This file is indexed.

/usr/include/palabos/complexDynamics/advectionDiffusionDynamics.h is in libplb-dev 1.5~r1+repack1-2build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
/* This file is part of the Palabos library.
 *
 * Copyright (C) 2011-2015 FlowKit Sarl
 * Route d'Oron 2
 * 1010 Lausanne, Switzerland
 * E-mail contact: contact@flowkit.com
 *
 * The most recent release of Palabos can be downloaded at 
 * <http://www.palabos.org/>
 *
 * The library Palabos is free software: you can redistribute it and/or
 * modify it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * The library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

/* Main author: Orestis Malaspinas
 */

/** \file
 * A collection of dynamics classes (e.g. BGK) with which a Cell object
 * can be instantiated -- header file.
 */
#ifndef ADVECTION_DIFFUSION_DYNAMICS_H
#define ADVECTION_DIFFUSION_DYNAMICS_H

#include "core/globalDefs.h"
#include "core/dynamics.h"

namespace plb {
    
/// Common base iso-thermal (or athermal) bulk dynamics
template<typename T, template<typename U> class Descriptor>
class AdvectionDiffusionDynamics : public BasicBulkDynamics<T,Descriptor> {
public:
    AdvectionDiffusionDynamics(T omega_);

/* *************** Collision, Equilibrium, and Non-equilibrium ******* */

    /// Re-compute particle populations from the leading moments
    virtual void regularize(Cell<T,Descriptor>& cell, T rhoBar, Array<T,Descriptor<T>::d> const& j,
                            T jSqr, Array<T,SymmetricTensor<T,Descriptor>::n> const& PiNeq, T thetaBar=T() ) const;

/* *************** Additional moments, intended for internal use ***** */

    /// Returns 0, as a default value for isothermal flow.
    virtual T computeEbar(Cell<T,Descriptor> const& cell) const;

/* *************** Switch between population and moment representation ****** */

    /// Number of variables required to decompose a population representation into moments.
    virtual plint numDecomposedVariables(plint order) const {PLB_ASSERT(false); return 0; }

    /// Decompose from population representation into moment representation.
    virtual void decompose(Cell<T,Descriptor> const& cell, std::vector<T>& rawData, plint order) const { PLB_ASSERT(false);}

    /// Recompose from moment representation to population representation.
    virtual void recompose(Cell<T,Descriptor>& cell, std::vector<T> const& rawData, plint order) const {PLB_ASSERT(false); }

    /// Change the space and time scales of the variables in moment representation.
    virtual void rescale(std::vector<T>& rawData, T xDxInv, T xDt, plint order) const { PLB_ASSERT(false);}
    
};

/// Regularized Advection-Diffusion dynamics
/** It uses the regularized approximation that can be found in
 *   the thesis of J. Latt (2007).
 */
template<typename T, template<typename U> class Descriptor>
class AdvectionDiffusionRLBdynamics : public AdvectionDiffusionDynamics <T,Descriptor> {
public:
    /// Constructor
    AdvectionDiffusionRLBdynamics(T omega_);
    /// Clone the object on its dynamic type.
    virtual AdvectionDiffusionRLBdynamics<T,Descriptor>* clone() const;
    /// Return a unique ID for this class.
    virtual int getId() const;
    /// Collision step
    virtual void collide(Cell<T,Descriptor>& cell,
                         BlockStatistics& statistics );
    /// Implementation of the collision step, with imposed macroscopic variables
    /// The arguments:
    /// - rhoBar: the "rhoBar" version of the scalar rho.
    /// - jEq: the equilibrium part of the second-order moment. jEq = u*rho, where u is the external convective term.
    virtual void collideExternal (
            Cell<T,Descriptor>& cell, T rhoBar,
            Array<T,Descriptor<T>::d> const& jEq, T thetaBar, BlockStatistics& stat );
    /// Compute equilibrium distribution function
    virtual T computeEquilibrium(plint iPop, T rhoBar, Array<T,Descriptor<T>::d> const& j,
                                 T jSqr, T thetaBar=T()) const;
private:
    static int id;
};

template<typename T, template<typename U> class Descriptor>
class AdvectionDiffusionWithSourceRLBdynamics : public AdvectionDiffusionDynamics <T,Descriptor> {
public:
    /// Constructor
    AdvectionDiffusionWithSourceRLBdynamics(T omega_);
    /// Clone the object on its dynamic type.
    virtual AdvectionDiffusionWithSourceRLBdynamics<T,Descriptor>* clone() const;
    /// Return a unique ID for this class.
    virtual int getId() const;
    /// Collision step
    virtual void collide(Cell<T,Descriptor>& cell,
                         BlockStatistics& statistics );
    /// Implementation of the collision step, with imposed macroscopic variables
    /// The arguments:
    /// - rhoBar: the "rhoBar" version of the scalar rho.
    /// - jEq: the equilibrium part of the second-order moment. jEq = u*rho, where u is the external convective term.
    virtual void collideExternal (
            Cell<T,Descriptor>& cell, T rhoBar,
            Array<T,Descriptor<T>::d> const& jEq, T thetaBar, BlockStatistics& stat );
    /// Compute equilibrium distribution function
    virtual T computeEquilibrium(plint iPop, T rhoBar, Array<T,Descriptor<T>::d> const& j,
                                 T jSqr, T thetaBar=T()) const;
private:
    static int id;
};

/// Regularized Advection-Diffusion dynamics with artificial diffusivity as in the Smagorinsky model.
template<typename T, template<typename U> class Descriptor>
class SmagorinskyAdvectionDiffusionRLBdynamics : public AdvectionDiffusionDynamics <T,Descriptor> {
public:
    /// Constructor
    SmagorinskyAdvectionDiffusionRLBdynamics(T omega_, T T0_, T cSmago_);
    /// Constructor from a serialized object.
    SmagorinskyAdvectionDiffusionRLBdynamics(HierarchicUnserializer& unserializer);
    /// Clone the object on its dynamic type.
    virtual SmagorinskyAdvectionDiffusionRLBdynamics<T,Descriptor>* clone() const;
    /// Return a unique ID for this class.
    virtual int getId() const;
    /// Serialize the dynamics object.
    virtual void serialize(HierarchicSerializer& serializer) const;
    /// Un-Serialize the dynamics object.
    virtual void unserialize(HierarchicUnserializer& unserializer);
    /// Collision step
    virtual void collide(Cell<T,Descriptor>& cell,
                         BlockStatistics& statistics );
    /// Implementation of the collision step, with imposed macroscopic variables
    /// The arguments:
    /// - rhoBar: the "rhoBar" version of the scalar rho.
    /// - jEq: the equilibrium part of the second-order moment. jEq = u*rho, where u is the external convective term.
    virtual void collideExternal (
            Cell<T,Descriptor>& cell, T rhoBar,
            Array<T,Descriptor<T>::d> const& jEq, T thetaBar, BlockStatistics& stat );
    /// Compute equilibrium distribution function
    virtual T computeEquilibrium(plint iPop, T rhoBar, Array<T,Descriptor<T>::d> const& j,
                                 T jSqr, T thetaBar=T()) const;
private:
    T invT0;
    T cSmago;
    static int id;
};

/// BGK Advection-Diffusion dynamics
/** This approach contains a slight error in the diffusion
 *  term.
 */
template<typename T, template<typename U> class Descriptor>
class AdvectionDiffusionBGKdynamics : public AdvectionDiffusionDynamics <T,Descriptor> {
public:
    /// Constructor
    AdvectionDiffusionBGKdynamics(T omega_);
    /// Clone the object on its dynamic type.
    virtual AdvectionDiffusionBGKdynamics<T,Descriptor>* clone() const;
    /// Return a unique ID for this class.
    virtual int getId() const;
    /// Collision step
    virtual void collide(Cell<T,Descriptor>& cell,
                         BlockStatistics& statistics );
    /// Implementation of the collision step, with imposed macroscopic variables
    /// The arguments:
    /// - rhoBar: the "rhoBar" version of the scalar rho.
    /// - j: the equilibrium part of the second-order moment. j = u*rho, where u is the external convective term.
    virtual void collideExternal (
            Cell<T,Descriptor>& cell, T rhoBar,
            Array<T,Descriptor<T>::d> const& j, T thetaBar, BlockStatistics& stat );
    /// Compute equilibrium distribution function
    virtual T computeEquilibrium(plint iPop, T rhoBar, Array<T,Descriptor<T>::d> const& j,
                                 T jSqr, T thetaBar=T()) const;

/* *************** Switch between population and moment representation ****** */

    /// Number of variables required to decompose a population representation into moments.
    virtual plint numDecomposedVariables(plint order) const { return 0; }

    /// Decompose from population representation into moment representation.
    virtual void decompose(Cell<T,Descriptor> const& cell, std::vector<T>& rawData, plint order) const { 
        PLB_ASSERT(false);
    }

    /// Recompose from moment representation to population representation.
    virtual void recompose(Cell<T,Descriptor>& cell, std::vector<T> const& rawData, plint order) const { 
        PLB_ASSERT(false);
    }

    /// Change the space and time scales of the variables in moment representation.
    virtual void rescale(std::vector<T>& rawData, T xDxInv, T xDt, plint order) const { 
        PLB_ASSERT(false);
    }
private:
    static int id;
};

/// Complete BGK Advection-Diffusion dynamics
/** This approach contains a slight error in the diffusion
 *  term. We tried to reduce it with the extended exquilibrium distribution
 */
template<typename T, template<typename U> class Descriptor>
class CompleteAdvectionDiffusionBGKdynamics : public AdvectionDiffusionDynamics <T,Descriptor> {
public:
    /// Constructor
    CompleteAdvectionDiffusionBGKdynamics(T omega_);
    /// Clone the object on its dynamic type.
    virtual CompleteAdvectionDiffusionBGKdynamics<T,Descriptor>* clone() const;
    /// Return a unique ID for this class.
    virtual int getId() const;
    /// Computation of the density field (sum_i f_i = rho*phi), phi is the advected diffused field
    /// rho the density of the fluid
    virtual T computeDensity(Cell<T,Descriptor> const& cell) const;
    
    /// Collision step
    virtual void collide(Cell<T,Descriptor>& cell,
                         BlockStatistics& statistics );
    /// Implementation of the collision step, with imposed macroscopic variables
    /// The arguments:
    /// - rhoBar: the "rhoBar" version of the scalar rho.
    /// - j: the equilibrium part of the second-order moment. j = u*rho, where u is the external convective term.
    virtual void collideExternal (
            Cell<T,Descriptor>& cell, T rhoBar,
            Array<T,Descriptor<T>::d> const& j, T thetaBar, BlockStatistics& stat );
    /// Compute equilibrium distribution function
    virtual T computeEquilibrium(plint iPop, T rhoBar, Array<T,Descriptor<T>::d> const& j,
                                 T jSqr, T thetaBar=T()) const;

/* *************** Switch between population and moment representation ****** */
/*
    /// Number of variables required to decompose a population representation into moments.
    virtual plint numDecomposedVariables(plint order) const;

    /// Decompose from population representation into moment representation.
    virtual void decompose(Cell<T,Descriptor> const& cell, std::vector<T>& rawData, plint order) const;

    /// Recompose from moment representation to population representation.
    virtual void recompose(Cell<T,Descriptor>& cell, std::vector<T> const& rawData, plint order) const;*/
    
    /// Re-compute particle populations from the leading moments
    virtual void regularize(Cell<T,Descriptor>& cell, T rhoBar, Array<T,Descriptor<T>::d> const& j,
                            T jSqr, Array<T,SymmetricTensor<T,Descriptor>::n> const& PiNeq, T thetaBar=T() ) const;
private:
    static int id;
};

/// Complete TRT Advection-Diffusion dynamics
/** This approach contains a slight error in the diffusion
 *  term. We tried to reduce it with the extended exquilibrium distribution
 */
template<typename T, template<typename U> class Descriptor>
class CompleteAdvectionDiffusionTRTdynamics : public AdvectionDiffusionDynamics <T,Descriptor> {
public:
    /// Constructor
    CompleteAdvectionDiffusionTRTdynamics(T omega_, T psi_);
    CompleteAdvectionDiffusionTRTdynamics(T omega_);
    /// Clone the object on its dynamic type.
    virtual CompleteAdvectionDiffusionTRTdynamics<T,Descriptor>* clone() const;
    /// Return a unique ID for this class.
    virtual int getId() const;
    /// Serialize the dynamics object.
    virtual void serialize(HierarchicSerializer& serializer) const;

    /// Un-Serialize the dynamics object.
    virtual void unserialize(HierarchicUnserializer& unserializer);
    
    /// Computation of the density field (sum_i f_i = rho*phi), phi is the advected diffused field
    /// rho the density of the fluid
    virtual T computeDensity(Cell<T,Descriptor> const& cell) const;
    
    /// Collision step
    virtual void collide(Cell<T,Descriptor>& cell,
                         BlockStatistics& statistics );
    /// Implementation of the collision step, with imposed macroscopic variables
    /// The arguments:
    /// - rhoBar: the "rhoBar" version of the scalar rho.
    /// - j: the equilibrium part of the second-order moment. j = u*rho, where u is the external convective term.
    virtual void collideExternal (
            Cell<T,Descriptor>& cell, T rhoBar,
            Array<T,Descriptor<T>::d> const& j, T thetaBar, BlockStatistics& stat );
    /// Compute equilibrium distribution function
    virtual T computeEquilibrium(plint iPop, T rhoBar, Array<T,Descriptor<T>::d> const& j,
                                 T jSqr, T thetaBar=T()) const;
                            
/* *************** Configurable parameters *************************** */

    /// Set local value of any generic parameter
    virtual void setParameter(plint whichParameter, T value);
    /// Get local value of any generic parameter
    virtual T getParameter(plint whichParameter) const;
    /// Set local speed of sound
    void setPsi(T psi_);
    /// Get local speed of sound
    T    getPsi() const;

/* *************** Switch between population and moment representation ****** */
/*
    /// Number of variables required to decompose a population representation into moments.
    virtual plint numDecomposedVariables(plint order) const;

    /// Decompose from population representation into moment representation.
    virtual void decompose(Cell<T,Descriptor> const& cell, std::vector<T>& rawData, plint order) const;

    /// Recompose from moment representation to population representation.
    virtual void recompose(Cell<T,Descriptor>& cell, std::vector<T> const& rawData, plint order) const;*/
    
    /// Re-compute particle populations from the leading moments
    virtual void regularize(Cell<T,Descriptor>& cell, T rhoBar, Array<T,Descriptor<T>::d> const& j,
                            T jSqr, Array<T,SymmetricTensor<T,Descriptor>::n> const& PiNeq, T thetaBar=T() ) const;
private:
    static int id;
    T psi;
};

/// BGK Advection-Diffusion dynamics
/** This approach contains a slight error in the diffusion
 *  term.
 */
template<typename T, template<typename U> class Descriptor>
class AdvectionDiffusionWithSourceBGKdynamics : public AdvectionDiffusionDynamics <T,Descriptor> {
public:
    /// Constructor
    AdvectionDiffusionWithSourceBGKdynamics(T omega_);
    /// Clone the object on its dynamic type.
    virtual AdvectionDiffusionWithSourceBGKdynamics<T,Descriptor>* clone() const;
    /// Return a unique ID for this class.
    virtual int getId() const;
    /// Collision step
    virtual void collide(Cell<T,Descriptor>& cell,
                         BlockStatistics& statistics );
    /// Compute equilibrium distribution function
    virtual T computeEquilibrium(plint iPop, T rhoBar, Array<T,Descriptor<T>::d> const& j,
                                 T jSqr, T thetaBar=T()) const;

/* *************** Switch between population and moment representation ****** */

    /// Number of variables required to decompose a population representation into moments.
    virtual plint numDecomposedVariables(plint order) const { return 0; }

    /// Decompose from population representation into moment representation.
    virtual void decompose(Cell<T,Descriptor> const& cell, std::vector<T>& rawData, plint order) const { }

    /// Recompose from moment representation to population representation.
    virtual void recompose(Cell<T,Descriptor>& cell, std::vector<T> const& rawData, plint order) const { }

    /// Change the space and time scales of the variables in moment representation.
    virtual void rescale(std::vector<T>& rawData, T xDxInv, T xDt, plint order) const { }
private:
    static int id;
};

} // namespace plb

#endif  // ADVECTION_DIFFUSION_DYNAMICS_H