/usr/include/palabos/multiPhysics/freeSurfaceBoundaryCondition3D.hh is in libplb-dev 1.5~r1+repack1-2build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 | /* This file is part of the Palabos library.
*
* Copyright (C) 2011-2015 FlowKit Sarl
* Route d'Oron 2
* 1010 Lausanne, Switzerland
* E-mail contact: contact@flowkit.com
*
* The most recent release of Palabos can be downloaded at
* <http://www.palabos.org/>
*
* The library Palabos is free software: you can redistribute it and/or
* modify it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* The library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef FREE_SURFACE_BOUNDARY_CONDITION_3D_HH
#define FREE_SURFACE_BOUNDARY_CONDITION_3D_HH
#include "multiPhysics/freeSurfaceBoundaryCondition3D.h"
#include <cmath>
#include <iostream>
namespace plb {
template<typename T, template<typename U> class Descriptor>
FreeSurfaceFadingArea3D<T,Descriptor>::FreeSurfaceFadingArea3D(T factor_)
: factor(factor_)
{ }
template<typename T, template<typename U> class Descriptor>
void FreeSurfaceFadingArea3D<T,Descriptor>::process(Box3D domain, BlockLattice3D<T,Descriptor>& lattice)
{
std::vector<T> decomposedVariables;
enum {
forceOffset = Descriptor<T>::ExternalField::forceBeginsAt,
momentumStoredOffset = Descriptor<T>::ExternalField::momentumBeginsAt,
densityStoredOffset = Descriptor<T>::ExternalField::densityBeginsAt,
};
for (plint iX=domain.x0; iX<=domain.x1; ++iX) {
for (plint iY=domain.y0; iY<=domain.y1; ++iY) {
for (plint iZ=domain.z0; iZ<=domain.z1; ++iZ) {
Cell<T,Descriptor>& cell = lattice.get(iX,iY,iZ);
plint order = 0;
cell.getDynamics().decompose(cell, decomposedVariables, order);
T density = Descriptor<T>::fullRho(decomposedVariables[0]);
if (density > T(0)) density *= factor;
decomposedVariables[0] = Descriptor<T>::rhoBar(density);
cell.getDynamics().recompose(cell, decomposedVariables, order);
*cell.getExternal(densityStoredOffset) = density;
Array<T,Descriptor<T>::d> j;
j.resetToZero();
T rhoBar;
momentTemplates<T,Descriptor>::get_rhoBar_j(cell, rhoBar, j);
// TODO: What about mass, volumeFraction, flagStatus?
j.to_cArray(cell.getExternal(momentumStoredOffset));
}
}
}
}
template<typename T, template<typename U> class Descriptor>
FreeSurfaceFadingArea3D<T,Descriptor>* FreeSurfaceFadingArea3D<T,Descriptor>::clone() const {
return new FreeSurfaceFadingArea3D<T,Descriptor>(*this);
}
template<typename T, template<typename U> class Descriptor>
void RemoveMass3D<T,Descriptor>::processGenericBlocks(Box3D domain,std::vector<AtomicBlock3D*> atomicBlocks)
{
using namespace twoPhaseFlag;
FreeSurfaceProcessorParam3D<T,Descriptor> param(atomicBlocks);
for (plint iX=domain.x0; iX<=domain.x1; ++iX) {
for (plint iY=domain.y0; iY<=domain.y1; ++iY) {
for (plint iZ=domain.z0; iZ<=domain.z1; ++iZ) {
//param.attributeDynamics(iX,iY,iZ, new NoDynamics<T,Descriptor>((T)1.));
param.setDensity(iX,iY,iZ, (T)1.);
param.setMomentum(iX,iY,iZ, Array<T,3>((T)0.,(T)0.,(T)0.));
param.mass(iX,iY,iZ) = (T)0;
param.volumeFraction(iX,iY,iZ) = (T)0;
//param.flag(iX,iY,iZ) = empty;
}
}
}
}
template<typename T, template<typename U> class Descriptor>
RemoveMass3D<T,Descriptor>* RemoveMass3D<T,Descriptor>::clone() const {
return new RemoveMass3D<T,Descriptor>(*this);
}
template<typename T, template<typename U> class Descriptor>
void PouringLiquid3D<T,Descriptor>::processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> atomicBlocks)
{
using namespace twoPhaseFlag;
FreeSurfaceProcessorParam3D<T,Descriptor> param(atomicBlocks);
for (plint iX=domain.x0; iX<=domain.x1; ++iX) {
for (plint iY=domain.y0; iY<=domain.y1; ++iY) {
for (plint iZ=domain.z0; iZ<=domain.z1; ++iZ) {
T iniRho = T(1);
param.attributeDynamics (
iX,iY,iZ, dynamicsTemplate->clone() );
iniCellAtEquilibrium(param.cell(iX,iY,iZ), iniRho, injectionVelocity);
param.setDensity(iX,iY,iZ, iniRho);
param.setMomentum(iX,iY,iZ, iniRho*injectionVelocity);
param.mass(iX,iY,iZ) = iniRho;
param.volumeFraction(iX,iY,iZ) = (T)1;
param.flag(iX,iY,iZ) = fluid;
}
}
}
}
template<typename T, template<typename U> class Descriptor>
PouringLiquid3D<T,Descriptor>* PouringLiquid3D<T,Descriptor>::clone() const {
return new PouringLiquid3D<T,Descriptor>(*this);
}
template<typename T, template<typename U> class Descriptor>
void ShortenBounceBack3D<T,Descriptor>::processGenericBlocks(Box3D domain,std::vector<AtomicBlock3D*> atomicBlocks)
{
using namespace twoPhaseFlag;
typedef Descriptor<T> D;
FreeSurfaceProcessorParam3D<T,Descriptor> param(atomicBlocks);
Box3D extDomain = domain.enlarge(1);
for (plint iX=extDomain.x0; iX<=extDomain.x1; ++iX) {
bool xBoundary = iX==extDomain.x0 || iX==extDomain.x1;
for (plint iY=extDomain.y0; iY<=extDomain.y1; ++iY) {
bool yBoundary = xBoundary || iY==extDomain.y0 || iY==extDomain.y1;
for (plint iZ=extDomain.z0; iZ<=extDomain.z1; ++iZ) {
if (param.flag(iX,iY,iZ)==wall) {
bool zBoundary = yBoundary || iZ==extDomain.z0 || iZ==extDomain.z1;
for (plint iNeighbor=1; iNeighbor<D::q; ++iNeighbor) {
plint nextX = iX+D::c[iNeighbor][0];
plint nextY = iY+D::c[iNeighbor][1];
plint nextZ = iZ+D::c[iNeighbor][2];
if(!zBoundary || contained(nextX,nextY,nextZ, domain)) {
if (isWet(param.flag(nextX,nextY,nextZ))) {
plint opp = indexTemplates::opposite<D>(iNeighbor);
param.cell(nextX,nextY,nextZ)[iNeighbor] = param.cell(iX,iY,iZ)[opp];
}
}
}
}
}
}
}
}
template<typename T, template<typename U> class Descriptor>
ShortenBounceBack3D<T,Descriptor>* ShortenBounceBack3D<T,Descriptor>::clone() const {
return new ShortenBounceBack3D<T,Descriptor>(*this);
}
} // namespace plb
#endif // FREE_SURFACE_BOUNDARY_CONDITION_3D_HH
|