/usr/include/palabos/particles/particleProcessingFunctional3D.h is in libplb-dev 1.5~r1+repack1-2build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 | /* This file is part of the Palabos library.
*
* Copyright (C) 2011-2015 FlowKit Sarl
* Route d'Oron 2
* 1010 Lausanne, Switzerland
* E-mail contact: contact@flowkit.com
*
* The most recent release of Palabos can be downloaded at
* <http://www.palabos.org/>
*
* The library Palabos is free software: you can redistribute it and/or
* modify it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* The library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef PARTICLE_PROCESSING_FUNCTIONAL_3D_H
#define PARTICLE_PROCESSING_FUNCTIONAL_3D_H
#include "core/globalDefs.h"
#include "atomicBlock/dataProcessingFunctional3D.h"
#include "atomicBlock/reductiveDataProcessingFunctional3D.h"
#include "atomicBlock/atomicContainerBlock3D.h"
#include "offLattice/triangleBoundary3D.h"
#include "algorithm/functions.h"
#include <map>
namespace plb {
/// Count the number of particles, no matter which kind, found inside the domain.
template<typename T, template<typename U> class Descriptor>
class CountParticlesFunctional3D : public PlainReductiveBoxProcessingFunctional3D
{
public:
CountParticlesFunctional3D();
/// Argument: Particle-field.
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
virtual CountParticlesFunctional3D<T,Descriptor>* clone() const;
plint getNumParticles() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
plint numParticlesId;
};
/// Count the number of particles, no matter which kind, found inside the domain.
template<typename T, template<typename U> class Descriptor>
class CountParticlesSelectiveFunctional3D : public PlainReductiveBoxProcessingFunctional3D
{
public:
CountParticlesSelectiveFunctional3D(util::SelectInt* tags_);
~CountParticlesSelectiveFunctional3D();
CountParticlesSelectiveFunctional3D(CountParticlesSelectiveFunctional3D<T,Descriptor> const& rhs);
CountParticlesSelectiveFunctional3D<T,Descriptor>& operator=(CountParticlesSelectiveFunctional3D<T,Descriptor> const& rhs);
void swap(CountParticlesSelectiveFunctional3D<T,Descriptor>& rhs);
/// Argument: Particle-field.
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
virtual CountParticlesSelectiveFunctional3D<T,Descriptor>* clone() const;
plint getNumParticles() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
plint numParticlesId;
util::SelectInt* tags;
};
/// Compute the average over all particle velocities.
template<typename T, template<typename U> class Descriptor>
class AverageParticleVelocityFunctional3D : public PlainReductiveBoxProcessingFunctional3D
{
public:
AverageParticleVelocityFunctional3D();
/// Argument: Particle-field.
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
virtual AverageParticleVelocityFunctional3D<T,Descriptor>* clone() const;
Array<T,3> getAverageParticleVelocity() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
Array<plint,3> averageVelocityId;
};
/// Copy particles of a certain tag from one field to another.
template<typename T, template<typename U> class Descriptor>
class CopySelectParticles3D : public BoxProcessingFunctional3D
{
public:
CopySelectParticles3D(util::SelectInt* tags_);
~CopySelectParticles3D();
CopySelectParticles3D(CopySelectParticles3D<T,Descriptor> const& rhs);
CopySelectParticles3D<T,Descriptor>& operator=(CopySelectParticles3D<T,Descriptor> const& rhs);
void swap(CopySelectParticles3D<T,Descriptor>& rhs);
/// Arguments: [0] From Particle-field, [1] To Particle-field.
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
virtual CopySelectParticles3D<T,Descriptor>* clone() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
util::SelectInt* tags;
};
/// Inject particles into the domain. The particles must be defined in a non-
/// parallel way, and duplicated over all processors.
template<typename T, template<typename U> class Descriptor>
class InjectParticlesFunctional3D : public BoxProcessingFunctional3D
{
public:
/// The particles are not consumed in this class. A clone of the particles is
/// automatically made as they are added into the domain.
InjectParticlesFunctional3D(std::vector<Particle3D<T,Descriptor>*>& particles_);
/// Argument: Particle-field.
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
virtual InjectParticlesFunctional3D<T,Descriptor>* clone() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
std::vector<Particle3D<T,Descriptor>*>& particles;
};
/// Generate a random number of particles inside the domain. Each cell generates
/// at most one particle, with a given probability and at a random position inside
/// the cell. All particles are identical clones (except for their position).
template<typename T, template<typename U> class Descriptor>
class InjectRandomParticlesFunctional3D : public BoxProcessingFunctional3D
{
public:
InjectRandomParticlesFunctional3D(Particle3D<T,Descriptor>* particleTemplate_, T probabilityPerCell_);
InjectRandomParticlesFunctional3D(InjectRandomParticlesFunctional3D<T,Descriptor> const& rhs);
InjectRandomParticlesFunctional3D<T,Descriptor>&
operator=(InjectRandomParticlesFunctional3D<T,Descriptor> const& rhs);
void swap(InjectRandomParticlesFunctional3D<T,Descriptor>& rhs);
~InjectRandomParticlesFunctional3D();
/// Argument: Particle-field.
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
virtual InjectRandomParticlesFunctional3D<T,Descriptor>* clone() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
Particle3D<T,Descriptor>* particleTemplate;
T probabilityPerCell;
};
/// Generate a random number of point-particles inside the domain. Each cell generates
/// at most one particle, with a given probability and at a random position inside
/// the cell.
template<typename T, template<typename U> class Descriptor, class DomainFunctional>
class AnalyticalInjectRandomParticlesFunctional3D : public BoxProcessingFunctional3D
{
public:
AnalyticalInjectRandomParticlesFunctional3D(Particle3D<T,Descriptor>* particleTemplate_, T probabilityPerCell_, DomainFunctional functional_);
AnalyticalInjectRandomParticlesFunctional3D(AnalyticalInjectRandomParticlesFunctional3D<T,Descriptor,DomainFunctional> const& rhs);
AnalyticalInjectRandomParticlesFunctional3D<T,Descriptor,DomainFunctional>&
operator=(AnalyticalInjectRandomParticlesFunctional3D<T,Descriptor,DomainFunctional> const& rhs);
void swap(AnalyticalInjectRandomParticlesFunctional3D<T,Descriptor,DomainFunctional>& rhs);
~AnalyticalInjectRandomParticlesFunctional3D();
/// Argument: Particle-field.
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
virtual AnalyticalInjectRandomParticlesFunctional3D<T,Descriptor,DomainFunctional>* clone() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
Particle3D<T,Descriptor>* particleTemplate;
T probabilityPerCell;
DomainFunctional functional;
};
/// Generate a random number of point-particles inside the domain. Each cell generates
/// at most one particle, with a given probability and at a random position inside
/// the cell. Additionally to analytically-inject, this functional uses a bit-
/// mask to decide where to inject.
template<typename T, template<typename U> class Descriptor, class DomainFunctional>
class MaskedInjectRandomParticlesFunctional3D : public BoxProcessingFunctional3D
{
public:
MaskedInjectRandomParticlesFunctional3D(Particle3D<T,Descriptor>* particleTemplate_, T probabilityPerCell_, DomainFunctional functional_, int flag_);
MaskedInjectRandomParticlesFunctional3D(MaskedInjectRandomParticlesFunctional3D<T,Descriptor,DomainFunctional> const& rhs);
MaskedInjectRandomParticlesFunctional3D<T,Descriptor,DomainFunctional>&
operator=(MaskedInjectRandomParticlesFunctional3D<T,Descriptor,DomainFunctional> const& rhs);
void swap(MaskedInjectRandomParticlesFunctional3D<T,Descriptor,DomainFunctional>& rhs);
~MaskedInjectRandomParticlesFunctional3D();
/// Arguments: Particle-field, Mask.
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
virtual MaskedInjectRandomParticlesFunctional3D<T,Descriptor,DomainFunctional>* clone() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
Particle3D<T,Descriptor>* particleTemplate;
T probabilityPerCell;
DomainFunctional functional;
int flag;
};
/// Generate equally spaced particles inside each cell. Every cell generates
/// nx particles in its x-direction, ny in its y-direction and nz in its
/// z-direction (nx * ny * nz in total in each cell).
/// All particles are identical clones (except for their position).
template<typename T, template<typename U> class Descriptor>
class InjectEquallySpacedParticlesFunctional3D : public BoxProcessingFunctional3D
{
public:
InjectEquallySpacedParticlesFunctional3D(Particle3D<T,Descriptor>* particleTemplate_, plint nx_, plint ny_, plint nz_);
InjectEquallySpacedParticlesFunctional3D(InjectEquallySpacedParticlesFunctional3D<T,Descriptor> const& rhs);
InjectEquallySpacedParticlesFunctional3D<T,Descriptor>&
operator=(InjectEquallySpacedParticlesFunctional3D<T,Descriptor> const& rhs);
void swap(InjectEquallySpacedParticlesFunctional3D<T,Descriptor>& rhs);
~InjectEquallySpacedParticlesFunctional3D();
/// Argument: Particle-field.
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
virtual InjectEquallySpacedParticlesFunctional3D<T,Descriptor>* clone() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
Particle3D<T,Descriptor>* particleTemplate;
plint nx, ny, nz;
};
/// Generate equally spaced particles inside each cell. Every cell generates
/// nx particles in its x-direction, ny in its y-direction and nz in its
/// z-direction (nx * ny * nz in total in each cell). This functional uses
/// a bit-mask to decide where to inject. All particles are identical clones
/// (except for their position).
template<typename T, template<typename U> class Descriptor>
class MaskedInjectEquallySpacedParticlesFunctional3D : public BoxProcessingFunctional3D
{
public:
MaskedInjectEquallySpacedParticlesFunctional3D(Particle3D<T,Descriptor>* particleTemplate_,
plint nx_, plint ny_, plint nz_, int flag_);
MaskedInjectEquallySpacedParticlesFunctional3D(
MaskedInjectEquallySpacedParticlesFunctional3D<T,Descriptor> const& rhs);
MaskedInjectEquallySpacedParticlesFunctional3D<T,Descriptor>&
operator=(MaskedInjectEquallySpacedParticlesFunctional3D<T,Descriptor> const& rhs);
void swap(MaskedInjectEquallySpacedParticlesFunctional3D<T,Descriptor>& rhs);
~MaskedInjectEquallySpacedParticlesFunctional3D();
/// Arguments: Particle-field, Mask.
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
virtual MaskedInjectEquallySpacedParticlesFunctional3D<T,Descriptor>* clone() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
Particle3D<T,Descriptor>* particleTemplate;
plint nx, ny, nz;
int flag;
};
/// Remove all particles from a given domain.
template<typename T, template<typename U> class Descriptor>
class AbsorbParticlesFunctional3D : public BoxProcessingFunctional3D
{
public:
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
/// Argument: Particle-field.
virtual AbsorbParticlesFunctional3D<T,Descriptor>* clone() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
};
/// Remove all particles from a given domain.
template<typename T, template<typename U> class Descriptor>
class AbsorbParticlesFunctionalSelective3D : public BoxProcessingFunctional3D
{
public:
AbsorbParticlesFunctionalSelective3D(util::SelectInt* tags_);
~AbsorbParticlesFunctionalSelective3D();
AbsorbParticlesFunctionalSelective3D(AbsorbParticlesFunctionalSelective3D<T,Descriptor> const& rhs);
AbsorbParticlesFunctionalSelective3D<T,Descriptor>& operator=(AbsorbParticlesFunctionalSelective3D<T,Descriptor> const& rhs);
void swap(AbsorbParticlesFunctionalSelective3D<T,Descriptor>& rhs);
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
/// Argument: Particle-field.
virtual AbsorbParticlesFunctionalSelective3D<T,Descriptor>* clone() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
util::SelectInt* tags;
};
/// Find particles injected inside wall nodes and remove them.
template<typename T, template<typename U> class Descriptor>
class RemoveParticlesFromWall3D : public BoxProcessingFunctional3D
{
public:
RemoveParticlesFromWall3D(int wallFlag_);
/// Arguments: [0] Particle-field [1] Flag-matrix
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
virtual RemoveParticlesFromWall3D<T,Descriptor>* clone() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
int wallFlag; // Value that represents the wall in the flag matrix.
};
/// Find particles close to a wall and change their positions so they are pushed back to the flow field.
template<typename T, template<typename U> class Descriptor>
class PushParticlesAwayFromWall3D : public BoxProcessingFunctional3D
{
public:
PushParticlesAwayFromWall3D(T cutOffValue_, T movingDistance_, int wallFlag_, int fluidFlag_);
/// Arguments: [0] Particle-field [1] Flag-matrix
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
virtual PushParticlesAwayFromWall3D<T,Descriptor>* clone() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
T cutOffValue; // When the speed of the particle drops below sqrt(cutOffValue), then this particle is a candidate for pushing.
T movingDistance; // This is the distance the particles will be moved.
int wallFlag; // Value that represents the wall nodes in the flag matrix.
int fluidFlag; // Value that represents the fluid nodes in the flag matrix.
};
/// Execute the particle-fluid interaction step (during which the particles
/// don't move and the fluid doesn't change).
template<typename T, template<typename U> class Descriptor>
class FluidToParticleCoupling3D : public BoxProcessingFunctional3D
{
public:
/// Particle speed = scaling*fluid speed.
FluidToParticleCoupling3D(T scaling_);
/// Arguments: [0] Particle-field; [1] Fluid.
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
virtual FluidToParticleCoupling3D<T,Descriptor>* clone() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
T scaling;
};
template<typename T, template<typename U> class Descriptor>
class VelocityToParticleCoupling3D : public BoxProcessingFunctional3D
{
public:
/// Particle speed = scaling*fluid speed.
VelocityToParticleCoupling3D(T scaling_);
/// Arguments: [0] Particle-field; [1] Velocity.
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
virtual VelocityToParticleCoupling3D<T,Descriptor>* clone() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
T scaling;
};
template<typename T, template<typename U> class Descriptor>
class RhoBarJtoParticleCoupling3D : public BoxProcessingFunctional3D
{
public:
/// Particle speed = scaling*fluid speed.
RhoBarJtoParticleCoupling3D(bool velIsJ_, T scaling_);
/// Arguments: [0] Particle-field; [1] rhoBarJ.
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
virtual RhoBarJtoParticleCoupling3D<T,Descriptor>* clone() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
bool velIsJ;
T scaling;
};
/// Execute the iteration step during which particles advance.
template<typename T, template<typename U> class Descriptor>
class AdvanceParticlesFunctional3D : public BoxProcessingFunctional3D
{
public:
/// When the speed of a particle drops below sqrt(cutOffValue),
/// the particle is eliminated. Negative cutOffValue means no cutoff.
AdvanceParticlesFunctional3D(T cutOffValue_ = -1.);
/// Argument: Particle-field.
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
virtual AdvanceParticlesFunctional3D<T,Descriptor>* clone() const;
virtual BlockDomain::DomainT appliesTo() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
T cutOffValue;
};
/// Execute the iteration step during which particles advance, on the whole domain
/** The data processor's domain indication is being ignored. This works also with periodicity. **/
template<typename T, template<typename U> class Descriptor>
class AdvanceParticlesEveryWhereFunctional3D : public BoxProcessingFunctional3D
{
public:
/// When the speed of a particle drops below sqrt(cutOffValue),
/// the particle is eliminated. Negative cutOffValue means no cutoff.
AdvanceParticlesEveryWhereFunctional3D(T cutOffValue_ = -1.);
/// Argument: Particle-field.
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
virtual AdvanceParticlesEveryWhereFunctional3D<T,Descriptor>* clone() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
T cutOffValue;
};
/* ******** VerletUpdateVelocity3D *********************************** */
/// Update the velocity to complete an iteration of the Verlet algorithm. Works
/// with Verlet particles only.
template<typename T, template<typename U> class Descriptor>
class VerletUpdateVelocity3D : public BoxProcessingFunctional3D
{
public:
/// Arguments: [0] Particle-field.
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
virtual VerletUpdateVelocity3D<T,Descriptor>* clone() const;
virtual void getModificationPattern(std::vector<bool>& isWritten) const;
virtual BlockDomain::DomainT appliesTo() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
bool projectForce;
Array<T,3> planeNormal;
};
/* ******** VerletUpdateVelocitySelective3D *********************************** */
/// Update the velocity to complete an iteration of the Verlet algorithm. Works
/// with Verlet particles only. Acts only on particles with the specified tag.
template<typename T, template<typename U> class Descriptor>
class VerletUpdateVelocitySelective3D : public BoxProcessingFunctional3D
{
public:
VerletUpdateVelocitySelective3D(util::SelectInt* tags_);
~VerletUpdateVelocitySelective3D();
VerletUpdateVelocitySelective3D(VerletUpdateVelocitySelective3D<T,Descriptor> const& rhs);
VerletUpdateVelocitySelective3D<T,Descriptor>& operator=(VerletUpdateVelocitySelective3D<T,Descriptor> const& rhs);
void swap(VerletUpdateVelocitySelective3D<T,Descriptor>& rhs);
/// Arguments: [0] Particle-field.
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
virtual VerletUpdateVelocitySelective3D<T,Descriptor>* clone() const;
virtual void getModificationPattern(std::vector<bool>& isWritten) const;
virtual BlockDomain::DomainT appliesTo() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
util::SelectInt* tags;
};
template< typename T,
template<typename U> class Descriptor >
void addWallParticles (
MultiParticleField3D<DenseParticleField3D<T,Descriptor> >& particles, TriangleBoundary3D<T>& boundary );
template< typename T,
template<typename U> class Descriptor, class ParticleFieldT >
void addWallParticlesGeneric (
MultiParticleField3D<ParticleFieldT>& particles, TriangleBoundary3D<T>& boundary );
/// Count the number of particles at each cell node and add the result to the scalar field.
template<typename T, template<typename U> class Descriptor>
class CountAndAccumulateParticles3D : public BoxProcessingFunctional3D
{
public:
/// Arguments: [0] Particle-field; [1] Number of particles (plint scalar-field).
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
virtual CountAndAccumulateParticles3D<T,Descriptor>* clone() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
};
/// Count the number of particles with a given tag at each cell node and add the result to the scalar field.
template<typename T, template<typename U> class Descriptor>
class CountAndAccumulateTaggedParticles3D : public BoxProcessingFunctional3D
{
public:
CountAndAccumulateTaggedParticles3D(plint tag_);
/// Arguments: [0] Particle-field; [1] Number of particles (plint scalar-field).
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
virtual CountAndAccumulateTaggedParticles3D<T,Descriptor>* clone() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
plint tag;
};
/// Count the number of particles (with a given tag) at each refined cell node, and add the result
/// to the scalar field which is refined (defined on a refined grid with respect to the particle grid).
/// The particles which belong to each "sub-volume" of the refined scalar grid contained in the
/// "big volume" of the particle grid, must be identified, counted and accumulated.
template<typename T, template<typename U> class Descriptor>
class CountAndAccumulateTaggedParticlesRefined3D : public BoxProcessingFunctional3D
{
public:
CountAndAccumulateTaggedParticlesRefined3D(plint tag_, plint dxScale_);
/// Arguments: [0] Particle-field; [1] Number of particles (plint scalar-field).
virtual void processGenericBlocks(Box3D coarseDomain, std::vector<AtomicBlock3D*> fields);
virtual CountAndAccumulateTaggedParticlesRefined3D<T,Descriptor>* clone() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
/// These helper functions are also implemented in the ParticleField3D class,
/// but we need to re-implement them here, since we need them for the refined
/// scalar field.
static plint nearestCell(T pos);
static void computeGridPosition(Array<T,3> const& position, Dot3D const& location,
plint& iX, plint& iY, plint& iZ);
private:
plint tag;
plint dxScale;
};
/// Count the number of particles with given tags at each cell node and place the result to the scalar field.
template<typename T, template<typename U> class Descriptor>
class CountTaggedParticles3D : public BoxProcessingFunctional3D
{
public:
CountTaggedParticles3D(util::SelectInt* tags_);
~CountTaggedParticles3D();
CountTaggedParticles3D(CountTaggedParticles3D<T,Descriptor> const& rhs);
CountTaggedParticles3D<T,Descriptor>& operator=(CountTaggedParticles3D<T,Descriptor> const& rhs);
void swap(CountTaggedParticles3D<T,Descriptor>& rhs);
/// Arguments: [0] Particle-field; [1] Number of particles (plint scalar-field).
virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
virtual CountTaggedParticles3D<T,Descriptor>* clone() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
util::SelectInt* tags;
};
template< typename T, template<typename U> class Descriptor,
template<typename T_, template<typename U_> class Descriptor_> class ParticleFieldT >
plint countParticles (
MultiParticleField3D<ParticleFieldT<T,Descriptor> >& particles, Box3D const& domain );
template< typename T, template<typename U> class Descriptor,
template<typename T_, template<typename U_> class Descriptor_> class ParticleFieldT >
plint countParticles (
MultiParticleField3D<ParticleFieldT<T,Descriptor> >& particles, Box3D const& domain, util::SelectInt* tags );
template<typename T, template<typename U> class Descriptor>
void injectParticles(std::vector<Particle3D<T,Descriptor>*>& injectedParticles,
MultiParticleField3D<DenseParticleField3D<T,Descriptor> >& particles, Box3D domain);
/* Iterations of a passive-scalar fluid-particle system:
* =====================================================
*
* Note: The difficulty comes from the fact that particle-fields may have a larger
* envelope than the fluid. When advancing particles on bulk and envelope, the
* velocity data from the fluid is therefore not necessarily locally available.
* The velocity is therefore first stored in the particle (in the bulk), and then
* communicated to the envelopes.
*
* --- Particles are at time t, fluid is at time t, defined on bulk and envelope. ---
* 1. Fluid collideAndStream().
* 2. Particle advance (bulk+envelope). ==> Particles at time t on bulk (needs no communication).
* 3. Fluid communication ==> Fluid at time t+1.
* 4. Particle interact (bulk domain) with velocity at time t+1.
* 5. Particle communication ==> Particle at time t+1.
*/
} // namespace plb
#endif // PARTICLE_PROCESSING_FUNCTIONAL_3D_H
|