return notEmpty;
}
template<typename RootNodeType>
inline void
Tree<RootNodeType>::evalMinMax(ValueType& minVal, ValueType& maxVal) const
{
minVal = maxVal = zeroVal<ValueType>();
if (ValueOnCIter iter = this->cbeginValueOn()) {
minVal = maxVal = *iter;
for (++iter; iter; ++iter) {
const ValueType& val = *iter;
if (val < minVal) minVal = val;
if (val > maxVal) maxVal = val;
}
}
}
template<typename RootNodeType>
inline void
Tree<RootNodeType>::getNodeLog2Dims(std::vector<Index>& dims)
{
dims.clear();
RootNodeType::getNodeLog2Dims(dims);
}
template<typename RootNodeType>
inline void
Tree<RootNodeType>::print(std::ostream& os, int verboseLevel) const
{
if (verboseLevel <= 0) return;
/// @todo Consider using boost::io::ios_precision_saver instead.
struct OnExit {
std::ostream& os;
std::streamsize savedPrecision;
OnExit(std::ostream& _os): os(_os), savedPrecision(os.precision()) {}
~OnExit() { os.precision(savedPrecision); }
};
OnExit restorePrecision(os);
std::vector<Index> dims;
Tree::getNodeLog2Dims(dims);
os << "Information about Tree:\n"
<< " Type: " << this->type() << "\n";
os << " Configuration:\n";
if (verboseLevel <= 1) {
// Print node types and sizes.
os << " Root(" << mRoot.getTableSize() << ")";
if (dims.size() > 1) {
for (size_t i = 1, N = dims.size() - 1; i < N; ++i) {
os << ", Internal(" << (1 << dims[i]) << "^3)";
}
os << ", Leaf(" << (1 << *dims.rbegin()) << "^3)\n";
}
os << " Background value: " << mRoot.background() << "\n";
return;
}
// The following is tree information that is expensive to extract.
ValueType minVal = zeroVal<ValueType>(), maxVal = zeroVal<ValueType>();
if (verboseLevel > 3) {
// This forces loading of all non-resident nodes.
this->evalMinMax(minVal, maxVal);
}
std::vector<Index64> nodeCount(dims.size());
#ifndef OPENVDB_2_ABI_COMPATIBLE
Index64 unallocatedLeafCount = 0;
#endif
for (NodeCIter it = cbeginNode(); it; ++it) {
++(nodeCount[it.getDepth()]);
#ifndef OPENVDB_2_ABI_COMPATIBLE
if (it.getLevel() == 0) {
const LeafNodeType* leaf = NULL;
it.getNode(leaf);
if (leaf && !leaf->isAllocated()) ++unallocatedLeafCount;
}
#endif
}
Index64 totalNodeCount = 0;
for (size_t i = 0; i < nodeCount.size(); ++i) totalNodeCount += nodeCount[i];
// Print node types, counts and sizes.
os << " Root(1 x " << mRoot.getTableSize() << ")";
if (dims.size() > 1) {
for (size_t i = 1, N = dims.size() - 1; i < N; ++i) {
os << ", Internal(" << util::formattedInt(nodeCount[i]);
os << " x " << (1 << dims[i]) << "^3)";
}
os << ", Leaf(" << util::formattedInt(*nodeCount.rbegin());
os << " x " << (1 << *dims.rbegin()) << "^3)\n";
}
os << " Background value: " << mRoot.background() << "\n";
// Statistics of topology and values
if (verboseLevel > 3) {
os << " Min value: " << minVal << "\n";
os << " Max value: " << maxVal << "\n";
}
const uint64_t
leafCount = *nodeCount.rbegin(),
numActiveVoxels = this->activeVoxelCount(),
numActiveLeafVoxels = this->activeLeafVoxelCount();
os << " Number of active voxels: " << util::formattedInt(numActiveVoxels) << "\n";
Coord dim(0, 0, 0);
uint64_t totalVoxels = 0;
if (numActiveVoxels) { // nonempty
CoordBBox bbox;
this->evalActiveVoxelBoundingBox(bbox);
dim = bbox.extents();
totalVoxels = dim.x() * uint64_t(dim.y()) * dim.z();
os << " Bounding box of active voxels: " << bbox << "\n";
os << " Dimensions of active voxels: "
<< dim[0] << " x " << dim[1] << " x " << dim[2] << "\n";
const double activeRatio = (100.0 * double(numActiveVoxels)) / double(totalVoxels);
os << " Percentage of active voxels: " << std::setprecision(3) << activeRatio << "%\n";
if (leafCount > 0) {
const double fillRatio = (100.0 * double(numActiveLeafVoxels))
/ (double(leafCount) * double(LeafNodeType::NUM_VOXELS));
os << " Average leaf node fill ratio: " << fillRatio << "%\n";
}
#ifndef OPENVDB_2_ABI_COMPATIBLE
if (verboseLevel > 2) {
os << " Number of unallocated nodes: "
<< util::formattedInt(unallocatedLeafCount) << " ("
<< (100.0 * double(unallocatedLeafCount) / double(totalNodeCount)) << "%)\n";
}
#endif
} else {
os << " Tree is empty!\n";
}
os << std::flush;
if (verboseLevel == 2) return;
// Memory footprint in bytes
const uint64_t
actualMem = this->memUsage(),
denseMem = sizeof(ValueType) * totalVoxels,
voxelsMem = sizeof(ValueType) * numActiveLeafVoxels;
///< @todo not accurate for BoolTree (and probably should count tile values)
os << "Memory footprint:\n";
util::printBytes(os, actualMem, " Actual: ");
util::printBytes(os, voxelsMem, " Active leaf voxels: ");
if (numActiveVoxels) {
util::printBytes(os, denseMem, " Dense equivalent: ");
os << " Actual footprint is " << (100.0 * double(actualMem) / double(denseMem))
<< "% of an equivalent dense volume\n";
os << " Leaf voxel footprint is " << (100.0 * double(voxelsMem) / double(actualMem))
<< "% of actual footprint\n";
}
}
} // namespace tree
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_TREE_TREE_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2015 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|