This file is indexed.

/usr/share/doc/libplplot12/examples/ada/x22a.adb is in libplplot-ada1-dev 5.10.0+dfsg2-0.1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
-- $Id: x22a.adb 12862 2013-12-13 10:18:08Z jbauck $

-- Simple vector plot example

-- Copyright (C) 2008, 2013 Jerry Bauck

-- This file is part of PLplot.

-- PLplot is free software; you can redistribute it and/or modify
-- it under the terms of the GNU Library General Public License as published
-- by the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.

-- PLplot is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-- GNU Library General Public License for more details.

-- You should have received a copy of the GNU Library General Public License
-- along with PLplot; if not, write to the Free Software
-- Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

with
    System,
    System.Address_To_Access_Conversions,
    Ada.Numerics,
    Ada.Numerics.Long_Elementary_Functions,
    PLplot_Traditional,
    PLplot_Auxiliary;
use
    Ada.Numerics,
    Ada.Numerics.Long_Elementary_Functions,
    System,
    PLplot_Traditional,
    PLplot_Auxiliary;

procedure x22a is
    -- Pairs of points making the line segments used to plot the user defined arrow 
    arrow_x  : Real_Vector(0 .. 5) := (-0.5, 0.5, 0.3, 0.5,  0.3, 0.5);
    arrow_y  : Real_Vector(0 .. 5) := ( 0.0, 0.0, 0.2, 0.0, -0.2, 0.0);
    arrow2_x : Real_Vector(0 .. 5) := (-0.5, 0.3, 0.3, 0.5,  0.3, 0.3);
    arrow2_y : Real_Vector(0 .. 5) := ( 0.0, 0.0, 0.2, 0.0, -0.2, 0.0);


    -- Vector plot of the circulation about the origin
    procedure circulation is
        dx, dy, x, y : Long_Float;
        nx : constant Integer := 20;
        ny : constant Integer := 20;
        xmin, xmax, ymin, ymax : Long_Float;
        u, v : Real_Matrix(0 .. nx - 1, 0 .. ny -1);
        cgrid2 : aliased Transformation_Data_Type_2
           (x_Last => nx - 1,
            y_Last => ny - 1);
    begin
        dx := 1.0;
        dy := 1.0;

        xmin := Long_Float(-nx / 2) * dx;
        xmax := Long_Float( nx / 2) * dx;
        ymin := Long_Float(-ny / 2) * dy;
        ymax := Long_Float( ny / 2) * dy;

        -- Create data - circulation around the origin. 
        for i in 0 .. nx - 1 loop
            x := (Long_Float(i - nx / 2) + 0.5) * dx;
                for j in 0 .. ny - 1 loop
                    y := (Long_Float(j - ny / 2) + 0.5) * dy;
                    cgrid2.xg(i, j) := x;
                    cgrid2.yg(i, j) := y;
                    u(i, j) := y;
                    v(i, j) := -x;
                end loop;
        end loop;

        -- Plot vectors with default arrows 
        plenv(xmin, xmax, ymin, ymax, 0, 0);
        pllab("(x)", "(y)", "#frPLplot Example 22 - circulation");
        plcol0(2);
        plvect(u, v, 0.0, pltr2'access, cgrid2'Address);
        plcol0(1);
    end circulation;


    --Vector plot of flow through a constricted pipe
    procedure constriction(astyle : Integer) is
        dx, dy, x, y : Long_Float;
        xmin, xmax, ymin, ymax : Long_Float;
        Q, b, dbdx : Long_Float;
        nx : constant Integer := 20;
        ny : constant Integer := 20;
        u, v : Real_Matrix(0 .. nx - 1, 0 .. ny -1);
        cgrid2 : aliased Transformation_Data_Type_2
           (x_Last => nx - 1,
            y_Last => ny - 1);
    begin
        dx := 1.0;
        dy := 1.0;

        xmin := Long_Float(-nx / 2) * dx;
        xmax := Long_Float( nx / 2) * dx;
        ymin := Long_Float(-ny / 2) * dy;
        ymax := Long_Float( ny / 2) * dy;
	
        Q := 2.0;
        for i in 0 .. nx - 1 loop
            x := (Long_Float(i - nx / 2) + 0.5) * dx;
                for j in 0 .. ny - 1 loop
                    y := (Long_Float(j - ny / 2) + 0.5) * dy;
                    cgrid2.xg(i, j) := x;
                    cgrid2.yg(i, j) := y;
                    b := ymax / 4.0 * (3.0 - cos(pi * x / xmax));
                    if abs(y) < b then
                        dbdx := ymax / 4.0 * sin(pi * x / xmax) * pi / xmax * y / b;
                        u(i, j) := Q * ymax / b;
                        v(i, j) := dbdx * u(i, j);
                    else 
                        u(i, j) := 0.0;
                        v(i, j) := 0.0;
                    end if;
            end loop;
        end loop;

        plenv(xmin, xmax, ymin, ymax, 0, 0);
        pllab("(x)", "(y)", "#frPLplot Example 22 - constriction (arrow style" & 
            Integer'image(astyle) & ")");
        plcol0(2);
        plvect(u, v, -1.0, pltr2'access, cgrid2'Address);
        plcol0(1);
    end constriction;

    -- This spec is necessary in order to enforce C calling conventions, used 
    -- in the callback by intervening C code.
    procedure transform
       (x, y   : Long_Float;
        xt, yt : out Long_Float; 
        data   : PLPointer);
    pragma Convention(C, transform);

    -- Global transform function for a constriction using data passed in
    -- This is the same transformation used in constriction.
    procedure transform(x, y : Long_Float; xt, yt : out Long_Float; Data : PLPointer) is

        -- Convert the generic pointer represented as System.Address to a proper Ada pointer aka 
        -- access variable. Recall that PLpointer is a subtype of System.Address.
        package Data_Address_Conversions is new System.Address_To_Access_Conversions(Long_Float);
        Data_Pointer : Data_Address_Conversions.Object_Pointer; -- An Ada access variable
        xmax : Long_Float;
    begin
        Data_Pointer := Data_Address_Conversions.To_Pointer(Data);
        xmax   := Data_Pointer.all;
        xt := x;
        yt := y / 4.0 * (3.0 - cos(Pi * x / xmax));
    end transform;
    

    -- Vector plot of flow through a constricted pipe with a coordinate transform
    procedure constriction2 is
        dx, dy, x, y : Long_Float;
        xmin, xmax, ymin, ymax : Long_Float;
        Q, b : Long_Float;
        nx : constant Integer := 20;
        ny : constant Integer := 20;
        cgrid2 : aliased Transformation_Data_Type_2
           (x_Last => nx - 1,
            y_Last => ny - 1);
        u, v : Real_Matrix(0 .. nx - 1, 0 .. ny - 1);
        nc : constant Integer := 11;
        nseg : constant Integer := 20;
        clev : Real_Vector(0 .. nc - 1);
    begin
        dx := 1.0;
        dy := 1.0;

        xmin := Long_Float(-nx / 2) * dx; -- Careful; Ada / rounds, C / truncates.
        xmax := Long_Float( nx / 2) * dx;
        ymin := Long_Float(-ny / 2) * dy;
        ymax := Long_Float( ny / 2) * dy;

        plstransform(transform'Unrestricted_Access, xmax'Address);

        cgrid2.nx := nx;
        cgrid2.ny := ny;
        Q := 2.0;

        for i in 0 .. nx - 1 loop
            x := (Long_Float(i - nx / 2) + 0.5) * dx;
            for j in 0 .. ny - 1 loop
                y := (Long_Float(j - ny / 2) + 0.5) * dy;
                cgrid2.xg(i, j) := x;
                cgrid2.yg(i, j) := y;
                b := ymax / 4.0 * (3.0 - cos(Pi * x / xmax));
                u(i, j) := Q * ymax / b;
                v(i, j) := 0.0;
            end loop;
        end loop;

        for i in 0 .. nc - 1 loop
            clev(i) := Q + Long_Float(i) * Q / Long_Float(nc - 1);
        end loop;

        plenv(xmin, xmax, ymin, ymax, 0, 0);
        pllab("(x)", "(y)", "#frPLplot Example 22 - constriction with plstransform");
        plcol0(2);
        plshades(u, Null,
            xmin + dx / 2.0, xmax - dx / 2.0, ymin + dy / 2.0, ymax - dy / 2.0,
            clev, 0.0, 1, 1.0, plfill'access, False, Null, System.Null_Address);
        plvect(u, v,
            -1.0, pltr2'access, cgrid2'Address);

        -- Plot edges using plpath (which accounts for coordinate transformation) rather than plline
        plpath(nseg, xmin, ymax, xmax, ymax);
        plpath(nseg, xmin, ymin, xmax, ymin);
        plcol0(1);

        Clear_Custom_Coordinate_Transform;
        -- or...
        -- plstransform(null, System.Null_Address);
    end constriction2;
    

    -- Vector plot of the gradient of a shielded potential (see example 9)
    procedure potential is
        nper   : constant Integer := 100;
        nlevel : constant Integer := 10;
        nr     : constant Integer := 20;
        ntheta : constant Integer := 20;

        eps, q1, d1, q1i, d1i, q2, d2, q2i, d2i : Long_Float;
        div1, div1i, div2, div2i : Long_Float;
        r, theta, x, y, dz : Long_Float;
        xmin, xmax, ymin, ymax, rmax, zmax, zmin : Long_Float;
        u, v, z : Real_Matrix(0 .. nr - 1, 0 .. ntheta - 1);
        px, py : Real_Vector(0 .. nper - 1);
        clevel : Real_Vector(0 .. nlevel - 1);
        cgrid2 : aliased Transformation_Data_Type_2
           (x_Last => nr - 1,
            y_Last => ntheta - 1);
        
        function pow(x, y : Long_Float) return Long_Float is
            Result : Long_Float := 1.0;
        begin
            for i in 1 .. Integer(y) loop
                Result := Result * x;
            end loop;
            return Result;
        end pow;

    begin
        -- Potential inside a conducting cylinder (or sphere) by method of images.
        -- Charge 1 is placed at (d1, d1), with image charge at (d2, d2).
        -- Charge 2 is placed at (d1, -d1), with image charge at (d2, -d2).
        -- Also put in smoothing term at small distances.
        rmax := Long_Float(nr);
        eps := 2.0;

        q1 := 1.0;
        d1 := rmax / 4.0;

        q1i := - q1 * rmax / d1;
        d1i := (rmax * rmax) / d1;

        q2 := -1.0;
        d2 := rmax / 4.0;

        q2i := - q2 * rmax / d2;
        d2i := (rmax * rmax) / d2;

        for i in 0 .. nr - 1 loop
            r := 0.5 + Long_Float(i);
            for j in 0 .. ntheta - 1 loop
                theta := 2.0 * pi / Long_Float(ntheta - 1) * (0.5 + Long_Float(j));
                x := r * cos(theta);
                y := r * sin(theta);
                cgrid2.xg(i, j) := x;
                cgrid2.yg(i, j) := y;
                div1  := sqrt(pow(x-d1, 2.0)  + pow(y-d1, 2.0) + pow(eps, 2.0));
                div1i := sqrt(pow(x-d1i, 2.0) + pow(y-d1i, 2.0) + pow(eps, 2.0));
                div2  := sqrt(pow(x-d2, 2.0)  + pow(y+d2, 2.0) + pow(eps, 2.0));
                div2i := sqrt(pow(x-d2i, 2.0) + pow(y+d2i, 2.0) + pow(eps, 2.0));
                
                z(i, j) := q1/div1 + q1i/div1i + q2/div2 + q2i/div2i;
                u(i, j) := -q1*(x-d1)/pow(div1, 3.0) - q1i*(x-d1i)/pow(div1i, 3.00)
                    - q2*(x-d2)/pow(div2,3.0) - q2i*(x-d2i)/pow(div2i, 3.0);
                v(i, j) := -q1*(y-d1)/pow(div1, 3.0) - q1i*(y-d1i)/pow(div1i, 3.00)
                    - q2*(y+d2)/pow(div2, 3.0) - q2i*(y+d2i)/pow(div2i, 3.0);
            end loop;
        end loop;

        xmin := Matrix_Min(cgrid2.xg);
        xmax := Matrix_Max(cgrid2.xg);
        ymin := Matrix_Min(cgrid2.yg);
        ymax := Matrix_Max(cgrid2.yg);
        zmin := Matrix_Min(z);
        zmax := Matrix_Max(z);

        plenv(xmin, xmax, ymin, ymax, 0, 0);
        pllab("(x)", "(y)", "#frPLplot Example 22 - potential gradient vector plot");

        -- Plot contours of the potential 
        dz := (zmax - zmin) / Long_Float(nlevel);
        for i in clevel'range loop
            clevel(i) := zmin + (Long_Float(i) + 0.5) * dz;
        end loop;
        plcol0(3);
        pllsty(2);
        plcont(z, 1, nr, 1, ntheta, clevel, pltr2'access, cgrid2'Address);
        pllsty(1);
        plcol0(1);

        -- Plot the vectors of the gradient of the potential 
        plcol0(2);
        plvect(u, v, 25.0, pltr2'access, cgrid2'Address);
        plcol0(1);

        -- Plot the perimeter of the cylinder 
        for i in px'range loop
            theta := (2.0 * pi / Long_Float(nper - 1)) * Long_Float(i);
            px(i) := rmax * cos(theta);
            py(i) := rmax * sin(theta);
        end loop;
        plline(px,py);
    end potential;


----------------------------------------------------------------------------
-- Generates several simple vector plots.
----------------------------------------------------------------------------
begin
    -- Parse and process command line arguments 
    plparseopts(PL_PARSE_FULL);

    -- Initialize plplot 
    plinit;

    circulation;

    -- Set arrow style using arrow_x and arrow_y then plot using these arrows.
    plsvect(arrow_x, arrow_y, False);
    constriction(1);

    -- Set arrow style using arrow2_x and arrow2_y then plot using these filled arrows. 
    plsvect(arrow2_x, arrow2_y, True);
    constriction(2);
    
    constriction2;

    -- Reset arrow style to the default by passing two NULL arrays.
    -- This line uses the awkward method of the C API to reset the default arrow style.
    -- plsvect(System.Null_Address, System.Null_Address, False);
    
    -- This method of resetting the default arrow style is a little more Ada-friendly...
    plsvect;
    
    -- ... as is this one which is identical but for name.
    -- Reset_Vector_Arrow_Style;

    potential;

    plend;
end x22a;