This file is indexed.

/usr/include/d/std/random.d is in libphobos2-ldc-dev 1:0.17.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
// Written in the D programming language.

/**
Facilities for random number generation.

The new-style generator objects hold their own state so they are
immune of threading issues. The generators feature a number of
well-known and well-documented methods of generating random
numbers. An overall fast and reliable means to generate random numbers
is the $(D_PARAM Mt19937) generator, which derives its name from
"$(LUCKY Mersenne Twister) with a period of 2 to the power of
19937". In memory-constrained situations, $(LUCKY linear congruential)
generators such as $(D MinstdRand0) and $(D MinstdRand) might be
useful. The standard library provides an alias $(D_PARAM Random) for
whichever generator it considers the most fit for the target
environment.

Example:

----
// Generate a uniformly-distributed integer in the range [0, 14]
auto i = uniform(0, 15);
// Generate a uniformly-distributed real in the range [0, 100$(RPAREN)
// using a specific random generator
Random gen;
auto r = uniform(0.0L, 100.0L, gen);
----

In addition to random number generators, this module features
distributions, which skew a generator's output statistical
distribution in various ways. So far the uniform distribution for
integers and real numbers have been implemented.

Upgrading:
        $(WEB digitalmars.com/d/1.0/phobos/std_random.html#rand Phobos D1 $(D rand())) can
        be replaced with $(D uniform!uint()).

Source:    $(PHOBOSSRC std/_random.d)

Macros:

WIKI = Phobos/StdRandom


Copyright: Copyright Andrei Alexandrescu 2008 - 2009, Joseph Rushton Wakeling 2012.
License:   $(WEB www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
Authors:   $(WEB erdani.org, Andrei Alexandrescu)
           Masahiro Nakagawa (Xorshift random generator)
           $(WEB braingam.es, Joseph Rushton Wakeling) (Algorithm D for random sampling)
Credits:   The entire random number library architecture is derived from the
           excellent $(WEB open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2461.pdf, C++0X)
           random number facility proposed by Jens Maurer and contributed to by
           researchers at the Fermi laboratory (excluding Xorshift).
*/
/*
         Copyright Andrei Alexandrescu 2008 - 2009.
Distributed under the Boost Software License, Version 1.0.
   (See accompanying file LICENSE_1_0.txt or copy at
         http://www.boost.org/LICENSE_1_0.txt)
*/
module std.random;


import std.range.primitives;
import std.traits;

version(unittest)
{
    static import std.typetuple;
    package alias PseudoRngTypes = std.typetuple.TypeTuple!(MinstdRand0, MinstdRand, Mt19937, Xorshift32, Xorshift64,
                                              Xorshift96, Xorshift128, Xorshift160, Xorshift192);
}

// Segments of the code in this file Copyright (c) 1997 by Rick Booth
// From "Inner Loops" by Rick Booth, Addison-Wesley

// Work derived from:

/*
   A C-program for MT19937, with initialization improved 2002/1/26.
   Coded by Takuji Nishimura and Makoto Matsumoto.

   Before using, initialize the state by using init_genrand(seed)
   or init_by_array(init_key, key_length).

   Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
   All rights reserved.

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions
   are met:

     1. Redistributions of source code must retain the above copyright
        notice, this list of conditions and the following disclaimer.

     2. Redistributions in binary form must reproduce the above copyright
        notice, this list of conditions and the following disclaimer in the
        documentation and/or other materials provided with the distribution.

     3. The names of its contributors may not be used to endorse or promote
        products derived from this software without specific prior written
        permission.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


   Any feedback is very welcome.
   http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
   email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
*/

/**
 * Test if Rng is a random-number generator. The overload
 * taking a ElementType also makes sure that the Rng generates
 * values of that type.
 *
 * A random-number generator has at least the following features:
 * $(UL
 *   $(LI it's an InputRange)
 *   $(LI it has a 'bool isUniformRandom' field readable in CTFE)
 * )
 */
template isUniformRNG(Rng, ElementType)
{
    enum bool isUniformRNG = isInputRange!Rng &&
        is(typeof(Rng.front) == ElementType) &&
        is(typeof(
        {
            static assert(Rng.isUniformRandom); //tag
        }));
}

/**
 * ditto
 */
template isUniformRNG(Rng)
{
    enum bool isUniformRNG = isInputRange!Rng &&
        is(typeof(
        {
            static assert(Rng.isUniformRandom); //tag
        }));
}

/**
 * Test if Rng is seedable. The overload
 * taking a SeedType also makes sure that the Rng can be seeded with SeedType.
 *
 * A seedable random-number generator has the following additional features:
 * $(UL
 *   $(LI it has a 'seed(ElementType)' function)
 * )
 */
template isSeedable(Rng, SeedType)
{
    enum bool isSeedable = isUniformRNG!(Rng) &&
        is(typeof(
        {
            Rng r = void;              // can define a Rng object
            r.seed(SeedType.init);     // can seed a Rng
        }));
}

///ditto
template isSeedable(Rng)
{
    enum bool isSeedable = isUniformRNG!Rng &&
        is(typeof(
        {
            Rng r = void;                     // can define a Rng object
            r.seed(typeof(r.front).init);     // can seed a Rng
        }));
}

@safe pure nothrow unittest
{
    struct NoRng
    {
        @property uint front() {return 0;}
        @property bool empty() {return false;}
        void popFront() {}
    }
    static assert(!isUniformRNG!(NoRng, uint));
    static assert(!isUniformRNG!(NoRng));
    static assert(!isSeedable!(NoRng, uint));
    static assert(!isSeedable!(NoRng));

    struct NoRng2
    {
        @property uint front() {return 0;}
        @property bool empty() {return false;}
        void popFront() {}

        enum isUniformRandom = false;
    }
    static assert(!isUniformRNG!(NoRng2, uint));
    static assert(!isUniformRNG!(NoRng2));
    static assert(!isSeedable!(NoRng2, uint));
    static assert(!isSeedable!(NoRng2));

    struct NoRng3
    {
        @property bool empty() {return false;}
        void popFront() {}

        enum isUniformRandom = true;
    }
    static assert(!isUniformRNG!(NoRng3, uint));
    static assert(!isUniformRNG!(NoRng3));
    static assert(!isSeedable!(NoRng3, uint));
    static assert(!isSeedable!(NoRng3));

    struct validRng
    {
        @property uint front() {return 0;}
        @property bool empty() {return false;}
        void popFront() {}

        enum isUniformRandom = true;
    }
    static assert(isUniformRNG!(validRng, uint));
    static assert(isUniformRNG!(validRng));
    static assert(!isSeedable!(validRng, uint));
    static assert(!isSeedable!(validRng));

    struct seedRng
    {
        @property uint front() {return 0;}
        @property bool empty() {return false;}
        void popFront() {}
        void seed(uint val){}
        enum isUniformRandom = true;
    }
    static assert(isUniformRNG!(seedRng, uint));
    static assert(isUniformRNG!(seedRng));
    static assert(isSeedable!(seedRng, uint));
    static assert(isSeedable!(seedRng));
}

/**
Linear Congruential generator.
 */
struct LinearCongruentialEngine(UIntType, UIntType a, UIntType c, UIntType m)
    if(isUnsigned!UIntType)
{
    ///Mark this as a Rng
    enum bool isUniformRandom = true;
    /// Does this generator have a fixed range? ($(D_PARAM true)).
    enum bool hasFixedRange = true;
    /// Lowest generated value ($(D 1) if $(D c == 0), $(D 0) otherwise).
    enum UIntType min = ( c == 0 ? 1 : 0 );
    /// Highest generated value ($(D modulus - 1)).
    enum UIntType max = m - 1;
/**
The parameters of this distribution. The random number is $(D_PARAM x
= (x * multipler + increment) % modulus).
 */
    enum UIntType multiplier = a;
    ///ditto
    enum UIntType increment = c;
    ///ditto
    enum UIntType modulus = m;

    static assert(isIntegral!(UIntType));
    static assert(m == 0 || a < m);
    static assert(m == 0 || c < m);
    static assert(m == 0 ||
            (cast(ulong)a * (m-1) + c) % m == (c < a ? c - a + m : c - a));

    // Check for maximum range
    private static ulong gcd(ulong a, ulong b) @safe pure nothrow
    {
        while (b)
        {
            auto t = b;
            b = a % b;
            a = t;
        }
        return a;
    }

    private static ulong primeFactorsOnly(ulong n) @safe pure nothrow
    {
        ulong result = 1;
        ulong iter = 2;
        for (; n >= iter * iter; iter += 2 - (iter == 2))
        {
            if (n % iter) continue;
            result *= iter;
            do
            {
                n /= iter;
            } while (n % iter == 0);
        }
        return result * n;
    }

    @safe pure nothrow unittest
    {
        static assert(primeFactorsOnly(100) == 10);
        //writeln(primeFactorsOnly(11));
        static assert(primeFactorsOnly(11) == 11);
        static assert(primeFactorsOnly(7 * 7 * 7 * 11 * 15 * 11) == 7 * 11 * 15);
        static assert(primeFactorsOnly(129 * 2) == 129 * 2);
        // enum x = primeFactorsOnly(7 * 7 * 7 * 11 * 15);
        // static assert(x == 7 * 11 * 15);
    }

    private static bool properLinearCongruentialParameters(ulong m,
            ulong a, ulong c) @safe pure nothrow
    {
        if (m == 0)
        {
            static if (is(UIntType == uint))
            {
                // Assume m is uint.max + 1
                m = (1uL << 32);
            }
            else
            {
                return false;
            }
        }
        // Bounds checking
        if (a == 0 || a >= m || c >= m) return false;
        // c and m are relatively prime
        if (c > 0 && gcd(c, m) != 1) return false;
        // a - 1 is divisible by all prime factors of m
        if ((a - 1) % primeFactorsOnly(m)) return false;
        // if a - 1 is multiple of 4, then m is a  multiple of 4 too.
        if ((a - 1) % 4 == 0 && m % 4) return false;
        // Passed all tests
        return true;
    }

    // check here
    static assert(c == 0 || properLinearCongruentialParameters(m, a, c),
            "Incorrect instantiation of LinearCongruentialEngine");

/**
Constructs a $(D_PARAM LinearCongruentialEngine) generator seeded with
$(D x0).
 */
    this(UIntType x0) @safe pure
    {
        seed(x0);
    }

/**
   (Re)seeds the generator.
*/
    void seed(UIntType x0 = 1) @safe pure
    {
        static if (c == 0)
        {
            import std.exception : enforce;
            enforce(x0, "Invalid (zero) seed for "
                    ~ LinearCongruentialEngine.stringof);
        }
        _x = modulus ? (x0 % modulus) : x0;
        popFront();
    }

/**
   Advances the random sequence.
*/
    void popFront() @safe pure nothrow
    {
        static if (m)
        {
            static if (is(UIntType == uint) && m == uint.max)
            {
                immutable ulong
                    x = (cast(ulong) a * _x + c),
                    v = x >> 32,
                    w = x & uint.max;
                immutable y = cast(uint)(v + w);
                _x = (y < v || y == uint.max) ? (y + 1) : y;
            }
            else static if (is(UIntType == uint) && m == int.max)
            {
                immutable ulong
                    x = (cast(ulong) a * _x + c),
                    v = x >> 31,
                    w = x & int.max;
                immutable uint y = cast(uint)(v + w);
                _x = (y >= int.max) ? (y - int.max) : y;
            }
            else
            {
                _x = cast(UIntType) ((cast(ulong) a * _x + c) % m);
            }
        }
        else
        {
            _x = a * _x + c;
        }
    }

/**
   Returns the current number in the random sequence.
*/
    @property UIntType front() const @safe pure nothrow
    {
        return _x;
    }

///
    @property typeof(this) save() @safe pure nothrow
    {
        return this;
    }

/**
Always $(D false) (random generators are infinite ranges).
 */
    enum bool empty = false;

/**
   Compares against $(D_PARAM rhs) for equality.
 */
    bool opEquals(ref const LinearCongruentialEngine rhs) const @safe pure nothrow
    {
        return _x == rhs._x;
    }

    private UIntType _x = m ? (a + c) % m : (a + c);
}

/**
Define $(D_PARAM LinearCongruentialEngine) generators with well-chosen
parameters. $(D MinstdRand0) implements Park and Miller's "minimal
standard" $(WEB
wikipedia.org/wiki/Park%E2%80%93Miller_random_number_generator,
generator) that uses 16807 for the multiplier. $(D MinstdRand)
implements a variant that has slightly better spectral behavior by
using the multiplier 48271. Both generators are rather simplistic.

Example:

----
// seed with a constant
auto rnd0 = MinstdRand0(1);
auto n = rnd0.front; // same for each run
// Seed with an unpredictable value
rnd0.seed(unpredictableSeed);
n = rnd0.front; // different across runs
----
 */
alias MinstdRand0 = LinearCongruentialEngine!(uint, 16807, 0, 2147483647);
/// ditto
alias MinstdRand = LinearCongruentialEngine!(uint, 48271, 0, 2147483647);

unittest
{
    import std.range;
    static assert(isForwardRange!MinstdRand);
    static assert(isUniformRNG!MinstdRand);
    static assert(isUniformRNG!MinstdRand0);
    static assert(isUniformRNG!(MinstdRand, uint));
    static assert(isUniformRNG!(MinstdRand0, uint));
    static assert(isSeedable!MinstdRand);
    static assert(isSeedable!MinstdRand0);
    static assert(isSeedable!(MinstdRand, uint));
    static assert(isSeedable!(MinstdRand0, uint));

    // The correct numbers are taken from The Database of Integer Sequences
    // http://www.research.att.com/~njas/sequences/eisBTfry00128.txt
    auto checking0 = [
        16807UL,282475249,1622650073,984943658,1144108930,470211272,
        101027544,1457850878,1458777923,2007237709,823564440,1115438165,
        1784484492,74243042,114807987,1137522503,1441282327,16531729,
        823378840,143542612 ];
    //auto rnd0 = MinstdRand0(1);
    MinstdRand0 rnd0;

    foreach (e; checking0)
    {
        assert(rnd0.front == e);
        rnd0.popFront();
    }
    // Test the 10000th invocation
    // Correct value taken from:
    // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2461.pdf
    rnd0.seed();
    popFrontN(rnd0, 9999);
    assert(rnd0.front == 1043618065);

    // Test MinstdRand
    auto checking = [48271UL,182605794,1291394886,1914720637,2078669041,
                     407355683];
    //auto rnd = MinstdRand(1);
    MinstdRand rnd;
    foreach (e; checking)
    {
        assert(rnd.front == e);
        rnd.popFront();
    }

    // Test the 10000th invocation
    // Correct value taken from:
    // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2461.pdf
    rnd.seed();
    popFrontN(rnd, 9999);
    assert(rnd.front == 399268537);

    // Check .save works
    foreach (Type; std.typetuple.TypeTuple!(MinstdRand0, MinstdRand))
    {
        auto rnd1 = Type(unpredictableSeed);
        auto rnd2 = rnd1.save;
        assert(rnd1 == rnd2);
        // Enable next test when RNGs are reference types
        version(none) { assert(rnd1 !is rnd2); }
        assert(rnd1.take(100).array() == rnd2.take(100).array());
    }
}

/**
The $(LUCKY Mersenne Twister) generator.
 */
struct MersenneTwisterEngine(UIntType, size_t w, size_t n, size_t m, size_t r,
                             UIntType a, size_t u, size_t s,
                             UIntType b, size_t t,
                             UIntType c, size_t l)
    if(isUnsigned!UIntType)
{
    static assert(0 < w && w <= UIntType.sizeof * 8);
    static assert(1 <= m && m <= n);
    static assert(0 <= r && 0 <= u && 0 <= s && 0 <= t && 0 <= l);
    static assert(r <= w && u <= w && s <= w && t <= w && l <= w);
    static assert(0 <= a && 0 <= b && 0 <= c);

    ///Mark this as a Rng
    enum bool isUniformRandom = true;

/**
Parameters for the generator.
*/
    enum size_t   wordSize   = w;
    enum size_t   stateSize  = n; /// ditto
    enum size_t   shiftSize  = m; /// ditto
    enum size_t   maskBits   = r; /// ditto
    enum UIntType xorMask    = a; /// ditto
    enum UIntType temperingU = u; /// ditto
    enum size_t   temperingS = s; /// ditto
    enum UIntType temperingB = b; /// ditto
    enum size_t   temperingT = t; /// ditto
    enum UIntType temperingC = c; /// ditto
    enum size_t   temperingL = l; /// ditto

    /// Smallest generated value (0).
    enum UIntType min = 0;
    /// Largest generated value.
    enum UIntType max = UIntType.max >> (UIntType.sizeof * 8u - w);
    static assert(a <= max && b <= max && c <= max);
    /// The default seed value.
    enum UIntType defaultSeed = 5489u;

/**
   Constructs a MersenneTwisterEngine object.
*/
    this(UIntType value) @safe pure nothrow
    {
        seed(value);
    }

/**
   Seeds a MersenneTwisterEngine object.
   Note:
   This seed function gives 2^32 starting points. To allow the RNG to be started in any one of its
   internal states use the seed overload taking an InputRange.
*/
    void seed()(UIntType value = defaultSeed) @safe pure nothrow
    {
        static if (w == UIntType.sizeof * 8)
        {
            mt[0] = value;
        }
        else
        {
            static assert(max + 1 > 0);
            mt[0] = value % (max + 1);
        }
        for (mti = 1; mti < n; ++mti)
        {
            mt[mti] =
                cast(UIntType)
                (1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> (w - 2))) + mti);
            /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
            /* In the previous versions, MSBs of the seed affect   */
            /* only MSBs of the array mt[].                        */
            /* 2002/01/09 modified by Makoto Matsumoto             */
            //mt[mti] &= ResultType.max;
            /* for >32 bit machines */
        }
        popFront();
    }

/**
   Seeds a MersenneTwisterEngine object using an InputRange.

   Throws:
   $(D Exception) if the InputRange didn't provide enough elements to seed the generator.
   The number of elements required is the 'n' template parameter of the MersenneTwisterEngine struct.

   Examples:
   ----------------
   Mt19937 gen;
   gen.seed(map!((a) => unpredictableSeed)(repeat(0)));
   ----------------
 */
    void seed(T)(T range) if(isInputRange!T && is(Unqual!(ElementType!T) == UIntType))
    {
        size_t j;
        for(j = 0; j < n && !range.empty; ++j, range.popFront())
        {
            mt[j] = range.front;
        }

        mti = n;
        if(range.empty && j < n)
        {
            import std.format : format;
            throw new Exception(format("MersenneTwisterEngine.seed: Input range didn't provide enough"~
                " elements: Need %s elemnets.", n));
        }

        popFront();
    }

/**
   Advances the generator.
*/
    void popFront() @safe pure nothrow
    {
        if (mti == size_t.max) seed();
        enum UIntType
            upperMask = ~((cast(UIntType) 1u <<
                           (UIntType.sizeof * 8 - (w - r))) - 1),
            lowerMask = (cast(UIntType) 1u << r) - 1;
        static immutable UIntType[2] mag01 = [0x0UL, a];

        ulong y = void;

        if (mti >= n)
        {
            /* generate N words at one time */

            int kk = 0;
            const limit1 = n - m;
            for (; kk < limit1; ++kk)
            {
                y = (mt[kk] & upperMask)|(mt[kk + 1] & lowerMask);
                mt[kk] = cast(UIntType) (mt[kk + m] ^ (y >> 1)
                        ^ mag01[cast(UIntType) y & 0x1U]);
            }
            const limit2 = n - 1;
            for (; kk < limit2; ++kk)
            {
                y = (mt[kk] & upperMask)|(mt[kk + 1] & lowerMask);
                mt[kk] = cast(UIntType) (mt[kk + (m -n)] ^ (y >> 1)
                                         ^ mag01[cast(UIntType) y & 0x1U]);
            }
            y = (mt[n -1] & upperMask)|(mt[0] & lowerMask);
            mt[n - 1] = cast(UIntType) (mt[m - 1] ^ (y >> 1)
                                        ^ mag01[cast(UIntType) y & 0x1U]);

            mti = 0;
        }

        y = mt[mti++];

        /* Tempering */
        y ^= (y >> temperingU);
        y ^= (y << temperingS) & temperingB;
        y ^= (y << temperingT) & temperingC;
        y ^= (y >> temperingL);

        _y = cast(UIntType) y;
    }

/**
   Returns the current random value.
 */
    @property UIntType front() @safe pure nothrow
    {
        if (mti == size_t.max) seed();
        return _y;
    }

///
    @property typeof(this) save() @safe pure nothrow
    {
        return this;
    }

/**
Always $(D false).
 */
    enum bool empty = false;

    private UIntType[n] mt;
    private size_t mti = size_t.max; /* means mt is not initialized */
    UIntType _y = UIntType.max;
}

/**
A $(D MersenneTwisterEngine) instantiated with the parameters of the
original engine $(WEB math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html,
MT19937), generating uniformly-distributed 32-bit numbers with a
period of 2 to the power of 19937. Recommended for random number
generation unless memory is severely restricted, in which case a $(D
LinearCongruentialEngine) would be the generator of choice.

Example:

----
// seed with a constant
Mt19937 gen;
auto n = gen.front; // same for each run
// Seed with an unpredictable value
gen.seed(unpredictableSeed);
n = gen.front; // different across runs
----
 */
alias Mt19937 = MersenneTwisterEngine!(uint, 32, 624, 397, 31,
                                       0x9908b0df, 11, 7,
                                       0x9d2c5680, 15,
                                       0xefc60000, 18);

nothrow unittest
{
    import std.algorithm;
    import std.range;
    static assert(isUniformRNG!Mt19937);
    static assert(isUniformRNG!(Mt19937, uint));
    static assert(isSeedable!Mt19937);
    static assert(isSeedable!(Mt19937, uint));
    static assert(isSeedable!(Mt19937, typeof(map!((a) => unpredictableSeed)(repeat(0)))));
    Mt19937 gen;
    popFrontN(gen, 9999);
    assert(gen.front == 4123659995);
}

unittest
{
    import std.exception;
    import std.range;
    import std.algorithm;

    Mt19937 gen;

    assertThrown(gen.seed(map!((a) => unpredictableSeed)(repeat(0, 623))));

    gen.seed(map!((a) => unpredictableSeed)(repeat(0, 624)));
    //infinite Range
    gen.seed(map!((a) => unpredictableSeed)(repeat(0)));
}

@safe pure nothrow unittest
{
    uint a, b;
    {
        Mt19937 gen;
        a = gen.front;
    }
    {
        Mt19937 gen;
        gen.popFront();
        //popFrontN(gen, 1);  // skip 1 element
        b = gen.front;
    }
    assert(a != b);
}

unittest
{
    import std.range;
    // Check .save works
    foreach(Type; std.typetuple.TypeTuple!(Mt19937))
    {
        auto gen1 = Type(unpredictableSeed);
        auto gen2 = gen1.save;
        assert(gen1 == gen2);  // Danger, Will Robinson -- no opEquals for MT
        // Enable next test when RNGs are reference types
        version(none) { assert(gen1 !is gen2); }
        assert(gen1.take(100).array() == gen2.take(100).array());
    }
}

@safe pure nothrow unittest //11690
{
    alias MT(UIntType, uint w) = MersenneTwisterEngine!(UIntType, w, 624, 397, 31,
                                                        0x9908b0df, 11, 7,
                                                        0x9d2c5680, 15,
                                                        0xefc60000, 18);

    foreach (R; std.typetuple.TypeTuple!(MT!(uint, 32), MT!(ulong, 32), MT!(ulong, 48), MT!(ulong, 64)))
        auto a = R();
}


/**
 * Xorshift generator using 32bit algorithm.
 *
 * Implemented according to $(WEB www.jstatsoft.org/v08/i14/paper, Xorshift RNGs).
 *
 * $(BOOKTABLE $(TEXTWITHCOMMAS Supporting bits are below, $(D bits) means second parameter of XorshiftEngine.),
 *  $(TR $(TH bits) $(TH period))
 *  $(TR $(TD 32)   $(TD 2^32 - 1))
 *  $(TR $(TD 64)   $(TD 2^64 - 1))
 *  $(TR $(TD 96)   $(TD 2^96 - 1))
 *  $(TR $(TD 128)  $(TD 2^128 - 1))
 *  $(TR $(TD 160)  $(TD 2^160 - 1))
 *  $(TR $(TD 192)  $(TD 2^192 - 2^32))
 * )
 */
struct XorshiftEngine(UIntType, UIntType bits, UIntType a, UIntType b, UIntType c)
    if(isUnsigned!UIntType)
{
    static assert(bits == 32 || bits == 64 || bits == 96 || bits == 128 || bits == 160 || bits == 192,
                  "Xorshift supports only 32, 64, 96, 128, 160 and 192 bit versions. "
                  ~ to!string(bits) ~ " is not supported.");

  public:
    ///Mark this as a Rng
    enum bool isUniformRandom = true;
    /// Always $(D false) (random generators are infinite ranges).
    enum empty = false;
    /// Smallest generated value.
    enum UIntType min = 0;
    /// Largest generated value.
    enum UIntType max = UIntType.max;


  private:
    enum size = bits / 32;

    static if (bits == 32)
        UIntType[size] seeds_ = [2463534242];
    else static if (bits == 64)
        UIntType[size] seeds_ = [123456789, 362436069];
    else static if (bits == 96)
        UIntType[size] seeds_ = [123456789, 362436069, 521288629];
    else static if (bits == 128)
        UIntType[size] seeds_ = [123456789, 362436069, 521288629, 88675123];
    else static if (bits == 160)
        UIntType[size] seeds_ = [123456789, 362436069, 521288629, 88675123, 5783321];
    else static if (bits == 192)
    {
        UIntType[size] seeds_ = [123456789, 362436069, 521288629, 88675123, 5783321, 6615241];
        UIntType       value_;
    }
    else
    {
        static assert(false, "Phobos Error: Xorshift has no instantiation rule for "
                             ~ to!string(bits) ~ " bits.");
    }


  public:
    /**
     * Constructs a $(D XorshiftEngine) generator seeded with $(D_PARAM x0).
     */
    @safe
    nothrow this(UIntType x0) pure
    {
        seed(x0);
    }


    /**
     * (Re)seeds the generator.
     */
    @safe
    nothrow void seed(UIntType x0) pure
    {
        // Initialization routine from MersenneTwisterEngine.
        foreach (i, e; seeds_)
            seeds_[i] = x0 = cast(UIntType)(1812433253U * (x0 ^ (x0 >> 30)) + i + 1);

        // All seeds must not be 0.
        sanitizeSeeds(seeds_);

        popFront();
    }


    /**
     * Returns the current number in the random sequence.
     */
    @property @safe
    nothrow UIntType front() const pure
    {
        static if (bits == 192)
            return value_;
        else
            return seeds_[size - 1];
    }


    /**
     * Advances the random sequence.
     */
    @safe
    nothrow void popFront() pure
    {
        UIntType temp;

        static if (bits == 32)
        {
            temp      = seeds_[0] ^ (seeds_[0] << a);
            temp      = temp ^ (temp >> b);
            seeds_[0] = temp ^ (temp << c);
        }
        else static if (bits == 64)
        {
            temp      = seeds_[0] ^ (seeds_[0] << a);
            seeds_[0] = seeds_[1];
            seeds_[1] = seeds_[1] ^ (seeds_[1] >> c) ^ temp ^ (temp >> b);
        }
        else static if (bits == 96)
        {
            temp      = seeds_[0] ^ (seeds_[0] << a);
            seeds_[0] = seeds_[1];
            seeds_[1] = seeds_[2];
            seeds_[2] = seeds_[2] ^ (seeds_[2] >> c) ^ temp ^ (temp >> b);
        }
        else static if (bits == 128)
        {
            temp      = seeds_[0] ^ (seeds_[0] << a);
            seeds_[0] = seeds_[1];
            seeds_[1] = seeds_[2];
            seeds_[2] = seeds_[3];
            seeds_[3] = seeds_[3] ^ (seeds_[3] >> c) ^ temp ^ (temp >> b);
        }
        else static if (bits == 160)
        {
            temp      = seeds_[0] ^ (seeds_[0] << a);
            seeds_[0] = seeds_[1];
            seeds_[1] = seeds_[2];
            seeds_[2] = seeds_[3];
            seeds_[3] = seeds_[4];
            seeds_[4] = seeds_[4] ^ (seeds_[4] >> c) ^ temp ^ (temp >> b);
        }
        else static if (bits == 192)
        {
            temp      = seeds_[0] ^ (seeds_[0] >> a);
            seeds_[0] = seeds_[1];
            seeds_[1] = seeds_[2];
            seeds_[2] = seeds_[3];
            seeds_[3] = seeds_[4];
            seeds_[4] = seeds_[4] ^ (seeds_[4] << c) ^ temp ^ (temp << b);
            value_    = seeds_[4] + (seeds_[5] += 362437);
        }
        else
        {
            static assert(false, "Phobos Error: Xorshift has no popFront() update for "
                                 ~ to!string(bits) ~ " bits.");
        }
    }


    /**
     * Captures a range state.
     */
    @property @safe
    nothrow typeof(this) save() pure
    {
        return this;
    }


    /**
     * Compares against $(D_PARAM rhs) for equality.
     */
    @safe
    nothrow bool opEquals(ref const XorshiftEngine rhs) const pure
    {
        return seeds_ == rhs.seeds_;
    }


  private:
    @safe
    static nothrow void sanitizeSeeds(ref UIntType[size] seeds) pure
    {
        for (uint i; i < seeds.length; i++)
        {
            if (seeds[i] == 0)
                seeds[i] = i + 1;
        }
    }


    @safe pure nothrow unittest
    {
        static if (size  ==  4)  // Other bits too
        {
            UIntType[size] seeds = [1, 0, 0, 4];

            sanitizeSeeds(seeds);

            assert(seeds == [1, 2, 3, 4]);
        }
    }
}


/**
 * Define $(D XorshiftEngine) generators with well-chosen parameters. See each bits examples of "Xorshift RNGs".
 * $(D Xorshift) is a Xorshift128's alias because 128bits implementation is mostly used.
 *
 * Example:
 * -----
 * // Seed with a constant
 * auto rnd = Xorshift(1);
 * auto num = rnd.front;  // same for each run
 *
 * // Seed with an unpredictable value
 * rnd.seed(unpredictableSeed());
 * num = rnd.front; // different across runs
 * -----
 */
alias Xorshift32  = XorshiftEngine!(uint, 32,  13, 17, 15) ;
alias Xorshift64  = XorshiftEngine!(uint, 64,  10, 13, 10); /// ditto
alias Xorshift96  = XorshiftEngine!(uint, 96,  10, 5,  26); /// ditto
alias Xorshift128 = XorshiftEngine!(uint, 128, 11, 8,  19); /// ditto
alias Xorshift160 = XorshiftEngine!(uint, 160, 2,  1,  4);  /// ditto
alias Xorshift192 = XorshiftEngine!(uint, 192, 2,  1,  4);  /// ditto
alias Xorshift    = Xorshift128;                            /// ditto


unittest
{
    import std.range;
    static assert(isForwardRange!Xorshift);
    static assert(isUniformRNG!Xorshift);
    static assert(isUniformRNG!(Xorshift, uint));
    static assert(isSeedable!Xorshift);
    static assert(isSeedable!(Xorshift, uint));

    // Result from reference implementation.
    auto checking = [
        [2463534242UL, 901999875, 3371835698, 2675058524, 1053936272, 3811264849, 472493137, 3856898176, 2131710969, 2312157505],
        [362436069UL, 2113136921, 19051112, 3010520417, 951284840, 1213972223, 3173832558, 2611145638, 2515869689, 2245824891],
        [521288629UL, 1950277231, 185954712, 1582725458, 3580567609, 2303633688, 2394948066, 4108622809, 1116800180, 3357585673],
        [88675123UL, 3701687786, 458299110, 2500872618, 3633119408, 516391518, 2377269574, 2599949379, 717229868, 137866584],
        [5783321UL, 393427209, 1947109840, 565829276, 1006220149, 971147905, 1436324242, 2800460115, 1484058076, 3823330032],
        [0UL, 246875399, 3690007200, 1264581005, 3906711041, 1866187943, 2481925219, 2464530826, 1604040631, 3653403911]
    ];

    alias XorshiftTypes = std.typetuple.TypeTuple!(Xorshift32, Xorshift64, Xorshift96, Xorshift128, Xorshift160, Xorshift192);

    foreach (I, Type; XorshiftTypes)
    {
        Type rnd;

        foreach (e; checking[I])
        {
            assert(rnd.front == e);
            rnd.popFront();
        }
    }

    // Check .save works
    foreach (Type; XorshiftTypes)
    {
        auto rnd1 = Type(unpredictableSeed);
        auto rnd2 = rnd1.save;
        assert(rnd1 == rnd2);
        // Enable next test when RNGs are reference types
        version(none) { assert(rnd1 !is rnd2); }
        assert(rnd1.take(100).array() == rnd2.take(100).array());
    }
}


/* A complete list of all pseudo-random number generators implemented in
 * std.random.  This can be used to confirm that a given function or
 * object is compatible with all the pseudo-random number generators
 * available.  It is enabled only in unittest mode.
 *
 * Example:
 *
 * ----
 * foreach(Rng; PseudoRngTypes)
 * {
 *     static assert(isUniformRng!Rng);
 *     auto rng = Rng(unpredictableSeed);
 *     foo(rng);
 * }
 * ----
 */

unittest
{
    foreach(Rng; PseudoRngTypes)
    {
        static assert(isUniformRNG!Rng);
    }
}


/**
A "good" seed for initializing random number engines. Initializing
with $(D_PARAM unpredictableSeed) makes engines generate different
random number sequences every run.

Returns:
A single unsigned integer seed value, different on each successive call

Example:

----
auto rnd = Random(unpredictableSeed);
auto n = rnd.front;
...
----
*/

@property uint unpredictableSeed() @trusted
{
    import core.thread : Thread, getpid, TickDuration;
    static bool seeded;
    static MinstdRand0 rand;
    if (!seeded)
    {
        uint threadID = cast(uint) cast(void*) Thread.getThis();
        rand.seed((getpid() + threadID) ^ cast(uint) TickDuration.currSystemTick.length);
        seeded = true;
    }
    rand.popFront();
    return cast(uint) (TickDuration.currSystemTick.length ^ rand.front);
}

@safe unittest
{
    // not much to test here
    auto a = unpredictableSeed;
    static assert(is(typeof(a) == uint));
}

/**
The "default", "favorite", "suggested" random number generator type on
the current platform. It is an alias for one of the previously-defined
generators. You may want to use it if (1) you need to generate some
nice random numbers, and (2) you don't care for the minutiae of the
method being used.
 */

alias Random = Mt19937;

unittest
{
    static assert(isUniformRNG!Random);
    static assert(isUniformRNG!(Random, uint));
    static assert(isSeedable!Random);
    static assert(isSeedable!(Random, uint));
}

/**
Global random number generator used by various functions in this
module whenever no generator is specified. It is allocated per-thread
and initialized to an unpredictable value for each thread.

Returns:
A singleton instance of the default random number generator
 */
@property ref Random rndGen() @safe
{
    import std.algorithm : map;
    import std.range : repeat;

    static Random result;
    static bool initialized;
    if (!initialized)
    {
        static if(isSeedable!(Random, typeof(map!((a) => unpredictableSeed)(repeat(0)))))
            result.seed(map!((a) => unpredictableSeed)(repeat(0)));
        else
            result = Random(unpredictableSeed);
        initialized = true;
    }
    return result;
}

/**
Generates a number between $(D a) and $(D b). The $(D boundaries)
parameter controls the shape of the interval (open vs. closed on
either side). Valid values for $(D boundaries) are $(D "[]"), $(D
"$(LPAREN)]"), $(D "[$(RPAREN)"), and $(D "()"). The default interval
is closed to the left and open to the right. The version that does not
take $(D urng) uses the default generator $(D rndGen).

Params:
    a = lower bound of the _uniform distribution
    b = upper bound of the _uniform distribution
    urng = (optional) random number generator to use;
           if not specified, defaults to $(D rndGen)

Returns:
    A single random variate drawn from the _uniform distribution
    between $(D a) and $(D b), whose type is the common type of
    these parameters

Example:

----
auto gen = Random(unpredictableSeed);
// Generate an integer in [0, 1023]
auto a = uniform(0, 1024, gen);
// Generate a float in [0, 1$(RPAREN)
auto a = uniform(0.0f, 1.0f, gen);
----
 */
auto uniform(string boundaries = "[)", T1, T2)
(T1 a, T2 b)  if (!is(CommonType!(T1, T2) == void))
{
    return uniform!(boundaries, T1, T2, Random)(a, b, rndGen);
}

@safe unittest
{
    MinstdRand0 gen;
    foreach (i; 0 .. 20)
    {
        auto x = uniform(0.0, 15.0, gen);
        assert(0 <= x && x < 15);
    }
    foreach (i; 0 .. 20)
    {
        auto x = uniform!"[]"('a', 'z', gen);
        assert('a' <= x && x <= 'z');
    }

    foreach (i; 0 .. 20)
    {
        auto x = uniform('a', 'z', gen);
        assert('a' <= x && x < 'z');
    }

    foreach(i; 0 .. 20)
    {
        immutable ubyte a = 0;
            immutable ubyte b = 15;
        auto x = uniform(a, b, gen);
            assert(a <= x && x < b);
    }
}

// Implementation of uniform for floating-point types
/// ditto
auto uniform(string boundaries = "[)",
        T1, T2, UniformRandomNumberGenerator)
(T1 a, T2 b, ref UniformRandomNumberGenerator urng)
if (isFloatingPoint!(CommonType!(T1, T2)) && isUniformRNG!UniformRandomNumberGenerator)
{
    import std.exception : enforce;
    import std.conv : text;
    alias NumberType = Unqual!(CommonType!(T1, T2));
    static if (boundaries[0] == '(')
    {
        import std.math : nextafter;
        NumberType _a = nextafter(cast(NumberType) a, NumberType.infinity);
    }
    else
    {
        NumberType _a = a;
    }
    static if (boundaries[1] == ')')
    {
        import std.math : nextafter;
        NumberType _b = nextafter(cast(NumberType) b, -NumberType.infinity);
    }
    else
    {
        NumberType _b = b;
    }
    enforce(_a <= _b,
            text("std.random.uniform(): invalid bounding interval ",
                    boundaries[0], a, ", ", b, boundaries[1]));
    NumberType result =
        _a + (_b - _a) * cast(NumberType) (urng.front - urng.min)
        / (urng.max - urng.min);
    urng.popFront();
    return result;
}

// Implementation of uniform for integral types
/+ Description of algorithm and suggestion of correctness:

The modulus operator maps an integer to a small, finite space. For instance, `x
% 3` will map whatever x is into the range [0 .. 3). 0 maps to 0, 1 maps to 1, 2
maps to 2, 3 maps to 0, and so on infinitely. As long as the integer is
uniformly chosen from the infinite space of all non-negative integers then `x %
3` will uniformly fall into that range.

(Non-negative is important in this case because some definitions of modulus,
namely the one used in computers generally, map negative numbers differently to
(-3 .. 0]. `uniform` does not use negative number modulus, thus we can safely
ignore that fact.)

The issue with computers is that integers have a finite space they must fit in,
and our uniformly chosen random number is picked in that finite space. So, that
method is not sufficient. You can look at it as the integer space being divided
into "buckets" and every bucket after the first bucket maps directly into that
first bucket. `[0, 1, 2]`, `[3, 4, 5]`, ... When integers are finite, then the
last bucket has the chance to be "incomplete": `[uint.max - 3, uint.max - 2,
uint.max - 1]`, `[uint.max]` ... (the last bucket only has 1!). The issue here
is that _every_ bucket maps _completely_ to the first bucket except for that
last one. The last one doesn't have corresponding mappings to 1 or 2, in this
case, which makes it unfair.

So, the answer is to simply "reroll" if you're in that last bucket, since it's
the only unfair one. Eventually you'll roll into a fair bucket. Simply, instead
of the meaning of the last bucket being "maps to `[0]`", it changes to "maps to
`[0, 1, 2]`", which is precisely what we want.

To generalize, `upperDist` represents the size of our buckets (and, thus, the
exclusive upper bound for our desired uniform number). `rnum` is a uniformly
random number picked from the space of integers that a computer can hold (we'll
say `UpperType` represents that type).

We'll first try to do the mapping into the first bucket by doing `offset = rnum
% upperDist`. We can figure out the position of the front of the bucket we're in
by `bucketFront = rnum - offset`.

If we start at `UpperType.max` and walk backwards `upperDist - 1` spaces, then
the space we land on is the last acceptable position where a full bucket can
fit:

```
   bucketFront     UpperType.max
      v                 v
[..., 0, 1, 2, ..., upperDist - 1]
      ^~~ upperDist - 1 ~~^
```

If the bucket starts any later, then it must have lost at least one number and
at least that number won't be represented fairly.

```
                bucketFront     UpperType.max
                     v                v
[..., upperDist - 1, 0, 1, 2, ..., upperDist - 2]
          ^~~~~~~~ upperDist - 1 ~~~~~~~^
```

Hence, our condition to reroll is
`bucketFront > (UpperType.max - (upperDist - 1))`
+/
auto uniform(string boundaries = "[)", T1, T2, RandomGen)
(T1 a, T2 b, ref RandomGen rng)
if ((isIntegral!(CommonType!(T1, T2)) || isSomeChar!(CommonType!(T1, T2))) &&
     isUniformRNG!RandomGen)
{
    import std.exception : enforce;
    import std.conv : text, unsigned;
    alias ResultType = Unqual!(CommonType!(T1, T2));
    static if (boundaries[0] == '(')
    {
        enforce(a < ResultType.max,
                text("std.random.uniform(): invalid left bound ", a));
        ResultType lower = cast(ResultType) (a + 1);
    }
    else
    {
        ResultType lower = a;
    }

    static if (boundaries[1] == ']')
    {
        enforce(lower <= b,
                text("std.random.uniform(): invalid bounding interval ",
                        boundaries[0], a, ", ", b, boundaries[1]));
        /* Cannot use this next optimization with dchar, as dchar
         * only partially uses its full bit range
         */
        static if (!is(ResultType == dchar))
        {
            if (b == ResultType.max && lower == ResultType.min)
            {
                // Special case - all bits are occupied
                return std.random.uniform!ResultType(rng);
            }
        }
        auto upperDist = unsigned(b - lower) + 1u;
    }
    else
    {
        enforce(lower < b,
                text("std.random.uniform(): invalid bounding interval ",
                        boundaries[0], a, ", ", b, boundaries[1]));
        auto upperDist = unsigned(b - lower);
    }

    assert(upperDist != 0);

    alias UpperType = typeof(upperDist);
    static assert(UpperType.min == 0);

    UpperType offset, rnum, bucketFront;
    do
    {
        rnum = uniform!UpperType(rng);
        offset = rnum % upperDist;
        bucketFront = rnum - offset;
    } // while we're in an unfair bucket...
    while (bucketFront > (UpperType.max - (upperDist - 1)));

    return cast(ResultType)(lower + offset);
}

@safe unittest
{
    import std.conv : to;
    auto gen = Mt19937(unpredictableSeed);
    static assert(isForwardRange!(typeof(gen)));

    auto a = uniform(0, 1024, gen);
    assert(0 <= a && a <= 1024);
    auto b = uniform(0.0f, 1.0f, gen);
    assert(0 <= b && b < 1, to!string(b));
    auto c = uniform(0.0, 1.0);
    assert(0 <= c && c < 1);

    foreach (T; std.typetuple.TypeTuple!(char, wchar, dchar, byte, ubyte, short, ushort,
                          int, uint, long, ulong, float, double, real))
    {
        T lo = 0, hi = 100;

        // Try tests with each of the possible bounds
        {
            T init = uniform(lo, hi);
            size_t i = 50;
            while (--i && uniform(lo, hi) == init) {}
            assert(i > 0);
        }
        {
            T init = uniform!"[)"(lo, hi);
            size_t i = 50;
            while (--i && uniform(lo, hi) == init) {}
            assert(i > 0);
        }
        {
            T init = uniform!"(]"(lo, hi);
            size_t i = 50;
            while (--i && uniform(lo, hi) == init) {}
            assert(i > 0);
        }
        {
            T init = uniform!"()"(lo, hi);
            size_t i = 50;
            while (--i && uniform(lo, hi) == init) {}
            assert(i > 0);
        }
        {
            T init = uniform!"[]"(lo, hi);
            size_t i = 50;
            while (--i && uniform(lo, hi) == init) {}
            assert(i > 0);
        }

        /* Test case with closed boundaries covering whole range
         * of integral type
         */
        static if (isIntegral!T || isSomeChar!T)
        {
            foreach (immutable _; 0 .. 100)
            {
                auto u = uniform!"[]"(T.min, T.max);
                static assert(is(typeof(u) == T));
                assert(T.min <= u, "Lower bound violation for uniform!\"[]\" with " ~ T.stringof);
                assert(u <= T.max, "Upper bound violation for uniform!\"[]\" with " ~ T.stringof);
            }
        }
    }

    auto reproRng = Xorshift(239842);

    foreach (T; std.typetuple.TypeTuple!(char, wchar, dchar, byte, ubyte, short,
                          ushort, int, uint, long, ulong))
    {
        T lo = T.min + 10, hi = T.max - 10;
        T init = uniform(lo, hi, reproRng);
        size_t i = 50;
        while (--i && uniform(lo, hi, reproRng) == init) {}
        assert(i > 0);
    }

    {
        bool sawLB = false, sawUB = false;
        foreach (i; 0 .. 50)
        {
            auto x = uniform!"[]"('a', 'd', reproRng);
            if (x == 'a') sawLB = true;
            if (x == 'd') sawUB = true;
            assert('a' <= x && x <= 'd');
        }
        assert(sawLB && sawUB);
    }

    {
        bool sawLB = false, sawUB = false;
        foreach (i; 0 .. 50)
        {
            auto x = uniform('a', 'd', reproRng);
            if (x == 'a') sawLB = true;
            if (x == 'c') sawUB = true;
            assert('a' <= x && x < 'd');
        }
        assert(sawLB && sawUB);
    }

    {
        bool sawLB = false, sawUB = false;
        foreach (i; 0 .. 50)
        {
            immutable int lo = -2, hi = 2;
            auto x = uniform!"()"(lo, hi, reproRng);
            if (x == (lo+1)) sawLB = true;
            if (x == (hi-1)) sawUB = true;
            assert(lo < x && x < hi);
        }
        assert(sawLB && sawUB);
    }

    {
        bool sawLB = false, sawUB = false;
        foreach (i; 0 .. 50)
        {
            immutable ubyte lo = 0, hi = 5;
            auto x = uniform(lo, hi, reproRng);
            if (x == lo) sawLB = true;
            if (x == (hi-1)) sawUB = true;
            assert(lo <= x && x < hi);
        }
        assert(sawLB && sawUB);
    }

    {
        foreach (i; 0 .. 30)
        {
            assert(i == uniform(i, i+1, reproRng));
        }
    }
}

/**
Generates a uniformly-distributed number in the range $(D [T.min,
T.max]) for any integral or character type $(D T). If no random
number generator is passed, uses the default $(D rndGen).

Params:
    urng = (optional) random number generator to use;
           if not specified, defaults to $(D rndGen)

Returns:
    Random variate drawn from the _uniform distribution across all
    possible values of the integral or character type $(D T).
 */
auto uniform(T, UniformRandomNumberGenerator)
(ref UniformRandomNumberGenerator urng)
if (!is(T == enum) && (isIntegral!T || isSomeChar!T) && isUniformRNG!UniformRandomNumberGenerator)
{
    /* dchar does not use its full bit range, so we must
     * revert to the uniform with specified bounds
     */
    static if (is(T == dchar))
    {
        return uniform!"[]"(T.min, T.max);
    }
    else
    {
        auto r = urng.front;
        urng.popFront();
        static if (T.sizeof <= r.sizeof)
        {
            return cast(T) r;
        }
        else
        {
            static assert(T.sizeof == 8 && r.sizeof == 4);
            T r1 = urng.front | (cast(T)r << 32);
            urng.popFront();
            return r1;
        }
    }
}

/// Ditto
auto uniform(T)()
if (!is(T == enum) && (isIntegral!T || isSomeChar!T))
{
    return uniform!T(rndGen);
}

@safe unittest
{
    foreach(T; std.typetuple.TypeTuple!(char, wchar, dchar, byte, ubyte, short, ushort,
                          int, uint, long, ulong))
    {
        T init = uniform!T();
        size_t i = 50;
        while (--i && uniform!T() == init) {}
        assert(i > 0);

        foreach (immutable _; 0 .. 100)
        {
            auto u = uniform!T();
            static assert(is(typeof(u) == T));
            assert(T.min <= u, "Lower bound violation for uniform!" ~ T.stringof);
            assert(u <= T.max, "Upper bound violation for uniform!" ~ T.stringof);
        }
    }
}

/**
Returns a uniformly selected member of enum $(D E). If no random number
generator is passed, uses the default $(D rndGen).

Params:
    urng = (optional) random number generator to use;
           if not specified, defaults to $(D rndGen)

Returns:
    Random variate drawn with equal probability from any
    of the possible values of the enum $(D E).
 */
auto uniform(E, UniformRandomNumberGenerator)
(ref UniformRandomNumberGenerator urng)
if (is(E == enum) && isUniformRNG!UniformRandomNumberGenerator)
{
    static immutable E[EnumMembers!E.length] members = [EnumMembers!E];
    return members[std.random.uniform(0, members.length, urng)];
}

/// Ditto
auto uniform(E)()
if (is(E == enum))
{
    return uniform!E(rndGen);
}

///
@safe unittest
{
    enum Fruit { apple, mango, pear }
    auto randFruit = uniform!Fruit();
}

@safe unittest
{
    enum Fruit { Apple = 12, Mango = 29, Pear = 72 }
    foreach (_; 0 .. 100)
    {
        foreach(f; [uniform!Fruit(), rndGen.uniform!Fruit()])
        {
            assert(f == Fruit.Apple || f == Fruit.Mango || f == Fruit.Pear);
        }
    }
}

/**
 * Generates a uniformly-distributed floating point number of type
 * $(D T) in the range [0, 1$(RPAREN).  If no random number generator is
 * specified, the default RNG $(D rndGen) will be used as the source
 * of randomness.
 *
 * $(D uniform01) offers a faster generation of random variates than
 * the equivalent $(D uniform!"[$(RPAREN)"(0.0, 1.0)) and so may be preferred
 * for some applications.
 *
 * Params:
 *     rng = (optional) random number generator to use;
 *           if not specified, defaults to $(D rndGen)
 *
 * Returns:
 *     Floating-point random variate of type $(D T) drawn from the _uniform
 *     distribution across the half-open interval [0, 1$(RPAREN).
 *
 */
T uniform01(T = double)()
    if (isFloatingPoint!T)
{
    return uniform01!T(rndGen);
}

/// ditto
T uniform01(T = double, UniformRNG)(ref UniformRNG rng)
    if (isFloatingPoint!T && isUniformRNG!UniformRNG)
out (result)
{
    assert(0 <= result);
    assert(result < 1);
}
body
{
    alias R = typeof(rng.front);
    static if (isIntegral!R)
    {
        enum T factor = 1 / (T(1) + rng.max - rng.min);
    }
    else static if (isFloatingPoint!R)
    {
        enum T factor = 1 / (rng.max - rng.min);
    }
    else
    {
        static assert(false);
    }

    while (true)
    {
        immutable T u = (rng.front - rng.min) * factor;
        rng.popFront();

        import core.stdc.limits : CHAR_BIT;  // CHAR_BIT is always 8
        static if (isIntegral!R && T.mant_dig >= (CHAR_BIT * R.sizeof))
        {
            /* If RNG variates are integral and T has enough precision to hold
             * R without loss, we're guaranteed by the definition of factor
             * that precisely u < 1.
             */
            return u;
        }
        else
        {
            /* Otherwise we have to check whether u is beyond the assumed range
             * because of the loss of precision, or for another reason, a
             * floating-point RNG can return a variate that is exactly equal to
             * its maximum.
             */
            if (u < 1)
            {
                return u;
            }
        }
    }

    // Shouldn't ever get here.
    assert(false);
}

@safe unittest
{
    import std.typetuple;
    foreach (UniformRNG; PseudoRngTypes)
    {

        foreach (T; std.typetuple.TypeTuple!(float, double, real))
        (){ // avoid slow optimizations for large functions @@@BUG@@@ 2396
            UniformRNG rng = UniformRNG(unpredictableSeed);

            auto a = uniform01();
            assert(is(typeof(a) == double));
            assert(0 <= a && a < 1);

            auto b = uniform01(rng);
            assert(is(typeof(a) == double));
            assert(0 <= b && b < 1);

            auto c = uniform01!T();
            assert(is(typeof(c) == T));
            assert(0 <= c && c < 1);

            auto d = uniform01!T(rng);
            assert(is(typeof(d) == T));
            assert(0 <= d && d < 1);

            T init = uniform01!T(rng);
            size_t i = 50;
            while (--i && uniform01!T(rng) == init) {}
            assert(i > 0);
            assert(i < 50);
        }();
    }
}

/**
Generates a uniform probability distribution of size $(D n), i.e., an
array of size $(D n) of positive numbers of type $(D F) that sum to
$(D 1). If $(D useThis) is provided, it is used as storage.
 */
F[] uniformDistribution(F = double)(size_t n, F[] useThis = null)
    if(isFloatingPoint!F)
{
    import std.numeric : normalize;
    useThis.length = n;
    foreach (ref e; useThis)
    {
        e = uniform(0.0, 1);
    }
    normalize(useThis);
    return useThis;
}

@safe unittest
{
    import std.math;
    import std.algorithm;
    static assert(is(CommonType!(double, int) == double));
    auto a = uniformDistribution(5);
    assert(a.length == 5);
    assert(approxEqual(reduce!"a + b"(a), 1));
    a = uniformDistribution(10, a);
    assert(a.length == 10);
    assert(approxEqual(reduce!"a + b"(a), 1));
}

/**
Shuffles elements of $(D r) using $(D gen) as a shuffler. $(D r) must be
a random-access range with length.  If no RNG is specified, $(D rndGen)
will be used.

Params:
    r = random-access range whose elements are to be shuffled
    gen = (optional) random number generator to use; if not
          specified, defaults to $(D rndGen)
 */

void randomShuffle(Range, RandomGen)(Range r, ref RandomGen gen)
    if(isRandomAccessRange!Range && isUniformRNG!RandomGen)
{
    return partialShuffle!(Range, RandomGen)(r, r.length, gen);
}

/// ditto
void randomShuffle(Range)(Range r)
    if(isRandomAccessRange!Range)
{
    return randomShuffle(r, rndGen);
}

unittest
{
    import std.algorithm;
    foreach(RandomGen; PseudoRngTypes)
    {
        // Also tests partialShuffle indirectly.
        auto a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
        auto b = a.dup;
        auto gen = RandomGen(unpredictableSeed);
        randomShuffle(a, gen);
        sort(a);
        assert(a == b);
        randomShuffle(a);
        sort(a);
        assert(a == b);
    }
}

/**
Partially shuffles the elements of $(D r) such that upon returning $(D r[0..n])
is a random subset of $(D r) and is randomly ordered.  $(D r[n..r.length])
will contain the elements not in $(D r[0..n]).  These will be in an undefined
order, but will not be random in the sense that their order after
$(D partialShuffle) returns will not be independent of their order before
$(D partialShuffle) was called.

$(D r) must be a random-access range with length.  $(D n) must be less than
or equal to $(D r.length).  If no RNG is specified, $(D rndGen) will be used.

Params:
    r = random-access range whose elements are to be shuffled
    n = number of elements of $(D r) to shuffle (counting from the beginning);
        must be less than $(D r.length)
    gen = (optional) random number generator to use; if not
          specified, defaults to $(D rndGen)
*/
void partialShuffle(Range, RandomGen)(Range r, in size_t n, ref RandomGen gen)
    if(isRandomAccessRange!Range && isUniformRNG!RandomGen)
{
    import std.exception : enforce;
    import std.algorithm : swapAt;
    enforce(n <= r.length, "n must be <= r.length for partialShuffle.");
    foreach (i; 0 .. n)
    {
        swapAt(r, i, uniform(i, r.length, gen));
    }
}

/// ditto
void partialShuffle(Range)(Range r, in size_t n)
    if(isRandomAccessRange!Range)
{
    return partialShuffle(r, n, rndGen);
}

unittest
{
    import std.algorithm;
    foreach(RandomGen; PseudoRngTypes)
    {
        auto a = [0, 1, 1, 2, 3];
        auto b = a.dup;

        // Pick a fixed seed so that the outcome of the statistical
        // test below is deterministic.
        auto gen = RandomGen(12345);

        // NUM times, pick LEN elements from the array at random.
        immutable int LEN = 2;
        immutable int NUM = 750;
        int[][] chk;
        foreach(step; 0..NUM)
        {
            partialShuffle(a, LEN, gen);
            chk ~= a[0..LEN].dup;
        }

        // Check that each possible a[0..LEN] was produced at least once.
        // For a perfectly random RandomGen, the probability that each
        // particular combination failed to appear would be at most
        // 0.95 ^^ NUM which is approximately 1,962e-17.
        // As long as hardware failure (e.g. bit flip) probability
        // is higher, we are fine with this unittest.
        sort(chk);
        assert(equal(uniq(chk), [       [0,1], [0,2], [0,3],
                                 [1,0], [1,1], [1,2], [1,3],
                                 [2,0], [2,1],        [2,3],
                                 [3,0], [3,1], [3,2],      ]));

        // Check that all the elements are still there.
        sort(a);
        assert(equal(a, b));
    }
}

/**
Rolls a dice with relative probabilities stored in $(D
proportions). Returns the index in $(D proportions) that was chosen.

Params:
    rnd = (optional) random number generator to use; if not
          specified, defaults to $(D rndGen)
    proportions = forward range or list of individual values
                  whose elements correspond to the probabilities
                  with which to choose the corresponding index
                  value

Returns:
    Random variate drawn from the index values
    [0, ... $(D proportions.length) - 1], with the probability
    of getting an individual index value $(D i) being proportional to
    $(D proportions[i]).

Example:

----
auto x = dice(0.5, 0.5);   // x is 0 or 1 in equal proportions
auto y = dice(50, 50);     // y is 0 or 1 in equal proportions
auto z = dice(70, 20, 10); // z is 0 70% of the time, 1 20% of the time,
                           // and 2 10% of the time
----
*/
size_t dice(Rng, Num)(ref Rng rnd, Num[] proportions...)
if (isNumeric!Num && isForwardRange!Rng)
{
    return diceImpl(rnd, proportions);
}

/// Ditto
size_t dice(R, Range)(ref R rnd, Range proportions)
if (isForwardRange!Range && isNumeric!(ElementType!Range) && !isArray!Range)
{
    return diceImpl(rnd, proportions);
}

/// Ditto
size_t dice(Range)(Range proportions)
if (isForwardRange!Range && isNumeric!(ElementType!Range) && !isArray!Range)
{
    return diceImpl(rndGen, proportions);
}

/// Ditto
size_t dice(Num)(Num[] proportions...)
if (isNumeric!Num)
{
    return diceImpl(rndGen, proportions);
}

private size_t diceImpl(Rng, Range)(ref Rng rng, Range proportions)
    if (isForwardRange!Range && isNumeric!(ElementType!Range) && isForwardRange!Rng)
in
{
    import std.algorithm : all;
    assert(proportions.save.all!"a >= 0");
}
body
{
    import std.exception : enforce;
    import std.algorithm : reduce;
    double sum = reduce!"a + b"(0.0, proportions.save);
    enforce(sum > 0, "Proportions in a dice cannot sum to zero");
    immutable point = uniform(0.0, sum, rng);
    assert(point < sum);
    auto mass = 0.0;

    size_t i = 0;
    foreach (e; proportions)
    {
        mass += e;
        if (point < mass) return i;
        i++;
    }
    // this point should not be reached
    assert(false);
}

unittest
{
    auto rnd = Random(unpredictableSeed);
    auto i = dice(rnd, 0.0, 100.0);
    assert(i == 1);
    i = dice(rnd, 100.0, 0.0);
    assert(i == 0);

    i = dice(100U, 0U);
    assert(i == 0);
}

/**
Covers a given range $(D r) in a random manner, i.e. goes through each
element of $(D r) once and only once, just in a random order. $(D r)
must be a random-access range with length.

If no random number generator is passed to $(D randomCover), the
thread-global RNG rndGen will be used internally.

Params:
    r = random-access range to cover
    rng = (optional) random number generator to use;
          if not specified, defaults to $(D rndGen)

Returns:
    Range whose elements consist of the elements of $(D r),
    in random order.  Will be a forward range if both $(D r) and
    $(D rng) are forward ranges, an input range otherwise.

Example:
----
int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8 ];
foreach (e; randomCover(a))
{
    writeln(e);
}
----

$(B WARNING:) If an alternative RNG is desired, it is essential for this
to be a $(I new) RNG seeded in an unpredictable manner. Passing it a RNG
used elsewhere in the program will result in unintended correlations,
due to the current implementation of RNGs as value types.

Example:
----
int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8 ];
foreach (e; randomCover(a, Random(unpredictableSeed)))  // correct!
{
    writeln(e);
}

foreach (e; randomCover(a, rndGen))  // DANGEROUS!! rndGen gets copied by value
{
    writeln(e);
}

foreach (e; randomCover(a, rndGen))  // ... so this second random cover
{                                    // will output the same sequence as
    writeln(e);                      // the previous one.
}
----

These issues will be resolved in a second-generation std.random that
re-implements random number generators as reference types.
 */
struct RandomCover(Range, UniformRNG = void)
    if (isRandomAccessRange!Range && (isUniformRNG!UniformRNG || is(UniformRNG == void)))
{
    private Range _input;
    private bool[] _chosen;
    private size_t _current;
    private size_t _alreadyChosen = 0;

    static if (is(UniformRNG == void))
    {
        this(Range input)
        {
            _input = input;
            _chosen.length = _input.length;
            if (_chosen.length == 0)
            {
                _alreadyChosen = 1;
            }
        }
    }
    else
    {
        private UniformRNG _rng;

        this(Range input, ref UniformRNG rng)
        {
            _input = input;
            _rng = rng;
            _chosen.length = _input.length;
            if (_chosen.length == 0)
            {
                _alreadyChosen = 1;
            }
        }

        this(Range input, UniformRNG rng)
        {
            this(input, rng);
        }
    }

    static if (hasLength!Range)
    {
        @property size_t length()
        {
            if (_alreadyChosen == 0)
            {
                return _input.length;
            }
            else
            {
                return (1 + _input.length) - _alreadyChosen;
            }
        }
    }

    @property auto ref front()
    {
        if (_alreadyChosen == 0)
        {
            popFront();
        }
        return _input[_current];
    }

    void popFront()
    {
        if (_alreadyChosen >= _input.length)
        {
            // No more elements
            ++_alreadyChosen; // means we're done
            return;
        }
        size_t k = _input.length - _alreadyChosen;
        size_t i;
        foreach (e; _input)
        {
            if (_chosen[i]) { ++i; continue; }
            // Roll a dice with k faces
            static if (is(UniformRNG == void))
            {
                auto chooseMe = uniform(0, k) == 0;
            }
            else
            {
                auto chooseMe = uniform(0, k, _rng) == 0;
            }
            assert(k > 1 || chooseMe);
            if (chooseMe)
            {
                _chosen[i] = true;
                _current = i;
                ++_alreadyChosen;
                return;
            }
            --k;
            ++i;
        }
    }

    static if (isForwardRange!UniformRNG)
    {
        @property typeof(this) save()
        {
            auto ret = this;
            ret._input = _input.save;
            ret._rng = _rng.save;
            return ret;
        }
    }

    @property bool empty() { return _alreadyChosen > _input.length; }
}

/// Ditto
auto randomCover(Range, UniformRNG)(Range r, auto ref UniformRNG rng)
    if (isRandomAccessRange!Range && isUniformRNG!UniformRNG)
{
    return RandomCover!(Range, UniformRNG)(r, rng);
}

/// Ditto
auto randomCover(Range)(Range r)
    if (isRandomAccessRange!Range)
{
    return RandomCover!(Range, void)(r);
}

unittest
{
    import std.algorithm;
    import std.conv;
    int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8 ];
    foreach (UniformRNG; std.typetuple.TypeTuple!(void, PseudoRngTypes))
    {
        static if (is(UniformRNG == void))
        {
            auto rc = randomCover(a);
            static assert(isInputRange!(typeof(rc)));
            static assert(!isForwardRange!(typeof(rc)));
        }
        else
        {
            auto rng = UniformRNG(unpredictableSeed);
            auto rc = randomCover(a, rng);
            static assert(isForwardRange!(typeof(rc)));
            // check for constructor passed a value-type RNG
            auto rc2 = RandomCover!(int[], UniformRNG)(a, UniformRNG(unpredictableSeed));
            static assert(isForwardRange!(typeof(rc2)));
        }

        int[] b = new int[9];
        uint i;
        foreach (e; rc)
        {
            //writeln(e);
            b[i++] = e;
        }
        sort(b);
        assert(a == b, text(b));
    }
}

unittest
{
    // Bugzilla 12589
    int[] r = [];
    auto rc = randomCover(r);
    assert(rc.length == 0);
    assert(rc.empty);
}

// RandomSample
/**
Selects a random subsample out of $(D r), containing exactly $(D n)
elements. The order of elements is the same as in the original
range. The total length of $(D r) must be known. If $(D total) is
passed in, the total number of sample is considered to be $(D
total). Otherwise, $(D RandomSample) uses $(D r.length).

Params:
    r = range to sample from
    n = number of elements to include in the sample;
        must be less than or equal to the total number
        of elements in $(D r) and/or the parameter
        $(D total) (if provided)
    total = (semi-optional) number of elements of $(D r)
            from which to select the sample (counting from
            the beginning); must be less than or equal to
            the total number of elements in $(D r) itself.
            May be omitted if $(D r) has the $(D .length)
            property and the sample is to be drawn from
            all elements of $(D r).
    rng = (optional) random number generator to use;
          if not specified, defaults to $(D rndGen)

Returns:
    Range whose elements consist of a randomly selected subset of
    the elements of $(D r), in the same order as these elements
    appear in $(D r) itself.  Will be a forward range if both $(D r)
    and $(D rng) are forward ranges, an input range otherwise.

$(D RandomSample) implements Jeffrey Scott Vitter's Algorithm D
(see Vitter $(WEB dx.doi.org/10.1145/358105.893, 1984), $(WEB
dx.doi.org/10.1145/23002.23003, 1987)), which selects a sample
of size $(D n) in O(n) steps and requiring O(n) random variates,
regardless of the size of the data being sampled.  The exception
to this is if traversing k elements on the input range is itself
an O(k) operation (e.g. when sampling lines from an input file),
in which case the sampling calculation will inevitably be of
O(total).

RandomSample will throw an exception if $(D total) is verifiably
less than the total number of elements available in the input,
or if $(D n > total).

If no random number generator is passed to $(D randomSample), the
thread-global RNG rndGen will be used internally.

Example:
----
int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ];
// Print 5 random elements picked off from a
foreach (e; randomSample(a, 5))
{
    writeln(e);
}
----

$(B WARNING:) If an alternative RNG is desired, it is essential for this
to be a $(I new) RNG seeded in an unpredictable manner. Passing it a RNG
used elsewhere in the program will result in unintended correlations,
due to the current implementation of RNGs as value types.

Example:
----
int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ];
foreach (e; randomSample(a, 5, Random(unpredictableSeed)))  // correct!
{
    writeln(e);
}

foreach (e; randomSample(a, 5, rndGen))  // DANGEROUS!! rndGen gets
{                                        // copied by value
    writeln(e);
}

foreach (e; randomSample(a, 5, rndGen))  // ... so this second random
{                                        // sample will select the same
    writeln(e);                          // values as the previous one.
}
----

These issues will be resolved in a second-generation std.random that
re-implements random number generators as reference types.
*/
struct RandomSample(Range, UniformRNG = void)
    if (isInputRange!Range && (isUniformRNG!UniformRNG || is(UniformRNG == void)))
{
    private size_t _available, _toSelect;
    private enum ushort _alphaInverse = 13; // Vitter's recommended value.
    private double _Vprime;
    private Range _input;
    private size_t _index;
    private enum Skip { None, A, D }
    private Skip _skip = Skip.None;

    // If we're using the default thread-local random number generator then
    // we shouldn't store a copy of it here.  UniformRNG == void is a sentinel
    // for this.  If we're using a user-specified generator then we have no
    // choice but to store a copy.
    static if (is(UniformRNG == void))
    {
        static if (hasLength!Range)
        {
            this(Range input, size_t howMany)
            {
                _input = input;
                initialize(howMany, input.length);
            }
        }

        this(Range input, size_t howMany, size_t total)
        {
            _input = input;
            initialize(howMany, total);
        }
    }
    else
    {
        UniformRNG _rng;

        static if (hasLength!Range)
        {
            this(Range input, size_t howMany, ref UniformRNG rng)
            {
                _rng = rng;
                _input = input;
                initialize(howMany, input.length);
            }

            this(Range input, size_t howMany, UniformRNG rng)
            {
                this(input, howMany, rng);
            }
        }

        this(Range input, size_t howMany, size_t total, ref UniformRNG rng)
        {
            _rng = rng;
            _input = input;
            initialize(howMany, total);
        }

        this(Range input, size_t howMany, size_t total, UniformRNG rng)
        {
            this(input, howMany, total, rng);
        }
    }

    private void initialize(size_t howMany, size_t total)
    {
        import std.exception : enforce;
        import std.conv : text;
        _available = total;
        _toSelect = howMany;
        enforce(_toSelect <= _available,
                text("RandomSample: cannot sample ", _toSelect,
                     " items when only ", _available, " are available"));
        static if (hasLength!Range)
        {
            enforce(_available <= _input.length,
                    text("RandomSample: specified ", _available,
                         " items as available when input contains only ",
                         _input.length));
        }
    }

    private void initializeFront()
    {
        assert(_skip == Skip.None);
        // We can save ourselves a random variate by checking right
        // at the beginning if we should use Algorithm A.
        if ((_alphaInverse * _toSelect) > _available)
        {
            _skip = Skip.A;
        }
        else
        {
            _skip = Skip.D;
            _Vprime = newVprime(_toSelect);
        }
        prime();
    }

/**
   Range primitives.
*/
    @property bool empty() const
    {
        return _toSelect == 0;
    }

    @property auto ref front()
    {
        assert(!empty);
        // The first sample point must be determined here to avoid
        // having it always correspond to the first element of the
        // input.  The rest of the sample points are determined each
        // time we call popFront().
        if (_skip == Skip.None)
        {
            initializeFront();
        }
        return _input.front;
    }

/// Ditto
    void popFront()
    {
        // First we need to check if the sample has
        // been initialized in the first place.
        if (_skip == Skip.None)
        {
            initializeFront();
        }

        _input.popFront();
        --_available;
        --_toSelect;
        ++_index;
        prime();
    }

/// Ditto
    static if (isForwardRange!Range && isForwardRange!UniformRNG)
    {
        @property typeof(this) save()
        {
            auto ret = this;
            ret._input = _input.save;
            ret._rng = _rng.save;
            return ret;
        }
    }

/// Ditto
    @property size_t length()
    {
        return _toSelect;
    }

/**
Returns the index of the visited record.
 */
    @property size_t index()
    {
        if (_skip == Skip.None)
        {
            initializeFront();
        }
        return _index;
    }

    private size_t skip()
    {
        assert(_skip != Skip.None);

        // Step D1: if the number of points still to select is greater
        // than a certain proportion of the remaining data points, i.e.
        // if n >= alpha * N where alpha = 1/13, we carry out the
        // sampling with Algorithm A.
        if (_skip == Skip.A)
        {
            return skipA();
        }
        else if ((_alphaInverse * _toSelect) > _available)
        {
            // We shouldn't get here unless the current selected
            // algorithm is D.
            assert(_skip == Skip.D);
            _skip = Skip.A;
            return skipA();
        }
        else
        {
            assert(_skip == Skip.D);
            return skipD();
        }
    }

/*
Vitter's Algorithm A, used when the ratio of needed sample values
to remaining data values is sufficiently large.
*/
    private size_t skipA()
    {
        size_t s;
        double v, quot, top;

        if (_toSelect==1)
        {
            static if (is(UniformRNG == void))
            {
                s = uniform(0, _available);
            }
            else
            {
                s = uniform(0, _available, _rng);
            }
        }
        else
        {
            v = 0;
            top = _available - _toSelect;
            quot = top / _available;

            static if (is(UniformRNG == void))
            {
                v = uniform!"()"(0.0, 1.0);
            }
            else
            {
                v = uniform!"()"(0.0, 1.0, _rng);
            }

            while (quot > v)
            {
                ++s;
                quot *= (top - s) / (_available - s);
            }
        }

        return s;
    }

/*
Randomly reset the value of _Vprime.
*/
    private double newVprime(size_t remaining)
    {
        static if (is(UniformRNG == void))
        {
            double r = uniform!"()"(0.0, 1.0);
        }
        else
        {
            double r = uniform!"()"(0.0, 1.0, _rng);
        }

        return r ^^ (1.0 / remaining);
    }

/*
Vitter's Algorithm D.  For an extensive description of the algorithm
and its rationale, see:

  * Vitter, J.S. (1984), "Faster methods for random sampling",
    Commun. ACM 27(7): 703--718

  * Vitter, J.S. (1987) "An efficient algorithm for sequential random
    sampling", ACM Trans. Math. Softw. 13(1): 58-67.

Variable names are chosen to match those in Vitter's paper.
*/
    private size_t skipD()
    {
        import std.math : isNaN, trunc;
        // Confirm that the check in Step D1 is valid and we
        // haven't been sent here by mistake
        assert((_alphaInverse * _toSelect) <= _available);

        // Now it's safe to use the standard Algorithm D mechanism.
        if (_toSelect > 1)
        {
            size_t s;
            size_t qu1 = 1 + _available - _toSelect;
            double x, y1;

            assert(!_Vprime.isNaN());

            while (true)
            {
                // Step D2: set values of x and u.
                while(1)
                {
                    x = _available * (1-_Vprime);
                    s = cast(size_t) trunc(x);
                    if (s < qu1)
                        break;
                    _Vprime = newVprime(_toSelect);
                }

                static if (is(UniformRNG == void))
                {
                    double u = uniform!"()"(0.0, 1.0);
                }
                else
                {
                    double u = uniform!"()"(0.0, 1.0, _rng);
                }

                y1 = (u * (cast(double) _available) / qu1) ^^ (1.0/(_toSelect - 1));

                _Vprime = y1 * ((-x/_available)+1.0) * ( qu1/( (cast(double) qu1) - s ) );

                // Step D3: if _Vprime <= 1.0 our work is done and we return S.
                // Otherwise ...
                if (_Vprime > 1.0)
                {
                    size_t top = _available - 1, limit;
                    double y2 = 1.0, bottom;

                    if (_toSelect > (s+1))
                    {
                        bottom = _available - _toSelect;
                        limit = _available - s;
                    }
                    else
                    {
                        bottom = _available - (s+1);
                        limit = qu1;
                    }

                    foreach (size_t t; limit .. _available)
                    {
                        y2 *= top/bottom;
                        top--;
                        bottom--;
                    }

                    // Step D4: decide whether or not to accept the current value of S.
                    if (_available/(_available-x) < y1 * (y2 ^^ (1.0/(_toSelect-1))))
                    {
                        // If it's not acceptable, we generate a new value of _Vprime
                        // and go back to the start of the for (;;) loop.
                        _Vprime = newVprime(_toSelect);
                    }
                    else
                    {
                        // If it's acceptable we generate a new value of _Vprime
                        // based on the remaining number of sample points needed,
                        // and return S.
                        _Vprime = newVprime(_toSelect-1);
                        return s;
                    }
                }
                else
                {
                    // Return if condition D3 satisfied.
                    return s;
                }
            }
        }
        else
        {
            // If only one sample point remains to be taken ...
            return cast(size_t) trunc(_available * _Vprime);
        }
    }

    private void prime()
    {
        if (empty)
        {
            return;
        }
        assert(_available && _available >= _toSelect);
        immutable size_t s = skip();
        assert(s + _toSelect <= _available);
        static if (hasLength!Range)
        {
            assert(s + _toSelect <= _input.length);
        }
        assert(!_input.empty);
        _input.popFrontExactly(s);
        _index += s;
        _available -= s;
        assert(_available > 0);
    }
}

/// Ditto
auto randomSample(Range)(Range r, size_t n, size_t total)
    if (isInputRange!Range)
{
    return RandomSample!(Range, void)(r, n, total);
}

/// Ditto
auto randomSample(Range)(Range r, size_t n)
    if (isInputRange!Range && hasLength!Range)
{
    return RandomSample!(Range, void)(r, n, r.length);
}

/// Ditto
auto randomSample(Range, UniformRNG)(Range r, size_t n, size_t total, auto ref UniformRNG rng)
    if (isInputRange!Range && isUniformRNG!UniformRNG)
{
    return RandomSample!(Range, UniformRNG)(r, n, total, rng);
}

/// Ditto
auto randomSample(Range, UniformRNG)(Range r, size_t n, auto ref UniformRNG rng)
    if (isInputRange!Range && hasLength!Range && isUniformRNG!UniformRNG)
{
    return RandomSample!(Range, UniformRNG)(r, n, r.length, rng);
}

unittest
{
    import std.exception;
    import std.range;
    import std.conv : text;
    // For test purposes, an infinite input range
    struct TestInputRange
    {
        private auto r = recurrence!"a[n-1] + 1"(0);
        bool empty() @property const pure nothrow { return r.empty; }
        auto front() @property pure nothrow { return r.front; }
        void popFront() pure nothrow { r.popFront(); }
    }
    static assert(isInputRange!TestInputRange);
    static assert(!isForwardRange!TestInputRange);

    int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ];

    foreach (UniformRNG; PseudoRngTypes)
    {
        auto rng = UniformRNG(unpredictableSeed);
        /* First test the most general case: randomSample of input range, with and
         * without a specified random number generator.
         */
        static assert(isInputRange!(typeof(randomSample(TestInputRange(), 5, 10))));
        static assert(isInputRange!(typeof(randomSample(TestInputRange(), 5, 10, rng))));
        static assert(!isForwardRange!(typeof(randomSample(TestInputRange(), 5, 10))));
        static assert(!isForwardRange!(typeof(randomSample(TestInputRange(), 5, 10, rng))));
        // test case with range initialized by direct call to struct
        {
            auto sample =
                RandomSample!(TestInputRange, UniformRNG)
                             (TestInputRange(), 5, 10, UniformRNG(unpredictableSeed));
            static assert(isInputRange!(typeof(sample)));
            static assert(!isForwardRange!(typeof(sample)));
        }

        /* Now test the case of an input range with length.  We ignore the cases
         * already covered by the previous tests.
         */
        static assert(isInputRange!(typeof(randomSample(TestInputRange().takeExactly(10), 5))));
        static assert(isInputRange!(typeof(randomSample(TestInputRange().takeExactly(10), 5, rng))));
        static assert(!isForwardRange!(typeof(randomSample(TestInputRange().takeExactly(10), 5))));
        static assert(!isForwardRange!(typeof(randomSample(TestInputRange().takeExactly(10), 5, rng))));
        // test case with range initialized by direct call to struct
        {
            auto sample =
                RandomSample!(typeof(TestInputRange().takeExactly(10)), UniformRNG)
                             (TestInputRange().takeExactly(10), 5, 10, UniformRNG(unpredictableSeed));
            static assert(isInputRange!(typeof(sample)));
            static assert(!isForwardRange!(typeof(sample)));
        }

        // Now test the case of providing a forward range as input.
        static assert(!isForwardRange!(typeof(randomSample(a, 5))));
        static if (isForwardRange!UniformRNG)
        {
            static assert(isForwardRange!(typeof(randomSample(a, 5, rng))));
            // ... and test with range initialized directly
            {
                auto sample =
                    RandomSample!(int[], UniformRNG)
                                 (a, 5, UniformRNG(unpredictableSeed));
                static assert(isForwardRange!(typeof(sample)));
            }
        }
        else
        {
            static assert(isInputRange!(typeof(randomSample(a, 5, rng))));
            static assert(!isForwardRange!(typeof(randomSample(a, 5, rng))));
            // ... and test with range initialized directly
            {
                auto sample =
                    RandomSample!(int[], UniformRNG)
                                 (a, 5, UniformRNG(unpredictableSeed));
                static assert(isInputRange!(typeof(sample)));
                static assert(!isForwardRange!(typeof(sample)));
            }
        }

        /* Check that randomSample will throw an error if we claim more
         * items are available than there actually are, or if we try to
         * sample more items than are available. */
        assert(collectExceptionMsg(randomSample(a, 5, 15)) == "RandomSample: specified 15 items as available when input contains only 10");
        assert(collectExceptionMsg(randomSample(a, 15)) == "RandomSample: cannot sample 15 items when only 10 are available");
        assert(collectExceptionMsg(randomSample(a, 9, 8)) == "RandomSample: cannot sample 9 items when only 8 are available");
        assert(collectExceptionMsg(randomSample(TestInputRange(), 12, 11)) == "RandomSample: cannot sample 12 items when only 11 are available");

        /* Check that sampling algorithm never accidentally overruns the end of
         * the input range.  If input is an InputRange without .length, this
         * relies on the user specifying the total number of available items
         * correctly.
         */
        {
            uint i = 0;
            foreach (e; randomSample(a, a.length))
            {
                assert(e == i);
                ++i;
            }
            assert(i == a.length);

            i = 0;
            foreach (e; randomSample(TestInputRange(), 17, 17))
            {
                assert(e == i);
                ++i;
            }
            assert(i == 17);
        }


        // Check length properties of random samples.
        assert(randomSample(a, 5).length == 5);
        assert(randomSample(a, 5, 10).length == 5);
        assert(randomSample(a, 5, rng).length == 5);
        assert(randomSample(a, 5, 10, rng).length == 5);
        assert(randomSample(TestInputRange(), 5, 10).length == 5);
        assert(randomSample(TestInputRange(), 5, 10, rng).length == 5);

        // ... and emptiness!
        assert(randomSample(a, 0).empty);
        assert(randomSample(a, 0, 5).empty);
        assert(randomSample(a, 0, rng).empty);
        assert(randomSample(a, 0, 5, rng).empty);
        assert(randomSample(TestInputRange(), 0, 10).empty);
        assert(randomSample(TestInputRange(), 0, 10, rng).empty);

        /* Test that the (lazy) evaluation of random samples works correctly.
         *
         * We cover 2 different cases: a sample where the ratio of sample points
         * to total points is greater than the threshold for using Algorithm, and
         * one where the ratio is small enough (< 1/13) for Algorithm D to be used.
         *
         * For each, we also cover the case with and without a specified RNG.
         */
        {
            // Small sample/source ratio, no specified RNG.
            uint i = 0;
            foreach (e; randomSample(randomCover(a), 5))
            {
                ++i;
            }
            assert(i == 5);

            // Small sample/source ratio, specified RNG.
            i = 0;
            foreach (e; randomSample(randomCover(a), 5, rng))
            {
                ++i;
            }
            assert(i == 5);

            // Large sample/source ratio, no specified RNG.
            i = 0;
            foreach (e; randomSample(TestInputRange(), 123, 123_456))
            {
                ++i;
            }
            assert(i == 123);

            // Large sample/source ratio, specified RNG.
            i = 0;
            foreach (e; randomSample(TestInputRange(), 123, 123_456, rng))
            {
                ++i;
            }
            assert(i == 123);

            /* Sample/source ratio large enough to start with Algorithm D,
             * small enough to switch to Algorithm A.
             */
            i = 0;
            foreach (e; randomSample(TestInputRange(), 10, 131))
            {
                ++i;
            }
            assert(i == 10);
        }

        // Test that the .index property works correctly
        {
            auto sample1 = randomSample(TestInputRange(), 654, 654_321);
            for (; !sample1.empty; sample1.popFront())
            {
                assert(sample1.front == sample1.index);
            }

            auto sample2 = randomSample(TestInputRange(), 654, 654_321, rng);
            for (; !sample2.empty; sample2.popFront())
            {
                assert(sample2.front == sample2.index);
            }

            /* Check that it also works if .index is called before .front.
             * See: http://d.puremagic.com/issues/show_bug.cgi?id=10322
             */
            auto sample3 = randomSample(TestInputRange(), 654, 654_321);
            for (; !sample3.empty; sample3.popFront())
            {
                assert(sample3.index == sample3.front);
            }

            auto sample4 = randomSample(TestInputRange(), 654, 654_321, rng);
            for (; !sample4.empty; sample4.popFront())
            {
                assert(sample4.index == sample4.front);
            }
        }

        /* Test behaviour if .popFront() is called before sample is read.
         * This is a rough-and-ready check that the statistical properties
         * are in the ballpark -- not a proper validation of statistical
         * quality!  This incidentally also checks for reference-type
         * initialization bugs, as the foreach() loop will operate on a
         * copy of the popFronted (and hence initialized) sample.
         */
        {
            size_t count0, count1, count99;
            foreach(_; 0 .. 100_000)
            {
                auto sample = randomSample(iota(100), 5);
                sample.popFront();
                foreach(s; sample)
                {
                    if (s == 0)
                    {
                        ++count0;
                    }
                    else if (s == 1)
                    {
                        ++count1;
                    }
                    else if (s == 99)
                    {
                        ++count99;
                    }
                }
            }
            /* Statistical assumptions here: this is a sequential sampling process
             * so (i) 0 can only be the first sample point, so _can't_ be in the
             * remainder of the sample after .popFront() is called. (ii) By similar
             * token, 1 can only be in the remainder if it's the 2nd point of the
             * whole sample, and hence if 0 was the first; probability of 0 being
             * first and 1 second is 5/100 * 4/99 (thank you, Algorithm S:-) and
             * so the mean count of 1 should be about 202.  Finally, 99 can only
             * be the _last_ sample point to be picked, so its probability of
             * inclusion should be independent of the .popFront() and it should
             * occur with frequency 5/100, hence its count should be about 5000.
             * Unfortunately we have to set quite a high tolerance because with
             * sample size small enough for unittests to run in reasonable time,
             * the variance can be quite high.
             */
            assert(count0 == 0);
            assert(count1 < 300, text("1: ", count1, " > 300."));
            assert(4_700 < count99, text("99: ", count99, " < 4700."));
            assert(count99 < 5_300, text("99: ", count99, " > 5300."));
        }

        /* Odd corner-cases: RandomSample has 2 constructors that are not called
         * by the randomSample() helper functions, but that can be used if the
         * constructor is called directly.  These cover the case of the user
         * specifying input but not input length.
         */
        {
            auto input1 = TestInputRange().takeExactly(456_789);
            static assert(hasLength!(typeof(input1)));
            auto sample1 = RandomSample!(typeof(input1), void)(input1, 789);
            static assert(isInputRange!(typeof(sample1)));
            static assert(!isForwardRange!(typeof(sample1)));
            assert(sample1.length == 789);
            assert(sample1._available == 456_789);
            uint i = 0;
            for (; !sample1.empty; sample1.popFront())
            {
                assert(sample1.front == sample1.index);
                ++i;
            }
            assert(i == 789);

            auto input2 = TestInputRange().takeExactly(456_789);
            static assert(hasLength!(typeof(input2)));
            auto sample2 = RandomSample!(typeof(input2), typeof(rng))(input2, 789, rng);
            static assert(isInputRange!(typeof(sample2)));
            static assert(!isForwardRange!(typeof(sample2)));
            assert(sample2.length == 789);
            assert(sample2._available == 456_789);
            i = 0;
            for (; !sample2.empty; sample2.popFront())
            {
                assert(sample2.front == sample2.index);
                ++i;
            }
            assert(i == 789);
        }

        /* Test that the save property works where input is a forward range,
         * and RandomSample is using a (forward range) random number generator
         * that is not rndGen.
         */
        static if (isForwardRange!UniformRNG)
        {
            auto sample1 = randomSample(a, 5, rng);
            auto sample2 = sample1.save;
            assert(sample1.array() == sample2.array());
        }

        // Bugzilla 8314
        {
            auto sample(RandomGen)(uint seed) { return randomSample(a, 1, RandomGen(seed)).front; }

            // Start from 1 because not all RNGs accept 0 as seed.
            immutable fst = sample!UniformRNG(1);
            uint n = 1;
            while (sample!UniformRNG(++n) == fst && n < n.max) {}
            assert(n < n.max);
        }
    }
}