/usr/include/openvdb/util/PagedArray.h is in libopenvdb-dev 3.1.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2015 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
///
/// @file PagedArray.h
///
/// @author Ken Museth
///
/// @brief Concurrent page-based linear data structure with O(1)
/// random access and std-compliant iterators. It is
/// primarily intended for applications that involve
/// multi-threading of dynamically growing linear arrays with
/// fast random access.
#ifndef OPENVDB_UTIL_PAGED_ARRAY_HAS_BEEN_INCLUDED
#define OPENVDB_UTIL_PAGED_ARRAY_HAS_BEEN_INCLUDED
#include <deque>
#include <cassert>
#include <iostream>
#include <algorithm>// std::swap
#include <tbb/atomic.h>
#include <tbb/spin_mutex.h>
#include <tbb/parallel_for.h>
#include <tbb/parallel_sort.h>
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace util {
////////////////////////////////////////
/// @brief Concurrent page-based linear data structure with O(1)
/// random access and std-compliant iterators. It is
/// primarily intended for applications that involve
/// multi-threading of dynamically growing linear arrays with
/// fast random access.
///
/// @note Multiple threads can grow the page-table and push_back
/// new elements concurrently. A ValueBuffer provides accelerated
/// and threadsafe push_back at the cost of potentially re-ordering
/// elements (when multiple instances are used).
///
/// @details This data structure employes contiguous pages of elements
/// (like a std::deque) which avoids moving data when the
/// capacity is out-grown and new pages are allocated. The
/// size of the pages can be controlled with the Log2PageSize
/// template parameter (defaults to 1024 elements of type ValueT).
///
/// There are three fundamentally different ways to insert elements to
/// this container - each with different advanteges and disadvanteges.
///
/// The simplest way to insert elements is to use PagedArray::push_back e.g.
/// @code
/// PagedArray<int> array;
/// for (int i=0; i<100000; ++i) array.push_back(i);
/// @endcode
/// or with tbb task-based multi-threading
/// @code
/// struct Functor1 {
/// Functor1(int n, PagedArray<int>& _array) : array(&_array) {
/// tbb::parallel_for(tbb::blocked_range<int>(0, n, PagedArray<int>::pageSize()), *this);
/// }
/// void operator()(const tbb::blocked_range<int>& r) const {
/// for (int i=r.begin(), n=r.end(); i!=n; ++i) array->push_back(i);
/// }
/// PagedArray<int>* array;
/// };
/// PagedArray<int> array;
/// Functor1 tmp(10000, array);
/// @endcode
/// PagedArray::push_back has the advantage that it's thread-safe and
/// preserves the ordering of the inserted elements. In fact it returns
/// the linear offset to the added element which can then be used for
/// fast O(1) random access. The disadvantage is it's the slowest of
/// the three different ways of inserting elements.
///
/// The fastest way (by far) to insert elements is to use one (or
/// more) instances of a PagedArray::ValueBuffer, e.g.
/// @code
/// PagedArray<int> array;
/// PagedArray<int>::ValueBuffer buffer(array);
/// for (int i=0; i<100000; ++i) buffer.push_back(i);
/// buffer.flush();
/// @endcode
/// or
/// @code
/// PagedArray<int> array;
/// {//local scope of a single thread
/// PagedArray<int>::ValueBuffer buffer(array);
/// for (int i=0; i<100000; ++i) buffer.push_back(i);
/// }
/// @endcode
/// or with tbb task-based multi-threading
/// @code
/// struct Functor2 {
/// Functor2(int n, PagedArray<int>& array) : buffer(array) {
/// tbb::parallel_for(tbb::blocked_range<int>(0, n, PagedArray<int>::pageSize()), *this);
/// }
/// void operator()(const tbb::blocked_range<int>& r) const {
/// for (int i=r.begin(), n=r.end(); i!=n; ++i) buffer.push_back(i);
/// }
/// mutable typename PagedArray<int>::ValueBuffer buffer;
/// };
/// PagedArray<int> array;
/// Functor2 tmp(10000, array);
/// @endcode
/// or with tbb Thread Local Storage for even better performance (due
/// to fewer concurrent instantiations of partially full ValueBuffers)
/// @code
/// struct Functor3 {
/// typedef tbb::enumerable_thread_specific<PagedArray<int>::ValueBuffer> PoolType;
/// Functor3(size_t n, PoolType& _pool) : pool(&_pool) {
/// tbb::parallel_for(tbb::blocked_range<int>(0, n, PagedArray<int>::pageSize()), *this);
/// }
/// void operator()(const tbb::blocked_range<int>& r) const {
/// PagedArray<int>::ValueBuffer& buffer = pool->local();
/// for (int i=r.begin(), n=r.end(); i!=n; ++i) buffer.push_back(i);
/// }
/// PoolType* pool;
/// };
/// PagedArray<int> array;
/// PagedArray<int>::ValueBuffer exemplar(array);//dummy used for initialization
/// Functor3::PoolType pool(exemplar);//thread local storage pool of ValueBuffers
/// Functor3 tmp(10000, pool);
/// for (Functor3::PoolType::iterator i=pool.begin(); i!=pool.end(); ++i) i->flush();
/// @endcode
/// This technique generally outperforms PagedArray::push_back,
/// std::vector::push_back, std::deque::push_back and even
/// tbb::concurrent_vector::push_back. Additionally it
/// is thread-safe as long as each thread has it's own instance of a
/// PagedArray::ValueBuffer. The only disadvantage is the ordering of
/// the elements is undefined if multiple instance of a
/// PagedArray::ValueBuffer are employed. This is typically the case
/// in the context of multi-threading, where the
/// ordering of inserts are undefined anyway. Note that a local scope
/// can be used to guarentee that the ValueBuffer has inerted all its
/// elements by the time the scope ends. Alternatively the ValueBuffer
/// can be explicitly flushed by calling ValueBuffer::flush.
///
/// The third way to insert elements is to resize the container and use
/// random access, e.g.
/// @code
/// PagedArray<int> array;
/// array.resize(100000);
/// for (int i=0; i<100000; ++i) array[i] = i;
/// @endcode
/// or in terms of the random access iterator
/// @code
/// PagedArray<int> array;
/// array.resize(100000);
/// for (PagedArray<int>::Iterator i=array.begin(); i!=array.end(); ++i) *i = i.pos();
/// @endcode
/// While this approach is both fast and thread-safe it suffers from the
/// major disadvantage that the problem size, i.e. number of elements, needs to
/// be known in advance. If that's the case you might as well consider
/// using std::vector or a raw c-style array! In other words the
/// PagedArray is most useful in the context of applications that
/// involve multi-threading of dynamically growing linear arrays that
/// require fast random access.
template <typename ValueT, size_t Log2PageSize = 10UL>
class PagedArray {
private:
class Page;
typedef std::deque<Page*> PageTableT;
public:
typedef ValueT ValueType;
/// @brief Default constructor
PagedArray() : mPageTable(), mSize(), mCapacity(0), mGrowthMutex() { mSize = 0; }
/// @brief Destructor removed all allocated pages
~PagedArray() { this->clear(); }
/// @brief Caches values into a local memory Page to improve
/// performance of push_back into a PagedArray.
///
/// @note The ordering of inserted elements is undefined when
/// multiple ValueBuffers are used!
///
/// @warning By design this ValueBuffer is not threadsafe so
/// make sure to create an instance per thread!
class ValueBuffer;
/// Const std-compliant iterator
class ConstIterator;
/// Non-const std-compliant iterator
class Iterator;
/// @brief Thread safe insertion, adds a new element at
/// the end and increases the container size by one.
///
/// @note Constant time complexity. May allocate a new page.
size_t push_back(const ValueType& value)
{
const size_t index = mSize.fetch_and_increment();
if (index >= mCapacity) this->grow(index);
(*mPageTable[index >> Log2PageSize])[index] = value;
return index;
}
/// @brief Slightly faster then the thread-safe push_back above.
///
/// @note For best performance consider using the ValueBuffer!
///
/// @warning Not thread-safe!
size_t push_back_unsafe(const ValueType& value)
{
const size_t index = mSize.fetch_and_increment();
if (index >= mCapacity) {
mPageTable.push_back( new Page() );
mCapacity += Page::Size;
}
(*mPageTable[index >> Log2PageSize])[index] = value;
return index;
}
/// @brief Returns the last element, decrements the size by one.
///
/// @details Consider subsequnetly calling shrink_to_fit to
/// reduce the page table to match the new size.
///
/// @note Calling this method on an empty containter is
/// undefined (as is also the case for std containers).
///
/// @warning If values were added to the container by means of
/// multiple ValueBuffers the last value might not be what you
/// expect since the ordering is generally not perserved. Only
/// PagedArray::push_back preserves the ordering (or a single
/// instance of a ValueBuffer).
ValueType pop_back()
{
assert(mSize>0);
--mSize;
return (*mPageTable[mSize >> Log2PageSize])[mSize];
}
/// @brief Reduce the page table to fix the current size.
///
/// @warning Not thread-safe!
void shrink_to_fit();
/// @brief Return a reference to the value at the specified offset
///
/// @note This random access has constant time complexity.
///
/// @warning It is assumed that the i'th element is already allocated!
ValueType& operator[](size_t i)
{
assert(i<mCapacity);
return (*mPageTable[i>>Log2PageSize])[i];
}
/// @brief Return a const-reference to the value at the specified offset
///
/// @note This random access has constant time complexity.
///
/// @warning It is assumed that the i'th element is already allocated!
const ValueType& operator[](size_t i) const
{
assert(i<mCapacity);
return (*mPageTable[i>>Log2PageSize])[i];
}
/// @brief Set all elements to the specified value
void fill(const ValueType& v)
{
tbb::spin_mutex::scoped_lock lock(mGrowthMutex);
Fill tmp(this, v);
}
/// @brief Resize this array to the specified size.
///
/// @note This will grow or shrink the page table.
///
/// @warning Not thread-safe!
void resize(size_t size)
{
mSize = size;
if (size > mCapacity) {
this->grow(size-1);
} else {
this->shrink_to_fit();
}
}
/// @brief Resize this array to the specified size and
/// set all elements to the specified value.
///
/// @warning Not thread-safe!
void resize(size_t size, const ValueType& v)
{
this->resize(size);
this->fill(v);
}
/// @brief Return the number of elements in this array.
size_t size() const { return mSize; }
/// @brief Return the maximum number of elements that this array
/// can contain without allocating more memory pages.
size_t capacity() const { return mCapacity; }
/// @brief Return the number of additional elements that can be
/// added to this array without allocating more memory pages.
size_t freeCount() const { return mCapacity - mSize; }
/// @brief Return the number of allocated memory pages.
size_t pageCount() const { return mPageTable.size(); }
/// @brief Return the number of elements per memory page.
static size_t pageSize() { return Page::Size; }
/// @brief Return log2 of the number of elements per memory page.
static size_t log2PageSize() { return Log2PageSize; }
/// @brief Return the memory footprint of this array in bytes.
size_t memUsage() const
{
return sizeof(*this) + mPageTable.size() * Page::memUsage();
}
/// @brief Return true if the container contains no elements.
bool isEmpty() const { return mSize == 0; }
/// @brief Return true if the page table is partially full, i.e. the
/// last non-empty page contains less than pageSize() elements.
///
/// @details When the page table is partially full calling merge()
/// or using a ValueBuffer will rearrange the ordering of
/// existing elements.
bool isPartiallyFull() const { return (mSize & Page::Mask) > 0; }
/// @brief Removes all elements from the array and delete all pages.
///
/// @warning Not thread-safe!
void clear()
{
tbb::spin_mutex::scoped_lock lock(mGrowthMutex);
for (size_t i=0, n=mPageTable.size(); i<n; ++i) delete mPageTable[i];
PageTableT().swap(mPageTable);
mSize = 0;
mCapacity = 0;
}
/// @brief Return a non-const iterator pointing to the first element
Iterator begin() { return Iterator(*this, 0); }
/// @brief Return a non-const iterator pointing to the
/// past-the-last element.
///
/// @warning Iterator does not point to a valid element and should not
/// be dereferenced!
Iterator end() { return Iterator(*this, mSize); }
/// @brief Return a const iterator pointing to the first element
ConstIterator cbegin() const { return ConstIterator(*this, 0); }
/// @brief Return a const iterator pointing to the
/// past-the-last element.
///
/// @warning Itrator does not point to a valid element and should not
/// be dereferenced!
ConstIterator cend() const { return ConstIterator(*this, mSize); }
/// @brief Parallel sort of all the elements in ascending order.
void sort() { tbb::parallel_sort(this->begin(), this->end(), std::less<ValueT>() ); }
/// @brief Parallel sort of all the elements in descending order.
void invSort() { tbb::parallel_sort(this->begin(), this->end(), std::greater<ValueT>()); }
/// @brief Parallel sort of all the elements based on a custom
/// functor with the api:
/// @code bool operator()(const ValueT& a, const ValueT& b) @endcode
/// which returns true if a comes before b.
template <typename Functor>
void sort() { tbb::parallel_sort(this->begin(), this->end(), Functor() ); }
/// @brief Transfer all the elements (and pages) from the other array to this array.
///
/// @note The other PagedArray is empty on return.
///
/// @warning The ordering of elements is undefined if this page table is partially full!
void merge(PagedArray& other);
/// @brief Print information for debugging
void print(std::ostream& os = std::cout) const
{
os << "PagedArray:\n"
<< "\tSize: " << this->size() << " elements\n"
<< "\tPage table: " << this->pageCount() << " pages\n"
<< "\tPage size: " << this->pageSize() << " elements\n"
<< "\tCapacity: " << this->capacity() << " elements\n"
<< "\tFootrpint: " << this->memUsage() << " bytes\n";
}
private:
// Disallow copy construction and assignment
PagedArray(const PagedArray&);//not implemented
void operator=(const PagedArray&);//not implemented
friend class ValueBuffer;
// Private class for concurrent fill
struct Fill;
void grow(size_t index)
{
tbb::spin_mutex::scoped_lock lock(mGrowthMutex);
while(index >= mCapacity) {
mPageTable.push_back( new Page() );
mCapacity += Page::Size;
}
}
void add_full(Page*& page, size_t size);
void add_partially_full(Page*& page, size_t size);
void add(Page*& page, size_t size) {
tbb::spin_mutex::scoped_lock lock(mGrowthMutex);
if (size == Page::Size) {//page is full
this->add_full(page, size);
} else if (size>0) {//page is only partially full
this->add_partially_full(page, size);
}
}
PageTableT mPageTable;//holds points to allocated pages
tbb::atomic<size_t> mSize;// current number of elements in array
size_t mCapacity;//capacity of array given the current page count
tbb::spin_mutex mGrowthMutex;//Mutex-lock required to grow pages
}; // Public class PagedArray
////////////////////////////////////////////////////////////////////////////////
template <typename ValueT, size_t Log2PageSize>
void PagedArray<ValueT, Log2PageSize>::shrink_to_fit()
{
if (mPageTable.size() > (mSize >> Log2PageSize) + 1) {
tbb::spin_mutex::scoped_lock lock(mGrowthMutex);
const size_t pageCount = (mSize >> Log2PageSize) + 1;
if (mPageTable.size() > pageCount) {
delete mPageTable.back();
mPageTable.pop_back();
mCapacity -= Page::Size;
}
}
}
template <typename ValueT, size_t Log2PageSize>
void PagedArray<ValueT, Log2PageSize>::merge(PagedArray& other)
{
if (!other.isEmpty()) {
tbb::spin_mutex::scoped_lock lock(mGrowthMutex);
// extract last partially full page if it exists
Page* page = NULL;
const size_t size = mSize & Page::Mask; //number of elements in the last page
if ( size > 0 ) {
page = mPageTable.back();
mPageTable.pop_back();
mSize -= size;
}
// transfer all pages from the other page table
mPageTable.insert(mPageTable.end(), other.mPageTable.begin(), other.mPageTable.end());
mSize += other.mSize;
mCapacity = Page::Size*mPageTable.size();
other.mSize = 0;
other.mCapacity = 0;
PageTableT().swap(other.mPageTable);
// add back last partially full page
if (page) this->add_partially_full(page, size);
}
}
template <typename ValueT, size_t Log2PageSize>
void PagedArray<ValueT, Log2PageSize>::add_full(Page*& page, size_t size)
{
assert(size == Page::Size);//page must be full
if (mSize & Page::Mask) {//page-table is partially full
Page*& tmp = mPageTable.back();
std::swap(tmp, page);//swap last table entry with page
}
mPageTable.push_back( page );
mCapacity += Page::Size;
mSize += size;
page = NULL;
}
template <typename ValueT, size_t Log2PageSize>
void PagedArray<ValueT, Log2PageSize>::add_partially_full(Page*& page, size_t size)
{
assert(size > 0 && size < Page::Size);//page must be partially full
if (size_t m = mSize & Page::Mask) {//page table is also partially full
ValueT *s = page->data(), *t = mPageTable.back()->data() + m;
for (size_t i=std::min(mSize+size, mCapacity)-mSize; i; --i) *t++ = *s++;
if (mSize+size > mCapacity) {//grow page table
mPageTable.push_back( new Page() );
t = mPageTable.back()->data();
for (size_t i=mSize+size-mCapacity; i; --i) *t++ = *s++;
mCapacity += Page::Size;
}
} else {//page table is full so simply append page
mPageTable.push_back( page );
mCapacity += Page::Size;
page = NULL;
}
mSize += size;
}
////////////////////////////////////////////////////////////////////////////////
// Public member-class of PagedArray
template <typename ValueT, size_t Log2PageSize>
class PagedArray<ValueT, Log2PageSize>::
ValueBuffer
{
public:
typedef PagedArray<ValueT, Log2PageSize> PagedArrayType;
/// @brief Constructor from a PageArray
ValueBuffer(PagedArray& parent) : mParent(&parent), mPage(new Page()), mSize(0) {}
/// @warning This copy-constructor is shallow in the sense that no
/// elements are copied, i.e. size = 0.
ValueBuffer(const ValueBuffer& other) : mParent(other.mParent), mPage(new Page()), mSize(0) {}
/// @brief Destructor that transfers an buffered values to the parent PagedArray.
~ValueBuffer() { this->flush(); delete mPage; }
/// @brief Add a value to the buffer and increment the size.
///
/// @details If the internal memory page is full it will
/// automaically flush the page to the parent PagedArray.
void push_back(const ValueT& v) {
(*mPage)[mSize++] = v;
if (mSize == Page::Size) this->flush();
}
/// @brief Manually transfer the values in this buffer to the parent PagedArray.
///
/// @note This method is also called by the destructor and
/// puach_back so it should only be called when manually want to
/// sync up the buffer with the array, e.g. during debugging.
void flush() {
mParent->add(mPage, mSize);
if (mPage == NULL) mPage = new Page();
mSize = 0;
}
/// @brief Return a reference to the parent PagedArray
PagedArrayType& parent() const { return *mParent; }
/// @brief Return the current number of elements cached in this buffer.
size_t size() const { return mSize; }
private:
ValueBuffer& operator=(const ValueBuffer& other);//not implemented
PagedArray* mParent;
Page* mPage;
size_t mSize;
};// Public class PagedArray::ValueBuffer
////////////////////////////////////////////////////////////////////////////////
// Const std-compliant iterator
// Public member-class of PagedArray
template <typename ValueT, size_t Log2PageSize>
class PagedArray<ValueT, Log2PageSize>::
ConstIterator : public std::iterator<std::random_access_iterator_tag, ValueT>
{
public:
typedef std::iterator<std::random_access_iterator_tag, ValueT> BaseT;
typedef typename BaseT::difference_type difference_type;
// constructors and assignment
ConstIterator() : mPos(0), mParent(NULL) {}
ConstIterator(const PagedArray& parent, size_t pos=0) : mPos(pos), mParent(&parent) {}
ConstIterator(const ConstIterator& other) : mPos(other.mPos), mParent(other.mParent) {}
ConstIterator& operator=(const ConstIterator& other) {
mPos=other.mPos;
mParent=other.mParent;
return *this;
}
// prefix
ConstIterator& operator++() { ++mPos; return *this; }
ConstIterator& operator--() { --mPos; return *this; }
// postfix
ConstIterator operator++(int) { ConstIterator tmp(*this); ++mPos; return tmp; }
ConstIterator operator--(int) { ConstIterator tmp(*this); --mPos; return tmp; }
// value access
const ValueT& operator*() const { return (*mParent)[mPos]; }
const ValueT* operator->() const { return &(this->operator*()); }
const ValueT& operator[](const difference_type& pos) const { return (*mParent)[mPos+pos]; }
// offset
ConstIterator& operator+=(const difference_type& pos) { mPos += pos; return *this; }
ConstIterator& operator-=(const difference_type& pos) { mPos -= pos; return *this; }
ConstIterator operator+(const difference_type &pos) const { return Iterator(*mParent,mPos+pos); }
ConstIterator operator-(const difference_type &pos) const { return Iterator(*mParent,mPos-pos); }
difference_type operator-(const ConstIterator& other) const { return mPos - other.pos(); }
// comparisons
bool operator==(const ConstIterator& other) const { return mPos == other.mPos; }
bool operator!=(const ConstIterator& other) const { return mPos != other.mPos; }
bool operator>=(const ConstIterator& other) const { return mPos >= other.mPos; }
bool operator<=(const ConstIterator& other) const { return mPos <= other.mPos; }
bool operator< (const ConstIterator& other) const { return mPos < other.mPos; }
bool operator> (const ConstIterator& other) const { return mPos > other.mPos; }
// non-std methods
bool isValid() const { return mParent != NULL && mPos < mParent->size(); }
size_t pos() const { return mPos; }
private:
size_t mPos;
const PagedArray* mParent;
};// Public class PagedArray::ConstIterator
////////////////////////////////////////////////////////////////////////////////
// Public member-class of PagedArray
template <typename ValueT, size_t Log2PageSize>
class PagedArray<ValueT, Log2PageSize>::
Iterator : public std::iterator<std::random_access_iterator_tag, ValueT>
{
public:
typedef std::iterator<std::random_access_iterator_tag, ValueT> BaseT;
typedef typename BaseT::difference_type difference_type;
// constructors and assignment
Iterator() : mPos(0), mParent(NULL) {}
Iterator(PagedArray& parent, size_t pos=0) : mPos(pos), mParent(&parent) {}
Iterator(const Iterator& other) : mPos(other.mPos), mParent(other.mParent) {}
Iterator& operator=(const Iterator& other) {
mPos=other.mPos;
mParent=other.mParent;
return *this;
}
// prefix
Iterator& operator++() { ++mPos; return *this; }
Iterator& operator--() { --mPos; return *this; }
// postfix
Iterator operator++(int) { Iterator tmp(*this); ++mPos; return tmp; }
Iterator operator--(int) { Iterator tmp(*this); --mPos; return tmp; }
// value access
ValueT& operator*() const { return (*mParent)[mPos]; }
ValueT* operator->() const { return &(this->operator*()); }
ValueT& operator[](const difference_type& pos) const { return (*mParent)[mPos+pos]; }
// offset
Iterator& operator+=(const difference_type& pos) { mPos += pos; return *this; }
Iterator& operator-=(const difference_type& pos) { mPos -= pos; return *this; }
Iterator operator+(const difference_type &pos) const { return Iterator(*mParent, mPos+pos); }
Iterator operator-(const difference_type &pos) const { return Iterator(*mParent, mPos-pos); }
difference_type operator-(const Iterator& other) const { return mPos - other.pos(); }
// comparisons
bool operator==(const Iterator& other) const { return mPos == other.mPos; }
bool operator!=(const Iterator& other) const { return mPos != other.mPos; }
bool operator>=(const Iterator& other) const { return mPos >= other.mPos; }
bool operator<=(const Iterator& other) const { return mPos <= other.mPos; }
bool operator< (const Iterator& other) const { return mPos < other.mPos; }
bool operator> (const Iterator& other) const { return mPos > other.mPos; }
// non-std methods
bool isValid() const { return mParent != NULL && mPos < mParent->size(); }
size_t pos() const { return mPos; }
private:
size_t mPos;
PagedArray* mParent;
};// Public class PagedArray::Iterator
////////////////////////////////////////////////////////////////////////////////
// Private member-class of PagedArray implementing a memory page
template <typename ValueT, size_t Log2PageSize>
class PagedArray<ValueT, Log2PageSize>::
Page
{
public:
static const size_t Size = 1UL << Log2PageSize;
static const size_t Mask = Size - 1UL;
static size_t memUsage() { return sizeof(ValueT)*Size; }
Page() : mData(new ValueT[Size]) {}
~Page() { delete [] mData; }
ValueT& operator[](const size_t i) { return mData[i & Mask]; }
const ValueT& operator[](const size_t i) const { return mData[i & Mask]; }
void fill(const ValueT& v) { ValueT* p = mData; for (size_t i=Size; i; --i) *p++ = v; }
ValueT* data() { return mData; }
protected:
Page(const Page& other);//copy construction is not implemented
Page& operator=(const Page& rhs);//copy assignment is not implemented
ValueT* mData;
};// Private class PagedArray::Page
////////////////////////////////////////////////////////////////////////////////
// Private member-class of PagedArray implementing concurrent fill of a Page
template <typename ValueT, size_t Log2PageSize>
struct PagedArray<ValueT, Log2PageSize>::
Fill {
Fill(PagedArray* _d, const ValueT& _v) : d(_d), v(_v) {
tbb::parallel_for(tbb::blocked_range<size_t>(0, d->pageCount()), *this);
}
void operator()(const tbb::blocked_range<size_t>& r) const {
for (size_t i=r.begin(); i!=r.end(); ++i) d->mPageTable[i]->fill(v);
}
PagedArray* d;
const ValueT& v;
};// Private class PagedArray::Fill
} // namespace util
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_UTIL_PAGED_ARRAY_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2015 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|