This file is indexed.

/usr/include/pcl-1.7/pcl/point_cloud.h is in libpcl-dev 1.7.2-14build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
/*
 * Software License Agreement (BSD License)
 *
 *  Point Cloud Library (PCL) - www.pointclouds.org
 *  Copyright (c) 2010-2012, Willow Garage, Inc.
 *  Copyright (c) 2012-, Open Perception, Inc.
 *
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of the copyright holder(s) nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 */

#ifndef PCL_POINT_CLOUD_H_
#define PCL_POINT_CLOUD_H_

#ifdef __GNUC__
#pragma GCC system_header 
#endif

#include <Eigen/StdVector>
#include <Eigen/Geometry>
#include <pcl/PCLHeader.h>
#include <pcl/exceptions.h>
#include <pcl/point_traits.h>

namespace pcl
{
  namespace detail
  {
    struct FieldMapping
    {
      size_t serialized_offset;
      size_t struct_offset;
      size_t size;
    };
  } // namespace detail

  // Forward declarations
  template <typename PointT> class PointCloud;
  typedef std::vector<detail::FieldMapping> MsgFieldMap;
  
  /** \brief Helper functor structure for copying data between an Eigen type and a PointT. */
  template <typename PointOutT>
  struct NdCopyEigenPointFunctor
  {
    typedef typename traits::POD<PointOutT>::type Pod;
    
    /** \brief Constructor
      * \param[in] p1 the input Eigen type
      * \param[out] p2 the output Point type
      */
    NdCopyEigenPointFunctor (const Eigen::VectorXf &p1, PointOutT &p2)
      : p1_ (p1),
        p2_ (reinterpret_cast<Pod&>(p2)),
        f_idx_ (0) { }

    /** \brief Operator. Data copy happens here. */
    template<typename Key> inline void 
    operator() ()
    {
      //boost::fusion::at_key<Key> (p2_) = p1_[f_idx_++];
      typedef typename pcl::traits::datatype<PointOutT, Key>::type T;
      uint8_t* data_ptr = reinterpret_cast<uint8_t*>(&p2_) + pcl::traits::offset<PointOutT, Key>::value;
      *reinterpret_cast<T*>(data_ptr) = static_cast<T> (p1_[f_idx_++]);
    }

    private:
      const Eigen::VectorXf &p1_;
      Pod &p2_;
      int f_idx_;
    public:
      EIGEN_MAKE_ALIGNED_OPERATOR_NEW
   };

  /** \brief Helper functor structure for copying data between an Eigen type and a PointT. */
  template <typename PointInT>
  struct NdCopyPointEigenFunctor
  {
    typedef typename traits::POD<PointInT>::type Pod;
    
    /** \brief Constructor
      * \param[in] p1 the input Point type
      * \param[out] p2 the output Eigen type
      */
     NdCopyPointEigenFunctor (const PointInT &p1, Eigen::VectorXf &p2)
      : p1_ (reinterpret_cast<const Pod&>(p1)), p2_ (p2), f_idx_ (0) { }

    /** \brief Operator. Data copy happens here. */
    template<typename Key> inline void 
    operator() ()
    {
      //p2_[f_idx_++] = boost::fusion::at_key<Key> (p1_);
      typedef typename pcl::traits::datatype<PointInT, Key>::type T;
      const uint8_t* data_ptr = reinterpret_cast<const uint8_t*>(&p1_) + pcl::traits::offset<PointInT, Key>::value;
      p2_[f_idx_++] = static_cast<float> (*reinterpret_cast<const T*>(data_ptr));
    }

    private:
      const Pod &p1_;
      Eigen::VectorXf &p2_;
      int f_idx_;
    public:
      EIGEN_MAKE_ALIGNED_OPERATOR_NEW
  };

  namespace detail
  {
    template <typename PointT> boost::shared_ptr<pcl::MsgFieldMap>&
    getMapping (pcl::PointCloud<PointT>& p);
  } // namespace detail

  /** \brief PointCloud represents the base class in PCL for storing collections of 3D points.
    *
    * The class is templated, which means you need to specify the type of data
    * that it should contain. For example, to create a point cloud that holds 4
    * random XYZ data points, use:
    *
    * \code
    * pcl::PointCloud<pcl::PointXYZ> cloud;
    * cloud.push_back (pcl::PointXYZ (rand (), rand (), rand ())); 
    * cloud.push_back (pcl::PointXYZ (rand (), rand (), rand ())); 
    * cloud.push_back (pcl::PointXYZ (rand (), rand (), rand ())); 
    * cloud.push_back (pcl::PointXYZ (rand (), rand (), rand ())); 
    * \endcode
    *
    * The PointCloud class contains the following elements:
    *   - \b width - specifies the width of the point cloud dataset in the number of points. WIDTH has two meanings:
    *     - it can specify the total number of points in the cloud (equal with POINTS see below) for unorganized datasets;
    *     - it can specify the width (total number of points in a row) of an organized point cloud dataset.
    *   \a Mandatory.
    *   - \b height - specifies the height of the point cloud dataset in the number of points. HEIGHT has two meanings:
    *     - it can specify the height (total number of rows) of an organized point cloud dataset;
    *     - it is set to 1 for unorganized datasets (thus used to check whether a dataset is organized or not).
    *   \a Mandatory.
    *   - \b points - the data array where all points of type <b>PointT</b> are stored. \a Mandatory.
    *
    *   - \b is_dense - specifies if all the data in <b>points</b> is finite (true), or whether it might contain Inf/NaN values
    * (false). \a Mandatory.
    *
    *   - \b sensor_origin_ - specifies the sensor acquisition pose (origin/translation). \a Optional.
    *   - \b sensor_orientation_ - specifies the sensor acquisition pose (rotation). \a Optional.
    *
    * \author Patrick Mihelich, Radu B. Rusu
    */
  template <typename PointT>
  class PointCloud
  {
    public:
      /** \brief Default constructor. Sets \ref is_dense to true, \ref width
        * and \ref height to 0, and the \ref sensor_origin_ and \ref
        * sensor_orientation_ to identity.
        */
      PointCloud () : 
        header (), points (), width (0), height (0), is_dense (true),
        sensor_origin_ (Eigen::Vector4f::Zero ()), sensor_orientation_ (Eigen::Quaternionf::Identity ()),
        mapping_ ()
      {}

      /** \brief Copy constructor (needed by compilers such as Intel C++)
        * \param[in] pc the cloud to copy into this
        */
      PointCloud (PointCloud<PointT> &pc) : 
        header (), points (), width (0), height (0), is_dense (true), 
        sensor_origin_ (Eigen::Vector4f::Zero ()), sensor_orientation_ (Eigen::Quaternionf::Identity ()),
        mapping_ ()
      {
        *this = pc;
      }

      /** \brief Copy constructor (needed by compilers such as Intel C++)
        * \param[in] pc the cloud to copy into this
        */
      PointCloud (const PointCloud<PointT> &pc) : 
        header (), points (), width (0), height (0), is_dense (true), 
        sensor_origin_ (Eigen::Vector4f::Zero ()), sensor_orientation_ (Eigen::Quaternionf::Identity ()),
        mapping_ ()
      {
        *this = pc;
      }

      /** \brief Copy constructor from point cloud subset
        * \param[in] pc the cloud to copy into this
        * \param[in] indices the subset to copy
        */
      PointCloud (const PointCloud<PointT> &pc, 
                  const std::vector<int> &indices) :
        header (pc.header), points (indices.size ()), width (indices.size ()), height (1), is_dense (pc.is_dense),
        sensor_origin_ (pc.sensor_origin_), sensor_orientation_ (pc.sensor_orientation_),
        mapping_ ()
      {
        // Copy the obvious
        assert (indices.size () <= pc.size ());
        for (size_t i = 0; i < indices.size (); i++)
          points[i] = pc.points[indices[i]];
      }

      /** \brief Allocate constructor from point cloud subset
        * \param[in] width_ the cloud width
        * \param[in] height_ the cloud height
        * \param[in] value_ default value
        */
      PointCloud (uint32_t width_, uint32_t height_, const PointT& value_ = PointT ())
        : header ()
        , points (width_ * height_, value_)
        , width (width_)
        , height (height_)
        , is_dense (true)
        , sensor_origin_ (Eigen::Vector4f::Zero ())
        , sensor_orientation_ (Eigen::Quaternionf::Identity ())
        , mapping_ ()
      {}

      /** \brief Destructor. */
      virtual ~PointCloud () {}

      /** \brief Add a point cloud to the current cloud.
        * \param[in] rhs the cloud to add to the current cloud
        * \return the new cloud as a concatenation of the current cloud and the new given cloud
        */ 
      inline PointCloud&
      operator += (const PointCloud& rhs)
      {
        // Make the resultant point cloud take the newest stamp
        if (rhs.header.stamp > header.stamp)
          header.stamp = rhs.header.stamp;

        size_t nr_points = points.size ();
        points.resize (nr_points + rhs.points.size ());
        for (size_t i = nr_points; i < points.size (); ++i)
          points[i] = rhs.points[i - nr_points];

        width    = static_cast<uint32_t>(points.size ());
        height   = 1;
        if (rhs.is_dense && is_dense)
          is_dense = true;
        else
          is_dense = false;
        return (*this);
      }

      /** \brief Add a point cloud to another cloud.
        * \param[in] rhs the cloud to add to the current cloud
        * \return the new cloud as a concatenation of the current cloud and the new given cloud
        */ 
      inline const PointCloud
      operator + (const PointCloud& rhs)
      {
        return (PointCloud (*this) += rhs);
      }
      
      /** \brief Obtain the point given by the (column, row) coordinates. Only works on organized 
        * datasets (those that have height != 1).
        * \param[in] column the column coordinate
        * \param[in] row the row coordinate
        */
      inline const PointT&
      at (int column, int row) const
      {
        if (this->height > 1)
          return (points.at (row * this->width + column));
        else
          throw IsNotDenseException ("Can't use 2D indexing with a unorganized point cloud");
      }

      /** \brief Obtain the point given by the (column, row) coordinates. Only works on organized 
        * datasets (those that have height != 1).
        * \param[in] column the column coordinate
        * \param[in] row the row coordinate
        */
      inline PointT&
      at (int column, int row)
      {
        if (this->height > 1)
          return (points.at (row * this->width + column));
        else
          throw IsNotDenseException ("Can't use 2D indexing with a unorganized point cloud");
      }

      /** \brief Obtain the point given by the (column, row) coordinates. Only works on organized 
        * datasets (those that have height != 1).
        * \param[in] column the column coordinate
        * \param[in] row the row coordinate
        */
      inline const PointT&
      operator () (size_t column, size_t row) const
      {
        return (points[row * this->width + column]);
      }

      /** \brief Obtain the point given by the (column, row) coordinates. Only works on organized 
        * datasets (those that have height != 1).
        * \param[in] column the column coordinate
        * \param[in] row the row coordinate
        */
      inline PointT&
      operator () (size_t column, size_t row)
      {
        return (points[row * this->width + column]);
      }

      /** \brief Return whether a dataset is organized (e.g., arranged in a structured grid).
        * \note The height value must be different than 1 for a dataset to be organized.
        */
      inline bool
      isOrganized () const
      {
        return (height > 1);
      }
      
      /** \brief Return an Eigen MatrixXf (assumes float values) mapped to the specified dimensions of the PointCloud.
        * \anchor getMatrixXfMap
        * \note This method is for advanced users only! Use with care!
        * 
        * \attention Since 1.4.0, Eigen matrices are forced to Row Major to increase the efficiency of the algorithms in PCL
        *   This means that the behavior of getMatrixXfMap changed, and is now correctly mapping 1-1 with a PointCloud structure, 
        *   that is: number of points in a cloud = rows in a matrix, number of point dimensions = columns in a matrix
        *
        * \param[in] dim the number of dimensions to consider for each point
        * \param[in] stride the number of values in each point (will be the number of values that separate two of the columns)
        * \param[in] offset the number of dimensions to skip from the beginning of each point
        *            (stride = offset + dim + x, where x is the number of dimensions to skip from the end of each point)
        * \note for getting only XYZ coordinates out of PointXYZ use dim=3, stride=4 and offset=0 due to the alignment.
        * \attention PointT types are most of the time aligned, so the offsets are not continuous! 
        */
      inline Eigen::Map<Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> > 
      getMatrixXfMap (int dim, int stride, int offset)
      {
        if (Eigen::MatrixXf::Flags & Eigen::RowMajorBit)
          return (Eigen::Map<Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> >(reinterpret_cast<float*>(&points[0])+offset, points.size (), dim, Eigen::OuterStride<> (stride)));
        else
          return (Eigen::Map<Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> >(reinterpret_cast<float*>(&points[0])+offset, dim, points.size (), Eigen::OuterStride<> (stride)));
      }

      /** \brief Return an Eigen MatrixXf (assumes float values) mapped to the specified dimensions of the PointCloud.
        * \anchor getMatrixXfMap
        * \note This method is for advanced users only! Use with care!
        * 
        * \attention Since 1.4.0, Eigen matrices are forced to Row Major to increase the efficiency of the algorithms in PCL
        *   This means that the behavior of getMatrixXfMap changed, and is now correctly mapping 1-1 with a PointCloud structure, 
        *   that is: number of points in a cloud = rows in a matrix, number of point dimensions = columns in a matrix
        *
        * \param[in] dim the number of dimensions to consider for each point
        * \param[in] stride the number of values in each point (will be the number of values that separate two of the columns)
        * \param[in] offset the number of dimensions to skip from the beginning of each point
        *            (stride = offset + dim + x, where x is the number of dimensions to skip from the end of each point)
        * \note for getting only XYZ coordinates out of PointXYZ use dim=3, stride=4 and offset=0 due to the alignment.
        * \attention PointT types are most of the time aligned, so the offsets are not continuous! 
        */
      inline const Eigen::Map<const Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> >
      getMatrixXfMap (int dim, int stride, int offset) const
      {
        if (Eigen::MatrixXf::Flags & Eigen::RowMajorBit)
          return (Eigen::Map<const Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> >(reinterpret_cast<float*>(const_cast<PointT*>(&points[0]))+offset, points.size (), dim, Eigen::OuterStride<> (stride)));
        else
          return (Eigen::Map<const Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> >(reinterpret_cast<float*>(const_cast<PointT*>(&points[0]))+offset, dim, points.size (), Eigen::OuterStride<> (stride)));                
      }

      /** \brief Return an Eigen MatrixXf (assumes float values) mapped to the PointCloud.
        * \note This method is for advanced users only! Use with care!
        * \attention PointT types are most of the time aligned, so the offsets are not continuous! 
        * See \ref getMatrixXfMap for more information.
        */
      inline Eigen::Map<Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> >
      getMatrixXfMap () 
      {
        return (getMatrixXfMap (sizeof (PointT) / sizeof (float),  sizeof (PointT) / sizeof (float), 0));
      }

      /** \brief Return an Eigen MatrixXf (assumes float values) mapped to the PointCloud.
        * \note This method is for advanced users only! Use with care!
        * \attention PointT types are most of the time aligned, so the offsets are not continuous! 
        * See \ref getMatrixXfMap for more information.
        */
      inline const Eigen::Map<const Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> >
      getMatrixXfMap () const
      {
        return (getMatrixXfMap (sizeof (PointT) / sizeof (float),  sizeof (PointT) / sizeof (float), 0));
      }

      /** \brief The point cloud header. It contains information about the acquisition time. */
      pcl::PCLHeader header;

      /** \brief The point data. */
      std::vector<PointT, Eigen::aligned_allocator<PointT> > points;

      /** \brief The point cloud width (if organized as an image-structure). */
      uint32_t width;
      /** \brief The point cloud height (if organized as an image-structure). */
      uint32_t height;

      /** \brief True if no points are invalid (e.g., have NaN or Inf values). */
      bool is_dense;

      /** \brief Sensor acquisition pose (origin/translation). */
      Eigen::Vector4f    sensor_origin_;
      /** \brief Sensor acquisition pose (rotation). */
      Eigen::Quaternionf sensor_orientation_;

      typedef PointT PointType;  // Make the template class available from the outside
      typedef std::vector<PointT, Eigen::aligned_allocator<PointT> > VectorType;
      typedef std::vector<PointCloud<PointT>, Eigen::aligned_allocator<PointCloud<PointT> > > CloudVectorType;
      typedef boost::shared_ptr<PointCloud<PointT> > Ptr;
      typedef boost::shared_ptr<const PointCloud<PointT> > ConstPtr;

      // iterators
      typedef typename VectorType::iterator iterator;
      typedef typename VectorType::const_iterator const_iterator;
      inline iterator begin () { return (points.begin ()); }
      inline iterator end ()   { return (points.end ()); }
      inline const_iterator begin () const { return (points.begin ()); }
      inline const_iterator end () const  { return (points.end ()); }

      //capacity
      inline size_t size () const { return (points.size ()); }
      inline void reserve (size_t n) { points.reserve (n); }
      inline bool empty () const { return points.empty (); }

      /** \brief Resize the cloud
        * \param[in] n the new cloud size
        */
      inline void resize (size_t n) 
      { 
        points.resize (n);
        if (width * height != n)
        {
          width = static_cast<uint32_t> (n);
          height = 1;
        }
      }

      //element access
      inline const PointT& operator[] (size_t n) const { return (points[n]); }
      inline PointT& operator[] (size_t n) { return (points[n]); }
      inline const PointT& at (size_t n) const { return (points.at (n)); }
      inline PointT& at (size_t n) { return (points.at (n)); }
      inline const PointT& front () const { return (points.front ()); }
      inline PointT& front () { return (points.front ()); }
      inline const PointT& back () const { return (points.back ()); }
      inline PointT& back () { return (points.back ()); }

      /** \brief Insert a new point in the cloud, at the end of the container.
        * \note This breaks the organized structure of the cloud by setting the height to 1!
        * \param[in] pt the point to insert
        */
      inline void 
      push_back (const PointT& pt)
      {
        points.push_back (pt);
        width = static_cast<uint32_t> (points.size ());
        height = 1;
      }

      /** \brief Insert a new point in the cloud, given an iterator.
        * \note This breaks the organized structure of the cloud by setting the height to 1!
        * \param[in] position where to insert the point
        * \param[in] pt the point to insert
        * \return returns the new position iterator
        */
      inline iterator 
      insert (iterator position, const PointT& pt)
      {
        iterator it = points.insert (position, pt);
        width = static_cast<uint32_t> (points.size ());
        height = 1;
        return (it);
      }

      /** \brief Insert a new point in the cloud N times, given an iterator.
        * \note This breaks the organized structure of the cloud by setting the height to 1!
        * \param[in] position where to insert the point
        * \param[in] n the number of times to insert the point
        * \param[in] pt the point to insert
        */
      inline void 
      insert (iterator position, size_t n, const PointT& pt)
      {
        points.insert (position, n, pt);
        width = static_cast<uint32_t> (points.size ());
        height = 1;
      }

      /** \brief Insert a new range of points in the cloud, at a certain position.
        * \note This breaks the organized structure of the cloud by setting the height to 1!
        * \param[in] position where to insert the data
        * \param[in] first where to start inserting the points from
        * \param[in] last where to stop inserting the points from
        */
      template <class InputIterator> inline void 
      insert (iterator position, InputIterator first, InputIterator last)
      {
        points.insert (position, first, last);
        width = static_cast<uint32_t> (points.size ());
        height = 1;
      }

      /** \brief Erase a point in the cloud. 
        * \note This breaks the organized structure of the cloud by setting the height to 1!
        * \param[in] position what data point to erase
        * \return returns the new position iterator
        */
      inline iterator 
      erase (iterator position)
      {
        iterator it = points.erase (position); 
        width = static_cast<uint32_t> (points.size ());
        height = 1;
        return (it);
      }

      /** \brief Erase a set of points given by a (first, last) iterator pair
        * \note This breaks the organized structure of the cloud by setting the height to 1!
        * \param[in] first where to start erasing points from
        * \param[in] last where to stop erasing points from
        * \return returns the new position iterator
        */
      inline iterator 
      erase (iterator first, iterator last)
      {
        iterator it = points.erase (first, last);
        width = static_cast<uint32_t> (points.size ());
        height = 1;
        return (it);
      }

      /** \brief Swap a point cloud with another cloud.
        * \param[in,out] rhs point cloud to swap this with
        */ 
      inline void 
      swap (PointCloud<PointT> &rhs)
      {
        this->points.swap (rhs.points);
        std::swap (width, rhs.width);
        std::swap (height, rhs.height);
        std::swap (is_dense, rhs.is_dense);
        std::swap (sensor_origin_, rhs.sensor_origin_);
        std::swap (sensor_orientation_, rhs.sensor_orientation_);
      }

      /** \brief Removes all points in a cloud and sets the width and height to 0. */
      inline void 
      clear ()
      {
        points.clear ();
        width = 0;
        height = 0;
      }

      /** \brief Copy the cloud to the heap and return a smart pointer
        * Note that deep copy is performed, so avoid using this function on non-empty clouds.
        * The changes of the returned cloud are not mirrored back to this one.
        * \return shared pointer to the copy of the cloud
        */
      inline Ptr 
      makeShared () const { return Ptr (new PointCloud<PointT> (*this)); }

    protected:
      // This is motivated by ROS integration. Users should not need to access mapping_.
      boost::shared_ptr<MsgFieldMap> mapping_;

      friend boost::shared_ptr<MsgFieldMap>& detail::getMapping<PointT>(pcl::PointCloud<PointT> &p);

    public:
      EIGEN_MAKE_ALIGNED_OPERATOR_NEW
  };

  namespace detail
  {
    template <typename PointT> boost::shared_ptr<pcl::MsgFieldMap>&
    getMapping (pcl::PointCloud<PointT>& p)
    {
      return (p.mapping_);
    }
  } // namespace detail

  template <typename PointT> std::ostream&
  operator << (std::ostream& s, const pcl::PointCloud<PointT> &p)
  {
    s << "points[]: " << p.points.size () << std::endl;
    s << "width: " << p.width << std::endl;
    s << "height: " << p.height << std::endl;
    s << "is_dense: " << p.is_dense << std::endl;
    s << "sensor origin (xyz): [" << 
      p.sensor_origin_.x () << ", " << 
      p.sensor_origin_.y () << ", " << 
      p.sensor_origin_.z () << "] / orientation (xyzw): [" << 
      p.sensor_orientation_.x () << ", " << 
      p.sensor_orientation_.y () << ", " << 
      p.sensor_orientation_.z () << ", " << 
      p.sensor_orientation_.w () << "]" <<
      std::endl;
    return (s);
  }
}

#define PCL_INSTANTIATE_PointCloud(T) template class PCL_EXPORTS pcl::PointCloud<T>;

#endif  //#ifndef PCL_POINT_CLOUD_H_