This file is indexed.

/usr/include/openvdb/tree/Tree.h is in libopenvdb-dev 3.1.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2015 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
/// @file tree/Tree.h

#ifndef OPENVDB_TREE_TREE_HAS_BEEN_INCLUDED
#define OPENVDB_TREE_TREE_HAS_BEEN_INCLUDED

#include <iostream>
#include <sstream>
#include <vector>
#include <boost/shared_ptr.hpp>
#include <boost/cstdint.hpp>
#include <tbb/atomic.h>
#include <tbb/concurrent_hash_map.h>
#include <openvdb/Types.h>
#include <openvdb/metadata/Metadata.h>
#include <openvdb/math/Math.h>
#include <openvdb/math/BBox.h>
#include <openvdb/util/Formats.h>
#include <openvdb/util/logging.h>
#include <openvdb/Platform.h>
#include "RootNode.h"
#include "InternalNode.h"
#include "LeafNode.h"
#include "TreeIterator.h"
#include "ValueAccessor.h"


namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tree {

/// @brief Base class for typed trees
class OPENVDB_API TreeBase
{
public:
    typedef boost::shared_ptr<TreeBase> Ptr;
    typedef boost::shared_ptr<const TreeBase> ConstPtr;

    TreeBase() {}
    virtual ~TreeBase() {}

    /// Return the name of this tree's type.
    virtual const Name& type() const = 0;

    /// Return the name of the type of a voxel's value (e.g., "float" or "vec3d").
    virtual Name valueType() const = 0;

    /// Return a pointer to a deep copy of this tree
    virtual TreeBase::Ptr copy() const = 0;

    //
    // Tree methods
    //
    /// @brief Return this tree's background value wrapped as metadata.
    /// @note Query the metadata object for the value's type.
    virtual Metadata::Ptr getBackgroundValue() const { return Metadata::Ptr(); }

    /// @brief Return in @a bbox the axis-aligned bounding box of all
    /// leaf nodes and active tiles.
    /// @details This is faster than calling evalActiveVoxelBoundingBox,
    /// which visits the individual active voxels, and hence
    /// evalLeafBoundingBox produces a less tight, i.e. approximate, bbox.
    /// @return @c false if the bounding box is empty (in which case
    /// the bbox is set to its default value).
    virtual bool evalLeafBoundingBox(CoordBBox& bbox) const = 0;

    /// @brief Return in @a dim the dimensions of the axis-aligned bounding box
    /// of all leaf nodes.
    /// @return @c false if the bounding box is empty.
    virtual bool evalLeafDim(Coord& dim) const = 0;

    /// @brief Return in @a bbox the axis-aligned bounding box of all
    /// active voxels and tiles.
    /// @details This method produces a more accurate, i.e. tighter,
    /// bounding box than evalLeafBoundingBox which is approximate but
    /// faster.
    /// @return @c false if the bounding box is empty (in which case
    /// the bbox is set to its default value).
    virtual bool evalActiveVoxelBoundingBox(CoordBBox& bbox) const = 0;

    /// @brief Return in @a dim the dimensions of the axis-aligned bounding box of all
    /// active voxels.  This is a tighter bounding box than the leaf node bounding box.
    /// @return @c false if the bounding box is empty.
    virtual bool evalActiveVoxelDim(Coord& dim) const = 0;

    virtual void getIndexRange(CoordBBox& bbox) const = 0;

#ifndef OPENVDB_2_ABI_COMPATIBLE
    /// @brief Replace with background tiles any nodes whose voxel buffers
    /// have not yet been allocated.
    /// @details Typically, unallocated nodes are leaf nodes whose voxel buffers
    /// are not yet resident in memory because delayed loading is in effect.
    /// @sa readNonresidentBuffers, io::File::open
    virtual void clipUnallocatedNodes() = 0;
#endif


    //
    // Statistics
    //
    /// @brief Return the depth of this tree.
    ///
    /// A tree with only a root node and leaf nodes has depth 2, for example.
    virtual Index treeDepth() const = 0;
    /// Return the number of leaf nodes.
    virtual Index32 leafCount() const = 0;
    /// Return the number of non-leaf nodes.
    virtual Index32 nonLeafCount() const = 0;
    /// Return the number of active voxels stored in leaf nodes.
    virtual Index64 activeLeafVoxelCount() const = 0;
    /// Return the number of inactive voxels stored in leaf nodes.
    virtual Index64 inactiveLeafVoxelCount() const = 0;
    /// Return the total number of active voxels.
    virtual Index64 activeVoxelCount() const = 0;
    /// Return the number of inactive voxels within the bounding box of all active voxels.
    virtual Index64 inactiveVoxelCount() const = 0;
#ifndef OPENVDB_2_ABI_COMPATIBLE
    /// Return the total number of active tiles.
    virtual Index64 activeTileCount() const = 0;
#endif

    /// Return the total amount of memory in bytes occupied by this tree.
    virtual Index64 memUsage() const { return 0; }


    //
    // I/O methods
    //
    /// @brief Read the tree topology from a stream.
    ///
    /// This will read the tree structure and tile values, but not voxel data.
    virtual void readTopology(std::istream&, bool saveFloatAsHalf = false);
    /// @brief Write the tree topology to a stream.
    ///
    /// This will write the tree structure and tile values, but not voxel data.
    virtual void writeTopology(std::ostream&, bool saveFloatAsHalf = false) const;

    /// Read all data buffers for this tree.
    virtual void readBuffers(std::istream&, bool saveFloatAsHalf = false) = 0;
#ifndef OPENVDB_2_ABI_COMPATIBLE
    /// Read all of this tree's data buffers that intersect the given bounding box.
    virtual void readBuffers(std::istream&, const CoordBBox&, bool saveFloatAsHalf = false) = 0;
    /// @brief Read all of this tree's data buffers that are not yet resident in memory
    /// (because delayed loading is in effect).
    /// @details If this tree was read from a memory-mapped file, this operation
    /// disconnects the tree from the file.
    /// @sa clipUnallocatedNodes, io::File::open, io::MappedFile
    virtual void readNonresidentBuffers() const = 0;
#endif
    /// Write out all the data buffers for this tree.
    virtual void writeBuffers(std::ostream&, bool saveFloatAsHalf = false) const = 0;

    /// @brief Print statistics, memory usage and other information about this tree.
    /// @param os            a stream to which to write textual information
    /// @param verboseLevel  1: print tree configuration only;
    ///                      2: include node and voxel statistics;
    ///                      3: include memory usage;
    ///                      4: include minimum and maximum voxel values
    /// @warning @a verboseLevel 4 forces loading of any unallocated nodes.
    virtual void print(std::ostream& os = std::cout, int verboseLevel = 1) const;

private:
    // Disallow copying of instances of this class.
    //TreeBase(const TreeBase& other);
    TreeBase& operator=(const TreeBase& other);
};


////////////////////////////////////////


template<typename _RootNodeType>
class Tree: public TreeBase
{
public:
    typedef boost::shared_ptr<Tree> Ptr;
    typedef boost::shared_ptr<const Tree> ConstPtr;

    typedef _RootNodeType                        RootNodeType;
    typedef typename RootNodeType::ValueType     ValueType;
    typedef typename RootNodeType::LeafNodeType  LeafNodeType;

    static const Index DEPTH = RootNodeType::LEVEL + 1;

    /// @brief ValueConverter<T>::Type is the type of a tree having the same
    /// hierarchy as this tree but a different value type, T.
    ///
    /// For example, FloatTree::ValueConverter<double>::Type is equivalent to DoubleTree.
    /// @note If the source tree type is a template argument, it might be necessary
    /// to write "typename SourceTree::template ValueConverter<T>::Type".
    template<typename OtherValueType>
    struct ValueConverter {
        typedef Tree<typename RootNodeType::template ValueConverter<OtherValueType>::Type> Type;
    };


    Tree() {}

    /// Deep copy constructor
    Tree(const Tree& other): TreeBase(other), mRoot(other.mRoot)
    {
    }

    /// @brief Value conversion deep copy constructor
    ///
    /// Deep copy a tree of the same configuration as this tree type but a different
    /// ValueType, casting the other tree's values to this tree's ValueType.
    /// @throw TypeError if the other tree's configuration doesn't match this tree's
    /// or if this tree's ValueType is not constructible from the other tree's ValueType.
    template<typename OtherRootType>
    explicit Tree(const Tree<OtherRootType>& other): TreeBase(other), mRoot(other.root())
    {
    }

    /// @brief Topology copy constructor from a tree of a different type
    ///
    /// Copy the structure, i.e., the active states of tiles and voxels, of another
    /// tree of a possibly different type, but don't copy any tile or voxel values.
    /// Instead, initialize tiles and voxels with the given active and inactive values.
    /// @param other          a tree having (possibly) a different ValueType
    /// @param inactiveValue  background value for this tree, and the value to which
    ///                       all inactive tiles and voxels are initialized
    /// @param activeValue    value to which active tiles and voxels are initialized
    /// @throw TypeError if the other tree's configuration doesn't match this tree's.
    template<typename OtherTreeType>
    Tree(const OtherTreeType& other,
        const ValueType& inactiveValue,
        const ValueType& activeValue,
        TopologyCopy):
        TreeBase(other),
        mRoot(other.root(), inactiveValue, activeValue, TopologyCopy())
    {
    }

    /// @brief Topology copy constructor from a tree of a different type
    ///
    /// @note This topology copy constructor is generally faster than
    /// the one that takes both a foreground and a background value.
    ///
    /// Copy the structure, i.e., the active states of tiles and voxels, of another
    /// tree of a possibly different type, but don't copy any tile or voxel values.
    /// Instead, initialize tiles and voxels with the given background value.
    /// @param other        a tree having (possibly) a different ValueType
    /// @param background   the value to which tiles and voxels are initialized
    /// @throw TypeError if the other tree's configuration doesn't match this tree's.
    template<typename OtherTreeType>
    Tree(const OtherTreeType& other, const ValueType& background, TopologyCopy):
        TreeBase(other),
        mRoot(other.root(), background, TopologyCopy())
    {
    }

    /// Empty tree constructor
    Tree(const ValueType& background): mRoot(background) {}

    virtual ~Tree() { releaseAllAccessors(); }

    /// Return a pointer to a deep copy of this tree
    virtual TreeBase::Ptr copy() const { return TreeBase::Ptr(new Tree(*this)); }

    /// Return the name of the type of a voxel's value (e.g., "float" or "vec3d")
    virtual Name valueType() const { return typeNameAsString<ValueType>(); }

    /// Return the name of this type of tree.
    static const Name& treeType();
    /// Return the name of this type of tree.
    virtual const Name& type() const { return this->treeType(); }

    bool operator==(const Tree&) const { OPENVDB_THROW(NotImplementedError, ""); }
    bool operator!=(const Tree&) const { OPENVDB_THROW(NotImplementedError, ""); }

    //@{
    /// Return this tree's root node.
    RootNodeType& root() { return mRoot; }
    const RootNodeType& root() const { return mRoot; }
    //@}


    //
    // Tree methods
    //
    /// @brief Return @c true if the given tree has the same node and active value
    /// topology as this tree, whether or not it has the same @c ValueType.
    template<typename OtherRootNodeType>
    bool hasSameTopology(const Tree<OtherRootNodeType>& other) const;

    virtual bool evalLeafBoundingBox(CoordBBox& bbox) const;
    virtual bool evalActiveVoxelBoundingBox(CoordBBox& bbox) const;
    virtual bool evalActiveVoxelDim(Coord& dim) const;
    virtual bool evalLeafDim(Coord& dim) const;

    /// @brief Traverse the type hierarchy of nodes, and return, in @a dims, a list
    /// of the Log2Dims of nodes in order from RootNode to LeafNode.
    /// @note Because RootNodes are resizable, the RootNode Log2Dim is 0 for all trees.
    static void getNodeLog2Dims(std::vector<Index>& dims);


    //
    // I/O methods
    //
    /// @brief Read the tree topology from a stream.
    ///
    /// This will read the tree structure and tile values, but not voxel data.
    virtual void readTopology(std::istream&, bool saveFloatAsHalf = false);
    /// @brief Write the tree topology to a stream.
    ///
    /// This will write the tree structure and tile values, but not voxel data.
    virtual void writeTopology(std::ostream&, bool saveFloatAsHalf = false) const;
    /// Read all data buffers for this tree.
    virtual void readBuffers(std::istream&, bool saveFloatAsHalf = false);
#ifndef OPENVDB_2_ABI_COMPATIBLE
    /// Read all of this tree's data buffers that intersect the given bounding box.
    virtual void readBuffers(std::istream&, const CoordBBox&, bool saveFloatAsHalf = false);
    /// @brief Read all of this tree's data buffers that are not yet resident in memory
    /// (because delayed loading is in effect).
    /// @details If this tree was read from a memory-mapped file, this operation
    /// disconnects the tree from the file.
    /// @sa clipUnallocatedNodes, io::File::open, io::MappedFile
    virtual void readNonresidentBuffers() const;
#endif
    /// Write out all data buffers for this tree.
    virtual void writeBuffers(std::ostream&, bool saveFloatAsHalf = false) const;

    virtual void print(std::ostream& os = std::cout, int verboseLevel = 1) const;


    //
    // Statistics
    //
    /// @brief Return the depth of this tree.
    ///
    /// A tree with only a root node and leaf nodes has depth 2, for example.
    virtual Index treeDepth() const { return DEPTH; }
    /// Return the number of leaf nodes.
    virtual Index32 leafCount() const { return mRoot.leafCount(); }
    /// Return the number of non-leaf nodes.
    virtual Index32 nonLeafCount() const { return mRoot.nonLeafCount(); }
    /// Return the number of active voxels stored in leaf nodes.
    virtual Index64 activeLeafVoxelCount() const { return mRoot.onLeafVoxelCount(); }
    /// Return the number of inactive voxels stored in leaf nodes.
    virtual Index64 inactiveLeafVoxelCount() const { return mRoot.offLeafVoxelCount(); }
    /// Return the total number of active voxels.
    virtual Index64 activeVoxelCount() const { return mRoot.onVoxelCount(); }
    /// Return the number of inactive voxels within the bounding box of all active voxels.
    virtual Index64 inactiveVoxelCount() const;
    /// Return the total number of active tiles.
    Index64 activeTileCount() const { return mRoot.onTileCount(); }

    /// Return the minimum and maximum active values in this tree.
    void evalMinMax(ValueType &min, ValueType &max) const;

    virtual Index64 memUsage() const { return sizeof(*this) + mRoot.memUsage(); }


    //
    // Voxel access methods (using signed indexing)
    //
    /// Return the value of the voxel at the given coordinates.
    const ValueType& getValue(const Coord& xyz) const;
    /// @brief Return the value of the voxel at the given coordinates
    /// and update the given accessor's node cache.
    template<typename AccessT> const ValueType& getValue(const Coord& xyz, AccessT&) const;

    /// @brief Return the tree depth (0 = root) at which the value of voxel (x, y, z) resides.
    /// @details If (x, y, z) isn't explicitly represented in the tree (i.e., it is
    /// implicitly a background voxel), return -1.
    int getValueDepth(const Coord& xyz) const;

    /// Set the active state of the voxel at the given coordinates but don't change its value.
    void setActiveState(const Coord& xyz, bool on);
    /// Set the value of the voxel at the given coordinates but don't change its active state.
    void setValueOnly(const Coord& xyz, const ValueType& value);
    /// Mark the voxel at the given coordinates as active but don't change its value.
    void setValueOn(const Coord& xyz);
    /// Set the value of the voxel at the given coordinates and mark the voxel as active.
    void setValueOn(const Coord& xyz, const ValueType& value);
    /// Set the value of the voxel at the given coordinates and mark the voxel as active.
    void setValue(const Coord& xyz, const ValueType& value);
    /// @brief Set the value of the voxel at the given coordinates, mark the voxel as active,
    /// and update the given accessor's node cache.
    template<typename AccessT> void setValue(const Coord& xyz, const ValueType& value, AccessT&);
    /// Mark the voxel at the given coordinates as inactive but don't change its value.
    void setValueOff(const Coord& xyz);
    /// Set the value of the voxel at the given coordinates and mark the voxel as inactive.
    void setValueOff(const Coord& xyz, const ValueType& value);

    /// @brief Apply a functor to the value of the voxel at the given coordinates
    /// and mark the voxel as active.
    /// @details Provided that the functor can be inlined, this is typically
    /// significantly faster than calling getValue() followed by setValueOn().
    /// @param xyz  the coordinates of a voxel whose value is to be modified
    /// @param op   a functor of the form <tt>void op(ValueType&) const</tt> that modifies
    ///             its argument in place
    /// @par Example:
    /// @code
    /// Coord xyz(1, 0, -2);
    /// // Multiply the value of a voxel by a constant and mark the voxel as active.
    /// floatTree.modifyValue(xyz, [](float& f) { f *= 0.25; }); // C++11
    /// // Set the value of a voxel to the maximum of its current value and 0.25,
    /// // and mark the voxel as active.
    /// floatTree.modifyValue(xyz, [](float& f) { f = std::max(f, 0.25f); }); // C++11
    /// @endcode
    /// @note The functor is not guaranteed to be called only once.
    /// @see tools::foreach()
    template<typename ModifyOp>
    void modifyValue(const Coord& xyz, const ModifyOp& op);

    /// @brief Apply a functor to the voxel at the given coordinates.
    /// @details Provided that the functor can be inlined, this is typically
    /// significantly faster than calling getValue() followed by setValue().
    /// @param xyz  the coordinates of a voxel to be modified
    /// @param op   a functor of the form <tt>void op(ValueType&, bool&) const</tt> that
    ///             modifies its arguments, a voxel's value and active state, in place
    /// @par Example:
    /// @code
    /// Coord xyz(1, 0, -2);
    /// // Multiply the value of a voxel by a constant and mark the voxel as inactive.
    /// floatTree.modifyValueAndActiveState(xyz,
    ///     [](float& f, bool& b) { f *= 0.25; b = false; }); // C++11
    /// // Set the value of a voxel to the maximum of its current value and 0.25,
    /// // but don't change the voxel's active state.
    /// floatTree.modifyValueAndActiveState(xyz,
    ///     [](float& f, bool&) { f = std::max(f, 0.25f); }); // C++11
    /// @endcode
    /// @note The functor is not guaranteed to be called only once.
    /// @see tools::foreach()
    template<typename ModifyOp>
    void modifyValueAndActiveState(const Coord& xyz, const ModifyOp& op);

    /// @brief Get the value of the voxel at the given coordinates.
    /// @return @c true if the value is active.
    bool probeValue(const Coord& xyz, ValueType& value) const;

    /// Return @c true if the value at the given coordinates is active.
    bool isValueOn(const Coord& xyz) const { return mRoot.isValueOn(xyz); }
    /// Return @c true if the value at the given coordinates is inactive.
    bool isValueOff(const Coord& xyz) const { return !this->isValueOn(xyz); }
    /// Return @c true if this tree has any active tiles.
    bool hasActiveTiles() const { return mRoot.hasActiveTiles(); }

    /// Set all voxels that lie outside the given axis-aligned box to the background.
    void clip(const CoordBBox&);

#ifndef OPENVDB_2_ABI_COMPATIBLE
    /// @brief Replace with background tiles any nodes whose voxel buffers
    /// have not yet been allocated.
    /// @details Typically, unallocated nodes are leaf nodes whose voxel buffers
    /// are not yet resident in memory because delayed loading is in effect.
    /// @sa readNonresidentBuffers, io::File::open
    virtual void clipUnallocatedNodes();
#endif

    /// @brief Set all voxels within a given axis-aligned box to a constant value.
    /// If necessary, subdivide tiles that intersect the box.
    /// @param bbox           inclusive coordinates of opposite corners of an axis-aligned box
    /// @param value          the value to which to set voxels within the box
    /// @param active         if true, mark voxels within the box as active,
    ///                       otherwise mark them as inactive
    /// @note This operation generates a sparse, but not always optimally sparse,
    /// representation of the filled box.  Follow fill operations with a prune()
    /// operation for optimal sparseness.
    void fill(const CoordBBox& bbox, const ValueType& value, bool active = true);

    /// @brief Reduce the memory footprint of this tree by replacing with tiles
    /// any nodes whose values are all the same (optionally to within a tolerance)
    /// and have the same active state.
    /// @warning Will soon be deprecated!
    void prune(const ValueType& tolerance = zeroVal<ValueType>())
    {
        this->clearAllAccessors();
        mRoot.prune(tolerance);
    }

    /// @brief Add the given leaf node to this tree, creating a new branch if necessary.
    /// If a leaf node with the same origin already exists, replace it.
    void addLeaf(LeafNodeType& leaf) { mRoot.addLeaf(&leaf); }

    /// @brief Add a tile containing voxel (x, y, z) at the specified tree level,
    /// creating a new branch if necessary.  Delete any existing lower-level nodes
    /// that contain (x, y, z).
    /// @note @a level must be less than this tree's depth.
    void addTile(Index level, const Coord& xyz, const ValueType& value, bool active);

    /// @brief Return a pointer to the node of type @c NodeT that contains voxel (x, y, z)
    /// and replace it with a tile of the specified value and state.
    /// If no such node exists, leave the tree unchanged and return @c NULL.
    /// @note The caller takes ownership of the node and is responsible for deleting it.
    template<typename NodeT>
    NodeT* stealNode(const Coord& xyz, const ValueType& value, bool active);

    /// @brief Return a pointer to the leaf node that contains voxel (x, y, z).
    /// If no such node exists, create one that preserves the values and
    /// active states of all voxels.
    /// @details Use this method to preallocate a static tree topology over which to
    /// safely perform multithreaded processing.
    LeafNodeType* touchLeaf(const Coord& xyz);

    //@{
    /// @brief Return a pointer to the node of type @c NodeType that contains
    /// voxel (x, y, z).  If no such node exists, return NULL.
    template<typename NodeType> NodeType* probeNode(const Coord& xyz);
    template<typename NodeType> const NodeType* probeConstNode(const Coord& xyz) const;
    template<typename NodeType> const NodeType* probeNode(const Coord& xyz) const;
    //@}

    //@{
    /// @brief Return a pointer to the leaf node that contains voxel (x, y, z).
    /// If no such node exists, return NULL.
    LeafNodeType* probeLeaf(const Coord& xyz);
    const LeafNodeType* probeConstLeaf(const Coord& xyz) const;
    const LeafNodeType* probeLeaf(const Coord& xyz) const { return this->probeConstLeaf(xyz); }
    //@}

    //@{
    /// @brief Adds all nodes of a certain type to a container with the following API:
    /// @code
    /// struct ArrayT {
    ///    typedef value_type;// defines the type of nodes to be added to the array
    ///    void push_back(value_type nodePtr);// method that add nodes to the array
    /// };
    /// @endcode
    /// @details An example of a wrapper around a c-style array is:
    /// @code
    /// struct MyArray {
    ///    typedef LeafType* value_type;
    ///    value_type* ptr;
    ///    MyArray(value_type* array) : ptr(array) {}
    ///    void push_back(value_type leaf) { *ptr++ = leaf; }
    ///};
    /// @endcode
    /// @details An example that constructs a list of pointer to all leaf nodes is:
    /// @code
    /// std::vector<const LeafNodeType*> array;//most std contains have the required API
    /// array.reserve(tree.leafCount());//this is a fast preallocation.
    /// tree.getNodes(array);
    /// @endcode
    template<typename ArrayT> void getNodes(ArrayT& array) { mRoot.getNodes(array); }
    template<typename ArrayT> void getNodes(ArrayT& array) const { mRoot.getNodes(array); }
    //@}

    /// @brief Steals all nodes of a certain type from the tree and
    /// adds them to a container with the following API:
    /// @code
    /// struct ArrayT {
    ///    typedef value_type;// defines the type of nodes to be added to the array
    ///    void push_back(value_type nodePtr);// method that add nodes to the array
    /// };
    /// @endcode
    /// @details An example of a wrapper around a c-style array is:
    /// @code
    /// struct MyArray {
    ///    typedef LeafType* value_type;
    ///    value_type* ptr;
    ///    MyArray(value_type* array) : ptr(array) {}
    ///    void push_back(value_type leaf) { *ptr++ = leaf; }
    ///};
    /// @endcode
    /// @details An example that constructs a list of pointer to all leaf nodes is:
    /// @code
    /// std::vector<const LeafNodeType*> array;//most std contains have the required API
    /// array.reserve(tree.leafCount());//this is a fast preallocation.
    /// tree.stealNodes(array);
    /// @endcode
    template<typename ArrayT>
    void stealNodes(ArrayT& array) { mRoot.stealNodes(array); }
    template<typename ArrayT>
    void stealNodes(ArrayT& array, const ValueType& value, bool state)
    {
        mRoot.stealNodes(array, value, state);
    }

    //
    // Aux methods
    //
    /// @brief Return @c true if this tree contains no nodes other than
    /// the root node and no tiles other than background tiles.
    bool empty() const { return mRoot.empty(); }

    /// Remove all tiles from this tree and all nodes other than the root node.
    void clear() { this->clearAllAccessors(); mRoot.clear(); }

    /// Clear all registered accessors.
    void clearAllAccessors();

    //@{
    /// @brief Register an accessor for this tree.  Registered accessors are
    /// automatically cleared whenever one of this tree's nodes is deleted.
    void attachAccessor(ValueAccessorBase<Tree, true>&) const;
    void attachAccessor(ValueAccessorBase<const Tree, true>&) const;
    //@}

    //@{
    /// Dummy implementations
    void attachAccessor(ValueAccessorBase<Tree, false>&) const {}
    void attachAccessor(ValueAccessorBase<const Tree, false>&) const {}
    //@}

    //@{
    /// Deregister an accessor so that it is no longer automatically cleared.
    void releaseAccessor(ValueAccessorBase<Tree, true>&) const;
    void releaseAccessor(ValueAccessorBase<const Tree, true>&) const;
    //@}

    //@{
    /// Dummy implementations
    void releaseAccessor(ValueAccessorBase<Tree, false>&) const {}
    void releaseAccessor(ValueAccessorBase<const Tree, false>&) const {}
    //@}

    /// @brief Return this tree's background value wrapped as metadata.
    /// @note Query the metadata object for the value's type.
    virtual Metadata::Ptr getBackgroundValue() const;

    /// @brief Return this tree's background value.
    ///
    /// @note Use tools::changeBackground to efficiently modify the
    /// background values. Else use tree.root().setBackground, which
    /// is serial and hence slower.
    const ValueType& background() const { return mRoot.background(); }

    /// Min and max are both inclusive.
    virtual void getIndexRange(CoordBBox& bbox) const { mRoot.getIndexRange(bbox); }

    /// Densify active tiles, i.e., replace them with leaf-level active voxels.
    void voxelizeActiveTiles();

    /// @brief Efficiently merge another tree into this tree using one of several schemes.
    /// @details This operation is primarily intended to combine trees that are mostly
    /// non-overlapping (for example, intermediate trees from computations that are
    /// parallelized across disjoint regions of space).
    /// @note This operation is not guaranteed to produce an optimally sparse tree.
    /// Follow merge() with prune() for optimal sparseness.
    /// @warning This operation always empties the other tree.
    void merge(Tree& other, MergePolicy = MERGE_ACTIVE_STATES);

    /// @brief Union this tree's set of active values with the active values
    /// of the other tree, whose @c ValueType may be different.
    /// @details The resulting state of a value is active if the corresponding value
    /// was already active OR if it is active in the other tree.  Also, a resulting
    /// value maps to a voxel if the corresponding value already mapped to a voxel
    /// OR if it is a voxel in the other tree.  Thus, a resulting value can only
    /// map to a tile if the corresponding value already mapped to a tile
    /// AND if it is a tile value in other tree.
    ///
    /// @note This operation modifies only active states, not values.
    /// Specifically, active tiles and voxels in this tree are not changed, and
    /// tiles or voxels that were inactive in this tree but active in the other tree
    /// are marked as active in this tree but left with their original values.
    template<typename OtherRootNodeType>
    void topologyUnion(const Tree<OtherRootNodeType>& other);

    /// @brief Intersects this tree's set of active values with the active values
    /// of the other tree, whose @c ValueType may be different.
    /// @details The resulting state of a value is active only if the corresponding
    /// value was already active AND if it is active in the other tree. Also, a
    /// resulting value maps to a voxel if the corresponding value
    /// already mapped to an active voxel in either of the two grids
    /// and it maps to an active tile or voxel in the other grid.
    ///
    /// @note This operation can delete branches in this grid if they
    /// overlap with inactive tiles in the other grid. Likewise active
    /// voxels can be turned into unactive voxels resulting in leaf
    /// nodes with no active values. Thus, it is recommended to
    /// subsequently call tools::pruneInactive.
    template<typename OtherRootNodeType>
    void topologyIntersection(const Tree<OtherRootNodeType>& other);

    /// @brief Difference this tree's set of active values with the active values
    /// of the other tree, whose @c ValueType may be different. So a
    /// resulting voxel will be active only if the original voxel is
    /// active in this tree and inactive in the other tree.
    ///
    /// @note This operation can delete branches in this grid if they
    /// overlap with active tiles in the other grid. Likewise active
    /// voxels can be turned into inactive voxels resulting in leaf
    /// nodes with no active values. Thus, it is recommended to
    /// subsequently call tools::pruneInactive.
    template<typename OtherRootNodeType>
    void topologyDifference(const Tree<OtherRootNodeType>& other);

    /// For a given function @c f, use sparse traversal to compute <tt>f(this, other)</tt>
    /// over all corresponding pairs of values (tile or voxel) of this tree and the other tree
    /// and store the result in this tree.
    /// This method is typically more space-efficient than the two-tree combine2(),
    /// since it moves rather than copies nodes from the other tree into this tree.
    /// @note This operation always empties the other tree.
    /// @param other  a tree of the same type as this tree
    /// @param op     a functor of the form <tt>void op(const T& a, const T& b, T& result)</tt>,
    ///               where @c T is this tree's @c ValueType, that computes
    ///               <tt>result = f(a, b)</tt>
    /// @param prune  if true, prune the resulting tree one branch at a time (this is usually
    ///               more space-efficient than pruning the entire tree in one pass)
    ///
    /// @par Example:
    ///     Compute the per-voxel difference between two floating-point trees,
    ///     @c aTree and @c bTree, and store the result in @c aTree (leaving @c bTree empty).
    /// @code
    /// {
    ///     struct Local {
    ///         static inline void diff(const float& a, const float& b, float& result) {
    ///             result = a - b;
    ///         }
    ///     };
    ///     aTree.combine(bTree, Local::diff);
    /// }
    /// @endcode
    ///
    /// @par Example:
    ///     Compute <tt>f * a + (1 - f) * b</tt> over all voxels of two floating-point trees,
    ///     @c aTree and @c bTree, and store the result in @c aTree (leaving @c bTree empty).
    /// @code
    /// namespace {
    ///     struct Blend {
    ///         Blend(float f): frac(f) {}
    ///         inline void operator()(const float& a, const float& b, float& result) const {
    ///             result = frac * a + (1.0 - frac) * b;
    ///         }
    ///         float frac;
    ///     };
    /// }
    /// {
    ///     aTree.combine(bTree, Blend(0.25)); // 0.25 * a + 0.75 * b
    /// }
    /// @endcode
    template<typename CombineOp>
    void combine(Tree& other, CombineOp& op, bool prune = false);
#ifndef _MSC_VER
    template<typename CombineOp>
    void combine(Tree& other, const CombineOp& op, bool prune = false);
#endif

    /// Like combine(), but with
    /// @param other  a tree of the same type as this tree
    /// @param op     a functor of the form <tt>void op(CombineArgs<ValueType>& args)</tt> that
    ///               computes <tt>args.setResult(f(args.a(), args.b()))</tt> and, optionally,
    ///               <tt>args.setResultIsActive(g(args.aIsActive(), args.bIsActive()))</tt>
    ///               for some functions @c f and @c g
    /// @param prune  if true, prune the resulting tree one branch at a time (this is usually
    ///               more space-efficient than pruning the entire tree in one pass)
    ///
    /// This variant passes not only the @em a and @em b values but also the active states
    /// of the @em a and @em b values to the functor, which may then return, by calling
    /// @c args.setResultIsActive(), a computed active state for the result value.
    /// By default, the result is active if either the @em a or the @em b value is active.
    ///
    /// @see openvdb/Types.h for the definition of the CombineArgs struct.
    ///
    /// @par Example:
    ///     Replace voxel values in floating-point @c aTree with corresponding values
    ///     from floating-point @c bTree (leaving @c bTree empty) wherever the @c bTree
    ///     values are larger.  Also, preserve the active states of any transferred values.
    /// @code
    /// {
    ///     struct Local {
    ///         static inline void max(CombineArgs<float>& args) {
    ///             if (args.b() > args.a()) {
    ///                 // Transfer the B value and its active state.
    ///                 args.setResult(args.b());
    ///                 args.setResultIsActive(args.bIsActive());
    ///             } else {
    ///                 // Preserve the A value and its active state.
    ///                 args.setResult(args.a());
    ///                 args.setResultIsActive(args.aIsActive());
    ///             }
    ///         }
    ///     };
    ///     aTree.combineExtended(bTree, Local::max);
    /// }
    /// @endcode
    template<typename ExtendedCombineOp>
    void combineExtended(Tree& other, ExtendedCombineOp& op, bool prune = false);
#ifndef _MSC_VER
    template<typename ExtendedCombineOp>
    void combineExtended(Tree& other, const ExtendedCombineOp& op, bool prune = false);
#endif

    /// For a given function @c f, use sparse traversal to compute <tt>f(a, b)</tt> over all
    /// corresponding pairs of values (tile or voxel) of trees A and B and store the result
    /// in this tree.
    /// @param a,b    two trees with the same configuration (levels and node dimensions)
    ///               as this tree but with the B tree possibly having a different value type
    /// @param op     a functor of the form <tt>void op(const T1& a, const T2& b, T1& result)</tt>,
    ///               where @c T1 is this tree's and the A tree's @c ValueType and @c T2 is the
    ///               B tree's @c ValueType, that computes <tt>result = f(a, b)</tt>
    /// @param prune  if true, prune the resulting tree one branch at a time (this is usually
    ///               more space-efficient than pruning the entire tree in one pass)
    ///
    /// @throw TypeError if the B tree's configuration doesn't match this tree's
    /// or if this tree's ValueType is not constructible from the B tree's ValueType.
    ///
    /// @par Example:
    ///     Compute the per-voxel difference between two floating-point trees,
    ///     @c aTree and @c bTree, and store the result in a third tree.
    /// @code
    /// {
    ///     struct Local {
    ///         static inline void diff(const float& a, const float& b, float& result) {
    ///             result = a - b;
    ///         }
    ///     };
    ///     FloatTree resultTree;
    ///     resultTree.combine2(aTree, bTree, Local::diff);
    /// }
    /// @endcode
    template<typename CombineOp, typename OtherTreeType /*= Tree*/>
    void combine2(const Tree& a, const OtherTreeType& b, CombineOp& op, bool prune = false);
#ifndef _MSC_VER
    template<typename CombineOp, typename OtherTreeType /*= Tree*/>
    void combine2(const Tree& a, const OtherTreeType& b, const CombineOp& op, bool prune = false);
#endif

    /// Like combine2(), but with
    /// @param a,b    two trees with the same configuration (levels and node dimensions)
    ///               as this tree but with the B tree possibly having a different value type
    /// @param op     a functor of the form <tt>void op(CombineArgs<T1, T2>& args)</tt>, where
    ///               @c T1 is this tree's and the A tree's @c ValueType and @c T2 is the B tree's
    ///               @c ValueType, that computes <tt>args.setResult(f(args.a(), args.b()))</tt>
    ///               and, optionally,
    ///               <tt>args.setResultIsActive(g(args.aIsActive(), args.bIsActive()))</tt>
    ///               for some functions @c f and @c g
    /// @param prune  if true, prune the resulting tree one branch at a time (this is usually
    ///               more space-efficient than pruning the entire tree in one pass)
    /// This variant passes not only the @em a and @em b values but also the active states
    /// of the @em a and @em b values to the functor, which may then return, by calling
    /// <tt>args.setResultIsActive()</tt>, a computed active state for the result value.
    /// By default, the result is active if either the @em a or the @em b value is active.
    ///
    /// @throw TypeError if the B tree's configuration doesn't match this tree's
    /// or if this tree's ValueType is not constructible from the B tree's ValueType.
    ///
    /// @see openvdb/Types.h for the definition of the CombineArgs struct.
    ///
    /// @par Example:
    ///     Compute the per-voxel maximum values of two single-precision floating-point trees,
    ///     @c aTree and @c bTree, and store the result in a third tree.  Set the active state
    ///     of each output value to that of the larger of the two input values.
    /// @code
    /// {
    ///     struct Local {
    ///         static inline void max(CombineArgs<float>& args) {
    ///             if (args.b() > args.a()) {
    ///                 // Transfer the B value and its active state.
    ///                 args.setResult(args.b());
    ///                 args.setResultIsActive(args.bIsActive());
    ///             } else {
    ///                 // Preserve the A value and its active state.
    ///                 args.setResult(args.a());
    ///                 args.setResultIsActive(args.aIsActive());
    ///             }
    ///         }
    ///     };
    ///     FloatTree aTree = ...;
    ///     FloatTree bTree = ...;
    ///     FloatTree resultTree;
    ///     resultTree.combine2Extended(aTree, bTree, Local::max);
    /// }
    /// @endcode
    ///
    /// @par Example:
    ///     Compute the per-voxel maximum values of a double-precision and a single-precision
    ///     floating-point tree, @c aTree and @c bTree, and store the result in a third,
    ///     double-precision tree.  Set the active state of each output value to that of
    ///     the larger of the two input values.
    /// @code
    /// {
    ///     struct Local {
    ///         static inline void max(CombineArgs<double, float>& args) {
    ///             if (args.b() > args.a()) {
    ///                 // Transfer the B value and its active state.
    ///                 args.setResult(args.b());
    ///                 args.setResultIsActive(args.bIsActive());
    ///             } else {
    ///                 // Preserve the A value and its active state.
    ///                 args.setResult(args.a());
    ///                 args.setResultIsActive(args.aIsActive());
    ///             }
    ///         }
    ///     };
    ///     DoubleTree aTree = ...;
    ///     FloatTree bTree = ...;
    ///     DoubleTree resultTree;
    ///     resultTree.combine2Extended(aTree, bTree, Local::max);
    /// }
    /// @endcode
    template<typename ExtendedCombineOp, typename OtherTreeType /*= Tree*/>
    void combine2Extended(const Tree& a, const OtherTreeType& b, ExtendedCombineOp& op,
        bool prune = false);
#ifndef _MSC_VER
    template<typename ExtendedCombineOp, typename OtherTreeType /*= Tree*/>
    void combine2Extended(const Tree& a, const OtherTreeType& b, const ExtendedCombineOp&,
        bool prune = false);
#endif

    /// @brief Use sparse traversal to call the given functor with bounding box
    /// information for all active tiles and leaf nodes or active voxels in the tree.
    ///
    /// @note The bounding boxes are guaranteed to be non-overlapping.
    /// @param op  a functor with a templated call operator of the form
    ///     <tt>template<Index LEVEL> void operator()(const CoordBBox& bbox)</tt>,
    ///     where <tt>bbox</tt> is the bounding box of either an active tile
    ///     (if @c LEVEL > 0), a leaf node or an active voxel.
    ///     The functor must also provide a templated method of the form
    ///     <tt>template<Index LEVEL> bool descent()</tt> that returns @c false
    ///     if bounding boxes below the specified tree level are not to be visited.
    ///     In such cases of early tree termination, a bounding box is instead
    ///     derived from each terminating child node.
    ///
    /// @par Example:
    ///     Visit and process all active tiles and leaf nodes in a tree, but don't
    ///     descend to the active voxels.  The smallest bounding boxes that will be
    ///     visited are those of leaf nodes or level-1 active tiles.
    /// @code
    /// {
    ///     struct ProcessTilesAndLeafNodes {
    ///         // Descend to leaf nodes, but no further.
    ///         template<Index LEVEL> inline bool descent() { return LEVEL > 0; }
    ///         // Use this version to descend to voxels:
    ///         //template<Index LEVEL> inline bool descent() { return true; }
    ///
    ///         template<Index LEVEL>
    ///         inline void operator()(const CoordBBox &bbox) {
    ///             if (LEVEL > 0) {
    ///                 // code to process an active tile
    ///             } else {
    ///                 // code to process a leaf node
    ///             }
    ///         }
    ///     };
    ///     ProcessTilesAndLeafNodes op;
    ///     aTree.visitActiveBBox(op);
    /// }
    /// @endcode
    /// @see openvdb/unittest/TestTree.cc for another example.
    template<typename BBoxOp> void visitActiveBBox(BBoxOp& op) const { mRoot.visitActiveBBox(op); }

    /// Traverse this tree in depth-first order, and at each node call the given functor
    /// with a @c DenseIterator (see Iterator.h) that points to either a child node or a
    /// tile value.  If the iterator points to a child node and the functor returns true,
    /// do not descend to the child node; instead, continue the traversal at the next
    /// iterator position.
    /// @param op  a functor of the form <tt>template<typename IterT> bool op(IterT&)</tt>,
    ///            where @c IterT is either a RootNode::ChildAllIter,
    ///            an InternalNode::ChildAllIter or a LeafNode::ChildAllIter
    ///
    /// @note There is no iterator that points to a RootNode, so to visit the root node,
    /// retrieve the @c parent() of a RootNode::ChildAllIter.
    ///
    /// @par Example:
    ///     Print information about the nodes and tiles of a tree, but not individual voxels.
    /// @code
    /// namespace {
    ///     template<typename TreeT>
    ///     struct PrintTreeVisitor
    ///     {
    ///         typedef typename TreeT::RootNodeType RootT;
    ///         bool visitedRoot;
    ///
    ///         PrintTreeVisitor(): visitedRoot(false) {}
    ///
    ///         template<typename IterT>
    ///         inline bool operator()(IterT& iter)
    ///         {
    ///             if (!visitedRoot && iter.parent().getLevel() == RootT::LEVEL) {
    ///                 visitedRoot = true;
    ///                 std::cout << "Level-" << RootT::LEVEL << " node" << std::endl;
    ///             }
    ///             typename IterT::NonConstValueType value;
    ///             typename IterT::ChildNodeType* child = iter.probeChild(value);
    ///             if (child == NULL) {
    ///                 std::cout << "Tile with value " << value << std::endl;
    ///                 return true; // no child to visit, so stop descending
    ///             }
    ///             std::cout << "Level-" << child->getLevel() << " node" << std::endl;
    ///             return (child->getLevel() == 0); // don't visit leaf nodes
    ///         }
    ///
    ///         // The generic method, above, calls iter.probeChild(), which is not defined
    ///         // for LeafNode::ChildAllIter.  These overloads ensure that the generic
    ///         // method template doesn't get instantiated for LeafNode iterators.
    ///         bool operator()(typename TreeT::LeafNodeType::ChildAllIter&) { return true; }
    ///         bool operator()(typename TreeT::LeafNodeType::ChildAllCIter&) { return true; }
    ///     };
    /// }
    /// {
    ///     PrintTreeVisitor visitor;
    ///     tree.visit(visitor);
    /// }
    /// @endcode
    template<typename VisitorOp> void visit(VisitorOp& op);
    template<typename VisitorOp> void visit(const VisitorOp& op);

    /// Like visit(), but using @c const iterators, i.e., with
    /// @param op  a functor of the form <tt>template<typename IterT> bool op(IterT&)</tt>,
    ///            where @c IterT is either a RootNode::ChildAllCIter,
    ///            an InternalNode::ChildAllCIter or a LeafNode::ChildAllCIter
    template<typename VisitorOp> void visit(VisitorOp& op) const;
    template<typename VisitorOp> void visit(const VisitorOp& op) const;

    /// Traverse this tree and another tree in depth-first order, and for corresponding
    /// subregions of index space call the given functor with two @c DenseIterators
    /// (see Iterator.h), each of which points to either a child node or a tile value
    /// of this tree and the other tree.  If the A iterator points to a child node
    /// and the functor returns a nonzero value with bit 0 set (e.g., 1), do not descend
    /// to the child node; instead, continue the traversal at the next A iterator position.
    /// Similarly, if the B iterator points to a child node and the functor returns a value
    /// with bit 1 set (e.g., 2), continue the traversal at the next B iterator position.
    /// @note The other tree must have the same index space and fan-out factors as
    /// this tree, but it may have a different @c ValueType and a different topology.
    /// @param other  a tree of the same type as this tree
    /// @param op     a functor of the form
    ///               <tt>template<class AIterT, class BIterT> int op(AIterT&, BIterT&)</tt>,
    ///               where @c AIterT and @c BIterT are any combination of a
    ///               RootNode::ChildAllIter, an InternalNode::ChildAllIter or a
    ///               LeafNode::ChildAllIter with an @c OtherTreeType::RootNode::ChildAllIter,
    ///               an @c OtherTreeType::InternalNode::ChildAllIter
    ///               or an @c OtherTreeType::LeafNode::ChildAllIter
    ///
    /// @par Example:
    ///     Given two trees of the same type, @c aTree and @c bTree, replace leaf nodes of
    ///     @c aTree with corresponding leaf nodes of @c bTree, leaving @c bTree partially empty.
    /// @code
    /// namespace {
    ///     template<typename AIterT, typename BIterT>
    ///     inline int stealLeafNodes(AIterT& aIter, BIterT& bIter)
    ///     {
    ///         typename AIterT::NonConstValueType aValue;
    ///         typename AIterT::ChildNodeType* aChild = aIter.probeChild(aValue);
    ///         typename BIterT::NonConstValueType bValue;
    ///         typename BIterT::ChildNodeType* bChild = bIter.probeChild(bValue);
    ///
    ///         const Index aLevel = aChild->getLevel(), bLevel = bChild->getLevel();
    ///         if (aChild && bChild && aLevel == 0 && bLevel == 0) { // both are leaf nodes
    ///             aIter.setChild(bChild); // give B's child to A
    ///             bIter.setValue(bValue); // replace B's child with a constant tile value
    ///         }
    ///         // Don't iterate over leaf node voxels of either A or B.
    ///         int skipBranch = (aLevel == 0) ? 1 : 0;
    ///         if (bLevel == 0) skipBranch = skipBranch | 2;
    ///         return skipBranch;
    ///     }
    /// }
    /// {
    ///     aTree.visit2(bTree, stealLeafNodes);
    /// }
    /// @endcode
    template<typename OtherTreeType, typename VisitorOp>
    void visit2(OtherTreeType& other, VisitorOp& op);
    template<typename OtherTreeType, typename VisitorOp>
    void visit2(OtherTreeType& other, const VisitorOp& op);

    /// Like visit2(), but using @c const iterators, i.e., with
    /// @param other  a tree of the same type as this tree
    /// @param op     a functor of the form
    ///               <tt>template<class AIterT, class BIterT> int op(AIterT&, BIterT&)</tt>,
    ///               where @c AIterT and @c BIterT are any combination of a
    ///               RootNode::ChildAllCIter, an InternalNode::ChildAllCIter
    ///               or a LeafNode::ChildAllCIter with an
    ///               @c OtherTreeType::RootNode::ChildAllCIter,
    ///               an @c OtherTreeType::InternalNode::ChildAllCIter
    ///               or an @c OtherTreeType::LeafNode::ChildAllCIter
    template<typename OtherTreeType, typename VisitorOp>
    void visit2(OtherTreeType& other, VisitorOp& op) const;
    template<typename OtherTreeType, typename VisitorOp>
    void visit2(OtherTreeType& other, const VisitorOp& op) const;


    //
    // Iteration
    //
    //@{
    /// Return an iterator over children of the root node.
    typename RootNodeType::ChildOnCIter  beginRootChildren() const { return mRoot.cbeginChildOn(); }
    typename RootNodeType::ChildOnCIter cbeginRootChildren() const { return mRoot.cbeginChildOn(); }
    typename RootNodeType::ChildOnIter   beginRootChildren() { return mRoot.beginChildOn(); }
    //@}

    //@{
    /// Return an iterator over non-child entries of the root node's table.
    typename RootNodeType::ChildOffCIter  beginRootTiles() const { return mRoot.cbeginChildOff(); }
    typename RootNodeType::ChildOffCIter cbeginRootTiles() const { return mRoot.cbeginChildOff(); }
    typename RootNodeType::ChildOffIter   beginRootTiles() { return mRoot.beginChildOff(); }
    //@}

    //@{
    /// Return an iterator over all entries of the root node's table.
    typename RootNodeType::ChildAllCIter  beginRootDense() const { return mRoot.cbeginChildAll(); }
    typename RootNodeType::ChildAllCIter cbeginRootDense() const { return mRoot.cbeginChildAll(); }
    typename RootNodeType::ChildAllIter   beginRootDense() { return mRoot.beginChildAll(); }
    //@}


    //@{
    /// Iterator over all nodes in this tree
    typedef NodeIteratorBase<Tree, typename RootNodeType::ChildOnIter>        NodeIter;
    typedef NodeIteratorBase<const Tree, typename RootNodeType::ChildOnCIter> NodeCIter;
    //@}

    //@{
    /// Iterator over all leaf nodes in this tree
    typedef LeafIteratorBase<Tree, typename RootNodeType::ChildOnIter>        LeafIter;
    typedef LeafIteratorBase<const Tree, typename RootNodeType::ChildOnCIter> LeafCIter;
    //@}

    //@{
    /// Return an iterator over all nodes in this tree.
    NodeIter   beginNode() { return NodeIter(*this); }
    NodeCIter  beginNode() const { return NodeCIter(*this); }
    NodeCIter cbeginNode() const { return NodeCIter(*this); }
    //@}

    //@{
    /// Return an iterator over all leaf nodes in this tree.
    LeafIter   beginLeaf() { return LeafIter(*this); }
    LeafCIter  beginLeaf() const { return LeafCIter(*this); }
    LeafCIter cbeginLeaf() const { return LeafCIter(*this); }
    //@}

    typedef TreeValueIteratorBase<Tree, typename RootNodeType::ValueAllIter> ValueAllIter;
    typedef TreeValueIteratorBase<const Tree, typename RootNodeType::ValueAllCIter> ValueAllCIter;
    typedef TreeValueIteratorBase<Tree, typename RootNodeType::ValueOnIter> ValueOnIter;
    typedef TreeValueIteratorBase<const Tree, typename RootNodeType::ValueOnCIter> ValueOnCIter;
    typedef TreeValueIteratorBase<Tree, typename RootNodeType::ValueOffIter> ValueOffIter;
    typedef TreeValueIteratorBase<const Tree, typename RootNodeType::ValueOffCIter> ValueOffCIter;

    //@{
    /// Return an iterator over all values (tile and voxel) across all nodes.
    ValueAllIter   beginValueAll() { return ValueAllIter(*this); }
    ValueAllCIter  beginValueAll() const { return ValueAllCIter(*this); }
    ValueAllCIter cbeginValueAll() const { return ValueAllCIter(*this); }
    //@}
    //@{
    /// Return an iterator over active values (tile and voxel) across all nodes.
    ValueOnIter   beginValueOn() { return ValueOnIter(*this); }
    ValueOnCIter  beginValueOn() const { return ValueOnCIter(*this); }
    ValueOnCIter cbeginValueOn() const { return ValueOnCIter(*this); }
    //@}
    //@{
    /// Return an iterator over inactive values (tile and voxel) across all nodes.
    ValueOffIter   beginValueOff() { return ValueOffIter(*this); }
    ValueOffCIter  beginValueOff() const { return ValueOffCIter(*this); }
    ValueOffCIter cbeginValueOff() const { return ValueOffCIter(*this); }
    //@}

    /// @brief Return an iterator of type @c IterT (for example, begin<ValueOnIter>() is
    /// equivalent to beginValueOn()).
    template<typename IterT> IterT begin();
    /// @brief Return a const iterator of type CIterT (for example, cbegin<ValueOnCIter>()
    /// is equivalent to cbeginValueOn()).
    template<typename CIterT> CIterT cbegin() const;


protected:
    typedef tbb::concurrent_hash_map<ValueAccessorBase<Tree, true>*, bool> AccessorRegistry;
    typedef tbb::concurrent_hash_map<ValueAccessorBase<const Tree, true>*, bool> ConstAccessorRegistry;

    // Disallow assignment of instances of this class.
    Tree& operator=(const Tree&);

    /// @brief Notify all registered accessors, by calling ValueAccessor::release(),
    /// that this tree is about to be deleted.
    void releaseAllAccessors();


    //
    // Data members
    //
    RootNodeType mRoot; // root node of the tree
    mutable AccessorRegistry mAccessorRegistry;
    mutable ConstAccessorRegistry mConstAccessorRegistry;

    static tbb::atomic<const Name*> sTreeTypeName;
}; // end of Tree class

template<typename _RootNodeType>
tbb::atomic<const Name*> Tree<_RootNodeType>::sTreeTypeName;


/// @brief Tree3<T, N1, N2>::Type is the type of a three-level tree
/// (Root, Internal, Leaf) with value type T and
/// internal and leaf node log dimensions N1 and N2, respectively.
/// @note This is NOT the standard tree configuration (Tree4 is).
template<typename T, Index N1=4, Index N2=3>
struct Tree3 {
    typedef Tree<RootNode<InternalNode<LeafNode<T, N2>, N1> > > Type;
};


/// @brief Tree4<T, N1, N2, N3>::Type is the type of a four-level tree
/// (Root, Internal, Internal, Leaf) with value type T and
/// internal and leaf node log dimensions N1, N2 and N3, respectively.
/// @note This is the standard tree configuration.
template<typename T, Index N1=5, Index N2=4, Index N3=3>
struct Tree4 {
    typedef Tree<RootNode<InternalNode<InternalNode<LeafNode<T, N3>, N2>, N1> > > Type;
};

/// @brief Tree5<T, N1, N2, N3, N4>::Type is the type of a five-level tree
/// (Root, Internal, Internal, Internal, Leaf) with value type T and
/// internal and leaf node log dimensions N1, N2, N3 and N4, respectively.
/// @note This is NOT the standard tree configuration (Tree4 is).
template<typename T, Index N1=6, Index N2=5, Index N3=4, Index N4=3>
struct Tree5 {
    typedef Tree<RootNode<InternalNode<InternalNode<InternalNode<LeafNode<T, N4>, N3>, N2>, N1> > >
        Type;
};


////////////////////////////////////////


inline void
TreeBase::readTopology(std::istream& is, bool /*saveFloatAsHalf*/)
{
    int32_t bufferCount;
    is.read(reinterpret_cast<char*>(&bufferCount), sizeof(int32_t));
    if (bufferCount != 1) OPENVDB_LOG_WARN("multi-buffer trees are no longer supported");
}


inline void
TreeBase::writeTopology(std::ostream& os, bool /*saveFloatAsHalf*/) const
{
    int32_t bufferCount = 1;
    os.write(reinterpret_cast<char*>(&bufferCount), sizeof(int32_t));
}


inline void
TreeBase::print(std::ostream& os, int /*verboseLevel*/) const
{
    os << "    Tree Type: " << type()
       << "    Active Voxel Count: " << activeVoxelCount() << std::endl
       << "    Inactive Voxel Count: " << inactiveVoxelCount() << std::endl
       << "    Leaf Node Count: " << leafCount() << std::endl
       << "    Non-leaf Node Count: " << nonLeafCount() << std::endl;
}


////////////////////////////////////////


//
// Type traits for tree iterators
//

/// @brief TreeIterTraits provides, for all tree iterators, a begin(tree) function
/// that returns an iterator over a tree of arbitrary type.
template<typename TreeT, typename IterT> struct TreeIterTraits;

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildOnIter> {
    static typename TreeT::RootNodeType::ChildOnIter begin(TreeT& tree) {
        return tree.beginRootChildren();
    }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildOnCIter> {
    static typename TreeT::RootNodeType::ChildOnCIter begin(const TreeT& tree) {
        return tree.cbeginRootChildren();
    }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildOffIter> {
    static typename TreeT::RootNodeType::ChildOffIter begin(TreeT& tree) {
        return tree.beginRootTiles();
    }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildOffCIter> {
    static typename TreeT::RootNodeType::ChildOffCIter begin(const TreeT& tree) {
        return tree.cbeginRootTiles();
    }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildAllIter> {
    static typename TreeT::RootNodeType::ChildAllIter begin(TreeT& tree) {
        return tree.beginRootDense();
    }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildAllCIter> {
    static typename TreeT::RootNodeType::ChildAllCIter begin(const TreeT& tree) {
        return tree.cbeginRootDense();
    }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::NodeIter> {
    static typename TreeT::NodeIter begin(TreeT& tree) { return tree.beginNode(); }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::NodeCIter> {
    static typename TreeT::NodeCIter begin(const TreeT& tree) { return tree.cbeginNode(); }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::LeafIter> {
    static typename TreeT::LeafIter begin(TreeT& tree) { return tree.beginLeaf(); }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::LeafCIter> {
    static typename TreeT::LeafCIter begin(const TreeT& tree) { return tree.cbeginLeaf(); }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueOnIter> {
    static typename TreeT::ValueOnIter begin(TreeT& tree) { return tree.beginValueOn(); }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueOnCIter> {
    static typename TreeT::ValueOnCIter begin(const TreeT& tree) { return tree.cbeginValueOn(); }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueOffIter> {
    static typename TreeT::ValueOffIter begin(TreeT& tree) { return tree.beginValueOff(); }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueOffCIter> {
    static typename TreeT::ValueOffCIter begin(const TreeT& tree) { return tree.cbeginValueOff(); }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueAllIter> {
    static typename TreeT::ValueAllIter begin(TreeT& tree) { return tree.beginValueAll(); }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueAllCIter> {
    static typename TreeT::ValueAllCIter begin(const TreeT& tree) { return tree.cbeginValueAll(); }
};


template<typename RootNodeType>
template<typename IterT>
inline IterT
Tree<RootNodeType>::begin()
{
    return TreeIterTraits<Tree, IterT>::begin(*this);
}


template<typename RootNodeType>
template<typename IterT>
inline IterT
Tree<RootNodeType>::cbegin() const
{
    return TreeIterTraits<Tree, IterT>::begin(*this);
}


////////////////////////////////////////


template<typename RootNodeType>
void
Tree<RootNodeType>::readTopology(std::istream& is, bool saveFloatAsHalf)
{
    this->clearAllAccessors();
    TreeBase::readTopology(is, saveFloatAsHalf);
    mRoot.readTopology(is, saveFloatAsHalf);
}


template<typename RootNodeType>
void
Tree<RootNodeType>::writeTopology(std::ostream& os, bool saveFloatAsHalf) const
{
    TreeBase::writeTopology(os, saveFloatAsHalf);
    mRoot.writeTopology(os, saveFloatAsHalf);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::readBuffers(std::istream &is, bool saveFloatAsHalf)
{
    this->clearAllAccessors();
    mRoot.readBuffers(is, saveFloatAsHalf);
}


#ifndef OPENVDB_2_ABI_COMPATIBLE

template<typename RootNodeType>
inline void
Tree<RootNodeType>::readBuffers(std::istream &is, const CoordBBox& bbox, bool saveFloatAsHalf)
{
    this->clearAllAccessors();
    mRoot.readBuffers(is, bbox, saveFloatAsHalf);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::readNonresidentBuffers() const
{
    for (LeafCIter it = this->cbeginLeaf(); it; ++it) {
        // Retrieving the value of a leaf voxel forces loading of the leaf node's voxel buffer.
        it->getValue(Index(0));
    }
}

#endif // !OPENVDB_2_ABI_COMPATIBLE


template<typename RootNodeType>
inline void
Tree<RootNodeType>::writeBuffers(std::ostream &os, bool saveFloatAsHalf) const
{
    mRoot.writeBuffers(os, saveFloatAsHalf);
}


////////////////////////////////////////


template<typename RootNodeType>
inline void
Tree<RootNodeType>::attachAccessor(ValueAccessorBase<Tree, true>& accessor) const
{
    typename AccessorRegistry::accessor a;
    mAccessorRegistry.insert(a, &accessor);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::attachAccessor(ValueAccessorBase<const Tree, true>& accessor) const
{
    typename ConstAccessorRegistry::accessor a;
    mConstAccessorRegistry.insert(a, &accessor);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::releaseAccessor(ValueAccessorBase<Tree, true>& accessor) const
{
    mAccessorRegistry.erase(&accessor);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::releaseAccessor(ValueAccessorBase<const Tree, true>& accessor) const
{
    mConstAccessorRegistry.erase(&accessor);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::clearAllAccessors()
{
    for (typename AccessorRegistry::iterator it = mAccessorRegistry.begin();
        it != mAccessorRegistry.end(); ++it)
    {
        if (it->first) it->first->clear();
    }

    for (typename ConstAccessorRegistry::iterator it = mConstAccessorRegistry.begin();
        it != mConstAccessorRegistry.end(); ++it)
    {
        if (it->first) it->first->clear();
    }
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::releaseAllAccessors()
{
    mAccessorRegistry.erase(NULL);
    for (typename AccessorRegistry::iterator it = mAccessorRegistry.begin();
        it != mAccessorRegistry.end(); ++it)
    {
        it->first->release();
    }
    mAccessorRegistry.clear();

    mAccessorRegistry.erase(NULL);
    for (typename ConstAccessorRegistry::iterator it = mConstAccessorRegistry.begin();
        it != mConstAccessorRegistry.end(); ++it)
    {
        it->first->release();
    }
    mConstAccessorRegistry.clear();
}


////////////////////////////////////////


template<typename RootNodeType>
inline const typename RootNodeType::ValueType&
Tree<RootNodeType>::getValue(const Coord& xyz) const
{
    return mRoot.getValue(xyz);
}


template<typename RootNodeType>
template<typename AccessT>
inline const typename RootNodeType::ValueType&
Tree<RootNodeType>::getValue(const Coord& xyz, AccessT& accessor) const
{
    return accessor.getValue(xyz);
}


template<typename RootNodeType>
inline int
Tree<RootNodeType>::getValueDepth(const Coord& xyz) const
{
    return mRoot.getValueDepth(xyz);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::setValueOff(const Coord& xyz)
{
    mRoot.setValueOff(xyz);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::setValueOff(const Coord& xyz, const ValueType& value)
{
    mRoot.setValueOff(xyz, value);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::setActiveState(const Coord& xyz, bool on)
{
    mRoot.setActiveState(xyz, on);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::setValue(const Coord& xyz, const ValueType& value)
{
    mRoot.setValueOn(xyz, value);
}

template<typename RootNodeType>
inline void
Tree<RootNodeType>::setValueOnly(const Coord& xyz, const ValueType& value)
{
    mRoot.setValueOnly(xyz, value);
}

template<typename RootNodeType>
template<typename AccessT>
inline void
Tree<RootNodeType>::setValue(const Coord& xyz, const ValueType& value, AccessT& accessor)
{
    accessor.setValue(xyz, value);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::setValueOn(const Coord& xyz)
{
    mRoot.setActiveState(xyz, true);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::setValueOn(const Coord& xyz, const ValueType& value)
{
    mRoot.setValueOn(xyz, value);
}


template<typename RootNodeType>
template<typename ModifyOp>
inline void
Tree<RootNodeType>::modifyValue(const Coord& xyz, const ModifyOp& op)
{
    mRoot.modifyValue(xyz, op);
}


template<typename RootNodeType>
template<typename ModifyOp>
inline void
Tree<RootNodeType>::modifyValueAndActiveState(const Coord& xyz, const ModifyOp& op)
{
    mRoot.modifyValueAndActiveState(xyz, op);
}


template<typename RootNodeType>
inline bool
Tree<RootNodeType>::probeValue(const Coord& xyz, ValueType& value) const
{
    return mRoot.probeValue(xyz, value);
}


////////////////////////////////////////


template<typename RootNodeType>
inline void
Tree<RootNodeType>::addTile(Index level, const Coord& xyz,
                            const ValueType& value, bool active)
{
    mRoot.addTile(level, xyz, value, active);
}


template<typename RootNodeType>
template<typename NodeT>
inline NodeT*
Tree<RootNodeType>::stealNode(const Coord& xyz, const ValueType& value, bool active)
{
    this->clearAllAccessors();
    return mRoot.template stealNode<NodeT>(xyz, value, active);
}


template<typename RootNodeType>
inline typename RootNodeType::LeafNodeType*
Tree<RootNodeType>::touchLeaf(const Coord& xyz)
{
    return mRoot.touchLeaf(xyz);
}


template<typename RootNodeType>
inline typename RootNodeType::LeafNodeType*
Tree<RootNodeType>::probeLeaf(const Coord& xyz)
{
    return mRoot.probeLeaf(xyz);
}


template<typename RootNodeType>
inline const typename RootNodeType::LeafNodeType*
Tree<RootNodeType>::probeConstLeaf(const Coord& xyz) const
{
    return mRoot.probeConstLeaf(xyz);
}


template<typename RootNodeType>
template<typename NodeType>
inline NodeType*
Tree<RootNodeType>::probeNode(const Coord& xyz)
{
    return mRoot.template probeNode<NodeType>(xyz);
}


template<typename RootNodeType>
template<typename NodeType>
inline const NodeType*
Tree<RootNodeType>::probeNode(const Coord& xyz) const
{
    return this->template probeConstNode<NodeType>(xyz);
}


template<typename RootNodeType>
template<typename NodeType>
inline const NodeType*
Tree<RootNodeType>::probeConstNode(const Coord& xyz) const
{
    return mRoot.template probeConstNode<NodeType>(xyz);
}


////////////////////////////////////////


template<typename RootNodeType>
inline void
Tree<RootNodeType>::clip(const CoordBBox& bbox)
{
    this->clearAllAccessors();
    return mRoot.clip(bbox);
}


#ifndef OPENVDB_2_ABI_COMPATIBLE
template<typename RootNodeType>
inline void
Tree<RootNodeType>::clipUnallocatedNodes()
{
    this->clearAllAccessors();
    for (LeafIter it = this->beginLeaf(); it; ) {
        const LeafNodeType* leaf = it.getLeaf();
        ++it; // advance the iterator before deleting the leaf node
        if (!leaf->isAllocated()) {
            this->addTile(/*level=*/0, leaf->origin(), this->background(), /*active=*/false);
        }
    }
}
#endif


template<typename RootNodeType>
inline void
Tree<RootNodeType>::fill(const CoordBBox& bbox, const ValueType& value, bool active)
{
    this->clearAllAccessors();
    return mRoot.fill(bbox, value, active);
}


template<typename RootNodeType>
Metadata::Ptr
Tree<RootNodeType>::getBackgroundValue() const
{
    Metadata::Ptr result;
    if (Metadata::isRegisteredType(valueType())) {
        typedef TypedMetadata<ValueType> MetadataT;
        result = Metadata::createMetadata(valueType());
        if (result->typeName() == MetadataT::staticTypeName()) {
            MetadataT* m = static_cast<MetadataT*>(result.get());
            m->value() = mRoot.background();
        }
    }
    return result;
}


////////////////////////////////////////


template<typename RootNodeType>
inline void
Tree<RootNodeType>::voxelizeActiveTiles()
{
    this->clearAllAccessors();
    mRoot.voxelizeActiveTiles();
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::merge(Tree& other, MergePolicy policy)
{
    this->clearAllAccessors();
    other.clearAllAccessors();
    switch (policy) {
        case MERGE_ACTIVE_STATES:
            mRoot.template merge<MERGE_ACTIVE_STATES>(other.mRoot); break;
        case MERGE_NODES:
            mRoot.template merge<MERGE_NODES>(other.mRoot); break;
        case MERGE_ACTIVE_STATES_AND_NODES:
            mRoot.template merge<MERGE_ACTIVE_STATES_AND_NODES>(other.mRoot); break;
    }
}


template<typename RootNodeType>
template<typename OtherRootNodeType>
inline void
Tree<RootNodeType>::topologyUnion(const Tree<OtherRootNodeType>& other)
{
    this->clearAllAccessors();
    mRoot.topologyUnion(other.root());
}

template<typename RootNodeType>
template<typename OtherRootNodeType>
inline void
Tree<RootNodeType>::topologyIntersection(const Tree<OtherRootNodeType>& other)
{
    this->clearAllAccessors();
    mRoot.topologyIntersection(other.root());
}

template<typename RootNodeType>
template<typename OtherRootNodeType>
inline void
Tree<RootNodeType>::topologyDifference(const Tree<OtherRootNodeType>& other)
{
    this->clearAllAccessors();
    mRoot.topologyDifference(other.root());
}

////////////////////////////////////////


/// @brief Helper class to adapt a three-argument (a, b, result) CombineOp functor
/// into a single-argument functor that accepts a CombineArgs struct
template<typename AValueT, typename CombineOp, typename BValueT = AValueT>
struct CombineOpAdapter
{
    CombineOpAdapter(CombineOp& _op): op(_op) {}

    void operator()(CombineArgs<AValueT, BValueT>& args) const {
        op(args.a(), args.b(), args.result());
    }

    CombineOp& op;
};


template<typename RootNodeType>
template<typename CombineOp>
inline void
Tree<RootNodeType>::combine(Tree& other, CombineOp& op, bool prune)
{
    CombineOpAdapter<ValueType, CombineOp> extendedOp(op);
    this->combineExtended(other, extendedOp, prune);
}


/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like this: <tt>aTree.combine(bTree, MyCombineOp(...))</tt>.
#ifndef _MSC_VER
template<typename RootNodeType>
template<typename CombineOp>
inline void
Tree<RootNodeType>::combine(Tree& other, const CombineOp& op, bool prune)
{
    CombineOpAdapter<ValueType, const CombineOp> extendedOp(op);
    this->combineExtended(other, extendedOp, prune);
}
#endif


template<typename RootNodeType>
template<typename ExtendedCombineOp>
inline void
Tree<RootNodeType>::combineExtended(Tree& other, ExtendedCombineOp& op, bool prune)
{
    this->clearAllAccessors();
    mRoot.combine(other.root(), op, prune);
}


/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like this: <tt>aTree.combineExtended(bTree, MyCombineOp(...))</tt>.
#ifndef _MSC_VER
template<typename RootNodeType>
template<typename ExtendedCombineOp>
inline void
Tree<RootNodeType>::combineExtended(Tree& other, const ExtendedCombineOp& op, bool prune)
{
    this->clearAllAccessors();
    mRoot.template combine<const ExtendedCombineOp>(other.mRoot, op, prune);
}
#endif


template<typename RootNodeType>
template<typename CombineOp, typename OtherTreeType>
inline void
Tree<RootNodeType>::combine2(const Tree& a, const OtherTreeType& b, CombineOp& op, bool prune)
{
    CombineOpAdapter<ValueType, CombineOp, typename OtherTreeType::ValueType> extendedOp(op);
    this->combine2Extended(a, b, extendedOp, prune);
}


/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like this: <tt>tree.combine2(aTree, bTree, MyCombineOp(...))</tt>.
#ifndef _MSC_VER
template<typename RootNodeType>
template<typename CombineOp, typename OtherTreeType>
inline void
Tree<RootNodeType>::combine2(const Tree& a, const OtherTreeType& b, const CombineOp& op, bool prune)
{
    CombineOpAdapter<ValueType, const CombineOp, typename OtherTreeType::ValueType> extendedOp(op);
    this->combine2Extended(a, b, extendedOp, prune);
}
#endif


template<typename RootNodeType>
template<typename ExtendedCombineOp, typename OtherTreeType>
inline void
Tree<RootNodeType>::combine2Extended(const Tree& a, const OtherTreeType& b,
    ExtendedCombineOp& op, bool prune)
{
    this->clearAllAccessors();
    mRoot.combine2(a.root(), b.root(), op, prune);
}


/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like the following, where the functor argument is a temporary:
/// <tt>tree.combine2Extended(aTree, bTree, MyCombineOp(...))</tt>.
#ifndef _MSC_VER
template<typename RootNodeType>
template<typename ExtendedCombineOp, typename OtherTreeType>
inline void
Tree<RootNodeType>::combine2Extended(const Tree& a, const OtherTreeType& b,
    const ExtendedCombineOp& op, bool prune)
{
    this->clearAllAccessors();
    mRoot.template combine2<const ExtendedCombineOp>(a.root(), b.root(), op, prune);
}
#endif


////////////////////////////////////////


template<typename RootNodeType>
template<typename VisitorOp>
inline void
Tree<RootNodeType>::visit(VisitorOp& op)
{
    this->clearAllAccessors();
    mRoot.template visit<VisitorOp>(op);
}


template<typename RootNodeType>
template<typename VisitorOp>
inline void
Tree<RootNodeType>::visit(VisitorOp& op) const
{
    mRoot.template visit<VisitorOp>(op);
}


/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like this: <tt>tree.visit(MyVisitorOp(...))</tt>.
template<typename RootNodeType>
template<typename VisitorOp>
inline void
Tree<RootNodeType>::visit(const VisitorOp& op)
{
    this->clearAllAccessors();
    mRoot.template visit<const VisitorOp>(op);
}


/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like this: <tt>tree.visit(MyVisitorOp(...))</tt>.
template<typename RootNodeType>
template<typename VisitorOp>
inline void
Tree<RootNodeType>::visit(const VisitorOp& op) const
{
    mRoot.template visit<const VisitorOp>(op);
}


////////////////////////////////////////


template<typename RootNodeType>
template<typename OtherTreeType, typename VisitorOp>
inline void
Tree<RootNodeType>::visit2(OtherTreeType& other, VisitorOp& op)
{
    this->clearAllAccessors();
    typedef typename OtherTreeType::RootNodeType OtherRootNodeType;
    mRoot.template visit2<OtherRootNodeType, VisitorOp>(other.root(), op);
}


template<typename RootNodeType>
template<typename OtherTreeType, typename VisitorOp>
inline void
Tree<RootNodeType>::visit2(OtherTreeType& other, VisitorOp& op) const
{
    typedef typename OtherTreeType::RootNodeType OtherRootNodeType;
    mRoot.template visit2<OtherRootNodeType, VisitorOp>(other.root(), op);
}


/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like this: <tt>aTree.visit2(bTree, MyVisitorOp(...))</tt>.
template<typename RootNodeType>
template<typename OtherTreeType, typename VisitorOp>
inline void
Tree<RootNodeType>::visit2(OtherTreeType& other, const VisitorOp& op)
{
    this->clearAllAccessors();
    typedef typename OtherTreeType::RootNodeType OtherRootNodeType;
    mRoot.template visit2<OtherRootNodeType, const VisitorOp>(other.root(), op);
}


/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like this: <tt>aTree.visit2(bTree, MyVisitorOp(...))</tt>.
template<typename RootNodeType>
template<typename OtherTreeType, typename VisitorOp>
inline void
Tree<RootNodeType>::visit2(OtherTreeType& other, const VisitorOp& op) const
{
    typedef typename OtherTreeType::RootNodeType OtherRootNodeType;
    mRoot.template visit2<OtherRootNodeType, const VisitorOp>(other.root(), op);
}


////////////////////////////////////////


template<typename RootNodeType>
inline const Name&
Tree<RootNodeType>::treeType()
{
    if (sTreeTypeName == NULL) {
        std::vector<Index> dims;
        Tree::getNodeLog2Dims(dims);
        std::ostringstream ostr;
        ostr << "Tree_" << typeNameAsString<ValueType>();
        for (size_t i = 1, N = dims.size(); i < N; ++i) { // start from 1 to skip the RootNode
            ostr << "_" << dims[i];
        }
        Name* s = new Name(ostr.str());
        if (sTreeTypeName.compare_and_swap(s, NULL) != NULL) delete s;
    }
    return *sTreeTypeName;
}


template<typename RootNodeType>
template<typename OtherRootNodeType>
inline bool
Tree<RootNodeType>::hasSameTopology(const Tree<OtherRootNodeType>& other) const
{
    return mRoot.hasSameTopology(other.root());
}


template<typename RootNodeType>
Index64
Tree<RootNodeType>::inactiveVoxelCount() const
{
    Coord dim(0, 0, 0);
    this->evalActiveVoxelDim(dim);
    const Index64
        totalVoxels = dim.x() * dim.y() * dim.z(),
        activeVoxels = this->activeVoxelCount();
    assert(totalVoxels >= activeVoxels);
    return totalVoxels - activeVoxels;
}


template<typename RootNodeType>
inline bool
Tree<RootNodeType>::evalLeafBoundingBox(CoordBBox& bbox) const
{
    bbox.reset(); // default invalid bbox

    if (this->empty()) return false;  // empty

    mRoot.evalActiveBoundingBox(bbox, false);

    return true;// not empty
}

template<typename RootNodeType>
inline bool
Tree<RootNodeType>::evalActiveVoxelBoundingBox(CoordBBox& bbox) const
{
    bbox.reset(); // default invalid bbox

    if (this->empty()) return false;  // empty

    mRoot.evalActiveBoundingBox(bbox, true);

    return true;// not empty
}


template<typename RootNodeType>
inline bool
Tree<RootNodeType>::evalActiveVoxelDim(Coord& dim) const
{
    CoordBBox bbox;
    bool notEmpty = this->evalActiveVoxelBoundingBox(bbox);
    dim = bbox.extents();
    return notEmpty;
}


template<typename RootNodeType>
inline bool
Tree<RootNodeType>::evalLeafDim(Coord& dim) const
{
    CoordBBox bbox;
    bool notEmpty = this->evalLeafBoundingBox(bbox);
    dim = bbox.extents();
    return notEmpty;
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::evalMinMax(ValueType& minVal, ValueType& maxVal) const
{
    minVal = maxVal = zeroVal<ValueType>();
    if (ValueOnCIter iter = this->cbeginValueOn()) {
        minVal = maxVal = *iter;
        for (++iter; iter; ++iter) {
            const ValueType& val = *iter;
            if (val < minVal) minVal = val;
            if (val > maxVal) maxVal = val;
        }
    }
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::getNodeLog2Dims(std::vector<Index>& dims)
{
    dims.clear();
    RootNodeType::getNodeLog2Dims(dims);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::print(std::ostream& os, int verboseLevel) const
{
    if (verboseLevel <= 0) return;

    /// @todo Consider using boost::io::ios_precision_saver instead.
    struct OnExit {
        std::ostream& os;
        std::streamsize savedPrecision;
        OnExit(std::ostream& _os): os(_os), savedPrecision(os.precision()) {}
        ~OnExit() { os.precision(savedPrecision); }
    };
    OnExit restorePrecision(os);

    std::vector<Index> dims;
    Tree::getNodeLog2Dims(dims);

    os << "Information about Tree:\n"
        << "  Type: " << this->type() << "\n";

    os << "  Configuration:\n";

    if (verboseLevel <= 1) {
        // Print node types and sizes.
        os << "    Root(" << mRoot.getTableSize() << ")";
        if (dims.size() > 1) {
            for (size_t i = 1, N = dims.size() - 1; i < N; ++i) {
                os << ", Internal(" << (1 << dims[i]) << "^3)";
            }
            os << ", Leaf(" << (1 << *dims.rbegin()) << "^3)\n";
        }
        os << "  Background value: " << mRoot.background() << "\n";
        return;
    }

    // The following is tree information that is expensive to extract.

    ValueType minVal = zeroVal<ValueType>(), maxVal = zeroVal<ValueType>();
    if (verboseLevel > 3) {
        // This forces loading of all non-resident nodes.
        this->evalMinMax(minVal, maxVal);
    }

    std::vector<Index64> nodeCount(dims.size());
#ifndef OPENVDB_2_ABI_COMPATIBLE
    Index64 unallocatedLeafCount = 0;
#endif
    for (NodeCIter it = cbeginNode(); it; ++it) {
        ++(nodeCount[it.getDepth()]);

#ifndef OPENVDB_2_ABI_COMPATIBLE
        if (it.getLevel() == 0) {
            const LeafNodeType* leaf = NULL;
            it.getNode(leaf);
            if (leaf && !leaf->isAllocated()) ++unallocatedLeafCount;
        }
#endif
    }
    Index64 totalNodeCount = 0;
    for (size_t i = 0; i < nodeCount.size(); ++i) totalNodeCount += nodeCount[i];

    // Print node types, counts and sizes.
    os << "    Root(1 x " << mRoot.getTableSize() << ")";
    if (dims.size() > 1) {
        for (size_t i = 1, N = dims.size() - 1; i < N; ++i) {
            os << ", Internal(" << util::formattedInt(nodeCount[i]);
            os << " x " << (1 << dims[i]) << "^3)";
        }
        os << ", Leaf(" << util::formattedInt(*nodeCount.rbegin());
        os << " x " << (1 << *dims.rbegin()) << "^3)\n";
    }
    os << "  Background value: " << mRoot.background() << "\n";

    // Statistics of topology and values

    if (verboseLevel > 3) {
        os << "  Min value: " << minVal << "\n";
        os << "  Max value: " << maxVal << "\n";
    }

    const uint64_t
        leafCount = *nodeCount.rbegin(),
        numActiveVoxels = this->activeVoxelCount(),
        numActiveLeafVoxels = this->activeLeafVoxelCount();

    os << "  Number of active voxels:       " << util::formattedInt(numActiveVoxels) << "\n";

    Coord dim(0, 0, 0);
    uint64_t totalVoxels = 0;
    if (numActiveVoxels) { // nonempty
        CoordBBox bbox;
        this->evalActiveVoxelBoundingBox(bbox);
        dim = bbox.extents();
        totalVoxels = dim.x() * uint64_t(dim.y()) * dim.z();

        os << "  Bounding box of active voxels: " << bbox << "\n";
        os << "  Dimensions of active voxels:   "
            << dim[0] << " x " << dim[1] << " x " << dim[2] << "\n";

        const double activeRatio = (100.0 * double(numActiveVoxels)) / double(totalVoxels);
        os << "  Percentage of active voxels:   " << std::setprecision(3) << activeRatio << "%\n";

        if (leafCount > 0) {
            const double fillRatio = (100.0 * double(numActiveLeafVoxels))
                / (double(leafCount) * double(LeafNodeType::NUM_VOXELS));
            os << "  Average leaf node fill ratio:  " << fillRatio << "%\n";
        }

#ifndef OPENVDB_2_ABI_COMPATIBLE
        if (verboseLevel > 2) {
            os << "  Number of unallocated nodes:   "
                << util::formattedInt(unallocatedLeafCount) << " ("
                << (100.0 * double(unallocatedLeafCount) / double(totalNodeCount)) << "%)\n";
        }
#endif
    } else {
        os << "  Tree is empty!\n";
    }
    os << std::flush;

    if (verboseLevel == 2) return;

    // Memory footprint in bytes
    const uint64_t
        actualMem = this->memUsage(),
        denseMem = sizeof(ValueType) * totalVoxels,
        voxelsMem = sizeof(ValueType) * numActiveLeafVoxels;
            ///< @todo not accurate for BoolTree (and probably should count tile values)

    os << "Memory footprint:\n";
    util::printBytes(os, actualMem, "  Actual:             ");
    util::printBytes(os, voxelsMem, "  Active leaf voxels: ");

    if (numActiveVoxels) {
        util::printBytes(os, denseMem, "  Dense equivalent:   ");
        os << "  Actual footprint is " << (100.0 * double(actualMem) / double(denseMem))
            << "% of an equivalent dense volume\n";
        os << "  Leaf voxel footprint is " << (100.0 * double(voxelsMem) / double(actualMem))
           << "% of actual footprint\n";
    }
}

} // namespace tree
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_TREE_TREE_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2015 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )