/usr/include/d/std/container/rbtree.d is in libphobos2-ldc-dev 1:0.17.1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 | /**
This module implements a red-black tree container.
This module is a submodule of $(LINK2 std_container.html, std.container).
Source: $(PHOBOSSRC std/container/_rbtree.d)
Macros:
WIKI = Phobos/StdContainer
TEXTWITHCOMMAS = $0
Copyright: Red-black tree code copyright (C) 2008- by Steven Schveighoffer. Other code
copyright 2010- Andrei Alexandrescu. All rights reserved by the respective holders.
License: Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at $(WEB
boost.org/LICENSE_1_0.txt)).
Authors: Steven Schveighoffer, $(WEB erdani.com, Andrei Alexandrescu)
*/
module std.container.rbtree;
import std.functional : binaryFun;
public import std.container.util;
version(unittest) debug = RBDoChecks;
//debug = RBDoChecks;
/*
* Implementation for a Red Black node for use in a Red Black Tree (see below)
*
* this implementation assumes we have a marker Node that is the parent of the
* root Node. This marker Node is not a valid Node, but marks the end of the
* collection. The root is the left child of the marker Node, so it is always
* last in the collection. The marker Node is passed in to the setColor
* function, and the Node which has this Node as its parent is assumed to be
* the root Node.
*
* A Red Black tree should have O(lg(n)) insertion, removal, and search time.
*/
struct RBNode(V)
{
/*
* Convenience alias
*/
alias Node = RBNode*;
private Node _left;
private Node _right;
private Node _parent;
/**
* The value held by this node
*/
V value;
/**
* Enumeration determining what color the node is. Null nodes are assumed
* to be black.
*/
enum Color : byte
{
Red,
Black
}
/**
* The color of the node.
*/
Color color;
/**
* Get the left child
*/
@property inout(RBNode)* left() inout
{
return _left;
}
/**
* Get the right child
*/
@property inout(RBNode)* right() inout
{
return _right;
}
/**
* Get the parent
*/
@property inout(RBNode)* parent() inout
{
return _parent;
}
/**
* Set the left child. Also updates the new child's parent node. This
* does not update the previous child.
*
* Returns newNode
*/
@property Node left(Node newNode)
{
_left = newNode;
if(newNode !is null)
newNode._parent = &this;
return newNode;
}
/**
* Set the right child. Also updates the new child's parent node. This
* does not update the previous child.
*
* Returns newNode
*/
@property Node right(Node newNode)
{
_right = newNode;
if(newNode !is null)
newNode._parent = &this;
return newNode;
}
// assume _left is not null
//
// performs rotate-right operation, where this is T, _right is R, _left is
// L, _parent is P:
//
// P P
// | -> |
// T L
// / \ / \
// L R a T
// / \ / \
// a b b R
//
/**
* Rotate right. This performs the following operations:
* - The left child becomes the parent of this node.
* - This node becomes the new parent's right child.
* - The old right child of the new parent becomes the left child of this
* node.
*/
Node rotateR()
in
{
assert(_left !is null);
}
body
{
// sets _left._parent also
if(isLeftNode)
parent.left = _left;
else
parent.right = _left;
Node tmp = _left._right;
// sets _parent also
_left.right = &this;
// sets tmp._parent also
left = tmp;
return &this;
}
// assumes _right is non null
//
// performs rotate-left operation, where this is T, _right is R, _left is
// L, _parent is P:
//
// P P
// | -> |
// T R
// / \ / \
// L R T b
// / \ / \
// a b L a
//
/**
* Rotate left. This performs the following operations:
* - The right child becomes the parent of this node.
* - This node becomes the new parent's left child.
* - The old left child of the new parent becomes the right child of this
* node.
*/
Node rotateL()
in
{
assert(_right !is null);
}
body
{
// sets _right._parent also
if(isLeftNode)
parent.left = _right;
else
parent.right = _right;
Node tmp = _right._left;
// sets _parent also
_right.left = &this;
// sets tmp._parent also
right = tmp;
return &this;
}
/**
* Returns true if this node is a left child.
*
* Note that this should always return a value because the root has a
* parent which is the marker node.
*/
@property bool isLeftNode() const
in
{
assert(_parent !is null);
}
body
{
return _parent._left is &this;
}
/**
* Set the color of the node after it is inserted. This performs an
* update to the whole tree, possibly rotating nodes to keep the Red-Black
* properties correct. This is an O(lg(n)) operation, where n is the
* number of nodes in the tree.
*
* end is the marker node, which is the parent of the topmost valid node.
*/
void setColor(Node end)
{
// test against the marker node
if(_parent !is end)
{
if(_parent.color == Color.Red)
{
Node cur = &this;
while(true)
{
// because root is always black, _parent._parent always exists
if(cur._parent.isLeftNode)
{
// parent is left node, y is 'uncle', could be null
Node y = cur._parent._parent._right;
if(y !is null && y.color == Color.Red)
{
cur._parent.color = Color.Black;
y.color = Color.Black;
cur = cur._parent._parent;
if(cur._parent is end)
{
// root node
cur.color = Color.Black;
break;
}
else
{
// not root node
cur.color = Color.Red;
if(cur._parent.color == Color.Black)
// satisfied, exit the loop
break;
}
}
else
{
if(!cur.isLeftNode)
cur = cur._parent.rotateL();
cur._parent.color = Color.Black;
cur = cur._parent._parent.rotateR();
cur.color = Color.Red;
// tree should be satisfied now
break;
}
}
else
{
// parent is right node, y is 'uncle'
Node y = cur._parent._parent._left;
if(y !is null && y.color == Color.Red)
{
cur._parent.color = Color.Black;
y.color = Color.Black;
cur = cur._parent._parent;
if(cur._parent is end)
{
// root node
cur.color = Color.Black;
break;
}
else
{
// not root node
cur.color = Color.Red;
if(cur._parent.color == Color.Black)
// satisfied, exit the loop
break;
}
}
else
{
if(cur.isLeftNode)
cur = cur._parent.rotateR();
cur._parent.color = Color.Black;
cur = cur._parent._parent.rotateL();
cur.color = Color.Red;
// tree should be satisfied now
break;
}
}
}
}
}
else
{
//
// this is the root node, color it black
//
color = Color.Black;
}
}
/**
* Remove this node from the tree. The 'end' node is used as the marker
* which is root's parent. Note that this cannot be null!
*
* Returns the next highest valued node in the tree after this one, or end
* if this was the highest-valued node.
*/
Node remove(Node end)
{
//
// remove this node from the tree, fixing the color if necessary.
//
Node x;
Node ret = next;
// if this node has 2 children
if (_left !is null && _right !is null)
{
//
// normally, we can just swap this node's and y's value, but
// because an iterator could be pointing to y and we don't want to
// disturb it, we swap this node and y's structure instead. This
// can also be a benefit if the value of the tree is a large
// struct, which takes a long time to copy.
//
Node yp, yl, yr;
Node y = ret; // y = next
yp = y._parent;
yl = y._left;
yr = y._right;
auto yc = y.color;
auto isyleft = y.isLeftNode;
//
// replace y's structure with structure of this node.
//
if(isLeftNode)
_parent.left = y;
else
_parent.right = y;
//
// need special case so y doesn't point back to itself
//
y.left = _left;
if(_right is y)
y.right = &this;
else
y.right = _right;
y.color = color;
//
// replace this node's structure with structure of y.
//
left = yl;
right = yr;
if(_parent !is y)
{
if(isyleft)
yp.left = &this;
else
yp.right = &this;
}
color = yc;
}
// if this has less than 2 children, remove it
if(_left !is null)
x = _left;
else
x = _right;
bool deferedUnlink = false;
if(x is null)
{
// pretend this is a null node, defer unlinking the node
x = &this;
deferedUnlink = true;
}
else if(isLeftNode)
_parent.left = x;
else
_parent.right = x;
// if the color of this is black, then it needs to be fixed
if(color == color.Black)
{
// need to recolor the tree.
while(x._parent !is end && x.color == Node.Color.Black)
{
if(x.isLeftNode)
{
// left node
Node w = x._parent._right;
if(w.color == Node.Color.Red)
{
w.color = Node.Color.Black;
x._parent.color = Node.Color.Red;
x._parent.rotateL();
w = x._parent._right;
}
Node wl = w.left;
Node wr = w.right;
if((wl is null || wl.color == Node.Color.Black) &&
(wr is null || wr.color == Node.Color.Black))
{
w.color = Node.Color.Red;
x = x._parent;
}
else
{
if(wr is null || wr.color == Node.Color.Black)
{
// wl cannot be null here
wl.color = Node.Color.Black;
w.color = Node.Color.Red;
w.rotateR();
w = x._parent._right;
}
w.color = x._parent.color;
x._parent.color = Node.Color.Black;
w._right.color = Node.Color.Black;
x._parent.rotateL();
x = end.left; // x = root
}
}
else
{
// right node
Node w = x._parent._left;
if(w.color == Node.Color.Red)
{
w.color = Node.Color.Black;
x._parent.color = Node.Color.Red;
x._parent.rotateR();
w = x._parent._left;
}
Node wl = w.left;
Node wr = w.right;
if((wl is null || wl.color == Node.Color.Black) &&
(wr is null || wr.color == Node.Color.Black))
{
w.color = Node.Color.Red;
x = x._parent;
}
else
{
if(wl is null || wl.color == Node.Color.Black)
{
// wr cannot be null here
wr.color = Node.Color.Black;
w.color = Node.Color.Red;
w.rotateL();
w = x._parent._left;
}
w.color = x._parent.color;
x._parent.color = Node.Color.Black;
w._left.color = Node.Color.Black;
x._parent.rotateR();
x = end.left; // x = root
}
}
}
x.color = Node.Color.Black;
}
if(deferedUnlink)
{
//
// unlink this node from the tree
//
if(isLeftNode)
_parent.left = null;
else
_parent.right = null;
}
// clean references to help GC - Bugzilla 12915
_left = _right = _parent = null;
return ret;
}
/**
* Return the leftmost descendant of this node.
*/
@property inout(RBNode)* leftmost() inout
{
inout(RBNode)* result = &this;
while(result._left !is null)
result = result._left;
return result;
}
/**
* Return the rightmost descendant of this node
*/
@property inout(RBNode)* rightmost() inout
{
inout(RBNode)* result = &this;
while(result._right !is null)
result = result._right;
return result;
}
/**
* Returns the next valued node in the tree.
*
* You should never call this on the marker node, as it is assumed that
* there is a valid next node.
*/
@property inout(RBNode)* next() inout
{
inout(RBNode)* n = &this;
if(n.right is null)
{
while(!n.isLeftNode)
n = n._parent;
return n._parent;
}
else
return n.right.leftmost;
}
/**
* Returns the previous valued node in the tree.
*
* You should never call this on the leftmost node of the tree as it is
* assumed that there is a valid previous node.
*/
@property inout(RBNode)* prev() inout
{
inout(RBNode)* n = &this;
if(n.left is null)
{
while(n.isLeftNode)
n = n._parent;
return n._parent;
}
else
return n.left.rightmost;
}
Node dup(scope Node delegate(V v) alloc)
{
//
// duplicate this and all child nodes
//
// The recursion should be lg(n), so we shouldn't have to worry about
// stack size.
//
Node copy = alloc(value);
copy.color = color;
if(_left !is null)
copy.left = _left.dup(alloc);
if(_right !is null)
copy.right = _right.dup(alloc);
return copy;
}
Node dup()
{
Node copy = new RBNode!V;
copy.value = value;
copy.color = color;
if(_left !is null)
copy.left = _left.dup();
if(_right !is null)
copy.right = _right.dup();
return copy;
}
}
//constness checks
unittest
{
const RBNode!int n;
static assert(is(typeof(n.leftmost)));
static assert(is(typeof(n.rightmost)));
static assert(is(typeof(n.next)));
static assert(is(typeof(n.prev)));
}
/**
* Implementation of a $(LUCKY red-black tree) container.
*
* All inserts, removes, searches, and any function in general has complexity
* of $(BIGOH lg(n)).
*
* To use a different comparison than $(D "a < b"), pass a different operator string
* that can be used by $(XREF functional, binaryFun), or pass in a
* function, delegate, functor, or any type where $(D less(a, b)) results in a $(D bool)
* value.
*
* Note that less should produce a strict ordering. That is, for two unequal
* elements $(D a) and $(D b), $(D less(a, b) == !less(b, a)). $(D less(a, a)) should
* always equal $(D false).
*
* If $(D allowDuplicates) is set to $(D true), then inserting the same element more than
* once continues to add more elements. If it is $(D false), duplicate elements are
* ignored on insertion. If duplicates are allowed, then new elements are
* inserted after all existing duplicate elements.
*/
final class RedBlackTree(T, alias less = "a < b", bool allowDuplicates = false)
if(is(typeof(binaryFun!less(T.init, T.init))))
{
import std.range.primitives;
import std.range : Take;
import std.typetuple : allSatisfy;
import std.traits;
alias _less = binaryFun!less;
version(unittest)
{
static if(is(typeof(less) == string))
{
private enum doUnittest = isIntegral!T && (less == "a < b" || less == "a > b");
}
else
enum doUnittest = false;
// note, this must be final so it does not affect the vtable layout
final bool arrayEqual(T[] arr)
{
if(walkLength(this[]) == arr.length)
{
foreach(v; arr)
{
if(!(v in this))
return false;
}
return true;
}
return false;
}
}
else
{
private enum doUnittest = false;
}
/**
* Element type for the tree
*/
alias Elem = T;
// used for convenience
private alias RBNode = .RBNode!Elem;
private alias Node = RBNode.Node;
private Node _end;
private Node _begin;
private size_t _length;
private void _setup()
{
assert(!_end); //Make sure that _setup isn't run more than once.
_begin = _end = allocate();
}
static private Node allocate()
{
return new RBNode;
}
static private Node allocate(Elem v)
{
auto result = allocate();
result.value = v;
return result;
}
/**
* The range type for $(D RedBlackTree)
*/
struct Range
{
private Node _begin;
private Node _end;
private this(Node b, Node e)
{
_begin = b;
_end = e;
}
/**
* Returns $(D true) if the range is _empty
*/
@property bool empty() const
{
return _begin is _end;
}
/**
* Returns the first element in the range
*/
@property Elem front()
{
return _begin.value;
}
/**
* Returns the last element in the range
*/
@property Elem back()
{
return _end.prev.value;
}
/**
* pop the front element from the range
*
* complexity: amortized $(BIGOH 1)
*/
void popFront()
{
_begin = _begin.next;
}
/**
* pop the back element from the range
*
* complexity: amortized $(BIGOH 1)
*/
void popBack()
{
_end = _end.prev;
}
/**
* Trivial _save implementation, needed for $(D isForwardRange).
*/
@property Range save()
{
return this;
}
}
static if(doUnittest) unittest
{
import std.algorithm : equal;
import std.range.primitives;
auto ts = new RedBlackTree(1, 2, 3, 4, 5);
assert(ts.length == 5);
auto r = ts[];
static if(less == "a < b")
auto vals = [1, 2, 3, 4, 5];
else
auto vals = [5, 4, 3, 2, 1];
assert(equal(r, vals));
assert(r.front == vals.front);
assert(r.back != r.front);
auto oldfront = r.front;
auto oldback = r.back;
r.popFront();
r.popBack();
assert(r.front != r.back);
assert(r.front != oldfront);
assert(r.back != oldback);
assert(ts.length == 5);
}
// find a node based on an element value
private inout(RBNode)* _find(Elem e) inout
{
static if(allowDuplicates)
{
inout(RBNode)* cur = _end.left;
inout(RBNode)* result = null;
while(cur)
{
if(_less(cur.value, e))
cur = cur.right;
else if(_less(e, cur.value))
cur = cur.left;
else
{
// want to find the left-most element
result = cur;
cur = cur.left;
}
}
return result;
}
else
{
inout(RBNode)* cur = _end.left;
while(cur)
{
if(_less(cur.value, e))
cur = cur.right;
else if(_less(e, cur.value))
cur = cur.left;
else
return cur;
}
return null;
}
}
// add an element to the tree, returns the node added, or the existing node
// if it has already been added and allowDuplicates is false
private auto _add(Elem n)
{
Node result;
static if(!allowDuplicates)
bool added = true;
if(!_end.left)
{
_end.left = _begin = result = allocate(n);
}
else
{
Node newParent = _end.left;
Node nxt = void;
while(true)
{
if(_less(n, newParent.value))
{
nxt = newParent.left;
if(nxt is null)
{
//
// add to right of new parent
//
newParent.left = result = allocate(n);
break;
}
}
else
{
static if(!allowDuplicates)
{
if(!_less(newParent.value, n))
{
result = newParent;
added = false;
break;
}
}
nxt = newParent.right;
if(nxt is null)
{
//
// add to right of new parent
//
newParent.right = result = allocate(n);
break;
}
}
newParent = nxt;
}
if(_begin.left)
_begin = _begin.left;
}
static if(allowDuplicates)
{
result.setColor(_end);
debug(RBDoChecks)
check();
++_length;
return result;
}
else
{
import std.typecons : Tuple;
if(added)
{
++_length;
result.setColor(_end);
}
debug(RBDoChecks)
check();
return Tuple!(bool, "added", Node, "n")(added, result);
}
}
/**
* Check if any elements exist in the container. Returns $(D false) if at least
* one element exists.
*/
@property bool empty()
{
return _end.left is null;
}
/++
Returns the number of elements in the container.
Complexity: $(BIGOH 1).
+/
@property size_t length() const
{
return _length;
}
/**
* Duplicate this container. The resulting container contains a shallow
* copy of the elements.
*
* Complexity: $(BIGOH n)
*/
@property RedBlackTree dup()
{
return new RedBlackTree(_end.dup(), _length);
}
static if(doUnittest) unittest
{
import std.algorithm : equal;
auto ts = new RedBlackTree(1, 2, 3, 4, 5);
assert(ts.length == 5);
auto ts2 = ts.dup;
assert(ts2.length == 5);
assert(equal(ts[], ts2[]));
ts2.insert(cast(Elem)6);
assert(!equal(ts[], ts2[]));
assert(ts.length == 5 && ts2.length == 6);
}
/**
* Fetch a range that spans all the elements in the container.
*
* Complexity: $(BIGOH 1)
*/
Range opSlice()
{
return Range(_begin, _end);
}
/**
* The front element in the container
*
* Complexity: $(BIGOH 1)
*/
Elem front()
{
return _begin.value;
}
/**
* The last element in the container
*
* Complexity: $(BIGOH log(n))
*/
Elem back()
{
return _end.prev.value;
}
/++
$(D in) operator. Check to see if the given element exists in the
container.
Complexity: $(BIGOH log(n))
+/
bool opBinaryRight(string op)(Elem e) const if (op == "in")
{
return _find(e) !is null;
}
static if(doUnittest) unittest
{
auto ts = new RedBlackTree(1, 2, 3, 4, 5);
assert(cast(Elem)3 in ts);
assert(cast(Elem)6 !in ts);
}
/**
* Compares two trees for equality.
*
* Complexity: $(BIGOH n)
*/
override bool opEquals(Object rhs)
{
import std.algorithm : equal;
RedBlackTree that = cast(RedBlackTree)rhs;
if (that is null) return false;
// If there aren't the same number of nodes, we can't be equal.
if (this._length != that._length) return false;
auto thisRange = this[];
auto thatRange = that[];
return equal!(function(Elem a, Elem b) => !_less(a,b) && !_less(b,a))
(thisRange, thatRange);
}
static if(doUnittest) unittest
{
auto t1 = new RedBlackTree(1,2,3,4);
auto t2 = new RedBlackTree(1,2,3,4);
auto t3 = new RedBlackTree(1,2,3,5);
auto t4 = new RedBlackTree(1,2,3,4,5);
auto o = new Object();
assert(t1 == t1);
assert(t1 == t2);
assert(t1 != t3);
assert(t1 != t4);
assert(t1 != o); // pathological case, must not crash
}
/**
* Removes all elements from the container.
*
* Complexity: $(BIGOH 1)
*/
void clear()
{
_end.left = null;
_begin = _end;
_length = 0;
}
static if(doUnittest) unittest
{
auto ts = new RedBlackTree(1,2,3,4,5);
assert(ts.length == 5);
ts.clear();
assert(ts.empty && ts.length == 0);
}
/**
* Insert a single element in the container. Note that this does not
* invalidate any ranges currently iterating the container.
*
* Returns: The number of elements inserted.
*
* Complexity: $(BIGOH log(n))
*/
size_t stableInsert(Stuff)(Stuff stuff) if (isImplicitlyConvertible!(Stuff, Elem))
{
static if(allowDuplicates)
{
_add(stuff);
return 1;
}
else
{
return(_add(stuff).added ? 1 : 0);
}
}
/**
* Insert a range of elements in the container. Note that this does not
* invalidate any ranges currently iterating the container.
*
* Returns: The number of elements inserted.
*
* Complexity: $(BIGOH m * log(n))
*/
size_t stableInsert(Stuff)(Stuff stuff) if(isInputRange!Stuff && isImplicitlyConvertible!(ElementType!Stuff, Elem))
{
size_t result = 0;
static if(allowDuplicates)
{
foreach(e; stuff)
{
++result;
_add(e);
}
}
else
{
foreach(e; stuff)
{
if(_add(e).added)
++result;
}
}
return result;
}
/// ditto
alias insert = stableInsert;
static if(doUnittest) unittest
{
auto ts = new RedBlackTree(2,1,3,4,5,2,5);
static if(allowDuplicates)
{
assert(ts.length == 7);
assert(ts.stableInsert(cast(Elem[])[7, 8, 6, 9, 10, 8]) == 6);
assert(ts.length == 13);
assert(ts.stableInsert(cast(Elem)11) == 1 && ts.length == 14);
assert(ts.stableInsert(cast(Elem)7) == 1 && ts.length == 15);
static if(less == "a < b")
assert(ts.arrayEqual([1,2,2,3,4,5,5,6,7,7,8,8,9,10,11]));
else
assert(ts.arrayEqual([11,10,9,8,8,7,7,6,5,5,4,3,2,2,1]));
}
else
{
assert(ts.length == 5);
assert(ts.stableInsert(cast(Elem[])[7, 8, 6, 9, 10, 8]) == 5);
assert(ts.length == 10);
assert(ts.stableInsert(cast(Elem)11) == 1 && ts.length == 11);
assert(ts.stableInsert(cast(Elem)7) == 0 && ts.length == 11);
static if(less == "a < b")
assert(ts.arrayEqual([1,2,3,4,5,6,7,8,9,10,11]));
else
assert(ts.arrayEqual([11,10,9,8,7,6,5,4,3,2,1]));
}
}
/**
* Remove an element from the container and return its value.
*
* Complexity: $(BIGOH log(n))
*/
Elem removeAny()
{
scope(success)
--_length;
auto n = _begin;
auto result = n.value;
_begin = n.remove(_end);
debug(RBDoChecks)
check();
return result;
}
static if(doUnittest) unittest
{
auto ts = new RedBlackTree(1,2,3,4,5);
assert(ts.length == 5);
auto x = ts.removeAny();
assert(ts.length == 4);
Elem[] arr;
foreach(Elem i; 1..6)
if(i != x) arr ~= i;
assert(ts.arrayEqual(arr));
}
/**
* Remove the front element from the container.
*
* Complexity: $(BIGOH log(n))
*/
void removeFront()
{
scope(success)
--_length;
_begin = _begin.remove(_end);
debug(RBDoChecks)
check();
}
/**
* Remove the back element from the container.
*
* Complexity: $(BIGOH log(n))
*/
void removeBack()
{
scope(success)
--_length;
auto lastnode = _end.prev;
if(lastnode is _begin)
_begin = _begin.remove(_end);
else
lastnode.remove(_end);
debug(RBDoChecks)
check();
}
static if(doUnittest) unittest
{
auto ts = new RedBlackTree(1,2,3,4,5);
assert(ts.length == 5);
ts.removeBack();
assert(ts.length == 4);
static if(less == "a < b")
assert(ts.arrayEqual([1,2,3,4]));
else
assert(ts.arrayEqual([2,3,4,5]));
ts.removeFront();
assert(ts.arrayEqual([2,3,4]) && ts.length == 3);
}
/++
Removes the given range from the container.
Returns: A range containing all of the elements that were after the
given range.
Complexity: $(BIGOH m * log(n)) (where m is the number of elements in
the range)
+/
Range remove(Range r)
{
auto b = r._begin;
auto e = r._end;
if(_begin is b)
_begin = e;
while(b !is e)
{
b = b.remove(_end);
--_length;
}
debug(RBDoChecks)
check();
return Range(e, _end);
}
static if(doUnittest) unittest
{
import std.algorithm : equal;
auto ts = new RedBlackTree(1,2,3,4,5);
assert(ts.length == 5);
auto r = ts[];
r.popFront();
r.popBack();
assert(ts.length == 5);
auto r2 = ts.remove(r);
assert(ts.length == 2);
assert(ts.arrayEqual([1,5]));
static if(less == "a < b")
assert(equal(r2, [5]));
else
assert(equal(r2, [1]));
}
/++
Removes the given $(D Take!Range) from the container
Returns: A range containing all of the elements that were after the
given range.
Complexity: $(BIGOH m * log(n)) (where m is the number of elements in
the range)
+/
Range remove(Take!Range r)
{
immutable isBegin = (r.source._begin is _begin);
auto b = r.source._begin;
while(!r.empty)
{
r.popFront();
b = b.remove(_end);
--_length;
}
if(isBegin)
_begin = b;
return Range(b, _end);
}
static if(doUnittest) unittest
{
import std.algorithm : equal;
import std.range : take;
auto ts = new RedBlackTree(1,2,3,4,5);
auto r = ts[];
r.popFront();
assert(ts.length == 5);
auto r2 = ts.remove(take(r, 0));
static if(less == "a < b")
{
assert(equal(r2, [2,3,4,5]));
auto r3 = ts.remove(take(r, 2));
assert(ts.arrayEqual([1,4,5]) && ts.length == 3);
assert(equal(r3, [4,5]));
}
else
{
assert(equal(r2, [4,3,2,1]));
auto r3 = ts.remove(take(r, 2));
assert(ts.arrayEqual([5,2,1]) && ts.length == 3);
assert(equal(r3, [2,1]));
}
}
/++
Removes elements from the container that are equal to the given values
according to the less comparator. One element is removed for each value
given which is in the container. If $(D allowDuplicates) is true,
duplicates are removed only if duplicate values are given.
Returns: The number of elements removed.
Complexity: $(BIGOH m log(n)) (where m is the number of elements to remove)
Examples:
--------------------
auto rbt = redBlackTree!true(0, 1, 1, 1, 4, 5, 7);
rbt.removeKey(1, 4, 7);
assert(equal(rbt[], [0, 1, 1, 5]));
rbt.removeKey(1, 1, 0);
assert(equal(rbt[], [5]));
--------------------
+/
size_t removeKey(U...)(U elems)
if(allSatisfy!(isImplicitlyConvertibleToElem, U))
{
Elem[U.length] toRemove;
foreach(i, e; elems)
toRemove[i] = e;
return removeKey(toRemove[]);
}
/++ Ditto +/
size_t removeKey(U)(U[] elems)
if(isImplicitlyConvertible!(U, Elem))
{
immutable lenBefore = length;
foreach(e; elems)
{
auto beg = _firstGreaterEqual(e);
if(beg is _end || _less(e, beg.value))
// no values are equal
continue;
immutable isBegin = (beg is _begin);
beg = beg.remove(_end);
if(isBegin)
_begin = beg;
--_length;
}
return lenBefore - length;
}
/++ Ditto +/
size_t removeKey(Stuff)(Stuff stuff)
if(isInputRange!Stuff &&
isImplicitlyConvertible!(ElementType!Stuff, Elem) &&
!isDynamicArray!Stuff)
{
import std.array : array;
//We use array in case stuff is a Range from this RedBlackTree - either
//directly or indirectly.
return removeKey(array(stuff));
}
//Helper for removeKey.
private template isImplicitlyConvertibleToElem(U)
{
enum isImplicitlyConvertibleToElem = isImplicitlyConvertible!(U, Elem);
}
static if(doUnittest) unittest
{
import std.algorithm : equal;
import std.range : take;
auto rbt = new RedBlackTree(5, 4, 3, 7, 2, 1, 7, 6, 2, 19, 45);
//The cast(Elem) is because these tests are instantiated with a variety
//of numeric types, and the literals are all int, which is not always
//implicitly convertible to Elem (e.g. short).
static if(allowDuplicates)
{
assert(rbt.length == 11);
assert(rbt.removeKey(cast(Elem)4) == 1 && rbt.length == 10);
assert(rbt.arrayEqual([1,2,2,3,5,6,7,7,19,45]) && rbt.length == 10);
assert(rbt.removeKey(cast(Elem)6, cast(Elem)2, cast(Elem)1) == 3);
assert(rbt.arrayEqual([2,3,5,7,7,19,45]) && rbt.length == 7);
assert(rbt.removeKey(cast(Elem)(42)) == 0 && rbt.length == 7);
assert(rbt.removeKey(take(rbt[], 3)) == 3 && rbt.length == 4);
static if(less == "a < b")
assert(equal(rbt[], [7,7,19,45]));
else
assert(equal(rbt[], [7,5,3,2]));
}
else
{
assert(rbt.length == 9);
assert(rbt.removeKey(cast(Elem)4) == 1 && rbt.length == 8);
assert(rbt.arrayEqual([1,2,3,5,6,7,19,45]));
assert(rbt.removeKey(cast(Elem)6, cast(Elem)2, cast(Elem)1) == 3);
assert(rbt.arrayEqual([3,5,7,19,45]) && rbt.length == 5);
assert(rbt.removeKey(cast(Elem)(42)) == 0 && rbt.length == 5);
assert(rbt.removeKey(take(rbt[], 3)) == 3 && rbt.length == 2);
static if(less == "a < b")
assert(equal(rbt[], [19,45]));
else
assert(equal(rbt[], [5,3]));
}
}
// find the first node where the value is > e
private Node _firstGreater(Elem e)
{
// can't use _find, because we cannot return null
auto cur = _end.left;
auto result = _end;
while(cur)
{
if(_less(e, cur.value))
{
result = cur;
cur = cur.left;
}
else
cur = cur.right;
}
return result;
}
// find the first node where the value is >= e
private Node _firstGreaterEqual(Elem e)
{
// can't use _find, because we cannot return null.
auto cur = _end.left;
auto result = _end;
while(cur)
{
if(_less(cur.value, e))
cur = cur.right;
else
{
result = cur;
cur = cur.left;
}
}
return result;
}
/**
* Get a range from the container with all elements that are > e according
* to the less comparator
*
* Complexity: $(BIGOH log(n))
*/
Range upperBound(Elem e)
{
return Range(_firstGreater(e), _end);
}
/**
* Get a range from the container with all elements that are < e according
* to the less comparator
*
* Complexity: $(BIGOH log(n))
*/
Range lowerBound(Elem e)
{
return Range(_begin, _firstGreaterEqual(e));
}
/**
* Get a range from the container with all elements that are == e according
* to the less comparator
*
* Complexity: $(BIGOH log(n))
*/
Range equalRange(Elem e)
{
auto beg = _firstGreaterEqual(e);
if(beg is _end || _less(e, beg.value))
// no values are equal
return Range(beg, beg);
static if(allowDuplicates)
{
return Range(beg, _firstGreater(e));
}
else
{
// no sense in doing a full search, no duplicates are allowed,
// so we just get the next node.
return Range(beg, beg.next);
}
}
static if(doUnittest) unittest
{
import std.algorithm : equal;
auto ts = new RedBlackTree(1, 2, 3, 4, 5);
auto rl = ts.lowerBound(3);
auto ru = ts.upperBound(3);
auto re = ts.equalRange(3);
static if(less == "a < b")
{
assert(equal(rl, [1,2]));
assert(equal(ru, [4,5]));
}
else
{
assert(equal(rl, [5,4]));
assert(equal(ru, [2,1]));
}
assert(equal(re, [3]));
}
debug(RBDoChecks)
{
/*
* Print the tree. This prints a sideways view of the tree in ASCII form,
* with the number of indentations representing the level of the nodes.
* It does not print values, only the tree structure and color of nodes.
*/
void printTree(Node n, int indent = 0)
{
import std.stdio;
if(n !is null)
{
printTree(n.right, indent + 2);
for(int i = 0; i < indent; i++)
write(".");
writeln(n.color == n.color.Black ? "B" : "R");
printTree(n.left, indent + 2);
}
else
{
for(int i = 0; i < indent; i++)
write(".");
writeln("N");
}
if(indent is 0)
writeln();
}
/*
* Check the tree for validity. This is called after every add or remove.
* This should only be enabled to debug the implementation of the RB Tree.
*/
void check()
{
//
// check implementation of the tree
//
int recurse(Node n, string path)
{
import std.stdio;
if(n is null)
return 1;
if(n.parent.left !is n && n.parent.right !is n)
throw new Exception("Node at path " ~ path ~ " has inconsistent pointers");
Node next = n.next;
static if(allowDuplicates)
{
if(next !is _end && _less(next.value, n.value))
throw new Exception("ordering invalid at path " ~ path);
}
else
{
if(next !is _end && !_less(n.value, next.value))
throw new Exception("ordering invalid at path " ~ path);
}
if(n.color == n.color.Red)
{
if((n.left !is null && n.left.color == n.color.Red) ||
(n.right !is null && n.right.color == n.color.Red))
throw new Exception("Node at path " ~ path ~ " is red with a red child");
}
int l = recurse(n.left, path ~ "L");
int r = recurse(n.right, path ~ "R");
if(l != r)
{
writeln("bad tree at:");
debug printTree(n);
throw new Exception("Node at path " ~ path ~ " has different number of black nodes on left and right paths");
}
return l + (n.color == n.color.Black ? 1 : 0);
}
try
{
recurse(_end.left, "");
}
catch(Exception e)
{
debug printTree(_end.left, 0);
throw e;
}
}
}
/**
* Constructor. Pass in an array of elements, or individual elements to
* initialize the tree with.
*/
this(Elem[] elems...)
{
_setup();
stableInsert(elems);
}
/**
* Constructor. Pass in a range of elements to initialize the tree with.
*/
this(Stuff)(Stuff stuff) if (isInputRange!Stuff && isImplicitlyConvertible!(ElementType!Stuff, Elem))
{
_setup();
stableInsert(stuff);
}
///
this()
{
_setup();
}
private this(Node end, size_t length)
{
_end = end;
_begin = end.leftmost;
_length = length;
}
}
//Verify Example for removeKey.
pure unittest
{
import std.algorithm : equal;
auto rbt = redBlackTree!true(0, 1, 1, 1, 4, 5, 7);
rbt.removeKey(1, 4, 7);
assert(equal(rbt[], [0, 1, 1, 5]));
rbt.removeKey(1, 1, 0);
assert(equal(rbt[], [5]));
}
//Tests for removeKey
pure unittest
{
import std.algorithm : equal;
{
auto rbt = redBlackTree(["hello", "world", "foo", "bar"]);
assert(equal(rbt[], ["bar", "foo", "hello", "world"]));
assert(rbt.removeKey("hello") == 1);
assert(equal(rbt[], ["bar", "foo", "world"]));
assert(rbt.removeKey("hello") == 0);
assert(equal(rbt[], ["bar", "foo", "world"]));
assert(rbt.removeKey("hello", "foo", "bar") == 2);
assert(equal(rbt[], ["world"]));
assert(rbt.removeKey(["", "world", "hello"]) == 1);
assert(rbt.empty);
}
{
auto rbt = redBlackTree([1, 2, 12, 27, 4, 500]);
assert(equal(rbt[], [1, 2, 4, 12, 27, 500]));
assert(rbt.removeKey(1u) == 1);
assert(equal(rbt[], [2, 4, 12, 27, 500]));
assert(rbt.removeKey(cast(byte)1) == 0);
assert(equal(rbt[], [2, 4, 12, 27, 500]));
assert(rbt.removeKey(1, 12u, cast(byte)27) == 2);
assert(equal(rbt[], [2, 4, 500]));
assert(rbt.removeKey([cast(short)0, cast(short)500, cast(short)1]) == 1);
assert(equal(rbt[], [2, 4]));
}
}
pure unittest
{
void test(T)()
{
auto rt1 = new RedBlackTree!(T, "a < b", false)();
auto rt2 = new RedBlackTree!(T, "a < b", true)();
auto rt3 = new RedBlackTree!(T, "a > b", false)();
auto rt4 = new RedBlackTree!(T, "a > b", true)();
}
test!long();
test!ulong();
test!int();
test!uint();
test!short();
test!ushort();
test!byte();
test!byte();
}
/++
Convenience function for creating a $(D RedBlackTree!E) from a list of
values.
+/
auto redBlackTree(E)(E[] elems...)
{
return new RedBlackTree!E(elems);
}
/++ Ditto +/
auto redBlackTree(bool allowDuplicates, E)(E[] elems...)
{
return new RedBlackTree!(E, "a < b", allowDuplicates)(elems);
}
/++ Ditto +/
auto redBlackTree(alias less, E)(E[] elems...)
{
return new RedBlackTree!(E, less)(elems);
}
/++ Ditto +/
auto redBlackTree(alias less, bool allowDuplicates, E)(E[] elems...)
if(is(typeof(binaryFun!less(E.init, E.init))))
{
//We shouldn't need to instantiate less here, but for some reason,
//dmd can't handle it if we don't (even though the template which
//takes less but not allowDuplicates works just fine).
return new RedBlackTree!(E, binaryFun!less, allowDuplicates)(elems);
}
///
pure unittest
{
auto rbt1 = redBlackTree(0, 1, 5, 7);
auto rbt2 = redBlackTree!string("hello", "world");
auto rbt3 = redBlackTree!true(0, 1, 5, 7, 5);
auto rbt4 = redBlackTree!"a > b"(0, 1, 5, 7);
auto rbt5 = redBlackTree!("a > b", true)(0.1, 1.3, 5.9, 7.2, 5.9);
}
//Combinations not in examples.
pure unittest
{
auto rbt1 = redBlackTree!(true, string)("hello", "hello");
auto rbt2 = redBlackTree!((a, b){return a < b;}, double)(5.1, 2.3);
auto rbt3 = redBlackTree!("a > b", true, string)("hello", "world");
}
//Range construction.
pure unittest
{
import std.algorithm : equal;
import std.range : iota;
auto rbt = new RedBlackTree!(int, "a > b")(iota(5));
assert(equal(rbt[], [4, 3, 2, 1, 0]));
}
pure unittest
{
import std.array : array;
auto rt1 = redBlackTree(5, 4, 3, 2, 1);
assert(rt1.length == 5);
assert(array(rt1[]) == [1, 2, 3, 4, 5]);
auto rt2 = redBlackTree!"a > b"(1.1, 2.1);
assert(rt2.length == 2);
assert(array(rt2[]) == [2.1, 1.1]);
auto rt3 = redBlackTree!true(5, 5, 4);
assert(rt3.length == 3);
assert(array(rt3[]) == [4, 5, 5]);
auto rt4 = redBlackTree!string("hello", "hello");
assert(rt4.length == 1);
assert(array(rt4[]) == ["hello"]);
}
//constness checks
unittest
{
const rt1 = redBlackTree(5,4,3,2,1);
static assert(is(typeof(rt1.length)));
static assert(is(typeof(5 in rt1)));
}
|