This file is indexed.

/usr/include/d/std/container/binaryheap.d is in libphobos2-ldc-dev 1:0.17.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
/**
This module provides a $(D BinaryHeap) adaptor that makes a binary heap out of
any user-provided random-access range.

This module is a submodule of $(LINK2 std_container.html, std.container).

Source: $(PHOBOSSRC std/container/_binaryheap.d)
Macros:
WIKI = Phobos/StdContainer
TEXTWITHCOMMAS = $0

Copyright: Red-black tree code copyright (C) 2008- by Steven Schveighoffer. Other code
copyright 2010- Andrei Alexandrescu. All rights reserved by the respective holders.

License: Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at $(WEB
boost.org/LICENSE_1_0.txt)).

Authors: Steven Schveighoffer, $(WEB erdani.com, Andrei Alexandrescu)
*/
module std.container.binaryheap;

import std.range.primitives;
import std.traits;

public import std.container.util;

// BinaryHeap
/**
Implements a $(WEB en.wikipedia.org/wiki/Binary_heap, binary heap)
container on top of a given random-access range type (usually $(D
T[])) or a random-access container type (usually $(D Array!T)). The
documentation of $(D BinaryHeap) will refer to the underlying range or
container as the $(I store) of the heap.

The binary heap induces structure over the underlying store such that
accessing the largest element (by using the $(D front) property) is a
$(BIGOH 1) operation and extracting it (by using the $(D
removeFront()) method) is done fast in $(BIGOH log n) time.

If $(D less) is the less-than operator, which is the default option,
then $(D BinaryHeap) defines a so-called max-heap that optimizes
extraction of the $(I largest) elements. To define a min-heap,
instantiate BinaryHeap with $(D "a > b") as its predicate.

Simply extracting elements from a $(D BinaryHeap) container is
tantamount to lazily fetching elements of $(D Store) in descending
order. Extracting elements from the $(D BinaryHeap) to completion
leaves the underlying store sorted in ascending order but, again,
yields elements in descending order.

If $(D Store) is a range, the $(D BinaryHeap) cannot grow beyond the
size of that range. If $(D Store) is a container that supports $(D
insertBack), the $(D BinaryHeap) may grow by adding elements to the
container.
     */
struct BinaryHeap(Store, alias less = "a < b")
if (isRandomAccessRange!(Store) || isRandomAccessRange!(typeof(Store.init[])))
{
    import std.functional : binaryFun;
    import std.exception : enforce;
    import std.algorithm : move, min;
    import std.typecons : RefCounted, RefCountedAutoInitialize;

// Really weird @@BUG@@: if you comment out the "private:" label below,
// std.algorithm can't unittest anymore
//private:

    // The payload includes the support store and the effective length
    private static struct Data
    {
        Store _store;
        size_t _length;
    }
    private RefCounted!(Data, RefCountedAutoInitialize.no) _payload;
    // Comparison predicate
    private alias comp = binaryFun!(less);
    // Convenience accessors
    private @property ref Store _store()
    {
        assert(_payload.refCountedStore.isInitialized);
        return _payload._store;
    }
    private @property ref size_t _length()
    {
        assert(_payload.refCountedStore.isInitialized);
        return _payload._length;
    }

    // Asserts that the heap property is respected.
    private void assertValid()
    {
        debug
        {
            import std.conv : to;
            if (!_payload.refCountedStore.isInitialized) return;
            if (_length < 2) return;
            for (size_t n = _length - 1; n >= 1; --n)
            {
                auto parentIdx = (n - 1) / 2;
                assert(!comp(_store[parentIdx], _store[n]), to!string(n));
            }
        }
    }

    // Assuming the element at index i perturbs the heap property in
    // store r, percolates it down the heap such that the heap
    // property is restored.
    private void percolateDown(Store r, size_t i, size_t length)
    {
        for (;;)
        {
            auto left = i * 2 + 1, right = left + 1;
            if (right == length)
            {
                if (comp(r[i], r[left])) swap(r, i, left);
                return;
            }
            if (right > length) return;
            assert(left < length && right < length);
            auto largest = comp(r[i], r[left])
                ? (comp(r[left], r[right]) ? right : left)
                : (comp(r[i], r[right]) ? right : i);
            if (largest == i) return;
            swap(r, i, largest);
            i = largest;
        }
    }

    // @@@BUG@@@: add private here, std.algorithm doesn't unittest anymore
    /*private*/ void pop(Store store)
    {
        assert(!store.empty, "Cannot pop an empty store.");
        if (store.length == 1) return;
        auto t1 = moveFront(store[]);
        auto t2 = moveBack(store[]);
        store.front = move(t2);
        store.back = move(t1);
        percolateDown(store, 0, store.length - 1);
    }

    /*private*/ static void swap(Store _store, size_t i, size_t j)
    {
        static if (is(typeof(swap(_store[i], _store[j]))))
        {
            swap(_store[i], _store[j]);
        }
        else static if (is(typeof(_store.moveAt(i))))
        {
            auto t1 = _store.moveAt(i);
            auto t2 = _store.moveAt(j);
            _store[i] = move(t2);
            _store[j] = move(t1);
        }
        else // assume it's a container and access its range with []
        {
            auto t1 = _store[].moveAt(i);
            auto t2 = _store[].moveAt(j);
            _store[i] = move(t2);
            _store[j] = move(t1);
        }
    }

public:

    /**
       Converts the store $(D s) into a heap. If $(D initialSize) is
       specified, only the first $(D initialSize) elements in $(D s)
       are transformed into a heap, after which the heap can grow up
       to $(D r.length) (if $(D Store) is a range) or indefinitely (if
       $(D Store) is a container with $(D insertBack)). Performs
       $(BIGOH min(r.length, initialSize)) evaluations of $(D less).
     */
    this(Store s, size_t initialSize = size_t.max)
    {
        acquire(s, initialSize);
    }

/**
Takes ownership of a store. After this, manipulating $(D s) may make
the heap work incorrectly.
     */
    void acquire(Store s, size_t initialSize = size_t.max)
    {
        _payload.refCountedStore.ensureInitialized();
        _store = move(s);
        _length = min(_store.length, initialSize);
        if (_length < 2) return;
        for (auto i = (_length - 2) / 2; ; )
        {
            this.percolateDown(_store, i, _length);
            if (i-- == 0) break;
        }
        assertValid();
    }

/**
Takes ownership of a store assuming it already was organized as a
heap.
     */
    void assume(Store s, size_t initialSize = size_t.max)
    {
        _payload.refCountedStore.ensureInitialized();
        _store = s;
        _length = min(_store.length, initialSize);
        assertValid();
    }

/**
Clears the heap. Returns the portion of the store from $(D 0) up to
$(D length), which satisfies the $(LUCKY heap property).
     */
    auto release()
    {
        if (!_payload.refCountedStore.isInitialized)
        {
            return typeof(_store[0 .. _length]).init;
        }
        assertValid();
        auto result = _store[0 .. _length];
        _payload = _payload.init;
        return result;
    }

/**
Returns $(D true) if the heap is _empty, $(D false) otherwise.
     */
    @property bool empty()
    {
        return !length;
    }

/**
Returns a duplicate of the heap. The underlying store must also
support a $(D dup) method.
     */
    @property BinaryHeap dup()
    {
        BinaryHeap result;
        if (!_payload.refCountedStore.isInitialized) return result;
        result.assume(_store.dup, length);
        return result;
    }

/**
Returns the _length of the heap.
     */
    @property size_t length()
    {
        return _payload.refCountedStore.isInitialized ? _length : 0;
    }

/**
Returns the _capacity of the heap, which is the length of the
underlying store (if the store is a range) or the _capacity of the
underlying store (if the store is a container).
     */
    @property size_t capacity()
    {
        if (!_payload.refCountedStore.isInitialized) return 0;
        static if (is(typeof(_store.capacity) : size_t))
        {
            return _store.capacity;
        }
        else
        {
            return _store.length;
        }
    }

/**
Returns a copy of the _front of the heap, which is the largest element
according to $(D less).
     */
    @property ElementType!Store front()
    {
        enforce(!empty, "Cannot call front on an empty heap.");
        return _store.front;
    }

/**
Clears the heap by detaching it from the underlying store.
     */
    void clear()
    {
        _payload = _payload.init;
    }

/**
Inserts $(D value) into the store. If the underlying store is a range
and $(D length == capacity), throws an exception.
     */
    size_t insert(ElementType!Store value)
    {
        static if (is(typeof(_store.insertBack(value))))
        {
            _payload.refCountedStore.ensureInitialized();
            if (length == _store.length)
            {
                // reallocate
                _store.insertBack(value);
            }
            else
            {
                // no reallocation
                _store[_length] = value;
            }
        }
        else
        {
            // can't grow
            enforce(length < _store.length,
                    "Cannot grow a heap created over a range");
            _store[_length] = value;
        }

        // sink down the element
        for (size_t n = _length; n; )
        {
            auto parentIdx = (n - 1) / 2;
            if (!comp(_store[parentIdx], _store[n])) break; // done!
            // must swap and continue
            swap(_store, parentIdx, n);
            n = parentIdx;
        }
        ++_length;
        debug(BinaryHeap) assertValid();
        return 1;
    }

/**
Removes the largest element from the heap.
     */
    void removeFront()
    {
        enforce(!empty, "Cannot call removeFront on an empty heap.");
        if (_length > 1)
        {
            auto t1 = moveFront(_store[]);
            auto t2 = moveAt(_store[], _length - 1);
            _store.front = move(t2);
            _store[_length - 1] = move(t1);
        }
        --_length;
        percolateDown(_store, 0, _length);
    }

    /// ditto
    alias popFront = removeFront;

/**
Removes the largest element from the heap and returns a copy of
it. The element still resides in the heap's store. For performance
reasons you may want to use $(D removeFront) with heaps of objects
that are expensive to copy.
     */
    ElementType!Store removeAny()
    {
        removeFront();
        return _store[_length];
    }

/**
Replaces the largest element in the store with $(D value).
     */
    void replaceFront(ElementType!Store value)
    {
        // must replace the top
        assert(!empty, "Cannot call replaceFront on an empty heap.");
        _store.front = value;
        percolateDown(_store, 0, _length);
        debug(BinaryHeap) assertValid();
    }

/**
If the heap has room to grow, inserts $(D value) into the store and
returns $(D true). Otherwise, if $(D less(value, front)), calls $(D
replaceFront(value)) and returns again $(D true). Otherwise, leaves
the heap unaffected and returns $(D false). This method is useful in
scenarios where the smallest $(D k) elements of a set of candidates
must be collected.
     */
    bool conditionalInsert(ElementType!Store value)
    {
        _payload.refCountedStore.ensureInitialized();
        if (_length < _store.length)
        {
            insert(value);
            return true;
        }
        // must replace the top
        assert(!_store.empty, "Cannot replace front of an empty heap.");
        if (!comp(value, _store.front)) return false; // value >= largest
        _store.front = value;
        percolateDown(_store, 0, _length);
        debug(BinaryHeap) assertValid();
        return true;
    }
}

/// Example from "Introduction to Algorithms" Cormen et al, p 146
unittest
{
    import std.algorithm : equal;
    int[] a = [ 4, 1, 3, 2, 16, 9, 10, 14, 8, 7 ];
    auto h = heapify(a);
    // largest element
    assert(h.front == 16);
    // a has the heap property
    assert(equal(a, [ 16, 14, 10, 8, 7, 9, 3, 2, 4, 1 ]));
}

/// $(D BinaryHeap) implements the standard input range interface, allowing
/// lazy iteration of the underlying range in descending order.
unittest
{
    import std.algorithm : equal;
    import std.range : take;
    int[] a = [4, 1, 3, 2, 16, 9, 10, 14, 8, 7];
    auto top5 = heapify(a).take(5);
    assert(top5.equal([16, 14, 10, 9, 8]));
}

/**
Convenience function that returns a $(D BinaryHeap!Store) object
initialized with $(D s) and $(D initialSize).
 */
BinaryHeap!(Store, less) heapify(alias less = "a < b", Store)(Store s,
        size_t initialSize = size_t.max)
{
    return BinaryHeap!(Store, less)(s, initialSize);
}

unittest
{
    import std.conv : to;
    {
        // example from "Introduction to Algorithms" Cormen et al., p 146
        int[] a = [ 4, 1, 3, 2, 16, 9, 10, 14, 8, 7 ];
        auto h = heapify(a);
        h = heapify!"a < b"(a);
        assert(h.front == 16);
        assert(a == [ 16, 14, 10, 8, 7, 9, 3, 2, 4, 1 ]);
        auto witness = [ 16, 14, 10, 9, 8, 7, 4, 3, 2, 1 ];
        for (; !h.empty; h.removeFront(), witness.popFront())
        {
            assert(!witness.empty);
            assert(witness.front == h.front);
        }
        assert(witness.empty);
    }
    {
        int[] a = [ 4, 1, 3, 2, 16, 9, 10, 14, 8, 7 ];
        int[] b = new int[a.length];
        BinaryHeap!(int[]) h = BinaryHeap!(int[])(b, 0);
        foreach (e; a)
        {
            h.insert(e);
        }
        assert(b == [ 16, 14, 10, 8, 7, 3, 9, 1, 4, 2 ], to!string(b));
    }
}

unittest
{
    // Test range interface.
    import std.algorithm : equal;
    int[] a = [4, 1, 3, 2, 16, 9, 10, 14, 8, 7];
    auto h = heapify(a);
    static assert(isInputRange!(typeof(h)));
    assert(h.equal([16, 14, 10, 9, 8, 7, 4, 3, 2, 1]));
}