This file is indexed.

/usr/include/pcl-1.7/pcl/surface/gp3.h is in libpcl-dev 1.7.2-14build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
/*
 * Software License Agreement (BSD License)
 *
 *  Point Cloud Library (PCL) - www.pointclouds.org
 *  Copyright (c) 2010-2011, Willow Garage, Inc.
 *
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of Willow Garage, Inc. nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 * $Id$
 *
 */

#ifndef PCL_GP3_H_
#define PCL_GP3_H_

// PCL includes
#include <pcl/surface/reconstruction.h>
#include <pcl/surface/boost.h>

#include <pcl/conversions.h>
#include <pcl/kdtree/kdtree.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/PolygonMesh.h>

#include <fstream>
#include <iostream>



namespace pcl
{
  /** \brief Returns if a point X is visible from point R (or the origin)
    * when taking into account the segment between the points S1 and S2
    * \param X 2D coordinate of the point
    * \param S1 2D coordinate of the segment's first point
    * \param S2 2D coordinate of the segment's secont point
    * \param R 2D coorddinate of the reference point (defaults to 0,0)
    * \ingroup surface
    */
  inline bool 
  isVisible (const Eigen::Vector2f &X, const Eigen::Vector2f &S1, const Eigen::Vector2f &S2, 
             const Eigen::Vector2f &R = Eigen::Vector2f::Zero ())
  {
    double a0 = S1[1] - S2[1];
    double b0 = S2[0] - S1[0];
    double c0 = S1[0]*S2[1] - S2[0]*S1[1];
    double a1 = -X[1];
    double b1 = X[0];
    double c1 = 0;
    if (R != Eigen::Vector2f::Zero())
    {
      a1 += R[1];
      b1 -= R[0];
      c1 = R[0]*X[1] - X[0]*R[1];
    }
    double div = a0*b1 - b0*a1;
    double x = (b0*c1 - b1*c0) / div;
    double y = (a1*c0 - a0*c1) / div;

    bool intersection_outside_XR;
    if (R == Eigen::Vector2f::Zero())
    {
      if (X[0] > 0)
        intersection_outside_XR = (x <= 0) || (x >= X[0]);
      else if (X[0] < 0)
        intersection_outside_XR = (x >= 0) || (x <= X[0]);
      else if (X[1] > 0)
        intersection_outside_XR = (y <= 0) || (y >= X[1]);
      else if (X[1] < 0)
        intersection_outside_XR = (y >= 0) || (y <= X[1]);
      else
        intersection_outside_XR = true;
    }
    else
    {
      if (X[0] > R[0])
        intersection_outside_XR = (x <= R[0]) || (x >= X[0]);
      else if (X[0] < R[0])
        intersection_outside_XR = (x >= R[0]) || (x <= X[0]);
      else if (X[1] > R[1])
        intersection_outside_XR = (y <= R[1]) || (y >= X[1]);
      else if (X[1] < R[1])
        intersection_outside_XR = (y >= R[1]) || (y <= X[1]);
      else
        intersection_outside_XR = true;
    }
    if (intersection_outside_XR)
      return true;
    else
    {
      if (S1[0] > S2[0])
        return (x <= S2[0]) || (x >= S1[0]);
      else if (S1[0] < S2[0])
        return (x >= S2[0]) || (x <= S1[0]);
      else if (S1[1] > S2[1])
        return (y <= S2[1]) || (y >= S1[1]);
      else if (S1[1] < S2[1])                                                                                                                     
        return (y >= S2[1]) || (y <= S1[1]);
      else
        return false;
    }
  }  

  /** \brief GreedyProjectionTriangulation is an implementation of a greedy triangulation algorithm for 3D points
    * based on local 2D projections. It assumes locally smooth surfaces and relatively smooth transitions between
    * areas with different point densities.
    * \author Zoltan Csaba Marton
    * \ingroup surface
    */
  template <typename PointInT>
  class GreedyProjectionTriangulation : public MeshConstruction<PointInT>
  {
    public:
      typedef boost::shared_ptr<GreedyProjectionTriangulation<PointInT> > Ptr;
      typedef boost::shared_ptr<const GreedyProjectionTriangulation<PointInT> > ConstPtr;

      using MeshConstruction<PointInT>::tree_;
      using MeshConstruction<PointInT>::input_;
      using MeshConstruction<PointInT>::indices_;

      typedef typename pcl::KdTree<PointInT> KdTree;
      typedef typename pcl::KdTree<PointInT>::Ptr KdTreePtr;

      typedef pcl::PointCloud<PointInT> PointCloudIn;
      typedef typename PointCloudIn::Ptr PointCloudInPtr;
      typedef typename PointCloudIn::ConstPtr PointCloudInConstPtr;

      enum GP3Type
      { 
        NONE = -1,    // not-defined
        FREE = 0,    
        FRINGE = 1,  
        BOUNDARY = 2,
        COMPLETED = 3
      };
    
      /** \brief Empty constructor. */
      GreedyProjectionTriangulation () : 
        mu_ (0), 
        search_radius_ (0), // must be set by user
        nnn_ (100),
        minimum_angle_ (M_PI/18), // 10 degrees
        maximum_angle_ (2*M_PI/3), // 120 degrees
        eps_angle_(M_PI/4), //45 degrees,
        consistent_(false), 
        consistent_ordering_ (false),
        triangle_ (),
        coords_ (),
        angles_ (),
        R_ (),
        state_ (),
        source_ (),
        ffn_ (),
        sfn_ (),
        part_ (),
        fringe_queue_ (),
        is_current_free_ (false),
        current_index_ (),
        prev_is_ffn_ (false),
        prev_is_sfn_ (false),
        next_is_ffn_ (false),
        next_is_sfn_ (false),
        changed_1st_fn_ (false),
        changed_2nd_fn_ (false),
        new2boundary_ (),
        already_connected_ (false),
        proj_qp_ (),
        u_ (),
        v_ (),
        uvn_ffn_ (),
        uvn_sfn_ (),
        uvn_next_ffn_ (),
        uvn_next_sfn_ (),
        tmp_ ()
      {};

      /** \brief Set the multiplier of the nearest neighbor distance to obtain the final search radius for each point
       *  (this will make the algorithm adapt to different point densities in the cloud).
        * \param[in] mu the multiplier
        */
      inline void 
      setMu (double mu) { mu_ = mu; }

      /** \brief Get the nearest neighbor distance multiplier. */
      inline double 
      getMu () const { return (mu_); }

      /** \brief Set the maximum number of nearest neighbors to be searched for.
        * \param[in] nnn the maximum number of nearest neighbors
        */
      inline void 
      setMaximumNearestNeighbors (int nnn) { nnn_ = nnn; }

      /** \brief Get the maximum number of nearest neighbors to be searched for. */
      inline int 
      getMaximumNearestNeighbors () const { return (nnn_); }

      /** \brief Set the sphere radius that is to be used for determining the k-nearest neighbors used for triangulating.
        * \param[in] radius the sphere radius that is to contain all k-nearest neighbors
        * \note This distance limits the maximum edge length!
        */
      inline void 
      setSearchRadius (double radius) { search_radius_ = radius; }

      /** \brief Get the sphere radius used for determining the k-nearest neighbors. */
      inline double 
      getSearchRadius () const { return (search_radius_); }

      /** \brief Set the minimum angle each triangle should have.
        * \param[in] minimum_angle the minimum angle each triangle should have
        * \note As this is a greedy approach, this will have to be violated from time to time
        */
      inline void 
      setMinimumAngle (double minimum_angle) { minimum_angle_ = minimum_angle; }

      /** \brief Get the parameter for distance based weighting of neighbors. */
      inline double 
      getMinimumAngle () const { return (minimum_angle_); }

      /** \brief Set the maximum angle each triangle can have.
        * \param[in] maximum_angle the maximum angle each triangle can have
        * \note For best results, its value should be around 120 degrees
        */
      inline void 
      setMaximumAngle (double maximum_angle) { maximum_angle_ = maximum_angle; }

      /** \brief Get the parameter for distance based weighting of neighbors. */
      inline double 
      getMaximumAngle () const { return (maximum_angle_); }

      /** \brief Don't consider points for triangulation if their normal deviates more than this value from the query point's normal.
        * \param[in] eps_angle maximum surface angle
        * \note As normal estimation methods usually give smooth transitions at sharp edges, this ensures correct triangulation
        *       by avoiding connecting points from one side to points from the other through forcing the use of the edge points.
        */
      inline void 
      setMaximumSurfaceAngle (double eps_angle) { eps_angle_ = eps_angle; }

      /** \brief Get the maximum surface angle. */
      inline double 
      getMaximumSurfaceAngle () const { return (eps_angle_); }

      /** \brief Set the flag if the input normals are oriented consistently.
        * \param[in] consistent set it to true if the normals are consistently oriented
        */
      inline void 
      setNormalConsistency (bool consistent) { consistent_ = consistent; }

      /** \brief Get the flag for consistently oriented normals. */
      inline bool 
      getNormalConsistency () const { return (consistent_); }

      /** \brief Set the flag to order the resulting triangle vertices consistently (positive direction around normal).
        * @note Assumes consistently oriented normals (towards the viewpoint) -- see setNormalConsistency ()
        * \param[in] consistent_ordering set it to true if triangle vertices should be ordered consistently
        */
      inline void 
      setConsistentVertexOrdering (bool consistent_ordering) { consistent_ordering_ = consistent_ordering; }

      /** \brief Get the flag signaling consistently ordered triangle vertices. */
      inline bool 
      getConsistentVertexOrdering () const { return (consistent_ordering_); }

      /** \brief Get the state of each point after reconstruction.
        * \note Options are defined as constants: FREE, FRINGE, COMPLETED, BOUNDARY and NONE
        */
      inline std::vector<int> 
      getPointStates () const { return (state_); }

      /** \brief Get the ID of each point after reconstruction.
        * \note parts are numbered from 0, a -1 denotes unconnected points
        */
      inline std::vector<int> 
      getPartIDs () const { return (part_); }


      /** \brief Get the sfn list. */
      inline std::vector<int>
      getSFN () const { return (sfn_); }

      /** \brief Get the ffn list. */
      inline std::vector<int>
      getFFN () const { return (ffn_); }

    protected:
      /** \brief The nearest neighbor distance multiplier to obtain the final search radius. */
      double mu_;

      /** \brief The nearest neighbors search radius for each point and the maximum edge length. */
      double search_radius_;

      /** \brief The maximum number of nearest neighbors accepted by searching. */
      int nnn_;

      /** \brief The preferred minimum angle for the triangles. */
      double minimum_angle_;

      /** \brief The maximum angle for the triangles. */
      double maximum_angle_;

      /** \brief Maximum surface angle. */
      double eps_angle_;

      /** \brief Set this to true if the normals of the input are consistently oriented. */
      bool consistent_;
      
      /** \brief Set this to true if the output triangle vertices should be consistently oriented. */
      bool consistent_ordering_;

     private:
      /** \brief Struct for storing the angles to nearest neighbors **/
      struct nnAngle
      {
        double angle;
        int index;
        int nnIndex;
        bool visible;
      };

      /** \brief Struct for storing the edges starting from a fringe point **/
      struct doubleEdge
      {
        doubleEdge () : index (0), first (), second () {}
        int index;
        Eigen::Vector2f first;
        Eigen::Vector2f second;
      };

      // Variables made global to decrease the number of parameters to helper functions

      /** \brief Temporary variable to store a triangle (as a set of point indices) **/
      pcl::Vertices triangle_;
      /** \brief Temporary variable to store point coordinates **/
      std::vector<Eigen::Vector3f> coords_;

      /** \brief A list of angles to neighbors **/
      std::vector<nnAngle> angles_;
      /** \brief Index of the current query point **/
      int R_;
      /** \brief List of point states **/
      std::vector<int> state_;
      /** \brief List of sources **/
      std::vector<int> source_;
      /** \brief List of fringe neighbors in one direction **/
      std::vector<int> ffn_;
      /** \brief List of fringe neighbors in other direction **/
      std::vector<int> sfn_;
      /** \brief Connected component labels for each point **/
      std::vector<int> part_;
      /** \brief Points on the outer edge from which the mesh has to be grown **/
      std::vector<int> fringe_queue_;

      /** \brief Flag to set if the current point is free **/
      bool is_current_free_;
      /** \brief Current point's index **/
      int current_index_;
      /** \brief Flag to set if the previous point is the first fringe neighbor **/
      bool prev_is_ffn_;
      /** \brief Flag to set if the next point is the second fringe neighbor **/
      bool prev_is_sfn_;
      /** \brief Flag to set if the next point is the first fringe neighbor **/
      bool next_is_ffn_;
      /** \brief Flag to set if the next point is the second fringe neighbor **/
      bool next_is_sfn_;
      /** \brief Flag to set if the first fringe neighbor was changed **/
      bool changed_1st_fn_;
      /** \brief Flag to set if the second fringe neighbor was changed **/
      bool changed_2nd_fn_;
      /** \brief New boundary point **/
      int new2boundary_;
      
      /** \brief Flag to set if the next neighbor was already connected in the previous step.
        * To avoid inconsistency it should not be connected again.
        */
      bool already_connected_; 

      /** \brief Point coordinates projected onto the plane defined by the point normal **/
      Eigen::Vector3f proj_qp_;
      /** \brief First coordinate vector of the 2D coordinate frame **/
      Eigen::Vector3f u_;
      /** \brief Second coordinate vector of the 2D coordinate frame **/
      Eigen::Vector3f v_;
      /** \brief 2D coordinates of the first fringe neighbor **/
      Eigen::Vector2f uvn_ffn_;
      /** \brief 2D coordinates of the second fringe neighbor **/
      Eigen::Vector2f uvn_sfn_;
      /** \brief 2D coordinates of the first fringe neighbor of the next point **/
      Eigen::Vector2f uvn_next_ffn_;
      /** \brief 2D coordinates of the second fringe neighbor of the next point **/
      Eigen::Vector2f uvn_next_sfn_;

      /** \brief Temporary variable to store 3 coordiantes **/
      Eigen::Vector3f tmp_;

      /** \brief The actual surface reconstruction method.
        * \param[out] output the resultant polygonal mesh
        */
      void 
      performReconstruction (pcl::PolygonMesh &output);

      /** \brief The actual surface reconstruction method.
        * \param[out] polygons the resultant polygons, as a set of vertices. The Vertices structure contains an array of point indices.
        */
      void 
      performReconstruction (std::vector<pcl::Vertices> &polygons);

      /** \brief The actual surface reconstruction method.
        * \param[out] polygons the resultant polygons, as a set of vertices. The Vertices structure contains an array of point indices.
        */
      bool
      reconstructPolygons (std::vector<pcl::Vertices> &polygons);

      /** \brief Class get name method. */
      std::string 
      getClassName () const { return ("GreedyProjectionTriangulation"); }

      /** \brief Forms a new triangle by connecting the current neighbor to the query point 
        * and the previous neighbor
        * \param[out] polygons the polygon mesh to be updated
        * \param[in] prev_index index of the previous point
        * \param[in] next_index index of the next point
        * \param[in] next_next_index index of the point after the next one
        * \param[in] uvn_current 2D coordinate of the current point
        * \param[in] uvn_prev 2D coordinates of the previous point
        * \param[in] uvn_next 2D coordinates of the next point
        */
      void 
      connectPoint (std::vector<pcl::Vertices> &polygons, 
                    const int prev_index, 
                    const int next_index, 
                    const int next_next_index, 
                    const Eigen::Vector2f &uvn_current, 
                    const Eigen::Vector2f &uvn_prev, 
                    const Eigen::Vector2f &uvn_next);

      /** \brief Whenever a query point is part of a boundary loop containing 3 points, that triangle is created
        * (called if angle constraints make it possible)
        * \param[out] polygons the polygon mesh to be updated
        */
      void 
      closeTriangle (std::vector<pcl::Vertices> &polygons);

      /** \brief Get the list of containing triangles for each vertex in a PolygonMesh
        * \param[in] polygonMesh the input polygon mesh
        */
      std::vector<std::vector<size_t> >
      getTriangleList (const pcl::PolygonMesh &input);

      /** \brief Add a new triangle to the current polygon mesh
        * \param[in] a index of the first vertex
        * \param[in] b index of the second vertex
        * \param[in] c index of the third vertex
        * \param[out] polygons the polygon mesh to be updated
        */
      inline void
      addTriangle (int a, int b, int c, std::vector<pcl::Vertices> &polygons)
      {
        triangle_.vertices.resize (3);
        if (consistent_ordering_)
        {
          const PointInT p = input_->at (indices_->at (a));
          const Eigen::Vector3f pv = p.getVector3fMap ();
          if (p.getNormalVector3fMap ().dot (
                (pv - input_->at (indices_->at (b)).getVector3fMap ()).cross (
                 pv - input_->at (indices_->at (c)).getVector3fMap ()) ) > 0)
          {
            triangle_.vertices[0] = a;
            triangle_.vertices[1] = b;
            triangle_.vertices[2] = c;
          }
          else
          {
            triangle_.vertices[0] = a;
            triangle_.vertices[1] = c;
            triangle_.vertices[2] = b;
          }
        }
        else
        {
          triangle_.vertices[0] = a;
          triangle_.vertices[1] = b;
          triangle_.vertices[2] = c;
        }
        polygons.push_back (triangle_);
      }

      /** \brief Add a new vertex to the advancing edge front and set its source point
        * \param[in] v index of the vertex that was connected
        * \param[in] s index of the source point
        */
      inline void
      addFringePoint (int v, int s)
      {
        source_[v] = s;
        part_[v] = part_[s];
        fringe_queue_.push_back(v);
      }

      /** \brief Function for ascending sort of nnAngle, taking visibility into account
        * (angles to visible neighbors will be first, to the invisible ones after).
        * \param[in] a1 the first angle
        * \param[in] a2 the second angle
        */
      static inline bool 
      nnAngleSortAsc (const nnAngle& a1, const nnAngle& a2)
      {
        if (a1.visible == a2.visible)
          return (a1.angle < a2.angle);
        else
          return a1.visible;
      }
  };

} // namespace pcl

#ifdef PCL_NO_PRECOMPILE
#include <pcl/surface/impl/gp3.hpp>
#endif

#endif  //#ifndef PCL_GP3_H_