/usr/include/pcl-1.7/pcl/surface/mls.h is in libpcl-dev 1.7.2-14build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 | /*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2009-2011, Willow Garage, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#ifndef PCL_MLS_H_
#define PCL_MLS_H_
// PCL includes
#include <pcl/pcl_base.h>
#include <pcl/search/pcl_search.h>
#include <pcl/common/common.h>
#include <pcl/surface/boost.h>
#include <pcl/surface/eigen.h>
#include <pcl/surface/processing.h>
#include <map>
namespace pcl
{
/** \brief MovingLeastSquares represent an implementation of the MLS (Moving Least Squares) algorithm
* for data smoothing and improved normal estimation. It also contains methods for upsampling the
* resulting cloud based on the parametric fit.
* Reference paper: "Computing and Rendering Point Set Surfaces" by Marc Alexa, Johannes Behr,
* Daniel Cohen-Or, Shachar Fleishman, David Levin and Claudio T. Silva
* www.sci.utah.edu/~shachar/Publications/crpss.pdf
* \author Zoltan Csaba Marton, Radu B. Rusu, Alexandru E. Ichim, Suat Gedikli
* \ingroup surface
*/
template <typename PointInT, typename PointOutT>
class MovingLeastSquares: public CloudSurfaceProcessing<PointInT, PointOutT>
{
public:
typedef boost::shared_ptr<MovingLeastSquares<PointInT, PointOutT> > Ptr;
typedef boost::shared_ptr<const MovingLeastSquares<PointInT, PointOutT> > ConstPtr;
using PCLBase<PointInT>::input_;
using PCLBase<PointInT>::indices_;
using PCLBase<PointInT>::fake_indices_;
using PCLBase<PointInT>::initCompute;
using PCLBase<PointInT>::deinitCompute;
typedef typename pcl::search::Search<PointInT> KdTree;
typedef typename pcl::search::Search<PointInT>::Ptr KdTreePtr;
typedef pcl::PointCloud<pcl::Normal> NormalCloud;
typedef pcl::PointCloud<pcl::Normal>::Ptr NormalCloudPtr;
typedef pcl::PointCloud<PointOutT> PointCloudOut;
typedef typename PointCloudOut::Ptr PointCloudOutPtr;
typedef typename PointCloudOut::ConstPtr PointCloudOutConstPtr;
typedef pcl::PointCloud<PointInT> PointCloudIn;
typedef typename PointCloudIn::Ptr PointCloudInPtr;
typedef typename PointCloudIn::ConstPtr PointCloudInConstPtr;
typedef boost::function<int (int, double, std::vector<int> &, std::vector<float> &)> SearchMethod;
enum UpsamplingMethod {NONE, DISTINCT_CLOUD, SAMPLE_LOCAL_PLANE, RANDOM_UNIFORM_DENSITY, VOXEL_GRID_DILATION};
/** \brief Empty constructor. */
MovingLeastSquares () : CloudSurfaceProcessing<PointInT, PointOutT> (),
normals_ (),
distinct_cloud_ (),
search_method_ (),
tree_ (),
order_ (2),
polynomial_fit_ (true),
search_radius_ (0.0),
sqr_gauss_param_ (0.0),
compute_normals_ (false),
upsample_method_ (NONE),
upsampling_radius_ (0.0),
upsampling_step_ (0.0),
desired_num_points_in_radius_ (0),
mls_results_ (),
voxel_size_ (1.0),
dilation_iteration_num_ (0),
nr_coeff_ (),
corresponding_input_indices_ (),
rng_alg_ (),
rng_uniform_distribution_ ()
{};
/** \brief Empty destructor */
virtual ~MovingLeastSquares () {}
/** \brief Set whether the algorithm should also store the normals computed
* \note This is optional, but need a proper output cloud type
*/
inline void
setComputeNormals (bool compute_normals) { compute_normals_ = compute_normals; }
/** \brief Provide a pointer to the search object.
* \param[in] tree a pointer to the spatial search object.
*/
inline void
setSearchMethod (const KdTreePtr &tree)
{
tree_ = tree;
// Declare the search locator definition
int (KdTree::*radiusSearch)(int index, double radius, std::vector<int> &k_indices, std::vector<float> &k_sqr_distances, unsigned int max_nn) const = &KdTree::radiusSearch;
search_method_ = boost::bind (radiusSearch, boost::ref (tree_), _1, _2, _3, _4, 0);
}
/** \brief Get a pointer to the search method used. */
inline KdTreePtr
getSearchMethod () { return (tree_); }
/** \brief Set the order of the polynomial to be fit.
* \param[in] order the order of the polynomial
*/
inline void
setPolynomialOrder (int order) { order_ = order; }
/** \brief Get the order of the polynomial to be fit. */
inline int
getPolynomialOrder () { return (order_); }
/** \brief Sets whether the surface and normal are approximated using a polynomial, or only via tangent estimation.
* \param[in] polynomial_fit set to true for polynomial fit
*/
inline void
setPolynomialFit (bool polynomial_fit) { polynomial_fit_ = polynomial_fit; }
/** \brief Get the polynomial_fit value (true if the surface and normal are approximated using a polynomial). */
inline bool
getPolynomialFit () { return (polynomial_fit_); }
/** \brief Set the sphere radius that is to be used for determining the k-nearest neighbors used for fitting.
* \param[in] radius the sphere radius that is to contain all k-nearest neighbors
* \note Calling this method resets the squared Gaussian parameter to radius * radius !
*/
inline void
setSearchRadius (double radius) { search_radius_ = radius; sqr_gauss_param_ = search_radius_ * search_radius_; }
/** \brief Get the sphere radius used for determining the k-nearest neighbors. */
inline double
getSearchRadius () { return (search_radius_); }
/** \brief Set the parameter used for distance based weighting of neighbors (the square of the search radius works
* best in general).
* \param[in] sqr_gauss_param the squared Gaussian parameter
*/
inline void
setSqrGaussParam (double sqr_gauss_param) { sqr_gauss_param_ = sqr_gauss_param; }
/** \brief Get the parameter for distance based weighting of neighbors. */
inline double
getSqrGaussParam () const { return (sqr_gauss_param_); }
/** \brief Set the upsampling method to be used
* \param method
* \note Options are: * NONE - no upsampling will be done, only the input points will be projected to their own
* MLS surfaces
* * DISTINCT_CLOUD - will project the points of the distinct cloud to the closest point on
* the MLS surface
* * SAMPLE_LOCAL_PLANE - the local plane of each input point will be sampled in a circular
* fashion using the \ref upsampling_radius_ and the \ref upsampling_step_
* parameters
* * RANDOM_UNIFORM_DENSITY - the local plane of each input point will be sampled using an
* uniform random distribution such that the density of points is
* constant throughout the cloud - given by the \ref desired_num_points_in_radius_
* parameter
* * VOXEL_GRID_DILATION - the input cloud will be inserted into a voxel grid with voxels of
* size \ref voxel_size_; this voxel grid will be dilated \ref dilation_iteration_num_
* times and the resulting points will be projected to the MLS surface
* of the closest point in the input cloud; the result is a point cloud
* with filled holes and a constant point density
*/
inline void
setUpsamplingMethod (UpsamplingMethod method) { upsample_method_ = method; }
/** \brief Set the distinct cloud used for the DISTINCT_CLOUD upsampling method. */
inline void
setDistinctCloud (PointCloudInConstPtr distinct_cloud) { distinct_cloud_ = distinct_cloud; }
/** \brief Get the distinct cloud used for the DISTINCT_CLOUD upsampling method. */
inline PointCloudInConstPtr
getDistinctCloud () { return distinct_cloud_; }
/** \brief Set the radius of the circle in the local point plane that will be sampled
* \note Used only in the case of SAMPLE_LOCAL_PLANE upsampling
* \param[in] radius the radius of the circle
*/
inline void
setUpsamplingRadius (double radius) { upsampling_radius_ = radius; }
/** \brief Get the radius of the circle in the local point plane that will be sampled
* \note Used only in the case of SAMPLE_LOCAL_PLANE upsampling
*/
inline double
getUpsamplingRadius () { return upsampling_radius_; }
/** \brief Set the step size for the local plane sampling
* \note Used only in the case of SAMPLE_LOCAL_PLANE upsampling
* \param[in] step_size the step size
*/
inline void
setUpsamplingStepSize (double step_size) { upsampling_step_ = step_size; }
/** \brief Get the step size for the local plane sampling
* \note Used only in the case of SAMPLE_LOCAL_PLANE upsampling
*/
inline double
getUpsamplingStepSize () { return upsampling_step_; }
/** \brief Set the parameter that specifies the desired number of points within the search radius
* \note Used only in the case of RANDOM_UNIFORM_DENSITY upsampling
* \param[in] desired_num_points_in_radius the desired number of points in the output cloud in a sphere of
* radius \ref search_radius_ around each point
*/
inline void
setPointDensity (int desired_num_points_in_radius) { desired_num_points_in_radius_ = desired_num_points_in_radius; }
/** \brief Get the parameter that specifies the desired number of points within the search radius
* \note Used only in the case of RANDOM_UNIFORM_DENSITY upsampling
*/
inline int
getPointDensity () { return desired_num_points_in_radius_; }
/** \brief Set the voxel size for the voxel grid
* \note Used only in the VOXEL_GRID_DILATION upsampling method
* \param[in] voxel_size the edge length of a cubic voxel in the voxel grid
*/
inline void
setDilationVoxelSize (float voxel_size) { voxel_size_ = voxel_size; }
/** \brief Get the voxel size for the voxel grid
* \note Used only in the VOXEL_GRID_DILATION upsampling method
*/
inline float
getDilationVoxelSize () { return voxel_size_; }
/** \brief Set the number of dilation steps of the voxel grid
* \note Used only in the VOXEL_GRID_DILATION upsampling method
* \param[in] iterations the number of dilation iterations
*/
inline void
setDilationIterations (int iterations) { dilation_iteration_num_ = iterations; }
/** \brief Get the number of dilation steps of the voxel grid
* \note Used only in the VOXEL_GRID_DILATION upsampling method
*/
inline int
getDilationIterations () { return dilation_iteration_num_; }
/** \brief Base method for surface reconstruction for all points given in <setInputCloud (), setIndices ()>
* \param[out] output the resultant reconstructed surface model
*/
void
process (PointCloudOut &output);
/** \brief Get the set of indices with each point in output having the
* corresponding point in input */
inline PointIndicesPtr
getCorrespondingIndices () { return (corresponding_input_indices_); }
protected:
/** \brief The point cloud that will hold the estimated normals, if set. */
NormalCloudPtr normals_;
/** \brief The distinct point cloud that will be projected to the MLS surface. */
PointCloudInConstPtr distinct_cloud_;
/** \brief The search method template for indices. */
SearchMethod search_method_;
/** \brief A pointer to the spatial search object. */
KdTreePtr tree_;
/** \brief The order of the polynomial to be fit. */
int order_;
/** True if the surface and normal be approximated using a polynomial, false if tangent estimation is sufficient. */
bool polynomial_fit_;
/** \brief The nearest neighbors search radius for each point. */
double search_radius_;
/** \brief Parameter for distance based weighting of neighbors (search_radius_ * search_radius_ works fine) */
double sqr_gauss_param_;
/** \brief Parameter that specifies whether the normals should be computed for the input cloud or not */
bool compute_normals_;
/** \brief Parameter that specifies the upsampling method to be used */
UpsamplingMethod upsample_method_;
/** \brief Radius of the circle in the local point plane that will be sampled
* \note Used only in the case of SAMPLE_LOCAL_PLANE upsampling
*/
double upsampling_radius_;
/** \brief Step size for the local plane sampling
* \note Used only in the case of SAMPLE_LOCAL_PLANE upsampling
*/
double upsampling_step_;
/** \brief Parameter that specifies the desired number of points within the search radius
* \note Used only in the case of RANDOM_UNIFORM_DENSITY upsampling
*/
int desired_num_points_in_radius_;
/** \brief Data structure used to store the results of the MLS fitting
* \note Used only in the case of VOXEL_GRID_DILATION or DISTINCT_CLOUD upsampling
*/
struct MLSResult
{
MLSResult () : mean (), plane_normal (), u_axis (), v_axis (), c_vec (), num_neighbors (), curvature (), valid (false) {}
MLSResult (const Eigen::Vector3d &a_mean,
const Eigen::Vector3d &a_plane_normal,
const Eigen::Vector3d &a_u,
const Eigen::Vector3d &a_v,
const Eigen::VectorXd a_c_vec,
const int a_num_neighbors,
const float &a_curvature);
Eigen::Vector3d mean, plane_normal, u_axis, v_axis;
Eigen::VectorXd c_vec;
int num_neighbors;
float curvature;
bool valid;
};
/** \brief Stores the MLS result for each point in the input cloud
* \note Used only in the case of VOXEL_GRID_DILATION or DISTINCT_CLOUD upsampling
*/
std::vector<MLSResult> mls_results_;
/** \brief A minimalistic implementation of a voxel grid, necessary for the point cloud upsampling
* \note Used only in the case of VOXEL_GRID_DILATION upsampling
*/
class MLSVoxelGrid
{
public:
struct Leaf { Leaf () : valid (true) {} bool valid; };
MLSVoxelGrid (PointCloudInConstPtr& cloud,
IndicesPtr &indices,
float voxel_size);
void
dilate ();
inline void
getIndexIn1D (const Eigen::Vector3i &index, uint64_t &index_1d) const
{
index_1d = index[0] * data_size_ * data_size_ +
index[1] * data_size_ + index[2];
}
inline void
getIndexIn3D (uint64_t index_1d, Eigen::Vector3i& index_3d) const
{
index_3d[0] = static_cast<Eigen::Vector3i::Scalar> (index_1d / (data_size_ * data_size_));
index_1d -= index_3d[0] * data_size_ * data_size_;
index_3d[1] = static_cast<Eigen::Vector3i::Scalar> (index_1d / data_size_);
index_1d -= index_3d[1] * data_size_;
index_3d[2] = static_cast<Eigen::Vector3i::Scalar> (index_1d);
}
inline void
getCellIndex (const Eigen::Vector3f &p, Eigen::Vector3i& index) const
{
for (int i = 0; i < 3; ++i)
index[i] = static_cast<Eigen::Vector3i::Scalar> ((p[i] - bounding_min_(i)) / voxel_size_);
}
inline void
getPosition (const uint64_t &index_1d, Eigen::Vector3f &point) const
{
Eigen::Vector3i index_3d;
getIndexIn3D (index_1d, index_3d);
for (int i = 0; i < 3; ++i)
point[i] = static_cast<Eigen::Vector3f::Scalar> (index_3d[i]) * voxel_size_ + bounding_min_[i];
}
typedef std::map<uint64_t, Leaf> HashMap;
HashMap voxel_grid_;
Eigen::Vector4f bounding_min_, bounding_max_;
uint64_t data_size_;
float voxel_size_;
};
/** \brief Voxel size for the VOXEL_GRID_DILATION upsampling method */
float voxel_size_;
/** \brief Number of dilation steps for the VOXEL_GRID_DILATION upsampling method */
int dilation_iteration_num_;
/** \brief Number of coefficients, to be computed from the requested order.*/
int nr_coeff_;
/** \brief Collects for each point in output the corrseponding point in the input. */
PointIndicesPtr corresponding_input_indices_;
/** \brief Search for the closest nearest neighbors of a given point using a radius search
* \param[in] index the index of the query point
* \param[out] indices the resultant vector of indices representing the k-nearest neighbors
* \param[out] sqr_distances the resultant squared distances from the query point to the k-nearest neighbors
*/
inline int
searchForNeighbors (int index, std::vector<int> &indices, std::vector<float> &sqr_distances) const
{
return (search_method_ (index, search_radius_, indices, sqr_distances));
}
/** \brief Smooth a given point and its neighborghood using Moving Least Squares.
* \param[in] index the inex of the query point in the input cloud
* \param[in] nn_indices the set of nearest neighbors indices for pt
* \param[in] nn_sqr_dists the set of nearest neighbors squared distances for pt
* \param[out] projected_points the set of points projected points around the query point
* (in the case of upsampling method NONE, only the query point projected to its own fitted surface will be returned,
* in the case of the other upsampling methods, multiple points will be returned)
* \param[out] projected_points_normals the normals corresponding to the projected points
* \param[out] corresponding_input_indices the set of indices with each point in output having the corresponding point in input
* \param[out] mls_result stores the MLS result for each point in the input cloud
* (used only in the case of VOXEL_GRID_DILATION or DISTINCT_CLOUD upsampling)
*/
void
computeMLSPointNormal (int index,
const std::vector<int> &nn_indices,
std::vector<float> &nn_sqr_dists,
PointCloudOut &projected_points,
NormalCloud &projected_points_normals,
PointIndices &corresponding_input_indices,
MLSResult &mls_result) const;
/** \brief Fits a point (sample point) given in the local plane coordinates of an input point (query point) to
* the MLS surface of the input point
* \param[in] u_disp the u coordinate of the sample point in the local plane of the query point
* \param[in] v_disp the v coordinate of the sample point in the local plane of the query point
* \param[in] u_axis the axis corresponding to the u-coordinates of the local plane of the query point
* \param[in] v_axis the axis corresponding to the v-coordinates of the local plane of the query point
* \param[in] n_axis
* \param mean
* \param[in] curvature the curvature of the surface at the query point
* \param[in] c_vec the coefficients of the polynomial fit on the MLS surface of the query point
* \param[in] num_neighbors the number of neighbors of the query point in the input cloud
* \param[out] result_point the absolute 3D position of the resulting projected point
* \param[out] result_normal the normal of the resulting projected point
*/
void
projectPointToMLSSurface (float &u_disp, float &v_disp,
Eigen::Vector3d &u_axis, Eigen::Vector3d &v_axis,
Eigen::Vector3d &n_axis,
Eigen::Vector3d &mean,
float &curvature,
Eigen::VectorXd &c_vec,
int num_neighbors,
PointOutT &result_point,
pcl::Normal &result_normal) const;
void
copyMissingFields (const PointInT &point_in,
PointOutT &point_out) const;
/** \brief Abstract surface reconstruction method.
* \param[out] output the result of the reconstruction
*/
virtual void performProcessing (PointCloudOut &output);
/** \brief Perform upsampling for the distinct-cloud and voxel-grid methods
* \param[out] output the result of the reconstruction
*/
void performUpsampling (PointCloudOut &output);
private:
/** \brief Boost-based random number generator algorithm. */
boost::mt19937 rng_alg_;
/** \brief Random number generator using an uniform distribution of floats
* \note Used only in the case of RANDOM_UNIFORM_DENSITY upsampling
*/
boost::shared_ptr<boost::variate_generator<boost::mt19937&,
boost::uniform_real<float> >
> rng_uniform_distribution_;
/** \brief Abstract class get name method. */
std::string getClassName () const { return ("MovingLeastSquares"); }
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};
#ifdef _OPENMP
/** \brief MovingLeastSquaresOMP is a parallelized version of MovingLeastSquares, using the OpenMP standard.
* \note Compared to MovingLeastSquares, an overhead is incurred in terms of runtime and memory usage.
* \note The upsampling methods DISTINCT_CLOUD and VOXEL_GRID_DILATION are not parallelized completely, i.e. parts of the algorithm run on a single thread only.
* \author Robert Huitl
* \ingroup surface
*/
template <typename PointInT, typename PointOutT>
class MovingLeastSquaresOMP: public MovingLeastSquares<PointInT, PointOutT>
{
public:
typedef boost::shared_ptr<MovingLeastSquares<PointInT, PointOutT> > Ptr;
typedef boost::shared_ptr<const MovingLeastSquares<PointInT, PointOutT> > ConstPtr;
using PCLBase<PointInT>::input_;
using PCLBase<PointInT>::indices_;
using MovingLeastSquares<PointInT, PointOutT>::normals_;
using MovingLeastSquares<PointInT, PointOutT>::corresponding_input_indices_;
using MovingLeastSquares<PointInT, PointOutT>::nr_coeff_;
using MovingLeastSquares<PointInT, PointOutT>::order_;
using MovingLeastSquares<PointInT, PointOutT>::compute_normals_;
using MovingLeastSquares<PointInT, PointOutT>::upsample_method_;
using MovingLeastSquares<PointInT, PointOutT>::VOXEL_GRID_DILATION;
using MovingLeastSquares<PointInT, PointOutT>::DISTINCT_CLOUD;
typedef pcl::PointCloud<pcl::Normal> NormalCloud;
typedef pcl::PointCloud<pcl::Normal>::Ptr NormalCloudPtr;
typedef pcl::PointCloud<PointOutT> PointCloudOut;
typedef typename PointCloudOut::Ptr PointCloudOutPtr;
typedef typename PointCloudOut::ConstPtr PointCloudOutConstPtr;
/** \brief Constructor for parallelized Moving Least Squares
* \param threads the maximum number of hardware threads to use (0 sets the value to 1)
*/
MovingLeastSquaresOMP (unsigned int threads = 0) : threads_ (threads)
{
}
/** \brief Set the maximum number of threads to use
* \param threads the maximum number of hardware threads to use (0 sets the value to 1)
*/
inline void
setNumberOfThreads (unsigned int threads = 0)
{
threads_ = threads;
}
protected:
/** \brief Abstract surface reconstruction method.
* \param[out] output the result of the reconstruction
*/
virtual void performProcessing (PointCloudOut &output);
/** \brief The maximum number of threads the scheduler should use. */
unsigned int threads_;
};
#endif
}
#ifdef PCL_NO_PRECOMPILE
#include <pcl/surface/impl/mls.hpp>
#endif
#endif /* #ifndef PCL_MLS_H_ */
|