/usr/include/x86_64-linux-gnu/ppl.hh is in libpplv4-dev 1:1.1-7ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 24209 24210 24211 24212 24213 24214 24215 24216 24217 24218 24219 24220 24221 24222 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 24245 24246 24247 24248 24249 24250 24251 24252 24253 24254 24255 24256 24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 24271 24272 24273 24274 24275 24276 24277 24278 24279 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 24313 24314 24315 24316 24317 24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 24332 24333 24334 24335 24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 24350 24351 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 24598 24599 24600 24601 24602 24603 24604 24605 24606 24607 24608 24609 24610 24611 24612 24613 24614 24615 24616 24617 24618 24619 24620 24621 24622 24623 24624 24625 24626 24627 24628 24629 24630 24631 24632 24633 24634 24635 24636 24637 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 24778 24779 24780 24781 24782 24783 24784 24785 24786 24787 24788 24789 24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 24804 24805 24806 24807 24808 24809 24810 24811 24812 24813 24814 24815 24816 24817 24818 24819 24820 24821 24822 24823 24824 24825 24826 24827 24828 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 24866 24867 24868 24869 24870 24871 24872 24873 24874 24875 24876 24877 24878 24879 24880 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 24896 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 24994 24995 24996 24997 24998 24999 25000 25001 25002 25003 25004 25005 25006 25007 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 25393 25394 25395 25396 25397 25398 25399 25400 25401 25402 25403 25404 25405 25406 25407 25408 25409 25410 25411 25412 25413 25414 25415 25416 25417 25418 25419 25420 25421 25422 25423 25424 25425 25426 25427 25428 25429 25430 25431 25432 25433 25434 25435 25436 25437 25438 25439 25440 25441 25442 25443 25444 25445 25446 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 25461 25462 25463 25464 25465 25466 25467 25468 25469 25470 25471 25472 25473 25474 25475 25476 25477 25478 25479 25480 25481 25482 25483 25484 25485 25486 25487 25488 25489 25490 25491 25492 25493 25494 25495 25496 25497 25498 25499 25500 25501 25502 25503 25504 25505 25506 25507 25508 25509 25510 25511 25512 25513 25514 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 25556 25557 25558 25559 25560 25561 25562 25563 25564 25565 25566 25567 25568 25569 25570 25571 25572 25573 25574 25575 25576 25577 25578 25579 25580 25581 25582 25583 25584 25585 25586 25587 25588 25589 25590 25591 25592 25593 25594 25595 25596 25597 25598 25599 25600 25601 25602 25603 25604 25605 25606 25607 25608 25609 25610 25611 25612 25613 25614 25615 25616 25617 25618 25619 25620 25621 25622 25623 25624 25625 25626 25627 25628 25629 25630 25631 25632 25633 25634 25635 25636 25637 25638 25639 25640 25641 25642 25643 25644 25645 25646 25647 25648 25649 25650 25651 25652 25653 25654 25655 25656 25657 25658 25659 25660 25661 25662 25663 25664 25665 25666 25667 25668 25669 25670 25671 25672 25673 25674 25675 25676 25677 25678 25679 25680 25681 25682 25683 25684 25685 25686 25687 25688 25689 25690 25691 25692 25693 25694 25695 25696 25697 25698 25699 25700 25701 25702 25703 25704 25705 25706 25707 25708 25709 25710 25711 25712 25713 25714 25715 25716 25717 25718 25719 25720 25721 25722 25723 25724 25725 25726 25727 25728 25729 25730 25731 25732 25733 25734 25735 25736 25737 25738 25739 25740 25741 25742 25743 25744 25745 25746 25747 25748 25749 25750 25751 25752 25753 25754 25755 25756 25757 25758 25759 25760 25761 25762 25763 25764 25765 25766 25767 25768 25769 25770 25771 25772 25773 25774 25775 25776 25777 25778 25779 25780 25781 25782 25783 25784 25785 25786 25787 25788 25789 25790 25791 25792 25793 25794 25795 25796 25797 25798 25799 25800 25801 25802 25803 25804 25805 25806 25807 25808 25809 25810 25811 25812 25813 25814 25815 25816 25817 25818 25819 25820 25821 25822 25823 25824 25825 25826 25827 25828 25829 25830 25831 25832 25833 25834 25835 25836 25837 25838 25839 25840 25841 25842 25843 25844 25845 25846 25847 25848 25849 25850 25851 25852 25853 25854 25855 25856 25857 25858 25859 25860 25861 25862 25863 25864 25865 25866 25867 25868 25869 25870 25871 25872 25873 25874 25875 25876 25877 25878 25879 25880 25881 25882 25883 25884 25885 25886 25887 25888 25889 25890 25891 25892 25893 25894 25895 25896 25897 25898 25899 25900 25901 25902 25903 25904 25905 25906 25907 25908 25909 25910 25911 25912 25913 25914 25915 25916 25917 25918 25919 25920 25921 25922 25923 25924 25925 25926 25927 25928 25929 25930 25931 25932 25933 25934 25935 25936 25937 25938 25939 25940 25941 25942 25943 25944 25945 25946 25947 25948 25949 25950 25951 25952 25953 25954 25955 25956 25957 25958 25959 25960 25961 25962 25963 25964 25965 25966 25967 25968 25969 25970 25971 25972 25973 25974 25975 25976 25977 25978 25979 25980 25981 25982 25983 25984 25985 25986 25987 25988 25989 25990 25991 25992 25993 25994 25995 25996 25997 25998 25999 26000 26001 26002 26003 26004 26005 26006 26007 26008 26009 26010 26011 26012 26013 26014 26015 26016 26017 26018 26019 26020 26021 26022 26023 26024 26025 26026 26027 26028 26029 26030 26031 26032 26033 26034 26035 26036 26037 26038 26039 26040 26041 26042 26043 26044 26045 26046 26047 26048 26049 26050 26051 26052 26053 26054 26055 26056 26057 26058 26059 26060 26061 26062 26063 26064 26065 26066 26067 26068 26069 26070 26071 26072 26073 26074 26075 26076 26077 26078 26079 26080 26081 26082 26083 26084 26085 26086 26087 26088 26089 26090 26091 26092 26093 26094 26095 26096 26097 26098 26099 26100 26101 26102 26103 26104 26105 26106 26107 26108 26109 26110 26111 26112 26113 26114 26115 26116 26117 26118 26119 26120 26121 26122 26123 26124 26125 26126 26127 26128 26129 26130 26131 26132 26133 26134 26135 26136 26137 26138 26139 26140 26141 26142 26143 26144 26145 26146 26147 26148 26149 26150 26151 26152 26153 26154 26155 26156 26157 26158 26159 26160 26161 26162 26163 26164 26165 26166 26167 26168 26169 26170 26171 26172 26173 26174 26175 26176 26177 26178 26179 26180 26181 26182 26183 26184 26185 26186 26187 26188 26189 26190 26191 26192 26193 26194 26195 26196 26197 26198 26199 26200 26201 26202 26203 26204 26205 26206 26207 26208 26209 26210 26211 26212 26213 26214 26215 26216 26217 26218 26219 26220 26221 26222 26223 26224 26225 26226 26227 26228 26229 26230 26231 26232 26233 26234 26235 26236 26237 26238 26239 26240 26241 26242 26243 26244 26245 26246 26247 26248 26249 26250 26251 26252 26253 26254 26255 26256 26257 26258 26259 26260 26261 26262 26263 26264 26265 26266 26267 26268 26269 26270 26271 26272 26273 26274 26275 26276 26277 26278 26279 26280 26281 26282 26283 26284 26285 26286 26287 26288 26289 26290 26291 26292 26293 26294 26295 26296 26297 26298 26299 26300 26301 26302 26303 26304 26305 26306 26307 26308 26309 26310 26311 26312 26313 26314 26315 26316 26317 26318 26319 26320 26321 26322 26323 26324 26325 26326 26327 26328 26329 26330 26331 26332 26333 26334 26335 26336 26337 26338 26339 26340 26341 26342 26343 26344 26345 26346 26347 26348 26349 26350 26351 26352 26353 26354 26355 26356 26357 26358 26359 26360 26361 26362 26363 26364 26365 26366 26367 26368 26369 26370 26371 26372 26373 26374 26375 26376 26377 26378 26379 26380 26381 26382 26383 26384 26385 26386 26387 26388 26389 26390 26391 26392 26393 26394 26395 26396 26397 26398 26399 26400 26401 26402 26403 26404 26405 26406 26407 26408 26409 26410 26411 26412 26413 26414 26415 26416 26417 26418 26419 26420 26421 26422 26423 26424 26425 26426 26427 26428 26429 26430 26431 26432 26433 26434 26435 26436 26437 26438 26439 26440 26441 26442 26443 26444 26445 26446 26447 26448 26449 26450 26451 26452 26453 26454 26455 26456 26457 26458 26459 26460 26461 26462 26463 26464 26465 26466 26467 26468 26469 26470 26471 26472 26473 26474 26475 26476 26477 26478 26479 26480 26481 26482 26483 26484 26485 26486 26487 26488 26489 26490 26491 26492 26493 26494 26495 26496 26497 26498 26499 26500 26501 26502 26503 26504 26505 26506 26507 26508 26509 26510 26511 26512 26513 26514 26515 26516 26517 26518 26519 26520 26521 26522 26523 26524 26525 26526 26527 26528 26529 26530 26531 26532 26533 26534 26535 26536 26537 26538 26539 26540 26541 26542 26543 26544 26545 26546 26547 26548 26549 26550 26551 26552 26553 26554 26555 26556 26557 26558 26559 26560 26561 26562 26563 26564 26565 26566 26567 26568 26569 26570 26571 26572 26573 26574 26575 26576 26577 26578 26579 26580 26581 26582 26583 26584 26585 26586 26587 26588 26589 26590 26591 26592 26593 26594 26595 26596 26597 26598 26599 26600 26601 26602 26603 26604 26605 26606 26607 26608 26609 26610 26611 26612 26613 26614 26615 26616 26617 26618 26619 26620 26621 26622 26623 26624 26625 26626 26627 26628 26629 26630 26631 26632 26633 26634 26635 26636 26637 26638 26639 26640 26641 26642 26643 26644 26645 26646 26647 26648 26649 26650 26651 26652 26653 26654 26655 26656 26657 26658 26659 26660 26661 26662 26663 26664 26665 26666 26667 26668 26669 26670 26671 26672 26673 26674 26675 26676 26677 26678 26679 26680 26681 26682 26683 26684 26685 26686 26687 26688 26689 26690 26691 26692 26693 26694 26695 26696 26697 26698 26699 26700 26701 26702 26703 26704 26705 26706 26707 26708 26709 26710 26711 26712 26713 26714 26715 26716 26717 26718 26719 26720 26721 26722 26723 26724 26725 26726 26727 26728 26729 26730 26731 26732 26733 26734 26735 26736 26737 26738 26739 26740 26741 26742 26743 26744 26745 26746 26747 26748 26749 26750 26751 26752 26753 26754 26755 26756 26757 26758 26759 26760 26761 26762 26763 26764 26765 26766 26767 26768 26769 26770 26771 26772 26773 26774 26775 26776 26777 26778 26779 26780 26781 26782 26783 26784 26785 26786 26787 26788 26789 26790 26791 26792 26793 26794 26795 26796 26797 26798 26799 26800 26801 26802 26803 26804 26805 26806 26807 26808 26809 26810 26811 26812 26813 26814 26815 26816 26817 26818 26819 26820 26821 26822 26823 26824 26825 26826 26827 26828 26829 26830 26831 26832 26833 26834 26835 26836 26837 26838 26839 26840 26841 26842 26843 26844 26845 26846 26847 26848 26849 26850 26851 26852 26853 26854 26855 26856 26857 26858 26859 26860 26861 26862 26863 26864 26865 26866 26867 26868 26869 26870 26871 26872 26873 26874 26875 26876 26877 26878 26879 26880 26881 26882 26883 26884 26885 26886 26887 26888 26889 26890 26891 26892 26893 26894 26895 26896 26897 26898 26899 26900 26901 26902 26903 26904 26905 26906 26907 26908 26909 26910 26911 26912 26913 26914 26915 26916 26917 26918 26919 26920 26921 26922 26923 26924 26925 26926 26927 26928 26929 26930 26931 26932 26933 26934 26935 26936 26937 26938 26939 26940 26941 26942 26943 26944 26945 26946 26947 26948 26949 26950 26951 26952 26953 26954 26955 26956 26957 26958 26959 26960 26961 26962 26963 26964 26965 26966 26967 26968 26969 26970 26971 26972 26973 26974 26975 26976 26977 26978 26979 26980 26981 26982 26983 26984 26985 26986 26987 26988 26989 26990 26991 26992 26993 26994 26995 26996 26997 26998 26999 27000 27001 27002 27003 27004 27005 27006 27007 27008 27009 27010 27011 27012 27013 27014 27015 27016 27017 27018 27019 27020 27021 27022 27023 27024 27025 27026 27027 27028 27029 27030 27031 27032 27033 27034 27035 27036 27037 27038 27039 27040 27041 27042 27043 27044 27045 27046 27047 27048 27049 27050 27051 27052 27053 27054 27055 27056 27057 27058 27059 27060 27061 27062 27063 27064 27065 27066 27067 27068 27069 27070 27071 27072 27073 27074 27075 27076 27077 27078 27079 27080 27081 27082 27083 27084 27085 27086 27087 27088 27089 27090 27091 27092 27093 27094 27095 27096 27097 27098 27099 27100 27101 27102 27103 27104 27105 27106 27107 27108 27109 27110 27111 27112 27113 27114 27115 27116 27117 27118 27119 27120 27121 27122 27123 27124 27125 27126 27127 27128 27129 27130 27131 27132 27133 27134 27135 27136 27137 27138 27139 27140 27141 27142 27143 27144 27145 27146 27147 27148 27149 27150 27151 27152 27153 27154 27155 27156 27157 27158 27159 27160 27161 27162 27163 27164 27165 27166 27167 27168 27169 27170 27171 27172 27173 27174 27175 27176 27177 27178 27179 27180 27181 27182 27183 27184 27185 27186 27187 27188 27189 27190 27191 27192 27193 27194 27195 27196 27197 27198 27199 27200 27201 27202 27203 27204 27205 27206 27207 27208 27209 27210 27211 27212 27213 27214 27215 27216 27217 27218 27219 27220 27221 27222 27223 27224 27225 27226 27227 27228 27229 27230 27231 27232 27233 27234 27235 27236 27237 27238 27239 27240 27241 27242 27243 27244 27245 27246 27247 27248 27249 27250 27251 27252 27253 27254 27255 27256 27257 27258 27259 27260 27261 27262 27263 27264 27265 27266 27267 27268 27269 27270 27271 27272 27273 27274 27275 27276 27277 27278 27279 27280 27281 27282 27283 27284 27285 27286 27287 27288 27289 27290 27291 27292 27293 27294 27295 27296 27297 27298 27299 27300 27301 27302 27303 27304 27305 27306 27307 27308 27309 27310 27311 27312 27313 27314 27315 27316 27317 27318 27319 27320 27321 27322 27323 27324 27325 27326 27327 27328 27329 27330 27331 27332 27333 27334 27335 27336 27337 27338 27339 27340 27341 27342 27343 27344 27345 27346 27347 27348 27349 27350 27351 27352 27353 27354 27355 27356 27357 27358 27359 27360 27361 27362 27363 27364 27365 27366 27367 27368 27369 27370 27371 27372 27373 27374 27375 27376 27377 27378 27379 27380 27381 27382 27383 27384 27385 27386 27387 27388 27389 27390 27391 27392 27393 27394 27395 27396 27397 27398 27399 27400 27401 27402 27403 27404 27405 27406 27407 27408 27409 27410 27411 27412 27413 27414 27415 27416 27417 27418 27419 27420 27421 27422 27423 27424 27425 27426 27427 27428 27429 27430 27431 27432 27433 27434 27435 27436 27437 27438 27439 27440 27441 27442 27443 27444 27445 27446 27447 27448 27449 27450 27451 27452 27453 27454 27455 27456 27457 27458 27459 27460 27461 27462 27463 27464 27465 27466 27467 27468 27469 27470 27471 27472 27473 27474 27475 27476 27477 27478 27479 27480 27481 27482 27483 27484 27485 27486 27487 27488 27489 27490 27491 27492 27493 27494 27495 27496 27497 27498 27499 27500 27501 27502 27503 27504 27505 27506 27507 27508 27509 27510 27511 27512 27513 27514 27515 27516 27517 27518 27519 27520 27521 27522 27523 27524 27525 27526 27527 27528 27529 27530 27531 27532 27533 27534 27535 27536 27537 27538 27539 27540 27541 27542 27543 27544 27545 27546 27547 27548 27549 27550 27551 27552 27553 27554 27555 27556 27557 27558 27559 27560 27561 27562 27563 27564 27565 27566 27567 27568 27569 27570 27571 27572 27573 27574 27575 27576 27577 27578 27579 27580 27581 27582 27583 27584 27585 27586 27587 27588 27589 27590 27591 27592 27593 27594 27595 27596 27597 27598 27599 27600 27601 27602 27603 27604 27605 27606 27607 27608 27609 27610 27611 27612 27613 27614 27615 27616 27617 27618 27619 27620 27621 27622 27623 27624 27625 27626 27627 27628 27629 27630 27631 27632 27633 27634 27635 27636 27637 27638 27639 27640 27641 27642 27643 27644 27645 27646 27647 27648 27649 27650 27651 27652 27653 27654 27655 27656 27657 27658 27659 27660 27661 27662 27663 27664 27665 27666 27667 27668 27669 27670 27671 27672 27673 27674 27675 27676 27677 27678 27679 27680 27681 27682 27683 27684 27685 27686 27687 27688 27689 27690 27691 27692 27693 27694 27695 27696 27697 27698 27699 27700 27701 27702 27703 27704 27705 27706 27707 27708 27709 27710 27711 27712 27713 27714 27715 27716 27717 27718 27719 27720 27721 27722 27723 27724 27725 27726 27727 27728 27729 27730 27731 27732 27733 27734 27735 27736 27737 27738 27739 27740 27741 27742 27743 27744 27745 27746 27747 27748 27749 27750 27751 27752 27753 27754 27755 27756 27757 27758 27759 27760 27761 27762 27763 27764 27765 27766 27767 27768 27769 27770 27771 27772 27773 27774 27775 27776 27777 27778 27779 27780 27781 27782 27783 27784 27785 27786 27787 27788 27789 27790 27791 27792 27793 27794 27795 27796 27797 27798 27799 27800 27801 27802 27803 27804 27805 27806 27807 27808 27809 27810 27811 27812 27813 27814 27815 27816 27817 27818 27819 27820 27821 27822 27823 27824 27825 27826 27827 27828 27829 27830 27831 27832 27833 27834 27835 27836 27837 27838 27839 27840 27841 27842 27843 27844 27845 27846 27847 27848 27849 27850 27851 27852 27853 27854 27855 27856 27857 27858 27859 27860 27861 27862 27863 27864 27865 27866 27867 27868 27869 27870 27871 27872 27873 27874 27875 27876 27877 27878 27879 27880 27881 27882 27883 27884 27885 27886 27887 27888 27889 27890 27891 27892 27893 27894 27895 27896 27897 27898 27899 27900 27901 27902 27903 27904 27905 27906 27907 27908 27909 27910 27911 27912 27913 27914 27915 27916 27917 27918 27919 27920 27921 27922 27923 27924 27925 27926 27927 27928 27929 27930 27931 27932 27933 27934 27935 27936 27937 27938 27939 27940 27941 27942 27943 27944 27945 27946 27947 27948 27949 27950 27951 27952 27953 27954 27955 27956 27957 27958 27959 27960 27961 27962 27963 27964 27965 27966 27967 27968 27969 27970 27971 27972 27973 27974 27975 27976 27977 27978 27979 27980 27981 27982 27983 27984 27985 27986 27987 27988 27989 27990 27991 27992 27993 27994 27995 27996 27997 27998 27999 28000 28001 28002 28003 28004 28005 28006 28007 28008 28009 28010 28011 28012 28013 28014 28015 28016 28017 28018 28019 28020 28021 28022 28023 28024 28025 28026 28027 28028 28029 28030 28031 28032 28033 28034 28035 28036 28037 28038 28039 28040 28041 28042 28043 28044 28045 28046 28047 28048 28049 28050 28051 28052 28053 28054 28055 28056 28057 28058 28059 28060 28061 28062 28063 28064 28065 28066 28067 28068 28069 28070 28071 28072 28073 28074 28075 28076 28077 28078 28079 28080 28081 28082 28083 28084 28085 28086 28087 28088 28089 28090 28091 28092 28093 28094 28095 28096 28097 28098 28099 28100 28101 28102 28103 28104 28105 28106 28107 28108 28109 28110 28111 28112 28113 28114 28115 28116 28117 28118 28119 28120 28121 28122 28123 28124 28125 28126 28127 28128 28129 28130 28131 28132 28133 28134 28135 28136 28137 28138 28139 28140 28141 28142 28143 28144 28145 28146 28147 28148 28149 28150 28151 28152 28153 28154 28155 28156 28157 28158 28159 28160 28161 28162 28163 28164 28165 28166 28167 28168 28169 28170 28171 28172 28173 28174 28175 28176 28177 28178 28179 28180 28181 28182 28183 28184 28185 28186 28187 28188 28189 28190 28191 28192 28193 28194 28195 28196 28197 28198 28199 28200 28201 28202 28203 28204 28205 28206 28207 28208 28209 28210 28211 28212 28213 28214 28215 28216 28217 28218 28219 28220 28221 28222 28223 28224 28225 28226 28227 28228 28229 28230 28231 28232 28233 28234 28235 28236 28237 28238 28239 28240 28241 28242 28243 28244 28245 28246 28247 28248 28249 28250 28251 28252 28253 28254 28255 28256 28257 28258 28259 28260 28261 28262 28263 28264 28265 28266 28267 28268 28269 28270 28271 28272 28273 28274 28275 28276 28277 28278 28279 28280 28281 28282 28283 28284 28285 28286 28287 28288 28289 28290 28291 28292 28293 28294 28295 28296 28297 28298 28299 28300 28301 28302 28303 28304 28305 28306 28307 28308 28309 28310 28311 28312 28313 28314 28315 28316 28317 28318 28319 28320 28321 28322 28323 28324 28325 28326 28327 28328 28329 28330 28331 28332 28333 28334 28335 28336 28337 28338 28339 28340 28341 28342 28343 28344 28345 28346 28347 28348 28349 28350 28351 28352 28353 28354 28355 28356 28357 28358 28359 28360 28361 28362 28363 28364 28365 28366 28367 28368 28369 28370 28371 28372 28373 28374 28375 28376 28377 28378 28379 28380 28381 28382 28383 28384 28385 28386 28387 28388 28389 28390 28391 28392 28393 28394 28395 28396 28397 28398 28399 28400 28401 28402 28403 28404 28405 28406 28407 28408 28409 28410 28411 28412 28413 28414 28415 28416 28417 28418 28419 28420 28421 28422 28423 28424 28425 28426 28427 28428 28429 28430 28431 28432 28433 28434 28435 28436 28437 28438 28439 28440 28441 28442 28443 28444 28445 28446 28447 28448 28449 28450 28451 28452 28453 28454 28455 28456 28457 28458 28459 28460 28461 28462 28463 28464 28465 28466 28467 28468 28469 28470 28471 28472 28473 28474 28475 28476 28477 28478 28479 28480 28481 28482 28483 28484 28485 28486 28487 28488 28489 28490 28491 28492 28493 28494 28495 28496 28497 28498 28499 28500 28501 28502 28503 28504 28505 28506 28507 28508 28509 28510 28511 28512 28513 28514 28515 28516 28517 28518 28519 28520 28521 28522 28523 28524 28525 28526 28527 28528 28529 28530 28531 28532 28533 28534 28535 28536 28537 28538 28539 28540 28541 28542 28543 28544 28545 28546 28547 28548 28549 28550 28551 28552 28553 28554 28555 28556 28557 28558 28559 28560 28561 28562 28563 28564 28565 28566 28567 28568 28569 28570 28571 28572 28573 28574 28575 28576 28577 28578 28579 28580 28581 28582 28583 28584 28585 28586 28587 28588 28589 28590 28591 28592 28593 28594 28595 28596 28597 28598 28599 28600 28601 28602 28603 28604 28605 28606 28607 28608 28609 28610 28611 28612 28613 28614 28615 28616 28617 28618 28619 28620 28621 28622 28623 28624 28625 28626 28627 28628 28629 28630 28631 28632 28633 28634 28635 28636 28637 28638 28639 28640 28641 28642 28643 28644 28645 28646 28647 28648 28649 28650 28651 28652 28653 28654 28655 28656 28657 28658 28659 28660 28661 28662 28663 28664 28665 28666 28667 28668 28669 28670 28671 28672 28673 28674 28675 28676 28677 28678 28679 28680 28681 28682 28683 28684 28685 28686 28687 28688 28689 28690 28691 28692 28693 28694 28695 28696 28697 28698 28699 28700 28701 28702 28703 28704 28705 28706 28707 28708 28709 28710 28711 28712 28713 28714 28715 28716 28717 28718 28719 28720 28721 28722 28723 28724 28725 28726 28727 28728 28729 28730 28731 28732 28733 28734 28735 28736 28737 28738 28739 28740 28741 28742 28743 28744 28745 28746 28747 28748 28749 28750 28751 28752 28753 28754 28755 28756 28757 28758 28759 28760 28761 28762 28763 28764 28765 28766 28767 28768 28769 28770 28771 28772 28773 28774 28775 28776 28777 28778 28779 28780 28781 28782 28783 28784 28785 28786 28787 28788 28789 28790 28791 28792 28793 28794 28795 28796 28797 28798 28799 28800 28801 28802 28803 28804 28805 28806 28807 28808 28809 28810 28811 28812 28813 28814 28815 28816 28817 28818 28819 28820 28821 28822 28823 28824 28825 28826 28827 28828 28829 28830 28831 28832 28833 28834 28835 28836 28837 28838 28839 28840 28841 28842 28843 28844 28845 28846 28847 28848 28849 28850 28851 28852 28853 28854 28855 28856 28857 28858 28859 28860 28861 28862 28863 28864 28865 28866 28867 28868 28869 28870 28871 28872 28873 28874 28875 28876 28877 28878 28879 28880 28881 28882 28883 28884 28885 28886 28887 28888 28889 28890 28891 28892 28893 28894 28895 28896 28897 28898 28899 28900 28901 28902 28903 28904 28905 28906 28907 28908 28909 28910 28911 28912 28913 28914 28915 28916 28917 28918 28919 28920 28921 28922 28923 28924 28925 28926 28927 28928 28929 28930 28931 28932 28933 28934 28935 28936 28937 28938 28939 28940 28941 28942 28943 28944 28945 28946 28947 28948 28949 28950 28951 28952 28953 28954 28955 28956 28957 28958 28959 28960 28961 28962 28963 28964 28965 28966 28967 28968 28969 28970 28971 28972 28973 28974 28975 28976 28977 28978 28979 28980 28981 28982 28983 28984 28985 28986 28987 28988 28989 28990 28991 28992 28993 28994 28995 28996 28997 28998 28999 29000 29001 29002 29003 29004 29005 29006 29007 29008 29009 29010 29011 29012 29013 29014 29015 29016 29017 29018 29019 29020 29021 29022 29023 29024 29025 29026 29027 29028 29029 29030 29031 29032 29033 29034 29035 29036 29037 29038 29039 29040 29041 29042 29043 29044 29045 29046 29047 29048 29049 29050 29051 29052 29053 29054 29055 29056 29057 29058 29059 29060 29061 29062 29063 29064 29065 29066 29067 29068 29069 29070 29071 29072 29073 29074 29075 29076 29077 29078 29079 29080 29081 29082 29083 29084 29085 29086 29087 29088 29089 29090 29091 29092 29093 29094 29095 29096 29097 29098 29099 29100 29101 29102 29103 29104 29105 29106 29107 29108 29109 29110 29111 29112 29113 29114 29115 29116 29117 29118 29119 29120 29121 29122 29123 29124 29125 29126 29127 29128 29129 29130 29131 29132 29133 29134 29135 29136 29137 29138 29139 29140 29141 29142 29143 29144 29145 29146 29147 29148 29149 29150 29151 29152 29153 29154 29155 29156 29157 29158 29159 29160 29161 29162 29163 29164 29165 29166 29167 29168 29169 29170 29171 29172 29173 29174 29175 29176 29177 29178 29179 29180 29181 29182 29183 29184 29185 29186 29187 29188 29189 29190 29191 29192 29193 29194 29195 29196 29197 29198 29199 29200 29201 29202 29203 29204 29205 29206 29207 29208 29209 29210 29211 29212 29213 29214 29215 29216 29217 29218 29219 29220 29221 29222 29223 29224 29225 29226 29227 29228 29229 29230 29231 29232 29233 29234 29235 29236 29237 29238 29239 29240 29241 29242 29243 29244 29245 29246 29247 29248 29249 29250 29251 29252 29253 29254 29255 29256 29257 29258 29259 29260 29261 29262 29263 29264 29265 29266 29267 29268 29269 29270 29271 29272 29273 29274 29275 29276 29277 29278 29279 29280 29281 29282 29283 29284 29285 29286 29287 29288 29289 29290 29291 29292 29293 29294 29295 29296 29297 29298 29299 29300 29301 29302 29303 29304 29305 29306 29307 29308 29309 29310 29311 29312 29313 29314 29315 29316 29317 29318 29319 29320 29321 29322 29323 29324 29325 29326 29327 29328 29329 29330 29331 29332 29333 29334 29335 29336 29337 29338 29339 29340 29341 29342 29343 29344 29345 29346 29347 29348 29349 29350 29351 29352 29353 29354 29355 29356 29357 29358 29359 29360 29361 29362 29363 29364 29365 29366 29367 29368 29369 29370 29371 29372 29373 29374 29375 29376 29377 29378 29379 29380 29381 29382 29383 29384 29385 29386 29387 29388 29389 29390 29391 29392 29393 29394 29395 29396 29397 29398 29399 29400 29401 29402 29403 29404 29405 29406 29407 29408 29409 29410 29411 29412 29413 29414 29415 29416 29417 29418 29419 29420 29421 29422 29423 29424 29425 29426 29427 29428 29429 29430 29431 29432 29433 29434 29435 29436 29437 29438 29439 29440 29441 29442 29443 29444 29445 29446 29447 29448 29449 29450 29451 29452 29453 29454 29455 29456 29457 29458 29459 29460 29461 29462 29463 29464 29465 29466 29467 29468 29469 29470 29471 29472 29473 29474 29475 29476 29477 29478 29479 29480 29481 29482 29483 29484 29485 29486 29487 29488 29489 29490 29491 29492 29493 29494 29495 29496 29497 29498 29499 29500 29501 29502 29503 29504 29505 29506 29507 29508 29509 29510 29511 29512 29513 29514 29515 29516 29517 29518 29519 29520 29521 29522 29523 29524 29525 29526 29527 29528 29529 29530 29531 29532 29533 29534 29535 29536 29537 29538 29539 29540 29541 29542 29543 29544 29545 29546 29547 29548 29549 29550 29551 29552 29553 29554 29555 29556 29557 29558 29559 29560 29561 29562 29563 29564 29565 29566 29567 29568 29569 29570 29571 29572 29573 29574 29575 29576 29577 29578 29579 29580 29581 29582 29583 29584 29585 29586 29587 29588 29589 29590 29591 29592 29593 29594 29595 29596 29597 29598 29599 29600 29601 29602 29603 29604 29605 29606 29607 29608 29609 29610 29611 29612 29613 29614 29615 29616 29617 29618 29619 29620 29621 29622 29623 29624 29625 29626 29627 29628 29629 29630 29631 29632 29633 29634 29635 29636 29637 29638 29639 29640 29641 29642 29643 29644 29645 29646 29647 29648 29649 29650 29651 29652 29653 29654 29655 29656 29657 29658 29659 29660 29661 29662 29663 29664 29665 29666 29667 29668 29669 29670 29671 29672 29673 29674 29675 29676 29677 29678 29679 29680 29681 29682 29683 29684 29685 29686 29687 29688 29689 29690 29691 29692 29693 29694 29695 29696 29697 29698 29699 29700 29701 29702 29703 29704 29705 29706 29707 29708 29709 29710 29711 29712 29713 29714 29715 29716 29717 29718 29719 29720 29721 29722 29723 29724 29725 29726 29727 29728 29729 29730 29731 29732 29733 29734 29735 29736 29737 29738 29739 29740 29741 29742 29743 29744 29745 29746 29747 29748 29749 29750 29751 29752 29753 29754 29755 29756 29757 29758 29759 29760 29761 29762 29763 29764 29765 29766 29767 29768 29769 29770 29771 29772 29773 29774 29775 29776 29777 29778 29779 29780 29781 29782 29783 29784 29785 29786 29787 29788 29789 29790 29791 29792 29793 29794 29795 29796 29797 29798 29799 29800 29801 29802 29803 29804 29805 29806 29807 29808 29809 29810 29811 29812 29813 29814 29815 29816 29817 29818 29819 29820 29821 29822 29823 29824 29825 29826 29827 29828 29829 29830 29831 29832 29833 29834 29835 29836 29837 29838 29839 29840 29841 29842 29843 29844 29845 29846 29847 29848 29849 29850 29851 29852 29853 29854 29855 29856 29857 29858 29859 29860 29861 29862 29863 29864 29865 29866 29867 29868 29869 29870 29871 29872 29873 29874 29875 29876 29877 29878 29879 29880 29881 29882 29883 29884 29885 29886 29887 29888 29889 29890 29891 29892 29893 29894 29895 29896 29897 29898 29899 29900 29901 29902 29903 29904 29905 29906 29907 29908 29909 29910 29911 29912 29913 29914 29915 29916 29917 29918 29919 29920 29921 29922 29923 29924 29925 29926 29927 29928 29929 29930 29931 29932 29933 29934 29935 29936 29937 29938 29939 29940 29941 29942 29943 29944 29945 29946 29947 29948 29949 29950 29951 29952 29953 29954 29955 29956 29957 29958 29959 29960 29961 29962 29963 29964 29965 29966 29967 29968 29969 29970 29971 29972 29973 29974 29975 29976 29977 29978 29979 29980 29981 29982 29983 29984 29985 29986 29987 29988 29989 29990 29991 29992 29993 29994 29995 29996 29997 29998 29999 30000 30001 30002 30003 30004 30005 30006 30007 30008 30009 30010 30011 30012 30013 30014 30015 30016 30017 30018 30019 30020 30021 30022 30023 30024 30025 30026 30027 30028 30029 30030 30031 30032 30033 30034 30035 30036 30037 30038 30039 30040 30041 30042 30043 30044 30045 30046 30047 30048 30049 30050 30051 30052 30053 30054 30055 30056 30057 30058 30059 30060 30061 30062 30063 30064 30065 30066 30067 30068 30069 30070 30071 30072 30073 30074 30075 30076 30077 30078 30079 30080 30081 30082 30083 30084 30085 30086 30087 30088 30089 30090 30091 30092 30093 30094 30095 30096 30097 30098 30099 30100 30101 30102 30103 30104 30105 30106 30107 30108 30109 30110 30111 30112 30113 30114 30115 30116 30117 30118 30119 30120 30121 30122 30123 30124 30125 30126 30127 30128 30129 30130 30131 30132 30133 30134 30135 30136 30137 30138 30139 30140 30141 30142 30143 30144 30145 30146 30147 30148 30149 30150 30151 30152 30153 30154 30155 30156 30157 30158 30159 30160 30161 30162 30163 30164 30165 30166 30167 30168 30169 30170 30171 30172 30173 30174 30175 30176 30177 30178 30179 30180 30181 30182 30183 30184 30185 30186 30187 30188 30189 30190 30191 30192 30193 30194 30195 30196 30197 30198 30199 30200 30201 30202 30203 30204 30205 30206 30207 30208 30209 30210 30211 30212 30213 30214 30215 30216 30217 30218 30219 30220 30221 30222 30223 30224 30225 30226 30227 30228 30229 30230 30231 30232 30233 30234 30235 30236 30237 30238 30239 30240 30241 30242 30243 30244 30245 30246 30247 30248 30249 30250 30251 30252 30253 30254 30255 30256 30257 30258 30259 30260 30261 30262 30263 30264 30265 30266 30267 30268 30269 30270 30271 30272 30273 30274 30275 30276 30277 30278 30279 30280 30281 30282 30283 30284 30285 30286 30287 30288 30289 30290 30291 30292 30293 30294 30295 30296 30297 30298 30299 30300 30301 30302 30303 30304 30305 30306 30307 30308 30309 30310 30311 30312 30313 30314 30315 30316 30317 30318 30319 30320 30321 30322 30323 30324 30325 30326 30327 30328 30329 30330 30331 30332 30333 30334 30335 30336 30337 30338 30339 30340 30341 30342 30343 30344 30345 30346 30347 30348 30349 30350 30351 30352 30353 30354 30355 30356 30357 30358 30359 30360 30361 30362 30363 30364 30365 30366 30367 30368 30369 30370 30371 30372 30373 30374 30375 30376 30377 30378 30379 30380 30381 30382 30383 30384 30385 30386 30387 30388 30389 30390 30391 30392 30393 30394 30395 30396 30397 30398 30399 30400 30401 30402 30403 30404 30405 30406 30407 30408 30409 30410 30411 30412 30413 30414 30415 30416 30417 30418 30419 30420 30421 30422 30423 30424 30425 30426 30427 30428 30429 30430 30431 30432 30433 30434 30435 30436 30437 30438 30439 30440 30441 30442 30443 30444 30445 30446 30447 30448 30449 30450 30451 30452 30453 30454 30455 30456 30457 30458 30459 30460 30461 30462 30463 30464 30465 30466 30467 30468 30469 30470 30471 30472 30473 30474 30475 30476 30477 30478 30479 30480 30481 30482 30483 30484 30485 30486 30487 30488 30489 30490 30491 30492 30493 30494 30495 30496 30497 30498 30499 30500 30501 30502 30503 30504 30505 30506 30507 30508 30509 30510 30511 30512 30513 30514 30515 30516 30517 30518 30519 30520 30521 30522 30523 30524 30525 30526 30527 30528 30529 30530 30531 30532 30533 30534 30535 30536 30537 30538 30539 30540 30541 30542 30543 30544 30545 30546 30547 30548 30549 30550 30551 30552 30553 30554 30555 30556 30557 30558 30559 30560 30561 30562 30563 30564 30565 30566 30567 30568 30569 30570 30571 30572 30573 30574 30575 30576 30577 30578 30579 30580 30581 30582 30583 30584 30585 30586 30587 30588 30589 30590 30591 30592 30593 30594 30595 30596 30597 30598 30599 30600 30601 30602 30603 30604 30605 30606 30607 30608 30609 30610 30611 30612 30613 30614 30615 30616 30617 30618 30619 30620 30621 30622 30623 30624 30625 30626 30627 30628 30629 30630 30631 30632 30633 30634 30635 30636 30637 30638 30639 30640 30641 30642 30643 30644 30645 30646 30647 30648 30649 30650 30651 30652 30653 30654 30655 30656 30657 30658 30659 30660 30661 30662 30663 30664 30665 30666 30667 30668 30669 30670 30671 30672 30673 30674 30675 30676 30677 30678 30679 30680 30681 30682 30683 30684 30685 30686 30687 30688 30689 30690 30691 30692 30693 30694 30695 30696 30697 30698 30699 30700 30701 30702 30703 30704 30705 30706 30707 30708 30709 30710 30711 30712 30713 30714 30715 30716 30717 30718 30719 30720 30721 30722 30723 30724 30725 30726 30727 30728 30729 30730 30731 30732 30733 30734 30735 30736 30737 30738 30739 30740 30741 30742 30743 30744 30745 30746 30747 30748 30749 30750 30751 30752 30753 30754 30755 30756 30757 30758 30759 30760 30761 30762 30763 30764 30765 30766 30767 30768 30769 30770 30771 30772 30773 30774 30775 30776 30777 30778 30779 30780 30781 30782 30783 30784 30785 30786 30787 30788 30789 30790 30791 30792 30793 30794 30795 30796 30797 30798 30799 30800 30801 30802 30803 30804 30805 30806 30807 30808 30809 30810 30811 30812 30813 30814 30815 30816 30817 30818 30819 30820 30821 30822 30823 30824 30825 30826 30827 30828 30829 30830 30831 30832 30833 30834 30835 30836 30837 30838 30839 30840 30841 30842 30843 30844 30845 30846 30847 30848 30849 30850 30851 30852 30853 30854 30855 30856 30857 30858 30859 30860 30861 30862 30863 30864 30865 30866 30867 30868 30869 30870 30871 30872 30873 30874 30875 30876 30877 30878 30879 30880 30881 30882 30883 30884 30885 30886 30887 30888 30889 30890 30891 30892 30893 30894 30895 30896 30897 30898 30899 30900 30901 30902 30903 30904 30905 30906 30907 30908 30909 30910 30911 30912 30913 30914 30915 30916 30917 30918 30919 30920 30921 30922 30923 30924 30925 30926 30927 30928 30929 30930 30931 30932 30933 30934 30935 30936 30937 30938 30939 30940 30941 30942 30943 30944 30945 30946 30947 30948 30949 30950 30951 30952 30953 30954 30955 30956 30957 30958 30959 30960 30961 30962 30963 30964 30965 30966 30967 30968 30969 30970 30971 30972 30973 30974 30975 30976 30977 30978 30979 30980 30981 30982 30983 30984 30985 30986 30987 30988 30989 30990 30991 30992 30993 30994 30995 30996 30997 30998 30999 31000 31001 31002 31003 31004 31005 31006 31007 31008 31009 31010 31011 31012 31013 31014 31015 31016 31017 31018 31019 31020 31021 31022 31023 31024 31025 31026 31027 31028 31029 31030 31031 31032 31033 31034 31035 31036 31037 31038 31039 31040 31041 31042 31043 31044 31045 31046 31047 31048 31049 31050 31051 31052 31053 31054 31055 31056 31057 31058 31059 31060 31061 31062 31063 31064 31065 31066 31067 31068 31069 31070 31071 31072 31073 31074 31075 31076 31077 31078 31079 31080 31081 31082 31083 31084 31085 31086 31087 31088 31089 31090 31091 31092 31093 31094 31095 31096 31097 31098 31099 31100 31101 31102 31103 31104 31105 31106 31107 31108 31109 31110 31111 31112 31113 31114 31115 31116 31117 31118 31119 31120 31121 31122 31123 31124 31125 31126 31127 31128 31129 31130 31131 31132 31133 31134 31135 31136 31137 31138 31139 31140 31141 31142 31143 31144 31145 31146 31147 31148 31149 31150 31151 31152 31153 31154 31155 31156 31157 31158 31159 31160 31161 31162 31163 31164 31165 31166 31167 31168 31169 31170 31171 31172 31173 31174 31175 31176 31177 31178 31179 31180 31181 31182 31183 31184 31185 31186 31187 31188 31189 31190 31191 31192 31193 31194 31195 31196 31197 31198 31199 31200 31201 31202 31203 31204 31205 31206 31207 31208 31209 31210 31211 31212 31213 31214 31215 31216 31217 31218 31219 31220 31221 31222 31223 31224 31225 31226 31227 31228 31229 31230 31231 31232 31233 31234 31235 31236 31237 31238 31239 31240 31241 31242 31243 31244 31245 31246 31247 31248 31249 31250 31251 31252 31253 31254 31255 31256 31257 31258 31259 31260 31261 31262 31263 31264 31265 31266 31267 31268 31269 31270 31271 31272 31273 31274 31275 31276 31277 31278 31279 31280 31281 31282 31283 31284 31285 31286 31287 31288 31289 31290 31291 31292 31293 31294 31295 31296 31297 31298 31299 31300 31301 31302 31303 31304 31305 31306 31307 31308 31309 31310 31311 31312 31313 31314 31315 31316 31317 31318 31319 31320 31321 31322 31323 31324 31325 31326 31327 31328 31329 31330 31331 31332 31333 31334 31335 31336 31337 31338 31339 31340 31341 31342 31343 31344 31345 31346 31347 31348 31349 31350 31351 31352 31353 31354 31355 31356 31357 31358 31359 31360 31361 31362 31363 31364 31365 31366 31367 31368 31369 31370 31371 31372 31373 31374 31375 31376 31377 31378 31379 31380 31381 31382 31383 31384 31385 31386 31387 31388 31389 31390 31391 31392 31393 31394 31395 31396 31397 31398 31399 31400 31401 31402 31403 31404 31405 31406 31407 31408 31409 31410 31411 31412 31413 31414 31415 31416 31417 31418 31419 31420 31421 31422 31423 31424 31425 31426 31427 31428 31429 31430 31431 31432 31433 31434 31435 31436 31437 31438 31439 31440 31441 31442 31443 31444 31445 31446 31447 31448 31449 31450 31451 31452 31453 31454 31455 31456 31457 31458 31459 31460 31461 31462 31463 31464 31465 31466 31467 31468 31469 31470 31471 31472 31473 31474 31475 31476 31477 31478 31479 31480 31481 31482 31483 31484 31485 31486 31487 31488 31489 31490 31491 31492 31493 31494 31495 31496 31497 31498 31499 31500 31501 31502 31503 31504 31505 31506 31507 31508 31509 31510 31511 31512 31513 31514 31515 31516 31517 31518 31519 31520 31521 31522 31523 31524 31525 31526 31527 31528 31529 31530 31531 31532 31533 31534 31535 31536 31537 31538 31539 31540 31541 31542 31543 31544 31545 31546 31547 31548 31549 31550 31551 31552 31553 31554 31555 31556 31557 31558 31559 31560 31561 31562 31563 31564 31565 31566 31567 31568 31569 31570 31571 31572 31573 31574 31575 31576 31577 31578 31579 31580 31581 31582 31583 31584 31585 31586 31587 31588 31589 31590 31591 31592 31593 31594 31595 31596 31597 31598 31599 31600 31601 31602 31603 31604 31605 31606 31607 31608 31609 31610 31611 31612 31613 31614 31615 31616 31617 31618 31619 31620 31621 31622 31623 31624 31625 31626 31627 31628 31629 31630 31631 31632 31633 31634 31635 31636 31637 31638 31639 31640 31641 31642 31643 31644 31645 31646 31647 31648 31649 31650 31651 31652 31653 31654 31655 31656 31657 31658 31659 31660 31661 31662 31663 31664 31665 31666 31667 31668 31669 31670 31671 31672 31673 31674 31675 31676 31677 31678 31679 31680 31681 31682 31683 31684 31685 31686 31687 31688 31689 31690 31691 31692 31693 31694 31695 31696 31697 31698 31699 31700 31701 31702 31703 31704 31705 31706 31707 31708 31709 31710 31711 31712 31713 31714 31715 31716 31717 31718 31719 31720 31721 31722 31723 31724 31725 31726 31727 31728 31729 31730 31731 31732 31733 31734 31735 31736 31737 31738 31739 31740 31741 31742 31743 31744 31745 31746 31747 31748 31749 31750 31751 31752 31753 31754 31755 31756 31757 31758 31759 31760 31761 31762 31763 31764 31765 31766 31767 31768 31769 31770 31771 31772 31773 31774 31775 31776 31777 31778 31779 31780 31781 31782 31783 31784 31785 31786 31787 31788 31789 31790 31791 31792 31793 31794 31795 31796 31797 31798 31799 31800 31801 31802 31803 31804 31805 31806 31807 31808 31809 31810 31811 31812 31813 31814 31815 31816 31817 31818 31819 31820 31821 31822 31823 31824 31825 31826 31827 31828 31829 31830 31831 31832 31833 31834 31835 31836 31837 31838 31839 31840 31841 31842 31843 31844 31845 31846 31847 31848 31849 31850 31851 31852 31853 31854 31855 31856 31857 31858 31859 31860 31861 31862 31863 31864 31865 31866 31867 31868 31869 31870 31871 31872 31873 31874 31875 31876 31877 31878 31879 31880 31881 31882 31883 31884 31885 31886 31887 31888 31889 31890 31891 31892 31893 31894 31895 31896 31897 31898 31899 31900 31901 31902 31903 31904 31905 31906 31907 31908 31909 31910 31911 31912 31913 31914 31915 31916 31917 31918 31919 31920 31921 31922 31923 31924 31925 31926 31927 31928 31929 31930 31931 31932 31933 31934 31935 31936 31937 31938 31939 31940 31941 31942 31943 31944 31945 31946 31947 31948 31949 31950 31951 31952 31953 31954 31955 31956 31957 31958 31959 31960 31961 31962 31963 31964 31965 31966 31967 31968 31969 31970 31971 31972 31973 31974 31975 31976 31977 31978 31979 31980 31981 31982 31983 31984 31985 31986 31987 31988 31989 31990 31991 31992 31993 31994 31995 31996 31997 31998 31999 32000 32001 32002 32003 32004 32005 32006 32007 32008 32009 32010 32011 32012 32013 32014 32015 32016 32017 32018 32019 32020 32021 32022 32023 32024 32025 32026 32027 32028 32029 32030 32031 32032 32033 32034 32035 32036 32037 32038 32039 32040 32041 32042 32043 32044 32045 32046 32047 32048 32049 32050 32051 32052 32053 32054 32055 32056 32057 32058 32059 32060 32061 32062 32063 32064 32065 32066 32067 32068 32069 32070 32071 32072 32073 32074 32075 32076 32077 32078 32079 32080 32081 32082 32083 32084 32085 32086 32087 32088 32089 32090 32091 32092 32093 32094 32095 32096 32097 32098 32099 32100 32101 32102 32103 32104 32105 32106 32107 32108 32109 32110 32111 32112 32113 32114 32115 32116 32117 32118 32119 32120 32121 32122 32123 32124 32125 32126 32127 32128 32129 32130 32131 32132 32133 32134 32135 32136 32137 32138 32139 32140 32141 32142 32143 32144 32145 32146 32147 32148 32149 32150 32151 32152 32153 32154 32155 32156 32157 32158 32159 32160 32161 32162 32163 32164 32165 32166 32167 32168 32169 32170 32171 32172 32173 32174 32175 32176 32177 32178 32179 32180 32181 32182 32183 32184 32185 32186 32187 32188 32189 32190 32191 32192 32193 32194 32195 32196 32197 32198 32199 32200 32201 32202 32203 32204 32205 32206 32207 32208 32209 32210 32211 32212 32213 32214 32215 32216 32217 32218 32219 32220 32221 32222 32223 32224 32225 32226 32227 32228 32229 32230 32231 32232 32233 32234 32235 32236 32237 32238 32239 32240 32241 32242 32243 32244 32245 32246 32247 32248 32249 32250 32251 32252 32253 32254 32255 32256 32257 32258 32259 32260 32261 32262 32263 32264 32265 32266 32267 32268 32269 32270 32271 32272 32273 32274 32275 32276 32277 32278 32279 32280 32281 32282 32283 32284 32285 32286 32287 32288 32289 32290 32291 32292 32293 32294 32295 32296 32297 32298 32299 32300 32301 32302 32303 32304 32305 32306 32307 32308 32309 32310 32311 32312 32313 32314 32315 32316 32317 32318 32319 32320 32321 32322 32323 32324 32325 32326 32327 32328 32329 32330 32331 32332 32333 32334 32335 32336 32337 32338 32339 32340 32341 32342 32343 32344 32345 32346 32347 32348 32349 32350 32351 32352 32353 32354 32355 32356 32357 32358 32359 32360 32361 32362 32363 32364 32365 32366 32367 32368 32369 32370 32371 32372 32373 32374 32375 32376 32377 32378 32379 32380 32381 32382 32383 32384 32385 32386 32387 32388 32389 32390 32391 32392 32393 32394 32395 32396 32397 32398 32399 32400 32401 32402 32403 32404 32405 32406 32407 32408 32409 32410 32411 32412 32413 32414 32415 32416 32417 32418 32419 32420 32421 32422 32423 32424 32425 32426 32427 32428 32429 32430 32431 32432 32433 32434 32435 32436 32437 32438 32439 32440 32441 32442 32443 32444 32445 32446 32447 32448 32449 32450 32451 32452 32453 32454 32455 32456 32457 32458 32459 32460 32461 32462 32463 32464 32465 32466 32467 32468 32469 32470 32471 32472 32473 32474 32475 32476 32477 32478 32479 32480 32481 32482 32483 32484 32485 32486 32487 32488 32489 32490 32491 32492 32493 32494 32495 32496 32497 32498 32499 32500 32501 32502 32503 32504 32505 32506 32507 32508 32509 32510 32511 32512 32513 32514 32515 32516 32517 32518 32519 32520 32521 32522 32523 32524 32525 32526 32527 32528 32529 32530 32531 32532 32533 32534 32535 32536 32537 32538 32539 32540 32541 32542 32543 32544 32545 32546 32547 32548 32549 32550 32551 32552 32553 32554 32555 32556 32557 32558 32559 32560 32561 32562 32563 32564 32565 32566 32567 32568 32569 32570 32571 32572 32573 32574 32575 32576 32577 32578 32579 32580 32581 32582 32583 32584 32585 32586 32587 32588 32589 32590 32591 32592 32593 32594 32595 32596 32597 32598 32599 32600 32601 32602 32603 32604 32605 32606 32607 32608 32609 32610 32611 32612 32613 32614 32615 32616 32617 32618 32619 32620 32621 32622 32623 32624 32625 32626 32627 32628 32629 32630 32631 32632 32633 32634 32635 32636 32637 32638 32639 32640 32641 32642 32643 32644 32645 32646 32647 32648 32649 32650 32651 32652 32653 32654 32655 32656 32657 32658 32659 32660 32661 32662 32663 32664 32665 32666 32667 32668 32669 32670 32671 32672 32673 32674 32675 32676 32677 32678 32679 32680 32681 32682 32683 32684 32685 32686 32687 32688 32689 32690 32691 32692 32693 32694 32695 32696 32697 32698 32699 32700 32701 32702 32703 32704 32705 32706 32707 32708 32709 32710 32711 32712 32713 32714 32715 32716 32717 32718 32719 32720 32721 32722 32723 32724 32725 32726 32727 32728 32729 32730 32731 32732 32733 32734 32735 32736 32737 32738 32739 32740 32741 32742 32743 32744 32745 32746 32747 32748 32749 32750 32751 32752 32753 32754 32755 32756 32757 32758 32759 32760 32761 32762 32763 32764 32765 32766 32767 32768 32769 32770 32771 32772 32773 32774 32775 32776 32777 32778 32779 32780 32781 32782 32783 32784 32785 32786 32787 32788 32789 32790 32791 32792 32793 32794 32795 32796 32797 32798 32799 32800 32801 32802 32803 32804 32805 32806 32807 32808 32809 32810 32811 32812 32813 32814 32815 32816 32817 32818 32819 32820 32821 32822 32823 32824 32825 32826 32827 32828 32829 32830 32831 32832 32833 32834 32835 32836 32837 32838 32839 32840 32841 32842 32843 32844 32845 32846 32847 32848 32849 32850 32851 32852 32853 32854 32855 32856 32857 32858 32859 32860 32861 32862 32863 32864 32865 32866 32867 32868 32869 32870 32871 32872 32873 32874 32875 32876 32877 32878 32879 32880 32881 32882 32883 32884 32885 32886 32887 32888 32889 32890 32891 32892 32893 32894 32895 32896 32897 32898 32899 32900 32901 32902 32903 32904 32905 32906 32907 32908 32909 32910 32911 32912 32913 32914 32915 32916 32917 32918 32919 32920 32921 32922 32923 32924 32925 32926 32927 32928 32929 32930 32931 32932 32933 32934 32935 32936 32937 32938 32939 32940 32941 32942 32943 32944 32945 32946 32947 32948 32949 32950 32951 32952 32953 32954 32955 32956 32957 32958 32959 32960 32961 32962 32963 32964 32965 32966 32967 32968 32969 32970 32971 32972 32973 32974 32975 32976 32977 32978 32979 32980 32981 32982 32983 32984 32985 32986 32987 32988 32989 32990 32991 32992 32993 32994 32995 32996 32997 32998 32999 33000 33001 33002 33003 33004 33005 33006 33007 33008 33009 33010 33011 33012 33013 33014 33015 33016 33017 33018 33019 33020 33021 33022 33023 33024 33025 33026 33027 33028 33029 33030 33031 33032 33033 33034 33035 33036 33037 33038 33039 33040 33041 33042 33043 33044 33045 33046 33047 33048 33049 33050 33051 33052 33053 33054 33055 33056 33057 33058 33059 33060 33061 33062 33063 33064 33065 33066 33067 33068 33069 33070 33071 33072 33073 33074 33075 33076 33077 33078 33079 33080 33081 33082 33083 33084 33085 33086 33087 33088 33089 33090 33091 33092 33093 33094 33095 33096 33097 33098 33099 33100 33101 33102 33103 33104 33105 33106 33107 33108 33109 33110 33111 33112 33113 33114 33115 33116 33117 33118 33119 33120 33121 33122 33123 33124 33125 33126 33127 33128 33129 33130 33131 33132 33133 33134 33135 33136 33137 33138 33139 33140 33141 33142 33143 33144 33145 33146 33147 33148 33149 33150 33151 33152 33153 33154 33155 33156 33157 33158 33159 33160 33161 33162 33163 33164 33165 33166 33167 33168 33169 33170 33171 33172 33173 33174 33175 33176 33177 33178 33179 33180 33181 33182 33183 33184 33185 33186 33187 33188 33189 33190 33191 33192 33193 33194 33195 33196 33197 33198 33199 33200 33201 33202 33203 33204 33205 33206 33207 33208 33209 33210 33211 33212 33213 33214 33215 33216 33217 33218 33219 33220 33221 33222 33223 33224 33225 33226 33227 33228 33229 33230 33231 33232 33233 33234 33235 33236 33237 33238 33239 33240 33241 33242 33243 33244 33245 33246 33247 33248 33249 33250 33251 33252 33253 33254 33255 33256 33257 33258 33259 33260 33261 33262 33263 33264 33265 33266 33267 33268 33269 33270 33271 33272 33273 33274 33275 33276 33277 33278 33279 33280 33281 33282 33283 33284 33285 33286 33287 33288 33289 33290 33291 33292 33293 33294 33295 33296 33297 33298 33299 33300 33301 33302 33303 33304 33305 33306 33307 33308 33309 33310 33311 33312 33313 33314 33315 33316 33317 33318 33319 33320 33321 33322 33323 33324 33325 33326 33327 33328 33329 33330 33331 33332 33333 33334 33335 33336 33337 33338 33339 33340 33341 33342 33343 33344 33345 33346 33347 33348 33349 33350 33351 33352 33353 33354 33355 33356 33357 33358 33359 33360 33361 33362 33363 33364 33365 33366 33367 33368 33369 33370 33371 33372 33373 33374 33375 33376 33377 33378 33379 33380 33381 33382 33383 33384 33385 33386 33387 33388 33389 33390 33391 33392 33393 33394 33395 33396 33397 33398 33399 33400 33401 33402 33403 33404 33405 33406 33407 33408 33409 33410 33411 33412 33413 33414 33415 33416 33417 33418 33419 33420 33421 33422 33423 33424 33425 33426 33427 33428 33429 33430 33431 33432 33433 33434 33435 33436 33437 33438 33439 33440 33441 33442 33443 33444 33445 33446 33447 33448 33449 33450 33451 33452 33453 33454 33455 33456 33457 33458 33459 33460 33461 33462 33463 33464 33465 33466 33467 33468 33469 33470 33471 33472 33473 33474 33475 33476 33477 33478 33479 33480 33481 33482 33483 33484 33485 33486 33487 33488 33489 33490 33491 33492 33493 33494 33495 33496 33497 33498 33499 33500 33501 33502 33503 33504 33505 33506 33507 33508 33509 33510 33511 33512 33513 33514 33515 33516 33517 33518 33519 33520 33521 33522 33523 33524 33525 33526 33527 33528 33529 33530 33531 33532 33533 33534 33535 33536 33537 33538 33539 33540 33541 33542 33543 33544 33545 33546 33547 33548 33549 33550 33551 33552 33553 33554 33555 33556 33557 33558 33559 33560 33561 33562 33563 33564 33565 33566 33567 33568 33569 33570 33571 33572 33573 33574 33575 33576 33577 33578 33579 33580 33581 33582 33583 33584 33585 33586 33587 33588 33589 33590 33591 33592 33593 33594 33595 33596 33597 33598 33599 33600 33601 33602 33603 33604 33605 33606 33607 33608 33609 33610 33611 33612 33613 33614 33615 33616 33617 33618 33619 33620 33621 33622 33623 33624 33625 33626 33627 33628 33629 33630 33631 33632 33633 33634 33635 33636 33637 33638 33639 33640 33641 33642 33643 33644 33645 33646 33647 33648 33649 33650 33651 33652 33653 33654 33655 33656 33657 33658 33659 33660 33661 33662 33663 33664 33665 33666 33667 33668 33669 33670 33671 33672 33673 33674 33675 33676 33677 33678 33679 33680 33681 33682 33683 33684 33685 33686 33687 33688 33689 33690 33691 33692 33693 33694 33695 33696 33697 33698 33699 33700 33701 33702 33703 33704 33705 33706 33707 33708 33709 33710 33711 33712 33713 33714 33715 33716 33717 33718 33719 33720 33721 33722 33723 33724 33725 33726 33727 33728 33729 33730 33731 33732 33733 33734 33735 33736 33737 33738 33739 33740 33741 33742 33743 33744 33745 33746 33747 33748 33749 33750 33751 33752 33753 33754 33755 33756 33757 33758 33759 33760 33761 33762 33763 33764 33765 33766 33767 33768 33769 33770 33771 33772 33773 33774 33775 33776 33777 33778 33779 33780 33781 33782 33783 33784 33785 33786 33787 33788 33789 33790 33791 33792 33793 33794 33795 33796 33797 33798 33799 33800 33801 33802 33803 33804 33805 33806 33807 33808 33809 33810 33811 33812 33813 33814 33815 33816 33817 33818 33819 33820 33821 33822 33823 33824 33825 33826 33827 33828 33829 33830 33831 33832 33833 33834 33835 33836 33837 33838 33839 33840 33841 33842 33843 33844 33845 33846 33847 33848 33849 33850 33851 33852 33853 33854 33855 33856 33857 33858 33859 33860 33861 33862 33863 33864 33865 33866 33867 33868 33869 33870 33871 33872 33873 33874 33875 33876 33877 33878 33879 33880 33881 33882 33883 33884 33885 33886 33887 33888 33889 33890 33891 33892 33893 33894 33895 33896 33897 33898 33899 33900 33901 33902 33903 33904 33905 33906 33907 33908 33909 33910 33911 33912 33913 33914 33915 33916 33917 33918 33919 33920 33921 33922 33923 33924 33925 33926 33927 33928 33929 33930 33931 33932 33933 33934 33935 33936 33937 33938 33939 33940 33941 33942 33943 33944 33945 33946 33947 33948 33949 33950 33951 33952 33953 33954 33955 33956 33957 33958 33959 33960 33961 33962 33963 33964 33965 33966 33967 33968 33969 33970 33971 33972 33973 33974 33975 33976 33977 33978 33979 33980 33981 33982 33983 33984 33985 33986 33987 33988 33989 33990 33991 33992 33993 33994 33995 33996 33997 33998 33999 34000 34001 34002 34003 34004 34005 34006 34007 34008 34009 34010 34011 34012 34013 34014 34015 34016 34017 34018 34019 34020 34021 34022 34023 34024 34025 34026 34027 34028 34029 34030 34031 34032 34033 34034 34035 34036 34037 34038 34039 34040 34041 34042 34043 34044 34045 34046 34047 34048 34049 34050 34051 34052 34053 34054 34055 34056 34057 34058 34059 34060 34061 34062 34063 34064 34065 34066 34067 34068 34069 34070 34071 34072 34073 34074 34075 34076 34077 34078 34079 34080 34081 34082 34083 34084 34085 34086 34087 34088 34089 34090 34091 34092 34093 34094 34095 34096 34097 34098 34099 34100 34101 34102 34103 34104 34105 34106 34107 34108 34109 34110 34111 34112 34113 34114 34115 34116 34117 34118 34119 34120 34121 34122 34123 34124 34125 34126 34127 34128 34129 34130 34131 34132 34133 34134 34135 34136 34137 34138 34139 34140 34141 34142 34143 34144 34145 34146 34147 34148 34149 34150 34151 34152 34153 34154 34155 34156 34157 34158 34159 34160 34161 34162 34163 34164 34165 34166 34167 34168 34169 34170 34171 34172 34173 34174 34175 34176 34177 34178 34179 34180 34181 34182 34183 34184 34185 34186 34187 34188 34189 34190 34191 34192 34193 34194 34195 34196 34197 34198 34199 34200 34201 34202 34203 34204 34205 34206 34207 34208 34209 34210 34211 34212 34213 34214 34215 34216 34217 34218 34219 34220 34221 34222 34223 34224 34225 34226 34227 34228 34229 34230 34231 34232 34233 34234 34235 34236 34237 34238 34239 34240 34241 34242 34243 34244 34245 34246 34247 34248 34249 34250 34251 34252 34253 34254 34255 34256 34257 34258 34259 34260 34261 34262 34263 34264 34265 34266 34267 34268 34269 34270 34271 34272 34273 34274 34275 34276 34277 34278 34279 34280 34281 34282 34283 34284 34285 34286 34287 34288 34289 34290 34291 34292 34293 34294 34295 34296 34297 34298 34299 34300 34301 34302 34303 34304 34305 34306 34307 34308 34309 34310 34311 34312 34313 34314 34315 34316 34317 34318 34319 34320 34321 34322 34323 34324 34325 34326 34327 34328 34329 34330 34331 34332 34333 34334 34335 34336 34337 34338 34339 34340 34341 34342 34343 34344 34345 34346 34347 34348 34349 34350 34351 34352 34353 34354 34355 34356 34357 34358 34359 34360 34361 34362 34363 34364 34365 34366 34367 34368 34369 34370 34371 34372 34373 34374 34375 34376 34377 34378 34379 34380 34381 34382 34383 34384 34385 34386 34387 34388 34389 34390 34391 34392 34393 34394 34395 34396 34397 34398 34399 34400 34401 34402 34403 34404 34405 34406 34407 34408 34409 34410 34411 34412 34413 34414 34415 34416 34417 34418 34419 34420 34421 34422 34423 34424 34425 34426 34427 34428 34429 34430 34431 34432 34433 34434 34435 34436 34437 34438 34439 34440 34441 34442 34443 34444 34445 34446 34447 34448 34449 34450 34451 34452 34453 34454 34455 34456 34457 34458 34459 34460 34461 34462 34463 34464 34465 34466 34467 34468 34469 34470 34471 34472 34473 34474 34475 34476 34477 34478 34479 34480 34481 34482 34483 34484 34485 34486 34487 34488 34489 34490 34491 34492 34493 34494 34495 34496 34497 34498 34499 34500 34501 34502 34503 34504 34505 34506 34507 34508 34509 34510 34511 34512 34513 34514 34515 34516 34517 34518 34519 34520 34521 34522 34523 34524 34525 34526 34527 34528 34529 34530 34531 34532 34533 34534 34535 34536 34537 34538 34539 34540 34541 34542 34543 34544 34545 34546 34547 34548 34549 34550 34551 34552 34553 34554 34555 34556 34557 34558 34559 34560 34561 34562 34563 34564 34565 34566 34567 34568 34569 34570 34571 34572 34573 34574 34575 34576 34577 34578 34579 34580 34581 34582 34583 34584 34585 34586 34587 34588 34589 34590 34591 34592 34593 34594 34595 34596 34597 34598 34599 34600 34601 34602 34603 34604 34605 34606 34607 34608 34609 34610 34611 34612 34613 34614 34615 34616 34617 34618 34619 34620 34621 34622 34623 34624 34625 34626 34627 34628 34629 34630 34631 34632 34633 34634 34635 34636 34637 34638 34639 34640 34641 34642 34643 34644 34645 34646 34647 34648 34649 34650 34651 34652 34653 34654 34655 34656 34657 34658 34659 34660 34661 34662 34663 34664 34665 34666 34667 34668 34669 34670 34671 34672 34673 34674 34675 34676 34677 34678 34679 34680 34681 34682 34683 34684 34685 34686 34687 34688 34689 34690 34691 34692 34693 34694 34695 34696 34697 34698 34699 34700 34701 34702 34703 34704 34705 34706 34707 34708 34709 34710 34711 34712 34713 34714 34715 34716 34717 34718 34719 34720 34721 34722 34723 34724 34725 34726 34727 34728 34729 34730 34731 34732 34733 34734 34735 34736 34737 34738 34739 34740 34741 34742 34743 34744 34745 34746 34747 34748 34749 34750 34751 34752 34753 34754 34755 34756 34757 34758 34759 34760 34761 34762 34763 34764 34765 34766 34767 34768 34769 34770 34771 34772 34773 34774 34775 34776 34777 34778 34779 34780 34781 34782 34783 34784 34785 34786 34787 34788 34789 34790 34791 34792 34793 34794 34795 34796 34797 34798 34799 34800 34801 34802 34803 34804 34805 34806 34807 34808 34809 34810 34811 34812 34813 34814 34815 34816 34817 34818 34819 34820 34821 34822 34823 34824 34825 34826 34827 34828 34829 34830 34831 34832 34833 34834 34835 34836 34837 34838 34839 34840 34841 34842 34843 34844 34845 34846 34847 34848 34849 34850 34851 34852 34853 34854 34855 34856 34857 34858 34859 34860 34861 34862 34863 34864 34865 34866 34867 34868 34869 34870 34871 34872 34873 34874 34875 34876 34877 34878 34879 34880 34881 34882 34883 34884 34885 34886 34887 34888 34889 34890 34891 34892 34893 34894 34895 34896 34897 34898 34899 34900 34901 34902 34903 34904 34905 34906 34907 34908 34909 34910 34911 34912 34913 34914 34915 34916 34917 34918 34919 34920 34921 34922 34923 34924 34925 34926 34927 34928 34929 34930 34931 34932 34933 34934 34935 34936 34937 34938 34939 34940 34941 34942 34943 34944 34945 34946 34947 34948 34949 34950 34951 34952 34953 34954 34955 34956 34957 34958 34959 34960 34961 34962 34963 34964 34965 34966 34967 34968 34969 34970 34971 34972 34973 34974 34975 34976 34977 34978 34979 34980 34981 34982 34983 34984 34985 34986 34987 34988 34989 34990 34991 34992 34993 34994 34995 34996 34997 34998 34999 35000 35001 35002 35003 35004 35005 35006 35007 35008 35009 35010 35011 35012 35013 35014 35015 35016 35017 35018 35019 35020 35021 35022 35023 35024 35025 35026 35027 35028 35029 35030 35031 35032 35033 35034 35035 35036 35037 35038 35039 35040 35041 35042 35043 35044 35045 35046 35047 35048 35049 35050 35051 35052 35053 35054 35055 35056 35057 35058 35059 35060 35061 35062 35063 35064 35065 35066 35067 35068 35069 35070 35071 35072 35073 35074 35075 35076 35077 35078 35079 35080 35081 35082 35083 35084 35085 35086 35087 35088 35089 35090 35091 35092 35093 35094 35095 35096 35097 35098 35099 35100 35101 35102 35103 35104 35105 35106 35107 35108 35109 35110 35111 35112 35113 35114 35115 35116 35117 35118 35119 35120 35121 35122 35123 35124 35125 35126 35127 35128 35129 35130 35131 35132 35133 35134 35135 35136 35137 35138 35139 35140 35141 35142 35143 35144 35145 35146 35147 35148 35149 35150 35151 35152 35153 35154 35155 35156 35157 35158 35159 35160 35161 35162 35163 35164 35165 35166 35167 35168 35169 35170 35171 35172 35173 35174 35175 35176 35177 35178 35179 35180 35181 35182 35183 35184 35185 35186 35187 35188 35189 35190 35191 35192 35193 35194 35195 35196 35197 35198 35199 35200 35201 35202 35203 35204 35205 35206 35207 35208 35209 35210 35211 35212 35213 35214 35215 35216 35217 35218 35219 35220 35221 35222 35223 35224 35225 35226 35227 35228 35229 35230 35231 35232 35233 35234 35235 35236 35237 35238 35239 35240 35241 35242 35243 35244 35245 35246 35247 35248 35249 35250 35251 35252 35253 35254 35255 35256 35257 35258 35259 35260 35261 35262 35263 35264 35265 35266 35267 35268 35269 35270 35271 35272 35273 35274 35275 35276 35277 35278 35279 35280 35281 35282 35283 35284 35285 35286 35287 35288 35289 35290 35291 35292 35293 35294 35295 35296 35297 35298 35299 35300 35301 35302 35303 35304 35305 35306 35307 35308 35309 35310 35311 35312 35313 35314 35315 35316 35317 35318 35319 35320 35321 35322 35323 35324 35325 35326 35327 35328 35329 35330 35331 35332 35333 35334 35335 35336 35337 35338 35339 35340 35341 35342 35343 35344 35345 35346 35347 35348 35349 35350 35351 35352 35353 35354 35355 35356 35357 35358 35359 35360 35361 35362 35363 35364 35365 35366 35367 35368 35369 35370 35371 35372 35373 35374 35375 35376 35377 35378 35379 35380 35381 35382 35383 35384 35385 35386 35387 35388 35389 35390 35391 35392 35393 35394 35395 35396 35397 35398 35399 35400 35401 35402 35403 35404 35405 35406 35407 35408 35409 35410 35411 35412 35413 35414 35415 35416 35417 35418 35419 35420 35421 35422 35423 35424 35425 35426 35427 35428 35429 35430 35431 35432 35433 35434 35435 35436 35437 35438 35439 35440 35441 35442 35443 35444 35445 35446 35447 35448 35449 35450 35451 35452 35453 35454 35455 35456 35457 35458 35459 35460 35461 35462 35463 35464 35465 35466 35467 35468 35469 35470 35471 35472 35473 35474 35475 35476 35477 35478 35479 35480 35481 35482 35483 35484 35485 35486 35487 35488 35489 35490 35491 35492 35493 35494 35495 35496 35497 35498 35499 35500 35501 35502 35503 35504 35505 35506 35507 35508 35509 35510 35511 35512 35513 35514 35515 35516 35517 35518 35519 35520 35521 35522 35523 35524 35525 35526 35527 35528 35529 35530 35531 35532 35533 35534 35535 35536 35537 35538 35539 35540 35541 35542 35543 35544 35545 35546 35547 35548 35549 35550 35551 35552 35553 35554 35555 35556 35557 35558 35559 35560 35561 35562 35563 35564 35565 35566 35567 35568 35569 35570 35571 35572 35573 35574 35575 35576 35577 35578 35579 35580 35581 35582 35583 35584 35585 35586 35587 35588 35589 35590 35591 35592 35593 35594 35595 35596 35597 35598 35599 35600 35601 35602 35603 35604 35605 35606 35607 35608 35609 35610 35611 35612 35613 35614 35615 35616 35617 35618 35619 35620 35621 35622 35623 35624 35625 35626 35627 35628 35629 35630 35631 35632 35633 35634 35635 35636 35637 35638 35639 35640 35641 35642 35643 35644 35645 35646 35647 35648 35649 35650 35651 35652 35653 35654 35655 35656 35657 35658 35659 35660 35661 35662 35663 35664 35665 35666 35667 35668 35669 35670 35671 35672 35673 35674 35675 35676 35677 35678 35679 35680 35681 35682 35683 35684 35685 35686 35687 35688 35689 35690 35691 35692 35693 35694 35695 35696 35697 35698 35699 35700 35701 35702 35703 35704 35705 35706 35707 35708 35709 35710 35711 35712 35713 35714 35715 35716 35717 35718 35719 35720 35721 35722 35723 35724 35725 35726 35727 35728 35729 35730 35731 35732 35733 35734 35735 35736 35737 35738 35739 35740 35741 35742 35743 35744 35745 35746 35747 35748 35749 35750 35751 35752 35753 35754 35755 35756 35757 35758 35759 35760 35761 35762 35763 35764 35765 35766 35767 35768 35769 35770 35771 35772 35773 35774 35775 35776 35777 35778 35779 35780 35781 35782 35783 35784 35785 35786 35787 35788 35789 35790 35791 35792 35793 35794 35795 35796 35797 35798 35799 35800 35801 35802 35803 35804 35805 35806 35807 35808 35809 35810 35811 35812 35813 35814 35815 35816 35817 35818 35819 35820 35821 35822 35823 35824 35825 35826 35827 35828 35829 35830 35831 35832 35833 35834 35835 35836 35837 35838 35839 35840 35841 35842 35843 35844 35845 35846 35847 35848 35849 35850 35851 35852 35853 35854 35855 35856 35857 35858 35859 35860 35861 35862 35863 35864 35865 35866 35867 35868 35869 35870 35871 35872 35873 35874 35875 35876 35877 35878 35879 35880 35881 35882 35883 35884 35885 35886 35887 35888 35889 35890 35891 35892 35893 35894 35895 35896 35897 35898 35899 35900 35901 35902 35903 35904 35905 35906 35907 35908 35909 35910 35911 35912 35913 35914 35915 35916 35917 35918 35919 35920 35921 35922 35923 35924 35925 35926 35927 35928 35929 35930 35931 35932 35933 35934 35935 35936 35937 35938 35939 35940 35941 35942 35943 35944 35945 35946 35947 35948 35949 35950 35951 35952 35953 35954 35955 35956 35957 35958 35959 35960 35961 35962 35963 35964 35965 35966 35967 35968 35969 35970 35971 35972 35973 35974 35975 35976 35977 35978 35979 35980 35981 35982 35983 35984 35985 35986 35987 35988 35989 35990 35991 35992 35993 35994 35995 35996 35997 35998 35999 36000 36001 36002 36003 36004 36005 36006 36007 36008 36009 36010 36011 36012 36013 36014 36015 36016 36017 36018 36019 36020 36021 36022 36023 36024 36025 36026 36027 36028 36029 36030 36031 36032 36033 36034 36035 36036 36037 36038 36039 36040 36041 36042 36043 36044 36045 36046 36047 36048 36049 36050 36051 36052 36053 36054 36055 36056 36057 36058 36059 36060 36061 36062 36063 36064 36065 36066 36067 36068 36069 36070 36071 36072 36073 36074 36075 36076 36077 36078 36079 36080 36081 36082 36083 36084 36085 36086 36087 36088 36089 36090 36091 36092 36093 36094 36095 36096 36097 36098 36099 36100 36101 36102 36103 36104 36105 36106 36107 36108 36109 36110 36111 36112 36113 36114 36115 36116 36117 36118 36119 36120 36121 36122 36123 36124 36125 36126 36127 36128 36129 36130 36131 36132 36133 36134 36135 36136 36137 36138 36139 36140 36141 36142 36143 36144 36145 36146 36147 36148 36149 36150 36151 36152 36153 36154 36155 36156 36157 36158 36159 36160 36161 36162 36163 36164 36165 36166 36167 36168 36169 36170 36171 36172 36173 36174 36175 36176 36177 36178 36179 36180 36181 36182 36183 36184 36185 36186 36187 36188 36189 36190 36191 36192 36193 36194 36195 36196 36197 36198 36199 36200 36201 36202 36203 36204 36205 36206 36207 36208 36209 36210 36211 36212 36213 36214 36215 36216 36217 36218 36219 36220 36221 36222 36223 36224 36225 36226 36227 36228 36229 36230 36231 36232 36233 36234 36235 36236 36237 36238 36239 36240 36241 36242 36243 36244 36245 36246 36247 36248 36249 36250 36251 36252 36253 36254 36255 36256 36257 36258 36259 36260 36261 36262 36263 36264 36265 36266 36267 36268 36269 36270 36271 36272 36273 36274 36275 36276 36277 36278 36279 36280 36281 36282 36283 36284 36285 36286 36287 36288 36289 36290 36291 36292 36293 36294 36295 36296 36297 36298 36299 36300 36301 36302 36303 36304 36305 36306 36307 36308 36309 36310 36311 36312 36313 36314 36315 36316 36317 36318 36319 36320 36321 36322 36323 36324 36325 36326 36327 36328 36329 36330 36331 36332 36333 36334 36335 36336 36337 36338 36339 36340 36341 36342 36343 36344 36345 36346 36347 36348 36349 36350 36351 36352 36353 36354 36355 36356 36357 36358 36359 36360 36361 36362 36363 36364 36365 36366 36367 36368 36369 36370 36371 36372 36373 36374 36375 36376 36377 36378 36379 36380 36381 36382 36383 36384 36385 36386 36387 36388 36389 36390 36391 36392 36393 36394 36395 36396 36397 36398 36399 36400 36401 36402 36403 36404 36405 36406 36407 36408 36409 36410 36411 36412 36413 36414 36415 36416 36417 36418 36419 36420 36421 36422 36423 36424 36425 36426 36427 36428 36429 36430 36431 36432 36433 36434 36435 36436 36437 36438 36439 36440 36441 36442 36443 36444 36445 36446 36447 36448 36449 36450 36451 36452 36453 36454 36455 36456 36457 36458 36459 36460 36461 36462 36463 36464 36465 36466 36467 36468 36469 36470 36471 36472 36473 36474 36475 36476 36477 36478 36479 36480 36481 36482 36483 36484 36485 36486 36487 36488 36489 36490 36491 36492 36493 36494 36495 36496 36497 36498 36499 36500 36501 36502 36503 36504 36505 36506 36507 36508 36509 36510 36511 36512 36513 36514 36515 36516 36517 36518 36519 36520 36521 36522 36523 36524 36525 36526 36527 36528 36529 36530 36531 36532 36533 36534 36535 36536 36537 36538 36539 36540 36541 36542 36543 36544 36545 36546 36547 36548 36549 36550 36551 36552 36553 36554 36555 36556 36557 36558 36559 36560 36561 36562 36563 36564 36565 36566 36567 36568 36569 36570 36571 36572 36573 36574 36575 36576 36577 36578 36579 36580 36581 36582 36583 36584 36585 36586 36587 36588 36589 36590 36591 36592 36593 36594 36595 36596 36597 36598 36599 36600 36601 36602 36603 36604 36605 36606 36607 36608 36609 36610 36611 36612 36613 36614 36615 36616 36617 36618 36619 36620 36621 36622 36623 36624 36625 36626 36627 36628 36629 36630 36631 36632 36633 36634 36635 36636 36637 36638 36639 36640 36641 36642 36643 36644 36645 36646 36647 36648 36649 36650 36651 36652 36653 36654 36655 36656 36657 36658 36659 36660 36661 36662 36663 36664 36665 36666 36667 36668 36669 36670 36671 36672 36673 36674 36675 36676 36677 36678 36679 36680 36681 36682 36683 36684 36685 36686 36687 36688 36689 36690 36691 36692 36693 36694 36695 36696 36697 36698 36699 36700 36701 36702 36703 36704 36705 36706 36707 36708 36709 36710 36711 36712 36713 36714 36715 36716 36717 36718 36719 36720 36721 36722 36723 36724 36725 36726 36727 36728 36729 36730 36731 36732 36733 36734 36735 36736 36737 36738 36739 36740 36741 36742 36743 36744 36745 36746 36747 36748 36749 36750 36751 36752 36753 36754 36755 36756 36757 36758 36759 36760 36761 36762 36763 36764 36765 36766 36767 36768 36769 36770 36771 36772 36773 36774 36775 36776 36777 36778 36779 36780 36781 36782 36783 36784 36785 36786 36787 36788 36789 36790 36791 36792 36793 36794 36795 36796 36797 36798 36799 36800 36801 36802 36803 36804 36805 36806 36807 36808 36809 36810 36811 36812 36813 36814 36815 36816 36817 36818 36819 36820 36821 36822 36823 36824 36825 36826 36827 36828 36829 36830 36831 36832 36833 36834 36835 36836 36837 36838 36839 36840 36841 36842 36843 36844 36845 36846 36847 36848 36849 36850 36851 36852 36853 36854 36855 36856 36857 36858 36859 36860 36861 36862 36863 36864 36865 36866 36867 36868 36869 36870 36871 36872 36873 36874 36875 36876 36877 36878 36879 36880 36881 36882 36883 36884 36885 36886 36887 36888 36889 36890 36891 36892 36893 36894 36895 36896 36897 36898 36899 36900 36901 36902 36903 36904 36905 36906 36907 36908 36909 36910 36911 36912 36913 36914 36915 36916 36917 36918 36919 36920 36921 36922 36923 36924 36925 36926 36927 36928 36929 36930 36931 36932 36933 36934 36935 36936 36937 36938 36939 36940 36941 36942 36943 36944 36945 36946 36947 36948 36949 36950 36951 36952 36953 36954 36955 36956 36957 36958 36959 36960 36961 36962 36963 36964 36965 36966 36967 36968 36969 36970 36971 36972 36973 36974 36975 36976 36977 36978 36979 36980 36981 36982 36983 36984 36985 36986 36987 36988 36989 36990 36991 36992 36993 36994 36995 36996 36997 36998 36999 37000 37001 37002 37003 37004 37005 37006 37007 37008 37009 37010 37011 37012 37013 37014 37015 37016 37017 37018 37019 37020 37021 37022 37023 37024 37025 37026 37027 37028 37029 37030 37031 37032 37033 37034 37035 37036 37037 37038 37039 37040 37041 37042 37043 37044 37045 37046 37047 37048 37049 37050 37051 37052 37053 37054 37055 37056 37057 37058 37059 37060 37061 37062 37063 37064 37065 37066 37067 37068 37069 37070 37071 37072 37073 37074 37075 37076 37077 37078 37079 37080 37081 37082 37083 37084 37085 37086 37087 37088 37089 37090 37091 37092 37093 37094 37095 37096 37097 37098 37099 37100 37101 37102 37103 37104 37105 37106 37107 37108 37109 37110 37111 37112 37113 37114 37115 37116 37117 37118 37119 37120 37121 37122 37123 37124 37125 37126 37127 37128 37129 37130 37131 37132 37133 37134 37135 37136 37137 37138 37139 37140 37141 37142 37143 37144 37145 37146 37147 37148 37149 37150 37151 37152 37153 37154 37155 37156 37157 37158 37159 37160 37161 37162 37163 37164 37165 37166 37167 37168 37169 37170 37171 37172 37173 37174 37175 37176 37177 37178 37179 37180 37181 37182 37183 37184 37185 37186 37187 37188 37189 37190 37191 37192 37193 37194 37195 37196 37197 37198 37199 37200 37201 37202 37203 37204 37205 37206 37207 37208 37209 37210 37211 37212 37213 37214 37215 37216 37217 37218 37219 37220 37221 37222 37223 37224 37225 37226 37227 37228 37229 37230 37231 37232 37233 37234 37235 37236 37237 37238 37239 37240 37241 37242 37243 37244 37245 37246 37247 37248 37249 37250 37251 37252 37253 37254 37255 37256 37257 37258 37259 37260 37261 37262 37263 37264 37265 37266 37267 37268 37269 37270 37271 37272 37273 37274 37275 37276 37277 37278 37279 37280 37281 37282 37283 37284 37285 37286 37287 37288 37289 37290 37291 37292 37293 37294 37295 37296 37297 37298 37299 37300 37301 37302 37303 37304 37305 37306 37307 37308 37309 37310 37311 37312 37313 37314 37315 37316 37317 37318 37319 37320 37321 37322 37323 37324 37325 37326 37327 37328 37329 37330 37331 37332 37333 37334 37335 37336 37337 37338 37339 37340 37341 37342 37343 37344 37345 37346 37347 37348 37349 37350 37351 37352 37353 37354 37355 37356 37357 37358 37359 37360 37361 37362 37363 37364 37365 37366 37367 37368 37369 37370 37371 37372 37373 37374 37375 37376 37377 37378 37379 37380 37381 37382 37383 37384 37385 37386 37387 37388 37389 37390 37391 37392 37393 37394 37395 37396 37397 37398 37399 37400 37401 37402 37403 37404 37405 37406 37407 37408 37409 37410 37411 37412 37413 37414 37415 37416 37417 37418 37419 37420 37421 37422 37423 37424 37425 37426 37427 37428 37429 37430 37431 37432 37433 37434 37435 37436 37437 37438 37439 37440 37441 37442 37443 37444 37445 37446 37447 37448 37449 37450 37451 37452 37453 37454 37455 37456 37457 37458 37459 37460 37461 37462 37463 37464 37465 37466 37467 37468 37469 37470 37471 37472 37473 37474 37475 37476 37477 37478 37479 37480 37481 37482 37483 37484 37485 37486 37487 37488 37489 37490 37491 37492 37493 37494 37495 37496 37497 37498 37499 37500 37501 37502 37503 37504 37505 37506 37507 37508 37509 37510 37511 37512 37513 37514 37515 37516 37517 37518 37519 37520 37521 37522 37523 37524 37525 37526 37527 37528 37529 37530 37531 37532 37533 37534 37535 37536 37537 37538 37539 37540 37541 37542 37543 37544 37545 37546 37547 37548 37549 37550 37551 37552 37553 37554 37555 37556 37557 37558 37559 37560 37561 37562 37563 37564 37565 37566 37567 37568 37569 37570 37571 37572 37573 37574 37575 37576 37577 37578 37579 37580 37581 37582 37583 37584 37585 37586 37587 37588 37589 37590 37591 37592 37593 37594 37595 37596 37597 37598 37599 37600 37601 37602 37603 37604 37605 37606 37607 37608 37609 37610 37611 37612 37613 37614 37615 37616 37617 37618 37619 37620 37621 37622 37623 37624 37625 37626 37627 37628 37629 37630 37631 37632 37633 37634 37635 37636 37637 37638 37639 37640 37641 37642 37643 37644 37645 37646 37647 37648 37649 37650 37651 37652 37653 37654 37655 37656 37657 37658 37659 37660 37661 37662 37663 37664 37665 37666 37667 37668 37669 37670 37671 37672 37673 37674 37675 37676 37677 37678 37679 37680 37681 37682 37683 37684 37685 37686 37687 37688 37689 37690 37691 37692 37693 37694 37695 37696 37697 37698 37699 37700 37701 37702 37703 37704 37705 37706 37707 37708 37709 37710 37711 37712 37713 37714 37715 37716 37717 37718 37719 37720 37721 37722 37723 37724 37725 37726 37727 37728 37729 37730 37731 37732 37733 37734 37735 37736 37737 37738 37739 37740 37741 37742 37743 37744 37745 37746 37747 37748 37749 37750 37751 37752 37753 37754 37755 37756 37757 37758 37759 37760 37761 37762 37763 37764 37765 37766 37767 37768 37769 37770 37771 37772 37773 37774 37775 37776 37777 37778 37779 37780 37781 37782 37783 37784 37785 37786 37787 37788 37789 37790 37791 37792 37793 37794 37795 37796 37797 37798 37799 37800 37801 37802 37803 37804 37805 37806 37807 37808 37809 37810 37811 37812 37813 37814 37815 37816 37817 37818 37819 37820 37821 37822 37823 37824 37825 37826 37827 37828 37829 37830 37831 37832 37833 37834 37835 37836 37837 37838 37839 37840 37841 37842 37843 37844 37845 37846 37847 37848 37849 37850 37851 37852 37853 37854 37855 37856 37857 37858 37859 37860 37861 37862 37863 37864 37865 37866 37867 37868 37869 37870 37871 37872 37873 37874 37875 37876 37877 37878 37879 37880 37881 37882 37883 37884 37885 37886 37887 37888 37889 37890 37891 37892 37893 37894 37895 37896 37897 37898 37899 37900 37901 37902 37903 37904 37905 37906 37907 37908 37909 37910 37911 37912 37913 37914 37915 37916 37917 37918 37919 37920 37921 37922 37923 37924 37925 37926 37927 37928 37929 37930 37931 37932 37933 37934 37935 37936 37937 37938 37939 37940 37941 37942 37943 37944 37945 37946 37947 37948 37949 37950 37951 37952 37953 37954 37955 37956 37957 37958 37959 37960 37961 37962 37963 37964 37965 37966 37967 37968 37969 37970 37971 37972 37973 37974 37975 37976 37977 37978 37979 37980 37981 37982 37983 37984 37985 37986 37987 37988 37989 37990 37991 37992 37993 37994 37995 37996 37997 37998 37999 38000 38001 38002 38003 38004 38005 38006 38007 38008 38009 38010 38011 38012 38013 38014 38015 38016 38017 38018 38019 38020 38021 38022 38023 38024 38025 38026 38027 38028 38029 38030 38031 38032 38033 38034 38035 38036 38037 38038 38039 38040 38041 38042 38043 38044 38045 38046 38047 38048 38049 38050 38051 38052 38053 38054 38055 38056 38057 38058 38059 38060 38061 38062 38063 38064 38065 38066 38067 38068 38069 38070 38071 38072 38073 38074 38075 38076 38077 38078 38079 38080 38081 38082 38083 38084 38085 38086 38087 38088 38089 38090 38091 38092 38093 38094 38095 38096 38097 38098 38099 38100 38101 38102 38103 38104 38105 38106 38107 38108 38109 38110 38111 38112 38113 38114 38115 38116 38117 38118 38119 38120 38121 38122 38123 38124 38125 38126 38127 38128 38129 38130 38131 38132 38133 38134 38135 38136 38137 38138 38139 38140 38141 38142 38143 38144 38145 38146 38147 38148 38149 38150 38151 38152 38153 38154 38155 38156 38157 38158 38159 38160 38161 38162 38163 38164 38165 38166 38167 38168 38169 38170 38171 38172 38173 38174 38175 38176 38177 38178 38179 38180 38181 38182 38183 38184 38185 38186 38187 38188 38189 38190 38191 38192 38193 38194 38195 38196 38197 38198 38199 38200 38201 38202 38203 38204 38205 38206 38207 38208 38209 38210 38211 38212 38213 38214 38215 38216 38217 38218 38219 38220 38221 38222 38223 38224 38225 38226 38227 38228 38229 38230 38231 38232 38233 38234 38235 38236 38237 38238 38239 38240 38241 38242 38243 38244 38245 38246 38247 38248 38249 38250 38251 38252 38253 38254 38255 38256 38257 38258 38259 38260 38261 38262 38263 38264 38265 38266 38267 38268 38269 38270 38271 38272 38273 38274 38275 38276 38277 38278 38279 38280 38281 38282 38283 38284 38285 38286 38287 38288 38289 38290 38291 38292 38293 38294 38295 38296 38297 38298 38299 38300 38301 38302 38303 38304 38305 38306 38307 38308 38309 38310 38311 38312 38313 38314 38315 38316 38317 38318 38319 38320 38321 38322 38323 38324 38325 38326 38327 38328 38329 38330 38331 38332 38333 38334 38335 38336 38337 38338 38339 38340 38341 38342 38343 38344 38345 38346 38347 38348 38349 38350 38351 38352 38353 38354 38355 38356 38357 38358 38359 38360 38361 38362 38363 38364 38365 38366 38367 38368 38369 38370 38371 38372 38373 38374 38375 38376 38377 38378 38379 38380 38381 38382 38383 38384 38385 38386 38387 38388 38389 38390 38391 38392 38393 38394 38395 38396 38397 38398 38399 38400 38401 38402 38403 38404 38405 38406 38407 38408 38409 38410 38411 38412 38413 38414 38415 38416 38417 38418 38419 38420 38421 38422 38423 38424 38425 38426 38427 38428 38429 38430 38431 38432 38433 38434 38435 38436 38437 38438 38439 38440 38441 38442 38443 38444 38445 38446 38447 38448 38449 38450 38451 38452 38453 38454 38455 38456 38457 38458 38459 38460 38461 38462 38463 38464 38465 38466 38467 38468 38469 38470 38471 38472 38473 38474 38475 38476 38477 38478 38479 38480 38481 38482 38483 38484 38485 38486 38487 38488 38489 38490 38491 38492 38493 38494 38495 38496 38497 38498 38499 38500 38501 38502 38503 38504 38505 38506 38507 38508 38509 38510 38511 38512 38513 38514 38515 38516 38517 38518 38519 38520 38521 38522 38523 38524 38525 38526 38527 38528 38529 38530 38531 38532 38533 38534 38535 38536 38537 38538 38539 38540 38541 38542 38543 38544 38545 38546 38547 38548 38549 38550 38551 38552 38553 38554 38555 38556 38557 38558 38559 38560 38561 38562 38563 38564 38565 38566 38567 38568 38569 38570 38571 38572 38573 38574 38575 38576 38577 38578 38579 38580 38581 38582 38583 38584 38585 38586 38587 38588 38589 38590 38591 38592 38593 38594 38595 38596 38597 38598 38599 38600 38601 38602 38603 38604 38605 38606 38607 38608 38609 38610 38611 38612 38613 38614 38615 38616 38617 38618 38619 38620 38621 38622 38623 38624 38625 38626 38627 38628 38629 38630 38631 38632 38633 38634 38635 38636 38637 38638 38639 38640 38641 38642 38643 38644 38645 38646 38647 38648 38649 38650 38651 38652 38653 38654 38655 38656 38657 38658 38659 38660 38661 38662 38663 38664 38665 38666 38667 38668 38669 38670 38671 38672 38673 38674 38675 38676 38677 38678 38679 38680 38681 38682 38683 38684 38685 38686 38687 38688 38689 38690 38691 38692 38693 38694 38695 38696 38697 38698 38699 38700 38701 38702 38703 38704 38705 38706 38707 38708 38709 38710 38711 38712 38713 38714 38715 38716 38717 38718 38719 38720 38721 38722 38723 38724 38725 38726 38727 38728 38729 38730 38731 38732 38733 38734 38735 38736 38737 38738 38739 38740 38741 38742 38743 38744 38745 38746 38747 38748 38749 38750 38751 38752 38753 38754 38755 38756 38757 38758 38759 38760 38761 38762 38763 38764 38765 38766 38767 38768 38769 38770 38771 38772 38773 38774 38775 38776 38777 38778 38779 38780 38781 38782 38783 38784 38785 38786 38787 38788 38789 38790 38791 38792 38793 38794 38795 38796 38797 38798 38799 38800 38801 38802 38803 38804 38805 38806 38807 38808 38809 38810 38811 38812 38813 38814 38815 38816 38817 38818 38819 38820 38821 38822 38823 38824 38825 38826 38827 38828 38829 38830 38831 38832 38833 38834 38835 38836 38837 38838 38839 38840 38841 38842 38843 38844 38845 38846 38847 38848 38849 38850 38851 38852 38853 38854 38855 38856 38857 38858 38859 38860 38861 38862 38863 38864 38865 38866 38867 38868 38869 38870 38871 38872 38873 38874 38875 38876 38877 38878 38879 38880 38881 38882 38883 38884 38885 38886 38887 38888 38889 38890 38891 38892 38893 38894 38895 38896 38897 38898 38899 38900 38901 38902 38903 38904 38905 38906 38907 38908 38909 38910 38911 38912 38913 38914 38915 38916 38917 38918 38919 38920 38921 38922 38923 38924 38925 38926 38927 38928 38929 38930 38931 38932 38933 38934 38935 38936 38937 38938 38939 38940 38941 38942 38943 38944 38945 38946 38947 38948 38949 38950 38951 38952 38953 38954 38955 38956 38957 38958 38959 38960 38961 38962 38963 38964 38965 38966 38967 38968 38969 38970 38971 38972 38973 38974 38975 38976 38977 38978 38979 38980 38981 38982 38983 38984 38985 38986 38987 38988 38989 38990 38991 38992 38993 38994 38995 38996 38997 38998 38999 39000 39001 39002 39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 39022 39023 39024 39025 39026 39027 39028 39029 39030 39031 39032 39033 39034 39035 39036 39037 39038 39039 39040 39041 39042 39043 39044 39045 39046 39047 39048 39049 39050 39051 39052 39053 39054 39055 39056 39057 39058 39059 39060 39061 39062 39063 39064 39065 39066 39067 39068 39069 39070 39071 39072 39073 39074 39075 39076 39077 39078 39079 39080 39081 39082 39083 39084 39085 39086 39087 39088 39089 39090 39091 39092 39093 39094 39095 39096 39097 39098 39099 39100 39101 39102 39103 39104 39105 39106 39107 39108 39109 39110 39111 39112 39113 39114 39115 39116 39117 39118 39119 39120 39121 39122 39123 39124 39125 39126 39127 39128 39129 39130 39131 39132 39133 39134 39135 39136 39137 39138 39139 39140 39141 39142 39143 39144 39145 39146 39147 39148 39149 39150 39151 39152 39153 39154 39155 39156 39157 39158 39159 39160 39161 39162 39163 39164 39165 39166 39167 39168 39169 39170 39171 39172 39173 39174 39175 39176 39177 39178 39179 39180 39181 39182 39183 39184 39185 39186 39187 39188 39189 39190 39191 39192 39193 39194 39195 39196 39197 39198 39199 39200 39201 39202 39203 39204 39205 39206 39207 39208 39209 39210 39211 39212 39213 39214 39215 39216 39217 39218 39219 39220 39221 39222 39223 39224 39225 39226 39227 39228 39229 39230 39231 39232 39233 39234 39235 39236 39237 39238 39239 39240 39241 39242 39243 39244 39245 39246 39247 39248 39249 39250 39251 39252 39253 39254 39255 39256 39257 39258 39259 39260 39261 39262 39263 39264 39265 39266 39267 39268 39269 39270 39271 39272 39273 39274 39275 39276 39277 39278 39279 39280 39281 39282 39283 39284 39285 39286 39287 39288 39289 39290 39291 39292 39293 39294 39295 39296 39297 39298 39299 39300 39301 39302 39303 39304 39305 39306 39307 39308 39309 39310 39311 39312 39313 39314 39315 39316 39317 39318 39319 39320 39321 39322 39323 39324 39325 39326 39327 39328 39329 39330 39331 39332 39333 39334 39335 39336 39337 39338 39339 39340 39341 39342 39343 39344 39345 39346 39347 39348 39349 39350 39351 39352 39353 39354 39355 39356 39357 39358 39359 39360 39361 39362 39363 39364 39365 39366 39367 39368 39369 39370 39371 39372 39373 39374 39375 39376 39377 39378 39379 39380 39381 39382 39383 39384 39385 39386 39387 39388 39389 39390 39391 39392 39393 39394 39395 39396 39397 39398 39399 39400 39401 39402 39403 39404 39405 39406 39407 39408 39409 39410 39411 39412 39413 39414 39415 39416 39417 39418 39419 39420 39421 39422 39423 39424 39425 39426 39427 39428 39429 39430 39431 39432 39433 39434 39435 39436 39437 39438 39439 39440 39441 39442 39443 39444 39445 39446 39447 39448 39449 39450 39451 39452 39453 39454 39455 39456 39457 39458 39459 39460 39461 39462 39463 39464 39465 39466 39467 39468 39469 39470 39471 39472 39473 39474 39475 39476 39477 39478 39479 39480 39481 39482 39483 39484 39485 39486 39487 39488 39489 39490 39491 39492 39493 39494 39495 39496 39497 39498 39499 39500 39501 39502 39503 39504 39505 39506 39507 39508 39509 39510 39511 39512 39513 39514 39515 39516 39517 39518 39519 39520 39521 39522 39523 39524 39525 39526 39527 39528 39529 39530 39531 39532 39533 39534 39535 39536 39537 39538 39539 39540 39541 39542 39543 39544 39545 39546 39547 39548 39549 39550 39551 39552 39553 39554 39555 39556 39557 39558 39559 39560 39561 39562 39563 39564 39565 39566 39567 39568 39569 39570 39571 39572 39573 39574 39575 39576 39577 39578 39579 39580 39581 39582 39583 39584 39585 39586 39587 39588 39589 39590 39591 39592 39593 39594 39595 39596 39597 39598 39599 39600 39601 39602 39603 39604 39605 39606 39607 39608 39609 39610 39611 39612 39613 39614 39615 39616 39617 39618 39619 39620 39621 39622 39623 39624 39625 39626 39627 39628 39629 39630 39631 39632 39633 39634 39635 39636 39637 39638 39639 39640 39641 39642 39643 39644 39645 39646 39647 39648 39649 39650 39651 39652 39653 39654 39655 39656 39657 39658 39659 39660 39661 39662 39663 39664 39665 39666 39667 39668 39669 39670 39671 39672 39673 39674 39675 39676 39677 39678 39679 39680 39681 39682 39683 39684 39685 39686 39687 39688 39689 39690 39691 39692 39693 39694 39695 39696 39697 39698 39699 39700 39701 39702 39703 39704 39705 39706 39707 39708 39709 39710 39711 39712 39713 39714 39715 39716 39717 39718 39719 39720 39721 39722 39723 39724 39725 39726 39727 39728 39729 39730 39731 39732 39733 39734 39735 39736 39737 39738 39739 39740 39741 39742 39743 39744 39745 39746 39747 39748 39749 39750 39751 39752 39753 39754 39755 39756 39757 39758 39759 39760 39761 39762 39763 39764 39765 39766 39767 39768 39769 39770 39771 39772 39773 39774 39775 39776 39777 39778 39779 39780 39781 39782 39783 39784 39785 39786 39787 39788 39789 39790 39791 39792 39793 39794 39795 39796 39797 39798 39799 39800 39801 39802 39803 39804 39805 39806 39807 39808 39809 39810 39811 39812 39813 39814 39815 39816 39817 39818 39819 39820 39821 39822 39823 39824 39825 39826 39827 39828 39829 39830 39831 39832 39833 39834 39835 39836 39837 39838 39839 39840 39841 39842 39843 39844 39845 39846 39847 39848 39849 39850 39851 39852 39853 39854 39855 39856 39857 39858 39859 39860 39861 39862 39863 39864 39865 39866 39867 39868 39869 39870 39871 39872 39873 39874 39875 39876 39877 39878 39879 39880 39881 39882 39883 39884 39885 39886 39887 39888 39889 39890 39891 39892 39893 39894 39895 39896 39897 39898 39899 39900 39901 39902 39903 39904 39905 39906 39907 39908 39909 39910 39911 39912 39913 39914 39915 39916 39917 39918 39919 39920 39921 39922 39923 39924 39925 39926 39927 39928 39929 39930 39931 39932 39933 39934 39935 39936 39937 39938 39939 39940 39941 39942 39943 39944 39945 39946 39947 39948 39949 39950 39951 39952 39953 39954 39955 39956 39957 39958 39959 39960 39961 39962 39963 39964 39965 39966 39967 39968 39969 39970 39971 39972 39973 39974 39975 39976 39977 39978 39979 39980 39981 39982 39983 39984 39985 39986 39987 39988 39989 39990 39991 39992 39993 39994 39995 39996 39997 39998 39999 40000 40001 40002 40003 40004 40005 40006 40007 40008 40009 40010 40011 40012 40013 40014 40015 40016 40017 40018 40019 40020 40021 40022 40023 40024 40025 40026 40027 40028 40029 40030 40031 40032 40033 40034 40035 40036 40037 40038 40039 40040 40041 40042 40043 40044 40045 40046 40047 40048 40049 40050 40051 40052 40053 40054 40055 40056 40057 40058 40059 40060 40061 40062 40063 40064 40065 40066 40067 40068 40069 40070 40071 40072 40073 40074 40075 40076 40077 40078 40079 40080 40081 40082 40083 40084 40085 40086 40087 40088 40089 40090 40091 40092 40093 40094 40095 40096 40097 40098 40099 40100 40101 40102 40103 40104 40105 40106 40107 40108 40109 40110 40111 40112 40113 40114 40115 40116 40117 40118 40119 40120 40121 40122 40123 40124 40125 40126 40127 40128 40129 40130 40131 40132 40133 40134 40135 40136 40137 40138 40139 40140 40141 40142 40143 40144 40145 40146 40147 40148 40149 40150 40151 40152 40153 40154 40155 40156 40157 40158 40159 40160 40161 40162 40163 40164 40165 40166 40167 40168 40169 40170 40171 40172 40173 40174 40175 40176 40177 40178 40179 40180 40181 40182 40183 40184 40185 40186 40187 40188 40189 40190 40191 40192 40193 40194 40195 40196 40197 40198 40199 40200 40201 40202 40203 40204 40205 40206 40207 40208 40209 40210 40211 40212 40213 40214 40215 40216 40217 40218 40219 40220 40221 40222 40223 40224 40225 40226 40227 40228 40229 40230 40231 40232 40233 40234 40235 40236 40237 40238 40239 40240 40241 40242 40243 40244 40245 40246 40247 40248 40249 40250 40251 40252 40253 40254 40255 40256 40257 40258 40259 40260 40261 40262 40263 40264 40265 40266 40267 40268 40269 40270 40271 40272 40273 40274 40275 40276 40277 40278 40279 40280 40281 40282 40283 40284 40285 40286 40287 40288 40289 40290 40291 40292 40293 40294 40295 40296 40297 40298 40299 40300 40301 40302 40303 40304 40305 40306 40307 40308 40309 40310 40311 40312 40313 40314 40315 40316 40317 40318 40319 40320 40321 40322 40323 40324 40325 40326 40327 40328 40329 40330 40331 40332 40333 40334 40335 40336 40337 40338 40339 40340 40341 40342 40343 40344 40345 40346 40347 40348 40349 40350 40351 40352 40353 40354 40355 40356 40357 40358 40359 40360 40361 40362 40363 40364 40365 40366 40367 40368 40369 40370 40371 40372 40373 40374 40375 40376 40377 40378 40379 40380 40381 40382 40383 40384 40385 40386 40387 40388 40389 40390 40391 40392 40393 40394 40395 40396 40397 40398 40399 40400 40401 40402 40403 40404 40405 40406 40407 40408 40409 40410 40411 40412 40413 40414 40415 40416 40417 40418 40419 40420 40421 40422 40423 40424 40425 40426 40427 40428 40429 40430 40431 40432 40433 40434 40435 40436 40437 40438 40439 40440 40441 40442 40443 40444 40445 40446 40447 40448 40449 40450 40451 40452 40453 40454 40455 40456 40457 40458 40459 40460 40461 40462 40463 40464 40465 40466 40467 40468 40469 40470 40471 40472 40473 40474 40475 40476 40477 40478 40479 40480 40481 40482 40483 40484 40485 40486 40487 40488 40489 40490 40491 40492 40493 40494 40495 40496 40497 40498 40499 40500 40501 40502 40503 40504 40505 40506 40507 40508 40509 40510 40511 40512 40513 40514 40515 40516 40517 40518 40519 40520 40521 40522 40523 40524 40525 40526 40527 40528 40529 40530 40531 40532 40533 40534 40535 40536 40537 40538 40539 40540 40541 40542 40543 40544 40545 40546 40547 40548 40549 40550 40551 40552 40553 40554 40555 40556 40557 40558 40559 40560 40561 40562 40563 40564 40565 40566 40567 40568 40569 40570 40571 40572 40573 40574 40575 40576 40577 40578 40579 40580 40581 40582 40583 40584 40585 40586 40587 40588 40589 40590 40591 40592 40593 40594 40595 40596 40597 40598 40599 40600 40601 40602 40603 40604 40605 40606 40607 40608 40609 40610 40611 40612 40613 40614 40615 40616 40617 40618 40619 40620 40621 40622 40623 40624 40625 40626 40627 40628 40629 40630 40631 40632 40633 40634 40635 40636 40637 40638 40639 40640 40641 40642 40643 40644 40645 40646 40647 40648 40649 40650 40651 40652 40653 40654 40655 40656 40657 40658 40659 40660 40661 40662 40663 40664 40665 40666 40667 40668 40669 40670 40671 40672 40673 40674 40675 40676 40677 40678 40679 40680 40681 40682 40683 40684 40685 40686 40687 40688 40689 40690 40691 40692 40693 40694 40695 40696 40697 40698 40699 40700 40701 40702 40703 40704 40705 40706 40707 40708 40709 40710 40711 40712 40713 40714 40715 40716 40717 40718 40719 40720 40721 40722 40723 40724 40725 40726 40727 40728 40729 40730 40731 40732 40733 40734 40735 40736 40737 40738 40739 40740 40741 40742 40743 40744 40745 40746 40747 40748 40749 40750 40751 40752 40753 40754 40755 40756 40757 40758 40759 40760 40761 40762 40763 40764 40765 40766 40767 40768 40769 40770 40771 40772 40773 40774 40775 40776 40777 40778 40779 40780 40781 40782 40783 40784 40785 40786 40787 40788 40789 40790 40791 40792 40793 40794 40795 40796 40797 40798 40799 40800 40801 40802 40803 40804 40805 40806 40807 40808 40809 40810 40811 40812 40813 40814 40815 40816 40817 40818 40819 40820 40821 40822 40823 40824 40825 40826 40827 40828 40829 40830 40831 40832 40833 40834 40835 40836 40837 40838 40839 40840 40841 40842 40843 40844 40845 40846 40847 40848 40849 40850 40851 40852 40853 40854 40855 40856 40857 40858 40859 40860 40861 40862 40863 40864 40865 40866 40867 40868 40869 40870 40871 40872 40873 40874 40875 40876 40877 40878 40879 40880 40881 40882 40883 40884 40885 40886 40887 40888 40889 40890 40891 40892 40893 40894 40895 40896 40897 40898 40899 40900 40901 40902 40903 40904 40905 40906 40907 40908 40909 40910 40911 40912 40913 40914 40915 40916 40917 40918 40919 40920 40921 40922 40923 40924 40925 40926 40927 40928 40929 40930 40931 40932 40933 40934 40935 40936 40937 40938 40939 40940 40941 40942 40943 40944 40945 40946 40947 40948 40949 40950 40951 40952 40953 40954 40955 40956 40957 40958 40959 40960 40961 40962 40963 40964 40965 40966 40967 40968 40969 40970 40971 40972 40973 40974 40975 40976 40977 40978 40979 40980 40981 40982 40983 40984 40985 40986 40987 40988 40989 40990 40991 40992 40993 40994 40995 40996 40997 40998 40999 41000 41001 41002 41003 41004 41005 41006 41007 41008 41009 41010 41011 41012 41013 41014 41015 41016 41017 41018 41019 41020 41021 41022 41023 41024 41025 41026 41027 41028 41029 41030 41031 41032 41033 41034 41035 41036 41037 41038 41039 41040 41041 41042 41043 41044 41045 41046 41047 41048 41049 41050 41051 41052 41053 41054 41055 41056 41057 41058 41059 41060 41061 41062 41063 41064 41065 41066 41067 41068 41069 41070 41071 41072 41073 41074 41075 41076 41077 41078 41079 41080 41081 41082 41083 41084 41085 41086 41087 41088 41089 41090 41091 41092 41093 41094 41095 41096 41097 41098 41099 41100 41101 41102 41103 41104 41105 41106 41107 41108 41109 41110 41111 41112 41113 41114 41115 41116 41117 41118 41119 41120 41121 41122 41123 41124 41125 41126 41127 41128 41129 41130 41131 41132 41133 41134 41135 41136 41137 41138 41139 41140 41141 41142 41143 41144 41145 41146 41147 41148 41149 41150 41151 41152 41153 41154 41155 41156 41157 41158 41159 41160 41161 41162 41163 41164 41165 41166 41167 41168 41169 41170 41171 41172 41173 41174 41175 41176 41177 41178 41179 41180 41181 41182 41183 41184 41185 41186 41187 41188 41189 41190 41191 41192 41193 41194 41195 41196 41197 41198 41199 41200 41201 41202 41203 41204 41205 41206 41207 41208 41209 41210 41211 41212 41213 41214 41215 41216 41217 41218 41219 41220 41221 41222 41223 41224 41225 41226 41227 41228 41229 41230 41231 41232 41233 41234 41235 41236 41237 41238 41239 41240 41241 41242 41243 41244 41245 41246 41247 41248 41249 41250 41251 41252 41253 41254 41255 41256 41257 41258 41259 41260 41261 41262 41263 41264 41265 41266 41267 41268 41269 41270 41271 41272 41273 41274 41275 41276 41277 41278 41279 41280 41281 41282 41283 41284 41285 41286 41287 41288 41289 41290 41291 41292 41293 41294 41295 41296 41297 41298 41299 41300 41301 41302 41303 41304 41305 41306 41307 41308 41309 41310 41311 41312 41313 41314 41315 41316 41317 41318 41319 41320 41321 41322 41323 41324 41325 41326 41327 41328 41329 41330 41331 41332 41333 41334 41335 41336 41337 41338 41339 41340 41341 41342 41343 41344 41345 41346 41347 41348 41349 41350 41351 41352 41353 41354 41355 41356 41357 41358 41359 41360 41361 41362 41363 41364 41365 41366 41367 41368 41369 41370 41371 41372 41373 41374 41375 41376 41377 41378 41379 41380 41381 41382 41383 41384 41385 41386 41387 41388 41389 41390 41391 41392 41393 41394 41395 41396 41397 41398 41399 41400 41401 41402 41403 41404 41405 41406 41407 41408 41409 41410 41411 41412 41413 41414 41415 41416 41417 41418 41419 41420 41421 41422 41423 41424 41425 41426 41427 41428 41429 41430 41431 41432 41433 41434 41435 41436 41437 41438 41439 41440 41441 41442 41443 41444 41445 41446 41447 41448 41449 41450 41451 41452 41453 41454 41455 41456 41457 41458 41459 41460 41461 41462 41463 41464 41465 41466 41467 41468 41469 41470 41471 41472 41473 41474 41475 41476 41477 41478 41479 41480 41481 41482 41483 41484 41485 41486 41487 41488 41489 41490 41491 41492 41493 41494 41495 41496 41497 41498 41499 41500 41501 41502 41503 41504 41505 41506 41507 41508 41509 41510 41511 41512 41513 41514 41515 41516 41517 41518 41519 41520 41521 41522 41523 41524 41525 41526 41527 41528 41529 41530 41531 41532 41533 41534 41535 41536 41537 41538 41539 41540 41541 41542 41543 41544 41545 41546 41547 41548 41549 41550 41551 41552 41553 41554 41555 41556 41557 41558 41559 41560 41561 41562 41563 41564 41565 41566 41567 41568 41569 41570 41571 41572 41573 41574 41575 41576 41577 41578 41579 41580 41581 41582 41583 41584 41585 41586 41587 41588 41589 41590 41591 41592 41593 41594 41595 41596 41597 41598 41599 41600 41601 41602 41603 41604 41605 41606 41607 41608 41609 41610 41611 41612 41613 41614 41615 41616 41617 41618 41619 41620 41621 41622 41623 41624 41625 41626 41627 41628 41629 41630 41631 41632 41633 41634 41635 41636 41637 41638 41639 41640 41641 41642 41643 41644 41645 41646 41647 41648 41649 41650 41651 41652 41653 41654 41655 41656 41657 41658 41659 41660 41661 41662 41663 41664 41665 41666 41667 41668 41669 41670 41671 41672 41673 41674 41675 41676 41677 41678 41679 41680 41681 41682 41683 41684 41685 41686 41687 41688 41689 41690 41691 41692 41693 41694 41695 41696 41697 41698 41699 41700 41701 41702 41703 41704 41705 41706 41707 41708 41709 41710 41711 41712 41713 41714 41715 41716 41717 41718 41719 41720 41721 41722 41723 41724 41725 41726 41727 41728 41729 41730 41731 41732 41733 41734 41735 41736 41737 41738 41739 41740 41741 41742 41743 41744 41745 41746 41747 41748 41749 41750 41751 41752 41753 41754 41755 41756 41757 41758 41759 41760 41761 41762 41763 41764 41765 41766 41767 41768 41769 41770 41771 41772 41773 41774 41775 41776 41777 41778 41779 41780 41781 41782 41783 41784 41785 41786 41787 41788 41789 41790 41791 41792 41793 41794 41795 41796 41797 41798 41799 41800 41801 41802 41803 41804 41805 41806 41807 41808 41809 41810 41811 41812 41813 41814 41815 41816 41817 41818 41819 41820 41821 41822 41823 41824 41825 41826 41827 41828 41829 41830 41831 41832 41833 41834 41835 41836 41837 41838 41839 41840 41841 41842 41843 41844 41845 41846 41847 41848 41849 41850 41851 41852 41853 41854 41855 41856 41857 41858 41859 41860 41861 41862 41863 41864 41865 41866 41867 41868 41869 41870 41871 41872 41873 41874 41875 41876 41877 41878 41879 41880 41881 41882 41883 41884 41885 41886 41887 41888 41889 41890 41891 41892 41893 41894 41895 41896 41897 41898 41899 41900 41901 41902 41903 41904 41905 41906 41907 41908 41909 41910 41911 41912 41913 41914 41915 41916 41917 41918 41919 41920 41921 41922 41923 41924 41925 41926 41927 41928 41929 41930 41931 41932 41933 41934 41935 41936 41937 41938 41939 41940 41941 41942 41943 41944 41945 41946 41947 41948 41949 41950 41951 41952 41953 41954 41955 41956 41957 41958 41959 41960 41961 41962 41963 41964 41965 41966 41967 41968 41969 41970 41971 41972 41973 41974 41975 41976 41977 41978 41979 41980 41981 41982 41983 41984 41985 41986 41987 41988 41989 41990 41991 41992 41993 41994 41995 41996 41997 41998 41999 42000 42001 42002 42003 42004 42005 42006 42007 42008 42009 42010 42011 42012 42013 42014 42015 42016 42017 42018 42019 42020 42021 42022 42023 42024 42025 42026 42027 42028 42029 42030 42031 42032 42033 42034 42035 42036 42037 42038 42039 42040 42041 42042 42043 42044 42045 42046 42047 42048 42049 42050 42051 42052 42053 42054 42055 42056 42057 42058 42059 42060 42061 42062 42063 42064 42065 42066 42067 42068 42069 42070 42071 42072 42073 42074 42075 42076 42077 42078 42079 42080 42081 42082 42083 42084 42085 42086 42087 42088 42089 42090 42091 42092 42093 42094 42095 42096 42097 42098 42099 42100 42101 42102 42103 42104 42105 42106 42107 42108 42109 42110 42111 42112 42113 42114 42115 42116 42117 42118 42119 42120 42121 42122 42123 42124 42125 42126 42127 42128 42129 42130 42131 42132 42133 42134 42135 42136 42137 42138 42139 42140 42141 42142 42143 42144 42145 42146 42147 42148 42149 42150 42151 42152 42153 42154 42155 42156 42157 42158 42159 42160 42161 42162 42163 42164 42165 42166 42167 42168 42169 42170 42171 42172 42173 42174 42175 42176 42177 42178 42179 42180 42181 42182 42183 42184 42185 42186 42187 42188 42189 42190 42191 42192 42193 42194 42195 42196 42197 42198 42199 42200 42201 42202 42203 42204 42205 42206 42207 42208 42209 42210 42211 42212 42213 42214 42215 42216 42217 42218 42219 42220 42221 42222 42223 42224 42225 42226 42227 42228 42229 42230 42231 42232 42233 42234 42235 42236 42237 42238 42239 42240 42241 42242 42243 42244 42245 42246 42247 42248 42249 42250 42251 42252 42253 42254 42255 42256 42257 42258 42259 42260 42261 42262 42263 42264 42265 42266 42267 42268 42269 42270 42271 42272 42273 42274 42275 42276 42277 42278 42279 42280 42281 42282 42283 42284 42285 42286 42287 42288 42289 42290 42291 42292 42293 42294 42295 42296 42297 42298 42299 42300 42301 42302 42303 42304 42305 42306 42307 42308 42309 42310 42311 42312 42313 42314 42315 42316 42317 42318 42319 42320 42321 42322 42323 42324 42325 42326 42327 42328 42329 42330 42331 42332 42333 42334 42335 42336 42337 42338 42339 42340 42341 42342 42343 42344 42345 42346 42347 42348 42349 42350 42351 42352 42353 42354 42355 42356 42357 42358 42359 42360 42361 42362 42363 42364 42365 42366 42367 42368 42369 42370 42371 42372 42373 42374 42375 42376 42377 42378 42379 42380 42381 42382 42383 42384 42385 42386 42387 42388 42389 42390 42391 42392 42393 42394 42395 42396 42397 42398 42399 42400 42401 42402 42403 42404 42405 42406 42407 42408 42409 42410 42411 42412 42413 42414 42415 42416 42417 42418 42419 42420 42421 42422 42423 42424 42425 42426 42427 42428 42429 42430 42431 42432 42433 42434 42435 42436 42437 42438 42439 42440 42441 42442 42443 42444 42445 42446 42447 42448 42449 42450 42451 42452 42453 42454 42455 42456 42457 42458 42459 42460 42461 42462 42463 42464 42465 42466 42467 42468 42469 42470 42471 42472 42473 42474 42475 42476 42477 42478 42479 42480 42481 42482 42483 42484 42485 42486 42487 42488 42489 42490 42491 42492 42493 42494 42495 42496 42497 42498 42499 42500 42501 42502 42503 42504 42505 42506 42507 42508 42509 42510 42511 42512 42513 42514 42515 42516 42517 42518 42519 42520 42521 42522 42523 42524 42525 42526 42527 42528 42529 42530 42531 42532 42533 42534 42535 42536 42537 42538 42539 42540 42541 42542 42543 42544 42545 42546 42547 42548 42549 42550 42551 42552 42553 42554 42555 42556 42557 42558 42559 42560 42561 42562 42563 42564 42565 42566 42567 42568 42569 42570 42571 42572 42573 42574 42575 42576 42577 42578 42579 42580 42581 42582 42583 42584 42585 42586 42587 42588 42589 42590 42591 42592 42593 42594 42595 42596 42597 42598 42599 42600 42601 42602 42603 42604 42605 42606 42607 42608 42609 42610 42611 42612 42613 42614 42615 42616 42617 42618 42619 42620 42621 42622 42623 42624 42625 42626 42627 42628 42629 42630 42631 42632 42633 42634 42635 42636 42637 42638 42639 42640 42641 42642 42643 42644 42645 42646 42647 42648 42649 42650 42651 42652 42653 42654 42655 42656 42657 42658 42659 42660 42661 42662 42663 42664 42665 42666 42667 42668 42669 42670 42671 42672 42673 42674 42675 42676 42677 42678 42679 42680 42681 42682 42683 42684 42685 42686 42687 42688 42689 42690 42691 42692 42693 42694 42695 42696 42697 42698 42699 42700 42701 42702 42703 42704 42705 42706 42707 42708 42709 42710 42711 42712 42713 42714 42715 42716 42717 42718 42719 42720 42721 42722 42723 42724 42725 42726 42727 42728 42729 42730 42731 42732 42733 42734 42735 42736 42737 42738 42739 42740 42741 42742 42743 42744 42745 42746 42747 42748 42749 42750 42751 42752 42753 42754 42755 42756 42757 42758 42759 42760 42761 42762 42763 42764 42765 42766 42767 42768 42769 42770 42771 42772 42773 42774 42775 42776 42777 42778 42779 42780 42781 42782 42783 42784 42785 42786 42787 42788 42789 42790 42791 42792 42793 42794 42795 42796 42797 42798 42799 42800 42801 42802 42803 42804 42805 42806 42807 42808 42809 42810 42811 42812 42813 42814 42815 42816 42817 42818 42819 42820 42821 42822 42823 42824 42825 42826 42827 42828 42829 42830 42831 42832 42833 42834 42835 42836 42837 42838 42839 42840 42841 42842 42843 42844 42845 42846 42847 42848 42849 42850 42851 42852 42853 42854 42855 42856 42857 42858 42859 42860 42861 42862 42863 42864 42865 42866 42867 42868 42869 42870 42871 42872 42873 42874 42875 42876 42877 42878 42879 42880 42881 42882 42883 42884 42885 42886 42887 42888 42889 42890 42891 42892 42893 42894 42895 42896 42897 42898 42899 42900 42901 42902 42903 42904 42905 42906 42907 42908 42909 42910 42911 42912 42913 42914 42915 42916 42917 42918 42919 42920 42921 42922 42923 42924 42925 42926 42927 42928 42929 42930 42931 42932 42933 42934 42935 42936 42937 42938 42939 42940 42941 42942 42943 42944 42945 42946 42947 42948 42949 42950 42951 42952 42953 42954 42955 42956 42957 42958 42959 42960 42961 42962 42963 42964 42965 42966 42967 42968 42969 42970 42971 42972 42973 42974 42975 42976 42977 42978 42979 42980 42981 42982 42983 42984 42985 42986 42987 42988 42989 42990 42991 42992 42993 42994 42995 42996 42997 42998 42999 43000 43001 43002 43003 43004 43005 43006 43007 43008 43009 43010 43011 43012 43013 43014 43015 43016 43017 43018 43019 43020 43021 43022 43023 43024 43025 43026 43027 43028 43029 43030 43031 43032 43033 43034 43035 43036 43037 43038 43039 43040 43041 43042 43043 43044 43045 43046 43047 43048 43049 43050 43051 43052 43053 43054 43055 43056 43057 43058 43059 43060 43061 43062 43063 43064 43065 43066 43067 43068 43069 43070 43071 43072 43073 43074 43075 43076 43077 43078 43079 43080 43081 43082 43083 43084 43085 43086 43087 43088 43089 43090 43091 43092 43093 43094 43095 43096 43097 43098 43099 43100 43101 43102 43103 43104 43105 43106 43107 43108 43109 43110 43111 43112 43113 43114 43115 43116 43117 43118 43119 43120 43121 43122 43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 43165 43166 43167 43168 43169 43170 43171 43172 43173 43174 43175 43176 43177 43178 43179 43180 43181 43182 43183 43184 43185 43186 43187 43188 43189 43190 43191 43192 43193 43194 43195 43196 43197 43198 43199 43200 43201 43202 43203 43204 43205 43206 43207 43208 43209 43210 43211 43212 43213 43214 43215 43216 43217 43218 43219 43220 43221 43222 43223 43224 43225 43226 43227 43228 43229 43230 43231 43232 43233 43234 43235 43236 43237 43238 43239 43240 43241 43242 43243 43244 43245 43246 43247 43248 43249 43250 43251 43252 43253 43254 43255 43256 43257 43258 43259 43260 43261 43262 43263 43264 43265 43266 43267 43268 43269 43270 43271 43272 43273 43274 43275 43276 43277 43278 43279 43280 43281 43282 43283 43284 43285 43286 43287 43288 43289 43290 43291 43292 43293 43294 43295 43296 43297 43298 43299 43300 43301 43302 43303 43304 43305 43306 43307 43308 43309 43310 43311 43312 43313 43314 43315 43316 43317 43318 43319 43320 43321 43322 43323 43324 43325 43326 43327 43328 43329 43330 43331 43332 43333 43334 43335 43336 43337 43338 43339 43340 43341 43342 43343 43344 43345 43346 43347 43348 43349 43350 43351 43352 43353 43354 43355 43356 43357 43358 43359 43360 43361 43362 43363 43364 43365 43366 43367 43368 43369 43370 43371 43372 43373 43374 43375 43376 43377 43378 43379 43380 43381 43382 43383 43384 43385 43386 43387 43388 43389 43390 43391 43392 43393 43394 43395 43396 43397 43398 43399 43400 43401 43402 43403 43404 43405 43406 43407 43408 43409 43410 43411 43412 43413 43414 43415 43416 43417 43418 43419 43420 43421 43422 43423 43424 43425 43426 43427 43428 43429 43430 43431 43432 43433 43434 43435 43436 43437 43438 43439 43440 43441 43442 43443 43444 43445 43446 43447 43448 43449 43450 43451 43452 43453 43454 43455 43456 43457 43458 43459 43460 43461 43462 43463 43464 43465 43466 43467 43468 43469 43470 43471 43472 43473 43474 43475 43476 43477 43478 43479 43480 43481 43482 43483 43484 43485 43486 43487 43488 43489 43490 43491 43492 43493 43494 43495 43496 43497 43498 43499 43500 43501 43502 43503 43504 43505 43506 43507 43508 43509 43510 43511 43512 43513 43514 43515 43516 43517 43518 43519 43520 43521 43522 43523 43524 43525 43526 43527 43528 43529 43530 43531 43532 43533 43534 43535 43536 43537 43538 43539 43540 43541 43542 43543 43544 43545 43546 43547 43548 43549 43550 43551 43552 43553 43554 43555 43556 43557 43558 43559 43560 43561 43562 43563 43564 43565 43566 43567 43568 43569 43570 43571 43572 43573 43574 43575 43576 43577 43578 43579 43580 43581 43582 43583 43584 43585 43586 43587 43588 43589 43590 43591 43592 43593 43594 43595 43596 43597 43598 43599 43600 43601 43602 43603 43604 43605 43606 43607 43608 43609 43610 43611 43612 43613 43614 43615 43616 43617 43618 43619 43620 43621 43622 43623 43624 43625 43626 43627 43628 43629 43630 43631 43632 43633 43634 43635 43636 43637 43638 43639 43640 43641 43642 43643 43644 43645 43646 43647 43648 43649 43650 43651 43652 43653 43654 43655 43656 43657 43658 43659 43660 43661 43662 43663 43664 43665 43666 43667 43668 43669 43670 43671 43672 43673 43674 43675 43676 43677 43678 43679 43680 43681 43682 43683 43684 43685 43686 43687 43688 43689 43690 43691 43692 43693 43694 43695 43696 43697 43698 43699 43700 43701 43702 43703 43704 43705 43706 43707 43708 43709 43710 43711 43712 43713 43714 43715 43716 43717 43718 43719 43720 43721 43722 43723 43724 43725 43726 43727 43728 43729 43730 43731 43732 43733 43734 43735 43736 43737 43738 43739 43740 43741 43742 43743 43744 43745 43746 43747 43748 43749 43750 43751 43752 43753 43754 43755 43756 43757 43758 43759 43760 43761 43762 43763 43764 43765 43766 43767 43768 43769 43770 43771 43772 43773 43774 43775 43776 43777 43778 43779 43780 43781 43782 43783 43784 43785 43786 43787 43788 43789 43790 43791 43792 43793 43794 43795 43796 43797 43798 43799 43800 43801 43802 43803 43804 43805 43806 43807 43808 43809 43810 43811 43812 43813 43814 43815 43816 43817 43818 43819 43820 43821 43822 43823 43824 43825 43826 43827 43828 43829 43830 43831 43832 43833 43834 43835 43836 43837 43838 43839 43840 43841 43842 43843 43844 43845 43846 43847 43848 43849 43850 43851 43852 43853 43854 43855 43856 43857 43858 43859 43860 43861 43862 43863 43864 43865 43866 43867 43868 43869 43870 43871 43872 43873 43874 43875 43876 43877 43878 43879 43880 43881 43882 43883 43884 43885 43886 43887 43888 43889 43890 43891 43892 43893 43894 43895 43896 43897 43898 43899 43900 43901 43902 43903 43904 43905 43906 43907 43908 43909 43910 43911 43912 43913 43914 43915 43916 43917 43918 43919 43920 43921 43922 43923 43924 43925 43926 43927 43928 43929 43930 43931 43932 43933 43934 43935 43936 43937 43938 43939 43940 43941 43942 43943 43944 43945 43946 43947 43948 43949 43950 43951 43952 43953 43954 43955 43956 43957 43958 43959 43960 43961 43962 43963 43964 43965 43966 43967 43968 43969 43970 43971 43972 43973 43974 43975 43976 43977 43978 43979 43980 43981 43982 43983 43984 43985 43986 43987 43988 43989 43990 43991 43992 43993 43994 43995 43996 43997 43998 43999 44000 44001 44002 44003 44004 44005 44006 44007 44008 44009 44010 44011 44012 44013 44014 44015 44016 44017 44018 44019 44020 44021 44022 44023 44024 44025 44026 44027 44028 44029 44030 44031 44032 44033 44034 44035 44036 44037 44038 44039 44040 44041 44042 44043 44044 44045 44046 44047 44048 44049 44050 44051 44052 44053 44054 44055 44056 44057 44058 44059 44060 44061 44062 44063 44064 44065 44066 44067 44068 44069 44070 44071 44072 44073 44074 44075 44076 44077 44078 44079 44080 44081 44082 44083 44084 44085 44086 44087 44088 44089 44090 44091 44092 44093 44094 44095 44096 44097 44098 44099 44100 44101 44102 44103 44104 44105 44106 44107 44108 44109 44110 44111 44112 44113 44114 44115 44116 44117 44118 44119 44120 44121 44122 44123 44124 44125 44126 44127 44128 44129 44130 44131 44132 44133 44134 44135 44136 44137 44138 44139 44140 44141 44142 44143 44144 44145 44146 44147 44148 44149 44150 44151 44152 44153 44154 44155 44156 44157 44158 44159 44160 44161 44162 44163 44164 44165 44166 44167 44168 44169 44170 44171 44172 44173 44174 44175 44176 44177 44178 44179 44180 44181 44182 44183 44184 44185 44186 44187 44188 44189 44190 44191 44192 44193 44194 44195 44196 44197 44198 44199 44200 44201 44202 44203 44204 44205 44206 44207 44208 44209 44210 44211 44212 44213 44214 44215 44216 44217 44218 44219 44220 44221 44222 44223 44224 44225 44226 44227 44228 44229 44230 44231 44232 44233 44234 44235 44236 44237 44238 44239 44240 44241 44242 44243 44244 44245 44246 44247 44248 44249 44250 44251 44252 44253 44254 44255 44256 44257 44258 44259 44260 44261 44262 44263 44264 44265 44266 44267 44268 44269 44270 44271 44272 44273 44274 44275 44276 44277 44278 44279 44280 44281 44282 44283 44284 44285 44286 44287 44288 44289 44290 44291 44292 44293 44294 44295 44296 44297 44298 44299 44300 44301 44302 44303 44304 44305 44306 44307 44308 44309 44310 44311 44312 44313 44314 44315 44316 44317 44318 44319 44320 44321 44322 44323 44324 44325 44326 44327 44328 44329 44330 44331 44332 44333 44334 44335 44336 44337 44338 44339 44340 44341 44342 44343 44344 44345 44346 44347 44348 44349 44350 44351 44352 44353 44354 44355 44356 44357 44358 44359 44360 44361 44362 44363 44364 44365 44366 44367 44368 44369 44370 44371 44372 44373 44374 44375 44376 44377 44378 44379 44380 44381 44382 44383 44384 44385 44386 44387 44388 44389 44390 44391 44392 44393 44394 44395 44396 44397 44398 44399 44400 44401 44402 44403 44404 44405 44406 44407 44408 44409 44410 44411 44412 44413 44414 44415 44416 44417 44418 44419 44420 44421 44422 44423 44424 44425 44426 44427 44428 44429 44430 44431 44432 44433 44434 44435 44436 44437 44438 44439 44440 44441 44442 44443 44444 44445 44446 44447 44448 44449 44450 44451 44452 44453 44454 44455 44456 44457 44458 44459 44460 44461 44462 44463 44464 44465 44466 44467 44468 44469 44470 44471 44472 44473 44474 44475 44476 44477 44478 44479 44480 44481 44482 44483 44484 44485 44486 44487 44488 44489 44490 44491 44492 44493 44494 44495 44496 44497 44498 44499 44500 44501 44502 44503 44504 44505 44506 44507 44508 44509 44510 44511 44512 44513 44514 44515 44516 44517 44518 44519 44520 44521 44522 44523 44524 44525 44526 44527 44528 44529 44530 44531 44532 44533 44534 44535 44536 44537 44538 44539 44540 44541 44542 44543 44544 44545 44546 44547 44548 44549 44550 44551 44552 44553 44554 44555 44556 44557 44558 44559 44560 44561 44562 44563 44564 44565 44566 44567 44568 44569 44570 44571 44572 44573 44574 44575 44576 44577 44578 44579 44580 44581 44582 44583 44584 44585 44586 44587 44588 44589 44590 44591 44592 44593 44594 44595 44596 44597 44598 44599 44600 44601 44602 44603 44604 44605 44606 44607 44608 44609 44610 44611 44612 44613 44614 44615 44616 44617 44618 44619 44620 44621 44622 44623 44624 44625 44626 44627 44628 44629 44630 44631 44632 44633 44634 44635 44636 44637 44638 44639 44640 44641 44642 44643 44644 44645 44646 44647 44648 44649 44650 44651 44652 44653 44654 44655 44656 44657 44658 44659 44660 44661 44662 44663 44664 44665 44666 44667 44668 44669 44670 44671 44672 44673 44674 44675 44676 44677 44678 44679 44680 44681 44682 44683 44684 44685 44686 44687 44688 44689 44690 44691 44692 44693 44694 44695 44696 44697 44698 44699 44700 44701 44702 44703 44704 44705 44706 44707 44708 44709 44710 44711 44712 44713 44714 44715 44716 44717 44718 44719 44720 44721 44722 44723 44724 44725 44726 44727 44728 44729 44730 44731 44732 44733 44734 44735 44736 44737 44738 44739 44740 44741 44742 44743 44744 44745 44746 44747 44748 44749 44750 44751 44752 44753 44754 44755 44756 44757 44758 44759 44760 44761 44762 44763 44764 44765 44766 44767 44768 44769 44770 44771 44772 44773 44774 44775 44776 44777 44778 44779 44780 44781 44782 44783 44784 44785 44786 44787 44788 44789 44790 44791 44792 44793 44794 44795 44796 44797 44798 44799 44800 44801 44802 44803 44804 44805 44806 44807 44808 44809 44810 44811 44812 44813 44814 44815 44816 44817 44818 44819 44820 44821 44822 44823 44824 44825 44826 44827 44828 44829 44830 44831 44832 44833 44834 44835 44836 44837 44838 44839 44840 44841 44842 44843 44844 44845 44846 44847 44848 44849 44850 44851 44852 44853 44854 44855 44856 44857 44858 44859 44860 44861 44862 44863 44864 44865 44866 44867 44868 44869 44870 44871 44872 44873 44874 44875 44876 44877 44878 44879 44880 44881 44882 44883 44884 44885 44886 44887 44888 44889 44890 44891 44892 44893 44894 44895 44896 44897 44898 44899 44900 44901 44902 44903 44904 44905 44906 44907 44908 44909 44910 44911 44912 44913 44914 44915 44916 44917 44918 44919 44920 44921 44922 44923 44924 44925 44926 44927 44928 44929 44930 44931 44932 44933 44934 44935 44936 44937 44938 44939 44940 44941 44942 44943 44944 44945 44946 44947 44948 44949 44950 44951 44952 44953 44954 44955 44956 44957 44958 44959 44960 44961 44962 44963 44964 44965 44966 44967 44968 44969 44970 44971 44972 44973 44974 44975 44976 44977 44978 44979 44980 44981 44982 44983 44984 44985 44986 44987 44988 44989 44990 44991 44992 44993 44994 44995 44996 44997 44998 44999 45000 45001 45002 45003 45004 45005 45006 45007 45008 45009 45010 45011 45012 45013 45014 45015 45016 45017 45018 45019 45020 45021 45022 45023 45024 45025 45026 45027 45028 45029 45030 45031 45032 45033 45034 45035 45036 45037 45038 45039 45040 45041 45042 45043 45044 45045 45046 45047 45048 45049 45050 45051 45052 45053 45054 45055 45056 45057 45058 45059 45060 45061 45062 45063 45064 45065 45066 45067 45068 45069 45070 45071 45072 45073 45074 45075 45076 45077 45078 45079 45080 45081 45082 45083 45084 45085 45086 45087 45088 45089 45090 45091 45092 45093 45094 45095 45096 45097 45098 45099 45100 45101 45102 45103 45104 45105 45106 45107 45108 45109 45110 45111 45112 45113 45114 45115 45116 45117 45118 45119 45120 45121 45122 45123 45124 45125 45126 45127 45128 45129 45130 45131 45132 45133 45134 45135 45136 45137 45138 45139 45140 45141 45142 45143 45144 45145 45146 45147 45148 45149 45150 45151 45152 45153 45154 45155 45156 45157 45158 45159 45160 45161 45162 45163 45164 45165 45166 45167 45168 45169 45170 45171 45172 45173 45174 45175 45176 45177 45178 45179 45180 45181 45182 45183 45184 45185 45186 45187 45188 45189 45190 45191 45192 45193 45194 45195 45196 45197 45198 45199 45200 45201 45202 45203 45204 45205 45206 45207 45208 45209 45210 45211 45212 45213 45214 45215 45216 45217 45218 45219 45220 45221 45222 45223 45224 45225 45226 45227 45228 45229 45230 45231 45232 45233 45234 45235 45236 45237 45238 45239 45240 45241 45242 45243 45244 45245 45246 45247 45248 45249 45250 45251 45252 45253 45254 45255 45256 45257 45258 45259 45260 45261 45262 45263 45264 45265 45266 45267 45268 45269 45270 45271 45272 45273 45274 45275 45276 45277 45278 45279 45280 45281 45282 45283 45284 45285 45286 45287 45288 45289 45290 45291 45292 45293 45294 45295 45296 45297 45298 45299 45300 45301 45302 45303 45304 45305 45306 45307 45308 45309 45310 45311 45312 45313 45314 45315 45316 45317 45318 45319 45320 45321 45322 45323 45324 45325 45326 45327 45328 45329 45330 45331 45332 45333 45334 45335 45336 45337 45338 45339 45340 45341 45342 45343 45344 45345 45346 45347 45348 45349 45350 45351 45352 45353 45354 45355 45356 45357 45358 45359 45360 45361 45362 45363 45364 45365 45366 45367 45368 45369 45370 45371 45372 45373 45374 45375 45376 45377 45378 45379 45380 45381 45382 45383 45384 45385 45386 45387 45388 45389 45390 45391 45392 45393 45394 45395 45396 45397 45398 45399 45400 45401 45402 45403 45404 45405 45406 45407 45408 45409 45410 45411 45412 45413 45414 45415 45416 45417 45418 45419 45420 45421 45422 45423 45424 45425 45426 45427 45428 45429 45430 45431 45432 45433 45434 45435 45436 45437 45438 45439 45440 45441 45442 45443 45444 45445 45446 45447 45448 45449 45450 45451 45452 45453 45454 45455 45456 45457 45458 45459 45460 45461 45462 45463 45464 45465 45466 45467 45468 45469 45470 45471 45472 45473 45474 45475 45476 45477 45478 45479 45480 45481 45482 45483 45484 45485 45486 45487 45488 45489 45490 45491 45492 45493 45494 45495 45496 45497 45498 45499 45500 45501 45502 45503 45504 45505 45506 45507 45508 45509 45510 45511 45512 45513 45514 45515 45516 45517 45518 45519 45520 45521 45522 45523 45524 45525 45526 45527 45528 45529 45530 45531 45532 45533 45534 45535 45536 45537 45538 45539 45540 45541 45542 45543 45544 45545 45546 45547 45548 45549 45550 45551 45552 45553 45554 45555 45556 45557 45558 45559 45560 45561 45562 45563 45564 45565 45566 45567 45568 45569 45570 45571 45572 45573 45574 45575 45576 45577 45578 45579 45580 45581 45582 45583 45584 45585 45586 45587 45588 45589 45590 45591 45592 45593 45594 45595 45596 45597 45598 45599 45600 45601 45602 45603 45604 45605 45606 45607 45608 45609 45610 45611 45612 45613 45614 45615 45616 45617 45618 45619 45620 45621 45622 45623 45624 45625 45626 45627 45628 45629 45630 45631 45632 45633 45634 45635 45636 45637 45638 45639 45640 45641 45642 45643 45644 45645 45646 45647 45648 45649 45650 45651 45652 45653 45654 45655 45656 45657 45658 45659 45660 45661 45662 45663 45664 45665 45666 45667 45668 45669 45670 45671 45672 45673 45674 45675 45676 45677 45678 45679 45680 45681 45682 45683 45684 45685 45686 45687 45688 45689 45690 45691 45692 45693 45694 45695 45696 45697 45698 45699 45700 45701 45702 45703 45704 45705 45706 45707 45708 45709 45710 45711 45712 45713 45714 45715 45716 45717 45718 45719 45720 45721 45722 45723 45724 45725 45726 45727 45728 45729 45730 45731 45732 45733 45734 45735 45736 45737 45738 45739 45740 45741 45742 45743 45744 45745 45746 45747 45748 45749 45750 45751 45752 45753 45754 45755 45756 45757 45758 45759 45760 45761 45762 45763 45764 45765 45766 45767 45768 45769 45770 45771 45772 45773 45774 45775 45776 45777 45778 45779 45780 45781 45782 45783 45784 45785 45786 45787 45788 45789 45790 45791 45792 45793 45794 45795 45796 45797 45798 45799 45800 45801 45802 45803 45804 45805 45806 45807 45808 45809 45810 45811 45812 45813 45814 45815 45816 45817 45818 45819 45820 45821 45822 45823 45824 45825 45826 45827 45828 45829 45830 45831 45832 45833 45834 45835 45836 45837 45838 45839 45840 45841 45842 45843 45844 45845 45846 45847 45848 45849 45850 45851 45852 45853 45854 45855 45856 45857 45858 45859 45860 45861 45862 45863 45864 45865 45866 45867 45868 45869 45870 45871 45872 45873 45874 45875 45876 45877 45878 45879 45880 45881 45882 45883 45884 45885 45886 45887 45888 45889 45890 45891 45892 45893 45894 45895 45896 45897 45898 45899 45900 45901 45902 45903 45904 45905 45906 45907 45908 45909 45910 45911 45912 45913 45914 45915 45916 45917 45918 45919 45920 45921 45922 45923 45924 45925 45926 45927 45928 45929 45930 45931 45932 45933 45934 45935 45936 45937 45938 45939 45940 45941 45942 45943 45944 45945 45946 45947 45948 45949 45950 45951 45952 45953 45954 45955 45956 45957 45958 45959 45960 45961 45962 45963 45964 45965 45966 45967 45968 45969 45970 45971 45972 45973 45974 45975 45976 45977 45978 45979 45980 45981 45982 45983 45984 45985 45986 45987 45988 45989 45990 45991 45992 45993 45994 45995 45996 45997 45998 45999 46000 46001 46002 46003 46004 46005 46006 46007 46008 46009 46010 46011 46012 46013 46014 46015 46016 46017 46018 46019 46020 46021 46022 46023 46024 46025 46026 46027 46028 46029 46030 46031 46032 46033 46034 46035 46036 46037 46038 46039 46040 46041 46042 46043 46044 46045 46046 46047 46048 46049 46050 46051 46052 46053 46054 46055 46056 46057 46058 46059 46060 46061 46062 46063 46064 46065 46066 46067 46068 46069 46070 46071 46072 46073 46074 46075 46076 46077 46078 46079 46080 46081 46082 46083 46084 46085 46086 46087 46088 46089 46090 46091 46092 46093 46094 46095 46096 46097 46098 46099 46100 46101 46102 46103 46104 46105 46106 46107 46108 46109 46110 46111 46112 46113 46114 46115 46116 46117 46118 46119 46120 46121 46122 46123 46124 46125 46126 46127 46128 46129 46130 46131 46132 46133 46134 46135 46136 46137 46138 46139 46140 46141 46142 46143 46144 46145 46146 46147 46148 46149 46150 46151 46152 46153 46154 46155 46156 46157 46158 46159 46160 46161 46162 46163 46164 46165 46166 46167 46168 46169 46170 46171 46172 46173 46174 46175 46176 46177 46178 46179 46180 46181 46182 46183 46184 46185 46186 46187 46188 46189 46190 46191 46192 46193 46194 46195 46196 46197 46198 46199 46200 46201 46202 46203 46204 46205 46206 46207 46208 46209 46210 46211 46212 46213 46214 46215 46216 46217 46218 46219 46220 46221 46222 46223 46224 46225 46226 46227 46228 46229 46230 46231 46232 46233 46234 46235 46236 46237 46238 46239 46240 46241 46242 46243 46244 46245 46246 46247 46248 46249 46250 46251 46252 46253 46254 46255 46256 46257 46258 46259 46260 46261 46262 46263 46264 46265 46266 46267 46268 46269 46270 46271 46272 46273 46274 46275 46276 46277 46278 46279 46280 46281 46282 46283 46284 46285 46286 46287 46288 46289 46290 46291 46292 46293 46294 46295 46296 46297 46298 46299 46300 46301 46302 46303 46304 46305 46306 46307 46308 46309 46310 46311 46312 46313 46314 46315 46316 46317 46318 46319 46320 46321 46322 46323 46324 46325 46326 46327 46328 46329 46330 46331 46332 46333 46334 46335 46336 46337 46338 46339 46340 46341 46342 46343 46344 46345 46346 46347 46348 46349 46350 46351 46352 46353 46354 46355 46356 46357 46358 46359 46360 46361 46362 46363 46364 46365 46366 46367 46368 46369 46370 46371 46372 46373 46374 46375 46376 46377 46378 46379 46380 46381 46382 46383 46384 46385 46386 46387 46388 46389 46390 46391 46392 46393 46394 46395 46396 46397 46398 46399 46400 46401 46402 46403 46404 46405 46406 46407 46408 46409 46410 46411 46412 46413 46414 46415 46416 46417 46418 46419 46420 46421 46422 46423 46424 46425 46426 46427 46428 46429 46430 46431 46432 46433 46434 46435 46436 46437 46438 46439 46440 46441 46442 46443 46444 46445 46446 46447 46448 46449 46450 46451 46452 46453 46454 46455 46456 46457 46458 46459 46460 46461 46462 46463 46464 46465 46466 46467 46468 46469 46470 46471 46472 46473 46474 46475 46476 46477 46478 46479 46480 46481 46482 46483 46484 46485 46486 46487 46488 46489 46490 46491 46492 46493 46494 46495 46496 46497 46498 46499 46500 46501 46502 46503 46504 46505 46506 46507 46508 46509 46510 46511 46512 46513 46514 46515 46516 46517 46518 46519 46520 46521 46522 46523 46524 46525 46526 46527 46528 46529 46530 46531 46532 46533 46534 46535 46536 46537 46538 46539 46540 46541 46542 46543 46544 46545 46546 46547 46548 46549 46550 46551 46552 46553 46554 46555 46556 46557 46558 46559 46560 46561 46562 46563 46564 46565 46566 46567 46568 46569 46570 46571 46572 46573 46574 46575 46576 46577 46578 46579 46580 46581 46582 46583 46584 46585 46586 46587 46588 46589 46590 46591 46592 46593 46594 46595 46596 46597 46598 46599 46600 46601 46602 46603 46604 46605 46606 46607 46608 46609 46610 46611 46612 46613 46614 46615 46616 46617 46618 46619 46620 46621 46622 46623 46624 46625 46626 46627 46628 46629 46630 46631 46632 46633 46634 46635 46636 46637 46638 46639 46640 46641 46642 46643 46644 46645 46646 46647 46648 46649 46650 46651 46652 46653 46654 46655 46656 46657 46658 46659 46660 46661 46662 46663 46664 46665 46666 46667 46668 46669 46670 46671 46672 46673 46674 46675 46676 46677 46678 46679 46680 46681 46682 46683 46684 46685 46686 46687 46688 46689 46690 46691 46692 46693 46694 46695 46696 46697 46698 46699 46700 46701 46702 46703 46704 46705 46706 46707 46708 46709 46710 46711 46712 46713 46714 46715 46716 46717 46718 46719 46720 46721 46722 46723 46724 46725 46726 46727 46728 46729 46730 46731 46732 46733 46734 46735 46736 46737 46738 46739 46740 46741 46742 46743 46744 46745 46746 46747 46748 46749 46750 46751 46752 46753 46754 46755 46756 46757 46758 46759 46760 46761 46762 46763 46764 46765 46766 46767 46768 46769 46770 46771 46772 46773 46774 46775 46776 46777 46778 46779 46780 46781 46782 46783 46784 46785 46786 46787 46788 46789 46790 46791 46792 46793 46794 46795 46796 46797 46798 46799 46800 46801 46802 46803 46804 46805 46806 46807 46808 46809 46810 46811 46812 46813 46814 46815 46816 46817 46818 46819 46820 46821 46822 46823 46824 46825 46826 46827 46828 46829 46830 46831 46832 46833 46834 46835 46836 46837 46838 46839 46840 46841 46842 46843 46844 46845 46846 46847 46848 46849 46850 46851 46852 46853 46854 46855 46856 46857 46858 46859 46860 46861 46862 46863 46864 46865 46866 46867 46868 46869 46870 46871 46872 46873 46874 46875 46876 46877 46878 46879 46880 46881 46882 46883 46884 46885 46886 46887 46888 46889 46890 46891 46892 46893 46894 46895 46896 46897 46898 46899 46900 46901 46902 46903 46904 46905 46906 46907 46908 46909 46910 46911 46912 46913 46914 46915 46916 46917 46918 46919 46920 46921 46922 46923 46924 46925 46926 46927 46928 46929 46930 46931 46932 46933 46934 46935 46936 46937 46938 46939 46940 46941 46942 46943 46944 46945 46946 46947 46948 46949 46950 46951 46952 46953 46954 46955 46956 46957 46958 46959 46960 46961 46962 46963 46964 46965 46966 46967 46968 46969 46970 46971 46972 46973 46974 46975 46976 46977 46978 46979 46980 46981 46982 46983 46984 46985 46986 46987 46988 46989 46990 46991 46992 46993 46994 46995 46996 46997 46998 46999 47000 47001 47002 47003 47004 47005 47006 47007 47008 47009 47010 47011 47012 47013 47014 47015 47016 47017 47018 47019 47020 47021 47022 47023 47024 47025 47026 47027 47028 47029 47030 47031 47032 47033 47034 47035 47036 47037 47038 47039 47040 47041 47042 47043 47044 47045 47046 47047 47048 47049 47050 47051 47052 47053 47054 47055 47056 47057 47058 47059 47060 47061 47062 47063 47064 47065 47066 47067 47068 47069 47070 47071 47072 47073 47074 47075 47076 47077 47078 47079 47080 47081 47082 47083 47084 47085 47086 47087 47088 47089 47090 47091 47092 47093 47094 47095 47096 47097 47098 47099 47100 47101 47102 47103 47104 47105 47106 47107 47108 47109 47110 47111 47112 47113 47114 47115 47116 47117 47118 47119 47120 47121 47122 47123 47124 47125 47126 47127 47128 47129 47130 47131 47132 47133 47134 47135 47136 47137 47138 47139 47140 47141 47142 47143 47144 47145 47146 47147 47148 47149 47150 47151 47152 47153 47154 47155 47156 47157 47158 47159 47160 47161 47162 47163 47164 47165 47166 47167 47168 47169 47170 47171 47172 47173 47174 47175 47176 47177 47178 47179 47180 47181 47182 47183 47184 47185 47186 47187 47188 47189 47190 47191 47192 47193 47194 47195 47196 47197 47198 47199 47200 47201 47202 47203 47204 47205 47206 47207 47208 47209 47210 47211 47212 47213 47214 47215 47216 47217 47218 47219 47220 47221 47222 47223 47224 47225 47226 47227 47228 47229 47230 47231 47232 47233 47234 47235 47236 47237 47238 47239 47240 47241 47242 47243 47244 47245 47246 47247 47248 47249 47250 47251 47252 47253 47254 47255 47256 47257 47258 47259 47260 47261 47262 47263 47264 47265 47266 47267 47268 47269 47270 47271 47272 47273 47274 47275 47276 47277 47278 47279 47280 47281 47282 47283 47284 47285 47286 47287 47288 47289 47290 47291 47292 47293 47294 47295 47296 47297 47298 47299 47300 47301 47302 47303 47304 47305 47306 47307 47308 47309 47310 47311 47312 47313 47314 47315 47316 47317 47318 47319 47320 47321 47322 47323 47324 47325 47326 47327 47328 47329 47330 47331 47332 47333 47334 47335 47336 47337 47338 47339 47340 47341 47342 47343 47344 47345 47346 47347 47348 47349 47350 47351 47352 47353 47354 47355 47356 47357 47358 47359 47360 47361 47362 47363 47364 47365 47366 47367 47368 47369 47370 47371 47372 47373 47374 47375 47376 47377 47378 47379 47380 47381 47382 47383 47384 47385 47386 47387 47388 47389 47390 47391 47392 47393 47394 47395 47396 47397 47398 47399 47400 47401 47402 47403 47404 47405 47406 47407 47408 47409 47410 47411 47412 47413 47414 47415 47416 47417 47418 47419 47420 47421 47422 47423 47424 47425 47426 47427 47428 47429 47430 47431 47432 47433 47434 47435 47436 47437 47438 47439 47440 47441 47442 47443 47444 47445 47446 47447 47448 47449 47450 47451 47452 47453 47454 47455 47456 47457 47458 47459 47460 47461 47462 47463 47464 47465 47466 47467 47468 47469 47470 47471 47472 47473 47474 47475 47476 47477 47478 47479 47480 47481 47482 47483 47484 47485 47486 47487 47488 47489 47490 47491 47492 47493 47494 47495 47496 47497 47498 47499 47500 47501 47502 47503 47504 47505 47506 47507 47508 47509 47510 47511 47512 47513 47514 47515 47516 47517 47518 47519 47520 47521 47522 47523 47524 47525 47526 47527 47528 47529 47530 47531 47532 47533 47534 47535 47536 47537 47538 47539 47540 47541 47542 47543 47544 47545 47546 47547 47548 47549 47550 47551 47552 47553 47554 47555 47556 47557 47558 47559 47560 47561 47562 47563 47564 47565 47566 47567 47568 47569 47570 47571 47572 47573 47574 47575 47576 47577 47578 47579 47580 47581 47582 47583 47584 47585 47586 47587 47588 47589 47590 47591 47592 47593 47594 47595 47596 47597 47598 47599 47600 47601 47602 47603 47604 47605 47606 47607 47608 47609 47610 47611 47612 47613 47614 47615 47616 47617 47618 47619 47620 47621 47622 47623 47624 47625 47626 47627 47628 47629 47630 47631 47632 47633 47634 47635 47636 47637 47638 47639 47640 47641 47642 47643 47644 47645 47646 47647 47648 47649 47650 47651 47652 47653 47654 47655 47656 47657 47658 47659 47660 47661 47662 47663 47664 47665 47666 47667 47668 47669 47670 47671 47672 47673 47674 47675 47676 47677 47678 47679 47680 47681 47682 47683 47684 47685 47686 47687 47688 47689 47690 47691 47692 47693 47694 47695 47696 47697 47698 47699 47700 47701 47702 47703 47704 47705 47706 47707 47708 47709 47710 47711 47712 47713 47714 47715 47716 47717 47718 47719 47720 47721 47722 47723 47724 47725 47726 47727 47728 47729 47730 47731 47732 47733 47734 47735 47736 47737 47738 47739 47740 47741 47742 47743 47744 47745 47746 47747 47748 47749 47750 47751 47752 47753 47754 47755 47756 47757 47758 47759 47760 47761 47762 47763 47764 47765 47766 47767 47768 47769 47770 47771 47772 47773 47774 47775 47776 47777 47778 47779 47780 47781 47782 47783 47784 47785 47786 47787 47788 47789 47790 47791 47792 47793 47794 47795 47796 47797 47798 47799 47800 47801 47802 47803 47804 47805 47806 47807 47808 47809 47810 47811 47812 47813 47814 47815 47816 47817 47818 47819 47820 47821 47822 47823 47824 47825 47826 47827 47828 47829 47830 47831 47832 47833 47834 47835 47836 47837 47838 47839 47840 47841 47842 47843 47844 47845 47846 47847 47848 47849 47850 47851 47852 47853 47854 47855 47856 47857 47858 47859 47860 47861 47862 47863 47864 47865 47866 47867 47868 47869 47870 47871 47872 47873 47874 47875 47876 47877 47878 47879 47880 47881 47882 47883 47884 47885 47886 47887 47888 47889 47890 47891 47892 47893 47894 47895 47896 47897 47898 47899 47900 47901 47902 47903 47904 47905 47906 47907 47908 47909 47910 47911 47912 47913 47914 47915 47916 47917 47918 47919 47920 47921 47922 47923 47924 47925 47926 47927 47928 47929 47930 47931 47932 47933 47934 47935 47936 47937 47938 47939 47940 47941 47942 47943 47944 47945 47946 47947 47948 47949 47950 47951 47952 47953 47954 47955 47956 47957 47958 47959 47960 47961 47962 47963 47964 47965 47966 47967 47968 47969 47970 47971 47972 47973 47974 47975 47976 47977 47978 47979 47980 47981 47982 47983 47984 47985 47986 47987 47988 47989 47990 47991 47992 47993 47994 47995 47996 47997 47998 47999 48000 48001 48002 48003 48004 48005 48006 48007 48008 48009 48010 48011 48012 48013 48014 48015 48016 48017 48018 48019 48020 48021 48022 48023 48024 48025 48026 48027 48028 48029 48030 48031 48032 48033 48034 48035 48036 48037 48038 48039 48040 48041 48042 48043 48044 48045 48046 48047 48048 48049 48050 48051 48052 48053 48054 48055 48056 48057 48058 48059 48060 48061 48062 48063 48064 48065 48066 48067 48068 48069 48070 48071 48072 48073 48074 48075 48076 48077 48078 48079 48080 48081 48082 48083 48084 48085 48086 48087 48088 48089 48090 48091 48092 48093 48094 48095 48096 48097 48098 48099 48100 48101 48102 48103 48104 48105 48106 48107 48108 48109 48110 48111 48112 48113 48114 48115 48116 48117 48118 48119 48120 48121 48122 48123 48124 48125 48126 48127 48128 48129 48130 48131 48132 48133 48134 48135 48136 48137 48138 48139 48140 48141 48142 48143 48144 48145 48146 48147 48148 48149 48150 48151 48152 48153 48154 48155 48156 48157 48158 48159 48160 48161 48162 48163 48164 48165 48166 48167 48168 48169 48170 48171 48172 48173 48174 48175 48176 48177 48178 48179 48180 48181 48182 48183 48184 48185 48186 48187 48188 48189 48190 48191 48192 48193 48194 48195 48196 48197 48198 48199 48200 48201 48202 48203 48204 48205 48206 48207 48208 48209 48210 48211 48212 48213 48214 48215 48216 48217 48218 48219 48220 48221 48222 48223 48224 48225 48226 48227 48228 48229 48230 48231 48232 48233 48234 48235 48236 48237 48238 48239 48240 48241 48242 48243 48244 48245 48246 48247 48248 48249 48250 48251 48252 48253 48254 48255 48256 48257 48258 48259 48260 48261 48262 48263 48264 48265 48266 48267 48268 48269 48270 48271 48272 48273 48274 48275 48276 48277 48278 48279 48280 48281 48282 48283 48284 48285 48286 48287 48288 48289 48290 48291 48292 48293 48294 48295 48296 48297 48298 48299 48300 48301 48302 48303 48304 48305 48306 48307 48308 48309 48310 48311 48312 48313 48314 48315 48316 48317 48318 48319 48320 48321 48322 48323 48324 48325 48326 48327 48328 48329 48330 48331 48332 48333 48334 48335 48336 48337 48338 48339 48340 48341 48342 48343 48344 48345 48346 48347 48348 48349 48350 48351 48352 48353 48354 48355 48356 48357 48358 48359 48360 48361 48362 48363 48364 48365 48366 48367 48368 48369 48370 48371 48372 48373 48374 48375 48376 48377 48378 48379 48380 48381 48382 48383 48384 48385 48386 48387 48388 48389 48390 48391 48392 48393 48394 48395 48396 48397 48398 48399 48400 48401 48402 48403 48404 48405 48406 48407 48408 48409 48410 48411 48412 48413 48414 48415 48416 48417 48418 48419 48420 48421 48422 48423 48424 48425 48426 48427 48428 48429 48430 48431 48432 48433 48434 48435 48436 48437 48438 48439 48440 48441 48442 48443 48444 48445 48446 48447 48448 48449 48450 48451 48452 48453 48454 48455 48456 48457 48458 48459 48460 48461 48462 48463 48464 48465 48466 48467 48468 48469 48470 48471 48472 48473 48474 48475 48476 48477 48478 48479 48480 48481 48482 48483 48484 48485 48486 48487 48488 48489 48490 48491 48492 48493 48494 48495 48496 48497 48498 48499 48500 48501 48502 48503 48504 48505 48506 48507 48508 48509 48510 48511 48512 48513 48514 48515 48516 48517 48518 48519 48520 48521 48522 48523 48524 48525 48526 48527 48528 48529 48530 48531 48532 48533 48534 48535 48536 48537 48538 48539 48540 48541 48542 48543 48544 48545 48546 48547 48548 48549 48550 48551 48552 48553 48554 48555 48556 48557 48558 48559 48560 48561 48562 48563 48564 48565 48566 48567 48568 48569 48570 48571 48572 48573 48574 48575 48576 48577 48578 48579 48580 48581 48582 48583 48584 48585 48586 48587 48588 48589 48590 48591 48592 48593 48594 48595 48596 48597 48598 48599 48600 48601 48602 48603 48604 48605 48606 48607 48608 48609 48610 48611 48612 48613 48614 48615 48616 48617 48618 48619 48620 48621 48622 48623 48624 48625 48626 48627 48628 48629 48630 48631 48632 48633 48634 48635 48636 48637 48638 48639 48640 48641 48642 48643 48644 48645 48646 48647 48648 48649 48650 48651 48652 48653 48654 48655 48656 48657 48658 48659 48660 48661 48662 48663 48664 48665 48666 48667 48668 48669 48670 48671 48672 48673 48674 48675 48676 48677 48678 48679 48680 48681 48682 48683 48684 48685 48686 48687 48688 48689 48690 48691 48692 48693 48694 48695 48696 48697 48698 48699 48700 48701 48702 48703 48704 48705 48706 48707 48708 48709 48710 48711 48712 48713 48714 48715 48716 48717 48718 48719 48720 48721 48722 48723 48724 48725 48726 48727 48728 48729 48730 48731 48732 48733 48734 48735 48736 48737 48738 48739 48740 48741 48742 48743 48744 48745 48746 48747 48748 48749 48750 48751 48752 48753 48754 48755 48756 48757 48758 48759 48760 48761 48762 48763 48764 48765 48766 48767 48768 48769 48770 48771 48772 48773 48774 48775 48776 48777 48778 48779 48780 48781 48782 48783 48784 48785 48786 48787 48788 48789 48790 48791 48792 48793 48794 48795 48796 48797 48798 48799 48800 48801 48802 48803 48804 48805 48806 48807 48808 48809 48810 48811 48812 48813 48814 48815 48816 48817 48818 48819 48820 48821 48822 48823 48824 48825 48826 48827 48828 48829 48830 48831 48832 48833 48834 48835 48836 48837 48838 48839 48840 48841 48842 48843 48844 48845 48846 48847 48848 48849 48850 48851 48852 48853 48854 48855 48856 48857 48858 48859 48860 48861 48862 48863 48864 48865 48866 48867 48868 48869 48870 48871 48872 48873 48874 48875 48876 48877 48878 48879 48880 48881 48882 48883 48884 48885 48886 48887 48888 48889 48890 48891 48892 48893 48894 48895 48896 48897 48898 48899 48900 48901 48902 48903 48904 48905 48906 48907 48908 48909 48910 48911 48912 48913 48914 48915 48916 48917 48918 48919 48920 48921 48922 48923 48924 48925 48926 48927 48928 48929 48930 48931 48932 48933 48934 48935 48936 48937 48938 48939 48940 48941 48942 48943 48944 48945 48946 48947 48948 48949 48950 48951 48952 48953 48954 48955 48956 48957 48958 48959 48960 48961 48962 48963 48964 48965 48966 48967 48968 48969 48970 48971 48972 48973 48974 48975 48976 48977 48978 48979 48980 48981 48982 48983 48984 48985 48986 48987 48988 48989 48990 48991 48992 48993 48994 48995 48996 48997 48998 48999 49000 49001 49002 49003 49004 49005 49006 49007 49008 49009 49010 49011 49012 49013 49014 49015 49016 49017 49018 49019 49020 49021 49022 49023 49024 49025 49026 49027 49028 49029 49030 49031 49032 49033 49034 49035 49036 49037 49038 49039 49040 49041 49042 49043 49044 49045 49046 49047 49048 49049 49050 49051 49052 49053 49054 49055 49056 49057 49058 49059 49060 49061 49062 49063 49064 49065 49066 49067 49068 49069 49070 49071 49072 49073 49074 49075 49076 49077 49078 49079 49080 49081 49082 49083 49084 49085 49086 49087 49088 49089 49090 49091 49092 49093 49094 49095 49096 49097 49098 49099 49100 49101 49102 49103 49104 49105 49106 49107 49108 49109 49110 49111 49112 49113 49114 49115 49116 49117 49118 49119 49120 49121 49122 49123 49124 49125 49126 49127 49128 49129 49130 49131 49132 49133 49134 49135 49136 49137 49138 49139 49140 49141 49142 49143 49144 49145 49146 49147 49148 49149 49150 49151 49152 49153 49154 49155 49156 49157 49158 49159 49160 49161 49162 49163 49164 49165 49166 49167 49168 49169 49170 49171 49172 49173 49174 49175 49176 49177 49178 49179 49180 49181 49182 49183 49184 49185 49186 49187 49188 49189 49190 49191 49192 49193 49194 49195 49196 49197 49198 49199 49200 49201 49202 49203 49204 49205 49206 49207 49208 49209 49210 49211 49212 49213 49214 49215 49216 49217 49218 49219 49220 49221 49222 49223 49224 49225 49226 49227 49228 49229 49230 49231 49232 49233 49234 49235 49236 49237 49238 49239 49240 49241 49242 49243 49244 49245 49246 49247 49248 49249 49250 49251 49252 49253 49254 49255 49256 49257 49258 49259 49260 49261 49262 49263 49264 49265 49266 49267 49268 49269 49270 49271 49272 49273 49274 49275 49276 49277 49278 49279 49280 49281 49282 49283 49284 49285 49286 49287 49288 49289 49290 49291 49292 49293 49294 49295 49296 49297 49298 49299 49300 49301 49302 49303 49304 49305 49306 49307 49308 49309 49310 49311 49312 49313 49314 49315 49316 49317 49318 49319 49320 49321 49322 49323 49324 49325 49326 49327 49328 49329 49330 49331 49332 49333 49334 49335 49336 49337 49338 49339 49340 49341 49342 49343 49344 49345 49346 49347 49348 49349 49350 49351 49352 49353 49354 49355 49356 49357 49358 49359 49360 49361 49362 49363 49364 49365 49366 49367 49368 49369 49370 49371 49372 49373 49374 49375 49376 49377 49378 49379 49380 49381 49382 49383 49384 49385 49386 49387 49388 49389 49390 49391 49392 49393 49394 49395 49396 49397 49398 49399 49400 49401 49402 49403 49404 49405 49406 49407 49408 49409 49410 49411 49412 49413 49414 49415 49416 49417 49418 49419 49420 49421 49422 49423 49424 49425 49426 49427 49428 49429 49430 49431 49432 49433 49434 49435 49436 49437 49438 49439 49440 49441 49442 49443 49444 49445 49446 49447 49448 49449 49450 49451 49452 49453 49454 49455 49456 49457 49458 49459 49460 49461 49462 49463 49464 49465 49466 49467 49468 49469 49470 49471 49472 49473 49474 49475 49476 49477 49478 49479 49480 49481 49482 49483 49484 49485 49486 49487 49488 49489 49490 49491 49492 49493 49494 49495 49496 49497 49498 49499 49500 49501 49502 49503 49504 49505 49506 49507 49508 49509 49510 49511 49512 49513 49514 49515 49516 49517 49518 49519 49520 49521 49522 49523 49524 49525 49526 49527 49528 49529 49530 49531 49532 49533 49534 49535 49536 49537 49538 49539 49540 49541 49542 49543 49544 49545 49546 49547 49548 49549 49550 49551 49552 49553 49554 49555 49556 49557 49558 49559 49560 49561 49562 49563 49564 49565 49566 49567 49568 49569 49570 49571 49572 49573 49574 49575 49576 49577 49578 49579 49580 49581 49582 49583 49584 49585 49586 49587 49588 49589 49590 49591 49592 49593 49594 49595 49596 49597 49598 49599 49600 49601 49602 49603 49604 49605 49606 49607 49608 49609 49610 49611 49612 49613 49614 49615 49616 49617 49618 49619 49620 49621 49622 49623 49624 49625 49626 49627 49628 49629 49630 49631 49632 49633 49634 49635 49636 49637 49638 49639 49640 49641 49642 49643 49644 49645 49646 49647 49648 49649 49650 49651 49652 49653 49654 49655 49656 49657 49658 49659 49660 49661 49662 49663 49664 49665 49666 49667 49668 49669 49670 49671 49672 49673 49674 49675 49676 49677 49678 49679 49680 49681 49682 49683 49684 49685 49686 49687 49688 49689 49690 49691 49692 49693 49694 49695 49696 49697 49698 49699 49700 49701 49702 49703 49704 49705 49706 49707 49708 49709 49710 49711 49712 49713 49714 49715 49716 49717 49718 49719 49720 49721 49722 49723 49724 49725 49726 49727 49728 49729 49730 49731 49732 49733 49734 49735 49736 49737 49738 49739 49740 49741 49742 49743 49744 49745 49746 49747 49748 49749 49750 49751 49752 49753 49754 49755 49756 49757 49758 49759 49760 49761 49762 49763 49764 49765 49766 49767 49768 49769 49770 49771 49772 49773 49774 49775 49776 49777 49778 49779 49780 49781 49782 49783 49784 49785 49786 49787 49788 49789 49790 49791 49792 49793 49794 49795 49796 49797 49798 49799 49800 49801 49802 49803 49804 49805 49806 49807 49808 49809 49810 49811 49812 49813 49814 49815 49816 49817 49818 49819 49820 49821 49822 49823 49824 49825 49826 49827 49828 49829 49830 49831 49832 49833 49834 49835 49836 49837 49838 49839 49840 49841 49842 49843 49844 49845 49846 49847 49848 49849 49850 49851 49852 49853 49854 49855 49856 49857 49858 49859 49860 49861 49862 49863 49864 49865 49866 49867 49868 49869 49870 49871 49872 49873 49874 49875 49876 49877 49878 49879 49880 49881 49882 49883 49884 49885 49886 49887 49888 49889 49890 49891 49892 49893 49894 49895 49896 49897 49898 49899 49900 49901 49902 49903 49904 49905 49906 49907 49908 49909 49910 49911 49912 49913 49914 49915 49916 49917 49918 49919 49920 49921 49922 49923 49924 49925 49926 49927 49928 49929 49930 49931 49932 49933 49934 49935 49936 49937 49938 49939 49940 49941 49942 49943 49944 49945 49946 49947 49948 49949 49950 49951 49952 49953 49954 49955 49956 49957 49958 49959 49960 49961 49962 49963 49964 49965 49966 49967 49968 49969 49970 49971 49972 49973 49974 49975 49976 49977 49978 49979 49980 49981 49982 49983 49984 49985 49986 49987 49988 49989 49990 49991 49992 49993 49994 49995 49996 49997 49998 49999 50000 50001 50002 50003 50004 50005 50006 50007 50008 50009 50010 50011 50012 50013 50014 50015 50016 50017 50018 50019 50020 50021 50022 50023 50024 50025 50026 50027 50028 50029 50030 50031 50032 50033 50034 50035 50036 50037 50038 50039 50040 50041 50042 50043 50044 50045 50046 50047 50048 50049 50050 50051 50052 50053 50054 50055 50056 50057 50058 50059 50060 50061 50062 50063 50064 50065 50066 50067 50068 50069 50070 50071 50072 50073 50074 50075 50076 50077 50078 50079 50080 50081 50082 50083 50084 50085 50086 50087 50088 50089 50090 50091 50092 50093 50094 50095 50096 50097 50098 50099 50100 50101 50102 50103 50104 50105 50106 50107 50108 50109 50110 50111 50112 50113 50114 50115 50116 50117 50118 50119 50120 50121 50122 50123 50124 50125 50126 50127 50128 50129 50130 50131 50132 50133 50134 50135 50136 50137 50138 50139 50140 50141 50142 50143 50144 50145 50146 50147 50148 50149 50150 50151 50152 50153 50154 50155 50156 50157 50158 50159 50160 50161 50162 50163 50164 50165 50166 50167 50168 50169 50170 50171 50172 50173 50174 50175 50176 50177 50178 50179 50180 50181 50182 50183 50184 50185 50186 50187 50188 50189 50190 50191 50192 50193 50194 50195 50196 50197 50198 50199 50200 50201 50202 50203 50204 50205 50206 50207 50208 50209 50210 50211 50212 50213 50214 50215 50216 50217 50218 50219 50220 50221 50222 50223 50224 50225 50226 50227 50228 50229 50230 50231 50232 50233 50234 50235 50236 50237 50238 50239 50240 50241 50242 50243 50244 50245 50246 50247 50248 50249 50250 50251 50252 50253 50254 50255 50256 50257 50258 50259 50260 50261 50262 50263 50264 50265 50266 50267 50268 50269 50270 50271 50272 50273 50274 50275 50276 50277 50278 50279 50280 50281 50282 50283 50284 50285 50286 50287 50288 50289 50290 50291 50292 50293 50294 50295 50296 50297 50298 50299 50300 50301 50302 50303 50304 50305 50306 50307 50308 50309 50310 50311 50312 50313 50314 50315 50316 50317 50318 50319 50320 50321 50322 50323 50324 50325 50326 50327 50328 50329 50330 50331 50332 50333 50334 50335 50336 50337 50338 50339 50340 50341 50342 50343 50344 50345 50346 50347 50348 50349 50350 50351 50352 50353 50354 50355 50356 50357 50358 50359 50360 50361 50362 50363 50364 50365 50366 50367 50368 50369 50370 50371 50372 50373 50374 50375 50376 50377 50378 50379 50380 50381 50382 50383 50384 50385 50386 50387 50388 50389 50390 50391 50392 50393 50394 50395 50396 50397 50398 50399 50400 50401 50402 50403 50404 50405 50406 50407 50408 50409 50410 50411 50412 50413 50414 50415 50416 50417 50418 50419 50420 50421 50422 50423 50424 50425 50426 50427 50428 50429 50430 50431 50432 50433 50434 50435 50436 50437 50438 50439 50440 50441 50442 50443 50444 50445 50446 50447 50448 50449 50450 50451 50452 50453 50454 50455 50456 50457 50458 50459 50460 50461 50462 50463 50464 50465 50466 50467 50468 50469 50470 50471 50472 50473 50474 50475 50476 50477 50478 50479 50480 50481 50482 50483 50484 50485 50486 50487 50488 50489 50490 50491 50492 50493 50494 50495 50496 50497 50498 50499 50500 50501 50502 50503 50504 50505 50506 50507 50508 50509 50510 50511 50512 50513 50514 50515 50516 50517 50518 50519 50520 50521 50522 50523 50524 50525 50526 50527 50528 50529 50530 50531 50532 50533 50534 50535 50536 50537 50538 50539 50540 50541 50542 50543 50544 50545 50546 50547 50548 50549 50550 50551 50552 50553 50554 50555 50556 50557 50558 50559 50560 50561 50562 50563 50564 50565 50566 50567 50568 50569 50570 50571 50572 50573 50574 50575 50576 50577 50578 50579 50580 50581 50582 50583 50584 50585 50586 50587 50588 50589 50590 50591 50592 50593 50594 50595 50596 50597 50598 50599 50600 50601 50602 50603 50604 50605 50606 50607 50608 50609 50610 50611 50612 50613 50614 50615 50616 50617 50618 50619 50620 50621 50622 50623 50624 50625 50626 50627 50628 50629 50630 50631 50632 50633 50634 50635 50636 50637 50638 50639 50640 50641 50642 50643 50644 50645 50646 50647 50648 50649 50650 50651 50652 50653 50654 50655 50656 50657 50658 50659 50660 50661 50662 50663 50664 50665 50666 50667 50668 50669 50670 50671 50672 50673 50674 50675 50676 50677 50678 50679 50680 50681 50682 50683 50684 50685 50686 50687 50688 50689 50690 50691 50692 50693 50694 50695 50696 50697 50698 50699 50700 50701 50702 50703 50704 50705 50706 50707 50708 50709 50710 50711 50712 50713 50714 50715 50716 50717 50718 50719 50720 50721 50722 50723 50724 50725 50726 50727 50728 50729 50730 50731 50732 50733 50734 50735 50736 50737 50738 50739 50740 50741 50742 50743 50744 50745 50746 50747 50748 50749 50750 50751 50752 50753 50754 50755 50756 50757 50758 50759 50760 50761 50762 50763 50764 50765 50766 50767 50768 50769 50770 50771 50772 50773 50774 50775 50776 50777 50778 50779 50780 50781 50782 50783 50784 50785 50786 50787 50788 50789 50790 50791 50792 50793 50794 50795 50796 50797 50798 50799 50800 50801 50802 50803 50804 50805 50806 50807 50808 50809 50810 50811 50812 50813 50814 50815 50816 50817 50818 50819 50820 50821 50822 50823 50824 50825 50826 50827 50828 50829 50830 50831 50832 50833 50834 50835 50836 50837 50838 50839 50840 50841 50842 50843 50844 50845 50846 50847 50848 50849 50850 50851 50852 50853 50854 50855 50856 50857 50858 50859 50860 50861 50862 50863 50864 50865 50866 50867 50868 50869 50870 50871 50872 50873 50874 50875 50876 50877 50878 50879 50880 50881 50882 50883 50884 50885 50886 50887 50888 50889 50890 50891 50892 50893 50894 50895 50896 50897 50898 50899 50900 50901 50902 50903 50904 50905 50906 50907 50908 50909 50910 50911 50912 50913 50914 50915 50916 50917 50918 50919 50920 50921 50922 50923 50924 50925 50926 50927 50928 50929 50930 50931 50932 50933 50934 50935 50936 50937 50938 50939 50940 50941 50942 50943 50944 50945 50946 50947 50948 50949 50950 50951 50952 50953 50954 50955 50956 50957 50958 50959 50960 50961 50962 50963 50964 50965 50966 50967 50968 50969 50970 50971 50972 50973 50974 50975 50976 50977 50978 50979 50980 50981 50982 50983 50984 50985 50986 50987 50988 50989 50990 50991 50992 50993 50994 50995 50996 50997 50998 50999 51000 51001 51002 51003 51004 51005 51006 51007 51008 51009 51010 51011 51012 51013 51014 51015 51016 51017 51018 51019 51020 51021 51022 51023 51024 51025 51026 51027 51028 51029 51030 51031 51032 51033 51034 51035 51036 51037 51038 51039 51040 51041 51042 51043 51044 51045 51046 51047 51048 51049 51050 51051 51052 51053 51054 51055 51056 51057 51058 51059 51060 51061 51062 51063 51064 51065 51066 51067 51068 51069 51070 51071 51072 51073 51074 51075 51076 51077 51078 51079 51080 51081 51082 51083 51084 51085 51086 51087 51088 51089 51090 51091 51092 51093 51094 51095 51096 51097 51098 51099 51100 51101 51102 51103 51104 51105 51106 51107 51108 51109 51110 51111 51112 51113 51114 51115 51116 51117 51118 51119 51120 51121 51122 51123 51124 51125 51126 51127 51128 51129 51130 51131 51132 51133 51134 51135 51136 51137 51138 51139 51140 51141 51142 51143 51144 51145 51146 51147 51148 51149 51150 51151 51152 51153 51154 51155 51156 51157 51158 51159 51160 51161 51162 51163 51164 51165 51166 51167 51168 51169 51170 51171 51172 51173 51174 51175 51176 51177 51178 51179 51180 51181 51182 51183 51184 51185 51186 51187 51188 51189 51190 51191 51192 51193 51194 51195 51196 51197 51198 51199 51200 51201 51202 51203 51204 51205 51206 51207 51208 51209 51210 51211 51212 51213 51214 51215 51216 51217 51218 51219 51220 51221 51222 51223 51224 51225 51226 51227 51228 51229 51230 51231 51232 51233 51234 51235 51236 51237 51238 51239 51240 51241 51242 51243 51244 51245 51246 51247 51248 51249 51250 51251 51252 51253 51254 51255 51256 51257 51258 51259 51260 51261 51262 51263 51264 51265 51266 51267 51268 51269 51270 51271 51272 51273 51274 51275 51276 51277 51278 51279 51280 51281 51282 51283 51284 51285 51286 51287 51288 51289 51290 51291 51292 51293 51294 51295 51296 51297 51298 51299 51300 51301 51302 51303 51304 51305 51306 51307 51308 51309 51310 51311 51312 51313 51314 51315 51316 51317 51318 51319 51320 51321 51322 51323 51324 51325 51326 51327 51328 51329 51330 51331 51332 51333 51334 51335 51336 51337 51338 51339 51340 51341 51342 51343 51344 51345 51346 51347 51348 51349 51350 51351 51352 51353 51354 51355 51356 51357 51358 51359 51360 51361 51362 51363 51364 51365 51366 51367 51368 51369 51370 51371 51372 51373 51374 51375 51376 51377 51378 51379 51380 51381 51382 51383 51384 51385 51386 51387 51388 51389 51390 51391 51392 51393 51394 51395 51396 51397 51398 51399 51400 51401 51402 51403 51404 51405 51406 51407 51408 51409 51410 51411 51412 51413 51414 51415 51416 51417 51418 51419 51420 51421 51422 51423 51424 51425 51426 51427 51428 51429 51430 51431 51432 51433 51434 51435 51436 51437 51438 51439 51440 51441 51442 51443 51444 51445 51446 51447 51448 51449 51450 51451 51452 51453 51454 51455 51456 51457 51458 51459 51460 51461 51462 51463 51464 51465 51466 51467 51468 51469 51470 51471 51472 51473 51474 51475 51476 51477 51478 51479 51480 51481 51482 51483 51484 51485 51486 51487 51488 51489 51490 51491 51492 51493 51494 51495 51496 51497 51498 51499 51500 51501 51502 51503 51504 51505 51506 51507 51508 51509 51510 51511 51512 51513 51514 51515 51516 51517 51518 51519 51520 51521 51522 51523 51524 51525 51526 51527 51528 51529 51530 51531 51532 51533 51534 51535 51536 51537 51538 51539 51540 51541 51542 51543 51544 51545 51546 51547 51548 51549 51550 51551 51552 51553 51554 51555 51556 51557 51558 51559 51560 51561 51562 51563 51564 51565 51566 51567 51568 51569 51570 51571 51572 51573 51574 51575 51576 51577 51578 51579 51580 51581 51582 51583 51584 51585 51586 51587 51588 51589 51590 51591 51592 51593 51594 51595 51596 51597 51598 51599 51600 51601 51602 51603 51604 51605 51606 51607 51608 51609 51610 51611 51612 51613 51614 51615 51616 51617 51618 51619 51620 51621 51622 51623 51624 51625 51626 51627 51628 51629 51630 51631 51632 51633 51634 51635 51636 51637 51638 51639 51640 51641 51642 51643 51644 51645 51646 51647 51648 51649 51650 51651 51652 51653 51654 51655 51656 51657 51658 51659 51660 51661 51662 51663 51664 51665 51666 51667 51668 51669 51670 51671 51672 51673 51674 51675 51676 51677 51678 51679 51680 51681 51682 51683 51684 51685 51686 51687 51688 51689 51690 51691 51692 51693 51694 51695 51696 51697 51698 51699 51700 51701 51702 51703 51704 51705 51706 51707 51708 51709 51710 51711 51712 51713 51714 51715 51716 51717 51718 51719 51720 51721 51722 51723 51724 51725 51726 51727 51728 51729 51730 51731 51732 51733 51734 51735 51736 51737 51738 51739 51740 51741 51742 51743 51744 51745 51746 51747 51748 51749 51750 51751 51752 51753 51754 51755 51756 51757 51758 51759 51760 51761 51762 51763 51764 51765 51766 51767 51768 51769 51770 51771 51772 51773 51774 51775 51776 51777 51778 51779 51780 51781 51782 51783 51784 51785 51786 51787 51788 51789 51790 51791 51792 51793 51794 51795 51796 51797 51798 51799 51800 51801 51802 51803 51804 51805 51806 51807 51808 51809 51810 51811 51812 51813 51814 51815 51816 51817 51818 51819 51820 51821 51822 51823 51824 51825 51826 51827 51828 51829 51830 51831 51832 51833 51834 51835 51836 51837 51838 51839 51840 51841 51842 51843 51844 51845 51846 51847 51848 51849 51850 51851 51852 51853 51854 51855 51856 51857 51858 51859 51860 51861 51862 51863 51864 51865 51866 51867 51868 51869 51870 51871 51872 51873 51874 51875 51876 51877 51878 51879 51880 51881 51882 51883 51884 51885 51886 51887 51888 51889 51890 51891 51892 51893 51894 51895 51896 51897 51898 51899 51900 51901 51902 51903 51904 51905 51906 51907 51908 51909 51910 51911 51912 51913 51914 51915 51916 51917 51918 51919 51920 51921 51922 51923 51924 51925 51926 51927 51928 51929 51930 51931 51932 51933 51934 51935 51936 51937 51938 51939 51940 51941 51942 51943 51944 51945 51946 51947 51948 51949 51950 51951 51952 51953 51954 51955 51956 51957 51958 51959 51960 51961 51962 51963 51964 51965 51966 51967 51968 51969 51970 51971 51972 51973 51974 51975 51976 51977 51978 51979 51980 51981 51982 51983 51984 51985 51986 51987 51988 51989 51990 51991 51992 51993 51994 51995 51996 51997 51998 51999 52000 52001 52002 52003 52004 52005 52006 52007 52008 52009 52010 52011 52012 52013 52014 52015 52016 52017 52018 52019 52020 52021 52022 52023 52024 52025 52026 52027 52028 52029 52030 52031 52032 52033 52034 52035 52036 52037 52038 52039 52040 52041 52042 52043 52044 52045 52046 52047 52048 52049 52050 52051 52052 52053 52054 52055 52056 52057 52058 52059 52060 52061 52062 52063 52064 52065 52066 52067 52068 52069 52070 52071 52072 52073 52074 52075 52076 52077 52078 52079 52080 52081 52082 52083 52084 52085 52086 52087 52088 52089 52090 52091 52092 52093 52094 52095 52096 52097 52098 52099 52100 52101 52102 52103 52104 52105 52106 52107 52108 52109 52110 52111 52112 52113 52114 52115 52116 52117 52118 52119 52120 52121 52122 52123 52124 52125 52126 52127 52128 52129 52130 52131 52132 52133 52134 52135 52136 52137 52138 52139 52140 52141 52142 52143 52144 52145 52146 52147 52148 52149 52150 52151 52152 52153 52154 52155 52156 52157 52158 52159 52160 52161 52162 52163 52164 52165 52166 52167 52168 52169 52170 52171 52172 52173 52174 52175 52176 52177 52178 52179 52180 52181 52182 52183 52184 52185 52186 52187 52188 52189 52190 52191 52192 52193 52194 52195 52196 52197 52198 52199 52200 52201 52202 52203 52204 52205 52206 52207 52208 52209 52210 52211 52212 52213 52214 52215 52216 52217 52218 52219 52220 52221 52222 52223 52224 52225 52226 52227 52228 52229 52230 52231 52232 52233 52234 52235 52236 52237 52238 52239 52240 52241 52242 52243 52244 52245 52246 52247 52248 52249 52250 52251 52252 52253 52254 52255 52256 52257 52258 52259 52260 52261 52262 52263 52264 52265 52266 52267 52268 52269 52270 52271 52272 52273 52274 52275 52276 52277 52278 52279 52280 52281 52282 52283 52284 52285 52286 52287 52288 52289 52290 52291 52292 52293 52294 52295 52296 52297 52298 52299 52300 52301 52302 52303 52304 52305 52306 52307 52308 52309 52310 52311 52312 52313 52314 52315 52316 52317 52318 52319 52320 52321 52322 52323 52324 52325 52326 52327 52328 52329 52330 52331 52332 52333 52334 52335 52336 52337 52338 52339 52340 52341 52342 52343 52344 52345 52346 52347 52348 52349 52350 52351 52352 52353 52354 52355 52356 52357 52358 52359 52360 52361 52362 52363 52364 52365 52366 52367 52368 52369 52370 52371 52372 52373 52374 52375 52376 52377 52378 52379 52380 52381 52382 52383 52384 52385 52386 52387 52388 52389 52390 52391 52392 52393 52394 52395 52396 52397 52398 52399 52400 52401 52402 52403 52404 52405 52406 52407 52408 52409 52410 52411 52412 52413 52414 52415 52416 52417 52418 52419 52420 52421 52422 52423 52424 52425 52426 52427 52428 52429 52430 52431 52432 52433 52434 52435 52436 52437 52438 52439 52440 52441 52442 52443 52444 52445 52446 52447 52448 52449 52450 52451 52452 52453 52454 52455 52456 52457 52458 52459 52460 52461 52462 52463 52464 52465 52466 52467 52468 52469 52470 52471 52472 52473 52474 52475 52476 52477 52478 52479 52480 52481 52482 52483 52484 52485 52486 52487 52488 52489 52490 52491 52492 52493 52494 52495 52496 52497 52498 52499 52500 52501 52502 52503 52504 52505 52506 52507 52508 52509 52510 52511 52512 52513 52514 52515 52516 52517 52518 52519 52520 52521 52522 52523 52524 52525 52526 52527 52528 52529 52530 52531 52532 52533 52534 52535 52536 52537 52538 52539 52540 52541 52542 52543 52544 52545 52546 52547 52548 52549 52550 52551 52552 52553 52554 52555 52556 52557 52558 52559 52560 52561 52562 52563 52564 52565 52566 52567 52568 52569 52570 52571 52572 52573 52574 52575 52576 52577 52578 52579 52580 52581 52582 52583 52584 52585 52586 52587 52588 52589 52590 52591 52592 52593 52594 52595 52596 52597 52598 52599 52600 52601 52602 52603 52604 52605 52606 52607 52608 52609 52610 52611 52612 52613 52614 52615 52616 52617 52618 52619 52620 52621 52622 52623 52624 52625 52626 52627 52628 52629 52630 52631 52632 52633 52634 52635 52636 52637 52638 52639 52640 52641 52642 52643 52644 52645 52646 52647 52648 52649 52650 52651 52652 52653 52654 52655 52656 52657 52658 52659 52660 52661 52662 52663 52664 52665 52666 52667 52668 52669 52670 52671 52672 52673 52674 52675 52676 52677 52678 52679 52680 52681 52682 52683 52684 52685 52686 52687 52688 52689 52690 52691 52692 52693 52694 52695 52696 52697 52698 52699 52700 52701 52702 52703 52704 52705 52706 52707 52708 52709 52710 52711 52712 52713 52714 52715 52716 52717 52718 52719 52720 52721 52722 52723 52724 52725 52726 52727 52728 52729 52730 52731 52732 52733 52734 52735 52736 52737 52738 52739 52740 52741 52742 52743 52744 52745 52746 52747 52748 52749 52750 52751 52752 52753 52754 52755 52756 52757 52758 52759 52760 52761 52762 52763 52764 52765 52766 52767 52768 52769 52770 52771 52772 52773 52774 52775 52776 52777 52778 52779 52780 52781 52782 52783 52784 52785 52786 52787 52788 52789 52790 52791 52792 52793 52794 52795 52796 52797 52798 52799 52800 52801 52802 52803 52804 52805 52806 52807 52808 52809 52810 52811 52812 52813 52814 52815 52816 52817 52818 52819 52820 52821 52822 52823 52824 52825 52826 52827 52828 52829 52830 52831 52832 52833 52834 52835 52836 52837 52838 52839 52840 52841 52842 52843 52844 52845 52846 52847 52848 52849 52850 52851 52852 52853 52854 52855 52856 52857 52858 52859 52860 52861 52862 52863 52864 52865 52866 52867 52868 52869 52870 52871 52872 52873 52874 52875 52876 52877 52878 52879 52880 52881 52882 52883 52884 52885 52886 52887 52888 52889 52890 52891 52892 52893 52894 52895 52896 52897 52898 52899 52900 52901 52902 52903 52904 52905 52906 52907 52908 52909 52910 52911 52912 52913 52914 52915 52916 52917 52918 52919 52920 52921 52922 52923 52924 52925 52926 52927 52928 52929 52930 52931 52932 52933 52934 52935 52936 52937 52938 52939 52940 52941 52942 52943 52944 52945 52946 52947 52948 52949 52950 52951 52952 52953 52954 52955 52956 52957 52958 52959 52960 52961 52962 52963 52964 52965 52966 52967 52968 52969 52970 52971 52972 52973 52974 52975 52976 52977 52978 52979 52980 52981 52982 52983 52984 52985 52986 52987 52988 52989 52990 52991 52992 52993 52994 52995 52996 52997 52998 52999 53000 53001 53002 53003 53004 53005 53006 53007 53008 53009 53010 53011 53012 53013 53014 53015 53016 53017 53018 53019 53020 53021 53022 53023 53024 53025 53026 53027 53028 53029 53030 53031 53032 53033 53034 53035 53036 53037 53038 53039 53040 53041 53042 53043 53044 53045 53046 53047 53048 53049 53050 53051 53052 53053 53054 53055 53056 53057 53058 53059 53060 53061 53062 53063 53064 53065 53066 53067 53068 53069 53070 53071 53072 53073 53074 53075 53076 53077 53078 53079 53080 53081 53082 53083 53084 53085 53086 53087 53088 53089 53090 53091 53092 53093 53094 53095 53096 53097 53098 53099 53100 53101 53102 53103 53104 53105 53106 53107 53108 53109 53110 53111 53112 53113 53114 53115 53116 53117 53118 53119 53120 53121 53122 53123 53124 53125 53126 53127 53128 53129 53130 53131 53132 53133 53134 53135 53136 53137 53138 53139 53140 53141 53142 53143 53144 53145 53146 53147 53148 53149 53150 53151 53152 53153 53154 53155 53156 53157 53158 53159 53160 53161 53162 53163 53164 53165 53166 53167 53168 53169 53170 53171 53172 53173 53174 53175 53176 53177 53178 53179 53180 53181 53182 53183 53184 53185 53186 53187 53188 53189 53190 53191 53192 53193 53194 53195 53196 53197 53198 53199 53200 53201 53202 53203 53204 53205 53206 53207 53208 53209 53210 53211 53212 53213 53214 53215 53216 53217 53218 53219 53220 53221 53222 53223 53224 53225 53226 53227 53228 53229 53230 53231 53232 53233 53234 53235 53236 53237 53238 53239 53240 53241 53242 53243 53244 53245 53246 53247 53248 53249 53250 53251 53252 53253 53254 53255 53256 53257 53258 53259 53260 53261 53262 53263 53264 53265 53266 53267 53268 53269 53270 53271 53272 53273 53274 53275 53276 53277 53278 53279 53280 53281 53282 53283 53284 53285 53286 53287 53288 53289 53290 53291 53292 53293 53294 53295 53296 53297 53298 53299 53300 53301 53302 53303 53304 53305 53306 53307 53308 53309 53310 53311 53312 53313 53314 53315 53316 53317 53318 53319 53320 53321 53322 53323 53324 53325 53326 53327 53328 53329 53330 53331 53332 53333 53334 53335 53336 53337 53338 53339 53340 53341 53342 53343 53344 53345 53346 53347 53348 53349 53350 53351 53352 53353 53354 53355 53356 53357 53358 53359 53360 53361 53362 53363 53364 53365 53366 53367 53368 53369 53370 53371 53372 53373 53374 53375 53376 53377 53378 53379 53380 53381 53382 53383 53384 53385 53386 53387 53388 53389 53390 53391 53392 53393 53394 53395 53396 53397 53398 53399 53400 53401 53402 53403 53404 53405 53406 53407 53408 53409 53410 53411 53412 53413 53414 53415 53416 53417 53418 53419 53420 53421 53422 53423 53424 53425 53426 53427 53428 53429 53430 53431 53432 53433 53434 53435 53436 53437 53438 53439 53440 53441 53442 53443 53444 53445 53446 53447 53448 53449 53450 53451 53452 53453 53454 53455 53456 53457 53458 53459 53460 53461 53462 53463 53464 53465 53466 53467 53468 53469 53470 53471 53472 53473 53474 53475 53476 53477 53478 53479 53480 53481 53482 53483 53484 53485 53486 53487 53488 53489 53490 53491 53492 53493 53494 53495 53496 53497 53498 53499 53500 53501 53502 53503 53504 53505 53506 53507 53508 53509 53510 53511 53512 53513 53514 53515 53516 53517 53518 53519 53520 53521 53522 53523 53524 53525 53526 53527 53528 53529 53530 53531 53532 53533 53534 53535 53536 53537 53538 53539 53540 53541 53542 53543 53544 53545 53546 53547 53548 53549 53550 53551 53552 53553 53554 53555 53556 53557 53558 53559 53560 53561 53562 53563 53564 53565 53566 53567 53568 53569 53570 53571 53572 53573 53574 53575 53576 53577 53578 53579 53580 53581 53582 53583 53584 53585 53586 53587 53588 53589 53590 53591 53592 53593 53594 53595 53596 53597 53598 53599 53600 53601 53602 53603 53604 53605 53606 53607 53608 53609 53610 53611 53612 53613 53614 53615 53616 53617 53618 53619 53620 53621 53622 53623 53624 53625 53626 53627 53628 53629 53630 53631 53632 53633 53634 53635 53636 53637 53638 53639 53640 53641 53642 53643 53644 53645 53646 53647 53648 53649 53650 53651 53652 53653 53654 53655 53656 53657 53658 53659 53660 53661 53662 53663 53664 53665 53666 53667 53668 53669 53670 53671 53672 53673 53674 53675 53676 53677 53678 53679 53680 53681 53682 53683 53684 53685 53686 53687 53688 53689 53690 53691 53692 53693 53694 53695 53696 53697 53698 53699 53700 53701 53702 53703 53704 53705 53706 53707 53708 53709 53710 53711 53712 53713 53714 53715 53716 53717 53718 53719 53720 53721 53722 53723 53724 53725 53726 53727 53728 53729 53730 53731 53732 53733 53734 53735 53736 53737 53738 53739 53740 53741 53742 53743 53744 53745 53746 53747 53748 53749 53750 53751 53752 53753 53754 53755 53756 53757 53758 53759 53760 53761 53762 53763 53764 53765 53766 53767 53768 53769 53770 53771 53772 53773 53774 53775 53776 53777 53778 53779 53780 53781 53782 53783 53784 53785 53786 53787 53788 53789 53790 53791 53792 53793 53794 53795 53796 53797 53798 53799 53800 53801 53802 53803 53804 53805 53806 53807 53808 53809 53810 53811 53812 53813 53814 53815 53816 53817 53818 53819 53820 53821 53822 53823 53824 53825 53826 53827 53828 53829 53830 53831 53832 53833 53834 53835 53836 53837 53838 53839 53840 53841 53842 53843 53844 53845 53846 53847 53848 53849 53850 53851 53852 53853 53854 53855 53856 53857 53858 53859 53860 53861 53862 53863 53864 53865 53866 53867 53868 53869 53870 53871 53872 53873 53874 53875 53876 53877 53878 53879 53880 53881 53882 53883 53884 53885 53886 53887 53888 53889 53890 53891 53892 53893 53894 53895 53896 53897 53898 53899 53900 53901 53902 53903 53904 53905 53906 53907 53908 53909 53910 53911 53912 53913 53914 53915 53916 53917 53918 53919 53920 53921 53922 53923 53924 53925 53926 53927 53928 53929 53930 53931 53932 53933 53934 53935 53936 53937 53938 53939 53940 53941 53942 53943 53944 53945 53946 53947 53948 53949 53950 53951 53952 53953 53954 53955 53956 53957 53958 53959 53960 53961 53962 53963 53964 53965 53966 53967 53968 53969 53970 53971 53972 53973 53974 53975 53976 53977 53978 53979 53980 53981 53982 53983 53984 53985 53986 53987 53988 53989 53990 53991 53992 53993 53994 53995 53996 53997 53998 53999 54000 54001 54002 54003 54004 54005 54006 54007 54008 54009 54010 54011 54012 54013 54014 54015 54016 54017 54018 54019 54020 54021 54022 54023 54024 54025 54026 54027 54028 54029 54030 54031 54032 54033 54034 54035 54036 54037 54038 54039 54040 54041 54042 54043 54044 54045 54046 54047 54048 54049 54050 54051 54052 54053 54054 54055 54056 54057 54058 54059 54060 54061 54062 54063 54064 54065 54066 54067 54068 54069 54070 54071 54072 54073 54074 54075 54076 54077 54078 54079 54080 54081 54082 54083 54084 54085 54086 54087 54088 54089 54090 54091 54092 54093 54094 54095 54096 54097 54098 54099 54100 54101 54102 54103 54104 54105 54106 54107 54108 54109 54110 54111 54112 54113 54114 54115 54116 54117 54118 54119 54120 54121 54122 54123 54124 54125 54126 54127 54128 54129 54130 54131 54132 54133 54134 54135 54136 54137 54138 54139 54140 54141 54142 54143 54144 54145 54146 54147 54148 54149 54150 54151 54152 54153 54154 54155 54156 54157 54158 54159 54160 54161 54162 54163 54164 54165 54166 54167 54168 54169 54170 54171 54172 54173 54174 54175 54176 54177 54178 54179 54180 54181 54182 54183 54184 54185 54186 54187 54188 54189 54190 54191 54192 54193 54194 54195 54196 54197 54198 54199 54200 54201 54202 54203 54204 54205 54206 54207 54208 54209 54210 54211 54212 54213 54214 54215 54216 54217 54218 54219 54220 54221 54222 54223 54224 54225 54226 54227 54228 54229 54230 54231 54232 54233 54234 54235 54236 54237 54238 54239 54240 54241 54242 54243 54244 54245 54246 54247 54248 54249 54250 54251 54252 54253 54254 54255 54256 54257 54258 54259 54260 54261 54262 54263 54264 54265 54266 54267 54268 54269 54270 54271 54272 54273 54274 54275 54276 54277 54278 54279 54280 54281 54282 54283 54284 54285 54286 54287 54288 54289 54290 54291 54292 54293 54294 54295 54296 54297 54298 54299 54300 54301 54302 54303 54304 54305 54306 54307 54308 54309 54310 54311 54312 54313 54314 54315 54316 54317 54318 54319 54320 54321 54322 54323 54324 54325 54326 54327 54328 54329 54330 54331 54332 54333 54334 54335 54336 54337 54338 54339 54340 54341 54342 54343 54344 54345 54346 54347 54348 54349 54350 54351 54352 54353 54354 54355 54356 54357 54358 54359 54360 54361 54362 54363 54364 54365 54366 54367 54368 54369 54370 54371 54372 54373 54374 54375 54376 54377 54378 54379 54380 54381 54382 54383 54384 54385 54386 54387 54388 54389 54390 54391 54392 54393 54394 54395 54396 54397 54398 54399 54400 54401 54402 54403 54404 54405 54406 54407 54408 54409 54410 54411 54412 54413 54414 54415 54416 54417 54418 54419 54420 54421 54422 54423 54424 54425 54426 54427 54428 54429 54430 54431 54432 54433 54434 54435 54436 54437 54438 54439 54440 54441 54442 54443 54444 54445 54446 54447 54448 54449 54450 54451 54452 54453 54454 54455 54456 54457 54458 54459 54460 54461 54462 54463 54464 54465 54466 54467 54468 54469 54470 54471 54472 54473 54474 54475 54476 54477 54478 54479 54480 54481 54482 54483 54484 54485 54486 54487 54488 54489 54490 54491 54492 54493 54494 54495 54496 54497 54498 54499 54500 54501 54502 54503 54504 54505 54506 54507 54508 54509 54510 54511 54512 54513 54514 54515 54516 54517 54518 54519 54520 54521 54522 54523 54524 54525 54526 54527 54528 54529 54530 54531 54532 54533 54534 54535 54536 54537 54538 54539 54540 54541 54542 54543 54544 54545 54546 54547 54548 54549 54550 54551 54552 54553 54554 54555 54556 54557 54558 54559 54560 54561 54562 54563 54564 54565 54566 54567 54568 54569 54570 54571 54572 54573 54574 54575 54576 54577 54578 54579 54580 54581 54582 54583 54584 54585 54586 54587 54588 54589 54590 54591 54592 54593 54594 54595 54596 54597 54598 54599 54600 54601 54602 54603 54604 54605 54606 54607 54608 54609 54610 54611 54612 54613 54614 54615 54616 54617 54618 54619 54620 54621 54622 54623 54624 54625 54626 54627 54628 54629 54630 54631 54632 54633 54634 54635 54636 54637 54638 54639 54640 54641 54642 54643 54644 54645 54646 54647 54648 54649 54650 54651 54652 54653 54654 54655 54656 54657 54658 54659 54660 54661 54662 54663 54664 54665 54666 54667 54668 54669 54670 54671 54672 54673 54674 54675 54676 54677 54678 54679 54680 54681 54682 54683 54684 54685 54686 54687 54688 54689 54690 54691 54692 54693 54694 54695 54696 54697 54698 54699 54700 54701 54702 54703 54704 54705 54706 54707 54708 54709 54710 54711 54712 54713 54714 54715 54716 54717 54718 54719 54720 54721 54722 54723 54724 54725 54726 54727 54728 54729 54730 54731 54732 54733 54734 54735 54736 54737 54738 54739 54740 54741 54742 54743 54744 54745 54746 54747 54748 54749 54750 54751 54752 54753 54754 54755 54756 54757 54758 54759 54760 54761 54762 54763 54764 54765 54766 54767 54768 54769 54770 54771 54772 54773 54774 54775 54776 54777 54778 54779 54780 54781 54782 54783 54784 54785 54786 54787 54788 54789 54790 54791 54792 54793 54794 54795 54796 54797 54798 54799 54800 54801 54802 54803 54804 54805 54806 54807 54808 54809 54810 54811 54812 54813 54814 54815 54816 54817 54818 54819 54820 54821 54822 54823 54824 54825 54826 54827 54828 54829 54830 54831 54832 54833 54834 54835 54836 54837 54838 54839 54840 54841 54842 54843 54844 54845 54846 54847 54848 54849 54850 54851 54852 54853 54854 54855 54856 54857 54858 54859 54860 54861 54862 54863 54864 54865 54866 54867 54868 54869 54870 54871 54872 54873 54874 54875 54876 54877 54878 54879 54880 54881 54882 54883 54884 54885 54886 54887 54888 54889 54890 54891 54892 54893 54894 54895 54896 54897 54898 54899 54900 54901 54902 54903 54904 54905 54906 54907 54908 54909 54910 54911 54912 54913 54914 54915 54916 54917 54918 54919 54920 54921 54922 54923 54924 54925 54926 54927 54928 54929 54930 54931 54932 54933 54934 54935 54936 54937 54938 54939 54940 54941 54942 54943 54944 54945 54946 54947 54948 54949 54950 54951 54952 54953 54954 54955 54956 54957 54958 54959 54960 54961 54962 54963 54964 54965 54966 54967 54968 54969 54970 54971 54972 54973 54974 54975 54976 54977 54978 54979 54980 54981 54982 54983 54984 54985 54986 54987 54988 54989 54990 54991 54992 54993 54994 54995 54996 54997 54998 54999 55000 55001 55002 55003 55004 55005 55006 55007 55008 55009 55010 55011 55012 55013 55014 55015 55016 55017 55018 55019 55020 55021 55022 55023 55024 55025 55026 55027 55028 55029 55030 55031 55032 55033 55034 55035 55036 55037 55038 55039 55040 55041 55042 55043 55044 55045 55046 55047 55048 55049 55050 55051 55052 55053 55054 55055 55056 55057 55058 55059 55060 55061 55062 55063 55064 55065 55066 55067 55068 55069 55070 55071 55072 55073 55074 55075 55076 55077 55078 55079 55080 55081 55082 55083 55084 55085 55086 55087 55088 55089 55090 55091 55092 55093 55094 55095 55096 55097 55098 55099 55100 55101 55102 55103 55104 55105 55106 55107 55108 55109 55110 55111 55112 55113 55114 55115 55116 55117 55118 55119 55120 55121 55122 55123 55124 55125 55126 55127 55128 55129 55130 55131 55132 55133 55134 55135 55136 55137 55138 55139 55140 55141 55142 55143 55144 55145 55146 55147 55148 55149 55150 55151 55152 55153 55154 55155 55156 55157 55158 55159 55160 55161 55162 55163 55164 55165 55166 55167 55168 55169 55170 55171 55172 55173 55174 55175 55176 55177 55178 55179 55180 55181 55182 55183 55184 55185 55186 55187 55188 55189 55190 55191 55192 55193 55194 55195 55196 55197 55198 55199 55200 55201 55202 55203 55204 55205 55206 55207 55208 55209 55210 55211 55212 55213 55214 55215 55216 55217 55218 55219 55220 55221 55222 55223 55224 55225 55226 55227 55228 55229 55230 55231 55232 55233 55234 55235 55236 55237 55238 55239 55240 55241 55242 55243 55244 55245 55246 55247 55248 55249 55250 55251 55252 55253 55254 55255 55256 55257 55258 55259 55260 55261 55262 55263 55264 55265 55266 55267 55268 55269 55270 55271 55272 55273 55274 55275 55276 55277 55278 55279 55280 55281 55282 55283 55284 55285 55286 55287 55288 55289 55290 55291 55292 55293 55294 55295 55296 55297 55298 55299 55300 55301 55302 55303 55304 55305 55306 55307 55308 55309 55310 55311 55312 55313 55314 55315 55316 55317 55318 55319 55320 55321 55322 55323 55324 55325 55326 55327 55328 55329 55330 55331 55332 55333 55334 55335 55336 55337 55338 55339 55340 55341 55342 55343 55344 55345 55346 55347 55348 55349 55350 55351 55352 55353 55354 55355 55356 55357 55358 55359 55360 55361 55362 55363 55364 55365 55366 55367 55368 55369 55370 55371 55372 55373 55374 55375 55376 55377 55378 55379 55380 55381 55382 55383 55384 55385 55386 55387 55388 55389 55390 55391 55392 55393 55394 55395 55396 55397 55398 55399 55400 55401 55402 55403 55404 55405 55406 55407 55408 55409 55410 55411 55412 55413 55414 55415 55416 55417 55418 55419 55420 55421 55422 55423 55424 55425 55426 55427 55428 55429 55430 55431 55432 55433 55434 55435 55436 55437 55438 55439 55440 55441 55442 55443 55444 55445 55446 55447 55448 55449 55450 55451 55452 55453 55454 55455 55456 55457 55458 55459 55460 55461 55462 55463 55464 55465 55466 55467 55468 55469 55470 55471 55472 55473 55474 55475 55476 55477 55478 55479 55480 55481 55482 55483 55484 55485 55486 55487 55488 55489 55490 55491 55492 55493 55494 55495 55496 55497 55498 55499 55500 55501 55502 55503 55504 55505 55506 55507 55508 55509 55510 55511 55512 55513 55514 55515 55516 55517 55518 55519 55520 55521 55522 55523 55524 55525 55526 55527 55528 55529 55530 55531 55532 55533 55534 55535 55536 55537 55538 55539 55540 55541 55542 55543 55544 55545 55546 55547 55548 55549 55550 55551 55552 55553 55554 55555 55556 55557 55558 55559 55560 55561 55562 55563 55564 55565 55566 55567 55568 55569 55570 55571 55572 55573 55574 55575 55576 55577 55578 55579 55580 55581 55582 55583 55584 55585 55586 55587 55588 55589 55590 55591 55592 55593 55594 55595 55596 55597 55598 55599 55600 55601 55602 55603 55604 55605 55606 55607 55608 55609 55610 55611 55612 55613 55614 55615 55616 55617 55618 55619 55620 55621 55622 55623 55624 55625 55626 55627 55628 55629 55630 55631 55632 55633 55634 55635 55636 55637 55638 55639 55640 55641 55642 55643 55644 55645 55646 55647 55648 55649 55650 55651 55652 55653 55654 55655 55656 55657 55658 55659 55660 55661 55662 55663 55664 55665 55666 55667 55668 55669 55670 55671 55672 55673 55674 55675 55676 55677 55678 55679 55680 55681 55682 55683 55684 55685 55686 55687 55688 55689 55690 55691 55692 55693 55694 55695 55696 55697 55698 55699 55700 55701 55702 55703 55704 55705 55706 55707 55708 55709 55710 55711 55712 55713 55714 55715 55716 55717 55718 55719 55720 55721 55722 55723 55724 55725 55726 55727 55728 55729 55730 55731 55732 55733 55734 55735 55736 55737 55738 55739 55740 55741 55742 55743 55744 55745 55746 55747 55748 55749 55750 55751 55752 55753 55754 55755 55756 55757 55758 55759 55760 55761 55762 55763 55764 55765 55766 55767 55768 55769 55770 55771 55772 55773 55774 55775 55776 55777 55778 55779 55780 55781 55782 55783 55784 55785 55786 55787 55788 55789 55790 55791 55792 55793 55794 55795 55796 55797 55798 55799 55800 55801 55802 55803 55804 55805 55806 55807 55808 55809 55810 55811 55812 55813 55814 55815 55816 55817 55818 55819 55820 55821 55822 55823 55824 55825 55826 55827 55828 55829 55830 55831 55832 55833 55834 55835 55836 55837 55838 55839 55840 55841 55842 55843 55844 55845 55846 55847 55848 55849 55850 55851 55852 55853 55854 55855 55856 55857 55858 55859 55860 55861 55862 55863 55864 55865 55866 55867 55868 55869 55870 55871 55872 55873 55874 55875 55876 55877 55878 55879 55880 55881 55882 55883 55884 55885 55886 55887 55888 55889 55890 55891 55892 55893 55894 55895 55896 55897 55898 55899 55900 55901 55902 55903 55904 55905 55906 55907 55908 55909 55910 55911 55912 55913 55914 55915 55916 55917 55918 55919 55920 55921 55922 55923 55924 55925 55926 55927 55928 55929 55930 55931 55932 55933 55934 55935 55936 55937 55938 55939 55940 55941 55942 55943 55944 55945 55946 55947 55948 55949 55950 55951 55952 55953 55954 55955 55956 55957 55958 55959 55960 55961 55962 55963 55964 55965 55966 55967 55968 55969 55970 55971 55972 55973 55974 55975 55976 55977 55978 55979 55980 55981 55982 55983 55984 55985 55986 55987 55988 55989 55990 55991 55992 55993 55994 55995 55996 55997 55998 55999 56000 56001 56002 56003 56004 56005 56006 56007 56008 56009 56010 56011 56012 56013 56014 56015 56016 56017 56018 56019 56020 56021 56022 56023 56024 56025 56026 56027 56028 56029 56030 56031 56032 56033 56034 56035 56036 56037 56038 56039 56040 56041 56042 56043 56044 56045 56046 56047 56048 56049 56050 56051 56052 56053 56054 56055 56056 56057 56058 56059 56060 56061 56062 56063 56064 56065 56066 56067 56068 56069 56070 56071 56072 56073 56074 56075 56076 56077 56078 56079 56080 56081 56082 56083 56084 56085 56086 56087 56088 56089 56090 56091 56092 56093 56094 56095 56096 56097 56098 56099 56100 56101 56102 56103 56104 56105 56106 56107 56108 56109 56110 56111 56112 56113 56114 56115 56116 56117 56118 56119 56120 56121 56122 56123 56124 56125 56126 56127 56128 56129 56130 56131 56132 56133 56134 56135 56136 56137 56138 56139 56140 56141 56142 56143 56144 56145 56146 56147 56148 56149 56150 56151 56152 56153 56154 56155 56156 56157 56158 56159 56160 56161 56162 56163 56164 56165 56166 56167 56168 56169 56170 56171 56172 56173 56174 56175 56176 56177 56178 56179 56180 56181 56182 56183 56184 56185 56186 56187 56188 56189 56190 56191 56192 56193 56194 56195 56196 56197 56198 56199 56200 56201 56202 56203 56204 56205 56206 56207 56208 56209 56210 56211 56212 56213 56214 56215 56216 56217 56218 56219 56220 56221 56222 56223 56224 56225 56226 56227 56228 56229 56230 56231 56232 56233 56234 56235 56236 56237 56238 56239 56240 56241 56242 56243 56244 56245 56246 56247 56248 56249 56250 56251 56252 56253 56254 56255 56256 56257 56258 56259 56260 56261 56262 56263 56264 56265 56266 56267 56268 56269 56270 56271 56272 56273 56274 56275 56276 56277 56278 56279 56280 56281 56282 56283 56284 56285 56286 56287 56288 56289 56290 56291 56292 56293 56294 56295 56296 56297 56298 56299 56300 56301 56302 56303 56304 56305 56306 56307 56308 56309 56310 56311 56312 56313 56314 56315 56316 56317 56318 56319 56320 56321 56322 56323 56324 56325 56326 56327 56328 56329 56330 56331 56332 56333 56334 56335 56336 56337 56338 56339 56340 56341 56342 56343 56344 56345 56346 56347 56348 56349 56350 56351 56352 56353 56354 56355 56356 56357 56358 56359 56360 56361 56362 56363 56364 56365 56366 56367 56368 56369 56370 56371 56372 56373 56374 56375 56376 56377 56378 56379 56380 56381 56382 56383 56384 56385 56386 56387 56388 56389 56390 56391 56392 56393 56394 56395 56396 56397 56398 56399 56400 56401 56402 56403 56404 56405 56406 56407 56408 56409 56410 56411 56412 56413 56414 56415 56416 56417 56418 56419 56420 56421 56422 56423 56424 56425 56426 56427 56428 56429 56430 56431 56432 56433 56434 56435 56436 56437 56438 56439 56440 56441 56442 56443 56444 56445 56446 56447 56448 56449 56450 56451 56452 56453 56454 56455 56456 56457 56458 56459 56460 56461 56462 56463 56464 56465 56466 56467 56468 56469 56470 56471 56472 56473 56474 56475 56476 56477 56478 56479 56480 56481 56482 56483 56484 56485 56486 56487 56488 56489 56490 56491 56492 56493 56494 56495 56496 56497 56498 56499 56500 56501 56502 56503 56504 56505 56506 56507 56508 56509 56510 56511 56512 56513 56514 56515 56516 56517 56518 56519 56520 56521 56522 56523 56524 56525 56526 56527 56528 56529 56530 56531 56532 56533 56534 56535 56536 56537 56538 56539 56540 56541 56542 56543 56544 56545 56546 56547 56548 56549 56550 56551 56552 56553 56554 56555 56556 56557 56558 56559 56560 56561 56562 56563 56564 56565 56566 56567 56568 56569 56570 56571 56572 56573 56574 56575 56576 56577 56578 56579 56580 56581 56582 56583 56584 56585 56586 56587 56588 56589 56590 56591 56592 56593 56594 56595 56596 56597 56598 56599 56600 56601 56602 56603 56604 56605 56606 56607 56608 56609 56610 56611 56612 56613 56614 56615 56616 56617 56618 56619 56620 56621 56622 56623 56624 56625 56626 56627 56628 56629 56630 56631 56632 56633 56634 56635 56636 56637 56638 56639 56640 56641 56642 56643 56644 56645 56646 56647 56648 56649 56650 56651 56652 56653 56654 56655 56656 56657 56658 56659 56660 56661 56662 56663 56664 56665 56666 56667 56668 56669 56670 56671 56672 56673 56674 56675 56676 56677 56678 56679 56680 56681 56682 56683 56684 56685 56686 56687 56688 56689 56690 56691 56692 56693 56694 56695 56696 56697 56698 56699 56700 56701 56702 56703 56704 56705 56706 56707 56708 56709 56710 56711 56712 56713 56714 56715 56716 56717 56718 56719 56720 56721 56722 56723 56724 56725 56726 56727 56728 56729 56730 56731 56732 56733 56734 56735 56736 56737 56738 56739 56740 56741 56742 56743 56744 56745 56746 56747 56748 56749 56750 56751 56752 56753 56754 56755 56756 56757 56758 56759 56760 56761 56762 56763 56764 56765 56766 56767 56768 56769 56770 56771 56772 56773 56774 56775 56776 56777 56778 56779 56780 56781 56782 56783 56784 56785 56786 56787 56788 56789 56790 56791 56792 56793 56794 56795 56796 56797 56798 56799 56800 56801 56802 56803 56804 56805 56806 56807 56808 56809 56810 56811 56812 56813 56814 56815 56816 56817 56818 56819 56820 56821 56822 56823 56824 56825 56826 56827 56828 56829 56830 56831 56832 56833 56834 56835 56836 56837 56838 56839 56840 56841 56842 56843 56844 56845 56846 56847 56848 56849 56850 56851 56852 56853 56854 56855 56856 56857 56858 56859 56860 56861 56862 56863 56864 56865 56866 56867 56868 56869 56870 56871 56872 56873 56874 56875 56876 56877 56878 56879 56880 56881 56882 56883 56884 56885 56886 56887 56888 56889 56890 56891 56892 56893 56894 56895 56896 56897 56898 56899 56900 56901 56902 56903 56904 56905 56906 56907 56908 56909 56910 56911 56912 56913 56914 56915 56916 56917 56918 56919 56920 56921 56922 56923 56924 56925 56926 56927 56928 56929 56930 56931 56932 56933 56934 56935 56936 56937 56938 56939 56940 56941 56942 56943 56944 56945 56946 56947 56948 56949 56950 56951 56952 56953 56954 56955 56956 56957 56958 56959 56960 56961 56962 56963 56964 56965 56966 56967 56968 56969 56970 56971 56972 56973 56974 56975 56976 56977 56978 56979 56980 56981 56982 56983 56984 56985 56986 56987 56988 56989 56990 56991 56992 56993 56994 56995 56996 56997 56998 56999 57000 57001 57002 57003 57004 57005 57006 57007 57008 57009 57010 57011 57012 57013 57014 57015 57016 57017 57018 57019 57020 57021 57022 57023 57024 57025 57026 57027 57028 57029 57030 57031 57032 57033 57034 57035 57036 57037 57038 57039 57040 57041 57042 57043 57044 57045 57046 57047 57048 57049 57050 57051 57052 57053 57054 57055 57056 57057 57058 57059 57060 57061 57062 57063 57064 57065 57066 57067 57068 57069 57070 57071 57072 57073 57074 57075 57076 57077 57078 57079 57080 57081 57082 57083 57084 57085 57086 57087 57088 57089 57090 57091 57092 57093 57094 57095 57096 57097 57098 57099 57100 57101 57102 57103 57104 57105 57106 57107 57108 57109 57110 57111 57112 57113 57114 57115 57116 57117 57118 57119 57120 57121 57122 57123 57124 57125 57126 57127 57128 57129 57130 57131 57132 57133 57134 57135 57136 57137 57138 57139 57140 57141 57142 57143 57144 57145 57146 57147 57148 57149 57150 57151 57152 57153 57154 57155 57156 57157 57158 57159 57160 57161 57162 57163 57164 57165 57166 57167 57168 57169 57170 57171 57172 57173 57174 57175 57176 57177 57178 57179 57180 57181 57182 57183 57184 57185 57186 57187 57188 57189 57190 57191 57192 57193 57194 57195 57196 57197 57198 57199 57200 57201 57202 57203 57204 57205 57206 57207 57208 57209 57210 57211 57212 57213 57214 57215 57216 57217 57218 57219 57220 57221 57222 57223 57224 57225 57226 57227 57228 57229 57230 57231 57232 57233 57234 57235 57236 57237 57238 57239 57240 57241 57242 57243 57244 57245 57246 57247 57248 57249 57250 57251 57252 57253 57254 57255 57256 57257 57258 57259 57260 57261 57262 57263 57264 57265 57266 57267 57268 57269 57270 57271 57272 57273 57274 57275 57276 57277 57278 57279 57280 57281 57282 57283 57284 57285 57286 57287 57288 57289 57290 57291 57292 57293 57294 57295 57296 57297 57298 57299 57300 57301 57302 57303 57304 57305 57306 57307 57308 57309 57310 57311 57312 57313 57314 57315 57316 57317 57318 57319 57320 57321 57322 57323 57324 57325 57326 57327 57328 57329 57330 57331 57332 57333 57334 57335 57336 57337 57338 57339 57340 57341 57342 57343 57344 57345 57346 57347 57348 57349 57350 57351 57352 57353 57354 57355 57356 57357 57358 57359 57360 57361 57362 57363 57364 57365 57366 57367 57368 57369 57370 57371 57372 57373 57374 57375 57376 57377 57378 57379 57380 57381 57382 57383 57384 57385 57386 57387 57388 57389 57390 57391 57392 57393 57394 57395 57396 57397 57398 57399 57400 57401 57402 57403 57404 57405 57406 57407 57408 57409 57410 57411 57412 57413 57414 57415 57416 57417 57418 57419 57420 57421 57422 57423 57424 57425 57426 57427 57428 57429 57430 57431 57432 57433 57434 57435 57436 57437 57438 57439 57440 57441 57442 57443 57444 57445 57446 57447 57448 57449 57450 57451 57452 57453 57454 57455 57456 57457 57458 57459 57460 57461 57462 57463 57464 57465 57466 57467 57468 57469 57470 57471 57472 57473 57474 57475 57476 57477 57478 57479 57480 57481 57482 57483 57484 57485 57486 57487 57488 57489 57490 57491 57492 57493 57494 57495 57496 57497 57498 57499 57500 57501 57502 57503 57504 57505 57506 57507 57508 57509 57510 57511 57512 57513 57514 57515 57516 57517 57518 57519 57520 57521 57522 57523 57524 57525 57526 57527 57528 57529 57530 57531 57532 57533 57534 57535 57536 57537 57538 57539 57540 57541 57542 57543 57544 57545 57546 57547 57548 57549 57550 57551 57552 57553 57554 57555 57556 57557 57558 57559 57560 57561 57562 57563 57564 57565 57566 57567 57568 57569 57570 57571 57572 57573 57574 57575 57576 57577 57578 57579 57580 57581 57582 57583 57584 57585 57586 57587 57588 57589 57590 57591 57592 57593 57594 57595 57596 57597 57598 57599 57600 57601 57602 57603 57604 57605 57606 57607 57608 57609 57610 57611 57612 57613 57614 57615 57616 57617 57618 57619 57620 57621 57622 57623 57624 57625 57626 57627 57628 57629 57630 57631 57632 57633 57634 57635 57636 57637 57638 57639 57640 57641 57642 57643 57644 57645 57646 57647 57648 57649 57650 57651 57652 57653 57654 57655 57656 57657 57658 57659 57660 57661 57662 57663 57664 57665 57666 57667 57668 57669 57670 57671 57672 57673 57674 57675 57676 57677 57678 57679 57680 57681 57682 57683 57684 57685 57686 57687 57688 57689 57690 57691 57692 57693 57694 57695 57696 57697 57698 57699 57700 57701 57702 57703 57704 57705 57706 57707 57708 57709 57710 57711 57712 57713 57714 57715 57716 57717 57718 57719 57720 57721 57722 57723 57724 57725 57726 57727 57728 57729 57730 57731 57732 57733 57734 57735 57736 57737 57738 57739 57740 57741 57742 57743 57744 57745 57746 57747 57748 57749 57750 57751 57752 57753 57754 57755 57756 57757 57758 57759 57760 57761 57762 57763 57764 57765 57766 57767 57768 57769 57770 57771 57772 57773 57774 57775 57776 57777 57778 57779 57780 57781 57782 57783 57784 57785 57786 57787 57788 57789 57790 57791 57792 57793 57794 57795 57796 57797 57798 57799 57800 57801 57802 57803 57804 57805 57806 57807 57808 57809 57810 57811 57812 57813 57814 57815 57816 57817 57818 57819 57820 57821 57822 57823 57824 57825 57826 57827 57828 57829 57830 57831 57832 57833 57834 57835 57836 57837 57838 57839 57840 57841 57842 57843 57844 57845 57846 57847 57848 57849 57850 57851 57852 57853 57854 57855 57856 57857 57858 57859 57860 57861 57862 57863 57864 57865 57866 57867 57868 57869 57870 57871 57872 57873 57874 57875 57876 57877 57878 57879 57880 57881 57882 57883 57884 57885 57886 57887 57888 57889 57890 57891 57892 57893 57894 57895 57896 57897 57898 57899 57900 57901 57902 57903 57904 57905 57906 57907 57908 57909 57910 57911 57912 57913 57914 57915 57916 57917 57918 57919 57920 57921 57922 57923 57924 57925 57926 57927 57928 57929 57930 57931 57932 57933 57934 57935 57936 57937 57938 57939 57940 57941 57942 57943 57944 57945 57946 57947 57948 57949 57950 57951 57952 57953 57954 57955 57956 57957 57958 57959 57960 57961 57962 57963 57964 57965 57966 57967 57968 57969 57970 57971 57972 57973 57974 57975 57976 57977 57978 57979 57980 57981 57982 57983 57984 57985 57986 57987 57988 57989 57990 57991 57992 57993 57994 57995 57996 57997 57998 57999 58000 58001 58002 58003 58004 58005 58006 58007 58008 58009 58010 58011 58012 58013 58014 58015 58016 58017 58018 58019 58020 58021 58022 58023 58024 58025 58026 58027 58028 58029 58030 58031 58032 58033 58034 58035 58036 58037 58038 58039 58040 58041 58042 58043 58044 58045 58046 58047 58048 58049 58050 58051 58052 58053 58054 58055 58056 58057 58058 58059 58060 58061 58062 58063 58064 58065 58066 58067 58068 58069 58070 58071 58072 58073 58074 58075 58076 58077 58078 58079 58080 58081 58082 58083 58084 58085 58086 58087 58088 58089 58090 58091 58092 58093 58094 58095 58096 58097 58098 58099 58100 58101 58102 58103 58104 58105 58106 58107 58108 58109 58110 58111 58112 58113 58114 58115 58116 58117 58118 58119 58120 58121 58122 58123 58124 58125 58126 58127 58128 58129 58130 58131 58132 58133 58134 58135 58136 58137 58138 58139 58140 58141 58142 58143 58144 58145 58146 58147 58148 58149 58150 58151 58152 58153 58154 58155 58156 58157 58158 58159 58160 58161 58162 58163 58164 58165 58166 58167 58168 58169 58170 58171 58172 58173 58174 58175 58176 58177 58178 58179 58180 58181 58182 58183 58184 58185 58186 58187 58188 58189 58190 58191 58192 58193 58194 58195 58196 58197 58198 58199 58200 58201 58202 58203 58204 58205 58206 58207 58208 58209 58210 58211 58212 58213 58214 58215 58216 58217 58218 58219 58220 58221 58222 58223 58224 58225 58226 58227 58228 58229 58230 58231 58232 58233 58234 58235 58236 58237 58238 58239 58240 58241 58242 58243 58244 58245 58246 58247 58248 58249 58250 58251 58252 58253 58254 58255 58256 58257 58258 58259 58260 58261 58262 58263 58264 58265 58266 58267 58268 58269 58270 58271 58272 58273 58274 58275 58276 58277 58278 58279 58280 58281 58282 58283 58284 58285 58286 58287 58288 58289 58290 58291 58292 58293 58294 58295 58296 58297 58298 58299 58300 58301 58302 58303 58304 58305 58306 58307 58308 58309 58310 58311 58312 58313 58314 58315 58316 58317 58318 58319 58320 58321 58322 58323 58324 58325 58326 58327 58328 58329 58330 58331 58332 58333 58334 58335 58336 58337 58338 58339 58340 58341 58342 58343 58344 58345 58346 58347 58348 58349 58350 58351 58352 58353 58354 58355 58356 58357 58358 58359 58360 58361 58362 58363 58364 58365 58366 58367 58368 58369 58370 58371 58372 58373 58374 58375 58376 58377 58378 58379 58380 58381 58382 58383 58384 58385 58386 58387 58388 58389 58390 58391 58392 58393 58394 58395 58396 58397 58398 58399 58400 58401 58402 58403 58404 58405 58406 58407 58408 58409 58410 58411 58412 58413 58414 58415 58416 58417 58418 58419 58420 58421 58422 58423 58424 58425 58426 58427 58428 58429 58430 58431 58432 58433 58434 58435 58436 58437 58438 58439 58440 58441 58442 58443 58444 58445 58446 58447 58448 58449 58450 58451 58452 58453 58454 58455 58456 58457 58458 58459 58460 58461 58462 58463 58464 58465 58466 58467 58468 58469 58470 58471 58472 58473 58474 58475 58476 58477 58478 58479 58480 58481 58482 58483 58484 58485 58486 58487 58488 58489 58490 58491 58492 58493 58494 58495 58496 58497 58498 58499 58500 58501 58502 58503 58504 58505 58506 58507 58508 58509 58510 58511 58512 58513 58514 58515 58516 58517 58518 58519 58520 58521 58522 58523 58524 58525 58526 58527 58528 58529 58530 58531 58532 58533 58534 58535 58536 58537 58538 58539 58540 58541 58542 58543 58544 58545 58546 58547 58548 58549 58550 58551 58552 58553 58554 58555 58556 58557 58558 58559 58560 58561 58562 58563 58564 58565 58566 58567 58568 58569 58570 58571 58572 58573 58574 58575 58576 58577 58578 58579 58580 58581 58582 58583 58584 58585 58586 58587 58588 58589 58590 58591 58592 58593 58594 58595 58596 58597 58598 58599 58600 58601 58602 58603 58604 58605 58606 58607 58608 58609 58610 58611 58612 58613 58614 58615 58616 58617 58618 58619 58620 58621 58622 58623 58624 58625 58626 58627 58628 58629 58630 58631 58632 58633 58634 58635 58636 58637 58638 58639 58640 58641 58642 58643 58644 58645 58646 58647 58648 58649 58650 58651 58652 58653 58654 58655 58656 58657 58658 58659 58660 58661 58662 58663 58664 58665 58666 58667 58668 58669 58670 58671 58672 58673 58674 58675 58676 58677 58678 58679 58680 58681 58682 58683 58684 58685 58686 58687 58688 58689 58690 58691 58692 58693 58694 58695 58696 58697 58698 58699 58700 58701 58702 58703 58704 58705 58706 58707 58708 58709 58710 58711 58712 58713 58714 58715 58716 58717 58718 58719 58720 58721 58722 58723 58724 58725 58726 58727 58728 58729 58730 58731 58732 58733 58734 58735 58736 58737 58738 58739 58740 58741 58742 58743 58744 58745 58746 58747 58748 58749 58750 58751 58752 58753 58754 58755 58756 58757 58758 58759 58760 58761 58762 58763 58764 58765 58766 58767 58768 58769 58770 58771 58772 58773 58774 58775 58776 58777 58778 58779 58780 58781 58782 58783 58784 58785 58786 58787 58788 58789 58790 58791 58792 58793 58794 58795 58796 58797 58798 58799 58800 58801 58802 58803 58804 58805 58806 58807 58808 58809 58810 58811 58812 58813 58814 58815 58816 58817 58818 58819 58820 58821 58822 58823 58824 58825 58826 58827 58828 58829 58830 58831 58832 58833 58834 58835 58836 58837 58838 58839 58840 58841 58842 58843 58844 58845 58846 58847 58848 58849 58850 58851 58852 58853 58854 58855 58856 58857 58858 58859 58860 58861 58862 58863 58864 58865 58866 58867 58868 58869 58870 58871 58872 58873 58874 58875 58876 58877 58878 58879 58880 58881 58882 58883 58884 58885 58886 58887 58888 58889 58890 58891 58892 58893 58894 58895 58896 58897 58898 58899 58900 58901 58902 58903 58904 58905 58906 58907 58908 58909 58910 58911 58912 58913 58914 58915 58916 58917 58918 58919 58920 58921 58922 58923 58924 58925 58926 58927 58928 58929 58930 58931 58932 58933 58934 58935 58936 58937 58938 58939 58940 58941 58942 58943 58944 58945 58946 58947 58948 58949 58950 58951 58952 58953 58954 58955 58956 58957 58958 58959 58960 58961 58962 58963 58964 58965 58966 58967 58968 58969 58970 58971 58972 58973 58974 58975 58976 58977 58978 58979 58980 58981 58982 58983 58984 58985 58986 58987 58988 58989 58990 58991 58992 58993 58994 58995 58996 58997 58998 58999 59000 59001 59002 59003 59004 59005 59006 59007 59008 59009 59010 59011 59012 59013 59014 59015 59016 59017 59018 59019 59020 59021 59022 59023 59024 59025 59026 59027 59028 59029 59030 59031 59032 59033 59034 59035 59036 59037 59038 59039 59040 59041 59042 59043 59044 59045 59046 59047 59048 59049 59050 59051 59052 59053 59054 59055 59056 59057 59058 59059 59060 59061 59062 59063 59064 59065 59066 59067 59068 59069 59070 59071 59072 59073 59074 59075 59076 59077 59078 59079 59080 59081 59082 59083 59084 59085 59086 59087 59088 59089 59090 59091 59092 59093 59094 59095 59096 59097 59098 59099 59100 59101 59102 59103 59104 59105 59106 59107 59108 59109 59110 59111 59112 59113 59114 59115 59116 59117 59118 59119 59120 59121 59122 59123 59124 59125 59126 59127 59128 59129 59130 59131 59132 59133 59134 59135 59136 59137 59138 59139 59140 59141 59142 59143 59144 59145 59146 59147 59148 59149 59150 59151 59152 59153 59154 59155 59156 59157 59158 59159 59160 59161 59162 59163 59164 59165 59166 59167 59168 59169 59170 59171 59172 59173 59174 59175 59176 59177 59178 59179 59180 59181 59182 59183 59184 59185 59186 59187 59188 59189 59190 59191 59192 59193 59194 59195 59196 59197 59198 59199 59200 59201 59202 59203 59204 59205 59206 59207 59208 59209 59210 59211 59212 59213 59214 59215 59216 59217 59218 59219 59220 59221 59222 59223 59224 59225 59226 59227 59228 59229 59230 59231 59232 59233 59234 59235 59236 59237 59238 59239 59240 59241 59242 59243 59244 59245 59246 59247 59248 59249 59250 59251 59252 59253 59254 59255 59256 59257 59258 59259 59260 59261 59262 59263 59264 59265 59266 59267 59268 59269 59270 59271 59272 59273 59274 59275 59276 59277 59278 59279 59280 59281 59282 59283 59284 59285 59286 59287 59288 59289 59290 59291 59292 59293 59294 59295 59296 59297 59298 59299 59300 59301 59302 59303 59304 59305 59306 59307 59308 59309 59310 59311 59312 59313 59314 59315 59316 59317 59318 59319 59320 59321 59322 59323 59324 59325 59326 59327 59328 59329 59330 59331 59332 59333 59334 59335 59336 59337 59338 59339 59340 59341 59342 59343 59344 59345 59346 59347 59348 59349 59350 59351 59352 59353 59354 59355 59356 59357 59358 59359 59360 59361 59362 59363 59364 59365 59366 59367 59368 59369 59370 59371 59372 59373 59374 59375 59376 59377 59378 59379 59380 59381 59382 59383 59384 59385 59386 59387 59388 59389 59390 59391 59392 59393 59394 59395 59396 59397 59398 59399 59400 59401 59402 59403 59404 59405 59406 59407 59408 59409 59410 59411 59412 59413 59414 59415 59416 59417 59418 59419 59420 59421 59422 59423 59424 59425 59426 59427 59428 59429 59430 59431 59432 59433 59434 59435 59436 59437 59438 59439 59440 59441 59442 59443 59444 59445 59446 59447 59448 59449 59450 59451 59452 59453 59454 59455 59456 59457 59458 59459 59460 59461 59462 59463 59464 59465 59466 59467 59468 59469 59470 59471 59472 59473 59474 59475 59476 59477 59478 59479 59480 59481 59482 59483 59484 59485 59486 59487 59488 59489 59490 59491 59492 59493 59494 59495 59496 59497 59498 59499 59500 59501 59502 59503 59504 59505 59506 59507 59508 59509 59510 59511 59512 59513 59514 59515 59516 59517 59518 59519 59520 59521 59522 59523 59524 59525 59526 59527 59528 59529 59530 59531 59532 59533 59534 59535 59536 59537 59538 59539 59540 59541 59542 59543 59544 59545 59546 59547 59548 59549 59550 59551 59552 59553 59554 59555 59556 59557 59558 59559 59560 59561 59562 59563 59564 59565 59566 59567 59568 59569 59570 59571 59572 59573 59574 59575 59576 59577 59578 59579 59580 59581 59582 59583 59584 59585 59586 59587 59588 59589 59590 59591 59592 59593 59594 59595 59596 59597 59598 59599 59600 59601 59602 59603 59604 59605 59606 59607 59608 59609 59610 59611 59612 59613 59614 59615 59616 59617 59618 59619 59620 59621 59622 59623 59624 59625 59626 59627 59628 59629 59630 59631 59632 59633 59634 59635 59636 59637 59638 59639 59640 59641 59642 59643 59644 59645 59646 59647 59648 59649 59650 59651 59652 59653 59654 59655 59656 59657 59658 59659 59660 59661 59662 59663 59664 59665 59666 59667 59668 59669 59670 59671 59672 59673 59674 59675 59676 59677 59678 59679 59680 59681 59682 59683 59684 59685 59686 59687 59688 59689 59690 59691 59692 59693 59694 59695 59696 59697 59698 59699 59700 59701 59702 59703 59704 59705 59706 59707 59708 59709 59710 59711 59712 59713 59714 59715 59716 59717 59718 59719 59720 59721 59722 59723 59724 59725 59726 59727 59728 59729 59730 59731 59732 59733 59734 59735 59736 59737 59738 59739 59740 59741 59742 59743 59744 59745 59746 59747 59748 59749 59750 59751 59752 59753 59754 59755 59756 59757 59758 59759 59760 59761 59762 59763 59764 59765 59766 59767 59768 59769 59770 59771 59772 59773 59774 59775 59776 59777 59778 59779 59780 59781 59782 59783 59784 59785 59786 59787 59788 59789 59790 59791 59792 59793 59794 59795 59796 59797 59798 59799 59800 59801 59802 59803 59804 59805 59806 59807 59808 59809 59810 59811 59812 59813 59814 59815 59816 59817 59818 59819 59820 59821 59822 59823 59824 59825 59826 59827 59828 59829 59830 59831 59832 59833 59834 59835 59836 59837 59838 59839 59840 59841 59842 59843 59844 59845 59846 59847 59848 59849 59850 59851 59852 59853 59854 59855 59856 59857 59858 59859 59860 59861 59862 59863 59864 59865 59866 59867 59868 59869 59870 59871 59872 59873 59874 59875 59876 59877 59878 59879 59880 59881 59882 59883 59884 59885 59886 59887 59888 59889 59890 59891 59892 59893 59894 59895 59896 59897 59898 59899 59900 59901 59902 59903 59904 59905 59906 59907 59908 59909 59910 59911 59912 59913 59914 59915 59916 59917 59918 59919 59920 59921 59922 59923 59924 59925 59926 59927 59928 59929 59930 59931 59932 59933 59934 59935 59936 59937 59938 59939 59940 59941 59942 59943 59944 59945 59946 59947 59948 59949 59950 59951 59952 59953 59954 59955 59956 59957 59958 59959 59960 59961 59962 59963 59964 59965 59966 59967 59968 59969 59970 59971 59972 59973 59974 59975 59976 59977 59978 59979 59980 59981 59982 59983 59984 59985 59986 59987 59988 59989 59990 59991 59992 59993 59994 59995 59996 59997 59998 59999 60000 60001 60002 60003 60004 60005 60006 60007 60008 60009 60010 60011 60012 60013 60014 60015 60016 60017 60018 60019 60020 60021 60022 60023 60024 60025 60026 60027 60028 60029 60030 60031 60032 60033 60034 60035 60036 60037 60038 60039 60040 60041 60042 60043 60044 60045 60046 60047 60048 60049 60050 60051 60052 60053 60054 60055 60056 60057 60058 60059 60060 60061 60062 60063 60064 60065 60066 60067 60068 60069 60070 60071 60072 60073 60074 60075 60076 60077 60078 60079 60080 60081 60082 60083 60084 60085 60086 60087 60088 60089 60090 60091 60092 60093 60094 60095 60096 60097 60098 60099 60100 60101 60102 60103 60104 60105 60106 60107 60108 60109 60110 60111 60112 60113 60114 60115 60116 60117 60118 60119 60120 60121 60122 60123 60124 60125 60126 60127 60128 60129 60130 60131 60132 60133 60134 60135 60136 60137 60138 60139 60140 60141 60142 60143 60144 60145 60146 60147 60148 60149 60150 60151 60152 60153 60154 60155 60156 60157 60158 60159 60160 60161 60162 60163 60164 60165 60166 60167 60168 60169 60170 60171 60172 60173 60174 60175 60176 60177 60178 60179 60180 60181 60182 60183 60184 60185 60186 60187 60188 60189 60190 60191 60192 60193 60194 60195 60196 60197 60198 60199 60200 60201 60202 60203 60204 60205 60206 60207 60208 60209 60210 60211 60212 60213 60214 60215 60216 60217 60218 60219 60220 60221 60222 60223 60224 60225 60226 60227 60228 60229 60230 60231 60232 60233 60234 60235 60236 60237 60238 60239 60240 60241 60242 60243 60244 60245 60246 60247 60248 60249 60250 60251 60252 60253 60254 60255 60256 60257 60258 60259 60260 60261 60262 60263 60264 60265 60266 60267 60268 60269 60270 60271 60272 60273 60274 60275 60276 60277 60278 60279 60280 60281 60282 60283 60284 60285 60286 60287 60288 60289 60290 60291 60292 60293 60294 60295 60296 60297 60298 60299 60300 60301 60302 60303 60304 60305 60306 60307 60308 60309 60310 60311 60312 60313 60314 60315 60316 60317 60318 60319 60320 60321 60322 60323 60324 60325 60326 60327 60328 60329 60330 60331 60332 60333 60334 60335 60336 60337 60338 60339 60340 60341 60342 60343 60344 60345 60346 60347 60348 60349 60350 60351 60352 60353 60354 60355 60356 60357 60358 60359 60360 60361 60362 60363 60364 60365 60366 60367 60368 60369 60370 60371 60372 60373 60374 60375 60376 60377 60378 60379 60380 60381 60382 60383 60384 60385 60386 60387 60388 60389 60390 60391 60392 60393 60394 60395 60396 60397 60398 60399 60400 60401 60402 60403 60404 60405 60406 60407 60408 60409 60410 60411 60412 60413 60414 60415 60416 60417 60418 60419 60420 60421 60422 60423 60424 60425 60426 60427 60428 60429 60430 60431 60432 60433 60434 60435 60436 60437 60438 60439 60440 60441 60442 60443 60444 60445 60446 60447 60448 60449 60450 60451 60452 60453 60454 60455 60456 60457 60458 60459 60460 60461 60462 60463 60464 60465 60466 60467 60468 60469 60470 60471 60472 60473 60474 60475 60476 60477 60478 60479 60480 60481 60482 60483 60484 60485 60486 60487 60488 60489 60490 60491 60492 60493 60494 60495 60496 60497 60498 60499 60500 60501 60502 60503 60504 60505 60506 60507 60508 60509 60510 60511 60512 60513 60514 60515 60516 60517 60518 60519 60520 60521 60522 60523 60524 60525 60526 60527 60528 60529 60530 60531 60532 60533 60534 60535 60536 60537 60538 60539 60540 60541 60542 60543 60544 60545 60546 60547 60548 60549 60550 60551 60552 60553 60554 60555 60556 60557 60558 60559 60560 60561 60562 60563 60564 60565 60566 60567 60568 60569 60570 60571 60572 60573 60574 60575 60576 60577 60578 60579 60580 60581 60582 60583 60584 60585 60586 60587 60588 60589 60590 60591 60592 60593 60594 60595 60596 60597 60598 60599 60600 60601 60602 60603 60604 60605 60606 60607 60608 60609 60610 60611 60612 60613 60614 60615 60616 60617 60618 60619 60620 60621 60622 60623 60624 60625 60626 60627 60628 60629 60630 60631 60632 60633 60634 60635 60636 60637 60638 60639 60640 60641 60642 60643 60644 60645 60646 60647 60648 60649 60650 60651 60652 60653 60654 60655 60656 60657 60658 60659 60660 60661 60662 60663 60664 60665 60666 60667 60668 60669 60670 60671 60672 60673 60674 60675 60676 60677 60678 60679 60680 60681 60682 60683 60684 60685 60686 60687 60688 60689 60690 60691 60692 60693 60694 60695 60696 60697 60698 60699 60700 60701 60702 60703 60704 60705 60706 60707 60708 60709 60710 60711 60712 60713 60714 60715 60716 60717 60718 60719 60720 60721 60722 60723 60724 60725 60726 60727 60728 60729 60730 60731 60732 60733 60734 60735 60736 60737 60738 60739 60740 60741 60742 60743 60744 60745 60746 60747 60748 60749 60750 60751 60752 60753 60754 60755 60756 60757 60758 60759 60760 60761 60762 60763 60764 60765 60766 60767 60768 60769 60770 60771 60772 60773 60774 60775 60776 60777 60778 60779 60780 60781 60782 60783 60784 60785 60786 60787 60788 60789 60790 60791 60792 60793 60794 60795 60796 60797 60798 60799 60800 60801 60802 60803 60804 60805 60806 60807 60808 60809 60810 60811 60812 60813 60814 60815 60816 60817 60818 60819 60820 60821 60822 60823 60824 60825 60826 60827 60828 60829 60830 60831 60832 60833 60834 60835 60836 60837 60838 60839 60840 60841 60842 60843 60844 60845 60846 60847 60848 60849 60850 60851 60852 60853 60854 60855 60856 60857 60858 60859 60860 60861 60862 60863 60864 60865 60866 60867 60868 60869 60870 60871 60872 60873 60874 60875 60876 60877 60878 60879 60880 60881 60882 60883 60884 60885 60886 60887 60888 60889 60890 60891 60892 60893 60894 60895 60896 60897 60898 60899 60900 60901 60902 60903 60904 60905 60906 60907 60908 60909 60910 60911 60912 60913 60914 60915 60916 60917 60918 60919 60920 60921 60922 60923 60924 60925 60926 60927 60928 60929 60930 60931 60932 60933 60934 60935 60936 60937 60938 60939 60940 60941 60942 60943 60944 60945 60946 60947 60948 60949 60950 60951 60952 60953 60954 60955 60956 60957 60958 60959 60960 60961 60962 60963 60964 60965 60966 60967 60968 60969 60970 60971 60972 60973 60974 60975 60976 60977 60978 60979 60980 60981 60982 60983 60984 60985 60986 60987 60988 60989 60990 60991 60992 60993 60994 60995 60996 60997 60998 60999 61000 61001 61002 61003 61004 61005 61006 61007 61008 61009 61010 61011 61012 61013 61014 61015 61016 61017 61018 61019 61020 61021 61022 61023 61024 61025 61026 61027 61028 61029 61030 61031 61032 61033 61034 61035 61036 61037 61038 61039 61040 61041 61042 61043 61044 61045 61046 61047 61048 61049 61050 61051 61052 61053 61054 61055 61056 61057 61058 61059 61060 61061 61062 61063 61064 61065 61066 61067 61068 61069 61070 61071 61072 61073 61074 61075 61076 61077 61078 61079 61080 61081 61082 61083 61084 61085 61086 61087 61088 61089 61090 61091 61092 61093 61094 61095 61096 61097 61098 61099 61100 61101 61102 61103 61104 61105 61106 61107 61108 61109 61110 61111 61112 61113 61114 61115 61116 61117 61118 61119 61120 61121 61122 61123 61124 61125 61126 61127 61128 61129 61130 61131 61132 61133 61134 61135 61136 61137 61138 61139 61140 61141 61142 61143 61144 61145 61146 61147 61148 61149 61150 61151 61152 61153 61154 61155 61156 61157 61158 61159 61160 61161 61162 61163 61164 61165 61166 61167 61168 61169 61170 61171 61172 61173 61174 61175 61176 61177 61178 61179 61180 61181 61182 61183 61184 61185 61186 61187 61188 61189 61190 61191 61192 61193 61194 61195 61196 61197 61198 61199 61200 61201 61202 61203 61204 61205 61206 61207 61208 61209 61210 61211 61212 61213 61214 61215 61216 61217 61218 61219 61220 61221 61222 61223 61224 61225 61226 61227 61228 61229 61230 61231 61232 61233 61234 61235 61236 61237 61238 61239 61240 61241 61242 61243 61244 61245 61246 61247 61248 61249 61250 61251 61252 61253 61254 61255 61256 61257 61258 61259 61260 61261 61262 61263 61264 61265 61266 61267 61268 61269 61270 61271 61272 61273 61274 61275 61276 61277 61278 61279 61280 61281 61282 61283 61284 61285 61286 61287 61288 61289 61290 61291 61292 61293 61294 61295 61296 61297 61298 61299 61300 61301 61302 61303 61304 61305 61306 61307 61308 61309 61310 61311 61312 61313 61314 61315 61316 61317 61318 61319 61320 61321 61322 61323 61324 61325 61326 61327 61328 61329 61330 61331 61332 61333 61334 61335 61336 61337 61338 61339 61340 61341 61342 61343 61344 61345 61346 61347 61348 61349 61350 61351 61352 61353 61354 61355 61356 61357 61358 61359 61360 61361 61362 61363 61364 61365 61366 61367 61368 61369 61370 61371 61372 61373 61374 61375 61376 61377 61378 61379 61380 61381 61382 61383 61384 61385 61386 61387 61388 61389 61390 61391 61392 61393 61394 61395 61396 61397 61398 61399 61400 61401 61402 61403 61404 61405 61406 61407 61408 61409 61410 61411 61412 61413 61414 61415 61416 61417 61418 61419 61420 61421 61422 61423 61424 61425 61426 61427 61428 61429 61430 61431 61432 61433 61434 61435 61436 61437 61438 61439 61440 61441 61442 61443 61444 61445 61446 61447 61448 61449 61450 61451 61452 61453 61454 61455 61456 61457 61458 61459 61460 61461 61462 61463 61464 61465 61466 61467 61468 61469 61470 61471 61472 61473 61474 61475 61476 61477 61478 61479 61480 61481 61482 61483 61484 61485 61486 61487 61488 61489 61490 61491 61492 61493 61494 61495 61496 61497 61498 61499 61500 61501 61502 61503 61504 61505 61506 61507 61508 61509 61510 61511 61512 61513 61514 61515 61516 61517 61518 61519 61520 61521 61522 61523 61524 61525 61526 61527 61528 61529 61530 61531 61532 61533 61534 61535 61536 61537 61538 61539 61540 61541 61542 61543 61544 61545 61546 61547 61548 61549 61550 61551 61552 61553 61554 61555 61556 61557 61558 61559 61560 61561 61562 61563 61564 61565 61566 61567 61568 61569 61570 61571 61572 61573 61574 61575 61576 61577 61578 61579 61580 61581 61582 61583 61584 61585 61586 61587 61588 61589 61590 61591 61592 61593 61594 61595 61596 61597 61598 61599 61600 61601 61602 61603 61604 61605 61606 61607 61608 61609 61610 61611 61612 61613 61614 61615 61616 61617 61618 61619 61620 61621 61622 61623 61624 61625 61626 61627 61628 61629 61630 61631 61632 61633 61634 61635 61636 61637 61638 61639 61640 61641 61642 61643 61644 61645 61646 61647 61648 61649 61650 61651 61652 61653 61654 61655 61656 61657 61658 61659 61660 61661 61662 61663 61664 61665 61666 61667 61668 61669 61670 61671 61672 61673 61674 61675 61676 61677 61678 61679 61680 61681 61682 61683 61684 61685 61686 61687 61688 61689 61690 61691 61692 61693 61694 61695 61696 61697 61698 61699 61700 61701 61702 61703 61704 61705 61706 61707 61708 61709 61710 61711 61712 61713 61714 61715 61716 61717 61718 61719 61720 61721 61722 61723 61724 61725 61726 61727 61728 61729 61730 61731 61732 61733 61734 61735 61736 61737 61738 61739 61740 61741 61742 61743 61744 61745 61746 61747 61748 61749 61750 61751 61752 61753 61754 61755 61756 61757 61758 61759 61760 61761 61762 61763 61764 61765 61766 61767 61768 61769 61770 61771 61772 61773 61774 61775 61776 61777 61778 61779 61780 61781 61782 61783 61784 61785 61786 61787 61788 61789 61790 61791 61792 61793 61794 61795 61796 61797 61798 61799 61800 61801 61802 61803 61804 61805 61806 61807 61808 61809 61810 61811 61812 61813 61814 61815 61816 61817 61818 61819 61820 61821 61822 61823 61824 61825 61826 61827 61828 61829 61830 61831 61832 61833 61834 61835 61836 61837 61838 61839 61840 61841 61842 61843 61844 61845 61846 61847 61848 61849 61850 61851 61852 61853 61854 61855 61856 61857 61858 61859 61860 61861 61862 61863 61864 61865 61866 61867 61868 61869 61870 61871 61872 61873 61874 61875 61876 61877 61878 61879 61880 61881 61882 61883 61884 61885 61886 61887 61888 61889 61890 61891 61892 61893 61894 61895 61896 61897 61898 61899 61900 61901 61902 61903 61904 61905 61906 61907 61908 61909 61910 61911 61912 61913 61914 61915 61916 61917 61918 61919 61920 61921 61922 61923 61924 61925 61926 61927 61928 61929 61930 61931 61932 61933 61934 61935 61936 61937 61938 61939 61940 61941 61942 61943 61944 61945 61946 61947 61948 61949 61950 61951 61952 61953 61954 61955 61956 61957 61958 61959 61960 61961 61962 61963 61964 61965 61966 61967 61968 61969 61970 61971 61972 61973 61974 61975 61976 61977 61978 61979 61980 61981 61982 61983 61984 61985 61986 61987 61988 61989 61990 61991 61992 61993 61994 61995 61996 61997 61998 61999 62000 62001 62002 62003 62004 62005 62006 62007 62008 62009 62010 62011 62012 62013 62014 62015 62016 62017 62018 62019 62020 62021 62022 62023 62024 62025 62026 62027 62028 62029 62030 62031 62032 62033 62034 62035 62036 62037 62038 62039 62040 62041 62042 62043 62044 62045 62046 62047 62048 62049 62050 62051 62052 62053 62054 62055 62056 62057 62058 62059 62060 62061 62062 62063 62064 62065 62066 62067 62068 62069 62070 62071 62072 62073 62074 62075 62076 62077 62078 62079 62080 62081 62082 62083 62084 62085 62086 62087 62088 62089 62090 62091 62092 62093 62094 62095 62096 62097 62098 62099 62100 62101 62102 62103 62104 62105 62106 62107 62108 62109 62110 62111 62112 62113 62114 62115 62116 62117 62118 62119 62120 62121 62122 62123 62124 62125 62126 62127 62128 62129 62130 62131 62132 62133 62134 62135 62136 62137 62138 62139 62140 62141 62142 62143 62144 62145 62146 62147 62148 62149 62150 62151 62152 62153 62154 62155 62156 62157 62158 62159 62160 62161 62162 62163 62164 62165 62166 62167 62168 62169 62170 62171 62172 62173 62174 62175 62176 62177 62178 62179 62180 62181 62182 62183 62184 62185 62186 62187 62188 62189 62190 62191 62192 62193 62194 62195 62196 62197 62198 62199 62200 62201 62202 62203 62204 62205 62206 62207 62208 62209 62210 62211 62212 62213 62214 62215 62216 62217 62218 62219 62220 62221 62222 62223 62224 62225 62226 62227 62228 62229 62230 62231 62232 62233 62234 62235 62236 62237 62238 62239 62240 62241 62242 62243 62244 62245 62246 62247 62248 62249 62250 62251 62252 62253 62254 62255 62256 62257 62258 62259 62260 62261 62262 62263 62264 62265 62266 62267 62268 62269 62270 62271 62272 62273 62274 62275 62276 62277 62278 62279 62280 62281 62282 62283 62284 62285 62286 62287 62288 62289 62290 62291 62292 62293 62294 62295 62296 62297 62298 62299 62300 62301 62302 62303 62304 62305 62306 62307 62308 62309 62310 62311 62312 62313 62314 62315 62316 62317 62318 62319 62320 62321 62322 62323 62324 62325 62326 62327 62328 62329 62330 62331 62332 62333 62334 62335 62336 62337 62338 62339 62340 62341 62342 62343 62344 62345 62346 62347 62348 62349 62350 62351 62352 62353 62354 62355 62356 62357 62358 62359 62360 62361 62362 62363 62364 62365 62366 62367 62368 62369 62370 62371 62372 62373 62374 62375 62376 62377 62378 62379 62380 62381 62382 62383 62384 62385 62386 62387 62388 62389 62390 62391 62392 62393 62394 62395 62396 62397 62398 62399 62400 62401 62402 62403 62404 62405 62406 62407 62408 62409 62410 62411 62412 62413 62414 62415 62416 62417 62418 62419 62420 62421 62422 62423 62424 62425 62426 62427 62428 62429 62430 62431 62432 62433 62434 62435 62436 62437 62438 62439 62440 62441 62442 62443 62444 62445 62446 62447 62448 62449 62450 62451 62452 62453 62454 62455 62456 62457 62458 62459 62460 62461 62462 62463 62464 62465 62466 62467 62468 62469 62470 62471 62472 62473 62474 62475 62476 62477 62478 62479 62480 62481 62482 62483 62484 62485 62486 62487 62488 62489 62490 62491 62492 62493 62494 62495 62496 62497 62498 62499 62500 62501 62502 62503 62504 62505 62506 62507 62508 62509 62510 62511 62512 62513 62514 62515 62516 62517 62518 62519 62520 62521 62522 62523 62524 62525 62526 62527 62528 62529 62530 62531 62532 62533 62534 62535 62536 62537 62538 62539 62540 62541 62542 62543 62544 62545 62546 62547 62548 62549 62550 62551 62552 62553 62554 62555 62556 62557 62558 62559 62560 62561 62562 62563 62564 62565 62566 62567 62568 62569 62570 62571 62572 62573 62574 62575 62576 62577 62578 62579 62580 62581 62582 62583 62584 62585 62586 62587 62588 62589 62590 62591 62592 62593 62594 62595 62596 62597 62598 62599 62600 62601 62602 62603 62604 62605 62606 62607 62608 62609 62610 62611 62612 62613 62614 62615 62616 62617 62618 62619 62620 62621 62622 62623 62624 62625 62626 62627 62628 62629 62630 62631 62632 62633 62634 62635 62636 62637 62638 62639 62640 62641 62642 62643 62644 62645 62646 62647 62648 62649 62650 62651 62652 62653 62654 62655 62656 62657 62658 62659 62660 62661 62662 62663 62664 62665 62666 62667 62668 62669 62670 62671 62672 62673 62674 62675 62676 62677 62678 62679 62680 62681 62682 62683 62684 62685 62686 62687 62688 62689 62690 62691 62692 62693 62694 62695 62696 62697 62698 62699 62700 62701 62702 62703 62704 62705 62706 62707 62708 62709 62710 62711 62712 62713 62714 62715 62716 62717 62718 62719 62720 62721 62722 62723 62724 62725 62726 62727 62728 62729 62730 62731 62732 62733 62734 62735 62736 62737 62738 62739 62740 62741 62742 62743 62744 62745 62746 62747 62748 62749 62750 62751 62752 62753 62754 62755 62756 62757 62758 62759 62760 62761 62762 62763 62764 62765 62766 62767 62768 62769 62770 62771 62772 62773 62774 62775 62776 62777 62778 62779 62780 62781 62782 62783 62784 62785 62786 62787 62788 62789 62790 62791 62792 62793 62794 62795 62796 62797 62798 62799 62800 62801 62802 62803 62804 62805 62806 62807 62808 62809 62810 62811 62812 62813 62814 62815 62816 62817 62818 62819 62820 62821 62822 62823 62824 62825 62826 62827 62828 62829 62830 62831 62832 62833 62834 62835 62836 62837 62838 62839 62840 62841 62842 62843 62844 62845 62846 62847 62848 62849 62850 62851 62852 62853 62854 62855 62856 62857 62858 62859 62860 62861 62862 62863 62864 62865 62866 62867 62868 62869 62870 62871 62872 62873 62874 62875 62876 62877 62878 62879 62880 62881 62882 62883 62884 62885 62886 62887 62888 62889 62890 62891 62892 62893 62894 62895 62896 62897 62898 62899 62900 62901 62902 62903 62904 62905 62906 62907 62908 62909 62910 62911 62912 62913 62914 62915 62916 62917 62918 62919 62920 62921 62922 62923 62924 62925 62926 62927 62928 62929 62930 62931 62932 62933 62934 62935 62936 62937 62938 62939 62940 62941 62942 62943 62944 62945 62946 62947 62948 62949 62950 62951 62952 62953 62954 62955 62956 62957 62958 62959 62960 62961 62962 62963 62964 62965 62966 62967 62968 62969 62970 62971 62972 62973 62974 62975 62976 62977 62978 62979 62980 62981 62982 62983 62984 62985 62986 62987 62988 62989 62990 62991 62992 62993 62994 62995 62996 62997 62998 62999 63000 63001 63002 63003 63004 63005 63006 63007 63008 63009 63010 63011 63012 63013 63014 63015 63016 63017 63018 63019 63020 63021 63022 63023 63024 63025 63026 63027 63028 63029 63030 63031 63032 63033 63034 63035 63036 63037 63038 63039 63040 63041 63042 63043 63044 63045 63046 63047 63048 63049 63050 63051 63052 63053 63054 63055 63056 63057 63058 63059 63060 63061 63062 63063 63064 63065 63066 63067 63068 63069 63070 63071 63072 63073 63074 63075 63076 63077 63078 63079 63080 63081 63082 63083 63084 63085 63086 63087 63088 63089 63090 63091 63092 63093 63094 63095 63096 63097 63098 63099 63100 63101 63102 63103 63104 63105 63106 63107 63108 63109 63110 63111 63112 63113 63114 63115 63116 63117 63118 63119 63120 63121 63122 63123 63124 63125 63126 63127 63128 63129 63130 63131 63132 63133 63134 63135 63136 63137 63138 63139 63140 63141 63142 63143 63144 63145 63146 63147 63148 63149 63150 63151 63152 63153 63154 63155 63156 63157 63158 63159 63160 63161 63162 63163 63164 63165 63166 63167 63168 63169 63170 63171 63172 63173 63174 63175 63176 63177 63178 63179 63180 63181 63182 63183 63184 63185 63186 63187 63188 63189 63190 63191 63192 63193 63194 63195 63196 63197 63198 63199 63200 63201 63202 63203 63204 63205 63206 63207 63208 63209 63210 63211 63212 63213 63214 63215 63216 63217 63218 63219 63220 63221 63222 63223 63224 63225 63226 63227 63228 63229 63230 63231 63232 63233 63234 63235 63236 63237 63238 63239 63240 63241 63242 63243 63244 63245 63246 63247 63248 63249 63250 63251 63252 63253 63254 63255 63256 63257 63258 63259 63260 63261 63262 63263 63264 63265 63266 63267 63268 63269 63270 63271 63272 63273 63274 63275 63276 63277 63278 63279 63280 63281 63282 63283 63284 63285 63286 63287 63288 63289 63290 63291 63292 63293 63294 63295 63296 63297 63298 63299 63300 63301 63302 63303 63304 63305 63306 63307 63308 63309 63310 63311 63312 63313 63314 63315 63316 63317 63318 63319 63320 63321 63322 63323 63324 63325 63326 63327 63328 63329 63330 63331 63332 63333 63334 63335 63336 63337 63338 63339 63340 63341 63342 63343 63344 63345 63346 63347 63348 63349 63350 63351 63352 63353 63354 63355 63356 63357 63358 63359 63360 63361 63362 63363 63364 63365 63366 63367 63368 63369 63370 63371 63372 63373 63374 63375 63376 63377 63378 63379 63380 63381 63382 63383 63384 63385 63386 63387 63388 63389 63390 63391 63392 63393 63394 63395 63396 63397 63398 63399 63400 63401 63402 63403 63404 63405 63406 63407 63408 63409 63410 63411 63412 63413 63414 63415 63416 63417 63418 63419 63420 63421 63422 63423 63424 63425 63426 63427 63428 63429 63430 63431 63432 63433 63434 63435 63436 63437 63438 63439 63440 63441 63442 63443 63444 63445 63446 63447 63448 63449 63450 63451 63452 63453 63454 63455 63456 63457 63458 63459 63460 63461 63462 63463 63464 63465 63466 63467 63468 63469 63470 63471 63472 63473 63474 63475 63476 63477 63478 63479 63480 63481 63482 63483 63484 63485 63486 63487 63488 63489 63490 63491 63492 63493 63494 63495 63496 63497 63498 63499 63500 63501 63502 63503 63504 63505 63506 63507 63508 63509 63510 63511 63512 63513 63514 63515 63516 63517 63518 63519 63520 63521 63522 63523 63524 63525 63526 63527 63528 63529 63530 63531 63532 63533 63534 63535 63536 63537 63538 63539 63540 63541 63542 63543 63544 63545 63546 63547 63548 63549 63550 63551 63552 63553 63554 63555 63556 63557 63558 63559 63560 63561 63562 63563 63564 63565 63566 63567 63568 63569 63570 63571 63572 63573 63574 63575 63576 63577 63578 63579 63580 63581 63582 63583 63584 63585 63586 63587 63588 63589 63590 63591 63592 63593 63594 63595 63596 63597 63598 63599 63600 63601 63602 63603 63604 63605 63606 63607 63608 63609 63610 63611 63612 63613 63614 63615 63616 63617 63618 63619 63620 63621 63622 63623 63624 63625 63626 63627 63628 63629 63630 63631 63632 63633 63634 63635 63636 63637 63638 63639 63640 63641 63642 63643 63644 63645 63646 63647 63648 63649 63650 63651 63652 63653 63654 63655 63656 63657 63658 63659 63660 63661 63662 63663 63664 63665 63666 63667 63668 63669 63670 63671 63672 63673 63674 63675 63676 63677 63678 63679 63680 63681 63682 63683 63684 63685 63686 63687 63688 63689 63690 63691 63692 63693 63694 63695 63696 63697 63698 63699 63700 63701 63702 63703 63704 63705 63706 63707 63708 63709 63710 63711 63712 63713 63714 63715 63716 63717 63718 63719 63720 63721 63722 63723 63724 63725 63726 63727 63728 63729 63730 63731 63732 63733 63734 63735 63736 63737 63738 63739 63740 63741 63742 63743 63744 63745 63746 63747 63748 63749 63750 63751 63752 63753 63754 63755 63756 63757 63758 63759 63760 63761 63762 63763 63764 63765 63766 63767 63768 63769 63770 63771 63772 63773 63774 63775 63776 63777 63778 63779 63780 63781 63782 63783 63784 63785 63786 63787 63788 63789 63790 63791 63792 63793 63794 63795 63796 63797 63798 63799 63800 63801 63802 63803 63804 63805 63806 63807 63808 63809 63810 63811 63812 63813 63814 63815 63816 63817 63818 63819 63820 63821 63822 63823 63824 63825 63826 63827 63828 63829 63830 63831 63832 63833 63834 63835 63836 63837 63838 63839 63840 63841 63842 63843 63844 63845 63846 63847 63848 63849 63850 63851 63852 63853 63854 63855 63856 63857 63858 63859 63860 63861 63862 63863 63864 63865 63866 63867 63868 63869 63870 63871 63872 63873 63874 63875 63876 63877 63878 63879 63880 63881 63882 63883 63884 63885 63886 63887 63888 63889 63890 63891 63892 63893 63894 63895 63896 63897 63898 63899 63900 63901 63902 63903 63904 63905 63906 63907 63908 63909 63910 63911 63912 63913 63914 63915 63916 63917 63918 63919 63920 63921 63922 63923 63924 63925 63926 63927 63928 63929 63930 63931 63932 63933 63934 63935 63936 63937 63938 63939 63940 63941 63942 63943 63944 63945 63946 63947 63948 63949 63950 63951 63952 63953 63954 63955 63956 63957 63958 63959 63960 63961 63962 63963 63964 63965 63966 63967 63968 63969 63970 63971 63972 63973 63974 63975 63976 63977 63978 63979 63980 63981 63982 63983 63984 63985 63986 63987 63988 63989 63990 63991 63992 63993 63994 63995 63996 63997 63998 63999 64000 64001 64002 64003 64004 64005 64006 64007 64008 64009 64010 64011 64012 64013 64014 64015 64016 64017 64018 64019 64020 64021 64022 64023 64024 64025 64026 64027 64028 64029 64030 64031 64032 64033 64034 64035 64036 64037 64038 64039 64040 64041 64042 64043 64044 64045 64046 64047 64048 64049 64050 64051 64052 64053 64054 64055 64056 64057 64058 64059 64060 64061 64062 64063 64064 64065 64066 64067 64068 64069 64070 64071 64072 64073 64074 64075 64076 64077 64078 64079 64080 64081 64082 64083 64084 64085 64086 64087 64088 64089 64090 64091 64092 64093 64094 64095 64096 64097 64098 64099 64100 64101 64102 64103 64104 64105 64106 64107 64108 64109 64110 64111 64112 64113 64114 64115 64116 64117 64118 64119 64120 64121 64122 64123 64124 64125 64126 64127 64128 64129 64130 64131 64132 64133 64134 64135 64136 64137 64138 64139 64140 64141 64142 64143 64144 64145 64146 64147 64148 64149 64150 64151 64152 64153 64154 64155 64156 64157 64158 64159 64160 64161 64162 64163 64164 64165 64166 64167 64168 64169 64170 64171 64172 64173 64174 64175 64176 64177 64178 64179 64180 64181 64182 64183 64184 64185 64186 64187 64188 64189 64190 64191 64192 64193 64194 64195 64196 64197 64198 64199 64200 64201 64202 64203 64204 64205 64206 64207 64208 64209 64210 64211 64212 64213 64214 64215 64216 64217 64218 64219 64220 64221 64222 64223 64224 64225 64226 64227 64228 64229 64230 64231 64232 64233 64234 64235 64236 64237 64238 64239 64240 64241 64242 64243 64244 64245 64246 64247 64248 64249 64250 64251 64252 64253 64254 64255 64256 64257 64258 64259 64260 64261 64262 64263 64264 64265 64266 64267 64268 64269 64270 64271 64272 64273 64274 64275 64276 64277 64278 64279 64280 64281 64282 64283 64284 64285 64286 64287 64288 64289 64290 64291 64292 64293 64294 64295 64296 64297 64298 64299 64300 64301 64302 64303 64304 64305 64306 64307 64308 64309 64310 64311 64312 64313 64314 64315 64316 64317 64318 64319 64320 64321 64322 64323 64324 64325 64326 64327 64328 64329 64330 64331 64332 64333 64334 64335 64336 64337 64338 64339 64340 64341 64342 64343 64344 64345 64346 64347 64348 64349 64350 64351 64352 64353 64354 64355 64356 64357 64358 64359 64360 64361 64362 64363 64364 64365 64366 64367 64368 64369 64370 64371 64372 64373 64374 64375 64376 64377 64378 64379 64380 64381 64382 64383 64384 64385 64386 64387 64388 64389 64390 64391 64392 64393 64394 64395 64396 64397 64398 64399 64400 64401 64402 64403 64404 64405 64406 64407 64408 64409 64410 64411 64412 64413 64414 64415 64416 64417 64418 64419 64420 64421 64422 64423 64424 64425 64426 64427 64428 64429 64430 64431 64432 64433 64434 64435 64436 64437 64438 64439 64440 64441 64442 64443 64444 64445 64446 64447 64448 64449 64450 64451 64452 64453 64454 64455 64456 64457 64458 64459 64460 64461 64462 64463 64464 64465 64466 64467 64468 64469 64470 64471 64472 64473 64474 64475 64476 64477 64478 64479 64480 64481 64482 64483 64484 64485 64486 64487 64488 64489 64490 64491 64492 64493 64494 64495 64496 64497 64498 64499 64500 64501 64502 64503 64504 64505 64506 64507 64508 64509 64510 64511 64512 64513 64514 64515 64516 64517 64518 64519 64520 64521 64522 64523 64524 64525 64526 64527 64528 64529 64530 64531 64532 64533 64534 64535 64536 64537 64538 64539 64540 64541 64542 64543 64544 64545 64546 64547 64548 64549 64550 64551 64552 64553 64554 64555 64556 64557 64558 64559 64560 64561 64562 64563 64564 64565 64566 64567 64568 64569 64570 64571 64572 64573 64574 64575 64576 64577 64578 64579 64580 64581 64582 64583 64584 64585 64586 64587 64588 64589 64590 64591 64592 64593 64594 64595 64596 64597 64598 64599 64600 64601 64602 64603 64604 64605 64606 64607 64608 64609 64610 64611 64612 64613 64614 64615 64616 64617 64618 64619 64620 64621 64622 64623 64624 64625 64626 64627 64628 64629 64630 64631 64632 64633 64634 64635 64636 64637 64638 64639 64640 64641 64642 64643 64644 64645 64646 64647 64648 64649 64650 64651 64652 64653 64654 64655 64656 64657 64658 64659 64660 64661 64662 64663 64664 64665 64666 64667 64668 64669 64670 64671 64672 64673 64674 64675 64676 64677 64678 64679 64680 64681 64682 64683 64684 64685 64686 64687 64688 64689 64690 64691 64692 64693 64694 64695 64696 64697 64698 64699 64700 64701 64702 64703 64704 64705 64706 64707 64708 64709 64710 64711 64712 64713 64714 64715 64716 64717 64718 64719 64720 64721 64722 64723 64724 64725 64726 64727 64728 64729 64730 64731 64732 64733 64734 64735 64736 64737 64738 64739 64740 64741 64742 64743 64744 64745 64746 64747 64748 64749 64750 64751 64752 64753 64754 64755 64756 64757 64758 64759 64760 64761 64762 64763 64764 64765 64766 64767 64768 64769 64770 64771 64772 64773 64774 64775 64776 64777 64778 64779 64780 64781 64782 64783 64784 64785 64786 64787 64788 64789 64790 64791 64792 64793 64794 64795 64796 64797 64798 64799 64800 64801 64802 64803 64804 64805 64806 64807 64808 64809 64810 64811 64812 64813 64814 64815 64816 64817 64818 64819 64820 64821 64822 64823 64824 64825 64826 64827 64828 64829 64830 64831 64832 64833 64834 64835 64836 64837 64838 64839 64840 64841 64842 64843 64844 64845 64846 64847 64848 64849 64850 64851 64852 64853 64854 64855 64856 64857 64858 64859 64860 64861 64862 64863 64864 64865 64866 64867 64868 64869 64870 64871 64872 64873 64874 64875 64876 64877 64878 64879 64880 64881 64882 64883 64884 64885 64886 64887 64888 64889 64890 64891 64892 64893 64894 64895 64896 64897 64898 64899 64900 64901 64902 64903 64904 64905 64906 64907 64908 64909 64910 64911 64912 64913 64914 64915 64916 64917 64918 64919 64920 64921 64922 64923 64924 64925 64926 64927 64928 64929 64930 64931 64932 64933 64934 64935 64936 64937 64938 64939 64940 64941 64942 64943 64944 64945 64946 64947 64948 64949 64950 64951 64952 64953 64954 64955 64956 64957 64958 64959 64960 64961 64962 64963 64964 64965 64966 64967 64968 64969 64970 64971 64972 64973 64974 64975 64976 64977 64978 64979 64980 64981 64982 64983 64984 64985 64986 64987 64988 64989 64990 64991 64992 64993 64994 64995 64996 64997 64998 64999 65000 65001 65002 65003 65004 65005 65006 65007 65008 65009 65010 65011 65012 65013 65014 65015 65016 65017 65018 65019 65020 65021 65022 65023 65024 65025 65026 65027 65028 65029 65030 65031 65032 65033 65034 65035 65036 65037 65038 65039 65040 65041 65042 65043 65044 65045 65046 65047 65048 65049 65050 65051 65052 65053 65054 65055 65056 65057 65058 65059 65060 65061 65062 65063 65064 65065 65066 65067 65068 65069 65070 65071 65072 65073 65074 65075 65076 65077 65078 65079 65080 65081 65082 65083 65084 65085 65086 65087 65088 65089 65090 65091 65092 65093 65094 65095 65096 65097 65098 65099 65100 65101 65102 65103 65104 65105 65106 65107 65108 65109 65110 65111 65112 65113 65114 65115 65116 65117 65118 65119 65120 65121 65122 65123 65124 65125 65126 65127 65128 65129 65130 65131 65132 65133 65134 65135 65136 65137 65138 65139 65140 65141 65142 65143 65144 65145 65146 65147 65148 65149 65150 65151 65152 65153 65154 65155 65156 65157 65158 65159 65160 65161 65162 65163 65164 65165 65166 65167 65168 65169 65170 65171 65172 65173 65174 65175 65176 65177 65178 65179 65180 65181 65182 65183 65184 65185 65186 65187 65188 65189 65190 65191 65192 65193 65194 65195 65196 65197 65198 65199 65200 65201 65202 65203 65204 65205 65206 65207 65208 65209 65210 65211 65212 65213 65214 65215 65216 65217 65218 65219 65220 65221 65222 65223 65224 65225 65226 65227 65228 65229 65230 65231 65232 65233 65234 65235 65236 65237 65238 65239 65240 65241 65242 65243 65244 65245 65246 65247 65248 65249 65250 65251 65252 65253 65254 65255 65256 65257 65258 65259 65260 65261 65262 65263 65264 65265 65266 65267 65268 65269 65270 65271 65272 65273 65274 65275 65276 65277 65278 65279 65280 65281 65282 65283 65284 65285 65286 65287 65288 65289 65290 65291 65292 65293 65294 65295 65296 65297 65298 65299 65300 65301 65302 65303 65304 65305 65306 65307 65308 65309 65310 65311 65312 65313 65314 65315 65316 65317 65318 65319 65320 65321 65322 65323 65324 65325 65326 65327 65328 65329 65330 65331 65332 65333 65334 65335 65336 65337 65338 65339 65340 65341 65342 65343 65344 65345 65346 65347 65348 65349 65350 65351 65352 65353 65354 65355 65356 65357 65358 65359 65360 65361 65362 65363 65364 65365 65366 65367 65368 65369 65370 65371 65372 65373 65374 65375 65376 65377 65378 65379 65380 65381 65382 65383 65384 65385 65386 65387 65388 65389 65390 65391 65392 65393 65394 65395 65396 65397 65398 65399 65400 65401 65402 65403 65404 65405 65406 65407 65408 65409 65410 65411 65412 65413 65414 65415 65416 65417 65418 65419 65420 65421 65422 65423 65424 65425 65426 65427 65428 65429 65430 65431 65432 65433 65434 65435 65436 65437 65438 65439 65440 65441 65442 65443 65444 65445 65446 65447 65448 65449 65450 65451 65452 65453 65454 65455 65456 65457 65458 65459 65460 65461 65462 65463 65464 65465 65466 65467 65468 65469 65470 65471 65472 65473 65474 65475 65476 65477 65478 65479 65480 65481 65482 65483 65484 65485 65486 65487 65488 65489 65490 65491 65492 65493 65494 65495 65496 65497 65498 65499 65500 65501 65502 65503 65504 65505 65506 65507 65508 65509 65510 65511 65512 65513 65514 65515 65516 65517 65518 65519 65520 65521 65522 65523 65524 65525 65526 65527 65528 65529 65530 65531 65532 65533 65534 65535 65536 65537 65538 65539 65540 65541 65542 65543 65544 65545 65546 65547 65548 65549 65550 65551 65552 65553 65554 65555 65556 65557 65558 65559 65560 65561 65562 65563 65564 65565 65566 65567 65568 65569 65570 65571 65572 65573 65574 65575 65576 65577 65578 65579 65580 65581 65582 65583 65584 65585 65586 65587 65588 65589 65590 65591 65592 65593 65594 65595 65596 65597 65598 65599 65600 65601 65602 65603 65604 65605 65606 65607 65608 65609 65610 65611 65612 65613 65614 65615 65616 65617 65618 65619 65620 65621 65622 65623 65624 65625 65626 65627 65628 65629 65630 65631 65632 65633 65634 65635 65636 65637 65638 65639 65640 65641 65642 65643 65644 65645 65646 65647 65648 65649 65650 65651 65652 65653 65654 65655 65656 65657 65658 65659 65660 65661 65662 65663 65664 65665 65666 65667 65668 65669 65670 65671 65672 65673 65674 65675 65676 65677 65678 65679 65680 65681 65682 65683 65684 65685 65686 65687 65688 65689 65690 65691 65692 65693 65694 65695 65696 65697 65698 65699 65700 65701 65702 65703 65704 65705 65706 65707 65708 65709 65710 65711 65712 65713 65714 65715 65716 65717 65718 65719 65720 65721 65722 65723 65724 65725 65726 65727 65728 65729 65730 65731 65732 65733 65734 65735 65736 65737 65738 65739 65740 65741 65742 65743 65744 65745 65746 65747 65748 65749 65750 65751 65752 65753 65754 65755 65756 65757 65758 65759 65760 65761 65762 65763 65764 65765 65766 65767 65768 65769 65770 65771 65772 65773 65774 65775 65776 65777 65778 65779 65780 65781 65782 65783 65784 65785 65786 65787 65788 65789 65790 65791 65792 65793 65794 65795 65796 65797 65798 65799 65800 65801 65802 65803 65804 65805 65806 65807 65808 65809 65810 65811 65812 65813 65814 65815 65816 65817 65818 65819 65820 65821 65822 65823 65824 65825 65826 65827 65828 65829 65830 65831 65832 65833 65834 65835 65836 65837 65838 65839 65840 65841 65842 65843 65844 65845 65846 65847 65848 65849 65850 65851 65852 65853 65854 65855 65856 65857 65858 65859 65860 65861 65862 65863 65864 65865 65866 65867 65868 65869 65870 65871 65872 65873 65874 65875 65876 65877 65878 65879 65880 65881 65882 65883 65884 65885 65886 65887 65888 65889 65890 65891 65892 65893 65894 65895 65896 65897 65898 65899 65900 65901 65902 65903 65904 65905 65906 65907 65908 65909 65910 65911 65912 65913 65914 65915 65916 65917 65918 65919 65920 65921 65922 65923 65924 65925 65926 65927 65928 65929 65930 65931 65932 65933 65934 65935 65936 65937 65938 65939 65940 65941 65942 65943 65944 65945 65946 65947 65948 65949 65950 65951 65952 65953 65954 65955 65956 65957 65958 65959 65960 65961 65962 65963 65964 65965 65966 65967 65968 65969 65970 65971 65972 65973 65974 65975 65976 65977 65978 65979 65980 65981 65982 65983 65984 65985 65986 65987 65988 65989 65990 65991 65992 65993 65994 65995 65996 65997 65998 65999 66000 66001 66002 66003 66004 66005 66006 66007 66008 66009 66010 66011 66012 66013 66014 66015 66016 66017 66018 66019 66020 66021 66022 66023 66024 66025 66026 66027 66028 66029 66030 66031 66032 66033 66034 66035 66036 66037 66038 66039 66040 66041 66042 66043 66044 66045 66046 66047 66048 66049 66050 66051 66052 66053 66054 66055 66056 66057 66058 66059 66060 66061 66062 66063 66064 66065 66066 66067 66068 66069 66070 66071 66072 66073 66074 66075 66076 66077 66078 66079 66080 66081 66082 66083 66084 66085 66086 66087 66088 66089 66090 66091 66092 66093 66094 66095 66096 66097 66098 66099 66100 66101 66102 66103 66104 66105 66106 66107 66108 66109 66110 66111 66112 66113 66114 66115 66116 66117 66118 66119 66120 66121 66122 66123 66124 66125 66126 66127 66128 66129 66130 66131 66132 66133 66134 66135 66136 66137 66138 66139 66140 66141 66142 66143 66144 66145 66146 66147 66148 66149 66150 66151 66152 66153 66154 66155 66156 66157 66158 66159 66160 66161 66162 66163 66164 66165 66166 66167 66168 66169 66170 66171 66172 66173 66174 66175 66176 66177 66178 66179 66180 66181 66182 66183 66184 66185 66186 66187 66188 66189 66190 66191 66192 66193 66194 66195 66196 66197 66198 66199 66200 66201 66202 66203 66204 66205 66206 66207 66208 66209 66210 66211 66212 66213 66214 66215 66216 66217 66218 66219 66220 66221 66222 66223 66224 66225 66226 66227 66228 66229 66230 66231 66232 66233 66234 66235 66236 66237 66238 66239 66240 66241 66242 66243 66244 66245 66246 66247 66248 66249 66250 66251 66252 66253 66254 66255 66256 66257 66258 66259 66260 66261 66262 66263 66264 66265 66266 66267 66268 66269 66270 66271 66272 66273 66274 66275 66276 66277 66278 66279 66280 66281 66282 66283 66284 66285 66286 66287 66288 66289 66290 66291 66292 66293 66294 66295 66296 66297 66298 66299 66300 66301 66302 66303 66304 66305 66306 66307 66308 66309 66310 66311 66312 66313 66314 66315 66316 66317 66318 66319 66320 66321 66322 66323 66324 66325 66326 66327 66328 66329 66330 66331 66332 66333 66334 66335 66336 66337 66338 66339 66340 66341 66342 66343 66344 66345 66346 66347 66348 66349 66350 66351 66352 66353 66354 66355 66356 66357 66358 66359 66360 66361 66362 66363 66364 66365 66366 66367 66368 66369 66370 66371 66372 66373 66374 66375 66376 66377 66378 66379 66380 66381 66382 66383 66384 66385 66386 66387 66388 66389 66390 66391 66392 66393 66394 66395 66396 66397 66398 66399 66400 66401 66402 66403 66404 66405 66406 66407 66408 66409 66410 66411 66412 66413 66414 66415 66416 66417 66418 66419 66420 66421 66422 66423 66424 66425 66426 66427 66428 66429 66430 66431 66432 66433 66434 66435 66436 66437 66438 66439 66440 66441 66442 66443 66444 66445 66446 66447 66448 66449 66450 66451 66452 66453 66454 66455 66456 66457 66458 66459 66460 66461 66462 66463 66464 66465 66466 66467 66468 66469 66470 66471 66472 66473 66474 66475 66476 66477 66478 66479 66480 66481 66482 66483 66484 66485 66486 66487 66488 66489 66490 66491 66492 66493 66494 66495 66496 66497 66498 66499 66500 66501 66502 66503 66504 66505 66506 66507 66508 66509 66510 66511 66512 66513 66514 66515 66516 66517 66518 66519 66520 66521 66522 66523 66524 66525 66526 66527 66528 66529 66530 66531 66532 66533 66534 66535 66536 66537 66538 66539 66540 66541 66542 66543 66544 66545 66546 66547 66548 66549 66550 66551 66552 66553 66554 66555 66556 66557 66558 66559 66560 66561 66562 66563 66564 66565 66566 66567 66568 66569 66570 66571 66572 66573 66574 66575 66576 66577 66578 66579 66580 66581 66582 66583 66584 66585 66586 66587 66588 66589 66590 66591 66592 66593 66594 66595 66596 66597 66598 66599 66600 66601 66602 66603 66604 66605 66606 66607 66608 66609 66610 66611 66612 66613 66614 66615 66616 66617 66618 66619 66620 66621 66622 66623 66624 66625 66626 66627 66628 66629 66630 66631 66632 66633 66634 66635 66636 66637 66638 66639 66640 66641 66642 66643 66644 66645 66646 66647 66648 66649 66650 66651 66652 66653 66654 66655 66656 66657 66658 66659 66660 66661 66662 66663 66664 66665 66666 66667 66668 66669 66670 66671 66672 66673 66674 66675 66676 66677 66678 66679 66680 66681 66682 66683 66684 66685 66686 66687 66688 66689 66690 66691 66692 66693 66694 66695 66696 66697 66698 66699 66700 66701 66702 66703 66704 66705 66706 66707 66708 66709 66710 66711 66712 66713 66714 66715 66716 66717 66718 66719 66720 66721 66722 66723 66724 66725 66726 66727 66728 66729 66730 66731 66732 66733 66734 66735 66736 66737 66738 66739 66740 66741 66742 66743 66744 66745 66746 66747 66748 66749 66750 66751 66752 66753 66754 66755 66756 66757 66758 66759 66760 66761 66762 66763 66764 66765 66766 66767 66768 66769 66770 66771 66772 66773 66774 66775 66776 66777 66778 66779 66780 66781 66782 66783 66784 66785 66786 66787 66788 66789 66790 66791 66792 66793 66794 66795 66796 66797 66798 66799 66800 66801 66802 66803 66804 66805 66806 66807 66808 66809 66810 66811 66812 66813 66814 66815 66816 66817 66818 66819 66820 66821 66822 66823 66824 66825 66826 66827 66828 66829 66830 66831 66832 66833 66834 66835 66836 66837 66838 66839 66840 66841 66842 66843 66844 66845 66846 66847 66848 66849 66850 66851 66852 66853 66854 66855 66856 66857 66858 66859 66860 66861 66862 66863 66864 66865 66866 66867 66868 66869 66870 66871 66872 66873 66874 66875 66876 66877 66878 66879 66880 66881 66882 66883 66884 66885 66886 66887 66888 66889 66890 66891 66892 66893 66894 66895 66896 66897 66898 66899 66900 66901 66902 66903 66904 66905 66906 66907 66908 66909 66910 66911 66912 66913 66914 66915 66916 66917 66918 66919 66920 66921 66922 66923 66924 66925 66926 66927 66928 66929 66930 66931 66932 66933 66934 66935 66936 66937 66938 66939 66940 66941 66942 66943 66944 66945 66946 66947 66948 66949 66950 66951 66952 66953 66954 66955 66956 66957 66958 66959 66960 66961 66962 66963 66964 66965 66966 66967 66968 66969 66970 66971 66972 66973 66974 66975 66976 66977 66978 66979 66980 66981 66982 66983 66984 66985 66986 66987 66988 66989 66990 66991 66992 66993 66994 66995 66996 66997 66998 66999 67000 67001 67002 67003 67004 67005 67006 67007 67008 67009 67010 67011 67012 67013 67014 67015 67016 67017 67018 67019 67020 67021 67022 67023 67024 67025 67026 67027 67028 67029 67030 67031 67032 67033 67034 67035 67036 67037 67038 67039 67040 67041 67042 67043 67044 67045 67046 67047 67048 67049 67050 67051 67052 67053 67054 67055 67056 67057 67058 67059 67060 67061 67062 67063 67064 67065 67066 67067 67068 67069 67070 67071 67072 67073 67074 67075 67076 67077 67078 67079 67080 67081 67082 67083 67084 67085 67086 67087 67088 67089 67090 67091 67092 67093 67094 67095 67096 67097 67098 67099 67100 67101 67102 67103 67104 67105 67106 67107 67108 67109 67110 67111 67112 67113 67114 67115 67116 67117 67118 67119 67120 67121 67122 67123 67124 67125 67126 67127 67128 67129 67130 67131 67132 67133 67134 67135 67136 67137 67138 67139 67140 67141 67142 67143 67144 67145 67146 67147 67148 67149 67150 67151 67152 67153 67154 67155 67156 67157 67158 67159 67160 67161 67162 67163 67164 67165 67166 67167 67168 67169 67170 67171 67172 67173 67174 67175 67176 67177 67178 67179 67180 67181 67182 67183 67184 67185 67186 67187 67188 67189 67190 67191 67192 67193 67194 67195 67196 67197 67198 67199 67200 67201 67202 67203 67204 67205 67206 67207 67208 67209 67210 67211 67212 67213 67214 67215 67216 67217 67218 67219 67220 67221 67222 67223 67224 67225 67226 67227 67228 67229 67230 67231 67232 67233 67234 67235 67236 67237 67238 67239 67240 67241 67242 67243 67244 67245 67246 67247 67248 67249 67250 67251 67252 67253 67254 67255 67256 67257 67258 67259 67260 67261 67262 67263 67264 67265 67266 67267 67268 67269 67270 67271 67272 67273 67274 67275 67276 67277 67278 67279 67280 67281 67282 67283 67284 67285 67286 67287 67288 67289 67290 67291 67292 67293 67294 67295 67296 67297 67298 67299 67300 67301 67302 67303 67304 67305 67306 67307 67308 67309 67310 67311 67312 67313 67314 67315 67316 67317 67318 67319 67320 67321 67322 67323 67324 67325 67326 67327 67328 67329 67330 67331 67332 67333 67334 67335 67336 67337 67338 67339 67340 67341 67342 67343 67344 67345 67346 67347 67348 67349 67350 67351 67352 67353 67354 67355 67356 67357 67358 67359 67360 67361 67362 67363 67364 67365 67366 67367 67368 67369 67370 67371 67372 67373 67374 67375 67376 67377 67378 67379 67380 67381 67382 67383 67384 67385 67386 67387 67388 67389 67390 67391 67392 67393 67394 67395 67396 67397 67398 67399 67400 67401 67402 67403 67404 67405 67406 67407 67408 67409 67410 67411 67412 67413 67414 67415 67416 67417 67418 67419 67420 67421 67422 67423 67424 67425 67426 67427 67428 67429 67430 67431 67432 67433 67434 67435 67436 67437 67438 67439 67440 67441 67442 67443 67444 67445 67446 67447 67448 67449 67450 67451 67452 67453 67454 67455 67456 67457 67458 67459 67460 67461 67462 67463 67464 67465 67466 67467 67468 67469 67470 67471 67472 67473 67474 67475 67476 67477 67478 67479 67480 67481 67482 67483 67484 67485 67486 67487 67488 67489 67490 67491 67492 67493 67494 67495 67496 67497 67498 67499 67500 67501 67502 67503 67504 67505 67506 67507 67508 67509 67510 67511 67512 67513 67514 67515 67516 67517 67518 67519 67520 67521 67522 67523 67524 67525 67526 67527 67528 67529 67530 67531 67532 67533 67534 67535 67536 67537 67538 67539 67540 67541 67542 67543 67544 67545 67546 67547 67548 67549 67550 67551 67552 67553 67554 67555 67556 67557 67558 67559 67560 67561 67562 67563 67564 67565 67566 67567 67568 67569 67570 67571 67572 67573 67574 67575 67576 67577 67578 67579 67580 67581 67582 67583 67584 67585 67586 67587 67588 67589 67590 67591 67592 67593 67594 67595 67596 67597 67598 67599 67600 67601 67602 67603 67604 67605 67606 67607 67608 67609 67610 67611 67612 67613 67614 67615 67616 67617 67618 67619 67620 67621 67622 67623 67624 67625 67626 67627 67628 67629 67630 67631 67632 67633 67634 67635 67636 67637 67638 67639 67640 67641 67642 67643 67644 67645 67646 67647 67648 67649 67650 67651 67652 67653 67654 67655 67656 67657 67658 67659 67660 67661 67662 67663 67664 67665 67666 67667 67668 67669 67670 67671 67672 67673 67674 67675 67676 67677 67678 67679 67680 67681 67682 67683 67684 67685 67686 67687 67688 67689 67690 67691 67692 67693 67694 67695 67696 67697 67698 67699 67700 67701 67702 67703 67704 67705 67706 67707 67708 67709 67710 67711 67712 67713 67714 67715 67716 67717 67718 67719 67720 67721 67722 67723 67724 67725 67726 67727 67728 67729 67730 67731 67732 67733 67734 67735 67736 67737 67738 67739 67740 67741 67742 67743 67744 67745 67746 67747 67748 67749 67750 67751 67752 67753 67754 67755 67756 67757 67758 67759 67760 67761 67762 67763 67764 67765 67766 67767 67768 67769 67770 67771 67772 67773 67774 67775 67776 67777 67778 67779 67780 67781 67782 67783 67784 67785 67786 67787 67788 67789 67790 67791 67792 67793 67794 67795 67796 67797 67798 67799 67800 67801 67802 67803 67804 67805 67806 67807 67808 67809 67810 67811 67812 67813 67814 67815 67816 67817 67818 67819 67820 67821 67822 67823 67824 67825 67826 67827 67828 67829 67830 67831 67832 67833 67834 67835 67836 67837 67838 67839 67840 67841 67842 67843 67844 67845 67846 67847 67848 67849 67850 67851 67852 67853 67854 67855 67856 67857 67858 67859 67860 67861 67862 67863 67864 67865 67866 67867 67868 67869 67870 67871 67872 67873 67874 67875 67876 67877 67878 67879 67880 67881 67882 67883 67884 67885 67886 67887 67888 67889 67890 67891 67892 67893 67894 67895 67896 67897 67898 67899 67900 67901 67902 67903 67904 67905 67906 67907 67908 67909 67910 67911 67912 67913 67914 67915 67916 67917 67918 67919 67920 67921 67922 67923 67924 67925 67926 67927 67928 67929 67930 67931 67932 67933 67934 67935 67936 67937 67938 67939 67940 67941 67942 67943 67944 67945 67946 67947 67948 67949 67950 67951 67952 67953 67954 67955 67956 67957 67958 67959 67960 67961 67962 67963 67964 67965 67966 67967 67968 67969 67970 67971 67972 67973 67974 67975 67976 67977 67978 67979 67980 67981 67982 67983 67984 67985 67986 67987 67988 67989 67990 67991 67992 67993 67994 67995 67996 67997 67998 67999 68000 68001 68002 68003 68004 68005 68006 68007 68008 68009 68010 68011 68012 68013 68014 68015 68016 68017 68018 68019 68020 68021 68022 68023 68024 68025 68026 68027 68028 68029 68030 68031 68032 68033 68034 68035 68036 68037 68038 68039 68040 68041 68042 68043 68044 68045 68046 68047 68048 68049 68050 68051 68052 68053 68054 68055 68056 68057 68058 68059 68060 68061 68062 68063 68064 68065 68066 68067 68068 68069 68070 68071 68072 68073 68074 68075 68076 68077 68078 68079 68080 68081 68082 68083 68084 68085 68086 68087 68088 68089 68090 68091 68092 68093 68094 68095 68096 68097 68098 68099 68100 68101 68102 68103 68104 68105 68106 68107 68108 68109 68110 68111 68112 68113 68114 68115 68116 68117 68118 68119 68120 68121 68122 68123 68124 68125 68126 68127 68128 68129 68130 68131 68132 68133 68134 68135 68136 68137 68138 68139 68140 68141 68142 68143 68144 68145 68146 68147 68148 68149 68150 68151 68152 68153 68154 68155 68156 68157 68158 68159 68160 68161 68162 68163 68164 68165 68166 68167 68168 68169 68170 68171 68172 68173 68174 68175 68176 68177 68178 68179 68180 68181 68182 68183 68184 68185 68186 68187 68188 68189 68190 68191 68192 68193 68194 68195 68196 68197 68198 68199 68200 68201 68202 68203 68204 68205 68206 68207 68208 68209 68210 68211 68212 68213 68214 68215 68216 68217 68218 68219 68220 68221 68222 68223 68224 68225 68226 68227 68228 68229 68230 68231 68232 68233 68234 68235 68236 68237 68238 68239 68240 68241 68242 68243 68244 68245 68246 68247 68248 68249 68250 68251 68252 68253 68254 68255 68256 68257 68258 68259 68260 68261 68262 68263 68264 68265 68266 68267 68268 68269 68270 68271 68272 68273 68274 68275 68276 68277 68278 68279 68280 68281 68282 68283 68284 68285 68286 68287 68288 68289 68290 68291 68292 68293 68294 68295 68296 68297 68298 68299 68300 68301 68302 68303 68304 68305 68306 68307 68308 68309 68310 68311 68312 68313 68314 68315 68316 68317 68318 68319 68320 68321 68322 68323 68324 68325 68326 68327 68328 68329 68330 68331 68332 68333 68334 68335 68336 68337 68338 68339 68340 68341 68342 68343 68344 68345 68346 68347 68348 68349 68350 68351 68352 68353 68354 68355 68356 68357 68358 68359 68360 68361 68362 68363 68364 68365 68366 68367 68368 68369 68370 68371 68372 68373 68374 68375 68376 68377 68378 68379 68380 68381 68382 68383 68384 68385 68386 68387 68388 68389 68390 68391 68392 68393 68394 68395 68396 68397 68398 68399 68400 68401 68402 68403 68404 68405 68406 68407 68408 68409 68410 68411 68412 68413 68414 68415 68416 68417 68418 68419 68420 68421 68422 68423 68424 68425 68426 68427 68428 68429 68430 68431 68432 68433 68434 68435 68436 68437 68438 68439 68440 68441 68442 68443 68444 68445 68446 68447 68448 68449 68450 68451 68452 68453 68454 68455 68456 68457 68458 68459 68460 68461 68462 68463 68464 68465 68466 68467 68468 68469 68470 68471 68472 68473 68474 68475 68476 68477 68478 68479 68480 68481 68482 68483 68484 68485 68486 68487 68488 68489 68490 68491 68492 68493 68494 68495 68496 68497 68498 68499 68500 68501 68502 68503 68504 68505 68506 68507 68508 68509 68510 68511 68512 68513 68514 68515 68516 68517 68518 68519 68520 68521 68522 68523 68524 68525 68526 68527 68528 68529 68530 68531 68532 68533 68534 68535 68536 68537 68538 68539 68540 68541 68542 68543 68544 68545 68546 68547 68548 68549 68550 68551 68552 68553 68554 68555 68556 68557 68558 68559 68560 68561 68562 68563 68564 68565 68566 68567 68568 68569 68570 68571 68572 68573 68574 68575 68576 68577 68578 68579 68580 68581 68582 68583 68584 68585 68586 68587 68588 68589 68590 68591 68592 68593 68594 68595 68596 68597 68598 68599 68600 68601 68602 68603 68604 68605 68606 68607 68608 68609 68610 68611 68612 68613 68614 68615 68616 68617 68618 68619 68620 68621 68622 68623 68624 68625 68626 68627 68628 68629 68630 68631 68632 68633 68634 68635 68636 68637 68638 68639 68640 68641 68642 68643 68644 68645 68646 68647 68648 68649 68650 68651 68652 68653 68654 68655 68656 68657 68658 68659 68660 68661 68662 68663 68664 68665 68666 68667 68668 68669 68670 68671 68672 68673 68674 68675 68676 68677 68678 68679 68680 68681 68682 68683 68684 68685 68686 68687 68688 68689 68690 68691 68692 68693 68694 68695 68696 68697 68698 68699 68700 68701 68702 68703 68704 68705 68706 68707 68708 68709 68710 68711 68712 68713 68714 68715 68716 68717 68718 68719 68720 68721 68722 68723 68724 68725 68726 68727 68728 68729 68730 68731 68732 68733 68734 68735 68736 68737 68738 68739 68740 68741 68742 68743 68744 68745 68746 68747 68748 68749 68750 68751 68752 68753 68754 68755 68756 68757 68758 68759 68760 68761 68762 68763 68764 68765 68766 68767 68768 68769 68770 68771 68772 68773 68774 68775 68776 68777 68778 68779 68780 68781 68782 68783 68784 68785 68786 68787 68788 68789 68790 68791 68792 68793 68794 68795 68796 68797 68798 68799 68800 68801 68802 68803 68804 68805 68806 68807 68808 68809 68810 68811 68812 68813 68814 68815 68816 68817 68818 68819 68820 68821 68822 68823 68824 68825 68826 68827 68828 68829 68830 68831 68832 68833 68834 68835 68836 68837 68838 68839 68840 68841 68842 68843 68844 68845 68846 68847 68848 68849 68850 68851 68852 68853 68854 68855 68856 68857 68858 68859 68860 68861 68862 68863 68864 68865 68866 68867 68868 68869 68870 68871 68872 68873 68874 68875 68876 68877 68878 68879 68880 68881 68882 68883 68884 68885 68886 68887 68888 68889 68890 68891 68892 68893 68894 68895 68896 68897 68898 68899 68900 68901 68902 68903 68904 68905 68906 68907 68908 68909 68910 68911 68912 68913 68914 68915 68916 68917 68918 68919 68920 68921 68922 68923 68924 68925 68926 68927 68928 68929 68930 68931 68932 68933 68934 68935 68936 68937 68938 68939 68940 68941 68942 68943 68944 68945 68946 68947 68948 68949 68950 68951 68952 68953 68954 68955 68956 68957 68958 68959 68960 68961 68962 68963 68964 68965 68966 68967 68968 68969 68970 68971 68972 68973 68974 68975 68976 68977 68978 68979 68980 68981 68982 68983 68984 68985 68986 68987 68988 68989 68990 68991 68992 68993 68994 68995 68996 68997 68998 68999 69000 69001 69002 69003 69004 69005 69006 69007 69008 69009 69010 69011 69012 69013 69014 69015 69016 69017 69018 69019 69020 69021 69022 69023 69024 69025 69026 69027 69028 69029 69030 69031 69032 69033 69034 69035 69036 69037 69038 69039 69040 69041 69042 69043 69044 69045 69046 69047 69048 69049 69050 69051 69052 69053 69054 69055 69056 69057 69058 69059 69060 69061 69062 69063 69064 69065 69066 69067 69068 69069 69070 69071 69072 69073 69074 69075 69076 69077 69078 69079 69080 69081 69082 69083 69084 69085 69086 69087 69088 69089 69090 69091 69092 69093 69094 69095 69096 69097 69098 69099 69100 69101 69102 69103 69104 69105 69106 69107 69108 69109 69110 69111 69112 69113 69114 69115 69116 69117 69118 69119 69120 69121 69122 69123 69124 69125 69126 69127 69128 69129 69130 69131 69132 69133 69134 69135 69136 69137 69138 69139 69140 69141 69142 69143 69144 69145 69146 69147 69148 69149 69150 69151 69152 69153 69154 69155 69156 69157 69158 69159 69160 69161 69162 69163 69164 69165 69166 69167 69168 69169 69170 69171 69172 69173 69174 69175 69176 69177 69178 69179 69180 69181 69182 69183 69184 69185 69186 69187 69188 69189 69190 69191 69192 69193 69194 69195 69196 69197 69198 69199 69200 69201 69202 69203 69204 69205 69206 69207 69208 69209 69210 69211 69212 69213 69214 69215 69216 69217 69218 69219 69220 69221 69222 69223 69224 69225 69226 69227 69228 69229 69230 69231 69232 69233 69234 69235 69236 69237 69238 69239 69240 69241 69242 69243 69244 69245 69246 69247 69248 69249 69250 69251 69252 69253 69254 69255 69256 69257 69258 69259 69260 69261 69262 69263 69264 69265 69266 69267 69268 69269 69270 69271 69272 69273 69274 69275 69276 69277 69278 69279 69280 69281 69282 69283 69284 69285 69286 69287 69288 69289 69290 69291 69292 69293 69294 69295 69296 69297 69298 69299 69300 69301 69302 69303 69304 69305 69306 69307 69308 69309 69310 69311 69312 69313 69314 69315 69316 69317 69318 69319 69320 69321 69322 69323 69324 69325 69326 69327 69328 69329 69330 69331 69332 69333 69334 69335 69336 69337 69338 69339 69340 69341 69342 69343 69344 69345 69346 69347 69348 69349 69350 69351 69352 69353 69354 69355 69356 69357 69358 69359 69360 69361 69362 69363 69364 69365 69366 69367 69368 69369 69370 69371 69372 69373 69374 69375 69376 69377 69378 69379 69380 69381 69382 69383 69384 69385 69386 69387 69388 69389 69390 69391 69392 69393 69394 69395 69396 69397 69398 69399 69400 69401 69402 69403 69404 69405 69406 69407 69408 69409 69410 69411 69412 69413 69414 69415 69416 69417 69418 69419 69420 69421 69422 69423 69424 69425 69426 69427 69428 69429 69430 69431 69432 69433 69434 69435 69436 69437 69438 69439 69440 69441 69442 69443 69444 69445 69446 69447 69448 69449 69450 69451 69452 69453 69454 69455 69456 69457 69458 69459 69460 69461 69462 69463 69464 69465 69466 69467 69468 69469 69470 69471 69472 69473 69474 69475 69476 69477 69478 69479 69480 69481 69482 69483 69484 69485 69486 69487 69488 69489 69490 69491 69492 69493 69494 69495 69496 69497 69498 69499 69500 69501 69502 69503 69504 69505 69506 69507 69508 69509 69510 69511 69512 69513 69514 69515 69516 69517 69518 69519 69520 69521 69522 69523 69524 69525 69526 69527 69528 69529 69530 69531 69532 69533 69534 69535 69536 69537 69538 69539 69540 69541 69542 69543 69544 69545 69546 69547 69548 69549 69550 69551 69552 69553 69554 69555 69556 69557 69558 69559 69560 69561 69562 69563 69564 69565 69566 69567 69568 69569 69570 69571 69572 69573 69574 69575 69576 69577 69578 69579 69580 69581 69582 69583 69584 69585 69586 69587 69588 69589 69590 69591 69592 69593 69594 69595 69596 69597 69598 69599 69600 69601 69602 69603 69604 69605 69606 69607 69608 69609 69610 69611 69612 69613 69614 69615 69616 69617 69618 69619 69620 69621 69622 69623 69624 69625 69626 69627 69628 69629 69630 69631 69632 69633 69634 69635 69636 69637 69638 69639 69640 69641 69642 69643 69644 69645 69646 69647 69648 69649 69650 69651 69652 69653 69654 69655 69656 69657 69658 69659 69660 69661 69662 69663 69664 69665 69666 69667 69668 69669 69670 69671 69672 69673 69674 69675 69676 69677 69678 69679 69680 69681 69682 69683 69684 69685 69686 69687 69688 69689 69690 69691 69692 69693 69694 69695 69696 69697 69698 69699 69700 69701 69702 69703 69704 69705 69706 69707 69708 69709 69710 69711 69712 69713 69714 69715 69716 69717 69718 69719 69720 69721 69722 69723 69724 69725 69726 69727 69728 69729 69730 69731 69732 69733 69734 69735 69736 69737 69738 69739 69740 69741 69742 69743 69744 69745 69746 69747 69748 69749 69750 69751 69752 69753 69754 69755 69756 69757 69758 69759 69760 69761 69762 69763 69764 69765 69766 69767 69768 69769 69770 69771 69772 69773 69774 69775 69776 69777 69778 69779 69780 69781 69782 69783 69784 69785 69786 69787 69788 69789 69790 69791 69792 69793 69794 69795 69796 69797 69798 69799 69800 69801 69802 69803 69804 69805 69806 69807 69808 69809 69810 69811 69812 69813 69814 69815 69816 69817 69818 69819 69820 69821 69822 69823 69824 69825 69826 69827 69828 69829 69830 69831 69832 69833 69834 69835 69836 69837 69838 69839 69840 69841 69842 69843 69844 69845 69846 69847 69848 69849 69850 69851 69852 69853 69854 69855 69856 69857 69858 69859 69860 69861 69862 69863 69864 69865 69866 69867 69868 69869 69870 69871 69872 69873 69874 69875 69876 69877 69878 69879 69880 69881 69882 69883 69884 69885 69886 69887 69888 69889 69890 69891 69892 69893 69894 69895 69896 69897 69898 69899 69900 69901 69902 69903 69904 69905 69906 69907 69908 69909 69910 69911 69912 69913 69914 69915 69916 69917 69918 69919 69920 69921 69922 69923 69924 69925 69926 69927 69928 69929 69930 69931 69932 69933 69934 69935 69936 69937 69938 69939 69940 69941 69942 69943 69944 69945 69946 69947 69948 69949 69950 69951 69952 69953 69954 69955 69956 69957 69958 69959 69960 69961 69962 69963 69964 69965 69966 69967 69968 69969 69970 69971 69972 69973 69974 69975 69976 69977 69978 69979 69980 69981 69982 69983 69984 69985 69986 69987 69988 69989 69990 69991 69992 69993 69994 69995 69996 69997 69998 69999 70000 70001 70002 70003 70004 70005 70006 70007 70008 70009 70010 70011 70012 70013 70014 70015 70016 70017 70018 70019 70020 70021 70022 70023 70024 70025 70026 70027 70028 70029 70030 70031 70032 70033 70034 70035 70036 70037 70038 70039 70040 70041 70042 70043 70044 70045 70046 70047 70048 70049 70050 70051 70052 70053 70054 70055 70056 70057 70058 70059 70060 70061 70062 70063 70064 70065 70066 70067 70068 70069 70070 70071 70072 70073 70074 70075 70076 70077 70078 70079 70080 70081 70082 70083 70084 70085 70086 70087 70088 70089 70090 70091 70092 70093 70094 70095 70096 70097 70098 70099 70100 70101 70102 70103 70104 70105 70106 70107 70108 70109 70110 70111 70112 70113 70114 70115 70116 70117 70118 70119 70120 70121 70122 70123 70124 70125 70126 70127 70128 70129 70130 70131 70132 70133 70134 70135 70136 70137 70138 70139 70140 70141 70142 70143 70144 70145 70146 70147 70148 70149 70150 70151 70152 70153 70154 70155 70156 70157 70158 70159 70160 70161 70162 70163 70164 70165 70166 70167 70168 70169 70170 70171 70172 70173 70174 70175 70176 70177 70178 70179 70180 70181 70182 70183 70184 70185 70186 70187 70188 70189 70190 70191 70192 70193 70194 70195 70196 70197 70198 70199 70200 70201 70202 70203 70204 70205 70206 70207 70208 70209 70210 70211 70212 70213 70214 70215 70216 70217 70218 70219 70220 70221 70222 70223 70224 70225 70226 70227 70228 70229 70230 70231 70232 70233 70234 70235 70236 70237 70238 70239 70240 70241 70242 70243 70244 70245 70246 70247 70248 70249 70250 70251 70252 70253 70254 70255 70256 70257 70258 70259 70260 70261 70262 70263 70264 70265 70266 70267 70268 70269 70270 70271 70272 70273 70274 70275 70276 70277 70278 70279 70280 70281 70282 70283 70284 70285 70286 70287 70288 70289 70290 70291 70292 70293 70294 70295 70296 70297 70298 70299 70300 70301 70302 70303 70304 70305 70306 70307 70308 70309 70310 70311 70312 70313 70314 70315 70316 70317 70318 70319 70320 70321 70322 70323 70324 70325 70326 70327 70328 70329 70330 70331 70332 70333 70334 70335 70336 70337 70338 70339 70340 70341 70342 70343 70344 70345 70346 70347 70348 70349 70350 70351 70352 70353 70354 70355 70356 70357 70358 70359 70360 70361 70362 70363 70364 70365 70366 70367 70368 70369 70370 70371 70372 70373 70374 70375 70376 70377 70378 70379 70380 70381 70382 70383 70384 70385 70386 70387 70388 70389 70390 70391 70392 70393 70394 70395 70396 70397 70398 70399 70400 70401 70402 70403 70404 70405 70406 70407 70408 70409 70410 70411 70412 70413 70414 70415 70416 70417 70418 70419 70420 70421 70422 70423 70424 70425 70426 70427 70428 70429 70430 70431 70432 70433 70434 70435 70436 70437 70438 70439 70440 70441 70442 70443 70444 70445 70446 70447 70448 70449 70450 70451 70452 70453 70454 70455 70456 70457 70458 70459 70460 70461 70462 70463 70464 70465 70466 70467 70468 70469 70470 70471 70472 70473 70474 70475 70476 70477 70478 70479 70480 70481 70482 70483 70484 70485 70486 70487 70488 70489 70490 70491 70492 70493 70494 70495 70496 70497 70498 70499 70500 70501 70502 70503 70504 70505 70506 70507 70508 70509 70510 70511 70512 70513 70514 70515 70516 70517 70518 70519 70520 70521 70522 70523 70524 70525 70526 70527 70528 70529 70530 70531 70532 70533 70534 70535 70536 70537 70538 70539 70540 70541 70542 70543 70544 70545 70546 70547 70548 70549 70550 70551 70552 70553 70554 70555 70556 70557 70558 70559 70560 70561 70562 70563 70564 70565 70566 70567 70568 70569 70570 70571 70572 70573 70574 70575 70576 70577 70578 70579 70580 70581 70582 70583 70584 70585 70586 70587 70588 70589 70590 70591 70592 70593 70594 70595 70596 70597 70598 70599 70600 70601 70602 70603 70604 70605 70606 70607 70608 70609 70610 70611 70612 70613 70614 70615 70616 70617 70618 70619 70620 70621 70622 70623 70624 70625 70626 70627 70628 70629 70630 70631 70632 70633 70634 70635 70636 70637 70638 70639 70640 70641 70642 70643 70644 70645 70646 70647 70648 70649 70650 70651 70652 70653 70654 70655 70656 70657 70658 70659 70660 70661 70662 70663 70664 70665 70666 70667 70668 70669 70670 70671 70672 70673 70674 70675 70676 70677 70678 70679 70680 70681 70682 70683 70684 70685 70686 70687 70688 70689 70690 70691 70692 70693 70694 70695 70696 70697 70698 70699 70700 70701 70702 70703 70704 70705 70706 70707 70708 70709 70710 70711 70712 70713 70714 70715 70716 70717 70718 70719 70720 70721 70722 70723 70724 70725 70726 70727 70728 70729 70730 70731 70732 70733 70734 70735 70736 70737 70738 70739 70740 70741 70742 70743 70744 70745 70746 70747 70748 70749 70750 70751 70752 70753 70754 70755 70756 70757 70758 70759 70760 70761 70762 70763 70764 70765 70766 70767 70768 70769 70770 70771 70772 70773 70774 70775 70776 70777 70778 70779 70780 70781 70782 70783 70784 70785 70786 70787 70788 70789 70790 70791 70792 70793 70794 70795 70796 70797 70798 70799 70800 70801 70802 70803 70804 70805 70806 70807 70808 70809 70810 70811 70812 70813 70814 70815 70816 70817 70818 70819 70820 70821 70822 70823 70824 70825 70826 70827 70828 70829 70830 70831 70832 70833 70834 70835 70836 70837 70838 70839 70840 70841 70842 70843 70844 70845 70846 70847 70848 70849 70850 70851 70852 70853 70854 70855 70856 70857 70858 70859 70860 70861 70862 70863 70864 70865 70866 70867 70868 70869 70870 70871 70872 70873 70874 70875 70876 70877 70878 70879 70880 70881 70882 70883 70884 70885 70886 70887 70888 70889 70890 70891 70892 70893 70894 70895 70896 70897 70898 70899 70900 70901 70902 70903 70904 70905 70906 70907 70908 70909 70910 70911 70912 70913 70914 70915 70916 70917 70918 70919 70920 70921 70922 70923 70924 70925 70926 70927 70928 70929 70930 70931 70932 70933 70934 70935 70936 70937 70938 70939 70940 70941 70942 70943 70944 70945 70946 70947 70948 70949 70950 70951 70952 70953 70954 70955 70956 70957 70958 70959 70960 70961 70962 70963 70964 70965 70966 70967 70968 70969 70970 70971 70972 70973 70974 70975 70976 70977 70978 70979 70980 70981 70982 70983 70984 70985 70986 70987 70988 70989 70990 70991 70992 70993 70994 70995 70996 70997 70998 70999 71000 71001 71002 71003 71004 71005 71006 71007 71008 71009 71010 71011 71012 71013 71014 71015 71016 71017 71018 71019 71020 71021 71022 71023 71024 71025 71026 71027 71028 71029 71030 71031 71032 71033 71034 71035 71036 71037 71038 71039 71040 71041 71042 71043 71044 71045 71046 71047 71048 71049 71050 71051 71052 71053 71054 71055 71056 71057 71058 71059 71060 71061 71062 71063 71064 71065 71066 71067 71068 71069 71070 71071 71072 71073 71074 71075 71076 71077 71078 71079 71080 71081 71082 71083 71084 71085 71086 71087 71088 71089 71090 71091 71092 71093 71094 71095 71096 71097 71098 71099 71100 71101 71102 71103 71104 71105 71106 71107 71108 71109 71110 71111 71112 71113 71114 71115 71116 71117 71118 71119 71120 71121 71122 71123 71124 71125 71126 71127 71128 71129 71130 71131 71132 71133 71134 71135 71136 71137 71138 71139 71140 71141 71142 71143 71144 71145 71146 71147 71148 71149 71150 71151 71152 71153 71154 71155 71156 71157 71158 71159 71160 71161 71162 71163 71164 71165 71166 71167 71168 71169 71170 71171 71172 71173 71174 71175 71176 71177 71178 71179 71180 71181 71182 71183 71184 71185 71186 71187 71188 71189 71190 71191 71192 71193 71194 71195 71196 71197 71198 71199 71200 71201 71202 71203 71204 71205 71206 71207 71208 71209 71210 71211 71212 71213 71214 71215 71216 71217 71218 71219 71220 71221 71222 71223 71224 71225 71226 71227 71228 71229 71230 71231 71232 71233 71234 71235 71236 71237 71238 71239 71240 71241 71242 71243 71244 71245 71246 71247 71248 71249 71250 71251 71252 71253 71254 71255 71256 71257 71258 71259 71260 71261 71262 71263 71264 71265 71266 71267 71268 71269 71270 71271 71272 71273 71274 71275 71276 71277 71278 71279 71280 71281 71282 71283 71284 71285 71286 71287 71288 71289 71290 71291 71292 71293 71294 71295 71296 71297 71298 71299 71300 71301 71302 71303 71304 71305 71306 71307 71308 71309 71310 71311 71312 71313 71314 71315 71316 71317 71318 71319 71320 71321 71322 71323 71324 71325 71326 71327 71328 71329 71330 71331 71332 71333 71334 71335 71336 71337 71338 71339 71340 71341 71342 71343 71344 71345 71346 71347 71348 71349 71350 71351 71352 71353 71354 71355 71356 71357 71358 71359 71360 71361 71362 71363 71364 71365 71366 71367 71368 71369 71370 71371 71372 71373 71374 71375 71376 71377 71378 71379 71380 71381 71382 71383 71384 71385 71386 71387 71388 71389 71390 71391 71392 71393 71394 71395 71396 71397 71398 71399 71400 71401 71402 71403 71404 71405 71406 71407 71408 71409 71410 71411 71412 71413 71414 71415 71416 71417 71418 71419 71420 71421 71422 71423 71424 71425 71426 71427 71428 71429 71430 71431 71432 71433 71434 71435 71436 71437 71438 71439 71440 71441 71442 71443 71444 71445 71446 71447 71448 71449 71450 71451 71452 71453 71454 71455 71456 71457 71458 71459 71460 71461 71462 71463 71464 71465 71466 71467 71468 71469 71470 71471 71472 71473 71474 71475 71476 71477 71478 71479 71480 71481 71482 71483 71484 71485 71486 71487 71488 71489 71490 71491 71492 71493 71494 71495 71496 71497 71498 71499 71500 71501 71502 71503 71504 71505 71506 71507 71508 71509 71510 71511 71512 71513 71514 71515 71516 71517 71518 71519 71520 71521 71522 71523 71524 71525 71526 71527 71528 71529 71530 71531 71532 71533 71534 71535 71536 71537 71538 71539 71540 71541 71542 71543 71544 71545 71546 71547 71548 71549 71550 71551 71552 71553 71554 71555 71556 71557 71558 71559 71560 71561 71562 71563 71564 71565 71566 71567 71568 71569 71570 71571 71572 71573 71574 71575 71576 71577 71578 71579 71580 71581 71582 71583 71584 71585 71586 71587 71588 71589 71590 71591 71592 71593 71594 71595 71596 71597 71598 71599 71600 71601 71602 71603 71604 71605 71606 71607 71608 71609 71610 71611 71612 71613 71614 71615 71616 71617 71618 71619 71620 71621 71622 71623 71624 71625 71626 71627 71628 71629 71630 71631 71632 71633 71634 71635 71636 71637 71638 71639 71640 71641 71642 71643 71644 71645 71646 71647 71648 71649 71650 71651 71652 71653 71654 71655 71656 71657 71658 71659 71660 71661 71662 71663 71664 71665 71666 71667 71668 71669 71670 71671 71672 71673 71674 71675 71676 71677 71678 71679 71680 71681 71682 71683 71684 71685 71686 71687 71688 71689 71690 71691 71692 71693 71694 71695 71696 71697 71698 71699 71700 71701 71702 71703 71704 71705 71706 71707 71708 71709 71710 71711 71712 71713 71714 71715 71716 71717 71718 71719 71720 71721 71722 71723 71724 71725 71726 71727 71728 71729 71730 71731 71732 71733 71734 71735 71736 71737 71738 71739 71740 71741 71742 71743 71744 71745 71746 71747 71748 71749 71750 71751 71752 71753 71754 71755 71756 71757 71758 71759 71760 71761 71762 71763 71764 71765 71766 71767 71768 71769 71770 71771 71772 71773 71774 71775 71776 71777 71778 71779 71780 71781 71782 71783 71784 71785 71786 71787 71788 71789 71790 71791 71792 71793 71794 71795 71796 71797 71798 71799 71800 71801 71802 71803 71804 71805 71806 71807 71808 71809 71810 71811 71812 71813 71814 71815 71816 71817 71818 71819 71820 71821 71822 71823 71824 71825 71826 71827 71828 71829 71830 71831 71832 71833 71834 71835 71836 71837 71838 71839 71840 71841 71842 71843 71844 71845 71846 71847 71848 71849 71850 71851 71852 71853 71854 71855 71856 71857 71858 71859 71860 71861 71862 71863 71864 71865 71866 71867 71868 71869 71870 71871 71872 71873 71874 71875 71876 71877 71878 71879 71880 71881 71882 71883 71884 71885 71886 71887 71888 71889 71890 71891 71892 71893 71894 71895 71896 71897 71898 71899 71900 71901 71902 71903 71904 71905 71906 71907 71908 71909 71910 71911 71912 71913 71914 71915 71916 71917 71918 71919 71920 71921 71922 71923 71924 71925 71926 71927 71928 71929 71930 71931 71932 71933 71934 71935 71936 71937 71938 71939 71940 71941 71942 71943 71944 71945 71946 71947 71948 71949 71950 71951 71952 71953 71954 71955 71956 71957 71958 71959 71960 71961 71962 71963 71964 71965 71966 71967 71968 71969 71970 71971 71972 71973 71974 71975 71976 71977 71978 71979 71980 71981 71982 71983 71984 71985 71986 71987 71988 71989 71990 71991 71992 71993 71994 71995 71996 71997 71998 71999 72000 72001 72002 72003 72004 72005 72006 72007 72008 72009 72010 72011 72012 72013 72014 72015 72016 72017 72018 72019 72020 72021 72022 72023 72024 72025 72026 72027 72028 72029 72030 72031 72032 72033 72034 72035 72036 72037 72038 72039 72040 72041 72042 72043 72044 72045 72046 72047 72048 72049 72050 72051 72052 72053 72054 72055 72056 72057 72058 72059 72060 72061 72062 72063 72064 72065 72066 72067 72068 72069 72070 72071 72072 72073 72074 72075 72076 72077 72078 72079 72080 72081 72082 72083 72084 72085 72086 72087 72088 72089 72090 72091 72092 72093 72094 72095 72096 72097 72098 72099 72100 72101 72102 72103 72104 72105 72106 72107 72108 72109 72110 72111 72112 72113 72114 72115 72116 72117 72118 72119 72120 72121 72122 72123 72124 72125 72126 72127 72128 72129 72130 72131 72132 72133 72134 72135 72136 72137 72138 72139 72140 72141 72142 72143 72144 72145 72146 72147 72148 72149 72150 72151 72152 72153 72154 72155 72156 72157 72158 72159 72160 72161 72162 72163 72164 72165 72166 72167 72168 72169 72170 72171 72172 72173 72174 72175 72176 72177 72178 72179 72180 72181 72182 72183 72184 72185 72186 72187 72188 72189 72190 72191 72192 72193 72194 72195 72196 72197 72198 72199 72200 72201 72202 72203 72204 72205 72206 72207 72208 72209 72210 72211 72212 72213 72214 72215 72216 72217 72218 72219 72220 72221 72222 72223 72224 72225 72226 72227 72228 72229 72230 72231 72232 72233 72234 72235 72236 72237 72238 72239 72240 72241 72242 72243 72244 72245 72246 72247 72248 72249 72250 72251 72252 72253 72254 72255 72256 72257 72258 72259 72260 72261 72262 72263 72264 72265 72266 72267 72268 72269 72270 72271 72272 72273 72274 72275 72276 72277 72278 72279 72280 72281 72282 72283 72284 72285 72286 72287 72288 72289 72290 72291 72292 72293 72294 72295 72296 72297 72298 72299 72300 72301 72302 72303 72304 72305 72306 72307 72308 72309 72310 72311 72312 72313 72314 72315 72316 72317 72318 72319 72320 72321 72322 72323 72324 72325 72326 72327 72328 72329 72330 72331 72332 72333 72334 72335 72336 72337 72338 72339 72340 72341 72342 72343 72344 72345 72346 72347 72348 72349 72350 72351 72352 72353 72354 72355 72356 72357 72358 72359 72360 72361 72362 72363 72364 72365 72366 72367 72368 72369 72370 72371 72372 72373 72374 72375 72376 72377 72378 72379 72380 72381 72382 72383 72384 72385 72386 72387 72388 72389 72390 72391 72392 72393 72394 72395 72396 72397 72398 72399 72400 72401 72402 72403 72404 72405 72406 72407 72408 72409 72410 72411 72412 72413 72414 72415 72416 72417 72418 72419 72420 72421 72422 72423 72424 72425 72426 72427 72428 72429 72430 72431 72432 72433 72434 72435 72436 72437 72438 72439 72440 72441 72442 72443 72444 72445 72446 72447 72448 72449 72450 72451 72452 72453 72454 72455 72456 72457 72458 72459 72460 72461 72462 72463 72464 72465 72466 72467 72468 72469 72470 72471 72472 72473 72474 72475 72476 72477 72478 72479 72480 72481 72482 72483 72484 72485 72486 72487 72488 72489 72490 72491 72492 72493 72494 72495 72496 72497 72498 72499 72500 72501 72502 72503 72504 72505 72506 72507 72508 72509 72510 72511 72512 72513 72514 72515 72516 72517 72518 72519 72520 72521 72522 72523 72524 72525 72526 72527 72528 72529 72530 72531 72532 72533 72534 72535 72536 72537 72538 72539 72540 72541 72542 72543 72544 72545 72546 72547 72548 72549 72550 72551 72552 72553 72554 72555 72556 72557 72558 72559 72560 72561 72562 72563 72564 72565 72566 72567 72568 72569 72570 72571 72572 72573 72574 72575 72576 72577 72578 72579 72580 72581 72582 72583 72584 72585 72586 72587 72588 72589 72590 72591 72592 72593 72594 72595 72596 72597 72598 72599 72600 72601 72602 72603 72604 72605 72606 72607 72608 72609 72610 72611 72612 72613 72614 72615 72616 72617 72618 72619 72620 72621 72622 72623 72624 72625 72626 72627 72628 72629 72630 72631 72632 72633 72634 72635 72636 72637 72638 72639 72640 72641 72642 72643 72644 72645 72646 72647 72648 72649 72650 72651 72652 72653 72654 72655 72656 72657 72658 72659 72660 72661 72662 72663 72664 72665 72666 72667 72668 72669 72670 72671 72672 72673 72674 72675 72676 72677 72678 72679 72680 72681 72682 72683 72684 72685 72686 72687 72688 72689 72690 72691 72692 72693 72694 72695 72696 72697 72698 72699 72700 72701 72702 72703 72704 72705 72706 72707 72708 72709 72710 72711 72712 72713 72714 72715 72716 72717 72718 72719 72720 72721 72722 72723 72724 72725 72726 72727 72728 72729 72730 72731 72732 72733 72734 72735 72736 72737 72738 72739 72740 72741 72742 72743 72744 72745 72746 72747 72748 72749 72750 72751 72752 72753 72754 72755 72756 72757 72758 72759 72760 72761 72762 72763 72764 72765 72766 72767 72768 72769 72770 72771 72772 72773 72774 72775 72776 72777 72778 72779 72780 72781 72782 72783 72784 72785 72786 72787 72788 72789 72790 72791 72792 72793 72794 72795 72796 72797 72798 72799 72800 72801 72802 72803 72804 72805 72806 72807 72808 72809 72810 72811 72812 72813 72814 72815 72816 72817 72818 72819 72820 72821 72822 72823 72824 72825 72826 72827 72828 72829 72830 72831 72832 72833 72834 72835 72836 72837 72838 72839 72840 72841 72842 72843 72844 72845 72846 72847 72848 72849 72850 72851 72852 72853 72854 72855 72856 72857 72858 72859 72860 72861 72862 72863 72864 72865 72866 72867 72868 72869 72870 72871 72872 72873 72874 72875 72876 72877 72878 72879 72880 72881 72882 72883 72884 72885 72886 72887 72888 72889 72890 72891 72892 72893 72894 72895 72896 72897 72898 72899 72900 72901 72902 72903 72904 72905 72906 72907 72908 72909 72910 72911 72912 72913 72914 72915 72916 72917 72918 72919 72920 72921 72922 72923 72924 72925 72926 72927 72928 72929 72930 72931 72932 72933 72934 72935 72936 72937 72938 72939 72940 72941 72942 72943 72944 72945 72946 72947 72948 72949 72950 72951 72952 72953 72954 72955 72956 72957 72958 72959 72960 72961 72962 72963 72964 72965 72966 72967 72968 72969 72970 72971 72972 72973 72974 72975 72976 72977 72978 72979 72980 72981 72982 72983 72984 72985 72986 72987 72988 72989 72990 72991 72992 72993 72994 72995 72996 72997 72998 72999 73000 73001 73002 73003 73004 73005 73006 73007 73008 73009 73010 73011 73012 73013 73014 73015 73016 73017 73018 73019 73020 73021 73022 73023 73024 73025 73026 73027 73028 73029 73030 73031 73032 73033 73034 73035 73036 73037 73038 73039 73040 73041 73042 73043 73044 73045 73046 73047 73048 73049 73050 73051 73052 73053 73054 73055 73056 73057 73058 73059 73060 73061 73062 73063 73064 73065 73066 73067 73068 73069 73070 73071 73072 73073 73074 73075 73076 73077 73078 73079 73080 73081 73082 73083 73084 73085 73086 73087 73088 73089 73090 73091 73092 73093 73094 73095 73096 73097 73098 73099 73100 73101 73102 73103 73104 73105 73106 73107 73108 73109 73110 73111 73112 73113 73114 73115 73116 73117 73118 73119 73120 73121 73122 73123 73124 73125 73126 73127 73128 73129 73130 73131 73132 73133 73134 73135 73136 73137 73138 73139 73140 73141 73142 73143 73144 73145 73146 73147 73148 73149 73150 73151 73152 73153 73154 73155 73156 73157 73158 73159 73160 73161 73162 73163 73164 73165 73166 73167 73168 73169 73170 73171 73172 73173 73174 73175 73176 73177 73178 73179 73180 73181 73182 73183 73184 73185 73186 73187 73188 73189 73190 73191 73192 73193 73194 73195 73196 73197 73198 73199 73200 73201 73202 73203 73204 73205 73206 73207 73208 73209 73210 73211 73212 73213 73214 73215 73216 73217 73218 73219 73220 73221 73222 73223 73224 73225 73226 73227 73228 73229 73230 73231 73232 73233 73234 73235 73236 73237 73238 73239 73240 73241 73242 73243 73244 73245 73246 73247 73248 73249 73250 73251 73252 73253 73254 73255 73256 73257 73258 73259 73260 73261 73262 73263 73264 73265 73266 73267 73268 73269 73270 73271 73272 73273 73274 73275 73276 73277 73278 73279 73280 73281 73282 73283 73284 73285 73286 73287 73288 73289 73290 73291 73292 73293 73294 73295 73296 73297 73298 73299 73300 73301 73302 73303 73304 73305 73306 73307 73308 73309 73310 73311 73312 73313 73314 73315 73316 73317 73318 73319 73320 73321 73322 73323 73324 73325 73326 73327 73328 73329 73330 73331 73332 73333 73334 73335 73336 73337 73338 73339 73340 73341 73342 73343 73344 73345 73346 73347 73348 73349 73350 73351 73352 73353 73354 73355 73356 73357 73358 73359 73360 73361 73362 73363 73364 73365 73366 73367 73368 73369 73370 73371 73372 73373 73374 73375 73376 73377 73378 73379 73380 73381 73382 73383 73384 73385 73386 73387 73388 73389 73390 73391 73392 73393 73394 73395 73396 73397 73398 73399 73400 73401 73402 73403 73404 73405 73406 73407 73408 73409 73410 73411 73412 73413 73414 73415 73416 73417 73418 73419 73420 73421 73422 73423 73424 73425 73426 73427 73428 73429 73430 73431 73432 73433 73434 73435 73436 73437 73438 73439 73440 73441 73442 73443 73444 73445 73446 73447 73448 73449 73450 73451 73452 73453 73454 73455 73456 73457 73458 73459 73460 73461 73462 73463 73464 73465 73466 73467 73468 73469 73470 73471 73472 73473 73474 73475 73476 73477 73478 73479 73480 73481 73482 73483 73484 73485 73486 73487 73488 73489 73490 73491 73492 73493 73494 73495 73496 73497 73498 73499 73500 73501 73502 73503 73504 73505 73506 73507 73508 73509 73510 73511 73512 73513 73514 73515 73516 73517 73518 73519 73520 73521 73522 73523 73524 73525 73526 73527 73528 73529 73530 73531 73532 73533 73534 73535 73536 73537 73538 73539 73540 73541 73542 73543 73544 73545 73546 73547 73548 73549 73550 73551 73552 73553 73554 73555 73556 73557 73558 73559 73560 73561 73562 73563 73564 73565 73566 73567 73568 73569 73570 73571 73572 73573 73574 73575 73576 73577 73578 73579 73580 73581 73582 73583 73584 73585 73586 73587 73588 73589 73590 73591 73592 73593 73594 73595 73596 73597 73598 73599 73600 73601 73602 73603 73604 73605 73606 73607 73608 73609 73610 73611 73612 73613 73614 73615 73616 73617 73618 73619 73620 73621 73622 73623 73624 73625 73626 73627 73628 73629 73630 73631 73632 73633 73634 73635 73636 73637 73638 73639 73640 73641 73642 73643 73644 73645 73646 73647 73648 73649 73650 73651 73652 73653 73654 73655 73656 73657 73658 73659 73660 73661 73662 73663 73664 73665 73666 73667 73668 73669 73670 73671 73672 73673 73674 73675 73676 73677 73678 73679 73680 73681 73682 73683 73684 73685 73686 73687 73688 73689 73690 73691 73692 73693 73694 73695 73696 73697 73698 73699 73700 73701 73702 73703 73704 73705 73706 73707 73708 73709 73710 73711 73712 73713 73714 73715 73716 73717 73718 73719 73720 73721 73722 73723 73724 73725 73726 73727 73728 73729 73730 73731 73732 73733 73734 73735 73736 73737 73738 73739 73740 73741 73742 73743 73744 73745 73746 73747 73748 73749 73750 73751 73752 73753 73754 73755 73756 73757 73758 73759 73760 73761 73762 73763 73764 73765 73766 73767 73768 73769 73770 73771 73772 73773 73774 73775 73776 73777 73778 73779 73780 73781 73782 73783 73784 73785 73786 73787 73788 73789 73790 73791 73792 73793 73794 73795 73796 73797 73798 73799 73800 73801 73802 73803 73804 73805 73806 73807 73808 73809 73810 73811 73812 73813 73814 73815 73816 73817 73818 73819 73820 73821 73822 73823 73824 73825 73826 73827 73828 73829 73830 73831 73832 73833 73834 73835 73836 73837 73838 73839 73840 73841 73842 73843 73844 73845 73846 73847 73848 73849 73850 73851 73852 73853 73854 73855 73856 73857 73858 73859 73860 73861 73862 73863 73864 73865 73866 73867 73868 73869 73870 73871 73872 73873 73874 73875 73876 73877 73878 73879 73880 73881 73882 73883 73884 73885 73886 73887 73888 73889 73890 73891 73892 73893 73894 73895 73896 73897 73898 73899 73900 73901 73902 73903 73904 73905 73906 73907 73908 73909 73910 73911 73912 73913 73914 73915 73916 73917 73918 73919 73920 73921 73922 73923 73924 73925 73926 73927 73928 73929 73930 73931 73932 73933 73934 73935 73936 73937 73938 73939 73940 73941 73942 73943 73944 73945 73946 73947 73948 73949 73950 73951 73952 73953 73954 73955 73956 73957 73958 73959 73960 73961 73962 73963 73964 73965 73966 73967 73968 73969 73970 73971 73972 73973 73974 73975 73976 73977 73978 73979 73980 73981 73982 73983 73984 73985 73986 73987 73988 73989 73990 73991 73992 73993 73994 73995 73996 73997 73998 73999 74000 74001 74002 74003 74004 74005 74006 74007 74008 74009 74010 74011 74012 74013 74014 74015 74016 74017 74018 74019 74020 74021 74022 74023 74024 74025 74026 74027 74028 74029 74030 74031 74032 74033 74034 74035 74036 74037 74038 74039 74040 74041 74042 74043 74044 74045 74046 74047 74048 74049 74050 74051 74052 74053 74054 74055 74056 74057 74058 74059 74060 74061 74062 74063 74064 74065 74066 74067 74068 74069 74070 74071 74072 74073 74074 74075 74076 74077 74078 74079 74080 74081 74082 74083 74084 74085 74086 74087 74088 74089 74090 74091 74092 74093 74094 74095 74096 74097 74098 74099 74100 74101 74102 74103 74104 74105 74106 74107 74108 74109 74110 74111 74112 74113 74114 74115 74116 74117 74118 74119 74120 74121 74122 74123 74124 74125 74126 74127 74128 74129 74130 74131 74132 74133 74134 74135 74136 74137 74138 74139 74140 74141 74142 74143 74144 74145 74146 74147 74148 74149 74150 74151 74152 74153 74154 74155 74156 74157 74158 74159 74160 74161 74162 74163 74164 74165 74166 74167 74168 74169 74170 74171 74172 74173 74174 74175 74176 74177 74178 74179 74180 74181 74182 74183 74184 74185 74186 74187 74188 74189 74190 74191 74192 74193 74194 74195 74196 74197 74198 74199 74200 74201 74202 74203 74204 74205 74206 74207 74208 74209 74210 74211 74212 74213 74214 74215 74216 74217 74218 74219 74220 74221 74222 74223 74224 74225 74226 74227 74228 74229 74230 74231 74232 74233 74234 74235 74236 74237 74238 74239 74240 74241 74242 74243 74244 74245 74246 74247 74248 74249 74250 74251 74252 74253 74254 74255 74256 74257 74258 74259 74260 74261 74262 74263 74264 74265 74266 74267 74268 74269 74270 74271 74272 74273 74274 74275 74276 74277 74278 74279 74280 74281 74282 74283 74284 74285 74286 74287 74288 74289 74290 74291 74292 74293 74294 74295 74296 74297 74298 74299 74300 74301 74302 74303 74304 74305 74306 74307 74308 74309 74310 74311 74312 74313 74314 74315 74316 74317 74318 74319 74320 74321 74322 74323 74324 74325 74326 74327 74328 74329 74330 74331 74332 74333 74334 74335 74336 74337 74338 74339 74340 74341 74342 74343 74344 74345 74346 74347 74348 74349 74350 74351 74352 74353 74354 74355 74356 74357 74358 74359 74360 74361 74362 74363 74364 74365 74366 74367 74368 74369 74370 74371 74372 74373 74374 74375 74376 74377 74378 74379 74380 74381 74382 74383 74384 74385 74386 74387 74388 74389 74390 74391 74392 74393 74394 74395 74396 74397 74398 74399 74400 74401 74402 74403 74404 74405 74406 74407 74408 74409 74410 74411 74412 74413 74414 74415 74416 74417 74418 74419 74420 74421 74422 74423 74424 74425 74426 74427 74428 74429 74430 74431 74432 74433 74434 74435 74436 74437 74438 74439 74440 74441 74442 74443 74444 74445 74446 74447 74448 74449 74450 74451 74452 74453 74454 74455 74456 74457 74458 74459 74460 74461 74462 74463 74464 74465 74466 74467 74468 74469 74470 74471 74472 74473 74474 74475 74476 74477 74478 74479 74480 74481 74482 74483 74484 74485 74486 74487 74488 74489 74490 74491 74492 74493 74494 74495 74496 74497 74498 74499 74500 74501 74502 74503 74504 74505 74506 74507 74508 74509 74510 74511 74512 74513 74514 74515 74516 74517 74518 74519 74520 74521 74522 74523 74524 74525 74526 74527 74528 74529 74530 74531 74532 74533 74534 74535 74536 74537 74538 74539 74540 74541 74542 74543 74544 74545 74546 74547 74548 74549 74550 74551 74552 74553 74554 74555 74556 74557 74558 74559 74560 74561 74562 74563 74564 74565 74566 74567 74568 74569 74570 74571 74572 74573 74574 74575 74576 74577 74578 74579 74580 74581 74582 74583 74584 74585 74586 74587 74588 74589 74590 74591 74592 74593 74594 74595 74596 74597 74598 74599 74600 74601 74602 74603 74604 74605 74606 74607 74608 74609 74610 74611 74612 74613 74614 74615 74616 74617 74618 74619 74620 74621 74622 74623 74624 74625 74626 74627 74628 74629 74630 74631 74632 74633 74634 74635 74636 74637 74638 74639 74640 74641 74642 74643 74644 74645 74646 74647 74648 74649 74650 74651 74652 74653 74654 74655 74656 74657 74658 74659 74660 74661 74662 74663 74664 74665 74666 74667 74668 74669 74670 74671 74672 74673 74674 74675 74676 74677 74678 74679 74680 74681 74682 74683 74684 74685 74686 74687 74688 74689 74690 74691 74692 74693 74694 74695 74696 74697 74698 74699 74700 74701 74702 74703 74704 74705 74706 74707 74708 74709 74710 74711 74712 74713 74714 74715 74716 74717 74718 74719 74720 74721 74722 74723 74724 74725 74726 74727 74728 74729 74730 74731 74732 74733 74734 74735 74736 74737 74738 74739 74740 74741 74742 74743 74744 74745 74746 74747 74748 74749 74750 74751 74752 74753 74754 74755 74756 74757 74758 74759 74760 74761 74762 74763 74764 74765 74766 74767 74768 74769 74770 74771 74772 74773 74774 74775 74776 74777 74778 74779 74780 74781 74782 74783 74784 74785 74786 74787 74788 74789 74790 74791 74792 74793 74794 74795 74796 74797 74798 74799 74800 74801 74802 74803 74804 74805 74806 74807 74808 74809 74810 74811 74812 74813 74814 74815 74816 74817 74818 74819 74820 74821 74822 74823 74824 74825 74826 74827 74828 74829 74830 74831 74832 74833 74834 74835 74836 74837 74838 74839 74840 74841 74842 74843 74844 74845 74846 74847 74848 74849 74850 74851 74852 74853 74854 74855 74856 74857 74858 74859 74860 74861 74862 74863 74864 74865 74866 74867 74868 74869 74870 74871 74872 74873 74874 74875 74876 74877 74878 74879 74880 74881 74882 74883 74884 74885 74886 74887 74888 74889 74890 74891 74892 74893 74894 74895 74896 74897 74898 74899 74900 74901 74902 74903 74904 74905 74906 74907 74908 74909 74910 74911 74912 74913 74914 74915 74916 74917 74918 74919 74920 74921 74922 74923 74924 74925 74926 74927 74928 74929 74930 74931 74932 74933 74934 74935 74936 74937 74938 74939 74940 74941 74942 74943 74944 74945 74946 74947 74948 74949 74950 74951 74952 74953 74954 74955 74956 74957 74958 74959 74960 74961 74962 74963 74964 74965 74966 74967 74968 74969 74970 74971 74972 74973 74974 74975 74976 74977 74978 74979 74980 74981 74982 74983 74984 74985 74986 74987 74988 74989 74990 74991 74992 74993 74994 74995 74996 74997 74998 74999 75000 75001 75002 75003 75004 75005 75006 75007 75008 75009 75010 75011 75012 75013 75014 75015 75016 75017 75018 75019 75020 75021 75022 75023 75024 75025 75026 75027 75028 75029 75030 75031 75032 75033 75034 75035 75036 75037 75038 75039 75040 75041 75042 75043 75044 75045 75046 75047 75048 75049 75050 75051 75052 75053 75054 75055 75056 75057 75058 75059 75060 75061 75062 75063 75064 75065 75066 75067 75068 75069 75070 75071 75072 75073 75074 75075 75076 75077 75078 75079 75080 75081 75082 75083 75084 75085 75086 75087 75088 75089 75090 75091 75092 75093 75094 75095 75096 75097 75098 75099 75100 75101 75102 75103 75104 75105 75106 75107 75108 75109 75110 75111 75112 75113 75114 75115 75116 75117 75118 75119 75120 75121 75122 75123 75124 75125 75126 75127 75128 75129 75130 75131 75132 75133 75134 75135 75136 75137 75138 75139 75140 75141 75142 75143 75144 75145 75146 75147 75148 75149 75150 75151 75152 75153 75154 75155 75156 75157 75158 75159 75160 75161 75162 75163 75164 75165 75166 75167 75168 75169 75170 75171 75172 75173 75174 75175 75176 75177 75178 75179 75180 75181 75182 75183 75184 75185 75186 75187 75188 75189 75190 75191 75192 75193 75194 75195 75196 75197 75198 75199 75200 75201 75202 75203 75204 75205 75206 75207 75208 75209 75210 75211 75212 75213 75214 75215 75216 75217 75218 75219 75220 75221 75222 75223 75224 75225 75226 75227 75228 75229 75230 75231 75232 75233 75234 75235 75236 75237 75238 75239 75240 75241 75242 75243 75244 75245 75246 75247 75248 75249 75250 75251 75252 75253 75254 75255 75256 75257 75258 75259 75260 75261 75262 75263 75264 75265 75266 75267 75268 75269 75270 75271 75272 75273 75274 75275 75276 75277 75278 75279 75280 75281 75282 75283 75284 75285 75286 75287 75288 75289 75290 75291 75292 75293 75294 75295 75296 75297 75298 75299 75300 75301 75302 75303 75304 75305 75306 75307 75308 75309 75310 75311 75312 75313 75314 75315 75316 75317 75318 75319 75320 75321 75322 75323 75324 75325 75326 75327 75328 75329 75330 75331 75332 75333 75334 75335 75336 75337 75338 75339 75340 75341 75342 75343 75344 75345 75346 75347 75348 75349 75350 75351 75352 75353 75354 75355 75356 75357 75358 75359 75360 75361 75362 75363 75364 75365 75366 75367 75368 75369 75370 75371 75372 75373 75374 75375 75376 75377 75378 75379 75380 75381 75382 75383 75384 75385 75386 75387 75388 75389 75390 75391 75392 75393 75394 75395 75396 75397 75398 75399 75400 75401 75402 75403 75404 75405 75406 75407 75408 75409 75410 75411 75412 75413 75414 75415 75416 75417 75418 75419 75420 75421 75422 75423 75424 75425 75426 75427 75428 75429 75430 75431 75432 75433 75434 75435 75436 75437 75438 75439 75440 75441 75442 75443 75444 75445 75446 75447 75448 75449 75450 75451 75452 75453 75454 75455 75456 75457 75458 75459 75460 75461 75462 75463 75464 75465 75466 75467 75468 75469 75470 75471 75472 75473 75474 75475 75476 75477 75478 75479 75480 75481 75482 75483 75484 75485 75486 75487 75488 75489 75490 75491 75492 75493 75494 75495 75496 75497 75498 75499 75500 75501 75502 75503 75504 75505 75506 75507 75508 75509 75510 75511 75512 75513 75514 75515 75516 75517 75518 75519 75520 75521 75522 75523 75524 75525 75526 75527 75528 75529 75530 75531 75532 75533 75534 75535 75536 75537 75538 75539 75540 75541 75542 75543 75544 75545 75546 75547 75548 75549 75550 75551 75552 75553 75554 75555 75556 75557 75558 75559 75560 75561 75562 75563 75564 75565 75566 75567 75568 75569 75570 75571 75572 75573 75574 75575 75576 75577 75578 75579 75580 75581 75582 75583 75584 75585 75586 75587 75588 75589 75590 75591 75592 75593 75594 75595 75596 75597 75598 75599 75600 75601 75602 75603 75604 75605 75606 75607 75608 75609 75610 75611 75612 75613 75614 75615 75616 75617 75618 75619 75620 75621 75622 75623 75624 75625 75626 75627 75628 75629 75630 75631 75632 75633 75634 75635 75636 75637 75638 75639 75640 75641 75642 75643 75644 75645 75646 75647 75648 75649 75650 75651 75652 75653 75654 75655 75656 75657 75658 75659 75660 75661 75662 75663 75664 75665 75666 75667 75668 75669 75670 75671 75672 75673 75674 75675 75676 75677 75678 75679 75680 75681 75682 75683 75684 75685 75686 75687 75688 75689 75690 75691 75692 75693 75694 75695 75696 75697 75698 75699 75700 75701 75702 75703 75704 75705 75706 75707 75708 75709 75710 75711 75712 75713 75714 75715 75716 75717 75718 75719 75720 75721 75722 75723 75724 75725 75726 75727 75728 75729 75730 75731 75732 75733 75734 75735 75736 75737 75738 75739 75740 75741 75742 75743 75744 75745 75746 75747 75748 75749 75750 75751 75752 75753 75754 75755 75756 75757 75758 75759 75760 75761 75762 75763 75764 75765 75766 75767 75768 75769 75770 75771 75772 75773 75774 75775 75776 75777 75778 75779 75780 75781 75782 75783 75784 75785 75786 75787 75788 75789 75790 75791 75792 75793 75794 75795 75796 75797 75798 75799 75800 75801 75802 75803 75804 75805 75806 75807 75808 75809 75810 75811 75812 75813 75814 75815 75816 75817 75818 75819 75820 75821 75822 75823 75824 75825 75826 75827 75828 75829 75830 75831 75832 75833 75834 75835 75836 75837 75838 75839 75840 75841 75842 75843 75844 75845 75846 75847 75848 75849 75850 75851 75852 75853 75854 75855 75856 75857 75858 75859 75860 75861 75862 75863 75864 75865 75866 75867 75868 75869 75870 75871 75872 75873 75874 75875 75876 75877 75878 75879 75880 75881 75882 75883 75884 75885 75886 75887 75888 75889 75890 75891 75892 75893 75894 75895 75896 75897 75898 75899 75900 75901 75902 75903 75904 75905 75906 75907 75908 75909 75910 75911 75912 75913 75914 75915 75916 75917 75918 75919 75920 75921 75922 75923 75924 75925 75926 75927 75928 75929 75930 75931 75932 75933 75934 75935 75936 75937 75938 75939 75940 75941 75942 75943 75944 75945 75946 75947 75948 75949 75950 75951 75952 75953 75954 75955 75956 75957 75958 75959 75960 75961 75962 75963 75964 75965 75966 75967 75968 75969 75970 75971 75972 75973 75974 75975 75976 75977 75978 75979 75980 75981 75982 75983 75984 75985 75986 75987 75988 75989 75990 75991 75992 75993 75994 75995 75996 75997 75998 75999 76000 76001 76002 76003 76004 76005 76006 76007 76008 76009 76010 76011 76012 76013 76014 76015 76016 76017 76018 76019 76020 76021 76022 76023 76024 76025 76026 76027 76028 76029 76030 76031 76032 76033 76034 76035 76036 76037 76038 76039 76040 76041 76042 76043 76044 76045 76046 76047 76048 76049 76050 76051 76052 76053 76054 76055 76056 76057 76058 76059 76060 76061 76062 76063 76064 76065 76066 76067 76068 76069 76070 76071 76072 76073 76074 76075 76076 76077 76078 76079 76080 76081 76082 76083 76084 76085 76086 76087 76088 76089 76090 76091 76092 76093 76094 76095 76096 76097 76098 76099 76100 76101 76102 76103 76104 76105 76106 76107 76108 76109 76110 76111 76112 76113 76114 76115 76116 76117 76118 76119 76120 76121 76122 76123 76124 76125 76126 76127 76128 76129 76130 76131 76132 76133 76134 76135 76136 76137 76138 76139 76140 76141 76142 76143 76144 76145 76146 76147 76148 76149 76150 76151 76152 76153 76154 76155 76156 76157 76158 76159 76160 76161 76162 76163 76164 76165 76166 76167 76168 76169 76170 76171 76172 76173 76174 76175 76176 76177 76178 76179 76180 76181 76182 76183 76184 76185 76186 76187 76188 76189 76190 76191 76192 76193 76194 76195 76196 76197 76198 76199 76200 76201 76202 76203 76204 76205 76206 76207 76208 76209 76210 76211 76212 76213 76214 76215 76216 76217 76218 76219 76220 76221 76222 76223 76224 76225 76226 76227 76228 76229 76230 76231 76232 76233 76234 76235 76236 76237 76238 76239 76240 76241 76242 76243 76244 76245 76246 76247 76248 76249 76250 76251 76252 76253 76254 76255 76256 76257 76258 76259 76260 76261 76262 76263 76264 76265 76266 76267 76268 76269 76270 76271 76272 76273 76274 76275 76276 76277 76278 76279 76280 76281 76282 76283 76284 76285 76286 76287 76288 76289 76290 76291 76292 76293 76294 76295 76296 76297 76298 76299 76300 76301 76302 76303 76304 76305 76306 76307 76308 76309 76310 76311 76312 76313 76314 76315 76316 76317 76318 76319 76320 76321 76322 76323 76324 76325 76326 76327 76328 76329 76330 76331 76332 76333 76334 76335 76336 76337 76338 76339 76340 76341 76342 76343 76344 76345 76346 76347 76348 76349 76350 76351 76352 76353 76354 76355 76356 76357 76358 76359 76360 76361 76362 76363 76364 76365 76366 76367 76368 76369 76370 76371 76372 76373 76374 76375 76376 76377 76378 76379 76380 76381 76382 76383 76384 76385 76386 76387 76388 76389 76390 76391 76392 76393 76394 76395 76396 76397 76398 76399 76400 76401 76402 76403 76404 76405 76406 76407 76408 76409 76410 76411 76412 76413 76414 76415 76416 76417 76418 76419 76420 76421 76422 76423 76424 76425 76426 76427 76428 76429 76430 76431 76432 76433 76434 76435 76436 76437 76438 76439 76440 76441 76442 76443 76444 76445 76446 76447 76448 76449 76450 76451 76452 76453 76454 76455 76456 76457 76458 76459 76460 76461 76462 76463 76464 76465 76466 76467 76468 76469 76470 76471 76472 76473 76474 76475 76476 76477 76478 76479 76480 76481 76482 76483 76484 76485 76486 76487 76488 76489 76490 76491 76492 76493 76494 76495 76496 76497 76498 76499 76500 76501 76502 76503 76504 76505 76506 76507 76508 76509 76510 76511 76512 76513 76514 76515 76516 76517 76518 76519 76520 76521 76522 76523 76524 76525 76526 76527 76528 76529 76530 76531 76532 76533 76534 76535 76536 76537 76538 76539 76540 76541 76542 76543 76544 76545 76546 76547 76548 76549 76550 76551 76552 76553 76554 76555 76556 76557 76558 76559 76560 76561 76562 76563 76564 76565 76566 76567 76568 76569 76570 76571 76572 76573 76574 76575 76576 76577 76578 76579 76580 76581 76582 76583 76584 76585 76586 76587 76588 76589 76590 76591 76592 76593 76594 76595 76596 76597 76598 76599 76600 76601 76602 76603 76604 76605 76606 76607 76608 76609 76610 76611 76612 76613 76614 76615 76616 76617 76618 76619 76620 76621 76622 76623 76624 76625 76626 76627 76628 76629 76630 76631 76632 76633 76634 76635 76636 76637 76638 76639 76640 76641 76642 76643 76644 76645 76646 76647 76648 76649 76650 76651 76652 76653 76654 76655 76656 76657 76658 76659 76660 76661 76662 76663 76664 76665 76666 76667 76668 76669 76670 76671 76672 76673 76674 76675 76676 76677 76678 76679 76680 76681 76682 76683 76684 76685 76686 76687 76688 76689 76690 76691 76692 76693 76694 76695 76696 76697 76698 76699 76700 76701 76702 76703 76704 76705 76706 76707 76708 76709 76710 76711 76712 76713 76714 76715 76716 76717 76718 76719 76720 76721 76722 76723 76724 76725 76726 76727 76728 76729 76730 76731 76732 76733 76734 76735 76736 76737 76738 76739 76740 76741 76742 76743 76744 76745 76746 76747 76748 76749 76750 76751 76752 76753 76754 76755 76756 76757 76758 76759 76760 76761 76762 76763 76764 76765 76766 76767 76768 76769 76770 76771 76772 76773 76774 76775 76776 76777 76778 76779 76780 76781 76782 76783 76784 76785 76786 76787 76788 76789 76790 76791 76792 76793 76794 76795 76796 76797 76798 76799 76800 76801 76802 76803 76804 76805 76806 76807 76808 76809 76810 76811 76812 76813 76814 76815 76816 76817 76818 76819 76820 76821 76822 76823 76824 76825 76826 76827 76828 76829 76830 76831 76832 76833 76834 76835 76836 76837 76838 76839 76840 76841 76842 76843 76844 76845 76846 76847 76848 76849 76850 76851 76852 76853 76854 76855 76856 76857 76858 76859 76860 76861 76862 76863 76864 76865 76866 76867 76868 76869 76870 76871 76872 76873 76874 76875 76876 76877 76878 76879 76880 76881 76882 76883 76884 76885 76886 76887 76888 76889 76890 76891 76892 76893 76894 76895 76896 76897 76898 76899 76900 76901 76902 76903 76904 76905 76906 76907 76908 76909 76910 76911 76912 76913 76914 76915 76916 76917 76918 76919 76920 76921 76922 76923 76924 76925 76926 76927 76928 76929 76930 76931 76932 76933 76934 76935 76936 76937 76938 76939 76940 76941 76942 76943 76944 76945 76946 76947 76948 76949 76950 76951 76952 76953 76954 76955 76956 76957 76958 76959 76960 76961 76962 76963 76964 76965 76966 76967 76968 76969 76970 76971 76972 76973 76974 76975 76976 76977 76978 76979 76980 76981 76982 76983 76984 76985 76986 76987 76988 76989 76990 76991 76992 76993 76994 76995 76996 76997 76998 76999 77000 77001 77002 77003 77004 77005 77006 77007 77008 77009 77010 77011 77012 77013 77014 77015 77016 77017 77018 77019 77020 77021 77022 77023 77024 77025 77026 77027 77028 77029 77030 77031 77032 77033 77034 77035 77036 77037 77038 77039 77040 77041 77042 77043 77044 77045 77046 77047 77048 77049 77050 77051 77052 77053 77054 77055 77056 77057 77058 77059 77060 77061 77062 77063 77064 77065 77066 77067 77068 77069 77070 77071 77072 77073 77074 77075 77076 77077 77078 77079 77080 77081 77082 77083 77084 77085 77086 77087 77088 77089 77090 77091 77092 77093 77094 77095 77096 77097 77098 77099 77100 77101 77102 77103 77104 77105 77106 77107 77108 77109 77110 77111 77112 77113 77114 77115 77116 77117 77118 77119 77120 77121 77122 77123 77124 77125 77126 77127 77128 77129 77130 77131 77132 77133 77134 77135 77136 77137 77138 77139 77140 77141 77142 77143 77144 77145 77146 77147 77148 77149 77150 77151 77152 77153 77154 77155 77156 77157 77158 77159 77160 77161 77162 77163 77164 77165 77166 77167 77168 77169 77170 77171 77172 77173 77174 77175 77176 77177 77178 77179 77180 77181 77182 77183 77184 77185 77186 77187 77188 77189 77190 77191 77192 77193 77194 77195 77196 77197 77198 77199 77200 77201 77202 77203 77204 77205 77206 77207 77208 77209 77210 77211 77212 77213 77214 77215 77216 77217 77218 77219 77220 77221 77222 77223 77224 77225 77226 77227 77228 77229 77230 77231 77232 77233 77234 77235 77236 77237 77238 77239 77240 77241 77242 77243 77244 77245 77246 77247 77248 77249 77250 77251 77252 77253 77254 77255 77256 77257 77258 77259 77260 77261 77262 77263 77264 77265 77266 77267 77268 77269 77270 77271 77272 77273 77274 77275 77276 77277 77278 77279 77280 77281 77282 77283 77284 77285 77286 77287 77288 77289 77290 77291 77292 77293 77294 77295 77296 77297 77298 77299 77300 77301 77302 77303 77304 77305 77306 77307 77308 77309 77310 77311 77312 77313 77314 77315 77316 77317 77318 77319 77320 77321 77322 77323 77324 77325 77326 77327 77328 77329 77330 77331 77332 77333 77334 77335 77336 77337 77338 77339 77340 77341 77342 77343 77344 77345 77346 77347 77348 77349 77350 77351 77352 77353 77354 77355 77356 77357 77358 77359 77360 77361 77362 77363 77364 77365 77366 77367 77368 77369 77370 77371 77372 77373 77374 77375 77376 77377 77378 77379 77380 77381 77382 77383 77384 77385 77386 77387 77388 77389 77390 77391 77392 77393 77394 77395 77396 77397 77398 77399 77400 77401 77402 77403 77404 77405 77406 77407 77408 77409 77410 77411 77412 77413 77414 77415 77416 77417 77418 77419 77420 77421 77422 77423 77424 77425 77426 77427 77428 77429 77430 77431 77432 77433 77434 77435 77436 77437 77438 77439 77440 77441 77442 77443 77444 77445 77446 77447 77448 77449 77450 77451 77452 77453 77454 77455 77456 77457 77458 77459 77460 77461 77462 77463 77464 77465 77466 77467 77468 77469 77470 77471 77472 77473 77474 77475 77476 77477 77478 77479 77480 77481 77482 77483 77484 77485 77486 77487 77488 77489 77490 77491 77492 77493 77494 77495 77496 77497 77498 77499 77500 77501 77502 77503 77504 77505 77506 77507 77508 77509 77510 77511 77512 77513 77514 77515 77516 77517 77518 77519 77520 77521 77522 77523 77524 77525 77526 77527 77528 77529 77530 77531 77532 77533 77534 77535 77536 77537 77538 77539 77540 77541 77542 77543 77544 77545 77546 77547 77548 77549 77550 77551 77552 77553 77554 77555 77556 77557 77558 77559 77560 77561 77562 77563 77564 77565 77566 77567 77568 77569 77570 77571 77572 77573 77574 77575 77576 77577 77578 77579 77580 77581 77582 77583 77584 77585 77586 77587 77588 77589 77590 77591 77592 77593 77594 77595 77596 77597 77598 77599 77600 77601 77602 77603 77604 77605 77606 77607 77608 77609 77610 77611 77612 77613 77614 77615 77616 77617 77618 77619 77620 77621 77622 77623 77624 77625 77626 77627 77628 77629 77630 77631 77632 77633 77634 77635 77636 77637 77638 77639 77640 77641 77642 77643 77644 77645 77646 77647 77648 77649 77650 77651 77652 77653 77654 77655 77656 77657 77658 77659 77660 77661 77662 77663 77664 77665 77666 77667 77668 77669 77670 77671 77672 77673 77674 77675 77676 77677 77678 77679 77680 77681 77682 77683 77684 77685 77686 77687 77688 77689 77690 77691 77692 77693 77694 77695 77696 77697 77698 77699 77700 77701 77702 77703 77704 77705 77706 77707 77708 77709 77710 77711 77712 77713 77714 77715 77716 77717 77718 77719 77720 77721 77722 77723 77724 77725 77726 77727 77728 77729 77730 77731 77732 77733 77734 77735 77736 77737 77738 77739 77740 77741 77742 77743 77744 77745 77746 77747 77748 77749 77750 77751 77752 77753 77754 77755 77756 77757 77758 77759 77760 77761 77762 77763 77764 77765 77766 77767 77768 77769 77770 77771 77772 77773 77774 77775 77776 77777 77778 77779 77780 77781 77782 77783 77784 77785 77786 77787 77788 77789 77790 77791 77792 77793 77794 77795 77796 77797 77798 77799 77800 77801 77802 77803 77804 77805 77806 77807 77808 77809 77810 77811 77812 77813 77814 77815 77816 77817 77818 77819 77820 77821 77822 77823 77824 77825 77826 77827 77828 77829 77830 77831 77832 77833 77834 77835 77836 77837 77838 77839 77840 77841 77842 77843 77844 77845 77846 77847 77848 77849 77850 77851 77852 77853 77854 77855 77856 77857 77858 77859 77860 77861 77862 77863 77864 77865 77866 77867 77868 77869 77870 77871 77872 77873 77874 77875 77876 77877 77878 77879 77880 77881 77882 77883 77884 77885 77886 77887 77888 77889 77890 77891 77892 77893 77894 77895 77896 77897 77898 77899 77900 77901 77902 77903 77904 77905 77906 77907 77908 77909 77910 77911 77912 77913 77914 77915 77916 77917 77918 77919 77920 77921 77922 77923 77924 77925 77926 77927 77928 77929 77930 77931 77932 77933 77934 77935 77936 77937 77938 77939 77940 77941 77942 77943 77944 77945 77946 77947 77948 77949 77950 77951 77952 77953 77954 77955 77956 77957 77958 77959 77960 77961 77962 77963 77964 77965 77966 77967 77968 77969 77970 77971 77972 77973 77974 77975 77976 77977 77978 77979 77980 77981 77982 77983 77984 77985 77986 77987 77988 77989 77990 77991 77992 77993 77994 77995 77996 77997 77998 77999 78000 78001 78002 78003 78004 78005 78006 78007 78008 78009 78010 78011 78012 78013 78014 78015 78016 78017 78018 78019 78020 78021 78022 78023 78024 78025 78026 78027 78028 78029 78030 78031 78032 78033 78034 78035 78036 78037 78038 78039 78040 78041 78042 78043 78044 78045 78046 78047 78048 78049 78050 78051 78052 78053 78054 78055 78056 78057 78058 78059 78060 78061 78062 78063 78064 78065 78066 78067 78068 78069 78070 78071 78072 78073 78074 78075 78076 78077 78078 78079 78080 78081 78082 78083 78084 78085 78086 78087 78088 78089 78090 78091 78092 78093 78094 78095 78096 78097 78098 78099 78100 78101 78102 78103 78104 78105 78106 78107 78108 78109 78110 78111 78112 78113 78114 78115 78116 78117 78118 78119 78120 78121 78122 78123 78124 78125 78126 78127 78128 78129 78130 78131 78132 78133 78134 78135 78136 78137 78138 78139 78140 78141 78142 78143 78144 78145 78146 78147 78148 78149 78150 78151 78152 78153 78154 78155 78156 78157 78158 78159 78160 78161 78162 78163 78164 78165 78166 78167 78168 78169 78170 78171 78172 78173 78174 78175 78176 78177 78178 78179 78180 78181 78182 78183 78184 78185 78186 78187 78188 78189 78190 78191 78192 78193 78194 78195 78196 78197 78198 78199 78200 78201 78202 78203 78204 78205 78206 78207 78208 78209 78210 78211 78212 78213 78214 78215 78216 78217 78218 78219 78220 78221 78222 78223 78224 78225 78226 78227 78228 78229 78230 78231 78232 78233 78234 78235 78236 78237 78238 78239 78240 78241 78242 78243 78244 78245 78246 78247 78248 78249 78250 78251 78252 78253 78254 78255 78256 78257 78258 78259 78260 78261 78262 78263 78264 78265 78266 78267 78268 78269 78270 78271 78272 78273 78274 78275 78276 78277 78278 78279 78280 78281 78282 78283 78284 78285 78286 78287 78288 78289 78290 78291 78292 78293 78294 78295 78296 78297 78298 78299 78300 78301 78302 78303 78304 78305 78306 78307 78308 78309 78310 78311 78312 78313 78314 78315 78316 78317 78318 78319 78320 78321 78322 78323 78324 78325 78326 78327 78328 78329 78330 78331 78332 78333 78334 78335 78336 78337 78338 78339 78340 78341 78342 78343 78344 78345 78346 78347 78348 78349 78350 78351 78352 78353 78354 78355 78356 78357 78358 78359 78360 78361 78362 78363 78364 78365 78366 78367 78368 78369 78370 78371 78372 78373 78374 78375 78376 78377 78378 78379 78380 78381 78382 78383 78384 78385 78386 78387 78388 78389 78390 78391 78392 78393 78394 78395 78396 78397 78398 78399 78400 78401 78402 78403 78404 78405 78406 78407 78408 78409 78410 78411 78412 78413 78414 78415 78416 78417 78418 78419 78420 78421 78422 78423 78424 78425 78426 78427 78428 78429 78430 78431 78432 78433 78434 78435 78436 78437 78438 78439 78440 78441 78442 78443 78444 78445 78446 78447 78448 78449 78450 78451 78452 78453 78454 78455 78456 78457 78458 78459 78460 78461 78462 78463 78464 78465 78466 78467 78468 78469 78470 78471 78472 78473 78474 78475 78476 78477 78478 78479 78480 78481 78482 78483 78484 78485 78486 78487 78488 78489 78490 78491 78492 78493 78494 78495 78496 78497 78498 78499 78500 78501 78502 78503 78504 78505 78506 78507 78508 78509 78510 78511 78512 78513 78514 78515 78516 78517 78518 78519 78520 78521 78522 78523 78524 78525 78526 78527 78528 78529 78530 78531 78532 78533 78534 78535 78536 78537 78538 78539 78540 78541 78542 78543 78544 78545 78546 78547 78548 78549 78550 78551 78552 78553 78554 78555 78556 78557 78558 78559 78560 78561 78562 78563 78564 78565 78566 78567 78568 78569 78570 78571 78572 78573 78574 78575 78576 78577 78578 78579 78580 78581 78582 78583 78584 78585 78586 78587 78588 78589 78590 78591 78592 78593 78594 78595 78596 78597 78598 78599 78600 78601 78602 78603 78604 78605 78606 78607 78608 78609 78610 78611 78612 78613 78614 78615 78616 78617 78618 78619 78620 78621 78622 78623 78624 78625 78626 78627 78628 78629 78630 78631 78632 78633 78634 78635 78636 78637 78638 78639 78640 78641 78642 78643 78644 78645 78646 78647 78648 78649 78650 78651 78652 78653 78654 78655 78656 78657 78658 78659 78660 78661 78662 78663 78664 78665 78666 78667 78668 78669 78670 78671 78672 78673 78674 78675 78676 78677 78678 78679 78680 78681 78682 78683 78684 78685 78686 78687 78688 78689 78690 78691 78692 78693 78694 78695 78696 78697 78698 78699 78700 78701 78702 78703 78704 78705 78706 78707 78708 78709 78710 78711 78712 78713 78714 78715 78716 78717 78718 78719 78720 78721 78722 78723 78724 78725 78726 78727 78728 78729 78730 78731 78732 78733 78734 78735 78736 78737 78738 78739 78740 78741 78742 78743 78744 78745 78746 78747 78748 78749 78750 78751 78752 78753 78754 78755 78756 78757 78758 78759 78760 78761 78762 78763 78764 78765 78766 78767 78768 78769 78770 78771 78772 78773 78774 78775 78776 78777 78778 78779 78780 78781 78782 78783 78784 78785 78786 78787 78788 78789 78790 78791 78792 78793 78794 78795 78796 78797 78798 78799 78800 78801 78802 78803 78804 78805 78806 78807 78808 78809 78810 78811 78812 78813 78814 78815 78816 78817 78818 78819 78820 78821 78822 78823 78824 78825 78826 78827 78828 78829 78830 78831 78832 78833 78834 78835 78836 78837 78838 78839 78840 78841 78842 78843 78844 78845 78846 78847 78848 78849 78850 78851 78852 78853 78854 78855 78856 78857 78858 78859 78860 78861 78862 78863 78864 78865 78866 78867 78868 78869 78870 78871 78872 78873 78874 78875 78876 78877 78878 78879 78880 78881 78882 78883 78884 78885 78886 78887 78888 78889 78890 78891 78892 78893 78894 78895 78896 78897 78898 78899 78900 78901 78902 78903 78904 78905 78906 78907 78908 78909 78910 78911 78912 78913 78914 78915 78916 78917 78918 78919 78920 78921 78922 78923 78924 78925 78926 78927 78928 78929 78930 78931 78932 78933 78934 78935 78936 78937 78938 78939 78940 78941 78942 78943 78944 78945 78946 78947 78948 78949 78950 78951 78952 78953 78954 78955 78956 78957 78958 78959 78960 78961 78962 78963 78964 78965 78966 78967 78968 78969 78970 78971 78972 78973 78974 78975 78976 78977 78978 78979 78980 78981 78982 78983 78984 78985 78986 78987 78988 78989 78990 78991 78992 78993 78994 78995 78996 78997 78998 78999 79000 79001 79002 79003 79004 79005 79006 79007 79008 79009 79010 79011 79012 79013 79014 79015 79016 79017 79018 79019 79020 79021 79022 79023 79024 79025 79026 79027 79028 79029 79030 79031 79032 79033 79034 79035 79036 79037 79038 79039 79040 79041 79042 79043 79044 79045 79046 79047 79048 79049 79050 79051 79052 79053 79054 79055 79056 79057 79058 79059 79060 79061 79062 79063 79064 79065 79066 79067 79068 79069 79070 79071 79072 79073 79074 79075 79076 79077 79078 79079 79080 79081 79082 79083 79084 79085 79086 79087 79088 79089 79090 79091 79092 79093 79094 79095 79096 79097 79098 79099 79100 79101 79102 79103 79104 79105 79106 79107 79108 79109 79110 79111 79112 79113 79114 79115 79116 79117 79118 79119 79120 79121 79122 79123 79124 79125 79126 79127 79128 79129 79130 79131 79132 79133 79134 79135 79136 79137 79138 79139 79140 79141 79142 79143 79144 79145 79146 79147 79148 79149 79150 79151 79152 79153 79154 79155 79156 79157 79158 79159 79160 79161 79162 79163 79164 79165 79166 79167 79168 79169 79170 79171 79172 79173 79174 79175 79176 79177 79178 79179 79180 79181 79182 79183 79184 79185 79186 79187 79188 79189 79190 79191 79192 79193 79194 79195 79196 79197 79198 79199 79200 79201 79202 79203 79204 79205 79206 79207 79208 79209 79210 79211 79212 79213 79214 79215 79216 79217 79218 79219 79220 79221 79222 79223 79224 79225 79226 79227 79228 79229 79230 79231 79232 79233 79234 79235 79236 79237 79238 79239 79240 79241 79242 79243 79244 79245 79246 79247 79248 79249 79250 79251 79252 79253 79254 79255 79256 79257 79258 79259 79260 79261 79262 79263 79264 79265 79266 79267 79268 79269 79270 79271 79272 79273 79274 79275 79276 79277 79278 79279 79280 79281 79282 79283 79284 79285 79286 79287 79288 79289 79290 79291 79292 79293 79294 79295 79296 79297 79298 79299 79300 79301 79302 79303 79304 79305 79306 79307 79308 79309 79310 79311 79312 79313 79314 79315 79316 79317 79318 79319 79320 79321 79322 79323 79324 79325 79326 79327 79328 79329 79330 79331 79332 79333 79334 79335 79336 79337 79338 79339 79340 79341 79342 79343 79344 79345 79346 79347 79348 79349 79350 79351 79352 79353 79354 79355 79356 79357 79358 79359 79360 79361 79362 79363 79364 79365 79366 79367 79368 79369 79370 79371 79372 79373 79374 79375 79376 79377 79378 79379 79380 79381 79382 79383 79384 79385 79386 79387 79388 79389 79390 79391 79392 79393 79394 79395 79396 79397 79398 79399 79400 79401 79402 79403 79404 79405 79406 79407 79408 79409 79410 79411 79412 79413 79414 79415 79416 79417 79418 79419 79420 79421 79422 79423 79424 79425 79426 79427 79428 79429 79430 79431 79432 79433 79434 79435 79436 79437 79438 79439 79440 79441 79442 79443 79444 79445 79446 79447 79448 79449 79450 79451 79452 79453 79454 79455 79456 79457 79458 79459 79460 79461 79462 79463 79464 79465 79466 79467 79468 79469 79470 79471 79472 79473 79474 79475 79476 79477 79478 79479 79480 79481 79482 79483 79484 79485 79486 79487 79488 79489 79490 79491 79492 79493 79494 79495 79496 79497 79498 79499 79500 79501 79502 79503 79504 79505 79506 79507 79508 79509 79510 79511 79512 79513 79514 79515 79516 79517 79518 79519 79520 79521 79522 79523 79524 79525 79526 79527 79528 79529 79530 79531 79532 79533 79534 79535 79536 79537 79538 79539 79540 79541 79542 79543 79544 79545 79546 79547 79548 79549 79550 79551 79552 79553 79554 79555 79556 79557 79558 79559 79560 79561 79562 79563 79564 79565 79566 79567 79568 79569 79570 79571 79572 79573 79574 79575 79576 79577 79578 79579 79580 79581 79582 79583 79584 79585 79586 79587 79588 79589 79590 79591 79592 79593 79594 79595 79596 79597 79598 79599 79600 79601 79602 79603 79604 79605 79606 79607 79608 79609 79610 79611 79612 79613 79614 79615 79616 79617 79618 79619 79620 79621 79622 79623 79624 79625 79626 79627 79628 79629 79630 79631 79632 79633 79634 79635 79636 79637 79638 79639 79640 79641 79642 79643 79644 79645 79646 79647 79648 79649 79650 79651 79652 79653 79654 79655 79656 79657 79658 79659 79660 79661 79662 79663 79664 79665 79666 79667 79668 79669 79670 79671 79672 79673 79674 79675 79676 79677 79678 79679 79680 79681 79682 79683 79684 79685 79686 79687 79688 79689 79690 79691 79692 79693 79694 79695 79696 79697 79698 79699 79700 79701 79702 79703 79704 79705 79706 79707 79708 79709 79710 79711 79712 79713 79714 79715 79716 79717 79718 79719 79720 79721 79722 79723 79724 79725 79726 79727 79728 79729 79730 79731 79732 79733 79734 79735 79736 79737 79738 79739 79740 79741 79742 79743 79744 79745 79746 79747 79748 79749 79750 79751 79752 79753 79754 79755 79756 79757 79758 79759 79760 79761 79762 79763 79764 79765 79766 79767 79768 79769 79770 79771 79772 79773 79774 79775 79776 79777 79778 79779 79780 79781 79782 79783 79784 79785 79786 79787 79788 79789 79790 79791 79792 79793 79794 79795 79796 79797 79798 79799 79800 79801 79802 79803 79804 79805 79806 79807 79808 79809 79810 79811 79812 79813 79814 79815 79816 79817 79818 79819 79820 79821 79822 79823 79824 79825 79826 79827 79828 79829 79830 79831 79832 79833 79834 79835 79836 79837 79838 79839 79840 79841 79842 79843 79844 79845 79846 79847 79848 79849 79850 79851 79852 79853 79854 79855 79856 79857 79858 79859 79860 79861 79862 79863 79864 79865 79866 79867 79868 79869 79870 79871 79872 79873 79874 79875 79876 79877 79878 79879 79880 79881 79882 79883 79884 79885 79886 79887 79888 79889 79890 79891 79892 79893 79894 79895 79896 79897 79898 79899 79900 79901 79902 79903 79904 79905 79906 79907 79908 79909 79910 79911 79912 79913 79914 79915 79916 79917 79918 79919 79920 79921 79922 79923 79924 79925 79926 79927 79928 79929 79930 79931 79932 79933 79934 79935 79936 79937 79938 79939 79940 79941 79942 79943 79944 79945 79946 79947 79948 79949 79950 79951 79952 79953 79954 79955 79956 79957 79958 79959 79960 79961 79962 79963 79964 79965 79966 79967 79968 79969 79970 79971 79972 79973 79974 79975 79976 79977 79978 79979 79980 79981 79982 79983 79984 79985 79986 79987 79988 79989 79990 79991 79992 79993 79994 79995 79996 79997 79998 79999 80000 80001 80002 80003 80004 80005 80006 80007 80008 80009 80010 80011 80012 80013 80014 80015 80016 80017 80018 80019 80020 80021 80022 80023 80024 80025 80026 80027 80028 80029 80030 80031 80032 80033 80034 80035 80036 80037 80038 80039 80040 80041 80042 80043 80044 80045 80046 80047 80048 80049 80050 80051 80052 80053 80054 80055 80056 80057 80058 80059 80060 80061 80062 80063 80064 80065 80066 80067 80068 80069 80070 80071 80072 80073 80074 80075 80076 80077 80078 80079 80080 80081 80082 80083 80084 80085 80086 80087 80088 80089 80090 80091 80092 80093 80094 80095 80096 80097 80098 80099 80100 80101 80102 80103 80104 80105 80106 80107 80108 80109 80110 80111 80112 80113 80114 80115 80116 80117 80118 80119 80120 80121 80122 80123 80124 80125 80126 80127 80128 80129 80130 80131 80132 80133 80134 80135 80136 80137 80138 80139 80140 80141 80142 80143 80144 80145 80146 80147 80148 80149 80150 80151 80152 80153 80154 80155 80156 80157 80158 80159 80160 80161 80162 80163 80164 80165 80166 80167 80168 80169 80170 80171 80172 80173 80174 80175 80176 80177 80178 80179 80180 80181 80182 80183 80184 80185 80186 80187 80188 80189 80190 80191 80192 80193 80194 80195 80196 80197 80198 80199 80200 80201 80202 80203 80204 80205 80206 80207 80208 80209 80210 80211 80212 80213 80214 80215 80216 80217 80218 80219 80220 80221 80222 80223 80224 80225 80226 80227 80228 80229 80230 80231 80232 80233 80234 80235 80236 80237 80238 80239 80240 80241 80242 80243 80244 80245 80246 80247 80248 80249 80250 80251 80252 80253 80254 80255 80256 80257 80258 80259 80260 80261 80262 80263 80264 80265 80266 80267 80268 80269 80270 80271 80272 80273 80274 80275 80276 80277 80278 80279 80280 80281 80282 80283 80284 80285 80286 80287 80288 80289 80290 80291 80292 80293 80294 80295 80296 80297 80298 80299 80300 80301 80302 80303 80304 80305 80306 80307 80308 80309 80310 80311 80312 80313 80314 80315 80316 80317 80318 80319 80320 80321 80322 80323 80324 80325 80326 80327 80328 80329 80330 80331 80332 80333 80334 80335 80336 80337 80338 80339 80340 80341 80342 80343 80344 80345 80346 80347 80348 80349 80350 80351 80352 80353 80354 80355 80356 80357 80358 80359 80360 80361 80362 80363 80364 80365 80366 80367 80368 80369 80370 80371 80372 80373 80374 80375 80376 80377 80378 80379 80380 80381 80382 80383 80384 80385 80386 80387 80388 80389 80390 80391 80392 80393 80394 80395 80396 80397 80398 80399 80400 80401 80402 80403 80404 80405 80406 80407 80408 80409 80410 80411 80412 80413 80414 80415 80416 80417 80418 80419 80420 80421 80422 80423 80424 80425 80426 80427 80428 80429 80430 80431 80432 80433 80434 80435 80436 80437 80438 80439 80440 80441 80442 80443 80444 80445 80446 80447 80448 80449 80450 80451 80452 80453 80454 80455 80456 80457 80458 80459 80460 80461 80462 80463 80464 80465 80466 80467 80468 80469 80470 80471 80472 80473 80474 80475 80476 80477 80478 80479 80480 80481 80482 80483 80484 80485 80486 80487 80488 80489 80490 80491 80492 80493 80494 80495 80496 80497 80498 80499 80500 80501 80502 80503 80504 80505 80506 80507 80508 80509 80510 80511 80512 80513 80514 80515 80516 80517 80518 80519 80520 80521 80522 80523 80524 80525 80526 80527 80528 80529 80530 80531 80532 80533 80534 80535 80536 80537 80538 80539 80540 80541 80542 80543 80544 80545 80546 80547 80548 80549 80550 80551 80552 80553 80554 80555 80556 80557 80558 80559 80560 80561 80562 80563 80564 80565 80566 80567 80568 80569 80570 80571 80572 80573 80574 80575 80576 80577 80578 80579 80580 80581 80582 80583 80584 80585 80586 80587 80588 80589 80590 80591 80592 80593 80594 80595 80596 80597 80598 80599 80600 80601 80602 80603 80604 80605 80606 80607 80608 80609 80610 80611 80612 80613 80614 80615 80616 80617 80618 80619 80620 80621 80622 80623 80624 80625 80626 80627 80628 80629 80630 80631 80632 80633 80634 80635 80636 80637 80638 80639 80640 80641 80642 80643 80644 80645 80646 80647 80648 80649 80650 80651 80652 80653 80654 80655 80656 80657 80658 80659 80660 80661 80662 80663 80664 80665 80666 80667 80668 80669 80670 80671 80672 80673 80674 80675 80676 80677 80678 80679 80680 80681 80682 80683 80684 80685 80686 80687 80688 80689 80690 80691 80692 80693 80694 80695 80696 80697 80698 80699 80700 80701 80702 80703 80704 80705 80706 80707 80708 80709 80710 80711 80712 80713 80714 80715 80716 80717 80718 80719 80720 80721 80722 80723 80724 80725 80726 80727 80728 80729 80730 80731 80732 80733 80734 80735 80736 80737 80738 80739 80740 80741 80742 80743 80744 80745 80746 80747 80748 80749 80750 80751 80752 80753 80754 80755 80756 80757 80758 80759 80760 80761 80762 80763 80764 80765 80766 80767 80768 80769 80770 80771 80772 80773 80774 80775 80776 80777 80778 80779 80780 80781 80782 80783 80784 80785 80786 80787 80788 80789 80790 80791 80792 80793 80794 80795 80796 80797 80798 80799 80800 80801 80802 80803 80804 80805 80806 80807 80808 80809 80810 80811 80812 80813 80814 80815 80816 80817 80818 80819 80820 80821 80822 80823 80824 80825 80826 80827 80828 80829 80830 80831 80832 80833 80834 80835 80836 80837 80838 80839 80840 80841 80842 80843 80844 80845 80846 80847 80848 80849 80850 80851 80852 80853 80854 80855 80856 80857 80858 80859 80860 80861 80862 80863 80864 80865 80866 80867 80868 80869 80870 80871 80872 80873 80874 80875 80876 80877 80878 80879 80880 80881 80882 80883 80884 80885 80886 80887 80888 80889 80890 80891 80892 80893 80894 80895 80896 80897 80898 80899 80900 80901 80902 80903 80904 80905 80906 80907 80908 80909 80910 80911 80912 80913 80914 80915 80916 80917 80918 80919 80920 80921 80922 80923 80924 80925 80926 80927 80928 80929 80930 80931 80932 80933 80934 80935 80936 80937 80938 80939 80940 80941 80942 80943 80944 80945 80946 80947 80948 80949 80950 80951 80952 80953 80954 80955 80956 80957 80958 80959 80960 80961 80962 80963 80964 80965 80966 80967 80968 80969 80970 80971 80972 80973 80974 80975 80976 80977 80978 80979 80980 80981 80982 80983 80984 80985 80986 80987 80988 80989 80990 80991 80992 80993 80994 80995 80996 80997 80998 80999 81000 81001 81002 81003 81004 81005 81006 81007 81008 81009 81010 81011 81012 81013 81014 81015 81016 81017 81018 81019 81020 81021 81022 81023 81024 81025 81026 81027 81028 81029 81030 81031 81032 81033 81034 81035 81036 81037 81038 81039 81040 81041 81042 81043 81044 81045 81046 81047 81048 81049 81050 81051 81052 81053 81054 81055 81056 81057 81058 81059 81060 81061 81062 81063 81064 81065 81066 81067 81068 81069 81070 81071 81072 81073 81074 81075 81076 81077 81078 81079 81080 81081 81082 81083 81084 81085 81086 81087 81088 81089 81090 81091 81092 81093 81094 81095 81096 81097 81098 81099 81100 81101 81102 81103 81104 81105 81106 81107 81108 81109 81110 81111 81112 81113 81114 81115 81116 81117 81118 81119 81120 81121 81122 81123 81124 81125 81126 81127 81128 81129 81130 81131 81132 81133 81134 81135 81136 81137 81138 81139 81140 81141 81142 81143 81144 81145 81146 81147 81148 81149 81150 81151 81152 81153 81154 81155 81156 81157 81158 81159 81160 81161 81162 81163 81164 81165 81166 81167 81168 81169 81170 81171 81172 81173 81174 81175 81176 81177 81178 81179 81180 81181 81182 81183 81184 81185 81186 81187 81188 81189 81190 81191 81192 81193 81194 81195 81196 81197 81198 81199 81200 81201 81202 81203 81204 81205 81206 81207 81208 81209 81210 81211 81212 81213 81214 81215 81216 81217 81218 81219 81220 81221 81222 81223 81224 81225 81226 81227 81228 81229 81230 81231 81232 81233 81234 81235 81236 81237 81238 81239 81240 81241 81242 81243 81244 81245 81246 81247 81248 81249 81250 81251 81252 81253 81254 81255 81256 81257 81258 81259 81260 81261 81262 81263 81264 81265 81266 81267 81268 81269 81270 81271 81272 81273 81274 81275 81276 81277 81278 81279 81280 81281 81282 81283 81284 81285 81286 81287 81288 81289 81290 81291 81292 81293 81294 81295 81296 81297 81298 81299 81300 81301 81302 81303 81304 81305 81306 81307 81308 81309 81310 81311 81312 81313 81314 81315 81316 81317 81318 81319 81320 81321 81322 81323 81324 81325 81326 81327 81328 81329 81330 81331 81332 81333 81334 81335 81336 81337 81338 81339 81340 81341 81342 81343 81344 81345 81346 81347 81348 81349 81350 81351 81352 81353 81354 81355 81356 81357 81358 81359 81360 81361 81362 81363 81364 81365 81366 81367 81368 81369 81370 81371 81372 81373 81374 81375 81376 81377 81378 81379 81380 81381 81382 81383 81384 81385 81386 81387 81388 81389 81390 81391 81392 81393 81394 81395 81396 81397 81398 81399 81400 81401 81402 81403 81404 81405 81406 81407 81408 81409 81410 81411 81412 81413 81414 81415 81416 81417 81418 81419 81420 81421 81422 81423 81424 81425 81426 81427 81428 81429 81430 81431 81432 81433 81434 81435 81436 81437 81438 81439 81440 81441 81442 81443 81444 81445 81446 81447 81448 81449 81450 81451 81452 81453 81454 81455 81456 81457 81458 81459 81460 81461 81462 81463 81464 81465 81466 81467 81468 81469 81470 81471 81472 81473 81474 81475 81476 81477 81478 81479 81480 81481 81482 81483 81484 81485 81486 81487 81488 81489 81490 81491 81492 81493 81494 81495 81496 81497 81498 81499 81500 81501 81502 81503 81504 81505 81506 81507 81508 81509 81510 81511 81512 81513 81514 81515 81516 81517 81518 81519 81520 81521 81522 81523 81524 81525 81526 81527 81528 81529 81530 81531 81532 81533 81534 81535 81536 81537 81538 81539 81540 81541 81542 81543 81544 81545 81546 81547 81548 81549 81550 81551 81552 81553 81554 81555 81556 81557 81558 81559 81560 81561 81562 81563 81564 81565 81566 81567 81568 81569 81570 81571 81572 81573 81574 81575 81576 81577 81578 81579 81580 81581 81582 81583 81584 81585 81586 81587 81588 81589 81590 81591 81592 81593 81594 81595 81596 81597 81598 81599 81600 81601 81602 81603 81604 81605 81606 81607 81608 81609 81610 81611 81612 81613 81614 81615 81616 81617 81618 81619 81620 81621 81622 81623 81624 81625 81626 81627 81628 81629 81630 81631 81632 81633 81634 81635 81636 81637 81638 81639 81640 81641 81642 81643 81644 81645 81646 81647 81648 81649 81650 81651 81652 81653 81654 81655 81656 81657 81658 81659 81660 81661 81662 81663 81664 81665 81666 81667 81668 81669 81670 81671 81672 81673 81674 81675 81676 81677 81678 81679 81680 81681 81682 81683 81684 81685 81686 81687 81688 81689 81690 81691 81692 81693 81694 81695 81696 81697 81698 81699 81700 81701 81702 81703 81704 81705 81706 81707 81708 81709 81710 81711 81712 81713 81714 81715 81716 81717 81718 81719 81720 81721 81722 81723 81724 81725 81726 81727 81728 81729 81730 81731 81732 81733 81734 81735 81736 81737 81738 81739 81740 81741 81742 81743 81744 81745 81746 81747 81748 81749 81750 81751 81752 81753 81754 81755 81756 81757 81758 81759 81760 81761 81762 81763 81764 81765 81766 81767 81768 81769 81770 81771 81772 81773 81774 81775 81776 81777 81778 81779 81780 81781 81782 81783 81784 81785 81786 81787 81788 81789 81790 81791 81792 81793 81794 81795 81796 81797 81798 81799 81800 81801 81802 81803 81804 81805 81806 81807 81808 81809 81810 81811 81812 81813 81814 81815 81816 81817 81818 81819 81820 81821 81822 81823 81824 81825 81826 81827 81828 81829 81830 81831 81832 81833 81834 81835 81836 81837 81838 81839 81840 81841 81842 81843 81844 81845 81846 81847 81848 81849 81850 81851 81852 81853 81854 81855 81856 81857 81858 81859 81860 81861 81862 81863 81864 81865 81866 81867 81868 81869 81870 81871 81872 81873 81874 81875 81876 81877 81878 81879 81880 81881 81882 81883 81884 81885 81886 81887 81888 81889 81890 81891 81892 81893 81894 81895 81896 81897 81898 81899 81900 81901 81902 81903 81904 81905 81906 81907 81908 81909 81910 81911 81912 81913 81914 81915 81916 81917 81918 81919 81920 81921 81922 81923 81924 81925 81926 81927 81928 81929 81930 81931 81932 81933 81934 81935 81936 81937 81938 81939 81940 81941 81942 81943 81944 81945 81946 81947 81948 81949 81950 81951 81952 81953 81954 81955 81956 81957 81958 81959 81960 81961 81962 81963 81964 81965 81966 81967 81968 81969 81970 81971 81972 81973 81974 81975 81976 81977 81978 81979 81980 81981 81982 81983 81984 81985 81986 81987 81988 81989 81990 81991 81992 81993 81994 81995 81996 81997 81998 81999 82000 82001 82002 82003 82004 82005 82006 82007 82008 82009 82010 82011 82012 82013 82014 82015 82016 82017 82018 82019 82020 82021 82022 82023 82024 82025 82026 82027 82028 82029 82030 82031 82032 82033 82034 82035 82036 82037 82038 82039 82040 82041 82042 82043 82044 82045 82046 82047 82048 82049 82050 82051 82052 82053 82054 82055 82056 82057 82058 82059 82060 82061 82062 82063 82064 82065 82066 82067 82068 82069 82070 82071 82072 82073 82074 82075 82076 82077 82078 82079 82080 82081 82082 82083 82084 82085 82086 82087 82088 82089 82090 82091 82092 82093 82094 82095 82096 82097 82098 82099 82100 82101 82102 82103 82104 82105 82106 82107 82108 82109 82110 82111 82112 82113 82114 82115 82116 82117 82118 82119 82120 82121 82122 82123 82124 82125 82126 82127 82128 82129 82130 82131 82132 82133 82134 82135 82136 82137 82138 82139 82140 82141 82142 82143 82144 82145 82146 82147 82148 82149 82150 82151 82152 82153 82154 82155 82156 82157 82158 82159 82160 82161 82162 82163 82164 82165 82166 82167 82168 82169 82170 82171 82172 82173 82174 82175 82176 82177 82178 82179 82180 82181 82182 82183 82184 82185 82186 82187 82188 82189 82190 82191 82192 82193 82194 82195 82196 82197 82198 82199 82200 82201 82202 82203 82204 82205 82206 82207 82208 82209 82210 82211 82212 82213 82214 82215 82216 82217 82218 82219 82220 82221 82222 82223 82224 82225 82226 82227 82228 82229 82230 82231 82232 82233 82234 82235 82236 82237 82238 82239 82240 82241 82242 82243 82244 82245 82246 82247 82248 82249 82250 82251 82252 82253 82254 82255 82256 82257 82258 82259 82260 82261 82262 82263 82264 82265 82266 82267 82268 82269 82270 82271 82272 82273 82274 82275 82276 82277 82278 82279 82280 82281 82282 82283 82284 82285 82286 82287 82288 82289 82290 82291 82292 82293 82294 82295 82296 82297 82298 82299 82300 82301 82302 82303 82304 82305 82306 82307 82308 82309 82310 82311 82312 82313 82314 82315 82316 82317 82318 82319 82320 82321 82322 82323 82324 82325 82326 82327 82328 82329 82330 82331 82332 82333 82334 82335 82336 82337 82338 82339 82340 82341 82342 82343 82344 82345 82346 82347 82348 82349 82350 82351 82352 82353 82354 82355 82356 82357 82358 82359 82360 82361 82362 82363 82364 82365 82366 82367 82368 82369 82370 82371 82372 82373 82374 82375 82376 82377 82378 82379 82380 82381 82382 82383 82384 82385 82386 82387 82388 82389 82390 82391 82392 82393 82394 82395 82396 82397 82398 82399 82400 82401 82402 82403 82404 82405 82406 82407 82408 82409 82410 82411 82412 82413 82414 82415 82416 82417 82418 82419 82420 82421 82422 82423 82424 82425 82426 82427 82428 82429 82430 82431 82432 82433 82434 82435 82436 82437 82438 82439 82440 82441 82442 82443 82444 82445 82446 82447 82448 82449 82450 82451 82452 82453 82454 82455 82456 82457 82458 82459 82460 82461 82462 82463 82464 82465 82466 82467 82468 82469 82470 82471 82472 82473 82474 82475 82476 82477 82478 82479 82480 82481 82482 82483 82484 82485 82486 82487 82488 82489 82490 82491 82492 82493 82494 82495 82496 82497 82498 82499 82500 82501 82502 82503 82504 82505 82506 82507 82508 82509 82510 82511 82512 82513 82514 82515 82516 82517 82518 82519 82520 82521 82522 82523 82524 82525 82526 82527 82528 82529 82530 82531 82532 82533 82534 82535 82536 82537 82538 82539 82540 82541 82542 82543 82544 82545 82546 82547 82548 82549 82550 82551 82552 82553 82554 82555 82556 82557 82558 82559 82560 82561 82562 82563 82564 82565 82566 82567 82568 82569 82570 82571 82572 82573 82574 82575 82576 82577 82578 82579 82580 82581 82582 82583 82584 82585 82586 82587 82588 82589 82590 82591 82592 82593 82594 82595 82596 82597 82598 82599 82600 82601 82602 82603 82604 82605 82606 82607 82608 82609 82610 82611 82612 82613 82614 82615 82616 82617 82618 82619 82620 82621 82622 82623 82624 82625 82626 82627 82628 82629 82630 82631 82632 82633 82634 82635 82636 82637 82638 82639 82640 82641 82642 82643 82644 82645 82646 82647 82648 82649 82650 82651 82652 82653 82654 82655 82656 82657 82658 82659 82660 82661 82662 82663 82664 82665 82666 82667 82668 82669 82670 82671 82672 82673 82674 82675 82676 82677 82678 82679 82680 82681 82682 82683 82684 82685 82686 82687 82688 82689 82690 82691 82692 82693 82694 82695 82696 82697 82698 82699 82700 82701 82702 82703 82704 82705 82706 82707 82708 82709 82710 82711 82712 82713 82714 82715 82716 82717 82718 82719 82720 82721 82722 82723 82724 82725 82726 82727 82728 82729 82730 82731 82732 82733 82734 82735 82736 82737 82738 82739 82740 82741 82742 82743 82744 82745 82746 82747 82748 82749 82750 82751 82752 82753 82754 82755 82756 82757 82758 82759 82760 82761 82762 82763 82764 82765 82766 82767 82768 82769 82770 82771 82772 82773 82774 82775 82776 82777 82778 82779 82780 82781 82782 82783 82784 82785 82786 82787 82788 82789 82790 82791 82792 82793 82794 82795 82796 82797 82798 82799 82800 82801 82802 82803 82804 82805 82806 82807 82808 82809 82810 82811 82812 82813 82814 82815 82816 82817 82818 82819 82820 82821 82822 82823 82824 82825 82826 82827 82828 82829 82830 82831 82832 82833 82834 82835 82836 82837 82838 82839 82840 82841 82842 82843 82844 82845 82846 82847 82848 82849 82850 82851 82852 82853 82854 82855 82856 82857 82858 82859 82860 82861 82862 82863 82864 82865 82866 82867 82868 82869 82870 82871 82872 82873 82874 82875 82876 82877 82878 82879 82880 82881 82882 82883 82884 82885 82886 82887 82888 82889 82890 82891 82892 82893 82894 82895 82896 82897 82898 82899 82900 82901 82902 82903 82904 82905 82906 82907 82908 82909 82910 82911 82912 82913 82914 82915 82916 82917 82918 82919 82920 82921 82922 82923 82924 82925 82926 82927 82928 82929 82930 82931 82932 82933 82934 82935 82936 82937 82938 82939 82940 82941 82942 82943 82944 82945 82946 82947 82948 82949 82950 82951 82952 82953 82954 82955 82956 82957 82958 82959 82960 82961 82962 82963 82964 82965 82966 82967 82968 82969 82970 82971 82972 82973 82974 82975 82976 82977 82978 82979 82980 82981 82982 82983 82984 82985 82986 82987 82988 82989 82990 82991 82992 82993 82994 82995 82996 82997 82998 82999 83000 83001 83002 83003 83004 83005 83006 83007 83008 83009 83010 83011 83012 83013 83014 83015 83016 83017 83018 83019 83020 83021 83022 83023 83024 83025 83026 83027 83028 83029 83030 83031 83032 83033 83034 83035 83036 83037 83038 83039 83040 83041 83042 83043 83044 83045 83046 83047 83048 83049 83050 83051 83052 83053 83054 83055 83056 83057 83058 83059 83060 83061 83062 83063 83064 83065 83066 83067 83068 83069 83070 83071 83072 83073 83074 83075 83076 83077 83078 83079 83080 83081 83082 83083 83084 83085 83086 83087 83088 83089 83090 83091 83092 83093 83094 83095 83096 83097 83098 83099 83100 83101 83102 83103 83104 83105 83106 83107 83108 83109 83110 83111 83112 83113 83114 83115 83116 83117 83118 83119 83120 83121 83122 83123 83124 83125 83126 83127 83128 83129 83130 83131 83132 83133 83134 83135 83136 83137 83138 83139 83140 83141 83142 83143 83144 83145 83146 83147 83148 83149 83150 83151 83152 83153 83154 83155 83156 83157 83158 83159 83160 83161 83162 83163 83164 83165 83166 83167 83168 83169 83170 83171 83172 83173 83174 83175 83176 83177 83178 83179 83180 83181 83182 83183 83184 83185 83186 83187 83188 83189 83190 83191 83192 83193 83194 83195 83196 83197 83198 83199 83200 83201 83202 83203 83204 83205 83206 83207 83208 83209 83210 83211 83212 83213 83214 83215 83216 83217 83218 83219 83220 83221 83222 83223 83224 83225 83226 83227 83228 83229 83230 83231 83232 83233 83234 83235 83236 83237 83238 83239 83240 83241 83242 83243 83244 83245 83246 83247 83248 83249 83250 83251 83252 83253 83254 83255 83256 83257 83258 83259 83260 83261 83262 83263 83264 83265 83266 83267 83268 83269 83270 83271 83272 83273 83274 83275 83276 83277 83278 83279 83280 83281 83282 83283 83284 83285 83286 83287 83288 83289 83290 83291 83292 83293 83294 83295 83296 83297 83298 83299 83300 83301 83302 83303 83304 83305 83306 83307 83308 83309 83310 83311 83312 83313 83314 83315 83316 83317 83318 83319 83320 83321 83322 83323 83324 83325 83326 83327 83328 83329 83330 83331 83332 83333 83334 83335 83336 83337 83338 83339 83340 83341 83342 83343 83344 83345 83346 83347 83348 83349 83350 83351 83352 83353 83354 83355 83356 83357 83358 83359 83360 83361 83362 83363 83364 83365 83366 83367 83368 83369 83370 83371 83372 83373 83374 83375 83376 83377 83378 83379 83380 83381 83382 83383 83384 83385 83386 83387 83388 83389 83390 83391 83392 83393 83394 83395 83396 83397 83398 83399 83400 83401 83402 83403 83404 83405 83406 83407 83408 83409 83410 83411 83412 83413 83414 83415 83416 83417 83418 83419 83420 83421 83422 83423 83424 83425 83426 83427 83428 83429 83430 83431 83432 83433 83434 83435 83436 83437 83438 83439 83440 83441 83442 83443 83444 83445 83446 83447 83448 83449 83450 83451 83452 83453 83454 83455 83456 83457 83458 83459 83460 83461 83462 83463 83464 83465 83466 83467 83468 83469 83470 83471 83472 83473 83474 83475 83476 83477 83478 83479 83480 83481 83482 83483 83484 83485 83486 83487 83488 83489 83490 83491 83492 83493 83494 83495 83496 83497 83498 83499 83500 83501 83502 83503 83504 83505 83506 83507 83508 83509 83510 83511 83512 83513 83514 83515 83516 83517 83518 83519 83520 83521 83522 83523 83524 83525 83526 83527 83528 83529 83530 83531 83532 83533 83534 83535 83536 83537 83538 83539 83540 83541 83542 83543 83544 83545 83546 83547 83548 83549 83550 83551 83552 83553 83554 83555 83556 83557 83558 83559 83560 83561 83562 83563 83564 83565 83566 83567 83568 83569 83570 83571 83572 83573 83574 83575 83576 83577 83578 83579 83580 83581 83582 83583 83584 83585 83586 83587 83588 83589 83590 83591 83592 83593 83594 83595 83596 83597 83598 83599 83600 83601 83602 83603 83604 83605 83606 83607 83608 83609 83610 83611 83612 83613 83614 83615 83616 83617 83618 83619 83620 83621 83622 83623 83624 83625 83626 83627 83628 83629 83630 83631 83632 83633 83634 83635 83636 83637 83638 83639 83640 83641 83642 83643 83644 83645 83646 83647 83648 83649 83650 83651 83652 83653 83654 83655 83656 83657 83658 83659 83660 83661 83662 83663 83664 83665 83666 83667 83668 83669 83670 83671 83672 83673 83674 83675 83676 83677 83678 83679 83680 83681 83682 83683 83684 83685 83686 83687 83688 83689 83690 83691 83692 83693 83694 83695 83696 83697 83698 83699 83700 83701 83702 83703 83704 83705 83706 83707 83708 83709 83710 83711 83712 83713 83714 83715 83716 83717 83718 83719 83720 83721 83722 83723 83724 83725 83726 83727 83728 83729 83730 83731 83732 83733 83734 83735 83736 83737 83738 83739 83740 83741 83742 83743 83744 83745 83746 83747 83748 83749 83750 83751 83752 83753 83754 83755 83756 83757 83758 83759 83760 83761 83762 83763 83764 83765 83766 83767 83768 83769 83770 83771 83772 83773 83774 83775 83776 83777 83778 83779 83780 83781 83782 83783 83784 83785 83786 83787 83788 83789 83790 83791 83792 83793 83794 83795 83796 83797 83798 83799 83800 83801 83802 83803 83804 83805 83806 83807 83808 83809 83810 83811 83812 83813 83814 83815 83816 83817 83818 83819 83820 83821 83822 83823 83824 83825 83826 83827 83828 83829 83830 83831 83832 83833 83834 83835 83836 83837 83838 83839 83840 83841 83842 83843 83844 83845 83846 83847 83848 83849 83850 83851 83852 83853 83854 83855 83856 83857 83858 83859 83860 83861 83862 83863 83864 83865 83866 83867 83868 83869 83870 83871 83872 83873 83874 83875 83876 83877 83878 83879 83880 83881 83882 83883 83884 83885 83886 83887 83888 83889 83890 83891 83892 83893 83894 83895 83896 83897 83898 83899 83900 83901 83902 83903 83904 83905 83906 83907 83908 83909 83910 83911 83912 83913 83914 83915 83916 83917 83918 83919 83920 83921 83922 83923 83924 83925 83926 83927 83928 83929 83930 83931 83932 83933 83934 83935 83936 83937 83938 83939 83940 83941 83942 83943 83944 83945 83946 83947 83948 83949 83950 83951 83952 83953 83954 83955 83956 83957 83958 83959 83960 83961 83962 83963 83964 83965 83966 83967 83968 83969 83970 83971 83972 83973 83974 83975 83976 83977 83978 83979 83980 83981 83982 83983 83984 83985 83986 83987 83988 83989 83990 83991 83992 83993 83994 83995 83996 83997 83998 83999 84000 84001 84002 84003 84004 84005 84006 84007 84008 84009 84010 84011 84012 84013 84014 84015 84016 84017 84018 84019 84020 84021 84022 84023 84024 84025 84026 84027 84028 84029 84030 84031 84032 84033 84034 84035 84036 84037 84038 84039 84040 84041 84042 84043 84044 84045 84046 84047 84048 84049 84050 84051 84052 84053 84054 84055 84056 84057 84058 84059 84060 84061 84062 84063 84064 84065 84066 84067 84068 84069 84070 84071 84072 84073 84074 84075 84076 84077 84078 84079 84080 84081 84082 84083 84084 84085 84086 84087 84088 84089 84090 84091 84092 84093 84094 84095 84096 84097 84098 84099 84100 84101 84102 84103 84104 84105 84106 84107 84108 84109 84110 84111 84112 84113 84114 84115 84116 84117 84118 84119 84120 84121 84122 84123 84124 84125 84126 84127 84128 84129 84130 84131 84132 84133 84134 84135 84136 84137 84138 84139 84140 84141 84142 84143 84144 84145 84146 84147 84148 84149 84150 84151 84152 84153 84154 84155 84156 84157 84158 84159 84160 84161 84162 84163 84164 84165 84166 84167 84168 84169 84170 84171 84172 84173 84174 84175 84176 84177 84178 84179 84180 84181 84182 84183 84184 84185 84186 84187 84188 84189 84190 84191 84192 84193 84194 84195 84196 84197 84198 84199 84200 84201 84202 84203 84204 84205 84206 84207 84208 84209 84210 84211 84212 84213 84214 84215 84216 84217 84218 84219 84220 84221 84222 84223 84224 84225 84226 84227 84228 84229 84230 84231 84232 84233 84234 84235 84236 84237 84238 84239 84240 84241 84242 84243 84244 84245 84246 84247 84248 84249 84250 84251 84252 84253 84254 84255 84256 84257 84258 84259 84260 84261 84262 84263 84264 84265 84266 84267 84268 84269 84270 84271 84272 84273 84274 84275 84276 84277 84278 84279 84280 84281 84282 84283 84284 84285 84286 84287 84288 84289 84290 84291 84292 84293 84294 84295 84296 84297 84298 84299 84300 84301 84302 84303 84304 84305 84306 84307 84308 84309 84310 84311 84312 84313 84314 84315 84316 84317 84318 84319 84320 84321 84322 84323 84324 84325 84326 84327 84328 84329 84330 84331 84332 84333 84334 84335 84336 84337 84338 84339 84340 84341 84342 84343 84344 84345 84346 84347 84348 84349 84350 84351 84352 84353 84354 84355 84356 84357 84358 84359 84360 84361 84362 84363 84364 84365 84366 84367 84368 84369 84370 84371 84372 84373 84374 84375 84376 84377 84378 84379 84380 84381 84382 84383 84384 84385 84386 84387 84388 84389 84390 84391 84392 84393 84394 84395 84396 84397 84398 84399 84400 84401 84402 84403 84404 84405 84406 84407 84408 84409 84410 84411 84412 84413 84414 84415 84416 84417 84418 84419 84420 84421 84422 84423 84424 84425 84426 84427 84428 84429 84430 84431 84432 84433 84434 84435 84436 84437 84438 84439 84440 84441 84442 84443 84444 84445 84446 84447 84448 84449 84450 84451 84452 84453 84454 84455 84456 84457 84458 84459 84460 84461 84462 84463 84464 84465 84466 84467 84468 84469 84470 84471 84472 84473 84474 84475 84476 84477 84478 84479 84480 84481 84482 84483 84484 84485 84486 84487 84488 84489 84490 84491 84492 84493 84494 84495 84496 84497 84498 84499 84500 84501 84502 84503 84504 84505 84506 84507 84508 84509 84510 84511 84512 84513 84514 84515 84516 84517 84518 84519 84520 84521 84522 84523 84524 84525 84526 84527 84528 84529 84530 84531 84532 84533 84534 84535 84536 84537 84538 84539 84540 84541 84542 84543 84544 84545 84546 84547 84548 84549 84550 84551 84552 84553 84554 84555 84556 84557 84558 84559 84560 84561 84562 84563 84564 84565 84566 84567 84568 84569 84570 84571 84572 84573 84574 84575 84576 84577 84578 84579 84580 84581 84582 84583 84584 84585 84586 84587 84588 84589 84590 84591 84592 84593 84594 84595 84596 84597 84598 84599 84600 84601 84602 84603 84604 84605 84606 84607 84608 84609 84610 84611 84612 84613 84614 84615 84616 84617 84618 84619 84620 84621 84622 84623 84624 84625 84626 84627 84628 84629 84630 84631 84632 84633 84634 84635 84636 84637 84638 84639 84640 84641 84642 84643 84644 84645 84646 84647 84648 84649 84650 84651 84652 84653 84654 84655 84656 84657 84658 84659 84660 84661 84662 84663 84664 84665 84666 84667 84668 84669 84670 84671 84672 84673 84674 84675 84676 84677 84678 84679 84680 84681 84682 84683 84684 84685 84686 84687 84688 84689 84690 84691 84692 84693 84694 84695 84696 84697 84698 84699 84700 84701 84702 84703 84704 84705 84706 84707 84708 84709 84710 84711 84712 84713 84714 84715 84716 84717 84718 84719 84720 84721 84722 84723 84724 84725 84726 84727 84728 84729 84730 84731 84732 84733 84734 84735 84736 84737 84738 84739 84740 84741 84742 84743 84744 84745 84746 84747 84748 84749 84750 84751 84752 84753 84754 84755 84756 84757 84758 84759 84760 84761 84762 84763 84764 84765 84766 84767 84768 84769 84770 84771 84772 84773 84774 84775 84776 84777 84778 84779 84780 84781 84782 84783 84784 84785 84786 84787 84788 84789 84790 84791 84792 84793 84794 84795 84796 84797 84798 84799 84800 84801 84802 84803 84804 84805 84806 84807 84808 84809 84810 84811 84812 84813 84814 84815 84816 84817 84818 84819 84820 84821 84822 84823 84824 84825 84826 84827 84828 84829 84830 84831 84832 84833 84834 84835 84836 84837 84838 84839 84840 84841 84842 84843 84844 84845 84846 84847 84848 84849 84850 84851 84852 84853 84854 84855 84856 84857 84858 84859 84860 84861 84862 84863 84864 84865 84866 84867 84868 84869 84870 84871 84872 84873 84874 84875 84876 84877 84878 84879 84880 84881 84882 84883 84884 84885 84886 84887 84888 84889 84890 84891 84892 84893 84894 84895 84896 84897 84898 84899 84900 84901 84902 84903 84904 84905 84906 84907 84908 84909 84910 84911 84912 84913 84914 84915 84916 84917 84918 84919 84920 84921 84922 84923 84924 84925 84926 84927 84928 84929 84930 84931 84932 84933 84934 84935 84936 84937 84938 84939 84940 84941 84942 84943 84944 84945 84946 84947 84948 84949 84950 84951 84952 84953 84954 84955 84956 84957 84958 84959 84960 84961 84962 84963 84964 84965 84966 84967 84968 84969 84970 84971 84972 84973 84974 84975 84976 84977 84978 84979 84980 84981 84982 84983 84984 84985 84986 84987 84988 84989 84990 84991 84992 84993 84994 84995 84996 84997 84998 84999 85000 85001 85002 85003 85004 85005 85006 85007 85008 85009 85010 85011 85012 85013 85014 85015 85016 85017 85018 85019 85020 85021 85022 85023 85024 85025 85026 85027 85028 85029 85030 85031 85032 85033 85034 85035 85036 85037 85038 85039 85040 85041 85042 85043 85044 85045 85046 85047 85048 85049 85050 85051 85052 85053 85054 85055 85056 85057 85058 85059 85060 85061 85062 85063 85064 85065 85066 85067 85068 85069 85070 85071 85072 85073 85074 85075 85076 85077 85078 85079 85080 85081 85082 85083 85084 85085 85086 85087 85088 85089 85090 85091 85092 85093 85094 85095 85096 85097 85098 85099 85100 85101 85102 85103 85104 85105 85106 85107 85108 85109 85110 85111 85112 85113 85114 85115 85116 85117 85118 85119 85120 85121 85122 85123 85124 85125 85126 85127 85128 85129 85130 85131 85132 85133 85134 85135 85136 85137 85138 85139 85140 85141 85142 85143 85144 85145 85146 85147 85148 85149 85150 85151 85152 85153 85154 85155 85156 85157 85158 85159 85160 85161 85162 85163 85164 85165 85166 85167 85168 85169 85170 85171 85172 85173 85174 85175 85176 85177 85178 85179 85180 85181 85182 85183 85184 85185 85186 85187 85188 85189 85190 85191 85192 85193 85194 85195 85196 85197 85198 85199 85200 85201 85202 85203 85204 85205 85206 85207 85208 85209 85210 85211 85212 85213 85214 85215 85216 85217 85218 85219 85220 85221 85222 85223 85224 85225 85226 85227 85228 85229 85230 85231 85232 85233 85234 85235 85236 85237 85238 85239 85240 85241 85242 85243 85244 85245 85246 85247 85248 85249 85250 85251 85252 85253 85254 85255 85256 85257 85258 85259 85260 85261 85262 85263 85264 85265 85266 85267 85268 85269 85270 85271 85272 85273 85274 85275 85276 85277 85278 85279 85280 85281 85282 85283 85284 85285 85286 85287 85288 85289 85290 85291 85292 85293 85294 85295 85296 85297 85298 85299 85300 85301 85302 85303 85304 85305 85306 85307 85308 85309 85310 85311 85312 85313 85314 85315 85316 85317 85318 85319 85320 85321 85322 85323 85324 85325 85326 85327 85328 85329 85330 85331 85332 85333 85334 85335 85336 85337 85338 85339 85340 85341 85342 85343 85344 85345 85346 85347 85348 85349 85350 85351 85352 85353 85354 85355 85356 85357 85358 85359 85360 85361 85362 85363 85364 85365 85366 85367 85368 85369 85370 85371 85372 85373 85374 85375 85376 85377 85378 85379 85380 85381 85382 85383 85384 85385 85386 85387 85388 85389 85390 85391 85392 85393 85394 85395 85396 85397 85398 85399 85400 85401 85402 85403 85404 85405 85406 85407 85408 85409 85410 85411 85412 85413 85414 85415 85416 85417 85418 85419 85420 85421 85422 85423 85424 85425 85426 85427 85428 85429 85430 85431 85432 85433 85434 85435 85436 85437 85438 85439 85440 85441 85442 85443 85444 85445 85446 85447 85448 85449 85450 85451 85452 85453 85454 85455 85456 85457 85458 85459 85460 85461 85462 85463 85464 85465 85466 85467 85468 85469 85470 85471 85472 85473 85474 85475 85476 85477 85478 85479 85480 85481 85482 85483 85484 85485 85486 85487 85488 85489 85490 85491 85492 85493 85494 85495 85496 85497 85498 85499 85500 85501 85502 85503 85504 85505 85506 85507 85508 85509 85510 85511 85512 85513 85514 85515 85516 85517 85518 85519 85520 85521 85522 85523 85524 85525 85526 85527 85528 85529 85530 85531 85532 85533 85534 85535 85536 85537 85538 85539 85540 85541 85542 85543 85544 85545 85546 85547 85548 85549 85550 85551 85552 85553 85554 85555 85556 85557 85558 85559 85560 85561 85562 85563 85564 85565 85566 85567 85568 85569 85570 85571 85572 85573 85574 85575 85576 85577 85578 85579 85580 85581 85582 85583 85584 85585 85586 85587 85588 85589 85590 85591 85592 85593 85594 85595 85596 85597 85598 85599 85600 85601 85602 85603 85604 85605 85606 85607 85608 85609 85610 85611 85612 85613 85614 85615 85616 85617 85618 85619 85620 85621 85622 85623 85624 85625 85626 85627 85628 85629 85630 85631 85632 85633 85634 85635 85636 85637 85638 85639 85640 85641 85642 85643 85644 85645 85646 85647 85648 85649 85650 85651 85652 85653 85654 85655 85656 85657 85658 85659 85660 85661 85662 85663 85664 85665 85666 85667 85668 85669 85670 85671 85672 85673 85674 85675 85676 85677 85678 85679 85680 85681 85682 85683 85684 85685 85686 85687 85688 85689 85690 85691 85692 85693 85694 85695 85696 85697 85698 85699 85700 85701 85702 85703 85704 85705 85706 85707 85708 85709 85710 85711 85712 85713 85714 85715 85716 85717 85718 85719 85720 85721 85722 85723 85724 85725 85726 85727 85728 85729 85730 85731 85732 85733 85734 85735 85736 85737 85738 85739 85740 85741 85742 85743 85744 85745 85746 85747 85748 85749 85750 85751 85752 85753 85754 85755 85756 85757 85758 85759 85760 85761 85762 85763 85764 85765 85766 85767 85768 85769 85770 85771 85772 85773 85774 85775 85776 85777 85778 85779 85780 85781 85782 85783 85784 85785 85786 85787 85788 85789 85790 85791 85792 85793 85794 85795 85796 85797 85798 85799 85800 85801 85802 85803 85804 85805 85806 85807 85808 85809 85810 85811 85812 85813 85814 85815 85816 85817 85818 85819 85820 85821 85822 85823 85824 85825 85826 85827 85828 85829 85830 85831 85832 85833 85834 85835 85836 85837 85838 85839 85840 85841 85842 85843 85844 85845 85846 85847 85848 85849 85850 85851 85852 85853 85854 85855 85856 85857 85858 85859 85860 85861 85862 85863 85864 85865 85866 85867 85868 85869 85870 85871 85872 85873 85874 85875 85876 85877 85878 85879 85880 85881 85882 85883 85884 85885 85886 85887 85888 85889 85890 85891 85892 85893 85894 85895 85896 85897 85898 85899 85900 85901 85902 85903 85904 85905 85906 85907 85908 85909 85910 85911 85912 85913 85914 85915 85916 85917 85918 85919 85920 85921 85922 85923 85924 85925 85926 85927 85928 85929 85930 85931 85932 85933 85934 85935 85936 85937 85938 85939 85940 85941 85942 85943 85944 85945 85946 85947 85948 85949 85950 85951 85952 85953 85954 85955 85956 85957 85958 85959 85960 85961 85962 85963 85964 85965 85966 85967 85968 85969 85970 85971 85972 85973 85974 85975 85976 85977 85978 85979 85980 85981 85982 85983 85984 85985 85986 85987 85988 85989 85990 85991 85992 85993 85994 85995 85996 85997 85998 85999 86000 86001 86002 86003 86004 86005 86006 86007 86008 86009 86010 86011 86012 86013 86014 86015 86016 86017 86018 86019 86020 86021 86022 86023 86024 86025 86026 86027 86028 86029 86030 86031 86032 86033 86034 86035 86036 86037 86038 86039 86040 86041 86042 86043 86044 86045 86046 86047 86048 86049 86050 86051 86052 86053 86054 86055 86056 86057 86058 86059 86060 86061 86062 86063 86064 86065 86066 86067 86068 86069 86070 86071 86072 86073 86074 86075 86076 86077 86078 86079 86080 86081 86082 86083 86084 86085 86086 86087 86088 86089 86090 86091 86092 86093 86094 86095 86096 86097 86098 86099 86100 86101 86102 86103 86104 86105 86106 86107 86108 86109 86110 86111 86112 86113 86114 86115 86116 86117 86118 86119 86120 86121 86122 86123 86124 86125 86126 86127 86128 86129 86130 86131 86132 86133 86134 86135 86136 86137 86138 86139 86140 86141 86142 86143 86144 86145 86146 86147 86148 86149 86150 86151 86152 86153 86154 86155 86156 86157 86158 86159 86160 86161 86162 86163 86164 86165 86166 86167 86168 86169 86170 86171 86172 86173 86174 86175 86176 86177 86178 86179 86180 86181 86182 86183 86184 86185 86186 86187 86188 86189 86190 86191 86192 86193 86194 86195 86196 86197 86198 86199 86200 86201 86202 86203 86204 86205 86206 86207 86208 86209 86210 86211 86212 86213 86214 86215 86216 86217 86218 86219 86220 86221 86222 86223 86224 86225 86226 86227 86228 86229 86230 86231 86232 86233 86234 86235 86236 86237 86238 86239 86240 86241 86242 86243 86244 86245 86246 86247 86248 86249 86250 86251 86252 86253 86254 86255 86256 86257 86258 86259 86260 86261 86262 86263 86264 86265 86266 86267 86268 86269 86270 86271 86272 86273 86274 86275 86276 86277 86278 86279 86280 86281 86282 86283 86284 86285 86286 86287 86288 86289 86290 86291 86292 86293 86294 86295 86296 86297 86298 86299 86300 86301 86302 86303 86304 86305 86306 86307 86308 86309 86310 86311 86312 86313 86314 86315 86316 86317 86318 86319 86320 86321 86322 86323 86324 86325 86326 86327 86328 86329 86330 86331 86332 86333 86334 86335 86336 86337 86338 86339 86340 86341 86342 86343 86344 86345 86346 86347 86348 86349 86350 86351 86352 86353 86354 86355 86356 86357 86358 86359 86360 86361 86362 86363 86364 86365 86366 86367 86368 86369 86370 86371 86372 86373 86374 86375 86376 86377 86378 86379 86380 86381 86382 86383 86384 86385 86386 86387 86388 86389 86390 86391 86392 86393 86394 86395 86396 86397 86398 86399 86400 86401 86402 86403 86404 86405 86406 86407 86408 86409 86410 86411 86412 86413 86414 86415 86416 86417 86418 86419 86420 86421 86422 86423 86424 86425 86426 86427 86428 86429 86430 86431 86432 86433 86434 86435 86436 86437 86438 86439 86440 86441 86442 86443 86444 86445 86446 86447 86448 86449 86450 86451 86452 86453 86454 86455 86456 86457 86458 86459 86460 86461 86462 86463 86464 86465 86466 86467 86468 86469 86470 86471 86472 86473 86474 86475 86476 86477 86478 86479 86480 86481 86482 86483 86484 86485 86486 86487 86488 86489 86490 86491 86492 86493 86494 86495 86496 86497 86498 86499 86500 86501 86502 86503 86504 86505 86506 86507 86508 86509 86510 86511 86512 86513 86514 86515 86516 86517 86518 86519 86520 86521 86522 86523 86524 86525 86526 86527 86528 86529 86530 86531 86532 86533 86534 86535 86536 86537 86538 86539 86540 86541 86542 86543 86544 86545 86546 86547 86548 86549 86550 86551 86552 86553 86554 86555 86556 86557 86558 86559 86560 86561 86562 86563 86564 86565 86566 86567 86568 86569 86570 86571 86572 86573 86574 86575 86576 86577 86578 86579 86580 86581 86582 86583 86584 86585 86586 86587 86588 86589 86590 86591 86592 86593 86594 86595 86596 86597 86598 86599 86600 86601 86602 86603 86604 86605 86606 86607 86608 86609 86610 86611 86612 86613 86614 86615 86616 86617 86618 86619 86620 86621 86622 86623 86624 86625 86626 86627 86628 86629 86630 86631 86632 86633 86634 86635 86636 86637 86638 86639 86640 86641 86642 86643 86644 86645 86646 86647 86648 86649 86650 86651 86652 86653 86654 86655 86656 86657 86658 86659 86660 86661 86662 86663 86664 86665 86666 86667 86668 86669 86670 86671 86672 86673 86674 86675 86676 86677 86678 86679 86680 86681 86682 86683 86684 86685 86686 86687 86688 86689 86690 86691 86692 86693 86694 86695 86696 86697 86698 86699 86700 86701 86702 86703 86704 86705 86706 86707 86708 86709 86710 86711 86712 86713 86714 86715 86716 86717 86718 86719 86720 86721 86722 86723 86724 86725 86726 86727 86728 86729 86730 86731 86732 86733 86734 86735 86736 86737 86738 86739 86740 86741 86742 86743 86744 86745 86746 86747 86748 86749 86750 86751 86752 86753 86754 86755 86756 86757 86758 86759 86760 86761 86762 86763 86764 86765 86766 86767 86768 86769 86770 86771 86772 86773 86774 86775 86776 86777 86778 86779 86780 86781 86782 86783 86784 86785 86786 86787 86788 86789 86790 86791 86792 86793 86794 86795 86796 86797 86798 86799 86800 86801 86802 86803 86804 86805 86806 86807 86808 86809 86810 86811 86812 86813 86814 86815 86816 86817 86818 86819 86820 86821 86822 86823 86824 86825 86826 86827 86828 86829 86830 86831 86832 86833 86834 86835 86836 86837 86838 86839 86840 86841 86842 86843 86844 86845 86846 86847 86848 86849 86850 86851 86852 86853 86854 86855 86856 86857 86858 86859 86860 86861 86862 86863 86864 86865 86866 86867 86868 86869 86870 86871 86872 86873 86874 86875 86876 86877 86878 86879 86880 86881 86882 86883 86884 86885 86886 86887 86888 86889 86890 86891 86892 86893 86894 86895 86896 86897 86898 86899 86900 86901 86902 86903 86904 86905 86906 86907 86908 86909 86910 86911 86912 86913 86914 86915 86916 86917 86918 86919 86920 86921 86922 86923 86924 86925 86926 86927 86928 86929 86930 86931 86932 86933 86934 86935 86936 86937 86938 86939 86940 86941 86942 86943 86944 86945 86946 86947 86948 86949 86950 86951 86952 86953 86954 86955 86956 86957 86958 86959 86960 86961 86962 86963 86964 86965 86966 86967 86968 86969 86970 86971 86972 86973 86974 86975 86976 86977 86978 86979 86980 86981 86982 86983 86984 86985 86986 86987 86988 86989 86990 86991 86992 86993 86994 86995 86996 86997 86998 86999 87000 87001 87002 87003 87004 87005 87006 87007 87008 87009 87010 87011 87012 87013 87014 87015 87016 87017 87018 87019 87020 87021 87022 87023 87024 87025 87026 87027 87028 87029 87030 87031 87032 87033 87034 87035 87036 87037 87038 87039 87040 87041 87042 87043 87044 87045 87046 87047 87048 87049 87050 87051 87052 87053 87054 87055 87056 87057 87058 87059 87060 87061 87062 87063 87064 87065 87066 87067 87068 87069 87070 87071 87072 87073 87074 87075 87076 87077 87078 87079 87080 87081 87082 87083 87084 87085 87086 87087 87088 87089 87090 87091 87092 87093 87094 87095 87096 87097 87098 87099 87100 87101 87102 87103 87104 87105 87106 87107 87108 87109 87110 87111 87112 87113 87114 87115 87116 87117 87118 87119 87120 87121 87122 87123 87124 87125 87126 87127 87128 87129 87130 87131 87132 87133 87134 87135 87136 87137 87138 87139 87140 87141 87142 87143 87144 87145 87146 87147 87148 87149 87150 87151 87152 87153 87154 87155 87156 87157 87158 87159 87160 87161 87162 87163 87164 87165 87166 87167 87168 87169 87170 87171 87172 87173 87174 87175 87176 87177 87178 87179 87180 87181 87182 87183 87184 87185 87186 87187 87188 87189 87190 87191 87192 87193 87194 87195 87196 87197 87198 87199 87200 87201 87202 87203 87204 87205 87206 87207 87208 87209 87210 87211 87212 87213 87214 87215 87216 87217 87218 87219 87220 87221 87222 87223 87224 87225 87226 87227 87228 87229 87230 87231 87232 87233 87234 87235 87236 87237 87238 87239 87240 87241 87242 87243 87244 87245 87246 87247 87248 87249 87250 87251 87252 87253 87254 87255 87256 87257 87258 87259 87260 87261 87262 87263 87264 87265 87266 87267 87268 87269 87270 87271 87272 87273 87274 87275 87276 87277 87278 87279 87280 87281 87282 87283 87284 87285 87286 87287 87288 87289 87290 87291 87292 87293 87294 87295 87296 87297 87298 87299 87300 87301 87302 87303 87304 87305 87306 87307 87308 87309 87310 87311 87312 87313 87314 87315 87316 87317 87318 87319 87320 87321 87322 87323 87324 87325 87326 87327 87328 87329 87330 87331 87332 87333 87334 87335 87336 87337 87338 87339 87340 87341 87342 87343 87344 87345 87346 87347 87348 87349 87350 87351 87352 87353 87354 87355 87356 87357 87358 87359 87360 87361 87362 87363 87364 87365 87366 87367 87368 87369 87370 87371 87372 87373 87374 87375 87376 87377 87378 87379 87380 87381 87382 87383 87384 87385 87386 87387 87388 87389 87390 87391 87392 87393 87394 87395 87396 87397 87398 87399 87400 87401 87402 87403 87404 87405 87406 87407 87408 87409 87410 87411 87412 87413 87414 87415 87416 87417 87418 87419 87420 87421 87422 87423 87424 87425 87426 87427 87428 87429 87430 87431 87432 87433 87434 87435 87436 87437 87438 87439 87440 87441 87442 87443 87444 87445 87446 87447 87448 87449 87450 87451 87452 87453 87454 87455 87456 87457 87458 87459 87460 87461 87462 87463 87464 87465 87466 87467 87468 87469 87470 87471 87472 87473 87474 87475 87476 87477 87478 87479 87480 87481 87482 87483 87484 87485 87486 87487 87488 87489 87490 87491 87492 87493 87494 87495 87496 87497 87498 87499 87500 87501 87502 87503 87504 87505 87506 87507 87508 87509 87510 87511 87512 87513 87514 87515 87516 87517 87518 87519 87520 87521 87522 87523 87524 87525 87526 87527 87528 87529 87530 87531 87532 87533 87534 87535 87536 87537 87538 87539 87540 87541 87542 87543 87544 87545 87546 87547 87548 87549 87550 87551 87552 87553 87554 87555 87556 87557 87558 87559 87560 87561 87562 87563 87564 87565 87566 87567 87568 87569 87570 87571 87572 87573 87574 87575 87576 87577 87578 87579 87580 87581 87582 87583 87584 87585 87586 87587 87588 87589 87590 87591 87592 87593 87594 87595 87596 87597 87598 87599 87600 87601 87602 87603 87604 87605 87606 87607 87608 87609 87610 87611 87612 87613 87614 87615 87616 87617 87618 87619 87620 87621 87622 87623 87624 87625 87626 87627 87628 87629 87630 87631 87632 87633 87634 87635 87636 87637 87638 87639 87640 87641 87642 87643 87644 87645 87646 87647 87648 87649 87650 87651 87652 87653 87654 87655 87656 87657 87658 87659 87660 87661 87662 87663 87664 87665 87666 87667 87668 87669 87670 87671 87672 87673 87674 87675 87676 87677 87678 87679 87680 87681 87682 87683 87684 87685 87686 87687 87688 87689 87690 87691 87692 87693 87694 87695 87696 87697 87698 87699 87700 87701 87702 87703 87704 87705 87706 87707 87708 87709 87710 87711 87712 87713 87714 87715 87716 87717 87718 87719 87720 87721 87722 87723 87724 87725 87726 87727 87728 87729 87730 87731 87732 87733 87734 87735 87736 87737 87738 87739 87740 87741 87742 87743 87744 87745 87746 87747 87748 87749 87750 87751 87752 87753 87754 87755 87756 87757 87758 87759 87760 87761 87762 87763 87764 87765 87766 87767 87768 87769 87770 87771 87772 87773 87774 87775 87776 87777 87778 87779 87780 87781 87782 87783 87784 87785 87786 87787 87788 87789 87790 87791 87792 87793 87794 87795 87796 87797 87798 87799 87800 87801 87802 87803 87804 87805 87806 87807 87808 87809 87810 87811 87812 87813 87814 87815 87816 87817 87818 87819 87820 87821 87822 87823 87824 87825 87826 87827 87828 87829 87830 87831 87832 87833 87834 87835 87836 87837 87838 87839 87840 87841 87842 87843 87844 87845 87846 87847 87848 87849 87850 87851 87852 87853 87854 87855 87856 87857 87858 87859 87860 87861 87862 87863 87864 87865 87866 87867 87868 87869 87870 87871 87872 87873 87874 87875 87876 87877 87878 87879 87880 87881 87882 87883 87884 87885 87886 87887 87888 87889 87890 87891 87892 87893 87894 87895 87896 87897 87898 87899 87900 87901 87902 87903 87904 87905 87906 87907 87908 87909 87910 87911 87912 87913 87914 87915 87916 87917 87918 87919 87920 87921 87922 87923 87924 87925 87926 87927 87928 87929 87930 87931 87932 87933 87934 87935 87936 87937 87938 87939 87940 87941 87942 87943 87944 87945 87946 87947 87948 87949 87950 87951 87952 87953 87954 87955 87956 87957 87958 87959 87960 87961 87962 87963 87964 87965 87966 87967 87968 87969 87970 87971 87972 87973 87974 87975 87976 87977 87978 87979 87980 87981 87982 87983 87984 87985 87986 87987 87988 87989 87990 87991 87992 87993 87994 87995 87996 87997 87998 87999 88000 88001 88002 88003 88004 88005 88006 88007 88008 88009 88010 88011 88012 88013 88014 88015 88016 88017 88018 88019 88020 88021 88022 88023 88024 88025 88026 88027 88028 88029 88030 88031 88032 88033 88034 88035 88036 88037 88038 88039 88040 88041 88042 88043 88044 88045 88046 88047 88048 88049 88050 88051 88052 88053 88054 88055 88056 88057 88058 88059 88060 88061 88062 88063 88064 88065 88066 88067 88068 88069 88070 88071 88072 88073 88074 88075 88076 88077 88078 88079 88080 88081 88082 88083 88084 88085 88086 88087 88088 88089 88090 88091 88092 88093 88094 88095 88096 88097 88098 88099 88100 88101 88102 88103 88104 88105 88106 88107 88108 88109 88110 88111 88112 88113 88114 88115 88116 88117 88118 88119 88120 88121 88122 88123 88124 88125 88126 88127 88128 88129 88130 88131 88132 88133 88134 88135 88136 88137 88138 88139 88140 88141 88142 88143 88144 88145 88146 88147 88148 88149 88150 88151 88152 88153 88154 88155 88156 88157 88158 88159 88160 88161 88162 88163 88164 88165 88166 88167 88168 88169 88170 88171 88172 88173 88174 88175 88176 88177 88178 88179 88180 88181 88182 88183 88184 88185 88186 88187 88188 88189 88190 88191 88192 88193 88194 88195 88196 88197 88198 88199 88200 88201 88202 88203 88204 88205 88206 88207 88208 88209 88210 88211 88212 88213 88214 88215 88216 88217 88218 88219 88220 88221 88222 88223 88224 88225 88226 88227 88228 88229 88230 88231 88232 88233 88234 88235 88236 88237 88238 88239 88240 88241 88242 88243 88244 88245 88246 88247 88248 88249 88250 88251 88252 88253 88254 88255 88256 88257 88258 88259 88260 88261 88262 88263 88264 88265 88266 88267 88268 88269 88270 88271 88272 88273 88274 88275 88276 88277 88278 88279 88280 88281 88282 88283 88284 88285 88286 88287 88288 88289 88290 88291 88292 88293 88294 88295 88296 88297 88298 88299 88300 88301 88302 88303 88304 88305 88306 88307 88308 88309 88310 88311 88312 88313 88314 88315 88316 88317 88318 88319 88320 88321 88322 88323 88324 88325 88326 88327 88328 88329 88330 88331 88332 88333 88334 88335 88336 88337 88338 88339 88340 88341 88342 88343 88344 88345 88346 88347 88348 88349 88350 88351 88352 88353 88354 88355 88356 88357 88358 88359 88360 88361 88362 88363 88364 88365 88366 88367 88368 88369 88370 88371 88372 88373 88374 88375 88376 88377 88378 88379 88380 88381 88382 88383 88384 88385 88386 88387 88388 88389 88390 88391 88392 88393 88394 88395 88396 88397 88398 88399 88400 88401 88402 88403 88404 88405 88406 88407 88408 88409 88410 88411 88412 88413 88414 88415 88416 88417 88418 88419 88420 88421 88422 88423 88424 88425 88426 88427 88428 88429 88430 88431 88432 88433 88434 88435 88436 88437 88438 88439 88440 88441 88442 88443 88444 88445 88446 88447 88448 88449 88450 88451 88452 88453 88454 88455 88456 88457 88458 88459 88460 88461 88462 88463 88464 88465 88466 88467 88468 88469 88470 88471 88472 88473 88474 88475 88476 88477 88478 88479 88480 88481 88482 88483 88484 88485 88486 88487 88488 88489 88490 88491 88492 88493 88494 88495 88496 88497 88498 88499 88500 88501 88502 88503 88504 88505 88506 88507 88508 88509 88510 88511 88512 88513 88514 88515 88516 88517 88518 88519 88520 88521 88522 88523 88524 88525 88526 88527 88528 88529 88530 88531 88532 88533 88534 88535 88536 88537 88538 88539 88540 88541 88542 88543 88544 88545 88546 88547 88548 88549 88550 88551 88552 88553 88554 88555 88556 88557 88558 88559 88560 88561 88562 88563 88564 88565 88566 88567 88568 88569 88570 88571 88572 88573 88574 88575 88576 88577 88578 88579 88580 88581 88582 88583 88584 88585 88586 88587 88588 88589 88590 88591 88592 88593 88594 88595 88596 88597 88598 88599 88600 88601 88602 88603 88604 88605 88606 88607 88608 88609 88610 88611 88612 88613 88614 88615 88616 88617 88618 88619 88620 88621 88622 88623 88624 88625 88626 88627 88628 88629 88630 88631 88632 88633 88634 88635 88636 88637 88638 88639 88640 88641 88642 88643 88644 88645 88646 88647 88648 88649 88650 88651 88652 88653 88654 88655 88656 88657 88658 88659 88660 88661 88662 88663 88664 88665 88666 88667 88668 88669 88670 88671 88672 88673 88674 88675 88676 88677 88678 88679 88680 88681 88682 88683 88684 88685 88686 88687 88688 88689 88690 88691 88692 88693 88694 88695 88696 88697 88698 88699 88700 88701 88702 88703 88704 88705 88706 88707 88708 88709 88710 88711 88712 88713 88714 88715 88716 88717 88718 88719 88720 88721 88722 88723 88724 88725 88726 88727 88728 88729 88730 88731 88732 88733 88734 88735 88736 88737 88738 88739 88740 88741 88742 88743 88744 88745 88746 88747 88748 88749 88750 88751 88752 88753 88754 88755 88756 88757 88758 88759 88760 88761 88762 88763 88764 88765 88766 88767 88768 88769 88770 88771 88772 88773 88774 88775 88776 88777 88778 88779 88780 88781 88782 88783 88784 88785 88786 88787 88788 88789 88790 88791 88792 88793 88794 88795 88796 88797 88798 88799 88800 88801 88802 88803 88804 88805 88806 88807 88808 88809 88810 88811 88812 88813 88814 88815 88816 88817 88818 88819 88820 88821 88822 88823 88824 88825 88826 88827 88828 88829 88830 88831 88832 88833 88834 88835 88836 88837 88838 88839 88840 88841 88842 88843 88844 88845 88846 88847 88848 88849 88850 88851 88852 88853 88854 88855 88856 88857 88858 88859 88860 88861 88862 88863 88864 88865 88866 88867 88868 88869 88870 88871 88872 88873 88874 88875 88876 88877 88878 88879 88880 88881 88882 88883 88884 88885 88886 88887 88888 88889 88890 88891 88892 88893 88894 88895 88896 88897 88898 88899 88900 88901 88902 88903 88904 88905 88906 88907 88908 88909 88910 88911 88912 88913 88914 88915 88916 88917 88918 88919 88920 88921 88922 88923 88924 88925 88926 88927 88928 88929 88930 88931 88932 88933 88934 88935 88936 88937 88938 88939 88940 88941 88942 88943 88944 88945 88946 88947 88948 88949 88950 88951 88952 88953 88954 88955 88956 88957 88958 88959 88960 88961 88962 88963 88964 88965 88966 88967 88968 88969 88970 88971 88972 88973 88974 88975 88976 88977 88978 88979 88980 88981 88982 88983 88984 88985 88986 88987 88988 88989 88990 88991 88992 88993 88994 88995 88996 88997 88998 88999 89000 89001 89002 89003 89004 89005 89006 89007 89008 89009 89010 89011 89012 89013 89014 89015 89016 89017 89018 89019 89020 89021 89022 89023 89024 89025 89026 89027 89028 89029 89030 89031 89032 89033 89034 89035 89036 89037 89038 89039 89040 89041 89042 89043 89044 89045 89046 89047 89048 89049 89050 89051 89052 89053 89054 89055 89056 89057 89058 89059 89060 89061 89062 89063 89064 89065 89066 89067 89068 89069 89070 89071 89072 89073 89074 89075 89076 89077 89078 89079 89080 89081 89082 89083 89084 89085 89086 89087 89088 89089 89090 89091 89092 89093 89094 89095 89096 89097 89098 89099 89100 89101 89102 89103 89104 89105 89106 89107 89108 89109 89110 89111 89112 89113 89114 89115 89116 89117 89118 89119 89120 89121 89122 89123 89124 89125 89126 89127 89128 89129 89130 89131 89132 89133 89134 89135 89136 89137 89138 89139 89140 89141 89142 89143 89144 89145 89146 89147 89148 89149 89150 89151 89152 89153 89154 89155 89156 89157 89158 89159 89160 89161 89162 89163 89164 89165 89166 89167 89168 89169 89170 89171 89172 89173 89174 89175 89176 89177 89178 89179 89180 89181 89182 89183 89184 89185 89186 89187 89188 89189 89190 89191 89192 89193 89194 89195 89196 89197 89198 89199 89200 89201 89202 89203 89204 89205 89206 89207 89208 89209 89210 89211 89212 89213 89214 89215 89216 89217 89218 89219 89220 89221 89222 89223 89224 89225 89226 89227 89228 89229 89230 89231 89232 89233 89234 89235 89236 89237 89238 89239 89240 89241 89242 89243 89244 89245 89246 89247 89248 89249 89250 89251 89252 89253 89254 89255 89256 89257 89258 89259 89260 89261 89262 89263 89264 89265 89266 89267 89268 89269 89270 89271 89272 89273 89274 89275 89276 89277 89278 89279 89280 89281 89282 89283 89284 89285 89286 89287 89288 89289 89290 89291 89292 89293 89294 89295 89296 89297 89298 89299 89300 89301 89302 89303 89304 89305 89306 89307 89308 89309 89310 89311 89312 89313 89314 89315 89316 89317 89318 89319 89320 89321 89322 89323 89324 89325 89326 89327 89328 89329 89330 89331 89332 89333 89334 89335 89336 89337 89338 89339 89340 89341 89342 89343 89344 89345 89346 89347 89348 89349 89350 89351 89352 89353 89354 89355 89356 89357 89358 89359 89360 89361 89362 89363 89364 89365 89366 89367 89368 89369 89370 89371 89372 89373 89374 89375 89376 89377 89378 89379 89380 89381 89382 89383 89384 89385 89386 89387 89388 89389 89390 89391 89392 89393 89394 89395 89396 89397 89398 89399 89400 89401 89402 89403 89404 89405 89406 89407 89408 89409 89410 89411 89412 89413 89414 89415 89416 89417 89418 89419 89420 89421 89422 89423 89424 89425 89426 89427 89428 89429 89430 89431 89432 89433 89434 89435 89436 89437 89438 89439 89440 89441 89442 89443 89444 89445 89446 89447 89448 89449 89450 89451 89452 89453 89454 89455 89456 89457 89458 89459 89460 89461 89462 89463 89464 89465 89466 89467 89468 89469 89470 89471 89472 89473 89474 89475 89476 89477 89478 89479 89480 89481 89482 89483 89484 89485 89486 89487 89488 89489 89490 89491 89492 89493 89494 89495 89496 89497 89498 89499 89500 89501 89502 89503 89504 89505 89506 89507 89508 89509 89510 89511 89512 89513 89514 89515 89516 89517 89518 89519 89520 89521 89522 89523 89524 89525 89526 89527 89528 89529 89530 89531 89532 89533 89534 89535 89536 89537 89538 89539 89540 89541 89542 89543 89544 89545 89546 89547 89548 89549 89550 89551 89552 89553 89554 89555 89556 89557 89558 89559 89560 89561 89562 89563 89564 89565 89566 89567 89568 89569 89570 89571 89572 89573 89574 89575 89576 89577 89578 89579 89580 89581 89582 89583 89584 89585 89586 89587 89588 89589 89590 89591 89592 89593 89594 89595 89596 89597 89598 89599 89600 89601 89602 89603 89604 89605 89606 89607 89608 89609 89610 89611 89612 89613 89614 89615 89616 89617 89618 89619 89620 89621 89622 89623 89624 89625 89626 89627 89628 89629 89630 89631 89632 89633 89634 89635 89636 89637 89638 89639 89640 89641 89642 89643 89644 89645 89646 89647 89648 89649 89650 89651 89652 89653 89654 89655 89656 89657 89658 89659 89660 89661 89662 89663 89664 89665 89666 89667 89668 89669 89670 89671 89672 89673 89674 89675 89676 89677 89678 89679 89680 89681 89682 89683 89684 89685 89686 89687 89688 89689 89690 89691 89692 89693 89694 89695 89696 89697 89698 89699 89700 89701 89702 89703 89704 89705 89706 89707 89708 89709 89710 89711 89712 89713 89714 89715 89716 89717 89718 89719 89720 89721 89722 89723 89724 89725 89726 89727 89728 89729 89730 89731 89732 89733 89734 89735 89736 89737 89738 89739 89740 89741 89742 89743 89744 89745 89746 89747 89748 89749 89750 89751 89752 89753 89754 89755 89756 89757 89758 89759 89760 89761 89762 89763 89764 89765 89766 89767 89768 89769 89770 89771 89772 89773 89774 89775 89776 89777 89778 89779 89780 89781 89782 89783 89784 89785 89786 89787 89788 89789 89790 89791 89792 89793 89794 89795 89796 89797 89798 89799 89800 89801 89802 89803 89804 89805 89806 89807 89808 89809 89810 89811 89812 89813 89814 89815 89816 89817 89818 89819 89820 89821 89822 89823 89824 89825 89826 89827 89828 89829 89830 89831 89832 89833 89834 89835 89836 89837 89838 89839 89840 89841 89842 89843 89844 89845 89846 89847 89848 89849 89850 89851 89852 89853 89854 89855 89856 89857 89858 89859 89860 89861 89862 89863 89864 89865 89866 89867 89868 89869 89870 89871 89872 89873 89874 89875 89876 89877 89878 89879 89880 89881 89882 89883 89884 89885 89886 89887 89888 89889 89890 89891 89892 89893 89894 89895 89896 89897 89898 89899 89900 89901 89902 89903 89904 89905 89906 89907 89908 89909 89910 89911 89912 89913 89914 89915 89916 89917 89918 89919 89920 89921 89922 89923 89924 89925 89926 89927 89928 89929 89930 89931 89932 89933 89934 89935 89936 89937 89938 89939 89940 89941 89942 89943 89944 89945 89946 89947 89948 89949 89950 89951 89952 89953 89954 89955 89956 89957 89958 89959 89960 89961 89962 89963 89964 89965 89966 89967 89968 89969 89970 89971 89972 89973 89974 89975 89976 89977 89978 89979 89980 89981 89982 89983 89984 89985 89986 89987 89988 89989 89990 89991 89992 89993 89994 89995 89996 89997 89998 89999 90000 90001 90002 90003 90004 90005 90006 90007 90008 90009 90010 90011 90012 90013 90014 90015 90016 90017 90018 90019 90020 90021 90022 90023 90024 90025 90026 90027 90028 90029 90030 90031 90032 90033 90034 90035 90036 90037 90038 90039 90040 90041 90042 90043 90044 90045 90046 90047 90048 90049 90050 90051 90052 90053 90054 90055 90056 90057 90058 90059 90060 90061 90062 90063 90064 90065 90066 90067 90068 90069 90070 90071 90072 90073 90074 90075 90076 90077 90078 90079 90080 90081 90082 90083 90084 90085 90086 90087 90088 90089 90090 90091 90092 90093 90094 90095 90096 90097 90098 90099 90100 90101 90102 90103 90104 90105 90106 90107 90108 90109 90110 90111 90112 90113 90114 90115 90116 90117 90118 90119 90120 90121 90122 90123 90124 90125 90126 90127 90128 90129 90130 90131 90132 90133 90134 90135 90136 90137 90138 90139 90140 90141 90142 90143 90144 90145 90146 90147 90148 90149 90150 90151 90152 90153 90154 90155 90156 90157 90158 90159 90160 90161 90162 90163 90164 90165 90166 90167 90168 90169 90170 90171 90172 90173 90174 90175 90176 90177 90178 90179 90180 90181 90182 90183 90184 90185 90186 90187 90188 90189 90190 90191 90192 90193 90194 90195 90196 90197 90198 90199 90200 90201 90202 90203 90204 90205 90206 90207 90208 90209 90210 90211 90212 90213 90214 90215 90216 90217 90218 90219 90220 90221 90222 90223 90224 90225 90226 90227 90228 90229 90230 90231 90232 90233 90234 90235 90236 90237 90238 90239 90240 90241 90242 90243 90244 90245 90246 90247 90248 90249 90250 90251 90252 90253 90254 90255 90256 90257 90258 90259 90260 90261 90262 90263 90264 90265 90266 90267 90268 90269 90270 90271 90272 90273 90274 90275 90276 90277 90278 90279 90280 90281 90282 90283 90284 90285 90286 90287 90288 90289 90290 90291 90292 90293 90294 90295 90296 90297 90298 90299 90300 90301 90302 90303 90304 90305 90306 90307 90308 90309 90310 90311 90312 90313 90314 90315 90316 90317 90318 90319 90320 90321 90322 90323 90324 90325 90326 90327 90328 90329 90330 90331 90332 90333 90334 90335 90336 90337 90338 90339 90340 90341 90342 90343 90344 90345 90346 90347 90348 90349 90350 90351 90352 90353 90354 90355 90356 90357 90358 90359 90360 90361 90362 90363 90364 90365 90366 90367 90368 90369 90370 90371 90372 90373 90374 90375 90376 90377 90378 90379 90380 90381 90382 90383 90384 90385 90386 90387 90388 90389 90390 90391 90392 90393 90394 90395 90396 90397 90398 90399 90400 90401 90402 90403 90404 90405 90406 90407 90408 90409 90410 90411 90412 90413 90414 90415 90416 90417 90418 90419 90420 90421 90422 90423 90424 90425 90426 90427 90428 90429 90430 90431 90432 90433 90434 90435 90436 90437 90438 90439 90440 90441 90442 90443 90444 90445 90446 90447 90448 90449 90450 90451 90452 90453 90454 90455 90456 90457 90458 90459 90460 90461 90462 90463 90464 90465 90466 90467 90468 90469 90470 90471 90472 90473 90474 90475 90476 90477 90478 90479 90480 90481 90482 90483 90484 90485 90486 90487 90488 90489 90490 90491 90492 90493 90494 90495 90496 90497 90498 90499 90500 90501 90502 90503 90504 90505 90506 90507 90508 90509 90510 90511 90512 90513 90514 90515 90516 90517 90518 90519 90520 90521 90522 90523 90524 90525 90526 90527 90528 90529 90530 90531 90532 90533 90534 90535 90536 90537 90538 90539 90540 90541 90542 90543 90544 90545 90546 90547 90548 90549 90550 90551 90552 90553 90554 90555 90556 90557 90558 90559 90560 90561 90562 90563 90564 90565 90566 90567 90568 90569 90570 90571 90572 90573 90574 90575 90576 90577 90578 90579 90580 90581 90582 90583 90584 90585 90586 90587 90588 90589 90590 90591 90592 90593 90594 90595 90596 90597 90598 90599 90600 90601 90602 90603 90604 90605 90606 90607 90608 90609 90610 90611 90612 90613 90614 90615 90616 90617 90618 90619 90620 90621 90622 90623 90624 90625 90626 90627 90628 90629 90630 90631 90632 90633 90634 90635 90636 90637 90638 90639 90640 90641 90642 90643 90644 90645 90646 90647 90648 90649 90650 90651 90652 90653 90654 90655 90656 90657 90658 90659 90660 90661 90662 90663 90664 90665 90666 90667 90668 90669 90670 90671 90672 90673 90674 90675 90676 90677 90678 90679 90680 90681 90682 90683 90684 90685 90686 90687 90688 90689 90690 90691 90692 90693 90694 90695 90696 90697 90698 90699 90700 90701 90702 90703 90704 90705 90706 90707 90708 90709 90710 90711 90712 90713 90714 90715 90716 90717 90718 90719 90720 90721 90722 90723 90724 90725 90726 90727 90728 90729 90730 90731 90732 90733 90734 90735 90736 90737 90738 90739 90740 90741 90742 90743 90744 90745 90746 90747 90748 90749 90750 90751 90752 90753 90754 90755 90756 90757 90758 90759 90760 90761 90762 90763 90764 90765 90766 90767 90768 90769 90770 90771 90772 90773 90774 90775 90776 90777 90778 90779 90780 90781 90782 90783 90784 90785 90786 90787 90788 90789 90790 90791 90792 90793 90794 90795 90796 90797 90798 90799 90800 90801 90802 90803 90804 90805 90806 90807 90808 90809 90810 90811 90812 90813 90814 90815 90816 90817 90818 90819 90820 90821 90822 90823 90824 90825 90826 90827 90828 90829 90830 90831 90832 90833 90834 90835 90836 90837 90838 90839 90840 90841 90842 90843 90844 90845 90846 90847 90848 90849 90850 90851 90852 90853 90854 90855 90856 90857 90858 90859 90860 90861 90862 90863 90864 90865 90866 90867 90868 90869 90870 90871 90872 90873 90874 90875 90876 90877 90878 90879 90880 90881 90882 90883 90884 90885 90886 90887 90888 90889 90890 90891 90892 90893 90894 90895 90896 90897 90898 90899 90900 90901 90902 90903 90904 90905 90906 90907 90908 90909 90910 90911 90912 90913 90914 90915 90916 90917 90918 90919 90920 90921 90922 90923 90924 90925 90926 90927 90928 90929 90930 90931 90932 90933 90934 90935 90936 90937 90938 90939 90940 90941 90942 90943 90944 90945 90946 90947 90948 90949 90950 90951 90952 90953 90954 90955 90956 90957 90958 90959 90960 90961 90962 90963 90964 90965 90966 90967 90968 90969 90970 90971 90972 90973 90974 90975 90976 90977 90978 90979 90980 90981 90982 90983 90984 90985 90986 90987 90988 90989 90990 90991 90992 90993 90994 90995 90996 90997 90998 90999 91000 91001 91002 91003 91004 91005 91006 91007 91008 91009 91010 91011 91012 91013 91014 91015 91016 91017 91018 91019 91020 91021 91022 91023 91024 91025 91026 91027 91028 91029 91030 91031 91032 91033 91034 91035 91036 91037 91038 91039 91040 91041 91042 91043 91044 91045 91046 91047 91048 91049 91050 91051 91052 91053 91054 91055 91056 91057 91058 91059 91060 91061 91062 91063 91064 91065 91066 91067 91068 91069 91070 91071 91072 91073 91074 91075 91076 91077 91078 91079 91080 91081 91082 91083 91084 91085 91086 91087 91088 91089 91090 91091 91092 91093 91094 91095 91096 91097 91098 91099 91100 91101 91102 91103 91104 91105 91106 91107 91108 91109 91110 91111 91112 91113 91114 91115 91116 91117 91118 91119 91120 91121 91122 91123 91124 91125 91126 91127 91128 91129 91130 91131 91132 91133 91134 91135 91136 91137 91138 91139 91140 91141 91142 91143 91144 91145 91146 91147 91148 91149 91150 91151 91152 91153 91154 91155 91156 91157 91158 91159 91160 91161 91162 91163 91164 91165 91166 91167 91168 91169 91170 91171 91172 91173 91174 91175 91176 91177 91178 91179 91180 91181 91182 91183 91184 91185 91186 91187 91188 91189 91190 91191 91192 91193 91194 91195 91196 91197 91198 91199 91200 91201 91202 91203 91204 91205 91206 91207 91208 91209 91210 91211 91212 91213 91214 91215 91216 91217 91218 91219 91220 91221 91222 91223 91224 91225 91226 91227 91228 91229 91230 91231 91232 91233 91234 91235 91236 91237 91238 91239 91240 91241 91242 91243 91244 91245 91246 91247 91248 91249 91250 91251 91252 91253 91254 91255 91256 91257 91258 91259 91260 91261 91262 91263 91264 91265 91266 91267 91268 91269 91270 91271 91272 91273 91274 91275 91276 91277 91278 91279 91280 91281 91282 91283 91284 91285 91286 91287 91288 91289 91290 91291 91292 91293 91294 91295 91296 91297 91298 91299 91300 91301 91302 91303 91304 91305 91306 91307 91308 91309 91310 91311 91312 91313 91314 91315 91316 91317 91318 91319 91320 91321 91322 91323 91324 91325 91326 91327 91328 91329 91330 91331 91332 91333 91334 91335 91336 91337 91338 91339 91340 91341 91342 91343 91344 91345 91346 91347 91348 91349 91350 91351 91352 91353 91354 91355 91356 91357 91358 91359 91360 91361 91362 91363 91364 91365 91366 91367 91368 91369 91370 91371 91372 91373 91374 91375 91376 91377 91378 91379 91380 91381 91382 91383 91384 91385 91386 91387 91388 91389 91390 91391 91392 91393 91394 91395 91396 91397 91398 91399 91400 91401 91402 91403 91404 91405 91406 91407 91408 91409 91410 91411 91412 91413 91414 91415 91416 91417 91418 91419 91420 91421 91422 91423 91424 91425 91426 91427 91428 91429 91430 91431 91432 91433 91434 91435 91436 91437 91438 91439 91440 91441 91442 91443 91444 91445 91446 91447 91448 91449 91450 91451 91452 91453 91454 91455 91456 91457 91458 91459 91460 91461 91462 91463 91464 91465 91466 91467 91468 91469 91470 91471 91472 91473 91474 91475 91476 91477 91478 91479 91480 91481 91482 91483 91484 91485 91486 91487 91488 91489 91490 91491 91492 91493 91494 91495 91496 91497 91498 91499 91500 91501 91502 91503 91504 91505 91506 91507 91508 91509 91510 91511 91512 91513 91514 91515 91516 91517 91518 91519 91520 91521 91522 91523 91524 91525 91526 91527 91528 91529 91530 91531 91532 91533 91534 91535 91536 91537 91538 91539 91540 91541 91542 91543 91544 91545 91546 91547 91548 91549 91550 91551 91552 91553 91554 91555 91556 91557 91558 91559 91560 91561 91562 91563 91564 91565 91566 91567 91568 91569 91570 91571 91572 91573 91574 91575 91576 91577 91578 91579 91580 91581 91582 91583 91584 91585 91586 91587 91588 91589 91590 91591 91592 91593 91594 91595 91596 91597 91598 91599 91600 91601 91602 91603 91604 91605 91606 91607 91608 91609 91610 91611 91612 91613 91614 91615 91616 91617 91618 91619 91620 91621 91622 91623 91624 91625 91626 91627 91628 91629 91630 91631 91632 91633 91634 91635 91636 91637 91638 91639 91640 91641 91642 91643 91644 91645 91646 91647 91648 91649 91650 91651 91652 91653 91654 91655 91656 91657 91658 91659 91660 91661 91662 91663 91664 91665 91666 91667 91668 91669 91670 91671 91672 91673 91674 91675 91676 91677 91678 91679 91680 91681 91682 91683 91684 91685 91686 91687 91688 91689 91690 91691 91692 91693 91694 91695 91696 91697 91698 91699 91700 91701 91702 91703 91704 91705 91706 91707 91708 91709 91710 91711 91712 91713 91714 91715 91716 91717 91718 91719 91720 91721 91722 91723 91724 91725 91726 91727 91728 91729 91730 91731 91732 91733 91734 91735 91736 91737 91738 91739 91740 91741 91742 91743 91744 91745 91746 91747 91748 91749 91750 91751 91752 91753 91754 91755 91756 91757 91758 91759 91760 91761 91762 91763 91764 91765 91766 91767 91768 91769 91770 91771 91772 91773 91774 91775 91776 91777 91778 91779 91780 91781 91782 91783 91784 91785 91786 91787 91788 91789 91790 91791 91792 91793 91794 91795 91796 91797 91798 91799 91800 91801 91802 91803 91804 91805 91806 91807 91808 91809 91810 91811 91812 91813 91814 91815 91816 91817 91818 91819 91820 91821 91822 91823 91824 91825 91826 91827 91828 91829 91830 91831 91832 91833 91834 91835 91836 91837 91838 91839 91840 91841 91842 91843 91844 91845 91846 91847 91848 91849 91850 91851 91852 91853 91854 91855 91856 91857 91858 91859 91860 91861 91862 91863 91864 91865 91866 91867 91868 91869 91870 91871 91872 91873 91874 91875 91876 91877 91878 91879 91880 91881 91882 91883 91884 91885 91886 91887 91888 91889 91890 91891 91892 91893 91894 91895 91896 91897 91898 91899 91900 91901 91902 91903 91904 91905 91906 91907 91908 91909 91910 91911 91912 91913 91914 91915 91916 91917 91918 91919 91920 91921 91922 91923 91924 91925 91926 91927 91928 91929 91930 91931 91932 91933 91934 91935 91936 91937 91938 91939 91940 91941 91942 91943 91944 91945 91946 91947 91948 91949 91950 91951 91952 91953 91954 91955 91956 91957 91958 91959 91960 91961 91962 91963 91964 91965 91966 91967 91968 91969 91970 91971 91972 91973 91974 91975 91976 91977 91978 91979 91980 91981 91982 91983 91984 91985 91986 91987 91988 91989 91990 91991 91992 91993 91994 91995 91996 91997 91998 91999 92000 92001 92002 92003 92004 92005 92006 92007 92008 92009 92010 92011 92012 92013 92014 92015 92016 92017 92018 92019 92020 92021 92022 92023 92024 92025 92026 92027 92028 92029 92030 92031 92032 92033 92034 92035 92036 92037 92038 92039 92040 92041 92042 92043 92044 92045 92046 92047 92048 92049 92050 92051 92052 92053 92054 92055 92056 92057 92058 92059 92060 92061 92062 92063 92064 92065 92066 92067 92068 92069 92070 92071 92072 92073 92074 92075 92076 92077 92078 92079 92080 92081 92082 92083 92084 92085 92086 92087 92088 92089 92090 92091 92092 92093 92094 92095 92096 92097 92098 92099 92100 92101 92102 92103 92104 92105 92106 92107 92108 92109 92110 92111 92112 92113 92114 92115 92116 92117 92118 92119 92120 92121 92122 92123 92124 92125 92126 92127 92128 92129 92130 92131 92132 92133 92134 92135 92136 92137 92138 92139 92140 92141 92142 92143 92144 92145 92146 92147 92148 92149 92150 92151 92152 92153 92154 92155 92156 92157 92158 92159 92160 92161 92162 92163 92164 92165 92166 92167 92168 92169 92170 92171 92172 92173 92174 92175 92176 92177 92178 92179 92180 92181 92182 92183 92184 92185 92186 92187 92188 92189 92190 92191 92192 92193 92194 92195 92196 92197 92198 92199 92200 92201 92202 92203 92204 92205 92206 92207 92208 92209 92210 92211 92212 92213 92214 92215 92216 92217 92218 92219 92220 92221 92222 92223 92224 92225 92226 92227 92228 92229 92230 92231 92232 92233 92234 92235 92236 92237 92238 92239 92240 92241 92242 92243 92244 92245 92246 92247 92248 92249 92250 92251 92252 92253 92254 92255 92256 92257 92258 92259 92260 92261 92262 92263 92264 92265 92266 92267 92268 92269 92270 92271 92272 92273 92274 92275 92276 92277 92278 92279 92280 92281 92282 92283 92284 92285 92286 92287 92288 92289 92290 92291 92292 92293 92294 92295 92296 92297 92298 92299 92300 92301 92302 92303 92304 92305 92306 92307 92308 92309 92310 92311 92312 92313 92314 92315 92316 92317 92318 92319 92320 92321 92322 92323 92324 92325 92326 92327 92328 92329 92330 92331 92332 92333 92334 92335 92336 92337 92338 92339 92340 92341 92342 92343 92344 92345 92346 92347 92348 92349 92350 92351 92352 92353 92354 92355 92356 92357 92358 92359 92360 92361 92362 92363 92364 92365 92366 92367 92368 92369 92370 92371 92372 92373 92374 92375 92376 92377 92378 92379 92380 92381 92382 92383 92384 92385 92386 92387 92388 92389 92390 92391 92392 92393 92394 92395 92396 92397 92398 92399 92400 92401 92402 92403 92404 92405 92406 92407 92408 92409 92410 92411 92412 92413 92414 92415 92416 92417 92418 92419 92420 92421 92422 92423 92424 92425 92426 92427 92428 92429 92430 92431 92432 92433 92434 92435 92436 92437 92438 92439 92440 92441 92442 92443 92444 92445 92446 92447 92448 92449 92450 92451 92452 92453 92454 92455 92456 92457 92458 92459 92460 92461 92462 92463 92464 92465 92466 92467 92468 92469 92470 92471 92472 92473 92474 92475 92476 92477 92478 92479 92480 92481 92482 92483 92484 92485 92486 92487 92488 92489 92490 92491 92492 92493 92494 92495 92496 92497 92498 92499 92500 92501 92502 92503 92504 92505 92506 92507 92508 92509 92510 92511 92512 92513 92514 92515 92516 92517 92518 92519 92520 92521 92522 92523 92524 92525 92526 92527 92528 92529 92530 92531 92532 92533 92534 92535 92536 92537 92538 92539 92540 92541 92542 92543 92544 92545 92546 92547 92548 92549 92550 92551 92552 92553 92554 92555 92556 92557 92558 92559 92560 92561 92562 92563 92564 92565 92566 92567 92568 92569 92570 92571 92572 92573 92574 92575 92576 92577 92578 92579 92580 92581 92582 92583 92584 92585 92586 92587 92588 92589 92590 92591 92592 92593 92594 92595 92596 92597 92598 92599 92600 92601 92602 92603 92604 92605 92606 92607 92608 92609 92610 92611 92612 92613 92614 92615 92616 92617 92618 92619 92620 92621 92622 92623 92624 92625 92626 92627 92628 92629 92630 92631 92632 92633 92634 92635 92636 92637 92638 92639 92640 92641 92642 92643 92644 92645 92646 92647 92648 92649 92650 92651 92652 92653 92654 92655 92656 92657 92658 92659 92660 92661 92662 92663 92664 92665 92666 92667 92668 92669 92670 92671 92672 92673 92674 92675 92676 92677 92678 92679 92680 92681 92682 92683 92684 92685 92686 92687 92688 92689 92690 92691 92692 92693 92694 92695 92696 92697 92698 92699 92700 92701 92702 92703 92704 92705 92706 92707 92708 92709 92710 92711 92712 92713 92714 92715 92716 92717 92718 92719 92720 92721 92722 92723 92724 92725 92726 92727 92728 92729 92730 92731 92732 92733 92734 92735 92736 92737 92738 92739 92740 92741 92742 92743 92744 92745 92746 92747 92748 92749 92750 92751 92752 92753 92754 92755 92756 92757 92758 92759 92760 92761 92762 92763 92764 92765 92766 92767 92768 92769 92770 92771 92772 92773 92774 92775 92776 92777 92778 92779 92780 92781 92782 92783 92784 92785 92786 92787 92788 92789 92790 92791 92792 92793 92794 92795 92796 92797 92798 92799 92800 92801 92802 92803 92804 92805 92806 92807 92808 92809 92810 92811 92812 92813 92814 92815 92816 92817 92818 92819 92820 92821 92822 92823 92824 92825 92826 92827 92828 92829 92830 92831 92832 92833 92834 92835 92836 92837 92838 92839 92840 92841 92842 92843 92844 92845 92846 92847 92848 92849 92850 92851 92852 92853 92854 92855 92856 92857 92858 92859 92860 92861 92862 92863 92864 92865 92866 92867 92868 92869 92870 92871 92872 92873 92874 92875 92876 92877 92878 92879 92880 92881 92882 92883 92884 92885 92886 92887 92888 92889 92890 92891 92892 92893 92894 92895 92896 92897 92898 92899 92900 92901 92902 92903 92904 92905 92906 92907 92908 92909 92910 92911 92912 92913 92914 92915 92916 92917 92918 92919 92920 92921 92922 92923 92924 92925 92926 92927 92928 92929 92930 92931 92932 92933 92934 92935 92936 92937 92938 92939 92940 92941 92942 92943 92944 92945 92946 92947 92948 92949 92950 92951 92952 92953 92954 92955 92956 92957 92958 92959 92960 92961 92962 92963 92964 92965 92966 92967 92968 92969 92970 92971 92972 92973 92974 92975 92976 92977 92978 92979 92980 92981 92982 92983 92984 92985 92986 92987 92988 92989 92990 92991 92992 92993 92994 92995 92996 92997 92998 92999 93000 93001 93002 93003 93004 93005 93006 93007 93008 93009 93010 93011 93012 93013 93014 93015 93016 93017 93018 93019 93020 93021 93022 93023 93024 93025 93026 93027 93028 93029 93030 93031 93032 93033 93034 93035 93036 93037 93038 93039 93040 93041 93042 93043 93044 93045 93046 93047 93048 93049 93050 93051 93052 93053 93054 93055 93056 93057 93058 93059 93060 93061 93062 93063 93064 93065 93066 93067 93068 93069 93070 93071 93072 93073 93074 93075 93076 93077 93078 93079 93080 93081 93082 93083 93084 93085 93086 93087 93088 93089 93090 93091 93092 93093 93094 93095 93096 93097 93098 93099 93100 93101 93102 93103 93104 93105 93106 93107 93108 93109 93110 93111 93112 93113 93114 93115 93116 93117 93118 93119 93120 93121 93122 93123 93124 93125 93126 93127 93128 93129 93130 93131 93132 93133 93134 93135 93136 93137 93138 93139 93140 93141 93142 93143 93144 93145 93146 93147 93148 93149 93150 93151 93152 93153 93154 93155 93156 93157 93158 93159 93160 93161 93162 93163 93164 93165 93166 93167 93168 93169 93170 93171 93172 93173 93174 93175 93176 93177 93178 93179 93180 93181 93182 93183 93184 93185 93186 93187 93188 93189 93190 93191 93192 93193 93194 93195 93196 93197 93198 93199 93200 93201 93202 93203 93204 93205 93206 93207 93208 93209 93210 93211 93212 93213 93214 93215 93216 93217 93218 93219 93220 93221 93222 93223 93224 93225 93226 93227 93228 93229 93230 93231 93232 93233 93234 93235 93236 93237 93238 93239 93240 93241 93242 93243 93244 93245 93246 93247 93248 93249 93250 93251 93252 93253 93254 93255 93256 93257 93258 93259 93260 93261 93262 93263 93264 93265 93266 93267 93268 93269 93270 93271 93272 93273 93274 93275 93276 93277 93278 93279 93280 93281 93282 93283 93284 93285 93286 93287 93288 93289 93290 93291 93292 93293 93294 93295 93296 93297 93298 93299 93300 93301 93302 93303 93304 93305 93306 93307 93308 93309 93310 93311 93312 93313 93314 93315 93316 93317 93318 93319 93320 93321 93322 93323 93324 93325 93326 93327 93328 93329 93330 93331 93332 93333 93334 93335 93336 93337 93338 93339 93340 93341 93342 93343 93344 93345 93346 93347 93348 93349 93350 93351 93352 93353 93354 93355 93356 93357 93358 93359 93360 93361 93362 93363 93364 93365 93366 93367 93368 93369 93370 93371 93372 93373 93374 93375 93376 93377 93378 93379 93380 93381 93382 93383 93384 93385 93386 93387 93388 93389 93390 93391 93392 93393 93394 93395 93396 93397 93398 93399 93400 93401 93402 93403 93404 93405 93406 93407 93408 93409 93410 93411 93412 93413 93414 93415 93416 93417 93418 93419 93420 93421 93422 93423 93424 93425 93426 93427 93428 93429 93430 93431 93432 93433 93434 93435 93436 93437 93438 93439 93440 93441 93442 93443 93444 93445 93446 93447 93448 93449 93450 93451 93452 93453 93454 93455 93456 93457 93458 93459 93460 93461 93462 93463 93464 93465 93466 93467 93468 93469 93470 93471 93472 93473 93474 93475 93476 93477 93478 93479 93480 93481 93482 93483 93484 93485 93486 93487 93488 93489 93490 93491 93492 93493 93494 93495 93496 93497 93498 93499 93500 93501 93502 93503 93504 93505 93506 93507 93508 93509 93510 93511 93512 93513 93514 93515 93516 93517 93518 93519 93520 93521 93522 93523 93524 93525 93526 93527 93528 93529 93530 93531 93532 93533 93534 93535 93536 93537 93538 93539 93540 93541 93542 93543 93544 93545 93546 93547 93548 93549 93550 93551 93552 93553 93554 93555 93556 93557 93558 93559 93560 93561 93562 93563 93564 93565 93566 93567 93568 93569 93570 93571 93572 93573 93574 93575 93576 93577 93578 93579 93580 93581 93582 93583 93584 93585 93586 93587 93588 93589 93590 93591 93592 93593 93594 93595 93596 93597 93598 93599 93600 93601 93602 93603 93604 93605 93606 93607 93608 93609 93610 93611 93612 93613 93614 93615 93616 93617 93618 93619 93620 93621 93622 93623 93624 93625 93626 93627 93628 93629 93630 93631 93632 93633 93634 93635 93636 93637 93638 93639 93640 93641 93642 93643 93644 93645 93646 93647 93648 93649 93650 93651 93652 93653 93654 93655 93656 93657 93658 93659 93660 93661 93662 93663 93664 93665 93666 93667 93668 93669 93670 93671 93672 93673 93674 93675 93676 93677 93678 93679 93680 93681 93682 93683 93684 93685 93686 93687 93688 93689 93690 93691 93692 93693 93694 93695 93696 93697 93698 93699 93700 93701 93702 93703 93704 93705 93706 93707 93708 93709 93710 93711 93712 93713 93714 93715 93716 93717 93718 93719 93720 93721 93722 93723 93724 93725 93726 93727 93728 93729 93730 93731 93732 93733 93734 93735 93736 93737 93738 93739 93740 93741 93742 93743 93744 93745 93746 93747 93748 93749 93750 93751 93752 93753 93754 93755 93756 93757 93758 93759 93760 93761 93762 93763 93764 93765 93766 93767 93768 93769 93770 93771 93772 93773 93774 93775 93776 93777 93778 93779 93780 93781 93782 93783 93784 93785 93786 93787 93788 93789 93790 93791 93792 93793 93794 93795 93796 93797 93798 93799 93800 93801 93802 93803 93804 93805 93806 93807 93808 93809 93810 93811 93812 93813 93814 93815 93816 93817 93818 93819 93820 93821 93822 93823 93824 93825 93826 93827 93828 93829 93830 93831 93832 93833 93834 93835 93836 93837 93838 93839 93840 93841 93842 93843 93844 93845 93846 93847 93848 93849 93850 93851 93852 93853 93854 93855 93856 93857 93858 93859 93860 93861 93862 93863 93864 93865 93866 93867 93868 93869 93870 93871 93872 93873 93874 93875 93876 93877 93878 93879 93880 93881 93882 93883 93884 93885 93886 93887 93888 93889 93890 93891 93892 93893 93894 93895 93896 93897 93898 93899 93900 93901 93902 93903 93904 93905 93906 93907 93908 93909 93910 93911 93912 93913 93914 93915 93916 93917 93918 93919 93920 93921 93922 93923 93924 93925 93926 93927 93928 93929 93930 93931 93932 93933 93934 93935 93936 93937 93938 93939 93940 93941 93942 93943 93944 93945 93946 93947 93948 93949 93950 93951 93952 93953 93954 93955 93956 93957 93958 93959 93960 93961 93962 93963 93964 93965 93966 93967 93968 93969 93970 93971 93972 93973 93974 93975 93976 93977 93978 93979 93980 93981 93982 93983 93984 93985 93986 93987 93988 93989 93990 93991 93992 93993 93994 93995 93996 93997 93998 93999 94000 94001 94002 94003 94004 94005 94006 94007 94008 94009 94010 94011 94012 94013 94014 94015 94016 94017 94018 94019 94020 94021 94022 94023 94024 94025 94026 94027 94028 94029 94030 94031 94032 94033 94034 94035 94036 94037 94038 94039 94040 94041 94042 94043 94044 94045 94046 94047 94048 94049 94050 94051 94052 94053 94054 94055 94056 94057 94058 94059 94060 94061 94062 94063 94064 94065 94066 94067 94068 94069 94070 94071 94072 94073 94074 94075 94076 94077 94078 94079 94080 94081 94082 94083 94084 94085 94086 94087 94088 94089 94090 94091 94092 94093 94094 94095 94096 94097 94098 94099 94100 94101 94102 94103 94104 94105 94106 94107 94108 94109 94110 94111 94112 94113 94114 94115 94116 94117 94118 94119 94120 94121 94122 94123 94124 94125 94126 94127 94128 94129 94130 94131 94132 94133 94134 94135 94136 94137 94138 94139 94140 94141 94142 94143 94144 94145 94146 94147 94148 94149 94150 94151 94152 94153 94154 94155 94156 94157 94158 94159 94160 94161 94162 94163 94164 94165 94166 94167 94168 94169 94170 94171 94172 94173 94174 94175 94176 94177 94178 94179 94180 94181 94182 94183 94184 94185 94186 94187 94188 94189 94190 94191 94192 94193 94194 94195 94196 94197 94198 94199 94200 94201 94202 94203 94204 94205 94206 94207 94208 94209 94210 94211 94212 94213 94214 94215 94216 94217 94218 94219 94220 94221 94222 94223 94224 94225 94226 94227 94228 94229 94230 94231 94232 94233 94234 94235 94236 94237 94238 94239 94240 94241 94242 94243 94244 94245 94246 94247 94248 94249 94250 94251 94252 94253 94254 94255 94256 94257 94258 94259 94260 94261 94262 94263 94264 94265 94266 94267 94268 94269 94270 94271 94272 94273 94274 94275 94276 94277 94278 94279 94280 94281 94282 94283 94284 94285 94286 94287 94288 94289 94290 94291 94292 94293 94294 94295 94296 94297 94298 94299 94300 94301 94302 94303 94304 94305 94306 94307 94308 94309 94310 94311 94312 94313 94314 94315 94316 94317 94318 94319 94320 94321 94322 94323 94324 94325 94326 94327 94328 94329 94330 94331 94332 94333 94334 94335 94336 94337 94338 94339 94340 94341 94342 94343 94344 94345 94346 94347 94348 94349 94350 94351 94352 94353 94354 94355 94356 94357 94358 94359 94360 94361 94362 94363 94364 94365 94366 94367 94368 94369 94370 94371 94372 94373 94374 94375 94376 94377 94378 94379 94380 94381 94382 94383 94384 94385 94386 94387 94388 94389 94390 94391 94392 94393 94394 94395 94396 94397 94398 94399 94400 94401 94402 94403 94404 94405 94406 94407 94408 94409 94410 94411 94412 94413 94414 94415 94416 94417 94418 94419 94420 94421 94422 94423 94424 94425 94426 94427 94428 94429 94430 94431 94432 94433 94434 94435 94436 94437 94438 94439 94440 94441 94442 94443 94444 94445 94446 94447 94448 94449 94450 94451 94452 94453 94454 94455 94456 94457 94458 94459 94460 94461 94462 94463 94464 94465 94466 94467 94468 94469 94470 94471 94472 94473 94474 94475 94476 94477 94478 94479 94480 94481 94482 94483 94484 94485 94486 94487 94488 94489 94490 94491 94492 94493 94494 94495 94496 94497 94498 94499 94500 94501 94502 94503 94504 94505 94506 94507 94508 94509 94510 94511 94512 94513 94514 94515 94516 94517 94518 94519 94520 94521 94522 94523 94524 94525 94526 94527 94528 94529 94530 94531 94532 94533 94534 94535 94536 94537 94538 94539 94540 94541 94542 94543 94544 94545 94546 94547 94548 94549 94550 94551 94552 94553 94554 94555 94556 94557 94558 94559 94560 94561 94562 94563 94564 94565 94566 94567 94568 94569 94570 94571 94572 94573 94574 94575 94576 94577 94578 94579 94580 94581 94582 94583 94584 94585 94586 94587 94588 94589 94590 94591 94592 94593 94594 94595 94596 94597 94598 94599 94600 94601 94602 94603 94604 94605 94606 94607 94608 94609 94610 94611 94612 94613 94614 94615 94616 94617 94618 94619 94620 94621 94622 94623 94624 94625 94626 94627 94628 94629 94630 94631 94632 94633 94634 94635 94636 94637 94638 94639 94640 94641 94642 94643 94644 94645 94646 94647 94648 94649 94650 94651 94652 94653 94654 94655 94656 94657 94658 94659 94660 94661 94662 94663 94664 94665 94666 94667 94668 94669 94670 94671 94672 94673 94674 94675 94676 94677 94678 94679 94680 94681 94682 94683 94684 94685 94686 94687 94688 94689 94690 94691 94692 94693 94694 94695 94696 94697 94698 94699 94700 94701 94702 94703 94704 94705 94706 94707 94708 94709 94710 94711 94712 94713 94714 94715 94716 94717 94718 94719 94720 94721 94722 94723 94724 94725 94726 94727 94728 94729 94730 94731 94732 94733 94734 94735 94736 94737 94738 94739 94740 94741 94742 94743 94744 94745 94746 94747 94748 94749 94750 94751 94752 94753 94754 94755 94756 94757 94758 94759 94760 94761 94762 94763 94764 94765 94766 94767 94768 94769 94770 94771 94772 94773 94774 94775 94776 94777 94778 94779 94780 94781 94782 94783 94784 94785 94786 94787 94788 94789 94790 94791 94792 94793 94794 94795 94796 94797 94798 94799 94800 94801 94802 94803 94804 94805 94806 94807 94808 94809 94810 94811 94812 94813 94814 94815 94816 94817 94818 94819 94820 94821 94822 94823 94824 94825 94826 94827 94828 94829 94830 94831 94832 94833 94834 94835 94836 94837 94838 94839 94840 94841 94842 94843 94844 94845 94846 94847 94848 94849 94850 94851 94852 94853 94854 94855 94856 94857 94858 94859 94860 94861 94862 94863 94864 94865 94866 94867 94868 94869 94870 94871 94872 94873 94874 94875 94876 94877 94878 94879 94880 94881 94882 94883 94884 94885 94886 94887 94888 94889 94890 94891 94892 94893 94894 94895 94896 94897 94898 94899 94900 94901 94902 94903 94904 94905 94906 94907 94908 94909 94910 94911 94912 94913 94914 94915 94916 94917 94918 94919 94920 94921 94922 94923 94924 94925 94926 94927 94928 94929 94930 94931 94932 94933 94934 94935 94936 94937 94938 94939 94940 94941 94942 94943 94944 94945 94946 94947 94948 94949 94950 94951 94952 94953 94954 94955 94956 94957 94958 94959 94960 94961 94962 94963 94964 94965 94966 94967 94968 94969 94970 94971 94972 94973 94974 94975 94976 94977 94978 94979 94980 94981 94982 94983 94984 94985 94986 94987 94988 94989 94990 94991 94992 94993 94994 94995 94996 94997 94998 94999 95000 95001 95002 95003 95004 95005 95006 95007 95008 95009 95010 95011 95012 95013 95014 95015 95016 95017 95018 95019 95020 95021 95022 95023 95024 95025 95026 95027 95028 95029 95030 95031 95032 95033 95034 95035 95036 95037 95038 95039 95040 95041 95042 95043 95044 95045 95046 95047 95048 95049 95050 95051 95052 95053 95054 95055 95056 95057 95058 95059 95060 95061 95062 95063 95064 95065 95066 95067 95068 95069 95070 95071 95072 95073 95074 95075 95076 95077 95078 95079 95080 95081 95082 95083 95084 95085 95086 95087 95088 95089 95090 95091 95092 95093 95094 95095 95096 95097 95098 95099 95100 95101 95102 95103 95104 95105 95106 95107 95108 95109 95110 95111 95112 95113 95114 95115 95116 95117 95118 95119 95120 95121 95122 95123 95124 95125 95126 95127 95128 95129 95130 95131 95132 95133 95134 95135 95136 95137 95138 95139 95140 95141 95142 95143 95144 95145 95146 95147 95148 95149 95150 95151 95152 95153 95154 95155 95156 95157 95158 95159 95160 95161 95162 95163 95164 95165 95166 95167 95168 95169 95170 95171 95172 95173 95174 95175 95176 95177 95178 95179 95180 95181 95182 95183 95184 95185 95186 95187 95188 95189 95190 95191 95192 95193 95194 95195 95196 95197 95198 95199 95200 95201 95202 95203 95204 95205 95206 95207 95208 95209 95210 95211 95212 95213 95214 95215 95216 95217 95218 95219 95220 95221 95222 95223 95224 95225 95226 95227 95228 95229 95230 95231 95232 95233 95234 95235 95236 95237 95238 95239 95240 95241 95242 95243 95244 95245 95246 95247 95248 95249 95250 95251 95252 95253 95254 95255 95256 95257 95258 95259 95260 95261 95262 95263 95264 95265 95266 95267 95268 95269 95270 95271 95272 95273 95274 95275 95276 95277 95278 95279 95280 95281 95282 95283 95284 95285 95286 95287 95288 95289 95290 95291 95292 95293 95294 95295 95296 95297 95298 95299 95300 95301 95302 95303 95304 95305 95306 95307 95308 95309 95310 95311 95312 95313 95314 95315 95316 95317 95318 95319 95320 95321 95322 95323 95324 95325 95326 95327 95328 95329 95330 95331 95332 95333 95334 95335 95336 95337 95338 95339 95340 95341 95342 95343 95344 95345 95346 95347 95348 95349 95350 95351 95352 95353 95354 95355 95356 95357 95358 95359 95360 95361 95362 95363 95364 95365 95366 95367 95368 95369 95370 95371 95372 95373 95374 95375 95376 95377 95378 95379 95380 95381 95382 95383 95384 95385 95386 95387 95388 95389 95390 95391 95392 95393 95394 95395 95396 95397 95398 95399 95400 95401 95402 95403 95404 95405 95406 95407 95408 95409 95410 95411 95412 95413 95414 95415 95416 95417 95418 95419 95420 95421 95422 95423 95424 95425 95426 95427 95428 95429 95430 95431 95432 95433 95434 95435 95436 95437 95438 95439 95440 95441 95442 95443 95444 95445 95446 95447 95448 95449 95450 95451 95452 95453 95454 95455 95456 95457 95458 95459 95460 95461 95462 95463 95464 95465 95466 95467 95468 95469 95470 95471 95472 95473 95474 95475 95476 95477 95478 95479 95480 95481 95482 95483 95484 95485 95486 95487 95488 95489 95490 95491 95492 95493 95494 95495 95496 95497 95498 95499 95500 95501 95502 95503 95504 95505 95506 95507 95508 95509 95510 95511 95512 95513 95514 95515 95516 95517 95518 95519 95520 95521 95522 95523 95524 95525 95526 95527 95528 95529 95530 95531 95532 95533 95534 95535 95536 95537 95538 95539 95540 95541 95542 95543 95544 95545 95546 95547 95548 95549 95550 95551 95552 95553 95554 95555 95556 95557 95558 95559 95560 95561 95562 95563 95564 95565 95566 95567 95568 95569 95570 95571 95572 95573 95574 95575 95576 95577 95578 95579 95580 95581 95582 95583 95584 95585 95586 95587 95588 95589 95590 95591 95592 95593 95594 95595 95596 95597 95598 95599 95600 95601 95602 95603 95604 95605 95606 95607 95608 95609 95610 95611 95612 95613 95614 95615 95616 95617 95618 95619 95620 95621 95622 95623 95624 95625 95626 95627 95628 95629 95630 95631 95632 95633 95634 95635 95636 95637 95638 95639 95640 95641 95642 95643 95644 95645 95646 95647 95648 95649 95650 95651 95652 95653 95654 95655 95656 95657 95658 95659 95660 95661 95662 95663 95664 95665 95666 95667 95668 95669 95670 95671 95672 95673 95674 95675 95676 95677 95678 95679 95680 95681 95682 95683 95684 95685 95686 95687 95688 95689 95690 95691 95692 95693 95694 95695 95696 95697 95698 95699 95700 95701 95702 95703 95704 95705 95706 95707 95708 95709 95710 95711 95712 95713 95714 95715 95716 95717 95718 95719 95720 95721 95722 95723 95724 95725 95726 95727 95728 95729 95730 95731 95732 95733 95734 95735 95736 95737 95738 95739 95740 95741 95742 95743 95744 95745 95746 95747 95748 95749 95750 95751 95752 95753 95754 95755 95756 95757 95758 95759 95760 95761 95762 95763 95764 95765 95766 95767 95768 95769 95770 95771 95772 95773 95774 95775 95776 95777 95778 95779 95780 95781 95782 95783 95784 95785 95786 95787 95788 95789 95790 95791 95792 95793 95794 95795 95796 95797 95798 95799 95800 95801 95802 95803 95804 95805 95806 95807 95808 95809 95810 95811 95812 95813 95814 95815 95816 95817 95818 95819 95820 95821 95822 95823 95824 95825 95826 95827 95828 95829 95830 95831 95832 95833 95834 95835 95836 95837 95838 95839 95840 95841 95842 95843 95844 95845 95846 95847 95848 95849 95850 95851 95852 95853 95854 95855 95856 95857 95858 95859 95860 95861 95862 95863 95864 95865 95866 95867 95868 95869 95870 95871 95872 95873 95874 95875 95876 95877 95878 95879 95880 95881 95882 95883 95884 95885 95886 95887 95888 95889 95890 95891 95892 95893 95894 95895 95896 95897 95898 95899 95900 95901 95902 95903 95904 95905 95906 95907 95908 95909 95910 95911 95912 95913 95914 95915 95916 95917 95918 95919 95920 95921 95922 95923 95924 95925 95926 95927 95928 95929 95930 95931 95932 95933 95934 95935 95936 95937 95938 95939 95940 95941 95942 95943 95944 95945 95946 95947 95948 95949 95950 95951 95952 95953 95954 95955 95956 95957 95958 95959 95960 95961 95962 95963 95964 95965 95966 95967 95968 95969 95970 95971 95972 95973 95974 95975 95976 95977 95978 95979 95980 95981 95982 95983 95984 95985 95986 95987 95988 95989 95990 95991 95992 95993 95994 95995 95996 95997 95998 95999 96000 96001 96002 96003 96004 96005 96006 96007 96008 96009 96010 96011 96012 96013 96014 96015 96016 96017 96018 96019 96020 96021 96022 96023 96024 96025 96026 96027 96028 96029 96030 96031 96032 96033 96034 96035 96036 96037 96038 96039 96040 96041 96042 96043 96044 96045 96046 96047 96048 96049 96050 96051 96052 96053 96054 96055 96056 96057 96058 96059 96060 96061 96062 96063 96064 96065 96066 96067 96068 96069 96070 96071 96072 96073 96074 96075 96076 96077 96078 96079 96080 96081 96082 96083 96084 96085 96086 96087 96088 96089 96090 96091 96092 96093 96094 96095 96096 96097 96098 96099 96100 96101 96102 96103 96104 96105 96106 96107 96108 96109 96110 96111 96112 96113 96114 96115 96116 96117 96118 96119 96120 96121 96122 96123 96124 96125 96126 96127 96128 96129 96130 96131 96132 96133 96134 96135 96136 96137 96138 96139 96140 96141 96142 96143 96144 96145 96146 96147 96148 96149 96150 96151 96152 96153 96154 96155 96156 96157 96158 96159 96160 96161 96162 96163 96164 96165 96166 96167 96168 96169 96170 96171 96172 96173 96174 96175 96176 96177 96178 96179 96180 96181 96182 96183 96184 96185 96186 96187 96188 96189 96190 96191 96192 96193 96194 96195 96196 96197 96198 96199 96200 96201 96202 96203 96204 96205 96206 96207 96208 96209 96210 96211 96212 96213 96214 96215 96216 96217 96218 96219 96220 96221 96222 96223 96224 96225 96226 96227 96228 96229 96230 96231 96232 96233 96234 96235 96236 96237 96238 96239 96240 96241 96242 96243 96244 96245 96246 96247 96248 96249 96250 96251 96252 96253 96254 96255 96256 96257 96258 96259 96260 96261 96262 96263 96264 96265 96266 96267 96268 96269 96270 96271 96272 96273 96274 96275 96276 96277 96278 96279 96280 96281 96282 96283 96284 96285 96286 96287 96288 96289 96290 96291 96292 96293 96294 96295 96296 96297 96298 96299 96300 96301 96302 96303 96304 96305 96306 96307 96308 96309 96310 96311 96312 96313 96314 96315 96316 96317 96318 96319 96320 96321 96322 96323 96324 96325 96326 96327 96328 96329 96330 96331 96332 96333 96334 96335 96336 96337 96338 96339 96340 96341 96342 96343 96344 96345 96346 96347 96348 96349 96350 96351 96352 96353 96354 96355 96356 96357 96358 96359 96360 96361 96362 96363 96364 96365 96366 96367 96368 96369 96370 96371 96372 96373 96374 96375 96376 96377 96378 96379 96380 96381 96382 96383 96384 96385 96386 96387 96388 96389 96390 96391 96392 96393 96394 96395 96396 96397 96398 96399 96400 96401 96402 96403 96404 96405 96406 96407 96408 96409 96410 96411 96412 96413 96414 96415 96416 96417 96418 96419 96420 96421 96422 96423 96424 96425 96426 96427 96428 96429 96430 96431 96432 96433 96434 96435 96436 96437 96438 96439 96440 96441 96442 96443 96444 96445 96446 96447 96448 96449 96450 96451 96452 96453 96454 96455 96456 96457 96458 96459 96460 96461 96462 96463 96464 96465 96466 96467 96468 96469 96470 96471 96472 96473 96474 96475 96476 96477 96478 96479 96480 96481 96482 96483 96484 96485 96486 96487 96488 96489 96490 96491 96492 96493 96494 96495 96496 96497 96498 96499 96500 96501 96502 96503 96504 96505 96506 96507 96508 96509 96510 96511 96512 96513 96514 96515 96516 96517 96518 96519 96520 96521 96522 96523 96524 96525 96526 96527 96528 96529 96530 96531 96532 96533 96534 96535 96536 96537 96538 96539 96540 96541 96542 96543 96544 96545 96546 96547 96548 96549 96550 96551 96552 96553 96554 96555 96556 96557 96558 96559 96560 96561 96562 96563 96564 96565 96566 96567 96568 96569 96570 96571 96572 96573 96574 96575 96576 96577 96578 96579 96580 96581 96582 96583 96584 96585 96586 96587 96588 96589 96590 96591 96592 96593 96594 96595 96596 96597 96598 96599 96600 96601 96602 96603 96604 96605 96606 96607 96608 96609 96610 96611 96612 96613 96614 96615 96616 96617 96618 96619 96620 96621 96622 96623 96624 96625 96626 96627 96628 96629 96630 96631 96632 96633 96634 96635 96636 96637 96638 96639 96640 96641 96642 96643 96644 96645 96646 96647 96648 96649 96650 96651 96652 96653 96654 96655 96656 96657 96658 96659 96660 96661 96662 96663 96664 96665 96666 96667 96668 96669 96670 96671 96672 96673 96674 96675 96676 96677 96678 96679 96680 96681 96682 96683 96684 96685 96686 96687 96688 96689 96690 96691 96692 96693 96694 96695 96696 96697 96698 96699 96700 96701 96702 96703 96704 96705 96706 96707 96708 96709 96710 96711 96712 96713 96714 96715 96716 96717 96718 96719 96720 96721 96722 96723 96724 96725 96726 96727 96728 96729 96730 96731 96732 96733 96734 96735 96736 96737 96738 96739 96740 96741 96742 96743 96744 96745 96746 96747 96748 96749 96750 96751 96752 96753 96754 96755 96756 96757 96758 96759 96760 96761 96762 96763 96764 96765 96766 96767 96768 96769 96770 96771 96772 96773 96774 96775 96776 96777 96778 96779 96780 96781 96782 96783 96784 96785 96786 96787 96788 96789 96790 96791 96792 96793 96794 96795 96796 96797 96798 96799 96800 96801 96802 96803 96804 96805 96806 96807 96808 96809 96810 96811 96812 96813 96814 96815 96816 96817 96818 96819 96820 96821 96822 96823 96824 96825 96826 96827 96828 96829 96830 96831 96832 96833 96834 96835 96836 96837 96838 96839 96840 96841 96842 96843 96844 96845 96846 96847 96848 96849 96850 96851 96852 96853 96854 96855 96856 96857 96858 96859 96860 96861 96862 96863 96864 96865 96866 96867 96868 96869 96870 96871 96872 96873 96874 96875 96876 96877 96878 96879 96880 96881 96882 96883 96884 96885 96886 96887 96888 96889 96890 96891 96892 96893 96894 96895 96896 96897 96898 96899 96900 96901 96902 96903 96904 96905 96906 96907 96908 96909 96910 96911 96912 96913 96914 96915 96916 96917 96918 96919 96920 96921 96922 96923 96924 96925 96926 96927 96928 96929 96930 96931 96932 96933 96934 96935 96936 96937 96938 96939 96940 96941 96942 96943 96944 96945 96946 96947 96948 96949 96950 96951 96952 96953 96954 96955 96956 96957 96958 96959 96960 96961 96962 96963 96964 96965 96966 96967 96968 96969 96970 96971 96972 96973 96974 96975 96976 96977 96978 96979 96980 96981 96982 96983 96984 96985 96986 96987 96988 96989 96990 96991 96992 96993 96994 96995 96996 96997 96998 96999 97000 97001 97002 97003 97004 97005 97006 97007 97008 97009 97010 97011 97012 97013 97014 97015 97016 97017 97018 97019 97020 97021 97022 97023 97024 97025 97026 97027 97028 97029 97030 97031 97032 97033 97034 97035 97036 97037 97038 97039 97040 97041 97042 97043 97044 97045 97046 97047 97048 97049 97050 97051 97052 97053 97054 97055 97056 97057 97058 97059 97060 97061 97062 97063 97064 97065 97066 97067 97068 97069 97070 97071 97072 97073 97074 97075 97076 97077 97078 97079 97080 97081 97082 97083 97084 97085 97086 97087 97088 97089 97090 97091 97092 97093 97094 97095 97096 97097 97098 97099 97100 97101 97102 97103 97104 97105 97106 97107 97108 97109 97110 97111 97112 97113 97114 97115 97116 97117 97118 97119 97120 97121 97122 97123 97124 97125 97126 97127 97128 97129 97130 97131 97132 97133 97134 97135 97136 97137 97138 97139 97140 97141 97142 97143 97144 97145 97146 97147 97148 97149 97150 97151 97152 97153 97154 97155 97156 97157 97158 97159 97160 97161 97162 97163 97164 97165 97166 97167 97168 97169 97170 97171 97172 97173 97174 97175 97176 97177 97178 97179 97180 97181 97182 97183 97184 97185 97186 97187 97188 97189 97190 97191 97192 97193 97194 97195 97196 97197 97198 97199 97200 97201 97202 97203 97204 97205 97206 97207 97208 97209 97210 97211 97212 97213 97214 97215 97216 97217 97218 97219 97220 97221 97222 97223 97224 97225 97226 97227 97228 97229 97230 97231 97232 97233 97234 97235 97236 97237 97238 97239 97240 97241 97242 97243 97244 97245 97246 97247 97248 97249 97250 97251 97252 97253 97254 97255 97256 97257 97258 97259 97260 97261 97262 97263 97264 97265 97266 97267 97268 97269 97270 97271 97272 97273 97274 97275 97276 97277 97278 97279 97280 97281 97282 97283 97284 97285 97286 97287 97288 97289 97290 97291 97292 97293 97294 97295 97296 97297 97298 97299 97300 97301 97302 97303 97304 97305 97306 97307 97308 97309 97310 97311 97312 97313 97314 97315 97316 97317 97318 97319 97320 97321 97322 97323 97324 97325 97326 97327 97328 97329 97330 97331 97332 97333 97334 97335 97336 97337 97338 97339 97340 97341 97342 97343 97344 97345 97346 97347 97348 97349 97350 97351 97352 97353 97354 97355 97356 97357 97358 97359 97360 97361 97362 97363 97364 97365 97366 97367 97368 97369 97370 97371 97372 97373 97374 97375 97376 97377 97378 97379 97380 97381 97382 97383 97384 97385 97386 97387 97388 97389 97390 97391 97392 97393 97394 97395 97396 97397 97398 97399 97400 97401 97402 97403 97404 97405 97406 97407 97408 97409 97410 97411 97412 97413 97414 97415 97416 97417 97418 97419 97420 97421 97422 97423 97424 97425 97426 97427 97428 97429 97430 97431 97432 97433 97434 97435 97436 97437 97438 97439 97440 97441 97442 97443 97444 97445 97446 97447 97448 97449 97450 97451 97452 97453 97454 97455 97456 97457 97458 97459 97460 97461 97462 97463 97464 97465 97466 97467 97468 97469 97470 97471 97472 97473 97474 97475 97476 97477 97478 97479 97480 97481 97482 97483 97484 97485 97486 97487 97488 97489 97490 97491 97492 97493 97494 97495 97496 97497 97498 97499 97500 97501 97502 97503 97504 97505 97506 97507 97508 97509 97510 97511 97512 97513 97514 97515 97516 97517 97518 97519 97520 97521 97522 97523 97524 97525 97526 97527 97528 97529 97530 97531 97532 97533 97534 97535 97536 97537 97538 97539 97540 97541 97542 97543 97544 97545 97546 97547 97548 97549 97550 97551 97552 97553 97554 97555 97556 97557 97558 97559 97560 97561 97562 97563 97564 97565 97566 97567 97568 97569 97570 97571 97572 97573 97574 97575 97576 97577 97578 97579 97580 97581 97582 97583 97584 97585 97586 97587 97588 97589 97590 97591 97592 97593 97594 97595 97596 97597 97598 97599 97600 97601 97602 97603 97604 97605 97606 97607 97608 97609 97610 97611 97612 97613 97614 97615 97616 97617 97618 97619 97620 97621 97622 97623 97624 97625 97626 97627 97628 97629 97630 97631 97632 97633 97634 97635 97636 97637 97638 97639 97640 97641 97642 97643 97644 97645 97646 97647 97648 97649 97650 97651 97652 97653 97654 97655 97656 97657 97658 97659 97660 97661 97662 97663 97664 97665 97666 97667 97668 97669 97670 97671 97672 97673 97674 97675 97676 97677 97678 97679 97680 97681 97682 97683 97684 97685 97686 97687 97688 97689 97690 97691 97692 97693 97694 97695 97696 97697 97698 97699 97700 97701 97702 97703 97704 97705 97706 97707 97708 97709 97710 97711 97712 97713 97714 97715 97716 97717 97718 97719 97720 97721 97722 97723 97724 97725 97726 97727 97728 97729 97730 97731 97732 97733 97734 97735 97736 97737 97738 97739 97740 97741 97742 97743 97744 97745 97746 97747 97748 97749 97750 97751 97752 97753 97754 97755 97756 97757 97758 97759 97760 97761 97762 97763 97764 97765 97766 97767 97768 97769 97770 97771 97772 97773 97774 97775 97776 97777 97778 97779 97780 97781 97782 97783 97784 97785 97786 97787 97788 97789 97790 97791 97792 97793 97794 97795 97796 97797 97798 97799 97800 97801 97802 97803 97804 97805 97806 97807 97808 97809 97810 97811 97812 97813 97814 97815 97816 97817 97818 97819 97820 97821 97822 97823 97824 97825 97826 97827 97828 97829 97830 97831 97832 97833 97834 97835 97836 97837 97838 97839 97840 97841 97842 97843 97844 97845 97846 97847 97848 97849 97850 97851 97852 97853 97854 97855 97856 97857 97858 97859 97860 97861 97862 97863 97864 97865 97866 97867 97868 97869 97870 97871 97872 97873 97874 97875 97876 97877 97878 97879 97880 97881 97882 97883 97884 97885 97886 97887 97888 97889 97890 97891 97892 97893 97894 97895 97896 97897 97898 97899 97900 97901 97902 97903 97904 97905 97906 97907 97908 97909 97910 97911 97912 97913 97914 97915 97916 97917 97918 97919 97920 97921 97922 97923 97924 97925 97926 97927 97928 97929 97930 97931 97932 97933 97934 97935 97936 97937 97938 97939 97940 97941 97942 97943 97944 97945 97946 97947 97948 97949 97950 97951 97952 97953 97954 97955 97956 97957 97958 97959 97960 97961 97962 97963 97964 97965 97966 97967 97968 97969 97970 97971 97972 97973 97974 97975 97976 97977 97978 97979 97980 97981 97982 97983 97984 97985 97986 97987 97988 97989 97990 97991 97992 97993 97994 97995 97996 97997 97998 97999 98000 98001 98002 98003 98004 98005 98006 98007 98008 98009 98010 98011 98012 98013 98014 98015 98016 98017 98018 98019 98020 98021 98022 98023 98024 98025 98026 98027 98028 98029 98030 98031 98032 98033 98034 98035 98036 98037 98038 98039 98040 98041 98042 98043 98044 98045 98046 98047 98048 98049 98050 98051 98052 98053 98054 98055 98056 98057 98058 98059 98060 98061 98062 98063 98064 98065 98066 98067 98068 98069 98070 98071 98072 98073 98074 98075 98076 98077 98078 98079 98080 98081 98082 98083 98084 98085 98086 98087 98088 98089 98090 98091 98092 98093 98094 98095 98096 98097 98098 98099 98100 98101 98102 98103 98104 98105 98106 98107 98108 98109 98110 98111 98112 98113 98114 98115 98116 98117 98118 98119 98120 98121 98122 98123 98124 98125 98126 98127 98128 98129 98130 98131 98132 98133 98134 98135 98136 98137 98138 98139 98140 98141 98142 98143 98144 98145 98146 98147 98148 98149 98150 98151 98152 98153 98154 98155 98156 98157 98158 98159 98160 98161 98162 98163 98164 98165 98166 98167 98168 98169 98170 98171 98172 98173 98174 98175 98176 98177 98178 98179 98180 98181 98182 98183 98184 98185 98186 98187 98188 98189 98190 98191 98192 98193 98194 98195 98196 98197 98198 98199 98200 98201 98202 98203 98204 98205 98206 98207 98208 98209 98210 98211 98212 98213 98214 98215 98216 98217 98218 98219 98220 98221 98222 98223 98224 98225 98226 98227 98228 98229 98230 98231 98232 98233 98234 98235 98236 98237 98238 98239 98240 98241 98242 98243 98244 98245 98246 98247 98248 98249 98250 98251 98252 98253 98254 98255 98256 98257 98258 98259 98260 98261 98262 98263 98264 98265 98266 98267 98268 98269 98270 98271 98272 98273 98274 98275 98276 98277 98278 98279 98280 98281 98282 98283 98284 98285 98286 98287 98288 98289 98290 98291 98292 98293 98294 98295 98296 98297 98298 98299 98300 98301 98302 98303 98304 98305 98306 98307 98308 98309 98310 98311 98312 98313 98314 98315 98316 98317 98318 98319 98320 98321 98322 98323 98324 98325 98326 98327 98328 98329 98330 98331 98332 98333 98334 98335 98336 98337 98338 98339 98340 98341 98342 98343 98344 98345 98346 98347 98348 98349 98350 98351 98352 98353 98354 98355 98356 98357 98358 98359 98360 98361 98362 98363 98364 98365 98366 98367 98368 98369 98370 98371 98372 98373 98374 98375 98376 98377 98378 98379 98380 98381 98382 98383 98384 98385 98386 98387 98388 98389 98390 98391 98392 98393 98394 98395 98396 98397 98398 98399 98400 98401 98402 98403 98404 98405 98406 98407 98408 98409 98410 98411 98412 98413 98414 98415 98416 98417 98418 98419 98420 98421 98422 98423 98424 98425 98426 98427 98428 98429 98430 98431 98432 98433 98434 98435 98436 98437 98438 98439 98440 98441 98442 98443 98444 98445 98446 98447 98448 98449 98450 98451 98452 98453 98454 98455 98456 98457 98458 98459 98460 98461 98462 98463 98464 98465 98466 98467 98468 98469 98470 98471 98472 98473 98474 98475 98476 98477 98478 98479 98480 98481 98482 98483 98484 98485 98486 98487 98488 98489 98490 98491 98492 98493 98494 98495 98496 98497 98498 98499 98500 98501 98502 98503 98504 98505 98506 98507 98508 98509 98510 98511 98512 98513 98514 98515 98516 98517 98518 98519 98520 98521 98522 98523 98524 98525 98526 98527 98528 98529 98530 98531 98532 98533 98534 98535 98536 98537 98538 98539 98540 98541 98542 98543 98544 98545 98546 98547 98548 98549 98550 98551 98552 98553 98554 98555 98556 98557 98558 98559 98560 98561 98562 98563 98564 98565 98566 98567 98568 98569 98570 98571 98572 98573 98574 98575 98576 98577 98578 98579 98580 98581 98582 98583 98584 98585 98586 98587 98588 98589 98590 98591 98592 98593 98594 98595 98596 98597 98598 98599 98600 98601 98602 98603 98604 98605 98606 98607 98608 98609 98610 98611 98612 98613 98614 98615 98616 98617 98618 98619 98620 98621 98622 98623 98624 98625 98626 98627 98628 98629 98630 98631 98632 98633 98634 98635 98636 98637 98638 98639 98640 98641 98642 98643 98644 98645 98646 98647 98648 98649 98650 98651 98652 98653 98654 98655 98656 98657 98658 98659 98660 98661 98662 98663 98664 98665 98666 98667 98668 98669 98670 98671 98672 98673 98674 98675 98676 98677 98678 98679 98680 98681 98682 98683 98684 98685 98686 98687 98688 98689 98690 98691 98692 98693 98694 98695 98696 98697 98698 98699 98700 98701 98702 98703 98704 98705 98706 98707 98708 98709 98710 98711 98712 98713 98714 98715 98716 98717 98718 98719 98720 98721 98722 98723 98724 98725 98726 98727 98728 98729 98730 98731 98732 98733 98734 98735 98736 98737 98738 98739 98740 98741 98742 98743 98744 98745 98746 98747 98748 98749 98750 98751 98752 98753 98754 98755 98756 98757 98758 98759 98760 98761 98762 98763 98764 98765 98766 98767 98768 98769 98770 98771 98772 98773 98774 98775 98776 98777 98778 98779 98780 98781 98782 98783 98784 98785 98786 98787 98788 98789 98790 98791 98792 98793 98794 98795 98796 98797 98798 98799 98800 98801 98802 98803 98804 98805 98806 98807 98808 98809 98810 98811 98812 98813 98814 98815 98816 98817 98818 98819 98820 98821 98822 98823 98824 98825 98826 98827 98828 98829 98830 98831 98832 98833 98834 98835 98836 98837 98838 98839 98840 98841 98842 98843 98844 98845 98846 98847 98848 98849 98850 98851 98852 98853 98854 98855 98856 98857 98858 98859 98860 98861 98862 98863 98864 98865 98866 98867 98868 98869 98870 98871 98872 98873 98874 98875 98876 98877 98878 98879 98880 98881 98882 98883 98884 98885 98886 98887 98888 98889 98890 98891 98892 98893 98894 98895 98896 98897 98898 98899 98900 98901 98902 98903 98904 98905 98906 98907 98908 98909 98910 98911 98912 98913 98914 98915 98916 98917 98918 98919 98920 98921 98922 98923 98924 98925 98926 98927 98928 98929 98930 98931 98932 98933 98934 98935 98936 98937 98938 98939 98940 98941 98942 98943 98944 98945 98946 98947 98948 98949 98950 98951 98952 98953 98954 98955 98956 98957 98958 98959 98960 98961 98962 98963 98964 98965 98966 98967 98968 98969 98970 98971 98972 98973 98974 98975 98976 98977 98978 98979 98980 98981 98982 98983 98984 98985 98986 98987 98988 98989 98990 98991 98992 98993 98994 98995 98996 98997 98998 98999 99000 99001 99002 99003 99004 99005 99006 99007 99008 99009 99010 99011 99012 99013 99014 99015 99016 99017 99018 99019 99020 99021 99022 99023 99024 99025 99026 99027 99028 99029 99030 99031 99032 99033 99034 99035 99036 99037 99038 99039 99040 99041 99042 99043 99044 99045 99046 99047 99048 99049 99050 99051 99052 99053 99054 99055 99056 99057 99058 99059 99060 99061 99062 99063 99064 99065 99066 99067 99068 99069 99070 99071 99072 99073 99074 99075 99076 99077 99078 99079 99080 99081 99082 99083 99084 99085 99086 99087 99088 99089 99090 99091 99092 99093 99094 99095 99096 99097 99098 99099 99100 99101 99102 99103 99104 99105 99106 99107 99108 99109 99110 99111 99112 99113 99114 99115 99116 99117 99118 99119 99120 99121 99122 99123 99124 99125 99126 99127 99128 99129 99130 99131 99132 99133 99134 99135 99136 99137 99138 99139 99140 99141 99142 99143 99144 99145 99146 99147 99148 99149 99150 99151 99152 99153 99154 99155 99156 99157 99158 99159 99160 99161 99162 99163 99164 99165 99166 99167 99168 99169 99170 99171 99172 99173 99174 99175 99176 99177 99178 99179 99180 99181 99182 99183 99184 99185 99186 99187 99188 99189 99190 99191 99192 99193 99194 99195 99196 99197 99198 99199 99200 99201 99202 99203 99204 99205 99206 99207 99208 99209 99210 99211 99212 99213 99214 99215 99216 99217 99218 99219 99220 99221 99222 99223 99224 99225 99226 99227 99228 99229 99230 99231 99232 99233 99234 99235 99236 99237 99238 99239 99240 99241 99242 99243 99244 99245 99246 99247 99248 99249 99250 99251 99252 99253 99254 99255 99256 99257 99258 99259 99260 99261 99262 99263 99264 99265 99266 99267 99268 99269 99270 99271 99272 99273 99274 99275 99276 99277 99278 99279 99280 99281 99282 99283 99284 99285 99286 99287 99288 99289 99290 99291 99292 99293 99294 99295 99296 99297 99298 99299 99300 99301 99302 99303 99304 99305 99306 99307 99308 99309 99310 99311 99312 99313 99314 99315 99316 99317 99318 99319 99320 99321 99322 99323 99324 99325 99326 99327 99328 99329 99330 99331 99332 99333 99334 99335 99336 99337 99338 99339 99340 99341 99342 99343 99344 99345 99346 99347 99348 99349 99350 99351 99352 99353 99354 99355 99356 99357 99358 99359 99360 99361 99362 99363 99364 99365 99366 99367 99368 99369 99370 99371 99372 99373 99374 99375 99376 99377 99378 99379 99380 99381 99382 99383 99384 99385 99386 99387 99388 99389 99390 99391 99392 99393 99394 99395 99396 99397 99398 99399 99400 99401 99402 99403 99404 99405 99406 99407 99408 99409 99410 99411 99412 99413 99414 99415 99416 99417 99418 99419 99420 99421 99422 99423 99424 99425 99426 99427 99428 99429 99430 99431 99432 99433 99434 99435 99436 99437 99438 99439 99440 99441 99442 99443 99444 99445 99446 99447 99448 99449 99450 99451 99452 99453 99454 99455 99456 99457 99458 99459 99460 99461 99462 99463 99464 99465 99466 99467 99468 99469 99470 99471 99472 99473 99474 99475 99476 99477 99478 99479 99480 99481 99482 99483 99484 99485 99486 99487 99488 99489 99490 99491 99492 99493 99494 99495 99496 99497 99498 99499 99500 99501 99502 99503 99504 99505 99506 99507 99508 99509 99510 99511 99512 99513 99514 99515 99516 99517 99518 99519 99520 99521 99522 99523 99524 99525 99526 99527 99528 99529 99530 99531 99532 99533 99534 99535 99536 99537 99538 99539 99540 99541 99542 99543 99544 99545 99546 99547 99548 99549 99550 99551 99552 99553 99554 99555 99556 99557 99558 99559 99560 99561 99562 99563 99564 99565 99566 99567 99568 99569 99570 99571 99572 99573 99574 99575 99576 99577 99578 99579 99580 99581 99582 99583 99584 99585 99586 99587 99588 99589 99590 99591 99592 99593 99594 99595 99596 99597 99598 99599 99600 99601 99602 99603 99604 99605 99606 99607 99608 99609 99610 99611 99612 99613 99614 99615 99616 99617 99618 99619 99620 99621 99622 99623 99624 99625 99626 99627 99628 99629 99630 99631 99632 99633 99634 99635 99636 99637 99638 99639 99640 99641 99642 99643 99644 99645 99646 99647 99648 99649 99650 99651 99652 99653 99654 99655 99656 99657 99658 99659 99660 99661 99662 99663 99664 99665 99666 99667 99668 99669 99670 99671 99672 99673 99674 99675 99676 99677 99678 99679 99680 99681 99682 99683 99684 99685 99686 99687 99688 99689 99690 99691 99692 99693 99694 99695 99696 99697 99698 99699 99700 99701 99702 99703 99704 99705 99706 99707 99708 99709 99710 99711 99712 99713 99714 99715 99716 99717 99718 99719 99720 99721 99722 99723 99724 99725 99726 99727 99728 99729 99730 99731 99732 99733 99734 99735 99736 99737 99738 99739 99740 99741 99742 99743 99744 99745 99746 99747 99748 99749 99750 99751 99752 99753 99754 99755 99756 99757 99758 99759 99760 99761 99762 99763 99764 99765 99766 99767 99768 99769 99770 99771 99772 99773 99774 99775 99776 99777 99778 99779 99780 99781 99782 99783 99784 99785 99786 99787 99788 99789 99790 99791 99792 99793 99794 99795 99796 99797 99798 99799 99800 99801 99802 99803 99804 99805 99806 99807 99808 99809 99810 99811 99812 99813 99814 99815 99816 99817 99818 99819 99820 99821 99822 99823 99824 99825 99826 99827 99828 99829 99830 99831 99832 99833 99834 99835 99836 99837 99838 99839 99840 99841 99842 99843 99844 99845 99846 99847 99848 99849 99850 99851 99852 99853 99854 99855 99856 99857 99858 99859 99860 99861 99862 99863 99864 99865 99866 99867 99868 99869 99870 99871 99872 99873 99874 99875 99876 99877 99878 99879 99880 99881 99882 99883 99884 99885 99886 99887 99888 99889 99890 99891 99892 99893 99894 99895 99896 99897 99898 99899 99900 99901 99902 99903 99904 99905 99906 99907 99908 99909 99910 99911 99912 99913 99914 99915 99916 99917 99918 99919 99920 99921 99922 99923 99924 99925 99926 99927 99928 99929 99930 99931 99932 99933 99934 99935 99936 99937 99938 99939 99940 99941 99942 99943 99944 99945 99946 99947 99948 99949 99950 99951 99952 99953 99954 99955 99956 99957 99958 99959 99960 99961 99962 99963 99964 99965 99966 99967 99968 99969 99970 99971 99972 99973 99974 99975 99976 99977 99978 99979 99980 99981 99982 99983 99984 99985 99986 99987 99988 99989 99990 99991 99992 99993 99994 99995 99996 99997 99998 99999 100000 100001 100002 100003 100004 100005 100006 100007 100008 100009 100010 100011 100012 100013 100014 100015 100016 100017 100018 100019 100020 100021 100022 100023 100024 100025 100026 100027 100028 100029 100030 100031 100032 100033 100034 100035 100036 100037 100038 100039 100040 100041 100042 100043 100044 100045 100046 100047 100048 100049 100050 100051 100052 100053 100054 100055 100056 100057 100058 100059 100060 100061 100062 100063 100064 100065 100066 100067 100068 100069 100070 100071 100072 100073 100074 100075 100076 100077 100078 100079 100080 100081 100082 100083 100084 100085 100086 100087 100088 100089 100090 100091 100092 100093 100094 100095 100096 100097 100098 100099 100100 100101 100102 100103 100104 100105 100106 100107 100108 100109 100110 100111 100112 100113 100114 100115 100116 100117 100118 100119 100120 100121 100122 100123 100124 100125 100126 100127 100128 100129 100130 100131 100132 100133 100134 100135 100136 100137 100138 100139 100140 100141 100142 100143 100144 100145 100146 100147 100148 100149 100150 100151 100152 100153 100154 100155 100156 100157 100158 100159 100160 100161 100162 100163 100164 100165 100166 100167 100168 100169 100170 100171 100172 100173 100174 100175 100176 100177 100178 100179 100180 100181 100182 100183 100184 100185 100186 100187 100188 100189 100190 100191 100192 100193 100194 100195 100196 100197 100198 100199 100200 100201 100202 100203 100204 100205 100206 100207 100208 100209 100210 100211 100212 100213 100214 100215 100216 100217 100218 100219 100220 100221 100222 100223 100224 100225 100226 100227 100228 100229 100230 100231 100232 100233 100234 100235 100236 100237 100238 100239 100240 100241 100242 100243 100244 100245 100246 100247 100248 100249 100250 100251 100252 100253 100254 100255 100256 100257 100258 100259 100260 100261 100262 100263 100264 100265 100266 100267 100268 100269 100270 100271 100272 100273 100274 100275 100276 100277 100278 100279 100280 100281 100282 100283 100284 100285 100286 100287 100288 100289 100290 100291 100292 100293 100294 100295 100296 100297 100298 100299 100300 100301 100302 100303 100304 100305 100306 100307 100308 100309 100310 100311 100312 100313 100314 100315 100316 100317 100318 100319 100320 100321 100322 100323 100324 100325 100326 100327 100328 100329 100330 100331 100332 100333 100334 100335 100336 100337 100338 100339 100340 100341 100342 100343 100344 100345 100346 100347 100348 100349 100350 100351 100352 100353 100354 100355 100356 100357 100358 100359 100360 100361 100362 100363 100364 100365 100366 100367 100368 100369 100370 100371 100372 100373 100374 100375 100376 100377 100378 100379 100380 100381 100382 100383 100384 100385 100386 100387 100388 100389 100390 100391 100392 100393 100394 100395 100396 100397 100398 100399 100400 100401 100402 100403 100404 100405 100406 100407 100408 100409 100410 100411 100412 100413 100414 100415 100416 100417 100418 100419 100420 100421 100422 100423 100424 100425 100426 100427 100428 100429 100430 100431 100432 100433 100434 100435 100436 100437 100438 100439 100440 100441 100442 100443 100444 100445 100446 100447 100448 100449 100450 100451 100452 100453 100454 100455 100456 100457 100458 100459 100460 100461 100462 100463 100464 100465 100466 100467 100468 100469 100470 100471 100472 100473 100474 100475 100476 100477 100478 100479 100480 100481 100482 100483 100484 100485 100486 100487 100488 100489 100490 100491 100492 100493 100494 100495 100496 100497 100498 100499 100500 100501 100502 100503 100504 100505 100506 100507 100508 100509 100510 100511 100512 100513 100514 100515 100516 100517 100518 100519 100520 100521 100522 100523 100524 100525 100526 100527 100528 100529 100530 100531 100532 100533 100534 100535 100536 100537 100538 100539 100540 100541 100542 100543 100544 100545 100546 100547 100548 100549 100550 100551 100552 100553 100554 100555 100556 100557 100558 100559 100560 100561 100562 100563 100564 100565 100566 100567 100568 100569 100570 100571 100572 100573 100574 100575 100576 100577 100578 100579 100580 100581 100582 100583 100584 100585 100586 100587 100588 100589 100590 100591 100592 100593 100594 100595 100596 100597 100598 100599 100600 100601 100602 100603 100604 100605 100606 100607 100608 100609 100610 100611 100612 100613 100614 100615 100616 100617 100618 100619 100620 100621 100622 100623 100624 100625 100626 100627 100628 100629 100630 100631 100632 100633 100634 100635 100636 100637 100638 100639 100640 100641 100642 100643 100644 100645 100646 100647 100648 100649 100650 100651 100652 100653 100654 100655 100656 100657 100658 100659 100660 100661 100662 100663 100664 100665 100666 100667 100668 100669 100670 100671 100672 100673 100674 100675 100676 100677 100678 100679 100680 100681 100682 100683 100684 100685 100686 100687 100688 100689 100690 100691 100692 100693 100694 100695 100696 100697 100698 100699 100700 100701 100702 100703 100704 100705 100706 100707 100708 100709 100710 100711 100712 100713 100714 100715 100716 100717 100718 100719 100720 100721 100722 100723 100724 100725 100726 100727 100728 100729 100730 100731 100732 100733 100734 100735 100736 100737 100738 100739 100740 100741 100742 100743 100744 100745 100746 100747 100748 100749 100750 100751 100752 100753 100754 100755 100756 100757 100758 100759 100760 100761 100762 100763 100764 100765 100766 100767 100768 100769 100770 100771 100772 100773 100774 100775 100776 100777 100778 100779 100780 100781 100782 100783 100784 100785 100786 100787 100788 100789 100790 100791 100792 100793 100794 100795 100796 100797 100798 100799 100800 100801 100802 100803 100804 100805 100806 100807 100808 100809 100810 100811 100812 100813 100814 100815 100816 100817 100818 100819 100820 100821 100822 100823 100824 100825 100826 100827 100828 100829 100830 100831 100832 100833 100834 100835 100836 100837 100838 100839 100840 100841 100842 100843 100844 100845 100846 100847 100848 100849 100850 100851 100852 100853 100854 100855 100856 100857 100858 100859 100860 100861 100862 100863 100864 100865 100866 100867 100868 100869 100870 100871 100872 100873 100874 100875 100876 100877 100878 100879 100880 100881 100882 100883 100884 100885 100886 100887 100888 100889 100890 100891 100892 100893 100894 100895 100896 100897 100898 100899 100900 100901 100902 100903 100904 100905 100906 100907 100908 100909 100910 100911 100912 100913 100914 100915 100916 100917 100918 100919 100920 100921 100922 100923 100924 100925 100926 100927 100928 100929 100930 100931 100932 100933 100934 100935 100936 100937 100938 100939 100940 100941 100942 100943 100944 100945 100946 100947 100948 100949 100950 100951 100952 100953 100954 100955 100956 100957 100958 100959 100960 100961 100962 100963 100964 100965 100966 100967 100968 100969 100970 100971 100972 100973 100974 100975 100976 100977 100978 100979 100980 100981 100982 100983 100984 100985 100986 100987 100988 100989 100990 100991 100992 100993 100994 100995 100996 100997 100998 100999 101000 101001 101002 101003 101004 101005 101006 101007 101008 101009 101010 101011 101012 101013 101014 101015 101016 101017 101018 101019 101020 101021 101022 101023 101024 101025 101026 101027 101028 101029 101030 101031 101032 101033 101034 101035 101036 101037 101038 101039 101040 101041 101042 101043 101044 101045 101046 101047 101048 101049 101050 101051 101052 101053 101054 101055 101056 101057 101058 101059 101060 101061 101062 101063 101064 101065 101066 101067 101068 101069 101070 101071 101072 101073 101074 101075 101076 101077 101078 101079 101080 101081 101082 101083 101084 101085 101086 101087 101088 101089 101090 101091 101092 101093 101094 101095 101096 101097 101098 101099 101100 101101 101102 101103 101104 101105 101106 101107 101108 101109 101110 101111 101112 101113 101114 101115 101116 101117 101118 101119 101120 101121 101122 101123 101124 101125 101126 101127 101128 101129 101130 101131 101132 101133 101134 101135 101136 101137 101138 101139 101140 101141 101142 101143 101144 101145 101146 101147 101148 101149 101150 101151 101152 101153 101154 101155 101156 101157 101158 101159 101160 101161 101162 101163 101164 101165 101166 101167 101168 101169 101170 101171 101172 101173 101174 101175 101176 101177 101178 101179 101180 101181 101182 101183 101184 101185 101186 101187 101188 101189 101190 101191 101192 101193 101194 101195 101196 101197 101198 101199 101200 101201 101202 101203 101204 101205 101206 101207 101208 101209 101210 101211 101212 101213 101214 101215 101216 101217 101218 101219 101220 101221 101222 101223 101224 101225 101226 101227 101228 101229 101230 101231 101232 101233 101234 101235 101236 101237 101238 101239 101240 101241 101242 101243 101244 101245 101246 101247 101248 101249 101250 101251 101252 101253 101254 101255 101256 101257 101258 101259 101260 101261 101262 101263 101264 101265 101266 101267 101268 101269 101270 101271 101272 101273 101274 101275 101276 101277 101278 101279 101280 101281 101282 101283 101284 101285 101286 101287 101288 101289 101290 101291 101292 101293 101294 101295 101296 101297 101298 101299 101300 101301 101302 101303 101304 101305 101306 101307 101308 101309 101310 101311 101312 101313 101314 101315 101316 101317 101318 101319 101320 101321 101322 101323 101324 101325 101326 101327 101328 101329 101330 101331 101332 101333 101334 101335 101336 101337 101338 101339 101340 101341 101342 101343 101344 101345 101346 101347 101348 101349 101350 101351 101352 101353 101354 101355 101356 101357 101358 101359 101360 101361 101362 101363 101364 101365 101366 101367 101368 101369 101370 101371 101372 101373 101374 101375 101376 101377 101378 101379 101380 101381 101382 101383 101384 101385 101386 101387 101388 101389 101390 101391 101392 101393 101394 101395 101396 101397 101398 101399 101400 101401 101402 101403 101404 101405 101406 101407 101408 101409 101410 101411 101412 101413 101414 101415 101416 101417 101418 101419 101420 101421 101422 101423 101424 101425 101426 101427 101428 101429 101430 101431 101432 101433 101434 101435 101436 101437 101438 101439 101440 101441 101442 101443 101444 101445 101446 101447 101448 101449 101450 101451 101452 101453 101454 101455 101456 101457 101458 101459 101460 101461 101462 101463 101464 101465 101466 101467 101468 101469 101470 101471 101472 101473 101474 101475 101476 101477 101478 101479 101480 101481 101482 101483 101484 101485 101486 101487 101488 101489 101490 101491 101492 101493 101494 101495 101496 101497 101498 101499 101500 101501 101502 101503 101504 101505 101506 101507 101508 101509 101510 101511 101512 101513 101514 101515 101516 101517 101518 101519 101520 101521 101522 101523 101524 101525 101526 101527 101528 101529 101530 101531 101532 101533 101534 101535 101536 101537 101538 101539 101540 101541 101542 101543 101544 101545 101546 101547 101548 101549 101550 101551 101552 101553 101554 101555 101556 101557 101558 101559 101560 101561 101562 101563 101564 101565 101566 101567 101568 101569 101570 101571 101572 101573 101574 101575 101576 101577 101578 101579 101580 101581 101582 101583 101584 101585 101586 101587 101588 101589 101590 101591 101592 101593 101594 101595 101596 101597 101598 101599 101600 101601 101602 101603 101604 101605 101606 101607 101608 101609 101610 101611 101612 101613 101614 101615 101616 101617 101618 101619 101620 101621 101622 101623 101624 101625 101626 101627 101628 101629 101630 101631 101632 101633 101634 101635 101636 101637 101638 101639 101640 101641 101642 101643 101644 101645 101646 101647 101648 101649 101650 101651 101652 101653 101654 101655 101656 101657 101658 101659 101660 101661 101662 101663 101664 101665 101666 101667 101668 101669 101670 101671 101672 101673 101674 101675 101676 101677 101678 101679 101680 101681 101682 101683 101684 101685 101686 101687 101688 101689 101690 101691 101692 101693 101694 101695 101696 101697 101698 101699 101700 101701 101702 101703 101704 101705 101706 101707 101708 101709 101710 101711 101712 101713 101714 101715 101716 101717 101718 101719 101720 101721 101722 101723 101724 101725 101726 101727 101728 101729 101730 101731 101732 101733 101734 101735 101736 101737 101738 101739 101740 101741 101742 101743 101744 101745 101746 101747 101748 101749 101750 101751 101752 101753 101754 101755 101756 101757 101758 101759 101760 101761 101762 101763 101764 101765 101766 101767 101768 101769 101770 101771 101772 101773 101774 101775 101776 101777 101778 101779 101780 101781 101782 101783 101784 101785 101786 101787 101788 101789 101790 101791 101792 101793 101794 101795 101796 101797 101798 101799 101800 101801 101802 101803 101804 101805 101806 101807 101808 101809 101810 101811 101812 101813 101814 101815 101816 101817 101818 101819 101820 101821 101822 101823 101824 101825 101826 101827 101828 101829 101830 101831 101832 101833 101834 101835 101836 101837 101838 101839 101840 101841 101842 101843 101844 101845 101846 101847 101848 101849 101850 101851 101852 101853 101854 101855 101856 101857 101858 101859 101860 101861 101862 101863 101864 101865 101866 101867 101868 101869 101870 101871 101872 101873 101874 101875 101876 101877 101878 101879 101880 101881 101882 101883 101884 101885 101886 101887 101888 101889 101890 101891 101892 101893 101894 101895 101896 101897 101898 101899 101900 101901 101902 101903 101904 101905 101906 101907 101908 101909 101910 101911 101912 101913 101914 101915 101916 101917 101918 101919 101920 101921 101922 101923 101924 101925 101926 101927 101928 101929 101930 101931 101932 101933 101934 101935 101936 101937 101938 101939 101940 101941 101942 101943 101944 101945 101946 101947 101948 101949 101950 101951 101952 101953 101954 101955 101956 101957 101958 101959 101960 101961 101962 101963 101964 101965 101966 101967 101968 101969 101970 101971 101972 101973 101974 101975 101976 101977 101978 101979 101980 101981 101982 101983 101984 101985 101986 101987 101988 101989 101990 101991 101992 101993 101994 101995 101996 101997 101998 101999 102000 102001 102002 102003 102004 102005 102006 102007 102008 102009 102010 102011 102012 102013 102014 102015 102016 102017 102018 102019 102020 102021 102022 102023 102024 102025 102026 102027 102028 102029 102030 102031 102032 102033 102034 102035 102036 102037 102038 102039 102040 102041 102042 102043 102044 102045 102046 102047 102048 102049 102050 102051 102052 102053 102054 102055 102056 102057 102058 102059 102060 102061 102062 102063 102064 102065 102066 102067 102068 102069 102070 102071 102072 102073 102074 102075 102076 102077 102078 102079 102080 102081 102082 102083 102084 102085 102086 102087 102088 102089 102090 102091 102092 102093 102094 102095 102096 102097 102098 102099 102100 102101 102102 102103 102104 102105 102106 102107 102108 102109 102110 102111 102112 102113 102114 102115 102116 102117 102118 102119 102120 102121 102122 102123 102124 102125 102126 102127 102128 102129 102130 102131 102132 102133 102134 102135 102136 102137 102138 102139 102140 102141 102142 102143 102144 102145 102146 102147 102148 102149 102150 102151 102152 102153 102154 102155 102156 102157 102158 102159 102160 102161 102162 102163 102164 102165 102166 102167 102168 102169 102170 102171 102172 102173 102174 102175 102176 102177 102178 102179 102180 102181 102182 102183 102184 102185 102186 102187 102188 102189 102190 102191 102192 102193 102194 102195 102196 102197 102198 102199 102200 102201 102202 102203 102204 102205 102206 102207 102208 102209 102210 102211 102212 102213 102214 102215 102216 102217 102218 102219 102220 102221 102222 102223 102224 102225 102226 102227 102228 102229 102230 102231 102232 102233 102234 102235 102236 102237 102238 102239 102240 102241 102242 102243 102244 102245 102246 102247 102248 102249 102250 102251 102252 102253 102254 102255 102256 102257 102258 102259 102260 102261 102262 102263 102264 102265 102266 102267 102268 102269 102270 102271 102272 102273 102274 102275 102276 102277 102278 102279 102280 102281 102282 102283 102284 102285 102286 102287 102288 102289 102290 102291 102292 102293 102294 102295 102296 102297 102298 102299 102300 102301 102302 102303 102304 102305 102306 102307 102308 102309 102310 102311 102312 102313 102314 102315 102316 102317 102318 102319 102320 102321 102322 102323 102324 102325 102326 102327 102328 102329 102330 102331 102332 102333 102334 102335 102336 102337 102338 102339 102340 102341 102342 102343 102344 102345 102346 102347 102348 102349 102350 102351 102352 102353 102354 102355 102356 102357 102358 102359 102360 102361 102362 102363 102364 102365 102366 102367 102368 102369 102370 102371 102372 102373 102374 102375 102376 102377 102378 102379 102380 102381 102382 102383 102384 102385 102386 102387 102388 102389 102390 102391 102392 102393 102394 102395 102396 102397 102398 102399 102400 102401 102402 102403 102404 102405 102406 102407 102408 102409 102410 102411 102412 102413 102414 102415 102416 102417 102418 102419 102420 102421 102422 102423 102424 102425 102426 102427 102428 102429 102430 102431 102432 102433 102434 102435 102436 102437 102438 102439 102440 102441 102442 102443 102444 102445 102446 102447 102448 102449 102450 102451 102452 102453 102454 102455 102456 102457 102458 102459 102460 102461 102462 102463 102464 102465 102466 102467 102468 102469 102470 102471 102472 102473 102474 102475 102476 102477 102478 102479 102480 102481 102482 102483 102484 102485 102486 102487 102488 102489 102490 102491 102492 102493 102494 102495 102496 102497 102498 102499 102500 102501 102502 102503 102504 102505 102506 102507 102508 102509 102510 102511 102512 102513 102514 102515 102516 102517 102518 102519 102520 102521 102522 102523 102524 102525 102526 102527 102528 102529 102530 102531 102532 102533 102534 102535 102536 102537 102538 102539 102540 102541 102542 102543 102544 102545 102546 102547 102548 102549 102550 102551 102552 102553 102554 102555 102556 102557 102558 102559 102560 102561 102562 102563 102564 102565 102566 102567 102568 102569 102570 102571 102572 102573 102574 102575 102576 102577 102578 102579 102580 102581 102582 102583 102584 102585 102586 102587 102588 102589 102590 102591 102592 102593 102594 102595 102596 102597 102598 102599 102600 102601 102602 102603 102604 102605 102606 102607 102608 102609 102610 102611 102612 102613 102614 102615 102616 102617 102618 102619 102620 102621 102622 102623 102624 102625 102626 102627 102628 102629 102630 102631 102632 102633 102634 102635 102636 102637 102638 102639 102640 102641 102642 102643 102644 102645 102646 102647 102648 102649 102650 102651 102652 102653 102654 102655 102656 102657 102658 102659 102660 102661 102662 102663 102664 102665 102666 102667 102668 102669 102670 102671 102672 102673 102674 102675 102676 102677 102678 102679 102680 102681 102682 102683 102684 102685 102686 102687 102688 102689 102690 102691 102692 102693 102694 102695 102696 102697 102698 102699 102700 102701 102702 102703 102704 102705 102706 102707 102708 102709 102710 102711 102712 102713 102714 102715 102716 102717 102718 102719 102720 102721 102722 102723 102724 102725 102726 102727 102728 102729 102730 102731 102732 102733 102734 102735 102736 102737 102738 102739 102740 102741 102742 102743 102744 102745 102746 102747 102748 102749 102750 102751 102752 102753 102754 102755 102756 102757 102758 102759 102760 102761 102762 102763 102764 102765 102766 102767 102768 102769 102770 102771 102772 102773 102774 102775 102776 102777 102778 102779 102780 102781 102782 102783 102784 102785 102786 102787 102788 102789 102790 102791 102792 102793 102794 102795 102796 102797 102798 102799 102800 102801 102802 102803 102804 102805 102806 102807 102808 102809 102810 102811 102812 102813 102814 102815 102816 102817 102818 102819 102820 102821 102822 102823 102824 102825 102826 102827 102828 102829 102830 102831 102832 102833 102834 102835 102836 102837 102838 102839 102840 102841 102842 102843 102844 102845 102846 102847 102848 102849 102850 102851 102852 102853 102854 102855 102856 102857 102858 102859 102860 102861 102862 102863 102864 102865 102866 102867 102868 102869 102870 102871 102872 102873 102874 102875 102876 102877 102878 102879 102880 102881 102882 102883 102884 102885 102886 102887 102888 102889 102890 102891 102892 102893 102894 102895 102896 102897 102898 102899 102900 102901 102902 102903 102904 102905 102906 102907 102908 102909 102910 102911 102912 102913 102914 102915 102916 102917 102918 102919 102920 102921 102922 102923 102924 102925 102926 102927 102928 102929 102930 102931 102932 102933 102934 102935 102936 102937 102938 102939 102940 102941 102942 102943 102944 102945 102946 102947 102948 102949 102950 102951 102952 102953 102954 102955 102956 102957 102958 102959 102960 102961 102962 102963 102964 102965 102966 102967 102968 102969 102970 102971 102972 102973 102974 102975 102976 102977 102978 102979 102980 102981 102982 102983 102984 102985 102986 102987 102988 102989 102990 102991 102992 102993 102994 102995 102996 102997 102998 102999 103000 103001 103002 103003 103004 103005 103006 103007 103008 103009 103010 103011 103012 103013 103014 103015 103016 103017 103018 103019 103020 103021 103022 103023 103024 103025 103026 103027 103028 103029 103030 103031 103032 103033 103034 103035 103036 103037 103038 103039 103040 103041 103042 103043 103044 103045 103046 103047 103048 103049 103050 103051 103052 103053 103054 103055 103056 103057 103058 103059 103060 103061 103062 103063 103064 103065 103066 103067 103068 103069 103070 103071 103072 103073 103074 103075 103076 103077 103078 103079 103080 103081 103082 103083 103084 103085 103086 103087 103088 103089 103090 103091 103092 103093 103094 103095 103096 103097 103098 103099 103100 103101 103102 103103 103104 103105 103106 103107 103108 103109 103110 103111 103112 103113 103114 103115 103116 103117 103118 103119 103120 103121 103122 103123 103124 103125 103126 103127 103128 103129 103130 103131 103132 103133 103134 103135 103136 103137 103138 103139 103140 103141 103142 103143 103144 103145 103146 103147 103148 103149 103150 103151 103152 103153 103154 103155 103156 103157 103158 103159 103160 103161 103162 103163 103164 103165 103166 103167 103168 103169 103170 103171 103172 103173 103174 103175 103176 103177 103178 103179 103180 103181 103182 103183 103184 103185 103186 103187 103188 103189 103190 103191 103192 103193 103194 103195 103196 103197 103198 103199 103200 103201 103202 103203 103204 103205 103206 103207 103208 103209 103210 103211 103212 103213 103214 103215 103216 103217 103218 103219 103220 103221 103222 103223 103224 103225 103226 103227 103228 103229 103230 103231 103232 103233 103234 103235 103236 103237 103238 103239 103240 103241 103242 103243 103244 103245 103246 103247 103248 103249 103250 103251 103252 103253 103254 103255 103256 103257 103258 103259 103260 103261 103262 103263 103264 103265 103266 103267 103268 103269 103270 103271 103272 103273 103274 103275 103276 103277 103278 103279 103280 103281 103282 103283 103284 103285 103286 103287 103288 103289 103290 103291 103292 103293 103294 103295 103296 103297 103298 103299 103300 103301 103302 103303 103304 103305 103306 103307 103308 103309 103310 103311 103312 103313 103314 103315 103316 103317 103318 103319 103320 103321 103322 103323 103324 103325 103326 103327 103328 103329 103330 103331 103332 103333 103334 103335 103336 103337 103338 103339 103340 103341 103342 103343 103344 103345 103346 103347 103348 103349 103350 103351 103352 103353 103354 103355 103356 103357 103358 103359 103360 103361 103362 103363 103364 103365 103366 103367 103368 103369 103370 103371 103372 103373 103374 103375 103376 103377 103378 103379 103380 103381 103382 103383 103384 103385 103386 103387 103388 103389 103390 103391 103392 103393 103394 103395 103396 103397 103398 103399 103400 103401 103402 103403 103404 103405 103406 103407 103408 103409 103410 103411 103412 103413 103414 103415 103416 103417 103418 103419 103420 103421 103422 103423 103424 103425 103426 103427 103428 103429 103430 103431 103432 103433 103434 103435 103436 103437 103438 103439 103440 103441 103442 103443 103444 103445 103446 103447 103448 103449 103450 103451 103452 103453 103454 103455 103456 103457 103458 103459 103460 103461 103462 103463 103464 103465 103466 103467 103468 103469 103470 103471 103472 103473 103474 103475 103476 103477 103478 103479 103480 103481 103482 103483 103484 103485 103486 103487 103488 103489 103490 103491 103492 103493 103494 103495 103496 103497 103498 103499 103500 103501 103502 103503 103504 103505 103506 103507 103508 103509 103510 103511 103512 103513 103514 103515 103516 103517 103518 103519 103520 103521 103522 103523 103524 103525 103526 103527 103528 103529 103530 103531 103532 103533 103534 103535 103536 103537 103538 103539 103540 103541 103542 103543 103544 103545 103546 103547 103548 103549 103550 103551 103552 103553 103554 103555 103556 103557 103558 103559 103560 103561 103562 103563 103564 103565 103566 103567 103568 103569 103570 103571 103572 103573 103574 103575 103576 103577 103578 103579 103580 103581 103582 103583 103584 103585 103586 103587 103588 103589 103590 103591 103592 103593 103594 103595 103596 103597 103598 103599 103600 103601 103602 103603 103604 103605 103606 103607 103608 103609 103610 103611 103612 103613 103614 103615 103616 103617 103618 103619 103620 103621 103622 103623 103624 103625 103626 103627 103628 103629 103630 103631 103632 103633 103634 103635 103636 103637 103638 103639 103640 103641 103642 103643 103644 103645 103646 103647 103648 103649 103650 103651 103652 103653 103654 103655 103656 103657 103658 103659 103660 103661 103662 103663 103664 103665 103666 103667 103668 103669 103670 103671 103672 103673 103674 103675 103676 103677 103678 103679 103680 103681 103682 103683 103684 103685 103686 103687 103688 103689 103690 103691 103692 103693 103694 103695 103696 103697 103698 103699 103700 103701 103702 103703 103704 103705 103706 103707 103708 103709 103710 103711 103712 103713 103714 103715 103716 103717 103718 103719 103720 103721 103722 103723 103724 103725 103726 103727 103728 103729 103730 103731 103732 103733 103734 103735 103736 103737 103738 103739 103740 103741 103742 103743 103744 103745 103746 103747 103748 103749 103750 103751 103752 103753 103754 103755 103756 103757 103758 103759 103760 103761 103762 103763 103764 103765 103766 103767 103768 103769 103770 103771 103772 103773 103774 103775 103776 103777 103778 103779 103780 103781 103782 103783 103784 103785 103786 103787 103788 103789 103790 103791 103792 103793 103794 103795 103796 103797 103798 103799 103800 103801 103802 103803 103804 103805 103806 103807 103808 103809 103810 103811 103812 103813 103814 103815 103816 103817 103818 103819 103820 103821 103822 103823 103824 103825 103826 103827 103828 103829 103830 103831 103832 103833 103834 103835 103836 103837 103838 103839 103840 103841 103842 103843 103844 103845 103846 103847 103848 103849 103850 103851 103852 103853 103854 103855 103856 103857 103858 103859 103860 103861 103862 103863 103864 103865 103866 103867 103868 103869 103870 103871 103872 103873 103874 103875 103876 103877 103878 103879 103880 103881 103882 103883 103884 103885 103886 103887 103888 103889 103890 103891 103892 103893 103894 103895 103896 103897 103898 103899 103900 103901 103902 103903 103904 103905 103906 103907 103908 103909 103910 103911 103912 103913 103914 103915 103916 103917 103918 103919 103920 103921 103922 103923 103924 103925 103926 103927 103928 103929 103930 103931 103932 103933 103934 103935 103936 103937 103938 103939 103940 103941 103942 103943 103944 103945 103946 103947 103948 103949 103950 103951 103952 103953 103954 103955 103956 103957 103958 103959 103960 103961 103962 103963 103964 103965 103966 103967 103968 103969 103970 103971 103972 103973 103974 103975 103976 103977 103978 103979 103980 103981 103982 103983 103984 103985 103986 103987 103988 103989 103990 103991 103992 103993 103994 103995 103996 103997 103998 103999 104000 104001 104002 104003 104004 104005 104006 104007 104008 104009 104010 104011 104012 104013 104014 104015 104016 104017 104018 104019 104020 104021 104022 104023 104024 104025 104026 104027 104028 104029 104030 104031 104032 104033 104034 104035 104036 104037 104038 104039 104040 104041 104042 104043 104044 104045 104046 104047 104048 104049 104050 104051 104052 104053 104054 104055 104056 104057 104058 104059 104060 104061 104062 104063 104064 104065 104066 104067 104068 104069 104070 104071 104072 104073 104074 104075 104076 104077 104078 104079 104080 104081 104082 104083 104084 104085 104086 104087 104088 104089 104090 104091 104092 104093 104094 104095 104096 104097 104098 104099 104100 104101 104102 104103 104104 104105 104106 104107 104108 104109 104110 104111 104112 104113 104114 104115 104116 104117 104118 104119 104120 104121 104122 104123 104124 104125 104126 104127 104128 104129 104130 104131 104132 104133 104134 104135 104136 104137 104138 104139 104140 104141 104142 104143 104144 104145 104146 104147 104148 104149 104150 104151 104152 104153 104154 104155 104156 104157 104158 104159 104160 104161 104162 104163 104164 104165 104166 104167 104168 104169 104170 104171 104172 104173 104174 104175 104176 104177 104178 104179 104180 104181 104182 104183 104184 104185 104186 104187 104188 104189 104190 104191 104192 104193 104194 104195 104196 104197 104198 104199 104200 104201 104202 104203 104204 104205 104206 104207 104208 104209 104210 104211 104212 104213 104214 104215 104216 104217 104218 104219 104220 104221 104222 104223 104224 104225 104226 104227 104228 104229 104230 104231 104232 104233 104234 104235 104236 104237 104238 104239 104240 104241 104242 104243 104244 104245 104246 104247 104248 104249 104250 104251 104252 104253 104254 104255 104256 104257 104258 104259 104260 104261 104262 104263 104264 104265 104266 104267 104268 104269 104270 104271 104272 104273 104274 104275 104276 104277 104278 104279 104280 104281 104282 104283 104284 104285 104286 104287 104288 104289 104290 104291 104292 104293 104294 104295 104296 104297 104298 104299 104300 104301 104302 104303 104304 104305 104306 104307 104308 104309 104310 104311 104312 104313 104314 104315 104316 104317 104318 104319 104320 104321 104322 104323 104324 104325 104326 104327 104328 104329 104330 104331 104332 104333 104334 104335 104336 104337 104338 104339 104340 104341 104342 104343 104344 104345 104346 104347 104348 104349 104350 104351 104352 104353 104354 104355 104356 104357 104358 104359 104360 104361 104362 104363 104364 104365 104366 104367 104368 104369 104370 104371 104372 104373 104374 104375 104376 104377 104378 104379 104380 104381 104382 104383 104384 104385 104386 104387 104388 104389 104390 104391 104392 104393 104394 104395 104396 104397 104398 104399 104400 104401 104402 104403 104404 104405 104406 104407 104408 104409 104410 104411 104412 104413 104414 104415 104416 104417 104418 104419 104420 104421 104422 104423 104424 104425 104426 104427 104428 104429 104430 104431 104432 104433 104434 104435 104436 104437 104438 104439 104440 104441 104442 104443 104444 104445 104446 104447 104448 104449 104450 104451 104452 104453 104454 104455 104456 104457 104458 104459 104460 104461 104462 104463 104464 104465 104466 104467 104468 104469 104470 104471 104472 104473 104474 104475 104476 104477 104478 104479 104480 104481 104482 104483 104484 104485 104486 104487 104488 104489 104490 104491 104492 104493 104494 104495 104496 104497 104498 104499 104500 104501 104502 104503 104504 104505 104506 104507 104508 104509 104510 104511 104512 104513 104514 104515 104516 104517 104518 104519 104520 104521 104522 104523 104524 104525 104526 104527 104528 104529 104530 104531 104532 104533 104534 104535 104536 104537 104538 104539 104540 104541 104542 104543 104544 104545 104546 104547 104548 104549 104550 104551 104552 104553 104554 104555 104556 104557 104558 104559 104560 104561 104562 104563 104564 104565 104566 104567 104568 104569 104570 104571 104572 104573 104574 104575 104576 104577 104578 104579 104580 104581 104582 104583 104584 104585 104586 104587 104588 104589 104590 104591 104592 104593 104594 104595 104596 104597 104598 104599 104600 104601 104602 104603 104604 104605 104606 104607 104608 104609 104610 104611 104612 104613 104614 104615 104616 104617 104618 104619 104620 104621 104622 104623 104624 104625 104626 104627 104628 104629 104630 104631 104632 104633 104634 104635 104636 104637 104638 104639 104640 104641 104642 104643 104644 104645 104646 104647 104648 104649 104650 104651 104652 104653 104654 104655 104656 104657 104658 104659 104660 104661 104662 104663 104664 104665 104666 104667 104668 104669 104670 104671 104672 104673 104674 104675 104676 104677 104678 104679 104680 104681 104682 104683 104684 104685 104686 104687 104688 104689 104690 104691 104692 104693 104694 104695 104696 104697 104698 104699 104700 104701 104702 104703 104704 104705 104706 104707 104708 104709 104710 104711 104712 104713 104714 104715 104716 104717 104718 104719 104720 104721 104722 104723 104724 104725 104726 104727 104728 104729 104730 104731 104732 104733 104734 104735 104736 104737 104738 104739 104740 104741 104742 104743 104744 104745 104746 104747 104748 104749 104750 104751 104752 104753 104754 104755 104756 104757 104758 104759 104760 104761 104762 104763 104764 104765 104766 104767 104768 104769 104770 104771 104772 104773 104774 104775 104776 104777 104778 104779 104780 104781 104782 104783 104784 104785 104786 104787 104788 104789 104790 104791 104792 104793 104794 104795 104796 104797 104798 104799 104800 104801 104802 104803 104804 104805 104806 104807 104808 104809 104810 104811 104812 104813 104814 104815 104816 104817 104818 104819 104820 104821 104822 104823 104824 104825 104826 104827 104828 104829 104830 104831 104832 104833 104834 104835 104836 104837 104838 104839 104840 104841 104842 104843 104844 104845 104846 104847 104848 104849 104850 104851 104852 104853 104854 104855 104856 104857 104858 104859 104860 104861 104862 104863 104864 104865 104866 104867 104868 104869 104870 104871 104872 104873 104874 104875 104876 104877 104878 104879 104880 104881 104882 104883 104884 104885 104886 104887 104888 104889 104890 104891 104892 104893 104894 104895 104896 104897 104898 104899 104900 104901 104902 104903 104904 104905 104906 104907 104908 104909 104910 104911 104912 104913 104914 104915 104916 104917 104918 104919 104920 104921 104922 104923 104924 104925 104926 104927 104928 104929 104930 104931 104932 104933 104934 104935 104936 104937 104938 104939 104940 104941 104942 104943 104944 104945 104946 104947 104948 104949 104950 104951 104952 104953 104954 104955 104956 104957 104958 104959 104960 104961 104962 104963 104964 104965 104966 104967 104968 104969 104970 104971 104972 104973 104974 104975 104976 104977 104978 104979 104980 104981 104982 104983 104984 104985 104986 104987 104988 104989 104990 104991 104992 104993 104994 104995 104996 104997 104998 104999 105000 105001 105002 105003 105004 105005 105006 105007 105008 105009 105010 105011 105012 105013 105014 105015 105016 105017 105018 105019 105020 105021 105022 105023 105024 105025 105026 105027 105028 105029 105030 105031 105032 105033 105034 105035 105036 105037 105038 105039 105040 105041 105042 105043 105044 105045 105046 105047 105048 105049 105050 105051 105052 105053 105054 105055 105056 105057 105058 105059 105060 105061 105062 105063 105064 105065 105066 105067 105068 105069 105070 105071 105072 105073 105074 105075 105076 105077 105078 105079 105080 105081 105082 105083 105084 105085 105086 105087 105088 105089 105090 105091 105092 105093 105094 105095 105096 105097 105098 105099 105100 105101 105102 105103 105104 105105 105106 105107 105108 105109 105110 105111 105112 105113 105114 105115 105116 105117 105118 105119 105120 105121 105122 105123 105124 105125 105126 105127 105128 105129 105130 105131 105132 105133 105134 105135 105136 105137 105138 105139 105140 105141 105142 105143 105144 105145 105146 105147 105148 105149 105150 105151 105152 105153 105154 105155 105156 105157 105158 105159 105160 105161 105162 105163 105164 105165 105166 105167 105168 105169 105170 105171 105172 105173 105174 105175 105176 105177 105178 105179 105180 105181 105182 105183 105184 105185 105186 105187 105188 105189 105190 105191 105192 105193 105194 105195 105196 105197 105198 105199 105200 105201 105202 105203 105204 105205 105206 105207 105208 105209 105210 105211 105212 105213 105214 105215 105216 105217 105218 105219 105220 105221 105222 105223 105224 105225 105226 105227 105228 105229 105230 105231 105232 105233 105234 105235 105236 105237 105238 105239 105240 105241 105242 105243 105244 105245 105246 105247 105248 105249 105250 105251 105252 105253 105254 105255 105256 105257 105258 105259 105260 105261 105262 105263 105264 105265 105266 105267 105268 105269 105270 105271 105272 105273 105274 105275 105276 105277 105278 105279 105280 105281 105282 105283 105284 105285 105286 105287 105288 105289 105290 105291 105292 105293 105294 105295 105296 105297 105298 105299 105300 105301 105302 105303 105304 105305 105306 105307 105308 105309 105310 105311 105312 105313 105314 105315 105316 105317 105318 105319 105320 105321 105322 105323 105324 105325 105326 105327 105328 105329 105330 105331 105332 105333 105334 105335 105336 105337 105338 105339 105340 105341 105342 105343 105344 105345 105346 105347 105348 105349 105350 105351 105352 105353 105354 105355 105356 105357 105358 105359 105360 105361 105362 105363 105364 105365 105366 105367 105368 105369 105370 105371 105372 105373 105374 105375 105376 105377 105378 105379 105380 105381 105382 105383 105384 105385 105386 105387 105388 105389 105390 105391 105392 105393 105394 105395 105396 105397 105398 105399 105400 105401 105402 105403 105404 105405 105406 105407 105408 105409 105410 105411 105412 105413 105414 105415 105416 105417 105418 105419 105420 105421 105422 105423 105424 105425 105426 105427 105428 105429 105430 105431 105432 105433 105434 105435 105436 105437 105438 105439 105440 105441 105442 105443 105444 105445 105446 105447 105448 105449 105450 105451 105452 105453 105454 105455 105456 105457 105458 105459 105460 105461 105462 105463 105464 105465 105466 105467 105468 105469 105470 105471 105472 105473 105474 105475 105476 105477 105478 105479 105480 105481 105482 105483 105484 105485 105486 105487 105488 105489 105490 105491 105492 105493 105494 105495 105496 105497 105498 105499 105500 105501 105502 105503 105504 105505 105506 105507 105508 105509 105510 105511 105512 105513 105514 105515 105516 105517 105518 105519 105520 105521 105522 105523 105524 105525 105526 105527 105528 105529 105530 105531 105532 105533 105534 105535 105536 105537 105538 105539 105540 105541 105542 105543 105544 105545 105546 105547 105548 105549 105550 105551 105552 105553 105554 105555 105556 105557 105558 105559 105560 105561 105562 105563 105564 105565 105566 105567 105568 105569 105570 105571 105572 105573 105574 105575 105576 105577 105578 105579 105580 105581 105582 105583 105584 105585 105586 105587 105588 105589 105590 105591 105592 105593 105594 105595 105596 105597 105598 105599 105600 105601 105602 105603 105604 105605 105606 105607 105608 105609 105610 105611 105612 105613 105614 105615 105616 105617 105618 105619 105620 105621 105622 105623 105624 105625 105626 105627 105628 105629 105630 105631 105632 105633 105634 105635 105636 105637 105638 105639 105640 105641 105642 105643 105644 105645 105646 105647 105648 105649 105650 105651 105652 105653 105654 105655 105656 105657 105658 105659 105660 105661 105662 105663 105664 105665 105666 105667 105668 105669 105670 105671 105672 105673 105674 105675 105676 105677 105678 105679 105680 105681 105682 105683 105684 105685 105686 105687 105688 105689 105690 105691 105692 105693 105694 105695 105696 105697 105698 105699 105700 105701 105702 105703 105704 105705 105706 105707 105708 105709 105710 105711 105712 105713 105714 105715 105716 105717 105718 105719 105720 105721 105722 105723 105724 105725 105726 105727 105728 105729 105730 105731 105732 105733 105734 105735 105736 105737 105738 105739 105740 105741 105742 105743 105744 105745 105746 105747 105748 105749 105750 105751 105752 105753 105754 105755 105756 105757 105758 105759 105760 105761 105762 105763 105764 105765 105766 105767 105768 105769 105770 105771 105772 105773 105774 105775 105776 105777 105778 105779 105780 105781 105782 105783 105784 105785 105786 105787 105788 105789 105790 105791 105792 105793 105794 105795 105796 105797 105798 105799 105800 105801 105802 105803 105804 105805 105806 105807 105808 105809 105810 105811 105812 105813 105814 105815 105816 105817 105818 105819 105820 105821 105822 105823 105824 105825 105826 105827 105828 105829 105830 105831 105832 105833 105834 105835 105836 105837 105838 105839 105840 105841 105842 105843 105844 105845 105846 105847 105848 105849 105850 105851 105852 105853 105854 105855 105856 105857 105858 105859 105860 105861 105862 105863 105864 105865 105866 105867 105868 105869 105870 105871 105872 105873 105874 105875 105876 105877 105878 105879 105880 105881 105882 105883 105884 105885 105886 105887 105888 105889 105890 105891 105892 105893 105894 105895 105896 105897 105898 105899 105900 105901 105902 105903 105904 105905 105906 105907 105908 105909 105910 105911 105912 105913 105914 105915 105916 105917 105918 105919 105920 105921 105922 105923 105924 105925 105926 105927 105928 105929 105930 105931 105932 105933 105934 105935 105936 105937 105938 105939 105940 105941 105942 105943 105944 105945 105946 105947 105948 105949 105950 105951 105952 105953 105954 105955 105956 105957 105958 105959 105960 105961 105962 105963 105964 105965 105966 105967 105968 105969 105970 105971 105972 105973 105974 105975 105976 105977 105978 105979 105980 105981 105982 105983 105984 105985 105986 105987 105988 105989 105990 105991 105992 105993 105994 105995 105996 105997 105998 105999 106000 106001 106002 106003 106004 106005 106006 106007 106008 106009 106010 106011 106012 106013 106014 106015 106016 106017 106018 106019 106020 106021 106022 106023 106024 106025 106026 106027 106028 106029 106030 106031 106032 106033 106034 106035 106036 106037 106038 106039 106040 106041 106042 106043 106044 106045 106046 106047 106048 106049 106050 106051 106052 106053 106054 106055 106056 106057 106058 106059 106060 106061 106062 106063 106064 106065 106066 106067 106068 106069 106070 106071 106072 106073 106074 106075 106076 106077 106078 106079 106080 106081 106082 106083 106084 106085 106086 106087 106088 106089 106090 106091 106092 106093 106094 106095 106096 106097 106098 106099 106100 106101 106102 106103 106104 106105 106106 106107 106108 106109 106110 106111 106112 106113 106114 106115 106116 106117 106118 106119 106120 106121 106122 106123 106124 106125 106126 106127 106128 106129 106130 106131 106132 106133 106134 106135 106136 106137 106138 106139 106140 106141 106142 106143 106144 106145 106146 106147 106148 106149 106150 106151 106152 106153 106154 106155 106156 106157 106158 106159 106160 106161 106162 106163 106164 106165 106166 106167 106168 106169 106170 106171 106172 106173 106174 106175 106176 106177 106178 106179 106180 106181 106182 106183 106184 106185 106186 106187 106188 106189 106190 106191 106192 106193 106194 106195 106196 106197 106198 106199 106200 106201 106202 106203 106204 106205 106206 106207 106208 106209 106210 106211 106212 106213 106214 106215 106216 106217 106218 106219 106220 106221 106222 106223 106224 106225 106226 106227 106228 106229 106230 106231 106232 106233 106234 106235 106236 106237 106238 106239 106240 106241 106242 106243 106244 106245 106246 106247 106248 106249 106250 106251 106252 106253 106254 106255 106256 106257 106258 106259 106260 106261 106262 106263 106264 106265 106266 106267 106268 106269 106270 106271 106272 106273 106274 106275 106276 106277 106278 106279 106280 106281 106282 106283 106284 106285 106286 106287 106288 106289 106290 106291 106292 106293 106294 106295 106296 106297 106298 106299 106300 106301 106302 106303 106304 106305 106306 106307 106308 106309 106310 106311 106312 106313 106314 106315 106316 106317 106318 106319 106320 106321 106322 106323 106324 106325 106326 106327 106328 106329 106330 106331 106332 106333 106334 106335 106336 106337 106338 106339 106340 106341 106342 106343 106344 106345 106346 106347 106348 106349 106350 106351 106352 106353 106354 106355 106356 106357 106358 106359 106360 106361 106362 106363 106364 106365 106366 106367 106368 106369 106370 106371 106372 106373 106374 106375 106376 106377 106378 106379 106380 106381 106382 106383 106384 106385 106386 106387 106388 106389 106390 106391 106392 106393 106394 106395 106396 106397 106398 106399 106400 106401 106402 106403 106404 106405 106406 106407 106408 106409 106410 106411 106412 106413 106414 106415 106416 106417 106418 106419 106420 106421 106422 106423 106424 106425 106426 106427 106428 106429 106430 106431 106432 106433 106434 106435 106436 106437 106438 106439 106440 106441 106442 106443 106444 106445 106446 106447 106448 106449 106450 106451 106452 106453 106454 106455 106456 106457 106458 106459 106460 106461 106462 106463 106464 106465 106466 106467 106468 106469 106470 106471 106472 106473 106474 106475 106476 106477 106478 106479 106480 106481 106482 106483 106484 106485 106486 106487 106488 106489 106490 106491 106492 106493 106494 106495 106496 106497 106498 106499 106500 106501 106502 106503 106504 106505 106506 106507 106508 106509 106510 106511 106512 106513 106514 106515 106516 106517 106518 106519 106520 106521 106522 106523 106524 106525 106526 106527 106528 106529 106530 106531 106532 106533 106534 106535 106536 106537 106538 106539 106540 106541 106542 106543 106544 106545 106546 106547 106548 106549 106550 106551 106552 106553 106554 106555 106556 106557 106558 106559 106560 106561 106562 106563 106564 106565 106566 106567 106568 106569 106570 106571 106572 106573 106574 106575 106576 106577 106578 106579 106580 106581 106582 106583 106584 106585 106586 106587 106588 106589 106590 106591 106592 106593 106594 106595 106596 106597 106598 106599 106600 106601 106602 106603 106604 106605 106606 106607 106608 106609 106610 106611 106612 106613 106614 106615 106616 106617 106618 106619 106620 106621 106622 106623 106624 106625 106626 106627 106628 106629 106630 106631 106632 106633 106634 106635 106636 106637 106638 106639 106640 106641 106642 106643 106644 106645 106646 106647 106648 106649 106650 106651 106652 106653 106654 106655 106656 106657 106658 106659 106660 106661 106662 106663 106664 106665 106666 106667 106668 106669 106670 106671 106672 106673 106674 106675 106676 106677 106678 106679 106680 106681 106682 106683 106684 106685 106686 106687 106688 106689 106690 106691 106692 106693 106694 106695 106696 106697 106698 106699 106700 106701 106702 106703 106704 106705 106706 106707 106708 106709 106710 106711 106712 106713 106714 106715 106716 106717 106718 106719 106720 106721 106722 106723 106724 106725 106726 106727 106728 106729 106730 106731 106732 106733 106734 106735 106736 106737 106738 106739 106740 106741 106742 106743 106744 106745 106746 106747 106748 106749 106750 106751 106752 106753 106754 106755 106756 106757 106758 106759 106760 106761 106762 106763 106764 106765 106766 106767 106768 106769 106770 106771 106772 106773 106774 106775 106776 106777 106778 106779 106780 106781 106782 106783 106784 106785 106786 106787 106788 106789 106790 106791 106792 106793 106794 106795 106796 106797 106798 106799 106800 106801 106802 106803 106804 106805 106806 106807 106808 106809 106810 106811 106812 106813 106814 106815 106816 106817 106818 106819 106820 106821 106822 106823 106824 106825 106826 106827 106828 106829 106830 106831 106832 106833 106834 106835 106836 106837 106838 106839 106840 106841 106842 106843 106844 106845 106846 106847 106848 106849 106850 106851 106852 106853 106854 106855 106856 106857 106858 106859 106860 106861 106862 106863 106864 106865 106866 106867 106868 106869 106870 106871 106872 106873 106874 106875 106876 106877 106878 106879 106880 106881 106882 106883 106884 106885 106886 106887 106888 106889 106890 106891 106892 106893 106894 106895 106896 106897 106898 106899 106900 106901 106902 106903 106904 106905 106906 106907 106908 106909 106910 106911 106912 106913 106914 106915 106916 106917 106918 106919 106920 106921 106922 106923 106924 106925 106926 106927 106928 106929 106930 106931 106932 106933 106934 106935 106936 106937 106938 106939 106940 106941 106942 106943 106944 106945 106946 106947 106948 106949 106950 106951 106952 106953 106954 106955 106956 106957 106958 106959 106960 106961 106962 106963 106964 106965 106966 106967 106968 106969 106970 106971 106972 106973 106974 106975 106976 106977 106978 106979 106980 106981 106982 106983 106984 106985 106986 106987 106988 106989 106990 106991 106992 106993 106994 106995 106996 106997 106998 106999 107000 107001 107002 107003 107004 107005 107006 107007 107008 107009 107010 107011 107012 107013 107014 107015 107016 107017 107018 107019 107020 107021 107022 107023 107024 107025 107026 107027 107028 107029 107030 107031 107032 107033 107034 107035 107036 107037 107038 107039 107040 107041 107042 107043 107044 107045 107046 107047 107048 107049 107050 107051 107052 107053 107054 107055 107056 107057 107058 107059 107060 107061 107062 107063 107064 107065 107066 107067 107068 107069 107070 107071 107072 107073 107074 107075 107076 107077 107078 107079 107080 107081 107082 107083 107084 107085 107086 107087 107088 107089 107090 107091 107092 107093 107094 107095 107096 107097 107098 107099 107100 107101 107102 107103 107104 107105 107106 107107 107108 107109 107110 107111 107112 107113 107114 107115 107116 107117 107118 107119 107120 107121 107122 107123 107124 107125 107126 107127 107128 107129 107130 107131 107132 107133 107134 107135 107136 107137 107138 107139 107140 107141 107142 107143 107144 107145 107146 107147 107148 107149 107150 107151 107152 107153 107154 107155 107156 107157 107158 107159 107160 107161 107162 107163 107164 107165 107166 107167 107168 107169 107170 107171 107172 107173 107174 107175 107176 107177 107178 107179 107180 107181 107182 107183 107184 107185 107186 107187 107188 107189 107190 107191 107192 107193 107194 107195 107196 107197 107198 107199 107200 107201 107202 107203 107204 107205 107206 107207 107208 107209 107210 107211 107212 107213 107214 107215 107216 107217 107218 107219 107220 107221 107222 107223 107224 107225 107226 107227 107228 107229 107230 107231 107232 107233 107234 107235 107236 107237 107238 107239 107240 107241 107242 107243 107244 107245 107246 107247 107248 107249 107250 107251 107252 107253 107254 107255 107256 107257 107258 107259 107260 107261 107262 107263 107264 107265 107266 107267 107268 107269 107270 107271 107272 107273 107274 107275 107276 107277 107278 107279 107280 107281 107282 107283 107284 107285 107286 107287 107288 107289 107290 107291 107292 107293 107294 107295 107296 107297 107298 107299 107300 107301 107302 107303 107304 107305 107306 107307 107308 107309 107310 107311 107312 107313 107314 107315 107316 107317 107318 107319 107320 107321 107322 107323 107324 107325 107326 107327 107328 107329 107330 107331 107332 107333 107334 107335 107336 107337 107338 107339 107340 107341 107342 107343 107344 107345 107346 107347 107348 107349 107350 107351 107352 107353 107354 107355 107356 107357 107358 107359 107360 107361 107362 107363 107364 107365 107366 107367 107368 107369 107370 107371 107372 107373 107374 107375 107376 107377 107378 107379 107380 107381 107382 107383 107384 107385 107386 107387 107388 107389 107390 107391 107392 107393 107394 107395 107396 107397 107398 107399 107400 107401 107402 107403 107404 107405 107406 107407 107408 107409 107410 107411 107412 107413 107414 107415 107416 107417 107418 107419 107420 107421 107422 107423 107424 107425 107426 107427 107428 107429 107430 107431 107432 107433 107434 107435 107436 107437 107438 107439 107440 107441 107442 107443 107444 107445 107446 107447 107448 107449 107450 107451 107452 107453 107454 107455 107456 | /* This is the header file of the Parma Polyhedra Library.
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2013 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://bugseng.com/products/ppl/ . */
#ifndef PPL_ppl_hh
#define PPL_ppl_hh 1
#ifdef NDEBUG
# define PPL_SAVE_NDEBUG NDEBUG
# undef NDEBUG
#endif
#ifdef __STDC_LIMIT_MACROS
# define PPL_SAVE_STDC_LIMIT_MACROS __STDC_LIMIT_MACROS
#endif
/* Automatically generated from PPL source file ../ppl-config.h line 1. */
/* config.h. Generated from config.h.in by configure. */
/* config.h.in. Generated from configure.ac by autoheader. */
/* BEGIN ppl-config.h */
#ifndef PPL_ppl_config_h
#define PPL_ppl_config_h 1
/* Unique (nonzero) code for the IEEE 754 Single Precision
floating point format. */
#define PPL_FLOAT_IEEE754_SINGLE 1
/* Unique (nonzero) code for the IEEE 754 Double Precision
floating point format. */
#define PPL_FLOAT_IEEE754_DOUBLE 2
/* Unique (nonzero) code for the IEEE 754 Quad Precision
floating point format. */
#define PPL_FLOAT_IEEE754_QUAD 3
/* Unique (nonzero) code for the Intel Double-Extended
floating point format. */
#define PPL_FLOAT_INTEL_DOUBLE_EXTENDED 4
/* Define if building universal (internal helper macro) */
/* #undef AC_APPLE_UNIVERSAL_BUILD */
/* Define to 1 if you have the declaration of `ffs', and to 0 if you don't. */
#define PPL_HAVE_DECL_FFS 1
/* Define to 1 if you have the declaration of `fma', and to 0 if you don't. */
#define PPL_HAVE_DECL_FMA 1
/* Define to 1 if you have the declaration of `fmaf', and to 0 if you don't.
*/
#define PPL_HAVE_DECL_FMAF 1
/* Define to 1 if you have the declaration of `fmal', and to 0 if you don't.
*/
#define PPL_HAVE_DECL_FMAL 1
/* Define to 1 if you have the declaration of `getenv', and to 0 if you don't.
*/
#define PPL_HAVE_DECL_GETENV 1
/* Define to 1 if you have the declaration of `getrusage', and to 0 if you
don't. */
#define PPL_HAVE_DECL_GETRUSAGE 1
/* Define to 1 if you have the declaration of `rintf', and to 0 if you don't.
*/
#define PPL_HAVE_DECL_RINTF 1
/* Define to 1 if you have the declaration of `rintl', and to 0 if you don't.
*/
#define PPL_HAVE_DECL_RINTL 1
/* Define to 1 if you have the declaration of `RLIMIT_AS', and to 0 if you
don't. */
#define PPL_HAVE_DECL_RLIMIT_AS 1
/* Define to 1 if you have the declaration of `RLIMIT_DATA', and to 0 if you
don't. */
#define PPL_HAVE_DECL_RLIMIT_DATA 1
/* Define to 1 if you have the declaration of `RLIMIT_RSS', and to 0 if you
don't. */
#define PPL_HAVE_DECL_RLIMIT_RSS 1
/* Define to 1 if you have the declaration of `RLIMIT_VMEM', and to 0 if you
don't. */
#define PPL_HAVE_DECL_RLIMIT_VMEM 0
/* Define to 1 if you have the declaration of `setitimer', and to 0 if you
don't. */
#define PPL_HAVE_DECL_SETITIMER 1
/* Define to 1 if you have the declaration of `setrlimit', and to 0 if you
don't. */
#define PPL_HAVE_DECL_SETRLIMIT 1
/* Define to 1 if you have the declaration of `sigaction', and to 0 if you
don't. */
#define PPL_HAVE_DECL_SIGACTION 1
/* Define to 1 if you have the declaration of `strtod', and to 0 if you don't.
*/
#define PPL_HAVE_DECL_STRTOD 1
/* Define to 1 if you have the declaration of `strtof', and to 0 if you don't.
*/
#define PPL_HAVE_DECL_STRTOF 1
/* Define to 1 if you have the declaration of `strtold', and to 0 if you
don't. */
#define PPL_HAVE_DECL_STRTOLD 1
/* Define to 1 if you have the declaration of `strtoll', and to 0 if you
don't. */
#define PPL_HAVE_DECL_STRTOLL 1
/* Define to 1 if you have the declaration of `strtoull', and to 0 if you
don't. */
#define PPL_HAVE_DECL_STRTOULL 1
/* Define to 1 if you have the <dlfcn.h> header file. */
#define PPL_HAVE_DLFCN_H 1
/* Define to 1 if you have the <fenv.h> header file. */
#define PPL_HAVE_FENV_H 1
/* Define to 1 if you have the <getopt.h> header file. */
#define PPL_HAVE_GETOPT_H 1
/* Define to 1 if you have the <glpk/glpk.h> header file. */
/* #undef PPL_HAVE_GLPK_GLPK_H */
/* Define to 1 if you have the <glpk.h> header file. */
/* #undef PPL_HAVE_GLPK_H */
/* Define to 1 if you have the <ieeefp.h> header file. */
/* #undef PPL_HAVE_IEEEFP_H */
/* Define to 1 if you have the <inttypes.h> header file. */
#define PPL_HAVE_INTTYPES_H 1
/* Define to 1 if the system has the type `int_fast16_t'. */
#define PPL_HAVE_INT_FAST16_T 1
/* Define to 1 if the system has the type `int_fast32_t'. */
#define PPL_HAVE_INT_FAST32_T 1
/* Define to 1 if the system has the type `int_fast64_t'. */
#define PPL_HAVE_INT_FAST64_T 1
/* Define to 1 if you have the <memory.h> header file. */
#define PPL_HAVE_MEMORY_H 1
/* Define to 1 if the system has the type `siginfo_t'. */
#define PPL_HAVE_SIGINFO_T 1
/* Define to 1 if you have the <signal.h> header file. */
#define PPL_HAVE_SIGNAL_H 1
/* Define to 1 if you have the <stdint.h> header file. */
#define PPL_HAVE_STDINT_H 1
/* Define to 1 if you have the <stdlib.h> header file. */
#define PPL_HAVE_STDLIB_H 1
/* Define to 1 if you have the <strings.h> header file. */
#define PPL_HAVE_STRINGS_H 1
/* Define to 1 if you have the <string.h> header file. */
#define PPL_HAVE_STRING_H 1
/* Define to 1 if you have the <sys/resource.h> header file. */
#define PPL_HAVE_SYS_RESOURCE_H 1
/* Define to 1 if you have the <sys/stat.h> header file. */
#define PPL_HAVE_SYS_STAT_H 1
/* Define to 1 if you have the <sys/time.h> header file. */
#define PPL_HAVE_SYS_TIME_H 1
/* Define to 1 if you have the <sys/types.h> header file. */
#define PPL_HAVE_SYS_TYPES_H 1
/* Define to 1 if the system has the type `timeval'. */
#define PPL_HAVE_TIMEVAL 1
/* Define to 1 if typeof works with your compiler. */
#define PPL_HAVE_TYPEOF 1
/* Define to 1 if the system has the type `uintptr_t'. */
#define PPL_HAVE_UINTPTR_T 1
/* Define to 1 if the system has the type `uint_fast16_t'. */
#define PPL_HAVE_UINT_FAST16_T 1
/* Define to 1 if the system has the type `uint_fast32_t'. */
#define PPL_HAVE_UINT_FAST32_T 1
/* Define to 1 if the system has the type `uint_fast64_t'. */
#define PPL_HAVE_UINT_FAST64_T 1
/* Define to 1 if you have the <unistd.h> header file. */
#define PPL_HAVE_UNISTD_H 1
/* Define to 1 if `_mp_alloc' is a member of `__mpz_struct'. */
#define PPL_HAVE___MPZ_STRUCT__MP_ALLOC 1
/* Define to 1 if `_mp_d' is a member of `__mpz_struct'. */
#define PPL_HAVE___MPZ_STRUCT__MP_D 1
/* Define to 1 if `_mp_size' is a member of `__mpz_struct'. */
#define PPL_HAVE___MPZ_STRUCT__MP_SIZE 1
/* Define to the sub-directory in which libtool stores uninstalled libraries.
*/
#define LT_OBJDIR ".libs/"
/* Define to the address where bug reports for this package should be sent. */
#define PPL_PACKAGE_BUGREPORT "ppl-devel@cs.unipr.it"
/* Define to the full name of this package. */
#define PPL_PACKAGE_NAME "the Parma Polyhedra Library"
/* Define to the full name and version of this package. */
#define PPL_PACKAGE_STRING "the Parma Polyhedra Library 1.1"
/* Define to the one symbol short name of this package. */
#define PPL_PACKAGE_TARNAME "ppl"
/* Define to the home page for this package. */
#define PACKAGE_URL ""
/* Define to the version of this package. */
#define PPL_PACKAGE_VERSION "1.1"
/* ABI-breaking extra assertions are enabled when this is defined. */
/* #undef PPL_ABI_BREAKING_EXTRA_DEBUG */
/* Not zero if the FPU can be controlled. */
#define PPL_CAN_CONTROL_FPU 1
/* Defined if the integral type to be used for coefficients is a checked one.
*/
/* #undef PPL_CHECKED_INTEGERS */
/* The number of bits of coefficients; 0 if unbounded. */
#define PPL_COEFFICIENT_BITS 0
/* The integral type used to represent coefficients. */
#define PPL_COEFFICIENT_TYPE mpz_class
/* This contains the options with which `configure' was invoked. */
#define PPL_CONFIGURE_OPTIONS " '--build' 'x86_64-linux-gnu' '--host' 'x86_64-linux-gnu' '--disable-ppl_lpsol' '--disable-ppl_lcdd' '--enable-interfaces=c,cxx' '--prefix=/usr' '--libdir=${prefix}/lib/x86_64-linux-gnu' '--mandir=${prefix}/share/man' '--infodir=${prefix}/share/info' 'CC=x86_64-linux-gnu-gcc-4.7' 'CXX=x86_64-linux-gnu-g++-4.7' 'CPPFLAGS=-D_FORTIFY_SOURCE=2' 'CFLAGS= -Wall -g' 'CXXFLAGS=-g -O2 -fstack-protector -Wformat -Werror=format-security -Wall -g -fpermissive -D_GLIBCXX_USE_CXX11_ABI=0' 'LDFLAGS=-Wl,-Bsymbolic-functions -Wl,-z,relro' 'build_alias=x86_64-linux-gnu' 'host_alias=x86_64-linux-gnu'"
/* The unique code of the binary format of C++ doubles, if supported;
undefined otherwise. */
#define PPL_CXX_DOUBLE_BINARY_FORMAT PPL_FLOAT_IEEE754_DOUBLE
/* The binary format of C++ floats, if supported; undefined otherwise. */
#define PPL_CXX_FLOAT_BINARY_FORMAT PPL_FLOAT_IEEE754_SINGLE
/* The unique code of the binary format of C++ long doubles, if supported;
undefined otherwise. */
#define PPL_CXX_LONG_DOUBLE_BINARY_FORMAT PPL_FLOAT_INTEL_DOUBLE_EXTENDED
/* Not zero if the the plain char type is signed. */
#define PPL_CXX_PLAIN_CHAR_IS_SIGNED 1
/* Not zero if the C++ compiler provides long double numbers that have bigger
range or precision than double. */
#define PPL_CXX_PROVIDES_PROPER_LONG_DOUBLE 1
/* Not zero if the C++ compiler supports __attribute__ ((weak)). */
#define PPL_CXX_SUPPORTS_ATTRIBUTE_WEAK 1
/* Not zero if the the IEEE inexact flag is supported in C++. */
#define PPL_CXX_SUPPORTS_IEEE_INEXACT_FLAG 1
/* Not zero if it is possible to limit memory using setrlimit(). */
#define PPL_CXX_SUPPORTS_LIMITING_MEMORY 0
/* Not zero if the C++ compiler supports zero_length arrays. */
#define PPL_CXX_SUPPORTS_ZERO_LENGTH_ARRAYS 1
/* Defined if floating point arithmetic may use the 387 unit. */
#define PPL_FPMATH_MAY_USE_387 1
/* Defined if floating point arithmetic may use the SSE instruction set. */
#define PPL_FPMATH_MAY_USE_SSE 1
/* Defined if GLPK provides glp_term_hook(). */
/* #undef PPL_GLPK_HAS_GLP_TERM_HOOK */
/* Defined if GLPK provides glp_term_out(). */
/* #undef PPL_GLPK_HAS_GLP_TERM_OUT */
/* Defined if GLPK provides lib_set_print_hook(). */
/* #undef PPL_GLPK_HAS_LIB_SET_PRINT_HOOK */
/* Defined if GLPK provides _glp_lib_print_hook(). */
/* #undef PPL_GLPK_HAS__GLP_LIB_PRINT_HOOK */
/* Defined if the integral type to be used for coefficients is GMP's one. */
#define PPL_GMP_INTEGERS 1
/* Not zero if GMP has been compiled with support for exceptions. */
#define PPL_GMP_SUPPORTS_EXCEPTIONS 1
/* Defined if the integral type to be used for coefficients is a native one.
*/
/* #undef PPL_NATIVE_INTEGERS */
/* Assertions are disabled when this is defined. */
#define PPL_NDEBUG 1
/* Not zero if doubles are supported. */
#define PPL_SUPPORTED_DOUBLE 1
/* Not zero if floats are supported. */
#define PPL_SUPPORTED_FLOAT 1
/* Not zero if long doubles are supported. */
#define PPL_SUPPORTED_LONG_DOUBLE 1
/* The size of `char', as computed by sizeof. */
#define PPL_SIZEOF_CHAR 1
/* The size of `double', as computed by sizeof. */
#define PPL_SIZEOF_DOUBLE 8
/* The size of `float', as computed by sizeof. */
#define PPL_SIZEOF_FLOAT 4
/* The size of `fp', as computed by sizeof. */
#define PPL_SIZEOF_FP 8
/* The size of `int', as computed by sizeof. */
#define PPL_SIZEOF_INT 4
/* The size of `int*', as computed by sizeof. */
#define PPL_SIZEOF_INTP 8
/* The size of `long', as computed by sizeof. */
#define PPL_SIZEOF_LONG 8
/* The size of `long double', as computed by sizeof. */
#define PPL_SIZEOF_LONG_DOUBLE 16
/* The size of `long long', as computed by sizeof. */
#define PPL_SIZEOF_LONG_LONG 8
/* The size of `mp_limb_t', as computed by sizeof. */
#define PPL_SIZEOF_MP_LIMB_T 8
/* The size of `short', as computed by sizeof. */
#define PPL_SIZEOF_SHORT 2
/* The size of `size_t', as computed by sizeof. */
#define PPL_SIZEOF_SIZE_T 8
/* Define to 1 if you have the ANSI C header files. */
#define PPL_STDC_HEADERS 1
/* Define PPL_WORDS_BIGENDIAN to 1 if your processor stores words with the most
significant byte first (like Motorola and SPARC, unlike Intel). */
#if defined AC_APPLE_UNIVERSAL_BUILD
# if defined __BIG_ENDIAN__
# define PPL_WORDS_BIGENDIAN 1
# endif
#else
# ifndef PPL_WORDS_BIGENDIAN
/* # undef PPL_WORDS_BIGENDIAN */
# endif
#endif
/* When defined and libstdc++ is used, it is used in debug mode. */
/* #undef _GLIBCXX_DEBUG */
/* When defined and libstdc++ is used, it is used in pedantic debug mode. */
/* #undef _GLIBCXX_DEBUG_PEDANTIC */
/* Define to empty if `const' does not conform to ANSI C. */
/* #undef const */
/* Define to `__inline__' or `__inline' if that's what the C compiler
calls it, or to nothing if 'inline' is not supported under any name. */
#ifndef __cplusplus
/* #undef inline */
#endif
/* Define to __typeof__ if your compiler spells it that way. */
/* #undef typeof */
/* Define to the type of an unsigned integer type wide enough to hold a
pointer, if such a type exists, and if the system does not define it. */
/* #undef uintptr_t */
#if defined(PPL_NDEBUG) && !defined(NDEBUG)
# define NDEBUG PPL_NDEBUG
#endif
/* In order for the definition of `int64_t' to be seen by Comeau C/C++,
we must make sure <stdint.h> is included before <sys/types.hh> is
(even indirectly) included. Moreover we need to define
__STDC_LIMIT_MACROS before the first inclusion of <stdint.h>
in order to have the macros defined also in C++. */
#ifdef PPL_HAVE_STDINT_H
# ifndef __STDC_LIMIT_MACROS
# define __STDC_LIMIT_MACROS 1
# endif
# include <stdint.h>
#endif
#ifdef PPL_HAVE_INTTYPES_H
# include <inttypes.h>
#endif
#define PPL_U(x) x
#endif /* !defined(PPL_ppl_config_h) */
/* END ppl-config.h */
/* Automatically generated from PPL source file ../src/version.hh line 1. */
/* Declaration of macros and functions providing version -*- C++ -*-
and licensing information.
*/
//! The major number of the PPL version.
/*! \ingroup PPL_CXX_interface */
#define PPL_VERSION_MAJOR 1
//! The minor number of the PPL version.
/*! \ingroup PPL_CXX_interface */
#define PPL_VERSION_MINOR 1
//! The revision number of the PPL version.
/*! \ingroup PPL_CXX_interface */
#define PPL_VERSION_REVISION 0
/*! \brief
The beta number of the PPL version. This is zero for official
releases and nonzero for development snapshots.
\ingroup PPL_CXX_interface
*/
#define PPL_VERSION_BETA 0
//! A string containing the PPL version.
/*! \ingroup PPL_CXX_interface
Let <CODE>M</CODE> and <CODE>m</CODE> denote the numbers associated
to PPL_VERSION_MAJOR and PPL_VERSION_MINOR, respectively. The
format of PPL_VERSION is <CODE>M "." m</CODE> if both
PPL_VERSION_REVISION (<CODE>r</CODE>) and PPL_VERSION_BETA
(<CODE>b</CODE>)are zero, <CODE>M "." m "pre" b</CODE> if
PPL_VERSION_REVISION is zero and PPL_VERSION_BETA is not zero,
<CODE>M "." m "." r</CODE> if PPL_VERSION_REVISION is not zero and
PPL_VERSION_BETA is zero, <CODE>M "." m "." r "pre" b</CODE> if
neither PPL_VERSION_REVISION nor PPL_VERSION_BETA are zero.
*/
#define PPL_VERSION "1.1"
namespace Parma_Polyhedra_Library {
//! \name Library Version Control Functions
//@{
//! Returns the major number of the PPL version.
unsigned
version_major();
//! Returns the minor number of the PPL version.
unsigned
version_minor();
//! Returns the revision number of the PPL version.
unsigned
version_revision();
//! Returns the beta number of the PPL version.
unsigned
version_beta();
//! Returns a character string containing the PPL version.
const char* version();
//! Returns a character string containing the PPL banner.
/*!
The banner provides information about the PPL version, the licensing,
the lack of any warranty whatsoever, the C++ compiler used to build
the library, where to report bugs and where to look for further
information.
*/
const char* banner();
//@} // Library Version Control Functions
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/namespaces.hh line 1. */
/* Documentation for used namespaces.
*/
//! The entire library is confined to this namespace.
namespace Parma_Polyhedra_Library {
//! All input/output operators are confined to this namespace.
/*! \ingroup PPL_CXX_interface
This is done so that the library's input/output operators
do not interfere with those the user might want to define.
In fact, it is highly unlikely that any predefined I/O
operator will suit the needs of a client application.
On the other hand, those applications for which the PPL
I/O operator are enough can easily obtain access to them.
For example, a directive like
\code
using namespace Parma_Polyhedra_Library::IO_Operators;
\endcode
would suffice for most uses.
In more complex situations, such as
\code
const Constraint_System& cs = ...;
copy(cs.begin(), cs.end(),
ostream_iterator<Constraint>(cout, "\n"));
\endcode
the Parma_Polyhedra_Library namespace must be suitably extended.
This can be done as follows:
\code
namespace Parma_Polyhedra_Library {
// Import all the output operators into the main PPL namespace.
using IO_Operators::operator<<;
}
\endcode
*/
namespace IO_Operators {
} // namespace IO_Operators
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Types and functions implementing checked numbers.
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
namespace Checked {
} // namespace Checked
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! %Implementation related data and functions.
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
namespace Implementation {
} // namespace Implementation
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Data and functions related to language interfaces.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
namespace Interfaces {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Data and functions related to the C language interface.
/*! \ingroup PPL_C_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
namespace C {
} // namespace C
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Data and functions related to the Java language interface.
/*! \ingroup PPL_Java_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
namespace Java {
} // namespace Java
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Data and functions related to the OCaml language interface.
/*! \ingroup PPL_OCaml_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
namespace OCaml {
} // namespace OCaml
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Data and functions related to the Prolog language interfaces.
/*! \ingroup PPL_Prolog_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
namespace Prolog {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Data and functions related to the Ciao Prolog language interface.
/*! \ingroup PPL_Prolog_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
namespace Ciao {
} // namespace Ciao
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Data and functions related to the GNU Prolog language interface.
/*! \ingroup PPL_Prolog_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
namespace GNU {
} // namespace GNU
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Data and functions related to the SICStus language interface.
/*! \ingroup PPL_Prolog_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
namespace SICStus {
} // namespace SICStus
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Data and functions related to the SWI-Prolog language interface.
/*! \ingroup PPL_Prolog_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
namespace SWI {
} // namespace SWI
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Data and functions related to the XSB language interface.
/*! \ingroup PPL_Prolog_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
namespace XSB {
} // namespace XSB
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Data and functions related to the YAP language interface.
/*! \ingroup PPL_Prolog_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
namespace YAP {
} // namespace YAP
} // namespace Prolog
} // namespace Interfaces
} // namespace Parma_Polyhedra_Library
//! The standard C++ namespace.
/*! \ingroup PPL_CXX_interface
The Parma Polyhedra Library conforms to the C++ standard and,
in particular, as far as reserved names are concerned (17.4.3.1,
[lib.reserved.names]). The PPL, however, defines several
template specializations for the standard library class template
<CODE>numeric_limits</CODE> (18.2.1, [lib.limits]).
\note
The PPL provides the specializations of the class template
<CODE>numeric_limits</CODE> not only for PPL-specific numeric types,
but also for the GMP types <CODE>mpz_class</CODE> and
<CODE>mpq_class</CODE>. These specializations will be removed
as soon as they will be provided by the C++ interface of GMP.
*/
namespace std {
} // namespace std
/* Automatically generated from PPL source file ../src/Interval_Info_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename Policy>
class Interval_Info_Null;
template <typename T, typename Policy>
class Interval_Info_Bitset;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/checked_numeric_limits.hh line 1. */
/* Specializations of std::numeric_limits for "checked" types.
*/
/* Automatically generated from PPL source file ../src/Checked_Number_defs.hh line 1. */
/* Checked_Number class declaration.
*/
/* Automatically generated from PPL source file ../src/Checked_Number_types.hh line 1. */
/* Automatically generated from PPL source file ../src/Coefficient_traits_template.hh line 1. */
/* Coefficient_traits_template class declaration.
*/
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Coefficient traits.
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Coefficient>
struct Coefficient_traits_template {
};
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Checked_Number_types.hh line 17. */
namespace Parma_Polyhedra_Library {
struct Extended_Number_Policy;
template <typename T, typename Policy>
class Checked_Number;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/checked_defs.hh line 1. */
/* Abstract checked arithmetic function container.
*/
#include <cassert>
#include <iostream>
#include <gmpxx.h>
/* Automatically generated from PPL source file ../src/mp_std_bits_defs.hh line 1. */
/* Declarations of specializations of std:: objects for
multi-precision types.
*/
#include <gmpxx.h>
#include <limits>
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Swaps \p x with \p y.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
void swap(mpz_class& x, mpz_class& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Swaps \p x with \p y.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
void swap(mpq_class& x, mpq_class& y);
#if __GNU_MP_VERSION < 5 \
|| (__GNU_MP_VERSION == 5 && __GNU_MP_VERSION_MINOR < 1)
namespace std {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Specialization of std::numeric_limits.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <>
class numeric_limits<mpz_class> {
private:
typedef mpz_class Type;
public:
static const bool is_specialized = true;
static const int digits = 0;
static const int digits10 = 0;
static const bool is_signed = true;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static const bool is_iec559 = false;
static const bool is_bounded = false;
static const bool is_modulo = false;
static const bool traps = false;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;
static Type min() {
return static_cast<Type>(0);
}
static Type max() {
return static_cast<Type>(0);
}
static Type epsilon() {
return static_cast<Type>(0);
}
static Type round_error() {
return static_cast<Type>(0);
}
static Type infinity() {
return static_cast<Type>(0);
}
static Type quiet_NaN() {
return static_cast<Type>(0);
}
static Type denorm_min() {
return static_cast<Type>(1);
}
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Specialization of std::numeric_limits.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <>
class numeric_limits<mpq_class> {
private:
typedef mpq_class Type;
public:
static const bool is_specialized = true;
static const int digits = 0;
static const int digits10 = 0;
static const bool is_signed = true;
static const bool is_integer = false;
static const bool is_exact = true;
static const int radix = 2;
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static const bool is_iec559 = false;
static const bool is_bounded = false;
static const bool is_modulo = false;
static const bool traps = false;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;
static Type min() {
return static_cast<Type>(0);
}
static Type max() {
return static_cast<Type>(0);
}
static Type epsilon() {
return static_cast<Type>(0);
}
static Type round_error() {
return static_cast<Type>(0);
}
static Type infinity() {
return static_cast<Type>(0);
}
static Type quiet_NaN() {
return static_cast<Type>(0);
}
static Type denorm_min() {
return static_cast<Type>(0);
}
};
} // namespace std
#endif // __GNU_MP_VERSION < 5
// || (__GNU_MP_VERSION == 5 && __GNU_MP_VERSION_MINOR < 1)
/* Automatically generated from PPL source file ../src/mp_std_bits_inlines.hh line 1. */
/* Definitions of specializations of std:: functions and methods for
multi-precision types.
*/
inline void
swap(mpz_class& x, mpz_class& y) {
mpz_swap(x.get_mpz_t(), y.get_mpz_t());
}
inline void
swap(mpq_class& x, mpq_class& y) {
mpq_swap(x.get_mpq_t(), y.get_mpq_t());
}
/* Automatically generated from PPL source file ../src/mp_std_bits_defs.hh line 174. */
/* Automatically generated from PPL source file ../src/Temp_defs.hh line 1. */
/* Temp_* classes declarations.
*/
/* Automatically generated from PPL source file ../src/meta_programming.hh line 1. */
/* Metaprogramming utilities.
*/
#include <gmpxx.h>
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Declares a per-class constant of type <CODE>bool</CODE>, called \p name
and with value \p value.
\ingroup PPL_CXX_interface
Differently from static constants, \p name needs not (and cannot) be
defined (for static constants, the need for a further definition is
mandated by Section 9.4.2/4 of the C++ standard).
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
#define const_bool_nodef(name, value) \
enum const_bool_value_ ## name { PPL_U(name) = (value) }
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Declares a per-class constant of type <CODE>int</CODE>, called \p name
and with value \p value.
\ingroup PPL_CXX_interface
Differently from static constants, \p name needs not (and cannot) be
defined (for static constants, the need for a further definition is
mandated by Section 9.4.2/4 of the C++ standard).
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
#define const_int_nodef(name, value) \
enum anonymous_enum_ ## name { PPL_U(name) = (value) }
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Declares a per-class constant of type \p type, called \p name
and with value \p value. The value of the constant is accessible
by means of the syntax <CODE>name()</CODE>.
\ingroup PPL_CXX_interface
Differently from static constants, \p name needs not (and cannot) be
defined (for static constants, the need for a further definition is
mandated by Section 9.4.2/4 of the C++ standard).
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
#define const_value_nodef(type, name, value) \
static type PPL_U(name)() { \
return (value); \
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Declares a per-class constant of type \p type, called \p name
and with value \p value. A constant reference to the constant
is accessible by means of the syntax <CODE>name()</CODE>.
\ingroup PPL_CXX_interface
Differently from static constants, \p name needs not (and cannot) be
defined (for static constants, the need for a further definition is
mandated by Section 9.4.2/4 of the C++ standard).
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
#define const_ref_nodef(type, name, value) \
static const type& PPL_U(name)() { \
static type PPL_U(name) = (value); \
return (name); \
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
A class that is only defined if \p b evaluates to <CODE>true</CODE>.
\ingroup PPL_CXX_interface
This is the non-specialized case, so the class is declared but not defined.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <bool b>
struct Compile_Time_Check;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
A class that is only defined if \p b evaluates to <CODE>true</CODE>.
\ingroup PPL_CXX_interface
This is the specialized case with \p b equal to <CODE>true</CODE>,
so the class is declared and (trivially) defined.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <>
struct Compile_Time_Check<true> {
};
#define PPL_COMPILE_TIME_CHECK_NAME(suffix) compile_time_check_ ## suffix
#define PPL_COMPILE_TIME_CHECK_AUX(e, suffix) \
enum anonymous_enum_compile_time_check_ ## suffix { \
/* If e evaluates to false, then the sizeof cannot be compiled. */ \
PPL_COMPILE_TIME_CHECK_NAME(suffix) \
= sizeof(Parma_Polyhedra_Library::Compile_Time_Check<(e)>) \
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Produces a compilation error if the compile-time constant \p e does
not evaluate to <CODE>true</CODE>
\ingroup PPL_CXX_interface
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
#define PPL_COMPILE_TIME_CHECK(e, msg) PPL_COMPILE_TIME_CHECK_AUX(e, __LINE__)
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
A class holding a constant called <CODE>value</CODE> that evaluates
to \p b.
\ingroup PPL_CXX_interface
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <bool b>
struct Bool {
enum const_bool_value {
value = b
};
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
A class holding a constant called <CODE>value</CODE> that evaluates
to <CODE>true</CODE>.
\ingroup PPL_CXX_interface
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
struct True : public Bool<true> {
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
A class holding a constant called <CODE>value</CODE> that evaluates
to <CODE>false</CODE>.
\ingroup PPL_CXX_interface
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
struct False : public Bool<false> {
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
A class holding a constant called <CODE>value</CODE> that evaluates
to <CODE>true</CODE> if and only if \p T1 is the same type as \p T2.
\ingroup PPL_CXX_interface
This is the non-specialized case, in which \p T1 and \p T2 can be different.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T1, typename T2>
struct Is_Same : public False {
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
A class holding a constant called <CODE>value</CODE> that evaluates
to <CODE>true</CODE> if and only if \p T1 is the same type as \p T2.
\ingroup PPL_CXX_interface
This is the specialization in which \p T1 and \p T2 are equal.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
struct Is_Same<T, T> : public True {
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
A class holding a constant called <CODE>value</CODE> that evaluates
to <CODE>true</CODE> if and only if \p Base is the same type as \p Derived
or \p Derived is a class derived from \p Base.
\ingroup PPL_CXX_interface
\note
Care must be taken to use this predicate with template classes.
Suppose we have
\code
template <typename T> struct B;
template <typename T> struct D : public B<T>;
\endcode
Of course, we cannot test if, for some type variable <CODE>U</CODE>, we have
<CODE>Is_Same_Or_Derived<B<U>, Type>:: const_bool_value:: value == true</CODE>.
But we can do as follows:
\code
struct B_Base {
};
template <typename T> struct B : public B_Base;
\endcode
This enables us to inquire
<CODE>Is_Same_Or_Derived<B_Base, Type>:: const_bool_value:: value</CODE>.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Base, typename Derived>
struct Is_Same_Or_Derived {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! A class that is constructible from just anything.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
struct Any {
//! The universal constructor.
template <typename T>
Any(const T&);
};
//! Overloading with \p Base.
static char func(const Base&);
//! Overloading with \p Any.
static double func(Any);
//! A function obtaining a const reference to a \p Derived object.
static const Derived& derived_object();
PPL_COMPILE_TIME_CHECK(sizeof(char) != sizeof(double),
"architecture with sizeof(char) == sizeof(double)"
" (!?)");
enum const_bool_value {
/*!
Assuming <CODE>sizeof(char) != sizeof(double)</CODE>, the C++
overload resolution mechanism guarantees that <CODE>value</CODE>
evaluates to <CODE>true</CODE> if and only if <CODE>Base</CODE>
is the same type as <CODE>Derived</CODE> or <CODE>Derived</CODE>
is a class derived from <CODE>Base</CODE>.
*/
value = (sizeof(func(derived_object())) == sizeof(char))
};
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
A class that provides a type member called <CODE>type</CODE> equivalent
to \p T if and only if \p b is <CODE>true</CODE>.
\ingroup PPL_CXX_interface
This is the non-specialized case, in which the <CODE>type</CODE> member
is not present.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <bool b, typename T = void>
struct Enable_If {
};
template <typename Type, Type, typename T = void>
struct Enable_If_Is {
typedef T type;
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
A class that provides a type member called <CODE>type</CODE> equivalent
to \p T if and only if \p b is <CODE>true</CODE>.
\ingroup PPL_CXX_interface
This is the specialization in which the <CODE>type</CODE> member
is present.
\note
Let <CODE>T</CODE>, <CODE>T1</CODE> and <CODE>T2</CODE> be any type
expressions and suppose we have some template function
<CODE>T f(T1, T2)</CODE>. If we want to declare a specialization
that is enabled only if some compile-time checkable condition holds,
we simply declare the specialization by
\code
template ...
typename Enable_If<condition, T>::type
foo(T1 x, T2 y);
\endcode
For all the instantiations of the template parameters that cause
<CODE>condition</CODE> to evaluate to <CODE>false</CODE>,
the <CODE>Enable_If<condition, T>::type</CODE> member will not be defined.
Hence, for that instantiations, the specialization will not be eligible.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
struct Enable_If<true, T> {
typedef T type;
};
template <typename T>
struct Is_Native : public False {
};
template <> struct Is_Native<char> : public True { };
template <> struct Is_Native<signed char> : public True { };
template <> struct Is_Native<signed short> : public True { };
template <> struct Is_Native<signed int> : public True { };
template <> struct Is_Native<signed long> : public True { };
template <> struct Is_Native<signed long long> : public True { };
template <> struct Is_Native<unsigned char> : public True { };
template <> struct Is_Native<unsigned short> : public True { };
template <> struct Is_Native<unsigned int> : public True { };
template <> struct Is_Native<unsigned long> : public True { };
template <> struct Is_Native<unsigned long long> : public True { };
#if PPL_SUPPORTED_FLOAT
template <> struct Is_Native<float> : public True { };
#endif
#if PPL_SUPPORTED_DOUBLE
template <> struct Is_Native<double> : public True { };
#endif
#if PPL_SUPPORTED_LONG_DOUBLE
template <> struct Is_Native<long double> : public True { };
#endif
template <> struct Is_Native<mpz_class> : public True { };
template <> struct Is_Native<mpq_class> : public True { };
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Slow_Copy.hh line 1. */
/* Basic Slow_Copy classes declarations.
*/
/* Automatically generated from PPL source file ../src/Slow_Copy.hh line 28. */
#include <gmpxx.h>
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface
Copies are not slow by default.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
struct Slow_Copy : public False {
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface
Copies are slow for mpz_class objects.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <>
struct Slow_Copy<mpz_class> : public True {
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface
Copies are slow for mpq_class objects.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <>
struct Slow_Copy<mpq_class> : public True {
};
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Temp_defs.hh line 29. */
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! A pool of temporary items of type \p T.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
class Temp_Item {
public:
//! Obtains a reference to a temporary item.
static Temp_Item& obtain();
//! Releases the temporary item \p p.
static void release(Temp_Item& p);
//! Returns a reference to the encapsulated item.
T& item();
private:
//! The encapsulated item.
T item_;
//! Pointer to the next item in the free list.
Temp_Item* next;
//! Head of the free list.
static Temp_Item* free_list_head;
//! Default constructor.
Temp_Item();
//! Copy constructor: private and intentionally not implemented.
Temp_Item(const Temp_Item&);
//! Assignment operator: private and intentionally not implemented.
Temp_Item& operator=(const Temp_Item&);
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! An holder for a reference to a temporary object.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
class Temp_Reference_Holder {
public:
//! Constructs an holder holding a dirty temp.
Temp_Reference_Holder();
//! Destructor.
~Temp_Reference_Holder();
//! Returns a reference to the held item.
T& item();
private:
//! Copy constructor: private and intentionally not implemented.
Temp_Reference_Holder(const Temp_Reference_Holder&);
//! Assignment operator: private and intentionally not implemented.
Temp_Reference_Holder& operator=(const Temp_Reference_Holder&);
//! The held item, encapsulated.
Temp_Item<T>& held;
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! An (fake) holder for the value of a temporary object.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
class Temp_Value_Holder {
public:
//! Constructs a fake holder.
Temp_Value_Holder();
//! Returns the value of the held item.
T& item();
private:
//! Copy constructor: private and intentionally not implemented.
Temp_Value_Holder(const Temp_Value_Holder&);
//! Assignment operator: private and intentionally not implemented.
Temp_Value_Holder& operator=(const Temp_Value_Holder&);
//! The held item.
T item_;
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! A structure for the efficient handling of temporaries.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T, typename Enable = void>
class Dirty_Temp;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Specialization for the handling of temporaries with a free list.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
class Dirty_Temp<T, typename Enable_If<Slow_Copy<T>::value>::type>
: public Temp_Reference_Holder<T> {
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Specialization for the handling of temporaries with local variables.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
class Dirty_Temp<T, typename Enable_If<!Slow_Copy<T>::value>::type>
: public Temp_Value_Holder<T> {
};
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Temp_inlines.hh line 1. */
/* Temp_* classes implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Temp_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
template <typename T>
inline
Temp_Item<T>::Temp_Item()
: item_() {
}
template <typename T>
inline T&
Temp_Item<T>::item() {
return item_;
}
template <typename T>
inline Temp_Item<T>&
Temp_Item<T>::obtain() {
if (free_list_head != 0) {
Temp_Item* const p = free_list_head;
free_list_head = free_list_head->next;
return *p;
}
else
return *new Temp_Item();
}
template <typename T>
inline void
Temp_Item<T>::release(Temp_Item& p) {
p.next = free_list_head;
free_list_head = &p;
}
template <typename T>
inline
Temp_Reference_Holder<T>::Temp_Reference_Holder()
: held(Temp_Item<T>::obtain()) {
}
template <typename T>
inline
Temp_Reference_Holder<T>::~Temp_Reference_Holder() {
Temp_Item<T>::release(held);
}
template <typename T>
inline T&
Temp_Reference_Holder<T>::item() {
return held.item();
}
template <typename T>
inline
Temp_Value_Holder<T>::Temp_Value_Holder() {
}
template <typename T>
inline T&
Temp_Value_Holder<T>::item() {
return item_;
}
} // namespace Parma_Polyhedra_Library
#define PPL_DIRTY_TEMP(T, id) \
Parma_Polyhedra_Library::Dirty_Temp<PPL_U(T)> holder_ ## id; \
PPL_U(T)& PPL_U(id) = holder_ ## id.item()
/* Automatically generated from PPL source file ../src/Temp_templates.hh line 1. */
/* Temp_* classes implementation: non-inline template members.
*/
namespace Parma_Polyhedra_Library {
template <typename T>
Temp_Item<T>* Temp_Item<T>::free_list_head = 0;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Temp_defs.hh line 142. */
/* Automatically generated from PPL source file ../src/Rounding_Dir_defs.hh line 1. */
/* Declaration of Rounding_Dir and related functions.
*/
/* Automatically generated from PPL source file ../src/Result_defs.hh line 1. */
/* Result enum and supporting function declarations.
*/
namespace Parma_Polyhedra_Library {
enum Result_Class {
//! \hideinitializer Representable number result class.
VC_NORMAL = 0U << 4,
//! \hideinitializer Negative infinity result class.
VC_MINUS_INFINITY = 1U << 4,
//! \hideinitializer Positive infinity result class.
VC_PLUS_INFINITY = 2U << 4,
//! \hideinitializer Not a number result class.
VC_NAN = 3U << 4,
VC_MASK = VC_NAN
};
// This must be kept in sync with Relation_Symbol
enum Result_Relation {
//! \hideinitializer No values satisfies the relation.
VR_EMPTY = 0U,
//! \hideinitializer Equal. This need to be accompanied by a value.
VR_EQ = 1U,
//! \hideinitializer Less than. This need to be accompanied by a value.
VR_LT = 2U,
//! \hideinitializer Greater than. This need to be accompanied by a value.
VR_GT = 4U,
//! \hideinitializer Not equal. This need to be accompanied by a value.
VR_NE = VR_LT | VR_GT,
//! \hideinitializer Less or equal. This need to be accompanied by a value.
VR_LE = VR_EQ | VR_LT,
//! \hideinitializer Greater or equal. This need to be accompanied by a value.
VR_GE = VR_EQ | VR_GT,
//! \hideinitializer All values satisfy the relation.
VR_LGE = VR_LT | VR_EQ | VR_GT,
VR_MASK = VR_LGE
};
//! Possible outcomes of a checked arithmetic computation.
/*! \ingroup PPL_CXX_interface */
enum Result {
//! \hideinitializer The exact result is not comparable.
V_EMPTY = VR_EMPTY,
//! \hideinitializer The computed result is exact.
V_EQ = static_cast<unsigned>(VR_EQ),
//! \hideinitializer The computed result is inexact and rounded up.
V_LT = static_cast<unsigned>(VR_LT),
//! \hideinitializer The computed result is inexact and rounded down.
V_GT = static_cast<unsigned>(VR_GT),
//! \hideinitializer The computed result is inexact.
V_NE = VR_NE,
//! \hideinitializer The computed result may be inexact and rounded up.
V_LE = VR_LE,
//! \hideinitializer The computed result may be inexact and rounded down.
V_GE = VR_GE,
//! \hideinitializer The computed result may be inexact.
V_LGE = VR_LGE,
//! \hideinitializer The exact result is a number out of finite bounds.
V_OVERFLOW = 1U << 6,
//! \hideinitializer A negative integer overflow occurred (rounding up).
V_LT_INF = V_LT | V_OVERFLOW,
//! \hideinitializer A positive integer overflow occurred (rounding down).
V_GT_SUP = V_GT | V_OVERFLOW,
//! \hideinitializer A positive integer overflow occurred (rounding up).
V_LT_PLUS_INFINITY = V_LT | static_cast<unsigned>(VC_PLUS_INFINITY),
//! \hideinitializer A negative integer overflow occurred (rounding down).
V_GT_MINUS_INFINITY = V_GT | static_cast<unsigned>(VC_MINUS_INFINITY),
//! \hideinitializer Negative infinity result.
V_EQ_MINUS_INFINITY = V_EQ | static_cast<unsigned>(VC_MINUS_INFINITY),
//! \hideinitializer Positive infinity result.
V_EQ_PLUS_INFINITY = V_EQ | static_cast<unsigned>(VC_PLUS_INFINITY),
//! \hideinitializer Not a number result.
V_NAN = static_cast<unsigned>(VC_NAN),
//! \hideinitializer Converting from unknown string.
V_CVT_STR_UNK = V_NAN | (1U << 8),
//! \hideinitializer Dividing by zero.
V_DIV_ZERO = V_NAN | (2U << 8),
//! \hideinitializer Adding two infinities having opposite signs.
V_INF_ADD_INF = V_NAN | (3U << 8),
//! \hideinitializer Dividing two infinities.
V_INF_DIV_INF = V_NAN | (4U << 8),
//! \hideinitializer Taking the modulus of an infinity.
V_INF_MOD = V_NAN | (5U << 8),
//! \hideinitializer Multiplying an infinity by zero.
V_INF_MUL_ZERO = V_NAN | (6U << 8),
//! \hideinitializer Subtracting two infinities having the same sign.
V_INF_SUB_INF = V_NAN | (7U << 8),
//! \hideinitializer Computing a remainder modulo zero.
V_MOD_ZERO = V_NAN | (8U << 8),
//! \hideinitializer Taking the square root of a negative number.
V_SQRT_NEG = V_NAN | (9U << 8),
//! \hideinitializer Unknown result due to intermediate negative overflow.
V_UNKNOWN_NEG_OVERFLOW = V_NAN | (10U << 8),
//! \hideinitializer Unknown result due to intermediate positive overflow.
V_UNKNOWN_POS_OVERFLOW = V_NAN | (11U << 8),
//! \hideinitializer The computed result is not representable.
V_UNREPRESENTABLE = 1U << 7
};
//! \name Functions Inspecting and/or Combining Result Values
//@{
/*! \ingroup PPL_CXX_interface */
Result operator&(Result x, Result y);
/*! \ingroup PPL_CXX_interface */
Result operator|(Result x, Result y);
/*! \ingroup PPL_CXX_interface */
Result operator-(Result x, Result y);
/*! \ingroup PPL_CXX_interface \brief
Extracts the value class part of \p r (representable number,
unrepresentable minus/plus infinity or nan).
*/
Result_Class result_class(Result r);
/*! \ingroup PPL_CXX_interface \brief
Extracts the relation part of \p r.
*/
Result_Relation result_relation(Result r);
/*! \ingroup PPL_CXX_interface */
Result result_relation_class(Result r);
//@} // Functions Inspecting and/or Combining Result Values
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Result_inlines.hh line 1. */
/* Result supporting functions implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/assert.hh line 1. */
/* Implementation of PPL assert-like macros.
*/
// The PPL_UNREACHABLE_MSG macro flags a program point as unreachable.
// Argument `msg__' is added to output when assertions are turned on.
#if defined(NDEBUG)
#define PPL_UNREACHABLE_MSG(msg__) Parma_Polyhedra_Library::ppl_unreachable()
#else
#define PPL_UNREACHABLE_MSG(msg__) Parma_Polyhedra_Library:: \
ppl_unreachable_msg(msg__, __FILE__, __LINE__, __func__)
#endif
// The PPL_UNREACHABLE macro flags a program point as unreachable.
#define PPL_UNREACHABLE PPL_UNREACHABLE_MSG("unreachable")
// The PPL_ASSERTION_FAILED macro is used to output a message after
// an assertion failure and then cause program termination.
// (It is meant to be used only when assertions are turned on.)
#define PPL_ASSERTION_FAILED(msg__) Parma_Polyhedra_Library:: \
ppl_assertion_failed(msg__, __FILE__, __LINE__, __func__)
// Helper macro PPL_ASSERT_IMPL_: do not use it directly.
#if defined(NDEBUG)
#define PPL_ASSERT_IMPL_(cond__) ((void) 0)
#else
#define PPL_STRING_(s) #s
#define PPL_ASSERT_IMPL_(cond__) \
((cond__) ? (void) 0 : PPL_ASSERTION_FAILED(PPL_STRING_(cond__)))
#endif
// Non zero to detect use of PPL_ASSERT instead of PPL_ASSERT_HEAVY
// Note: flag does not affect code built with NDEBUG defined.
#define PPL_DEBUG_PPL_ASSERT 1
// The PPL_ASSERT macro states that Boolean condition cond__ should hold.
// This is meant to replace uses of C assert().
#if defined(NDEBUG) || (!PPL_DEBUG_PPL_ASSERT)
#define PPL_ASSERT(cond__) PPL_ASSERT_IMPL_(cond__)
#else
// Note: here we have assertions enabled and PPL_DEBUG_PPL_ASSERT is 1.
// Check if the call to PPL_ASSERT should be replaced by PPL_ASSERT_HEAVY
// (i.e., if the former may interfere with computational weights).
#define PPL_ASSERT(cond__) \
do { \
typedef Parma_Polyhedra_Library::Weightwatch_Traits W_Traits; \
W_Traits::Threshold old_weight__ = W_Traits::weight; \
PPL_ASSERT_IMPL_(cond__); \
PPL_ASSERT_IMPL_(old_weight__ == W_Traits::weight \
&& ("PPL_ASSERT_HEAVY has to be used here" != 0)); \
} while (false)
#endif // !defined(NDEBUG) && PPL_DEBUG_PPL_ASSERT
// Macro PPL_ASSERT_HEAVY is meant to be used when the evaluation of
// the assertion may change computational weights (via WEIGHT_ADD).
#if defined(NDEBUG)
#define PPL_ASSERT_HEAVY(cond__) PPL_ASSERT_IMPL_(cond__)
#else
#define PPL_ASSERT_HEAVY(cond__) \
do { \
Parma_Polyhedra_Library::In_Assert guard; \
PPL_ASSERT_IMPL_(cond__); \
} while (false)
#endif // !defined(NDEBUG)
// Macro PPL_EXPECT (resp., PPL_EXPECT_HEAVY) should be used rather than
// PPL_ASSERT (resp., PPL_ASSERT_HEAVY) when the condition is assumed to
// hold but it is not under library control (typically, it depends on
// user provided input).
#define PPL_EXPECT(cond__) PPL_ASSERT(cond__)
#define PPL_EXPECT_HEAVY(cond__) PPL_ASSERT_HEAVY(cond__)
namespace Parma_Polyhedra_Library {
#if PPL_CXX_SUPPORTS_ATTRIBUTE_WEAK
#define PPL_WEAK_NORETURN __attribute__((weak, noreturn))
#else
#define PPL_WEAK_NORETURN __attribute__((noreturn))
#endif
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Helper function causing program termination by calling \c abort.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
void ppl_unreachable() PPL_WEAK_NORETURN;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Helper function printing message on \c std::cerr and causing program
termination by calling \c abort.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
void ppl_unreachable_msg(const char* msg,
const char* file, unsigned int line,
const char* function) PPL_WEAK_NORETURN;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Helper function printing an assertion failure message on \c std::cerr
and causing program termination by calling \c abort.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
void ppl_assertion_failed(const char* assertion_text,
const char* file, unsigned int line,
const char* function) PPL_WEAK_NORETURN;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Returns \c true if and only if \p x_copy contains \p y_copy.
\note
This is a helper function for debugging purposes, to be used in assertions.
The two arguments are meant to be passed by value, i.e., <em>copied</em>,
so that their representations will not be affected by the containment check.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
bool copy_contains(T x_copy, T y_copy) {
return x_copy.contains(y_copy);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Result_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
/*! \ingroup PPL_CXX_interface */
inline Result
operator&(Result x, Result y) {
const unsigned res = static_cast<unsigned>(x) & static_cast<unsigned>(y);
return static_cast<Result>(res);
}
/*! \ingroup PPL_CXX_interface */
inline Result
operator|(Result x, Result y) {
const unsigned res = static_cast<unsigned>(x) | static_cast<unsigned>(y);
return static_cast<Result>(res);
}
/*! \ingroup PPL_CXX_interface */
inline Result
operator-(Result x, Result y) {
const Result y_neg = static_cast<Result>(~static_cast<unsigned>(y));
return x & y_neg;
}
/*! \ingroup PPL_CXX_interface */
inline Result_Class
result_class(Result r) {
const Result rc = r & static_cast<Result>(VC_MASK);
return static_cast<Result_Class>(rc);
}
/*! \ingroup PPL_CXX_interface */
inline Result_Relation
result_relation(Result r) {
const Result rc = r & static_cast<Result>(VR_MASK);
return static_cast<Result_Relation>(rc);
}
/*! \ingroup PPL_CXX_interface */
inline Result
result_relation_class(Result r) {
return r & (static_cast<Result>(VR_MASK) | static_cast<Result>(VC_MASK));
}
inline int
result_overflow(Result r) {
switch (result_class(r)) {
case VC_NORMAL:
switch (r) {
case V_LT_INF:
return -1;
case V_GT_SUP:
return 1;
default:
break;
}
break;
case VC_MINUS_INFINITY:
return -1;
case VC_PLUS_INFINITY:
return 1;
default:
break;
}
return 0;
}
inline bool
result_representable(Result r) {
return (r & V_UNREPRESENTABLE) != V_UNREPRESENTABLE;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Result_defs.hh line 194. */
/* Automatically generated from PPL source file ../src/fpu_defs.hh line 1. */
/* Floating point unit related functions.
*/
/* Automatically generated from PPL source file ../src/fpu_types.hh line 1. */
#ifdef PPL_HAVE_IEEEFP_H
#include <ieeefp.h>
#endif
namespace Parma_Polyhedra_Library {
enum fpu_rounding_direction_type {};
enum fpu_rounding_control_word_type {};
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/compiler.hh line 1. */
/* C++ compiler related stuff.
*/
#include <cstddef>
#include <climits>
#include <cassert>
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
No-op macro that allows to avoid unused variable warnings from
the compiler.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
#define PPL_USED(v) (void)(v)
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
No-op function that force the compiler to store the argument and
to reread it from memory if needed (thus preventing CSE).
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
inline void
PPL_CC_FLUSH(const T& x) {
#if defined(__GNUC__) || defined(__INTEL_COMPILER)
__asm__ __volatile__ ("" : "+m" (const_cast<T&>(x)));
#else
// FIXME: is it possible to achieve the same effect in a portable way?
PPL_USED(x);
#endif
}
#ifndef PPL_SUPPRESS_UNINIT_WARNINGS
#define PPL_SUPPRESS_UNINIT_WARNINGS 1
#endif
#ifndef PPL_SUPPRESS_UNINITIALIZED_WARNINGS
#define PPL_SUPPRESS_UNINITIALIZED_WARNINGS 1
#endif
#if PPL_SUPPRESS_UNINITIALIZED_WARNINGS
template <typename T>
struct Suppress_Uninitialized_Warnings_Type {
typedef T synonym;
};
#define PPL_UNINITIALIZED(type, name) \
PPL_U(type) PPL_U(name) \
= Suppress_Uninitialized_Warnings_Type<PPL_U(type)>::synonym ()
#else
#define PPL_UNINITIALIZED(type, name) \
PPL_U(type) name
#endif
#define sizeof_to_bits(size) \
((size) * static_cast<std::size_t>(CHAR_BIT))
#if !defined(__GNUC__)
inline unsigned int
clz32(uint32_t w) {
unsigned int r = 31;
if ((w & 0xffff0000U) != 0) {
w >>= 16;
r -= 16;
}
if ((w & 0xff00U) != 0) {
w >>= 8;
r -= 8;
}
if ((w & 0xf0U) != 0) {
w >>= 4;
r -= 4;
}
if ((w & 0xcU) != 0) {
w >>= 2;
r -= 2;
}
if ((w & 0x2U) != 0)
r -= 1;
return r;
}
inline unsigned int
clz64(uint64_t w) {
if ((w & 0xffffffff00000000ULL) == 0)
return clz32(static_cast<uint32_t>(w)) + 32;
else
return clz32(static_cast<uint32_t>(w >> 32));
}
inline unsigned int
ctz32(uint32_t w) {
static const unsigned int mod37_table[] = {
32, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13,
4, 7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9,
5, 20, 8, 19, 18
};
return mod37_table[(w & -w) % 37];
}
inline unsigned int
ctz64(uint64_t w) {
if ((w & 0x00000000ffffffffULL) == 0)
return ctz32(static_cast<uint32_t>(w >> 32)) + 32;
else
return ctz32(static_cast<uint32_t>(w));
}
#endif
inline unsigned int
clz(unsigned int u) {
assert(u != 0);
#if defined(__GNUC__)
return static_cast<unsigned int>(__builtin_clz(u));
#elif PPL_SIZEOF_INT == 4
return clz32(u);
#elif PPL_SIZEOF_INT == 8
return clz64(u);
#else
#error "Unsupported unsigned int size"
#endif
}
inline unsigned int
clz(unsigned long ul) {
assert(ul != 0);
#if defined(__GNUC__)
return static_cast<unsigned int>(__builtin_clzl(ul));
#elif PPL_SIZEOF_LONG == 4
return clz32(ul);
#elif PPL_SIZEOF_LONG == 8
return clz64(ul);
#else
#error "Unsupported unsigned long size"
#endif
}
inline unsigned int
clz(unsigned long long ull) {
assert(ull != 0);
#if defined(__GNUC__)
return static_cast<unsigned int>(__builtin_clzll(ull));
#elif PPL_SIZEOF_LONG_LONG == 4
return clz32(ull);
#elif PPL_SIZEOF_LONG_LONG == 8
return clz64(ull);
#else
#error "Unsupported unsigned long long size"
#endif
}
inline unsigned int
ctz(unsigned int u) {
assert(u != 0);
#if defined(__GNUC__)
return static_cast<unsigned int>(__builtin_ctz(u));
#elif PPL_SIZEOF_INT == 4
return ctz32(u);
#elif PPL_SIZEOF_INT == 8
return ctz64(u);
#else
#error "Unsupported unsigned int size"
#endif
}
inline unsigned int
ctz(unsigned long ul) {
assert(ul != 0);
#if defined(__GNUC__)
return static_cast<unsigned int>(__builtin_ctzl(ul));
#elif PPL_SIZEOF_LONG == 4
return ctz32(ul);
#elif PPL_SIZEOF_LONG == 8
return ctz64(ul);
#else
#error "Unsupported unsigned long size"
#endif
}
inline unsigned int
ctz(unsigned long long ull) {
assert(ull != 0);
#if defined(__GNUC__)
return static_cast<unsigned int>(__builtin_ctzll(ull));
#elif PPL_SIZEOF_LONG_LONG == 4
return ctz32(ull);
#elif PPL_SIZEOF_LONG_LONG == 8
return ctz64(ull);
#else
#error "Unsupported unsigned long long size"
#endif
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/fpu_defs.hh line 29. */
namespace Parma_Polyhedra_Library {
//! \name Functions Controlling Floating Point Unit
//@{
//! Initializes the FPU control functions.
void
fpu_initialize_control_functions();
//! Returns the current FPU rounding direction.
fpu_rounding_direction_type
fpu_get_rounding_direction();
//! Sets the FPU rounding direction to \p dir.
void
fpu_set_rounding_direction(fpu_rounding_direction_type dir);
/*! \brief
Sets the FPU rounding direction to \p dir and returns the rounding
control word previously in use.
*/
fpu_rounding_control_word_type
fpu_save_rounding_direction(fpu_rounding_direction_type dir);
/*! \brief
Sets the FPU rounding direction to \p dir, clears the <EM>inexact
computation</EM> status, and returns the rounding control word
previously in use.
*/
fpu_rounding_control_word_type
fpu_save_rounding_direction_reset_inexact(fpu_rounding_direction_type dir);
//! Restores the FPU rounding rounding control word to \p cw.
void
fpu_restore_rounding_direction(fpu_rounding_control_word_type w);
//! Clears the <EM>inexact computation</EM> status.
void
fpu_reset_inexact();
/*! \brief
Queries the <EM>inexact computation</EM> status.
Returns 0 if the computation was definitely exact, 1 if it was
definitely inexact, -1 if definite exactness information is unavailable.
*/
int
fpu_check_inexact();
//@} // Functions Controlling Floating Point Unit
} // namespace Parma_Polyhedra_Library
#if PPL_CAN_CONTROL_FPU
#if defined(__i386__) && (defined(__GNUC__) || defined(__INTEL_COMPILER))
/* Automatically generated from PPL source file ../src/fpu-ia32_inlines.hh line 1. */
/* IA-32 floating point unit inline related functions.
*/
#include <csetjmp>
#include <csignal>
#define FPU_INVALID 0x01
#define FPU_DIVBYZERO 0x04
#define FPU_OVERFLOW 0x08
#define FPU_UNDERFLOW 0x10
#define FPU_INEXACT 0x20
#define FPU_ALL_EXCEPT \
(FPU_INEXACT | FPU_DIVBYZERO | FPU_UNDERFLOW | FPU_OVERFLOW | FPU_INVALID)
#define PPL_FPU_TONEAREST 0
#define PPL_FPU_DOWNWARD 0x400
#define PPL_FPU_UPWARD 0x800
#define PPL_FPU_TOWARDZERO 0xc00
#define FPU_ROUNDING_MASK 0xc00
#define SSE_INEXACT 0x20
#define PPL_FPU_CONTROL_DEFAULT_BASE 0x37f
#define PPL_SSE_CONTROL_DEFAULT_BASE 0x1f80
// This MUST be congruent with the definition of ROUND_DIRECT
#define PPL_FPU_CONTROL_DEFAULT \
(PPL_FPU_CONTROL_DEFAULT_BASE | PPL_FPU_UPWARD)
#define PPL_SSE_CONTROL_DEFAULT \
(PPL_SSE_CONTROL_DEFAULT_BASE | (PPL_FPU_UPWARD << 3))
namespace Parma_Polyhedra_Library {
typedef struct {
unsigned short control_word;
unsigned short unused1;
unsigned short status_word;
unsigned short unused2;
unsigned short tags;
unsigned short unused3;
unsigned int eip;
unsigned short cs_selector;
unsigned int opcode:11;
unsigned int unused4:5;
unsigned int data_offset;
unsigned short data_selector;
unsigned short unused5;
} ia32_fenv_t;
inline int
fpu_get_control() {
unsigned short cw;
__asm__ __volatile__ ("fnstcw %0" : "=m" (*&cw) : : "memory");
return cw;
}
inline void
fpu_set_control(int c) {
unsigned short cw = static_cast<unsigned short>(c);
__asm__ __volatile__ ("fldcw %0" : : "m" (*&cw) : "memory");
}
inline int
fpu_get_status() {
unsigned short sw;
__asm__ __volatile__ ("fnstsw %0" : "=a" (sw) : : "memory");
return sw;
}
inline void
fpu_clear_status(unsigned short bits) {
/* There is no fldsw instruction */
ia32_fenv_t env;
__asm__ __volatile__ ("fnstenv %0" : "=m" (env));
env.status_word = static_cast<unsigned short>(env.status_word & ~bits);
__asm__ __volatile__ ("fldenv %0" : : "m" (env) : "memory");
}
inline void
fpu_clear_exceptions() {
__asm__ __volatile__ ("fnclex" : /* No outputs. */ : : "memory");
}
#ifdef PPL_FPMATH_MAY_USE_SSE
inline void
sse_set_control(unsigned int cw) {
__asm__ __volatile__ ("ldmxcsr %0" : : "m" (*&cw) : "memory");
}
inline unsigned int
sse_get_control() {
unsigned int cw;
__asm__ __volatile__ ("stmxcsr %0" : "=m" (*&cw) : : "memory");
return cw;
}
#endif
inline void
fpu_initialize_control_functions() {
#ifdef PPL_FPMATH_MAY_USE_SSE
extern void detect_sse_unit();
detect_sse_unit();
#endif
}
inline fpu_rounding_direction_type
fpu_get_rounding_direction() {
return static_cast<fpu_rounding_direction_type>(fpu_get_control() & FPU_ROUNDING_MASK);
}
inline void
fpu_set_rounding_direction(fpu_rounding_direction_type dir) {
#ifdef PPL_FPMATH_MAY_USE_387
fpu_set_control(PPL_FPU_CONTROL_DEFAULT_BASE | dir);
#endif
#ifdef PPL_FPMATH_MAY_USE_SSE
extern bool have_sse_unit;
if (have_sse_unit)
sse_set_control(PPL_SSE_CONTROL_DEFAULT_BASE | (dir << 3));
#endif
}
inline fpu_rounding_control_word_type
fpu_save_rounding_direction(fpu_rounding_direction_type dir) {
#ifdef PPL_FPMATH_MAY_USE_387
fpu_set_control(PPL_FPU_CONTROL_DEFAULT_BASE | dir);
#endif
#ifdef PPL_FPMATH_MAY_USE_SSE
extern bool have_sse_unit;
if (have_sse_unit)
sse_set_control(PPL_SSE_CONTROL_DEFAULT_BASE | (dir << 3));
#endif
return static_cast<fpu_rounding_control_word_type>(0);
}
inline void
fpu_reset_inexact() {
#ifdef PPL_FPMATH_MAY_USE_387
fpu_clear_exceptions();
#endif
#ifdef PPL_FPMATH_MAY_USE_SSE
// NOTE: on entry to this function the current rounding mode
// has to be the default one.
extern bool have_sse_unit;
if (have_sse_unit)
sse_set_control(PPL_SSE_CONTROL_DEFAULT);
#endif
}
inline void
fpu_restore_rounding_direction(fpu_rounding_control_word_type) {
#ifdef PPL_FPMATH_MAY_USE_387
fpu_set_control(PPL_FPU_CONTROL_DEFAULT);
#endif
#ifdef PPL_FPMATH_MAY_USE_SSE
extern bool have_sse_unit;
if (have_sse_unit)
sse_set_control(PPL_SSE_CONTROL_DEFAULT);
#endif
}
inline int
fpu_check_inexact() {
#ifdef PPL_FPMATH_MAY_USE_387
if (fpu_get_status() & FPU_INEXACT)
return 1;
#endif
#ifdef PPL_FPMATH_MAY_USE_SSE
extern bool have_sse_unit;
if (have_sse_unit && (sse_get_control() & SSE_INEXACT))
return 1;
#endif
return 0;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/fpu_defs.hh line 87. */
#elif defined(PPL_HAVE_IEEEFP_H) \
&& (defined(__sparc) \
|| defined(sparc) \
|| defined(__sparc__))
/* Automatically generated from PPL source file ../src/fpu-sparc_inlines.hh line 1. */
/* SPARC floating point unit related functions.
*/
#ifdef PPL_HAVE_IEEEFP_H
#include <ieeefp.h>
#define PPL_FPU_TONEAREST ((int) FP_RN)
#define PPL_FPU_UPWARD ((int) FP_RP)
#define PPL_FPU_DOWNWARD ((int) FP_RM)
#define PPL_FPU_TOWARDZERO ((int) FP_RZ)
namespace Parma_Polyhedra_Library {
inline void
fpu_initialize_control_functions() {
}
inline fpu_rounding_direction_type
fpu_get_rounding_direction() {
return static_cast<fpu_rounding_direction_type>(fpgetround());
}
inline void
fpu_set_rounding_direction(fpu_rounding_direction_type dir) {
fpsetround((fp_rnd) dir);
}
inline fpu_rounding_control_word_type
fpu_save_rounding_direction(fpu_rounding_direction_type dir) {
return static_cast<fpu_rounding_control_word_type>(fpsetround((fp_rnd) dir));
}
inline void
fpu_reset_inexact() {
fp_except except = fpgetmask();
except &= ~FP_X_IMP;
fpsetmask(except);
}
inline void
fpu_restore_rounding_direction(fpu_rounding_control_word_type w) {
fpsetround((fp_rnd) w);
}
inline int
fpu_check_inexact() {
return (fpgetmask() & FP_X_IMP) ? 1 : 0;
}
} // namespace Parma_Polyhedra_Library
#endif // !defined(PPL_HAVE_IEEEFP_H)
/* Automatically generated from PPL source file ../src/fpu_defs.hh line 92. */
#elif defined(PPL_HAVE_FENV_H)
/* Automatically generated from PPL source file ../src/fpu-c99_inlines.hh line 1. */
/* C99 Floating point unit related functions.
*/
#ifdef PPL_HAVE_FENV_H
#include <fenv.h>
#include <stdexcept>
#ifdef FE_TONEAREST
#define PPL_FPU_TONEAREST FE_TONEAREST
#endif
#ifdef FE_UPWARD
#define PPL_FPU_UPWARD FE_UPWARD
#endif
#ifdef FE_DOWNWARD
#define PPL_FPU_DOWNWARD FE_DOWNWARD
#endif
#ifdef FE_TOWARDZERO
#define PPL_FPU_TOWARDZERO FE_TOWARDZERO
#endif
namespace Parma_Polyhedra_Library {
inline void
fpu_initialize_control_functions() {
const int old = fegetround();
if (fesetround(PPL_FPU_DOWNWARD) != 0
|| fesetround(PPL_FPU_UPWARD) != 0
|| fesetround(old) != 0)
throw std::logic_error("PPL configuration error:"
" PPL_CAN_CONTROL_FPU evaluates to true,"
" but fesetround() returns nonzero.");
}
inline fpu_rounding_direction_type
fpu_get_rounding_direction() {
return static_cast<fpu_rounding_direction_type>(fegetround());
}
inline void
fpu_set_rounding_direction(fpu_rounding_direction_type dir) {
fesetround(dir);
}
inline fpu_rounding_control_word_type
fpu_save_rounding_direction(fpu_rounding_direction_type dir) {
const fpu_rounding_control_word_type old
= static_cast<fpu_rounding_control_word_type>(fegetround());
fesetround(dir);
return old;
}
inline void
fpu_reset_inexact() {
#if PPL_CXX_SUPPORTS_IEEE_INEXACT_FLAG
feclearexcept(FE_INEXACT);
#endif
}
inline void
fpu_restore_rounding_direction(fpu_rounding_control_word_type w) {
fesetround(w);
}
inline int
fpu_check_inexact() {
#if PPL_CXX_SUPPORTS_IEEE_INEXACT_FLAG
return fetestexcept(FE_INEXACT) != 0 ? 1 : 0;
#else
return -1;
#endif
}
} // namespace Parma_Polyhedra_Library
#endif // !defined(PPL_HAVE_FENV_H)
/* Automatically generated from PPL source file ../src/fpu_defs.hh line 94. */
#else
#error "PPL_CAN_CONTROL_FPU evaluates to true: why?"
#endif
#else // !PPL_CAN_CONTROL_FPU
/* Automatically generated from PPL source file ../src/fpu-none_inlines.hh line 1. */
/* Null floating point unit related functions.
*/
#include <stdexcept>
namespace Parma_Polyhedra_Library {
inline void
fpu_initialize_control_functions() {
throw std::logic_error("PPL::fpu_initialize_control_functions():"
" cannot control the FPU");
}
inline fpu_rounding_direction_type
fpu_get_rounding_direction() {
throw std::logic_error("PPL::fpu_get_rounding_direction():"
" cannot control the FPU");
}
inline void
fpu_set_rounding_direction(int) {
throw std::logic_error("PPL::fpu_set_rounding_direction():"
" cannot control the FPU");
}
inline int
fpu_save_rounding_direction(int) {
throw std::logic_error("PPL::fpu_save_rounding_direction():"
" cannot control the FPU");
}
inline void
fpu_reset_inexact() {
throw std::logic_error("PPL::fpu_reset_inexact():"
" cannot control the FPU");
}
inline void
fpu_restore_rounding_direction(int) {
throw std::logic_error("PPL::fpu_restore_rounding_direction():"
" cannot control the FPU");
}
inline int
fpu_check_inexact() {
throw std::logic_error("PPL::fpu_check_inexact():"
" cannot control the FPU");
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/fpu_defs.hh line 101. */
#endif // !PPL_CAN_CONTROL_FPU
/* Automatically generated from PPL source file ../src/Rounding_Dir_defs.hh line 29. */
namespace Parma_Polyhedra_Library {
//! Rounding directions for arithmetic computations.
/*! \ingroup PPL_CXX_interface */
enum Rounding_Dir {
/*! \hideinitializer
Round toward \f$-\infty\f$.
*/
ROUND_DOWN = 0U,
/*! \hideinitializer
Round toward \f$+\infty\f$.
*/
ROUND_UP = 1U,
/*! \hideinitializer
Rounding is delegated to lower level. Result info is evaluated lazily.
*/
ROUND_IGNORE = 6U,
ROUND_NATIVE = ROUND_IGNORE,
/*! \hideinitializer
Rounding is not needed: client code must ensure that the operation
result is exact and representable in the destination type.
Result info is evaluated lazily.
*/
ROUND_NOT_NEEDED = 7U,
ROUND_DIRECT = ROUND_UP,
ROUND_INVERSE = ROUND_DOWN,
ROUND_DIR_MASK = 7U,
/*! \hideinitializer
The client code is willing to pay an extra price to know the exact
relation between the exact result and the computed one.
*/
ROUND_STRICT_RELATION = 8U,
ROUND_CHECK = ROUND_DIRECT | ROUND_STRICT_RELATION
};
//! \name Functions Inspecting and/or Combining Rounding_Dir Values
//@{
/*! \ingroup PPL_CXX_interface */
Rounding_Dir operator&(Rounding_Dir x, Rounding_Dir y);
/*! \ingroup PPL_CXX_interface */
Rounding_Dir operator|(Rounding_Dir x, Rounding_Dir y);
/*! \ingroup PPL_CXX_interface \brief
Returns the inverse rounding mode of \p dir,
<CODE>ROUND_IGNORE</CODE> being the inverse of itself.
*/
Rounding_Dir inverse(Rounding_Dir dir);
/*! \ingroup PPL_CXX_interface */
Rounding_Dir round_dir(Rounding_Dir dir);
/*! \ingroup PPL_CXX_interface */
bool round_down(Rounding_Dir dir);
/*! \ingroup PPL_CXX_interface */
bool round_up(Rounding_Dir dir);
/*! \ingroup PPL_CXX_interface */
bool round_ignore(Rounding_Dir dir);
/*! \ingroup PPL_CXX_interface */
bool round_not_needed(Rounding_Dir dir);
/*! \ingroup PPL_CXX_interface */
bool round_not_requested(Rounding_Dir dir);
/*! \ingroup PPL_CXX_interface */
bool round_direct(Rounding_Dir dir);
/*! \ingroup PPL_CXX_interface */
bool round_inverse(Rounding_Dir dir);
/*! \ingroup PPL_CXX_interface */
bool round_strict_relation(Rounding_Dir dir);
/*! \ingroup PPL_CXX_interface */
fpu_rounding_direction_type round_fpu_dir(Rounding_Dir dir);
//@} // Functions Inspecting and/or Combining Rounding_Dir Values
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Rounding_Dir_inlines.hh line 1. */
/* Inline functions operating on enum Rounding_Dir values.
*/
/* Automatically generated from PPL source file ../src/Rounding_Dir_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
/*! \ingroup PPL_CXX_interface */
inline Rounding_Dir
operator&(Rounding_Dir x, Rounding_Dir y) {
const unsigned res = static_cast<unsigned>(x) & static_cast<unsigned>(y);
return static_cast<Rounding_Dir>(res);
}
/*! \ingroup PPL_CXX_interface */
inline Rounding_Dir
operator|(Rounding_Dir x, Rounding_Dir y) {
const unsigned res = static_cast<unsigned>(x) | static_cast<unsigned>(y);
return static_cast<Rounding_Dir>(res);
}
/*! \ingroup PPL_CXX_interface */
inline Rounding_Dir
round_dir(Rounding_Dir dir) {
return dir & ROUND_DIR_MASK;
}
/*! \ingroup PPL_CXX_interface */
inline bool
round_down(Rounding_Dir dir) {
return round_dir(dir) == ROUND_DOWN;
}
/*! \ingroup PPL_CXX_interface */
inline bool
round_up(Rounding_Dir dir) {
return round_dir(dir) == ROUND_UP;
}
/*! \ingroup PPL_CXX_interface */
inline bool
round_ignore(Rounding_Dir dir) {
return round_dir(dir) == ROUND_IGNORE;
}
/*! \ingroup PPL_CXX_interface */
inline bool
round_not_needed(Rounding_Dir dir) {
return round_dir(dir) == ROUND_NOT_NEEDED;
}
/*! \ingroup PPL_CXX_interface */
inline bool
round_not_requested(Rounding_Dir dir) {
return round_dir(dir) == ROUND_IGNORE || round_dir(dir) == ROUND_NOT_NEEDED;
}
/*! \ingroup PPL_CXX_interface */
inline bool
round_direct(Rounding_Dir dir) {
return round_dir(dir) == ROUND_DIRECT;
}
/*! \ingroup PPL_CXX_interface */
inline bool
round_inverse(Rounding_Dir dir) {
return round_dir(dir) == ROUND_INVERSE;
}
/*! \ingroup PPL_CXX_interface */
inline bool
round_strict_relation(Rounding_Dir dir) {
return (dir & ROUND_STRICT_RELATION) == ROUND_STRICT_RELATION;
}
#if PPL_CAN_CONTROL_FPU
/*! \ingroup PPL_CXX_interface */
inline fpu_rounding_direction_type
round_fpu_dir(Rounding_Dir dir) {
switch (round_dir(dir)) {
case ROUND_UP:
return static_cast<fpu_rounding_direction_type>(PPL_FPU_UPWARD);
case ROUND_DOWN:
return static_cast<fpu_rounding_direction_type>(PPL_FPU_DOWNWARD);
case ROUND_IGNORE: // Fall through.
default:
PPL_UNREACHABLE;
return static_cast<fpu_rounding_direction_type>(PPL_FPU_UPWARD);
}
}
#undef PPL_FPU_DOWNWARD
#undef PPL_FPU_TONEAREST
#undef PPL_FPU_TOWARDZERO
#undef PPL_FPU_UPWARD
#endif
/*! \ingroup PPL_CXX_interface */
inline Rounding_Dir
inverse(Rounding_Dir dir) {
switch (round_dir(dir)) {
case ROUND_UP:
return ROUND_DOWN | (dir & ROUND_STRICT_RELATION);
case ROUND_DOWN:
return ROUND_UP | (dir & ROUND_STRICT_RELATION);
case ROUND_IGNORE:
return dir;
default:
PPL_UNREACHABLE;
return dir;
}
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Rounding_Dir_defs.hh line 122. */
/* Automatically generated from PPL source file ../src/Numeric_Format_defs.hh line 1. */
/* Numeric format.
*/
/* Automatically generated from PPL source file ../src/Numeric_Format_defs.hh line 29. */
namespace Parma_Polyhedra_Library {
class Numeric_Format {
};
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Float_defs.hh line 1. */
/* IEC 559 floating point format related functions.
*/
/* Automatically generated from PPL source file ../src/globals_types.hh line 1. */
#include <cstddef>
namespace Parma_Polyhedra_Library {
//! An unsigned integral type for representing space dimensions.
/*! \ingroup PPL_CXX_interface */
typedef size_t dimension_type;
//! An unsigned integral type for representing memory size in bytes.
/*! \ingroup PPL_CXX_interface */
typedef size_t memory_size_type;
//! Kinds of degenerate abstract elements.
/*! \ingroup PPL_CXX_interface */
enum Degenerate_Element {
//! The universe element, i.e., the whole vector space.
UNIVERSE,
//! The empty element, i.e., the empty set.
EMPTY
};
//! Relation symbols.
/*! \ingroup PPL_CXX_interface */
// This must be kept in sync with Result
enum Relation_Symbol {
//! \hideinitializer Equal to.
EQUAL = 1U,
//! \hideinitializer Less than.
LESS_THAN = 2U,
//! \hideinitializer Less than or equal to.
LESS_OR_EQUAL = LESS_THAN | EQUAL,
//! \hideinitializer Greater than.
GREATER_THAN = 4U,
//! \hideinitializer Greater than or equal to.
GREATER_OR_EQUAL = GREATER_THAN | EQUAL,
//! \hideinitializer Not equal to.
NOT_EQUAL = LESS_THAN | GREATER_THAN
};
//! Complexity pseudo-classes.
/*! \ingroup PPL_CXX_interface */
enum Complexity_Class {
//! Worst-case polynomial complexity.
POLYNOMIAL_COMPLEXITY,
//! Worst-case exponential complexity but typically polynomial behavior.
SIMPLEX_COMPLEXITY,
//! Any complexity.
ANY_COMPLEXITY
};
//! Possible optimization modes.
/*! \ingroup PPL_CXX_interface */
enum Optimization_Mode {
//! Minimization is requested.
MINIMIZATION,
//! Maximization is requested.
MAXIMIZATION
};
/*! \ingroup PPL_CXX_interface \brief
Widths of bounded integer types.
See the section on
\ref Approximating_Bounded_Integers "approximating bounded integers".
*/
enum Bounded_Integer_Type_Width {
//! \hideinitializer 8 bits.
BITS_8 = 8,
//! \hideinitializer 16 bits.
BITS_16 = 16,
//! \hideinitializer 32 bits.
BITS_32 = 32,
//! \hideinitializer 64 bits.
BITS_64 = 64,
//! \hideinitializer 128 bits.
BITS_128 = 128
};
/*! \ingroup PPL_CXX_interface \brief
Representation of bounded integer types.
See the section on
\ref Approximating_Bounded_Integers "approximating bounded integers".
*/
enum Bounded_Integer_Type_Representation {
//! Unsigned binary.
UNSIGNED,
/*! \brief
Signed binary where negative values are represented by the two's
complement of the absolute value.
*/
SIGNED_2_COMPLEMENT
};
/*! \ingroup PPL_CXX_interface \brief
Overflow behavior of bounded integer types.
See the section on
\ref Approximating_Bounded_Integers "approximating bounded integers".
*/
enum Bounded_Integer_Type_Overflow {
/*! \brief
On overflow, wrapping takes place.
This means that, for a \f$w\f$-bit bounded integer, the computation
happens modulo \f$2^w\f$.
*/
OVERFLOW_WRAPS,
/*! \brief
On overflow, the result is undefined.
This simply means that the result of the operation resulting in an
overflow can take any value.
\note
Even though something more serious can happen in the system
being analyzed ---due to, e.g., C's undefined behavior---, here we
are only concerned with the results of arithmetic operations.
It is the responsibility of the analyzer to ensure that other
manifestations of undefined behavior are conservatively approximated.
*/
OVERFLOW_UNDEFINED,
/*! \brief
Overflow is impossible.
This is for the analysis of languages where overflow is trapped
before it affects the state, for which, thus, any indication that
an overflow may have affected the state is necessarily due to
the imprecision of the analysis.
*/
OVERFLOW_IMPOSSIBLE
};
/*! \ingroup PPL_CXX_interface \brief
Possible representations of coefficient sequences (i.e. linear expressions
and more complex objects containing linear expressions, e.g. Constraints,
Generators, etc.).
*/
enum Representation {
/*! \brief
Dense representation: the coefficient sequence is represented as a vector
of coefficients, including the zero coefficients.
If there are only a few nonzero coefficients, this representation is
faster and also uses a bit less memory.
*/
DENSE,
/*! \brief
Sparse representation: only the nonzero coefficient are stored.
If there are many nonzero coefficients, this improves memory consumption
and run time (both because there is less data to process in O(n)
operations and because finding zeroes/nonzeroes is much faster since
zeroes are not stored at all, so any stored coefficient is nonzero).
*/
SPARSE
};
/*! \ingroup PPL_CXX_interface \brief
Floating point formats known to the library.
The parameters of each format are defined by a specific struct
in file Float_defs.hh. See the section on \ref floating_point
"Analysis of floating point computations" for more information.
*/
enum Floating_Point_Format {
//! IEEE 754 half precision, 16 bits (5 exponent, 10 mantissa).
IEEE754_HALF,
//! IEEE 754 single precision, 32 bits (8 exponent, 23 mantissa).
IEEE754_SINGLE,
//! IEEE 754 double precision, 64 bits (11 exponent, 52 mantissa).
IEEE754_DOUBLE,
//! IEEE 754 quad precision, 128 bits (15 exponent, 112 mantissa).
IEEE754_QUAD,
//! Intel double extended precision, 80 bits (15 exponent, 64 mantissa)
INTEL_DOUBLE_EXTENDED,
//! IBM single precision, 32 bits (7 exponent, 24 mantissa).
IBM_SINGLE,
//! IBM double precision, 64 bits (7 exponent, 56 mantissa).
IBM_DOUBLE
};
struct Weightwatch_Traits;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Concrete_Expression_types.hh line 1. */
namespace Parma_Polyhedra_Library {
/*
NOTE: Doxygen seems to ignore documentation blocks attached to
template class declarations that are not provided with a definition.
This justifies (here below) the explicit use of Doxygen command \class.
*/
/*! \brief The base class of all concrete expressions.
\class Parma_Polyhedra_Library::Concrete_Expression
*/
template <typename Target>
class Concrete_Expression;
/*! \brief A binary operator applied to two concrete expressions.
\class Parma_Polyhedra_Library::Binary_Operator
*/
template <typename Target>
class Binary_Operator;
/*! \brief A unary operator applied to one concrete expression.
\class Parma_Polyhedra_Library::Unary_Operator
*/
template <typename Target>
class Unary_Operator;
/*! \brief A cast operator converting one concrete expression to some type.
\class Parma_Polyhedra_Library::Cast_Operator
*/
template <typename Target>
class Cast_Operator;
/*! \brief An integer constant concrete expression.
\class Parma_Polyhedra_Library::Integer_Constant
*/
template <typename Target>
class Integer_Constant;
/*! \brief A floating-point constant concrete expression.
\class Parma_Polyhedra_Library::Floating_Point_Constant
*/
template <typename Target>
class Floating_Point_Constant;
/*! \brief A concrete expression representing a reference to some approximable.
\class Parma_Polyhedra_Library::Approximable_Reference
*/
template <typename Target>
class Approximable_Reference;
class Concrete_Expression_Type;
/*! \brief
Encodes the kind of concrete expression.
The values should be defined by the particular instance
and uniquely identify one of: Binary_Operator, Unary_Operator,
Cast_Operator, Integer_Constant, Floating_Point_Constant, or
Approximable_Reference. For example, the Binary_Operator kind
integer constant should be defined by an instance as the member
<CODE>Binary_Operator\<T\>::%KIND</CODE>.
*/
typedef int Concrete_Expression_Kind;
/*! \brief
Encodes a binary operator of concrete expressions.
The values should be uniquely defined by the particular instance and
named: ADD, SUB, MUL, DIV, REM, BAND, BOR, BXOR, LSHIFT, RSHIFT.
*/
typedef int Concrete_Expression_BOP;
/*! \brief
Encodes a unary operator of concrete expressions.
The values should be uniquely defined by the particular instance and
named: PLUS, MINUS, BNOT.
*/
typedef int Concrete_Expression_UOP;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Variable_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Variable;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Linear_Form_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename C>
class Linear_Form;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Float_defs.hh line 34. */
#include <set>
#include <cmath>
#include <map>
#include <gmp.h>
#ifdef NAN
#define PPL_NAN NAN
#else
#define PPL_NAN (HUGE_VAL - HUGE_VAL)
#endif
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
struct float_ieee754_half {
uint16_t word;
static const uint16_t SGN_MASK = 0x8000U;
static const uint16_t EXP_MASK = 0xfc00U;
static const uint16_t WRD_MAX = 0x7bffU;
static const uint16_t POS_INF = 0x7c00U;
static const uint16_t NEG_INF = 0xfc00U;
static const uint16_t POS_ZERO = 0x0000U;
static const uint16_t NEG_ZERO = 0x8000U;
static const unsigned int BASE = 2;
static const unsigned int EXPONENT_BITS = 5;
static const unsigned int MANTISSA_BITS = 10;
static const int EXPONENT_MAX = (1 << (EXPONENT_BITS - 1)) - 1;
static const int EXPONENT_BIAS = EXPONENT_MAX;
static const int EXPONENT_MIN = -EXPONENT_MAX + 1;
static const int EXPONENT_MIN_DENORM = EXPONENT_MIN
- static_cast<int>(MANTISSA_BITS);
static const Floating_Point_Format floating_point_format = IEEE754_HALF;
int inf_sign() const;
bool is_nan() const;
int zero_sign() const;
bool sign_bit() const;
void negate();
void dec();
void inc();
void set_max(bool negative);
void build(bool negative, mpz_t mantissa, int exponent);
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
struct float_ieee754_single {
uint32_t word;
static const uint32_t SGN_MASK = 0x80000000U;
static const uint32_t EXP_MASK = 0x7f800000U;
static const uint32_t WRD_MAX = 0x7f7fffffU;
static const uint32_t POS_INF = 0x7f800000U;
static const uint32_t NEG_INF = 0xff800000U;
static const uint32_t POS_ZERO = 0x00000000U;
static const uint32_t NEG_ZERO = 0x80000000U;
static const unsigned int BASE = 2;
static const unsigned int EXPONENT_BITS = 8;
static const unsigned int MANTISSA_BITS = 23;
static const int EXPONENT_MAX = (1 << (EXPONENT_BITS - 1)) - 1;
static const int EXPONENT_BIAS = EXPONENT_MAX;
static const int EXPONENT_MIN = -EXPONENT_MAX + 1;
static const int EXPONENT_MIN_DENORM = EXPONENT_MIN
- static_cast<int>(MANTISSA_BITS);
static const Floating_Point_Format floating_point_format = IEEE754_SINGLE;
int inf_sign() const;
bool is_nan() const;
int zero_sign() const;
bool sign_bit() const;
void negate();
void dec();
void inc();
void set_max(bool negative);
void build(bool negative, mpz_t mantissa, int exponent);
};
#ifdef WORDS_BIGENDIAN
#ifndef PPL_WORDS_BIGENDIAN
#define PPL_WORDS_BIGENDIAN
#endif
#endif
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
struct float_ieee754_double {
#ifdef PPL_WORDS_BIGENDIAN
uint32_t msp;
uint32_t lsp;
#else
uint32_t lsp;
uint32_t msp;
#endif
static const uint32_t MSP_SGN_MASK = 0x80000000U;
static const uint32_t MSP_POS_INF = 0x7ff00000U;
static const uint32_t MSP_NEG_INF = 0xfff00000U;
static const uint32_t MSP_POS_ZERO = 0x00000000U;
static const uint32_t MSP_NEG_ZERO = 0x80000000U;
static const uint32_t LSP_INF = 0;
static const uint32_t LSP_ZERO = 0;
static const uint32_t MSP_MAX = 0x7fefffffU;
static const uint32_t LSP_MAX = 0xffffffffU;
static const unsigned int BASE = 2;
static const unsigned int EXPONENT_BITS = 11;
static const unsigned int MANTISSA_BITS = 52;
static const int EXPONENT_MAX = (1 << (EXPONENT_BITS - 1)) - 1;
static const int EXPONENT_BIAS = EXPONENT_MAX;
static const int EXPONENT_MIN = -EXPONENT_MAX + 1;
static const int EXPONENT_MIN_DENORM = EXPONENT_MIN
- static_cast<int>(MANTISSA_BITS);
static const Floating_Point_Format floating_point_format = IEEE754_DOUBLE;
int inf_sign() const;
bool is_nan() const;
int zero_sign() const;
bool sign_bit() const;
void negate();
void dec();
void inc();
void set_max(bool negative);
void build(bool negative, mpz_t mantissa, int exponent);
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
struct float_ibm_single {
uint32_t word;
static const uint32_t SGN_MASK = 0x80000000U;
static const uint32_t EXP_MASK = 0x7f000000U;
static const uint32_t WRD_MAX = 0x7fffffffU;
static const uint32_t POS_INF = 0x7f000000U;
static const uint32_t NEG_INF = 0xff000000U;
static const uint32_t POS_ZERO = 0x00000000U;
static const uint32_t NEG_ZERO = 0x80000000U;
static const unsigned int BASE = 16;
static const unsigned int EXPONENT_BITS = 7;
static const unsigned int MANTISSA_BITS = 24;
static const int EXPONENT_BIAS = 64;
static const int EXPONENT_MAX = (1 << (EXPONENT_BITS - 1)) - 1;
static const int EXPONENT_MIN = -EXPONENT_MAX + 1;
static const int EXPONENT_MIN_DENORM = EXPONENT_MIN
- static_cast<int>(MANTISSA_BITS);
static const Floating_Point_Format floating_point_format = IBM_SINGLE;
int inf_sign() const;
bool is_nan() const;
int zero_sign() const;
bool sign_bit() const;
void negate();
void dec();
void inc();
void set_max(bool negative);
void build(bool negative, mpz_t mantissa, int exponent);
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
struct float_ibm_double {
static const unsigned int BASE = 16;
static const unsigned int EXPONENT_BITS = 7;
static const unsigned int MANTISSA_BITS = 56;
static const int EXPONENT_BIAS = 64;
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
struct float_intel_double_extended {
#ifdef PPL_WORDS_BIGENDIAN
uint32_t msp;
uint64_t lsp;
#else
uint64_t lsp;
uint32_t msp;
#endif
static const uint32_t MSP_SGN_MASK = 0x00008000U;
static const uint32_t MSP_POS_INF = 0x00007fffU;
static const uint32_t MSP_NEG_INF = 0x0000ffffU;
static const uint32_t MSP_POS_ZERO = 0x00000000U;
static const uint32_t MSP_NEG_ZERO = 0x00008000U;
static const uint64_t LSP_INF = static_cast<uint64_t>(0x8000000000000000ULL);
static const uint64_t LSP_ZERO = 0;
static const uint32_t MSP_MAX = 0x00007ffeU;
static const uint64_t LSP_DMAX = static_cast<uint64_t>(0x7fffffffffffffffULL);
static const uint64_t LSP_NMAX = static_cast<uint64_t>(0xffffffffffffffffULL);
static const unsigned int BASE = 2;
static const unsigned int EXPONENT_BITS = 15;
static const unsigned int MANTISSA_BITS = 63;
static const int EXPONENT_MAX = (1 << (EXPONENT_BITS - 1)) - 1;
static const int EXPONENT_BIAS = EXPONENT_MAX;
static const int EXPONENT_MIN = -EXPONENT_MAX + 1;
static const int EXPONENT_MIN_DENORM = EXPONENT_MIN
- static_cast<int>(MANTISSA_BITS);
static const Floating_Point_Format floating_point_format =
INTEL_DOUBLE_EXTENDED;
int inf_sign() const;
bool is_nan() const;
int zero_sign() const;
bool sign_bit() const;
void negate();
void dec();
void inc();
void set_max(bool negative);
void build(bool negative, mpz_t mantissa, int exponent);
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
struct float_ieee754_quad {
#ifdef PPL_WORDS_BIGENDIAN
uint64_t msp;
uint64_t lsp;
#else
uint64_t lsp;
uint64_t msp;
#endif
static const uint64_t MSP_SGN_MASK = static_cast<uint64_t>(0x8000000000000000ULL);
static const uint64_t MSP_POS_INF = static_cast<uint64_t>(0x7fff000000000000ULL);
static const uint64_t MSP_NEG_INF = static_cast<uint64_t>(0xffff000000000000ULL);
static const uint64_t MSP_POS_ZERO = static_cast<uint64_t>(0x0000000000000000ULL);
static const uint64_t MSP_NEG_ZERO = static_cast<uint64_t>(0x8000000000000000ULL);
static const uint64_t LSP_INF = 0;
static const uint64_t LSP_ZERO = 0;
static const uint64_t MSP_MAX = static_cast<uint64_t>(0x7ffeffffffffffffULL);
static const uint64_t LSP_MAX = static_cast<uint64_t>(0xffffffffffffffffULL);
static const unsigned int BASE = 2;
static const unsigned int EXPONENT_BITS = 15;
static const unsigned int MANTISSA_BITS = 112;
static const int EXPONENT_MAX = (1 << (EXPONENT_BITS - 1)) - 1;
static const int EXPONENT_BIAS = EXPONENT_MAX;
static const int EXPONENT_MIN = -EXPONENT_MAX + 1;
static const int EXPONENT_MIN_DENORM = EXPONENT_MIN
- static_cast<int>(MANTISSA_BITS);
static const Floating_Point_Format floating_point_format = IEEE754_QUAD;
int inf_sign() const;
bool is_nan() const;
int zero_sign() const;
bool sign_bit() const;
void negate();
void dec();
void inc();
void set_max(bool negative);
void build(bool negative, mpz_t mantissa, int exponent);
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
class Float : public False { };
#if PPL_SUPPORTED_FLOAT
template <>
class Float<float> : public True {
public:
#if PPL_CXX_FLOAT_BINARY_FORMAT == PPL_FLOAT_IEEE754_HALF
typedef float_ieee754_half Binary;
#elif PPL_CXX_FLOAT_BINARY_FORMAT == PPL_FLOAT_IEEE754_SINGLE
typedef float_ieee754_single Binary;
#elif PPL_CXX_FLOAT_BINARY_FORMAT == PPL_FLOAT_IEEE754_DOUBLE
typedef float_ieee754_double Binary;
#elif PPL_CXX_FLOAT_BINARY_FORMAT == PPL_FLOAT_IBM_SINGLE
typedef float_ibm_single Binary;
#elif PPL_CXX_FLOAT_BINARY_FORMAT == PPL_FLOAT_IEEE754_QUAD
typedef float_ieee754_quad Binary;
#elif PPL_CXX_FLOAT_BINARY_FORMAT == PPL_FLOAT_INTEL_DOUBLE_EXTENDED
typedef float_intel_double_extended Binary;
#else
#error "Invalid value for PPL_CXX_FLOAT_BINARY_FORMAT"
#endif
union {
float number;
Binary binary;
} u;
Float();
Float(float v);
float value();
};
#endif
#if PPL_SUPPORTED_DOUBLE
template <>
class Float<double> : public True {
public:
#if PPL_CXX_DOUBLE_BINARY_FORMAT == PPL_FLOAT_IEEE754_HALF
typedef float_ieee754_half Binary;
#elif PPL_CXX_DOUBLE_BINARY_FORMAT == PPL_FLOAT_IEEE754_SINGLE
typedef float_ieee754_single Binary;
#elif PPL_CXX_DOUBLE_BINARY_FORMAT == PPL_FLOAT_IEEE754_DOUBLE
typedef float_ieee754_double Binary;
#elif PPL_CXX_DOUBLE_BINARY_FORMAT == PPL_FLOAT_IBM_SINGLE
typedef float_ibm_single Binary;
#elif PPL_CXX_DOUBLE_BINARY_FORMAT == PPL_FLOAT_IEEE754_QUAD
typedef float_ieee754_quad Binary;
#elif PPL_CXX_DOUBLE_BINARY_FORMAT == PPL_FLOAT_INTEL_DOUBLE_EXTENDED
typedef float_intel_double_extended Binary;
#else
#error "Invalid value for PPL_CXX_DOUBLE_BINARY_FORMAT"
#endif
union {
double number;
Binary binary;
} u;
Float();
Float(double v);
double value();
};
#endif
#if PPL_SUPPORTED_LONG_DOUBLE
template <>
class Float<long double> : public True {
public:
#if PPL_CXX_LONG_DOUBLE_BINARY_FORMAT == PPL_FLOAT_IEEE754_HALF
typedef float_ieee754_half Binary;
#elif PPL_CXX_LONG_DOUBLE_BINARY_FORMAT == PPL_FLOAT_IEEE754_SINGLE
typedef float_ieee754_single Binary;
#elif PPL_CXX_LONG_DOUBLE_BINARY_FORMAT == PPL_FLOAT_IEEE754_DOUBLE
typedef float_ieee754_double Binary;
#elif PPL_CXX_LONG_DOUBLE_BINARY_FORMAT == PPL_FLOAT_IBM_SINGLE
typedef float_ibm_single Binary;
#elif PPL_CXX_LONG_DOUBLE_BINARY_FORMAT == PPL_FLOAT_IEEE754_QUAD
typedef float_ieee754_quad Binary;
#elif PPL_CXX_LONG_DOUBLE_BINARY_FORMAT == PPL_FLOAT_INTEL_DOUBLE_EXTENDED
typedef float_intel_double_extended Binary;
#else
#error "Invalid value for PPL_CXX_LONG_DOUBLE_BINARY_FORMAT"
#endif
union {
long double number;
Binary binary;
} u;
Float();
Float(long double v);
long double value();
};
#endif
// FIXME: is this the right place for this function?
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
If \p v is nonzero, returns the position of the most significant bit
in \p a.
The behavior is undefined if \p v is zero.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
unsigned int msb_position(unsigned long long v);
/*! \brief
An abstract class to be implemented by an external analyzer such
as ECLAIR in order to provide to the PPL the necessary information
for performing the analysis of floating point computations.
\par Template type parameters
- The class template parameter \p Target specifies the implementation
of Concrete_Expression to be used.
- The class template parameter \p FP_Interval_Type represents the type
of the intervals used in the abstract domain. The interval bounds
should have a floating point type.
*/
template <typename Target, typename FP_Interval_Type>
class FP_Oracle {
public:
/*
FIXME: the const qualifiers on expressions may raise CLANG
compatibility issues. It may be necessary to omit them.
*/
/*! \brief
Asks the external analyzer for an interval that correctly
approximates the floating point entity referenced by \p dim.
Result is stored into \p result.
\return <CODE>true</CODE> if the analyzer was able to find a correct
approximation, <CODE>false</CODE> otherwise.
*/
virtual bool get_interval(dimension_type dim, FP_Interval_Type& result) const
= 0;
/*! \brief
Asks the external analyzer for an interval that correctly
approximates the value of floating point constant \p expr.
Result is stored into \p result.
\return <CODE>true</CODE> if the analyzer was able to find a correct
approximation, <CODE>false</CODE> otherwise.
*/
virtual bool get_fp_constant_value(
const Floating_Point_Constant<Target>& expr,
FP_Interval_Type& result) const = 0;
/*! \brief
Asks the external analyzer for an interval that correctly approximates
the value of \p expr, which must be of integer type.
Result is stored into \p result.
\return <CODE>true</CODE> if the analyzer was able to find a correct
approximation, <CODE>false</CODE> otherwise.
*/
virtual bool get_integer_expr_value(const Concrete_Expression<Target>& expr,
FP_Interval_Type& result) const = 0;
/*! \brief
Asks the external analyzer for the possible space dimensions that
are associated to the approximable reference \p expr.
Result is stored into \p result.
\return <CODE>true</CODE> if the analyzer was able to return
the (possibly empty!) set, <CODE>false</CODE> otherwise.
The resulting set MUST NOT contain <CODE>not_a_dimension()</CODE>.
*/
virtual bool get_associated_dimensions(
const Approximable_Reference<Target>& expr,
std::set<dimension_type>& result) const = 0;
};
/* FIXME: some of the following documentation should probably be
under PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS */
/*! \brief \relates Float
Returns <CODE>true</CODE> if and only if there is some floating point
number that is representable by \p f2 but not by \p f1.
*/
bool is_less_precise_than(Floating_Point_Format f1, Floating_Point_Format f2);
/*! \brief \relates Float
Computes the absolute error of floating point computations.
\par Template type parameters
- The class template parameter \p FP_Interval_Type represents the type
of the intervals used in the abstract domain. The interval bounds
should have a floating point type.
\param analyzed_format The floating point format used by the analyzed
program.
\return The interval \f$[-\omega, \omega]\f$ where \f$\omega\f$ is the
smallest non-zero positive number in the less precise floating point
format between the analyzer format and the analyzed format.
*/
template <typename FP_Interval_Type>
const FP_Interval_Type&
compute_absolute_error(Floating_Point_Format analyzed_format);
/*! \brief \relates Linear_Form
Discards all linear forms containing variable \p var from the
linear form abstract store \p lf_store.
*/
template <typename FP_Interval_Type>
void
discard_occurrences(std::map<dimension_type,
Linear_Form<FP_Interval_Type> >& lf_store,
Variable var);
/*! \brief \relates Linear_Form
Assigns the linear form \p lf to \p var in the linear form abstract
store \p lf_store, then discards all occurrences of \p var from it.
*/
template <typename FP_Interval_Type>
void
affine_form_image(std::map<dimension_type,
Linear_Form<FP_Interval_Type> >& lf_store,
Variable var,
const Linear_Form<FP_Interval_Type>& lf);
/*! \brief \relates Linear_Form
Discards from \p ls1 all linear forms but those that are associated
to the same variable in \p ls2.
*/
template <typename FP_Interval_Type>
void
upper_bound_assign(std::map<dimension_type,
Linear_Form<FP_Interval_Type> >& ls1,
const std::map<dimension_type,
Linear_Form<FP_Interval_Type> >& ls2);
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Float_inlines.hh line 1. */
/* IEC 559 floating point format related functions.
*/
#include <climits>
/* Automatically generated from PPL source file ../src/Variable_defs.hh line 1. */
/* Variable class declaration.
*/
/* Automatically generated from PPL source file ../src/Init_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Init;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Variable_defs.hh line 30. */
#include <iosfwd>
#include <set>
namespace Parma_Polyhedra_Library {
namespace IO_Operators {
//! Output operator.
/*! \relates Parma_Polyhedra_Library::Variable */
std::ostream&
operator<<(std::ostream& s, const Variable v);
} // namespace IO_Operators
//! Defines a total ordering on variables.
/*! \relates Variable */
bool less(Variable v, Variable w);
/*! \relates Variable */
void
swap(Variable& x, Variable& y);
} // namespace Parma_Polyhedra_Library
//! A dimension of the vector space.
/*! \ingroup PPL_CXX_interface
An object of the class Variable represents a dimension of the space,
that is one of the Cartesian axes.
Variables are used as basic blocks in order to build
more complex linear expressions.
Each variable is identified by a non-negative integer,
representing the index of the corresponding Cartesian axis
(the first axis has index 0).
The space dimension of a variable is the dimension of the vector space
made by all the Cartesian axes having an index less than or equal to
that of the considered variable; thus, if a variable has index \f$i\f$,
its space dimension is \f$i+1\f$.
Note that the ``meaning'' of an object of the class Variable
is completely specified by the integer index provided to its
constructor:
be careful not to be mislead by C++ language variable names.
For instance, in the following example the linear expressions
<CODE>e1</CODE> and <CODE>e2</CODE> are equivalent,
since the two variables <CODE>x</CODE> and <CODE>z</CODE> denote
the same Cartesian axis.
\code
Variable x(0);
Variable y(1);
Variable z(0);
Linear_Expression e1 = x + y;
Linear_Expression e2 = y + z;
\endcode
*/
class Parma_Polyhedra_Library::Variable {
public:
//! Builds the variable corresponding to the Cartesian axis of index \p i.
/*!
\exception std::length_error
Thrown if <CODE>i+1</CODE> exceeds
<CODE>Variable::max_space_dimension()</CODE>.
*/
explicit Variable(dimension_type i);
//! Returns the index of the Cartesian axis associated to the variable.
dimension_type id() const;
//! Returns the maximum space dimension a Variable can handle.
static dimension_type max_space_dimension();
//! Returns the dimension of the vector space enclosing \p *this.
/*!
The returned value is <CODE>id()+1</CODE>.
*/
dimension_type space_dimension() const;
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
//! Checks if all the invariants are satisfied.
bool OK() const;
//! Type of output functions.
typedef void output_function_type(std::ostream& s, const Variable v);
//! The default output function.
static void default_output_function(std::ostream& s, const Variable v);
//! Sets the output function to be used for printing Variable objects.
static void set_output_function(output_function_type* p);
//! Returns the pointer to the current output function.
static output_function_type* get_output_function();
//! Binary predicate defining the total ordering on variables.
/*! \ingroup PPL_CXX_interface */
struct Compare {
//! Returns <CODE>true</CODE> if and only if \p x comes before \p y.
bool operator()(Variable x, Variable y) const;
};
//! Swaps *this and v.
void m_swap(Variable& v);
private:
//! The index of the Cartesian axis.
dimension_type varid;
// The initialization class needs to set the default output function.
friend class Init;
friend std::ostream&
Parma_Polyhedra_Library::IO_Operators::operator<<(std::ostream& s,
const Variable v);
//! Pointer to the current output function.
static output_function_type* current_output_function;
};
/* Automatically generated from PPL source file ../src/Variable_inlines.hh line 1. */
/* Variable class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/globals_defs.hh line 1. */
/* Declarations of global objects.
*/
/* Automatically generated from PPL source file ../src/C_Integer.hh line 1. */
/* C integers info.
*/
/* Automatically generated from PPL source file ../src/C_Integer.hh line 28. */
#include <climits>
// C99 defines LLONG_MIN, LLONG_MAX and ULLONG_MAX, but this part of
// C99 is not yet included into the C++ standard.
// GCC defines LONG_LONG_MIN, LONG_LONG_MAX and ULONG_LONG_MAX.
// Some compilers (such as Comeau C++ up to and including version 4.3.3)
// define nothing. In this last case we make a reasonable guess.
#ifndef LLONG_MIN
#if defined(LONG_LONG_MIN)
#define LLONG_MIN LONG_LONG_MIN
#elif PPL_SIZEOF_LONG_LONG == 8
#define LLONG_MIN 0x8000000000000000LL
#endif
#endif
#ifndef LLONG_MAX
#if defined(LONG_LONG_MAX)
#define LLONG_MAX LONG_LONG_MAX
#elif PPL_SIZEOF_LONG_LONG == 8
#define LLONG_MAX 0x7fffffffffffffffLL
#endif
#endif
#ifndef ULLONG_MAX
#if defined(ULONG_LONG_MAX)
#define ULLONG_MAX ULONG_LONG_MAX
#elif PPL_SIZEOF_LONG_LONG == 8
#define ULLONG_MAX 0xffffffffffffffffULL
#endif
#endif
namespace Parma_Polyhedra_Library {
template <typename T>
struct C_Integer : public False { };
template <>
struct C_Integer<char> : public True {
enum const_bool_value {
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
is_signed = true
#else
is_signed = false
#endif
};
typedef void smaller_type;
typedef void smaller_signed_type;
typedef void smaller_unsigned_type;
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
typedef unsigned char other_type;
#else
typedef signed char other_type;
#endif
static const char min = static_cast<char>(CHAR_MIN);
static const char max = static_cast<char>(CHAR_MAX);
};
template <>
struct C_Integer<signed char> : public True {
enum const_bool_value {
is_signed = true
};
typedef void smaller_type;
typedef void smaller_signed_type;
typedef void smaller_unsigned_type;
typedef unsigned char other_type;
static const signed char min = static_cast<signed char>(SCHAR_MIN);
static const signed char max = static_cast<signed char>(SCHAR_MAX);
};
template <>
struct C_Integer<signed short> : public True {
enum const_bool_value {
is_signed = true
};
typedef signed char smaller_type;
typedef signed char smaller_signed_type;
typedef unsigned char smaller_unsigned_type;
typedef unsigned short other_type;
static const signed short min = static_cast<signed short>(SHRT_MIN);
static const signed short max = static_cast<signed short>(SHRT_MAX);
};
template <>
struct C_Integer<signed int> : public True {
enum const_bool_value {
is_signed = true
};
typedef signed short smaller_type;
typedef signed short smaller_signed_type;
typedef unsigned short smaller_unsigned_type;
typedef unsigned int other_type;
static const signed int min = INT_MIN;
static const signed int max = INT_MAX;
};
template <>
struct C_Integer<signed long> : public True {
enum const_bool_value {
is_signed = true
};
typedef signed int smaller_type;
typedef signed int smaller_signed_type;
typedef unsigned int smaller_unsigned_type;
typedef unsigned long other_type;
static const signed long min = LONG_MIN;
static const signed long max = LONG_MAX;
};
template <>
struct C_Integer<signed long long> : public True {
enum const_bool_value {
is_signed = true
};
typedef signed long smaller_type;
typedef signed long smaller_signed_type;
typedef unsigned long smaller_unsigned_type;
typedef unsigned long long other_type;
static const signed long long min = LLONG_MIN;
static const signed long long max = LLONG_MAX;
};
template <>
struct C_Integer<unsigned char> : public True {
enum const_bool_value {
is_signed = false
};
typedef void smaller_type;
typedef void smaller_signed_type;
typedef void smaller_unsigned_type;
typedef signed char other_type;
static const unsigned char min = static_cast<unsigned char>(0U);
static const unsigned char max = static_cast<unsigned char>(UCHAR_MAX);
};
template <>
struct C_Integer<unsigned short> : public True {
enum const_bool_value {
is_signed = false
};
typedef unsigned char smaller_type;
typedef signed char smaller_signed_type;
typedef unsigned char smaller_unsigned_type;
typedef signed short other_type;
static const unsigned short min = static_cast<unsigned short>(0U);
static const unsigned short max = static_cast<unsigned short>(USHRT_MAX);
};
template <>
struct C_Integer<unsigned int> : public True {
enum const_bool_value {
is_signed = false
};
typedef unsigned short smaller_type;
typedef signed short smaller_signed_type;
typedef unsigned short smaller_unsigned_type;
typedef signed int other_type;
static const unsigned int min = 0U;
static const unsigned int max = UINT_MAX;
};
template <>
struct C_Integer<unsigned long> : public True {
enum const_bool_value {
is_signed = false
};
typedef unsigned int smaller_type;
typedef signed int smaller_signed_type;
typedef unsigned int smaller_unsigned_type;
typedef signed long other_type;
static const unsigned long min = 0UL;
static const unsigned long max = ULONG_MAX;
};
template <>
struct C_Integer<unsigned long long> : public True {
enum const_bool_value {
is_signed = false
};
typedef unsigned long smaller_type;
typedef signed long smaller_signed_type;
typedef unsigned long smaller_unsigned_type;
typedef signed long long other_type;
static const unsigned long long min = 0ULL;
static const unsigned long long max = ULLONG_MAX;
};
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/globals_defs.hh line 32. */
#include <exception>
#include <gmpxx.h>
#ifndef PPL_PROFILE_ADD_WEIGHT
#define PPL_PROFILE_ADD_WEIGHT 0
#endif
#if defined(NDEBUG) && PPL_PROFILE_ADD_WEIGHT
/* Automatically generated from PPL source file ../src/Weight_Profiler_defs.hh line 1. */
/* Weight_Profiler class declaration.
*/
#ifndef Weight_Profiler_defs_hh
#define Weight_Profiler_defs_hh 1
#include <cassert>
namespace Parma_Polyhedra_Library {
class Weight_Profiler {
private:
enum { DISCARDED = 0, VALID = 1 };
public:
Weight_Profiler(const char* file, int line,
Weightwatch_Traits::Delta delta,
double min_threshold = 0, double max_threshold = 0)
: file(file), line(line), delta(delta),
min_threshold(min_threshold), max_threshold(max_threshold) {
for (int i = 0; i < 2; ++i) {
stat[i].samples = 0;
stat[i].count = 0;
stat[i].sum = 0;
stat[i].squares_sum = 0;
stat[i].min = 0;
stat[i].max = 0;
}
}
~Weight_Profiler() {
output_stats();
}
void output_stats();
static void begin() {
#ifndef NDEBUG
int r = clock_gettime(CLOCK_THREAD_CPUTIME_ID, &stamp);
assert(r >= 0);
#else
clock_gettime(CLOCK_THREAD_CPUTIME_ID, &stamp);
#endif
}
void end(unsigned int factor = 1) {
Weightwatch_Traits::weight
+= (Weightwatch_Traits::Threshold) delta * factor;
struct timespec start = stamp;
begin();
double elapsed;
if (stamp.tv_nsec >= start.tv_nsec) {
elapsed = (stamp.tv_nsec - start.tv_nsec)
+ (stamp.tv_sec - start.tv_sec) * 1e9;
}
else {
elapsed = (1000000000 - start.tv_nsec + stamp.tv_nsec )
+ (stamp.tv_sec - start.tv_sec - 1) * 1e9;
}
elapsed -= adjustment;
double elapsed1 = elapsed / factor;
int i = (elapsed1 < min_threshold
|| (max_threshold > 0 && elapsed1 > max_threshold))
? DISCARDED
: VALID;
++stat[i].samples;
if (stat[i].count == 0)
stat[i].min = stat[i].max = elapsed1;
else if (stat[i].min > elapsed1)
stat[i].min = elapsed1;
else if (stat[i].max < elapsed1)
stat[i].max = elapsed1;
stat[i].sum += elapsed;
stat[i].squares_sum += elapsed * elapsed1;
stat[i].count += factor;
}
static double tune_adjustment();
private:
//! File of this profiling point.
const char *file;
//! Line of this profiling point.
int line;
//! Computational weight to be added at each iteration.
Weightwatch_Traits::Delta delta;
//! Times less than this value are discarded.
double min_threshold;
//! Times greater than this value are discarded.
double max_threshold;
//! Statistical data for samples (both DISCARDED and VALID)
struct {
//! Number of collected samples.
unsigned int samples;
/*! \brief
Number of collected iterations.
\note
Multiple iterations are possibly collected for each sample.
*/
unsigned int count;
//! Sum of the measured times.
double sum;
//! Sum of the squares of the measured times (to compute variance).
double squares_sum;
//! Minimum measured time.
double min;
//! Maximum measured time.
double max;
} stat[2];
//! Holds the time corresponding to last time begin() was called.
static struct timespec stamp;
/*! \brief
Time quantity used to adjust the elapsed times so as not to take
into account the time spent by the measurement infrastructure.
*/
static double adjustment;
};
}
#endif // Weight_Profiler_defs_hh
/* Automatically generated from PPL source file ../src/globals_defs.hh line 41. */
#endif
#if defined(NDEBUG)
#if PPL_PROFILE_ADD_WEIGHT
#define WEIGHT_BEGIN() Weight_Profiler::begin()
#define WEIGHT_ADD(delta) \
do { \
static Weight_Profiler wp__(__FILE__, __LINE__, delta); \
wp__.end(); \
} while (false)
#define WEIGHT_ADD_MUL(delta, factor) \
do { \
static Weight_Profiler wp__(__FILE__, __LINE__, delta); \
wp__.end(factor); \
} while (false)
#else // !PPL_PROFILE_ADD_WEIGHT
#define WEIGHT_BEGIN() \
do { \
} while (false)
#define WEIGHT_ADD(delta) \
do { \
Weightwatch_Traits::weight += (delta); \
} while (false)
#define WEIGHT_ADD_MUL(delta, factor) \
do { \
Weightwatch_Traits::weight += (delta)*(factor); \
} while (false)
#endif // !PPL_PROFILE_ADD_WEIGHT
#else // !defined(NDEBUG)
#define WEIGHT_BEGIN()
#define WEIGHT_ADD(delta) \
do { \
if (!In_Assert::asserting()) \
Weightwatch_Traits::weight += delta; \
} while (false)
#define WEIGHT_ADD_MUL(delta, factor) \
do { \
if (!In_Assert::asserting()) \
Weightwatch_Traits::weight += delta * factor; \
} while (false)
#endif // !defined(NDEBUG)
namespace Parma_Polyhedra_Library {
//! Returns a value that does not designate a valid dimension.
dimension_type
not_a_dimension();
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns the hash code for space dimension \p dim.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
int32_t
hash_code_from_dimension(dimension_type dim);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Make sure swap() is specialized when needed.
This will cause a compile-time error whenever a specialization for \p T
is beneficial but missing.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
inline typename Enable_If<Slow_Copy<T>::value, void>::type
swap(T&, T&) {
PPL_COMPILE_TIME_CHECK(!Slow_Copy<T>::value, "missing swap specialization");
}
/*! \brief
Declare a local variable named \p id, of type Coefficient, and containing
an unknown initial value.
Use of this macro to declare temporaries of type Coefficient results
in decreased memory allocation overhead and in better locality.
*/
#define PPL_DIRTY_TEMP_COEFFICIENT(id) \
PPL_DIRTY_TEMP(Parma_Polyhedra_Library::Coefficient, id)
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Speculative allocation function.
/*!
\return
The actual capacity to be allocated.
\param requested_size
The number of elements we need.
\param maximum_size
The maximum number of elements to be allocated. It is assumed
to be no less than \p requested_size.
Computes a capacity given a requested size.
Allows for speculative allocation aimed at reducing the number of
reallocations enough to guarantee amortized constant insertion time
for our vector-like data structures. In all cases, the speculative
allocation will not exceed \p maximum_size.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
dimension_type
compute_capacity(dimension_type requested_size,
dimension_type maximum_size);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Traits class for the deterministic timeout mechanism.
/*! \ingroup PPL_CXX_interface
This abstract base class should be instantiated by those users
willing to provide a polynomial upper bound to the time spent
by any invocation of a library operator.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
struct Weightwatch_Traits {
//! The type used to specify thresholds for computational weight.
typedef unsigned long long Threshold;
//! The type used to specify increments of computational weight.
typedef unsigned long long Delta;
//! Returns the current computational weight.
static const Threshold& get();
//! Compares the two weights \p a and \p b.
static bool less_than(const Threshold& a, const Threshold& b);
//! Computes a \c Delta value from \p unscaled and \p scale.
/*!
\return
\f$u \cdot 2^s\f$, where \f$u\f$ is the value of \p unscaled and
\f$s\f$ is the value of \p scale.
\param unscaled
The value of delta before scaling.
\param scale
The scaling to be applied to \p unscaled.
*/
static Delta compute_delta(unsigned long unscaled, unsigned scale);
//! Sets \p threshold to be \p delta units bigger than the current weight.
static void from_delta(Threshold& threshold, const Delta& delta);
//! The current computational weight.
static Threshold weight;
/*! \brief
A pointer to the function that has to be called when checking
the reaching of thresholds.
The pointer can be null if no thresholds are set.
*/
static void (*check_function)(void);
};
#ifndef NDEBUG
class In_Assert {
private:
//! Non zero during evaluation of PPL_ASSERT expression.
static unsigned int count;
public:
In_Assert() {
++count;
}
~In_Assert() {
--count;
}
static bool asserting() {
return count != 0;
}
};
#endif
//! User objects the PPL can throw.
/*! \ingroup PPL_CXX_interface
This abstract base class should be instantiated by those users
willing to provide a polynomial upper bound to the time spent
by any invocation of a library operator.
*/
class Throwable {
public:
//! Throws the user defined exception object.
virtual void throw_me() const = 0;
//! Virtual destructor.
virtual ~Throwable();
};
/*! \brief
A pointer to an exception object.
\ingroup PPL_CXX_interface
This pointer, which is initialized to zero, is repeatedly checked
along any super-linear (i.e., computationally expensive) computation
path in the library.
When it is found nonzero the exception it points to is thrown.
In other words, making this pointer point to an exception (and
leaving it in this state) ensures that the library will return
control to the client application, possibly by throwing the given
exception, within a time that is a linear function of the size
of the representation of the biggest object (powerset of polyhedra,
polyhedron, system of constraints or generators) on which the library
is operating upon.
\note
The only sensible way to assign to this pointer is from within a
signal handler or from a parallel thread. For this reason, the
library, apart from ensuring that the pointer is initially set to zero,
never assigns to it. In particular, it does not zero it again when
the exception is thrown: it is the client's responsibility to do so.
*/
extern const Throwable* volatile abandon_expensive_computations;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
If the pointer abandon_expensive_computations is found
to be nonzero, the exception it points to is thrown.
\relates Throwable
*/
#endif
void
maybe_abandon();
//! A tag class.
/*! \ingroup PPL_CXX_interface
Tag class to distinguish those constructors that recycle the data
structures of their arguments, instead of taking a copy.
*/
struct Recycle_Input {
};
// Turn s into a string: PPL_STR(x + y) => "x + y".
#define PPL_STR(s) #s
// Turn the expansion of s into a string: PPL_XSTR(x) => "x expanded".
#define PPL_XSTR(s) PPL_STR(s)
#define PPL_OUTPUT_DECLARATIONS \
/*! \brief Writes to \c std::cerr an ASCII representation of \p *this. */ \
void ascii_dump() const; \
/*! \brief Writes to \p s an ASCII representation of \p *this. */ \
void ascii_dump(std::ostream& s) const; \
/*! \brief Prints \p *this to \c std::cerr using \c operator<<. */ \
void print() const;
#define PPL_OUTPUT_DEFINITIONS(class_name) \
void \
Parma_Polyhedra_Library::class_name::ascii_dump() const { \
ascii_dump(std::cerr); \
} \
\
void \
Parma_Polyhedra_Library::class_name::print() const { \
using IO_Operators::operator<<; \
std::cerr << *this; \
}
#define PPL_OUTPUT_DEFINITIONS_ASCII_ONLY(class_name) \
void \
Parma_Polyhedra_Library::class_name::ascii_dump() const { \
ascii_dump(std::cerr); \
} \
\
void \
Parma_Polyhedra_Library::class_name::print() const { \
std::cerr << "No user level output operator defined " \
<< "for class " PPL_XSTR(class_name) << "." << std::endl; \
}
#define PPL_OUTPUT_TEMPLATE_DEFINITIONS(type_symbol, class_prefix) \
template <typename type_symbol> \
void \
class_prefix::ascii_dump() const { \
ascii_dump(std::cerr); \
} \
\
template <typename type_symbol> \
void \
class_prefix::print() const { \
using IO_Operators::operator<<; \
std::cerr << *this; \
}
#define PPL_OUTPUT_2_PARAM_TEMPLATE_DEFINITIONS(type_symbol1, \
type_symbol2, \
class_prefix) \
template <typename type_symbol1, typename type_symbol2> \
void \
PPL_U(class_prefix)<PPL_U(type_symbol1), PPL_U(type_symbol2)> \
::ascii_dump() const { \
ascii_dump(std::cerr); \
} \
\
template <typename type_symbol1, typename type_symbol2> \
void \
PPL_U(class_prefix)<PPL_U(type_symbol1), PPL_U(type_symbol2)> \
::print() const { \
using IO_Operators::operator<<; \
std::cerr << *this; \
}
#define PPL_OUTPUT_3_PARAM_TEMPLATE_DEFINITIONS(type_symbol1, \
type_symbol2, \
type_symbol3, \
class_prefix) \
template <typename type_symbol1, typename type_symbol2, \
typename type_symbol3> \
void \
PPL_U(class_prefix)<PPL_U(type_symbol1), type_symbol2, \
PPL_U(type_symbol3)>::ascii_dump() \
const { \
ascii_dump(std::cerr); \
} \
\
template <typename type_symbol1, typename type_symbol2, \
typename type_symbol3> \
void \
PPL_U(class_prefix)<PPL_U(type_symbol1), type_symbol2, \
PPL_U(type_symbol3)>::print() \
const { \
using IO_Operators::operator<<; \
std::cerr << *this; \
}
#define PPL_OUTPUT_TEMPLATE_DEFINITIONS_ASCII_ONLY(type_symbol, class_prefix) \
template <typename type_symbol> \
void \
class_prefix::ascii_dump() const { \
ascii_dump(std::cerr); \
} \
\
template <typename type_symbol> \
void \
class_prefix::print() const { \
std::cerr << "No user level output operator defined " \
<< "for " PPL_XSTR(class_prefix) << "." << std::endl; \
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if \p c is any kind of space character.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool is_space(char c);
template <typename T, long long v, typename Enable = void>
struct Fit : public False {
};
template <typename T, long long v>
struct Fit<T, v, typename Enable_If<C_Integer<T>::value>::type> {
enum {
value = (v >= static_cast<long long>(C_Integer<T>::min)
&& v <= static_cast<long long>(C_Integer<T>::max))
};
};
template <typename T, T v>
struct TConstant {
static const T value = v;
};
template <typename T, T v>
const T TConstant<T, v>::value;
template <typename T, long long v, bool prefer_signed = true,
typename Enable = void>
struct Constant_ : public TConstant<T, v> {
};
//! \cond
// Keep Doxygen off until it learns how to deal properly with `||'.
template <typename T, long long v, bool prefer_signed>
struct Constant_<T, v, prefer_signed,
typename Enable_If<(Fit<typename C_Integer<T>::smaller_signed_type, v>::value
&& (prefer_signed
|| !Fit<typename C_Integer<T>::smaller_unsigned_type, v>::value))>::type>
: public Constant_<typename C_Integer<T>::smaller_signed_type, v, prefer_signed> {
};
template <typename T, long long v, bool prefer_signed>
struct Constant_<T, v, prefer_signed,
typename Enable_If<(Fit<typename C_Integer<T>::smaller_unsigned_type, v>::value
&& (!prefer_signed
|| !Fit<typename C_Integer<T>::smaller_signed_type, v>::value))>::type>
: public Constant_<typename C_Integer<T>::smaller_unsigned_type, v, prefer_signed> {
};
//! \endcond
template <long long v, bool prefer_signed = true>
struct Constant : public Constant_<long long, v, prefer_signed> {
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! \name Memory Size Inspection Functions
//@{
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
For native types, returns the total size in bytes of the memory
occupied by the type of the (unused) parameter, i.e., 0.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
typename Enable_If<Is_Native<T>::value, memory_size_type>::type
total_memory_in_bytes(const T&);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
For native types, returns the size in bytes of the memory managed
by the type of the (unused) parameter, i.e., 0.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
typename Enable_If<Is_Native<T>::value, memory_size_type>::type
external_memory_in_bytes(const T&);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns the total size in bytes of the memory occupied by \p x.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
memory_size_type
total_memory_in_bytes(const mpz_class& x);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns the size in bytes of the memory managed by \p x.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
memory_size_type
external_memory_in_bytes(const mpz_class& x);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns the total size in bytes of the memory occupied by \p x.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
memory_size_type
total_memory_in_bytes(const mpq_class& x);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns the size in bytes of the memory managed by \p x.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
memory_size_type
external_memory_in_bytes(const mpq_class& x);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//@} // Memory Size Inspection Functions
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T, typename Enable = void>
struct Has_OK : public False { };
template <typename T>
struct Has_OK<T, typename Enable_If_Is<bool (T::*)() const, &T::OK>::type>
: public True {
};
template <typename T>
inline typename Enable_If<Has_OK<T>::value, bool>::type
f_OK(const T& to) {
return to.OK();
}
#define FOK(T) inline bool f_OK(const T&) { return true; }
FOK(char)
FOK(signed char)
FOK(unsigned char)
FOK(signed short)
FOK(unsigned short)
FOK(signed int)
FOK(unsigned int)
FOK(signed long)
FOK(unsigned long)
FOK(signed long long)
FOK(unsigned long long)
FOK(float)
FOK(double)
FOK(long double)
FOK(mpz_class)
FOK(mpq_class)
void ascii_dump(std::ostream& s, Representation r);
bool ascii_load(std::istream& s, Representation& r);
dimension_type
check_space_dimension_overflow(dimension_type dim,
dimension_type max,
const char* domain,
const char* method,
const char* reason);
template <typename RA_Container>
typename RA_Container::iterator
nth_iter(RA_Container& cont, dimension_type n);
template <typename RA_Container>
typename RA_Container::const_iterator
nth_iter(const RA_Container& cont, dimension_type n);
dimension_type
least_significant_one_mask(dimension_type i);
} // namespace Parma_Polyhedra_Library
// By default, use sparse matrices both for MIP_Problem and PIP_Problem.
#ifndef PPL_USE_SPARSE_MATRIX
#define PPL_USE_SPARSE_MATRIX 1
#endif
/* Automatically generated from PPL source file ../src/globals_inlines.hh line 1. */
/* Implementation of global objects: inline functions.
*/
/* Automatically generated from PPL source file ../src/globals_inlines.hh line 28. */
#include <limits>
#include <cassert>
#include <istream>
#include <ostream>
#include <cctype>
#include <stdexcept>
namespace Parma_Polyhedra_Library {
inline dimension_type
not_a_dimension() {
return std::numeric_limits<dimension_type>::max();
}
inline int32_t
hash_code_from_dimension(dimension_type dim) {
const dimension_type divisor = 1U << (32 - 1);
dim = dim % divisor;
return static_cast<int32_t>(dim);
}
inline const Weightwatch_Traits::Threshold&
Weightwatch_Traits::get() {
return weight;
}
inline bool
Weightwatch_Traits::less_than(const Threshold& a, const Threshold& b) {
return b - a < (1ULL << (sizeof_to_bits(sizeof(Threshold)) - 1));
}
inline Weightwatch_Traits::Delta
Weightwatch_Traits::compute_delta(unsigned long unscaled, unsigned scale) {
if ((std::numeric_limits<Delta>::max() >> scale) < unscaled)
throw std::invalid_argument("PPL::Weightwatch_Traits::"
"compute_delta(u, s):\n"
"values of u and s cause wrap around.");
return static_cast<Delta>(unscaled) << scale;
}
inline void
Weightwatch_Traits::from_delta(Threshold& threshold, const Delta& delta) {
threshold = weight + delta;
}
inline
Throwable::~Throwable() {
}
inline void
maybe_abandon() {
#ifndef NDEBUG
if (In_Assert::asserting())
return;
#endif
if (Weightwatch_Traits::check_function != 0)
Weightwatch_Traits::check_function();
if (const Throwable* const p = abandon_expensive_computations)
p->throw_me();
}
inline dimension_type
compute_capacity(const dimension_type requested_size,
const dimension_type maximum_size) {
assert(requested_size <= maximum_size);
// Speculation factor 2.
return (requested_size < maximum_size/2)
? (2*(requested_size + 1))
: maximum_size;
// Speculation factor 1.5.
// return (maximum_size - requested_size > requested_size/2)
// ? requested_size + requested_size/2 + 1
// : maximum_size;
}
template <typename T>
inline typename
Enable_If<Is_Native<T>::value, memory_size_type>::type
external_memory_in_bytes(const T&) {
return 0;
}
template <typename T>
inline typename
Enable_If<Is_Native<T>::value, memory_size_type>::type
total_memory_in_bytes(const T&) {
return sizeof(T);
}
inline memory_size_type
external_memory_in_bytes(const mpz_class& x) {
return static_cast<memory_size_type>(x.get_mpz_t()[0]._mp_alloc)
* PPL_SIZEOF_MP_LIMB_T;
}
inline memory_size_type
total_memory_in_bytes(const mpz_class& x) {
return sizeof(x) + external_memory_in_bytes(x);
}
inline memory_size_type
external_memory_in_bytes(const mpq_class& x) {
return external_memory_in_bytes(x.get_num())
+ external_memory_in_bytes(x.get_den());
}
inline memory_size_type
total_memory_in_bytes(const mpq_class& x) {
return sizeof(x) + external_memory_in_bytes(x);
}
inline void
ascii_dump(std::ostream& s, Representation r) {
if (r == DENSE)
s << "DENSE";
else
s << "SPARSE";
}
inline bool
ascii_load(std::istream& is, Representation& r) {
std::string s;
if (!(is >> s))
return false;
if (s == "DENSE") {
r = DENSE;
return true;
}
if (s == "SPARSE") {
r = SPARSE;
return true;
}
return false;
}
inline bool
is_space(char c) {
return isspace(c) != 0;
}
template <typename RA_Container>
inline typename RA_Container::iterator
nth_iter(RA_Container& cont, dimension_type n) {
typedef typename RA_Container::difference_type diff_t;
return cont.begin() + static_cast<diff_t>(n);
}
template <typename RA_Container>
inline typename RA_Container::const_iterator
nth_iter(const RA_Container& cont, dimension_type n) {
typedef typename RA_Container::difference_type diff_t;
return cont.begin() + static_cast<diff_t>(n);
}
inline dimension_type
least_significant_one_mask(const dimension_type i) {
return i & (~i + 1U);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/globals_defs.hh line 568. */
/* Automatically generated from PPL source file ../src/Variable_inlines.hh line 28. */
#include <stdexcept>
namespace Parma_Polyhedra_Library {
inline dimension_type
Variable::max_space_dimension() {
return not_a_dimension() - 1;
}
inline
Variable::Variable(dimension_type i)
: varid((i < max_space_dimension())
? i
: (throw std::length_error("PPL::Variable::Variable(i):\n"
"i exceeds the maximum allowed "
"variable identifier."), i)) {
}
inline dimension_type
Variable::id() const {
return varid;
}
inline dimension_type
Variable::space_dimension() const {
return varid + 1;
}
inline memory_size_type
Variable::external_memory_in_bytes() const {
return 0;
}
inline memory_size_type
Variable::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
inline void
Variable::set_output_function(output_function_type* p) {
current_output_function = p;
}
inline Variable::output_function_type*
Variable::get_output_function() {
return current_output_function;
}
/*! \relates Variable */
inline bool
less(const Variable v, const Variable w) {
return v.id() < w.id();
}
inline bool
Variable::Compare::operator()(const Variable x, const Variable y) const {
return less(x, y);
}
inline void
Variable::m_swap(Variable& v) {
using std::swap;
swap(varid, v.varid);
}
inline void
swap(Variable& x, Variable& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Variable_defs.hh line 156. */
/* Automatically generated from PPL source file ../src/Linear_Form_defs.hh line 1. */
/* Linear_Form class declaration.
*/
/* Automatically generated from PPL source file ../src/Linear_Expression_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Linear_Expression;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Box_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename Interval>
class Box;
class Box_Helpers;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Linear_Form_defs.hh line 32. */
#include <vector>
namespace Parma_Polyhedra_Library {
//! Swaps \p x with \p y.
/*! \relates Linear_Form */
template <typename C>
void swap(Linear_Form<C>& x, Linear_Form<C>& y);
// Put them in the namespace here to declare them friend later.
//! Returns the linear form \p f1 + \p f2.
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>
operator+(const Linear_Form<C>& f1, const Linear_Form<C>& f2);
//! Returns the linear form \p v + \p f.
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>
operator+(Variable v, const Linear_Form<C>& f);
//! Returns the linear form \p f + \p v.
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>
operator+(const Linear_Form<C>& f, Variable v);
//! Returns the linear form \p n + \p f.
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>
operator+(const C& n, const Linear_Form<C>& f);
//! Returns the linear form \p f + \p n.
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>
operator+(const Linear_Form<C>& f, const C& n);
//! Returns the linear form \p f.
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>
operator+(const Linear_Form<C>& f);
//! Returns the linear form - \p f.
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>
operator-(const Linear_Form<C>& f);
//! Returns the linear form \p f1 - \p f2.
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>
operator-(const Linear_Form<C>& f1, const Linear_Form<C>& f2);
//! Returns the linear form \p v - \p f.
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>
operator-(Variable v, const Linear_Form<C>& f);
//! Returns the linear form \p f - \p v.
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>
operator-(const Linear_Form<C>& f, Variable v);
//! Returns the linear form \p n - \p f.
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>
operator-(const C& n, const Linear_Form<C>& f);
//! Returns the linear form \p f - \p n.
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>
operator-(const Linear_Form<C>& f, const C& n);
//! Returns the linear form \p n * \p f.
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>
operator*(const C& n, const Linear_Form<C>& f);
//! Returns the linear form \p f * \p n.
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>
operator*(const Linear_Form<C>& f, const C& n);
//! Returns the linear form \p f1 + \p f2 and assigns it to \p e1.
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>&
operator+=(Linear_Form<C>& f1, const Linear_Form<C>& f2);
//! Returns the linear form \p f + \p v and assigns it to \p f.
/*! \relates Linear_Form
\exception std::length_error
Thrown if the space dimension of \p v exceeds
<CODE>Linear_Form::max_space_dimension()</CODE>.
*/
template <typename C>
Linear_Form<C>&
operator+=(Linear_Form<C>& f, Variable v);
//! Returns the linear form \p f + \p n and assigns it to \p f.
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>&
operator+=(Linear_Form<C>& f, const C& n);
//! Returns the linear form \p f1 - \p f2 and assigns it to \p f1.
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>&
operator-=(Linear_Form<C>& f1, const Linear_Form<C>& f2);
//! Returns the linear form \p f - \p v and assigns it to \p f.
/*! \relates Linear_Form
\exception std::length_error
Thrown if the space dimension of \p v exceeds
<CODE>Linear_Form::max_space_dimension()</CODE>.
*/
template <typename C>
Linear_Form<C>&
operator-=(Linear_Form<C>& f, Variable v);
//! Returns the linear form \p f - \p n and assigns it to \p f.
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>&
operator-=(Linear_Form<C>& f, const C& n);
//! Returns the linear form \p n * \p f and assigns it to \p f.
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>&
operator*=(Linear_Form<C>& f, const C& n);
//! Returns the linear form \p f / \p n and assigns it to \p f.
/*!
\relates Linear_Form
Performs the division of a linear form by a scalar. It is up to the user to
ensure that division by 0 is not performed.
*/
template <typename C>
Linear_Form<C>&
operator/=(Linear_Form<C>& f, const C& n);
//! Returns <CODE>true</CODE> if and only if \p x and \p y are equal.
/*! \relates Linear_Form */
template <typename C>
bool
operator==(const Linear_Form<C>& x, const Linear_Form<C>& y);
//! Returns <CODE>true</CODE> if and only if \p x and \p y are different.
/*! \relates Linear_Form */
template <typename C>
bool
operator!=(const Linear_Form<C>& x, const Linear_Form<C>& y);
namespace IO_Operators {
//! Output operator.
/*! \relates Parma_Polyhedra_Library::Linear_Form */
template <typename C>
std::ostream& operator<<(std::ostream& s, const Linear_Form<C>& f);
} // namespace IO_Operators
} // namespace Parma_Polyhedra_Library
//! A linear form with interval coefficients.
/*! \ingroup PPL_CXX_interface
An object of the class Linear_Form represents the interval linear form
\f[
\sum_{i=0}^{n-1} a_i x_i + b
\f]
where \f$n\f$ is the dimension of the vector space,
each \f$a_i\f$ is the coefficient
of the \f$i\f$-th variable \f$x_i\f$
and \f$b\f$ is the inhomogeneous term.
The coefficients and the inhomogeneous term of the linear form
have the template parameter \p C as their type. \p C must be the
type of an Interval.
\par How to build a linear form.
A full set of functions is defined in order to provide a convenient
interface for building complex linear forms starting from simpler ones
and from objects of the classes Variable and \p C. Available operators
include binary addition and subtraction, as well as multiplication and
division by a coefficient.
The space dimension of a linear form is defined as
the highest variable dimension among variables that have a nonzero
coefficient in the linear form, or zero if no such variable exists.
The space dimension for each variable \f$x_i\f$ is given by \f$i + 1\f$.
\par Example
Given the type \p T of an Interval with floating point coefficients (though
any integral type may also be used), the following code builds the interval
linear form \f$lf = x_5 - x_2 + 1\f$ with space dimension 6:
\code
Variable x5(5);
Variable x2(2);
T x5_coefficient;
x5_coefficient.lower() = 2.0;
x5_coefficient.upper() = 3.0;
T inhomogeneous_term;
inhomogeneous_term.lower() = 4.0;
inhomogeneous_term.upper() = 8.0;
Linear_Form<T> lf(x2);
lf = -lf;
lf += Linear_Form<T>(x2);
Linear_Form<T> lf_x5(x5);
lf_x5 *= x5_coefficient;
lf += lf_x5;
\endcode
Note that \c lf_x5 is created with space dimension 6, while \c lf is
created with space dimension 0 and then extended first to space
dimension 2 when \c x2 is subtracted and finally to space dimension
6 when \c lf_x5 is added.
*/
template <typename C>
class Parma_Polyhedra_Library::Linear_Form {
public:
//! Default constructor: returns a copy of Linear_Form::zero().
Linear_Form();
//! Ordinary copy constructor.
Linear_Form(const Linear_Form& f);
//! Destructor.
~Linear_Form();
//! Builds the linear form corresponding to the inhomogeneous term \p n.
explicit Linear_Form(const C& n);
//! Builds the linear form corresponding to the variable \p v.
/*!
\exception std::length_error
Thrown if the space dimension of \p v exceeds
<CODE>Linear_Form::max_space_dimension()</CODE>.
*/
Linear_Form(Variable v);
//! Builds a linear form approximating the linear expression \p e.
Linear_Form(const Linear_Expression& e);
//! Returns the maximum space dimension a Linear_Form can handle.
static dimension_type max_space_dimension();
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
//! Returns the coefficient of \p v in \p *this.
const C& coefficient(Variable v) const;
//! Returns the inhomogeneous term of \p *this.
const C& inhomogeneous_term() const;
//! Negates all the coefficients of \p *this.
void negate();
/*! \brief
Returns a lower bound to the total size in bytes of the memory
occupied by \p *this.
*/
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Checks if all the invariants are satisfied.
bool OK() const;
//! Swaps \p *this with \p y.
void m_swap(Linear_Form& y);
// Floating point analysis related methods.
/*! \brief
Verifies if the linear form overflows.
\return
Returns <CODE>false</CODE> if all coefficients in \p lf are bounded,
<CODE>true</CODE> otherwise.
\p T must be the type of possibly unbounded quantities.
*/
bool overflows() const;
/*! \brief
Computes the relative error associated to floating point computations
that operate on a quantity that is overapproximated by \p *this.
\param analyzed_format The floating point format used by the analyzed
program.
\param result Becomes the linear form corresponding to the relative
error committed.
This method makes <CODE>result</CODE> become a linear form
obtained by evaluating the function \f$\varepsilon_{\mathbf{f}}(l)\f$
on the linear form. This function is defined as:
\f[
\varepsilon_{\mathbf{f}}\left([a, b]+\sum_{v \in \cV}[a_{v}, b_{v}]v\right)
\defeq
(\textrm{max}(|a|, |b|) \amifp [-\beta^{-\textrm{p}}, \beta^{-\textrm{p}}])
+
\sum_{v \in \cV}(\textrm{max}(|a_{v}|,|b_{v}|)
\amifp
[-\beta^{-\textrm{p}}, \beta^{-\textrm{p}}])v
\f]
where p is the fraction size in bits for the format \f$\mathbf{f}\f$ and
\f$\beta\f$ the base.
The result is undefined if \p T is not the type of an interval with
floating point boundaries.
*/
void relative_error(Floating_Point_Format analyzed_format,
Linear_Form& result) const;
/*! \brief
Makes \p result become an interval that overapproximates all the
possible values of \p *this.
\param oracle The FP_Oracle to be queried.
\param result The linear form that will store the result.
\return <CODE>true</CODE> if the operation was successful,
<CODE>false</CODE> otherwise (the possibility of failure
depends on the oracle's implementation).
\par Template type parameters
- The class template parameter \p Target specifies the implementation
of Concrete_Expression to be used.
This method makes <CODE>result</CODE> become
\f$\iota(lf)\rho^{\#}\f$, that is an interval defined as:
\f[
\iota\left(i + \sum_{v \in \cV}i_{v}v\right)\rho^{\#}
\defeq
i \asifp \left(\bigoplus_{v \in \cV}{}^{\#}i_{v} \amifp
\rho^{\#}(v)\right)
\f]
where \f$\rho^{\#}(v)\f$ is an interval (provided by the oracle)
that correctly approximates the value of \f$v\f$.
The result is undefined if \p C is not the type of an interval with
floating point boundaries.
*/
template <typename Target>
bool intervalize(const FP_Oracle<Target,C>& oracle, C& result) const;
private:
//! The generic coefficient equal to the singleton zero.
static C zero;
//! Type of the container vector.
typedef std::vector<C> vec_type;
//! The container vector.
vec_type vec;
//! Implementation sizing constructor.
/*!
The bool parameter is just to avoid problems with
the constructor Linear_Form(const C& n).
*/
Linear_Form(dimension_type sz, bool);
/*! \brief
Builds the linear form corresponding to the difference of
\p v and \p w.
\exception std::length_error
Thrown if the space dimension of \p v or the one of \p w exceed
<CODE>Linear_Form::max_space_dimension()</CODE>.
*/
Linear_Form(Variable v, Variable w);
//! Gives the number of generic coefficients currently in use.
dimension_type size() const;
//! Extends the vector of \p *this to size \p sz.
void extend(dimension_type sz);
//! Returns a reference to \p vec[i].
C& operator[](dimension_type i);
//! Returns a const reference to \p vec[i].
const C& operator[](dimension_type i) const;
friend Linear_Form<C>
operator+<C>(const Linear_Form<C>& f1, const Linear_Form<C>& f2);
friend Linear_Form<C>
operator+<C>(const C& n, const Linear_Form<C>& f);
friend Linear_Form<C>
operator+<C>(const Linear_Form<C>& f, const C& n);
friend Linear_Form<C>
operator+<C>(Variable v, const Linear_Form<C>& f);
friend Linear_Form<C>
operator-<C>(const Linear_Form<C>& f);
friend Linear_Form<C>
operator-<C>(const Linear_Form<C>& f1, const Linear_Form<C>& f2);
friend Linear_Form<C>
operator-<C>(const C& n, const Linear_Form<C>& f);
friend Linear_Form<C>
operator-<C>(const Linear_Form<C>& f, const C& n);
friend Linear_Form<C>
operator-<C>(Variable v, const Linear_Form<C>& f);
friend Linear_Form<C>
operator-<C>(const Linear_Form<C>& f, Variable v);
friend Linear_Form<C>
operator*<C>(const C& n, const Linear_Form<C>& f);
friend Linear_Form<C>
operator*<C>(const Linear_Form<C>& f, const C& n);
friend Linear_Form<C>&
operator+=<C>(Linear_Form<C>& f1, const Linear_Form<C>& f2);
friend Linear_Form<C>&
operator+=<C>(Linear_Form<C>& f, Variable v);
friend Linear_Form<C>&
operator+=<C>(Linear_Form<C>& f, const C& n);
friend Linear_Form<C>&
operator-=<C>(Linear_Form<C>& f1, const Linear_Form<C>& f2);
friend Linear_Form<C>&
operator-=<C>(Linear_Form<C>& f, Variable v);
friend Linear_Form<C>&
operator-=<C>(Linear_Form<C>& f, const C& n);
friend Linear_Form<C>&
operator*=<C>(Linear_Form<C>& f, const C& n);
friend Linear_Form<C>&
operator/=<C>(Linear_Form<C>& f, const C& n);
friend bool
operator==<C>(const Linear_Form<C>& x, const Linear_Form<C>& y);
friend std::ostream&
Parma_Polyhedra_Library::IO_Operators
::operator<<<C>(std::ostream& s, const Linear_Form<C>& f);
};
/* Automatically generated from PPL source file ../src/Linear_Form_inlines.hh line 1. */
/* Linear_Form class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Linear_Form_inlines.hh line 28. */
#include <iostream>
#include <stdexcept>
namespace Parma_Polyhedra_Library {
template <typename C>
inline dimension_type
Linear_Form<C>::max_space_dimension() {
return vec_type().max_size() - 1;
}
template <typename C>
inline
Linear_Form<C>::Linear_Form()
: vec(1, zero) {
vec.reserve(compute_capacity(1, vec_type().max_size()));
}
template <typename C>
inline
Linear_Form<C>::Linear_Form(dimension_type sz, bool)
: vec(sz, zero) {
vec.reserve(compute_capacity(sz, vec_type().max_size()));
}
template <typename C>
inline
Linear_Form<C>::Linear_Form(const Linear_Form& f)
: vec(f.vec) {
}
template <typename C>
inline
Linear_Form<C>::~Linear_Form() {
}
template <typename C>
inline dimension_type
Linear_Form<C>::size() const {
return vec.size();
}
template <typename C>
inline void
Linear_Form<C>::extend(dimension_type sz) {
assert(sz > size());
vec.reserve(compute_capacity(sz, vec_type().max_size()));
vec.resize(sz, zero);
}
template <typename C>
inline
Linear_Form<C>::Linear_Form(const C& n)
: vec(1, n) {
vec.reserve(compute_capacity(1, vec_type().max_size()));
}
template <typename C>
inline dimension_type
Linear_Form<C>::space_dimension() const {
return size() - 1;
}
template <typename C>
inline const C&
Linear_Form<C>::coefficient(Variable v) const {
if (v.space_dimension() > space_dimension())
return zero;
return vec[v.id()+1];
}
template <typename C>
inline C&
Linear_Form<C>::operator[](dimension_type i) {
assert(i < size());
return vec[i];
}
template <typename C>
inline const C&
Linear_Form<C>::operator[](dimension_type i) const {
assert(i < size());
return vec[i];
}
template <typename C>
inline const C&
Linear_Form<C>::inhomogeneous_term() const {
return vec[0];
}
template <typename C>
inline memory_size_type
Linear_Form<C>::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
/*! \relates Linear_Form */
template <typename C>
inline Linear_Form<C>
operator+(const Linear_Form<C>& f) {
return f;
}
/*! \relates Linear_Form */
template <typename C>
inline Linear_Form<C>
operator+(const Linear_Form<C>& f, const C& n) {
return n + f;
}
/*! \relates Linear_Form */
template <typename C>
inline Linear_Form<C>
operator+(const Linear_Form<C>& f, const Variable v) {
return v + f;
}
/*! \relates Linear_Form */
template <typename C>
inline Linear_Form<C>
operator-(const Linear_Form<C>& f, const C& n) {
return -n + f;
}
/*! \relates Linear_Form */
template <typename C>
inline Linear_Form<C>
operator-(const Variable v, const Variable w) {
return Linear_Form<C>(v, w);
}
/*! \relates Linear_Form */
template <typename C>
inline Linear_Form<C>
operator*(const Linear_Form<C>& f, const C& n) {
return n * f;
}
/*! \relates Linear_Form */
template <typename C>
inline Linear_Form<C>&
operator+=(Linear_Form<C>& f, const C& n) {
f[0] += n;
return f;
}
/*! \relates Linear_Form */
template <typename C>
inline Linear_Form<C>&
operator-=(Linear_Form<C>& f, const C& n) {
f[0] -= n;
return f;
}
/*! \relates Linear_Form */
template <typename C>
inline bool
operator!=(const Linear_Form<C>& x, const Linear_Form<C>& y) {
return !(x == y);
}
template <typename C>
inline void
Linear_Form<C>::m_swap(Linear_Form& y) {
using std::swap;
swap(vec, y.vec);
}
template <typename C>
inline void
Linear_Form<C>::ascii_dump(std::ostream& s) const {
using namespace IO_Operators;
dimension_type space_dim = space_dimension();
s << space_dim << "\n";
for (dimension_type i = 0; i <= space_dim; ++i) {
const char separator = ' ';
s << vec[i] << separator;
}
s << "\n";
}
template <typename C>
inline bool
Linear_Form<C>::ascii_load(std::istream& s) {
using namespace IO_Operators;
dimension_type new_dim;
if (!(s >> new_dim))
return false;
vec.resize(new_dim + 1, zero);
for (dimension_type i = 0; i <= new_dim; ++i) {
if (!(s >> vec[i]))
return false;
}
PPL_ASSERT(OK());
return true;
}
// Floating point analysis related methods.
template <typename C>
inline bool
Linear_Form<C>::overflows() const {
if (!inhomogeneous_term().is_bounded())
return true;
for (dimension_type i = space_dimension(); i-- > 0; ) {
if (!coefficient(Variable(i)).is_bounded())
return true;
}
return false;
}
/*! \relates Linear_Form */
template <typename C>
inline void
swap(Linear_Form<C>& x, Linear_Form<C>& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Linear_Form_defs.hh line 497. */
// Linear_Form_templates.hh is not included here on purpose.
/* Automatically generated from PPL source file ../src/Float_inlines.hh line 30. */
namespace Parma_Polyhedra_Library {
inline int
float_ieee754_half::inf_sign() const {
if (word == NEG_INF)
return -1;
if (word == POS_INF)
return 1;
return 0;
}
inline bool
float_ieee754_half::is_nan() const {
return (word & ~SGN_MASK) > POS_INF;
}
inline int
float_ieee754_half::zero_sign() const {
if (word == NEG_ZERO)
return -1;
if (word == POS_ZERO)
return 1;
return 0;
}
inline void
float_ieee754_half::negate() {
word ^= SGN_MASK;
}
inline bool
float_ieee754_half::sign_bit() const {
return (word & SGN_MASK) != 0;
}
inline void
float_ieee754_half::dec() {
--word;
}
inline void
float_ieee754_half::inc() {
++word;
}
inline void
float_ieee754_half::set_max(bool negative) {
word = WRD_MAX;
if (negative)
word |= SGN_MASK;
}
inline void
float_ieee754_half::build(bool negative, mpz_t mantissa, int exponent) {
word = static_cast<uint16_t>(mpz_get_ui(mantissa)
& ((1UL << MANTISSA_BITS) - 1));
if (negative)
word |= SGN_MASK;
const int exponent_repr = exponent + EXPONENT_BIAS;
PPL_ASSERT(exponent_repr >= 0 && exponent_repr < (1 << EXPONENT_BITS));
word |= static_cast<uint16_t>(exponent_repr) << MANTISSA_BITS;
}
inline int
float_ieee754_single::inf_sign() const {
if (word == NEG_INF)
return -1;
if (word == POS_INF)
return 1;
return 0;
}
inline bool
float_ieee754_single::is_nan() const {
return (word & ~SGN_MASK) > POS_INF;
}
inline int
float_ieee754_single::zero_sign() const {
if (word == NEG_ZERO)
return -1;
if (word == POS_ZERO)
return 1;
return 0;
}
inline void
float_ieee754_single::negate() {
word ^= SGN_MASK;
}
inline bool
float_ieee754_single::sign_bit() const {
return (word & SGN_MASK) != 0;
}
inline void
float_ieee754_single::dec() {
--word;
}
inline void
float_ieee754_single::inc() {
++word;
}
inline void
float_ieee754_single::set_max(bool negative) {
word = WRD_MAX;
if (negative)
word |= SGN_MASK;
}
inline void
float_ieee754_single::build(bool negative, mpz_t mantissa, int exponent) {
word = static_cast<uint32_t>(mpz_get_ui(mantissa)
& ((1UL << MANTISSA_BITS) - 1));
if (negative)
word |= SGN_MASK;
const int exponent_repr = exponent + EXPONENT_BIAS;
PPL_ASSERT(exponent_repr >= 0 && exponent_repr < (1 << EXPONENT_BITS));
word |= static_cast<uint32_t>(exponent_repr) << MANTISSA_BITS;
}
inline int
float_ieee754_double::inf_sign() const {
if (lsp != LSP_INF)
return 0;
if (msp == MSP_NEG_INF)
return -1;
if (msp == MSP_POS_INF)
return 1;
return 0;
}
inline bool
float_ieee754_double::is_nan() const {
const uint32_t a = msp & ~MSP_SGN_MASK;
return a > MSP_POS_INF || (a == MSP_POS_INF && lsp != LSP_INF);
}
inline int
float_ieee754_double::zero_sign() const {
if (lsp != LSP_ZERO)
return 0;
if (msp == MSP_NEG_ZERO)
return -1;
if (msp == MSP_POS_ZERO)
return 1;
return 0;
}
inline void
float_ieee754_double::negate() {
msp ^= MSP_SGN_MASK;
}
inline bool
float_ieee754_double::sign_bit() const {
return (msp & MSP_SGN_MASK) != 0;
}
inline void
float_ieee754_double::dec() {
if (lsp == 0) {
--msp;
lsp = LSP_MAX;
}
else
--lsp;
}
inline void
float_ieee754_double::inc() {
if (lsp == LSP_MAX) {
++msp;
lsp = 0;
}
else
++lsp;
}
inline void
float_ieee754_double::set_max(bool negative) {
msp = MSP_MAX;
lsp = LSP_MAX;
if (negative)
msp |= MSP_SGN_MASK;
}
inline void
float_ieee754_double::build(bool negative, mpz_t mantissa, int exponent) {
unsigned long m;
#if ULONG_MAX == 0xffffffffUL
lsp = mpz_get_ui(mantissa);
mpz_tdiv_q_2exp(mantissa, mantissa, 32);
m = mpz_get_ui(mantissa);
#else
m = mpz_get_ui(mantissa);
lsp = static_cast<uint32_t>(m & LSP_MAX);
m >>= 32;
#endif
msp = static_cast<uint32_t>(m & ((1UL << (MANTISSA_BITS - 32)) - 1));
if (negative)
msp |= MSP_SGN_MASK;
const int exponent_repr = exponent + EXPONENT_BIAS;
PPL_ASSERT(exponent_repr >= 0 && exponent_repr < (1 << EXPONENT_BITS));
msp |= static_cast<uint32_t>(exponent_repr) << (MANTISSA_BITS - 32);
}
inline int
float_ibm_single::inf_sign() const {
if (word == NEG_INF)
return -1;
if (word == POS_INF)
return 1;
return 0;
}
inline bool
float_ibm_single::is_nan() const {
return (word & ~SGN_MASK) > POS_INF;
}
inline int
float_ibm_single::zero_sign() const {
if (word == NEG_ZERO)
return -1;
if (word == POS_ZERO)
return 1;
return 0;
}
inline void
float_ibm_single::negate() {
word ^= SGN_MASK;
}
inline bool
float_ibm_single::sign_bit() const {
return (word & SGN_MASK) != 0;
}
inline void
float_ibm_single::dec() {
--word;
}
inline void
float_ibm_single::inc() {
++word;
}
inline void
float_ibm_single::set_max(bool negative) {
word = WRD_MAX;
if (negative)
word |= SGN_MASK;
}
inline void
float_ibm_single::build(bool negative, mpz_t mantissa, int exponent) {
word = static_cast<uint32_t>(mpz_get_ui(mantissa)
& ((1UL << MANTISSA_BITS) - 1));
if (negative)
word |= SGN_MASK;
const int exponent_repr = exponent + EXPONENT_BIAS;
PPL_ASSERT(exponent_repr >= 0 && exponent_repr < (1 << EXPONENT_BITS));
word |= static_cast<uint32_t>(exponent_repr) << MANTISSA_BITS;
}
inline int
float_intel_double_extended::inf_sign() const {
if (lsp != LSP_INF)
return 0;
const uint32_t a = msp & MSP_NEG_INF;
if (a == MSP_NEG_INF)
return -1;
if (a == MSP_POS_INF)
return 1;
return 0;
}
inline bool
float_intel_double_extended::is_nan() const {
return (msp & MSP_POS_INF) == MSP_POS_INF
&& lsp != LSP_INF;
}
inline int
float_intel_double_extended::zero_sign() const {
if (lsp != LSP_ZERO)
return 0;
const uint32_t a = msp & MSP_NEG_INF;
if (a == MSP_NEG_ZERO)
return -1;
if (a == MSP_POS_ZERO)
return 1;
return 0;
}
inline void
float_intel_double_extended::negate() {
msp ^= MSP_SGN_MASK;
}
inline bool
float_intel_double_extended::sign_bit() const {
return (msp & MSP_SGN_MASK) != 0;
}
inline void
float_intel_double_extended::dec() {
if ((lsp & LSP_DMAX) == 0) {
--msp;
lsp = ((msp & MSP_NEG_INF) == 0) ? LSP_DMAX : LSP_NMAX;
}
else
--lsp;
}
inline void
float_intel_double_extended::inc() {
if ((lsp & LSP_DMAX) == LSP_DMAX) {
++msp;
lsp = LSP_DMAX + 1;
}
else
++lsp;
}
inline void
float_intel_double_extended::set_max(bool negative) {
msp = MSP_MAX;
lsp = LSP_NMAX;
if (negative)
msp |= MSP_SGN_MASK;
}
inline void
float_intel_double_extended::build(bool negative,
mpz_t mantissa, int exponent) {
#if ULONG_MAX == 0xffffffffUL
mpz_export(&lsp, 0, -1, sizeof(lsp), 0, 0, mantissa);
#else
lsp = mpz_get_ui(mantissa);
#endif
msp = (negative ? MSP_SGN_MASK : 0);
const int exponent_repr = exponent + EXPONENT_BIAS;
PPL_ASSERT(exponent_repr >= 0 && exponent_repr < (1 << EXPONENT_BITS));
msp |= static_cast<uint32_t>(exponent_repr);
}
inline int
float_ieee754_quad::inf_sign() const {
if (lsp != LSP_INF)
return 0;
if (msp == MSP_NEG_INF)
return -1;
if (msp == MSP_POS_INF)
return 1;
return 0;
}
inline bool
float_ieee754_quad::is_nan() const {
return (msp & ~MSP_SGN_MASK) == MSP_POS_INF
&& lsp != LSP_INF;
}
inline int
float_ieee754_quad::zero_sign() const {
if (lsp != LSP_ZERO)
return 0;
if (msp == MSP_NEG_ZERO)
return -1;
if (msp == MSP_POS_ZERO)
return 1;
return 0;
}
inline void
float_ieee754_quad::negate() {
msp ^= MSP_SGN_MASK;
}
inline bool
float_ieee754_quad::sign_bit() const {
return (msp & MSP_SGN_MASK) != 0;
}
inline void
float_ieee754_quad::dec() {
if (lsp == 0) {
--msp;
lsp = LSP_MAX;
}
else
--lsp;
}
inline void
float_ieee754_quad::inc() {
if (lsp == LSP_MAX) {
++msp;
lsp = 0;
}
else
++lsp;
}
inline void
float_ieee754_quad::set_max(bool negative) {
msp = MSP_MAX;
lsp = LSP_MAX;
if (negative)
msp |= MSP_SGN_MASK;
}
inline void
float_ieee754_quad::build(bool negative, mpz_t mantissa, int exponent) {
uint64_t parts[2];
mpz_export(parts, 0, -1, sizeof(parts[0]), 0, 0, mantissa);
lsp = parts[0];
msp = parts[1];
msp &= ((static_cast<uint64_t>(1) << (MANTISSA_BITS - 64)) - 1);
if (negative)
msp |= MSP_SGN_MASK;
const int exponent_repr = exponent + EXPONENT_BIAS;
PPL_ASSERT(exponent_repr >= 0 && exponent_repr < (1 << EXPONENT_BITS));
msp |= static_cast<uint64_t>(exponent_repr) << (MANTISSA_BITS - 64);
}
inline bool
is_less_precise_than(Floating_Point_Format f1, Floating_Point_Format f2) {
return f1 < f2;
}
inline unsigned int
msb_position(unsigned long long v) {
return static_cast<unsigned int>(sizeof_to_bits(sizeof(v))) - 1U - clz(v);
}
template <typename FP_Interval_Type>
inline void
affine_form_image(std::map<dimension_type,
Linear_Form<FP_Interval_Type> >& lf_store,
const Variable var,
const Linear_Form<FP_Interval_Type>& lf) {
// Assign the new linear form for var.
lf_store[var.id()] = lf;
// Now invalidate all linear forms in which var occurs.
discard_occurrences(lf_store, var);
}
#if PPL_SUPPORTED_FLOAT
inline
Float<float>::Float() {
}
inline
Float<float>::Float(float v) {
u.number = v;
}
inline float
Float<float>::value() {
return u.number;
}
#endif
#if PPL_SUPPORTED_DOUBLE
inline
Float<double>::Float() {
}
inline
Float<double>::Float(double v) {
u.number = v;
}
inline double
Float<double>::value() {
return u.number;
}
#endif
#if PPL_SUPPORTED_LONG_DOUBLE
inline
Float<long double>::Float() {
}
inline
Float<long double>::Float(long double v) {
u.number = v;
}
inline long double
Float<long double>::value() {
return u.number;
}
#endif
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Float_templates.hh line 1. */
/* IEC 559 floating point format related functions:
non-inline template functions.
*/
/* Automatically generated from PPL source file ../src/Float_templates.hh line 30. */
#include <cmath>
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type>
const FP_Interval_Type& compute_absolute_error(
const Floating_Point_Format analyzed_format) {
typedef typename FP_Interval_Type::boundary_type analyzer_format;
// FIXME: check if initializing caches with EMPTY is better.
static const FP_Interval_Type ZERO_INTERVAL = FP_Interval_Type(0);
// Cached results for each different analyzed format.
static FP_Interval_Type ieee754_half_result = ZERO_INTERVAL;
static FP_Interval_Type ieee754_single_result = ZERO_INTERVAL;
static FP_Interval_Type ieee754_double_result = ZERO_INTERVAL;
static FP_Interval_Type ibm_single_result = ZERO_INTERVAL;
static FP_Interval_Type ieee754_quad_result = ZERO_INTERVAL;
static FP_Interval_Type intel_double_extended_result = ZERO_INTERVAL;
FP_Interval_Type* to_compute = NULL;
// Get the necessary information on the analyzed's format.
unsigned int f_base;
int f_exponent_bias;
unsigned int f_mantissa_bits;
switch (analyzed_format) {
case IEEE754_HALF:
if (ieee754_half_result != ZERO_INTERVAL)
return ieee754_half_result;
to_compute = &ieee754_half_result;
f_base = float_ieee754_half::BASE;
f_exponent_bias = float_ieee754_half::EXPONENT_BIAS;
f_mantissa_bits = float_ieee754_half::MANTISSA_BITS;
break;
case IEEE754_SINGLE:
if (ieee754_single_result != ZERO_INTERVAL)
return ieee754_single_result;
to_compute = &ieee754_single_result;
f_base = float_ieee754_single::BASE;
f_exponent_bias = float_ieee754_single::EXPONENT_BIAS;
f_mantissa_bits = float_ieee754_single::MANTISSA_BITS;
break;
case IEEE754_DOUBLE:
if (ieee754_double_result != ZERO_INTERVAL)
return ieee754_double_result;
to_compute = &ieee754_double_result;
f_base = float_ieee754_double::BASE;
f_exponent_bias = float_ieee754_double::EXPONENT_BIAS;
f_mantissa_bits = float_ieee754_double::MANTISSA_BITS;
break;
case IBM_SINGLE:
if (ibm_single_result != ZERO_INTERVAL)
return ibm_single_result;
to_compute = &ibm_single_result;
f_base = float_ibm_single::BASE;
f_exponent_bias = float_ibm_single::EXPONENT_BIAS;
f_mantissa_bits = float_ibm_single::MANTISSA_BITS;
break;
case IEEE754_QUAD:
if (ieee754_quad_result != ZERO_INTERVAL)
return ieee754_quad_result;
to_compute = &ieee754_quad_result;
f_base = float_ieee754_quad::BASE;
f_exponent_bias = float_ieee754_quad::EXPONENT_BIAS;
f_mantissa_bits = float_ieee754_quad::MANTISSA_BITS;
break;
case INTEL_DOUBLE_EXTENDED:
if (intel_double_extended_result != ZERO_INTERVAL)
return intel_double_extended_result;
to_compute = &intel_double_extended_result;
f_base = float_intel_double_extended::BASE;
f_exponent_bias = float_intel_double_extended::EXPONENT_BIAS;
f_mantissa_bits = float_intel_double_extended::MANTISSA_BITS;
break;
default:
PPL_UNREACHABLE;
break;
}
PPL_ASSERT(to_compute != NULL);
// We assume that f_base is a power of 2.
analyzer_format omega;
int power = static_cast<int>(msb_position(f_base))
* ((1 - f_exponent_bias) - static_cast<int>(f_mantissa_bits));
omega = std::max(static_cast<analyzer_format>(ldexp(1.0, power)),
std::numeric_limits<analyzer_format>::denorm_min());
to_compute->build(i_constraint(GREATER_OR_EQUAL, -omega),
i_constraint(LESS_OR_EQUAL, omega));
return *to_compute;
}
template <typename FP_Interval_Type>
void
discard_occurrences(std::map<dimension_type,
Linear_Form<FP_Interval_Type> >& lf_store,
Variable var) {
typedef Linear_Form<FP_Interval_Type> FP_Linear_Form;
typedef typename std::map<dimension_type, FP_Linear_Form>::iterator Iter;
for (Iter i = lf_store.begin(); i != lf_store.end(); ) {
if((i->second).coefficient(var) != 0)
i = lf_store.erase(i);
else
++i;
}
}
/* FIXME: improve efficiency by adding the list of potentially conflicting
variables as an argument. */
template <typename FP_Interval_Type>
void upper_bound_assign(std::map<dimension_type,
Linear_Form<FP_Interval_Type> >& ls1,
const std::map<dimension_type,
Linear_Form<FP_Interval_Type> >& ls2) {
typedef Linear_Form<FP_Interval_Type> FP_Linear_Form;
typedef typename std::map<dimension_type, FP_Linear_Form>::iterator Iter;
typedef typename std::map<dimension_type,
FP_Linear_Form>::const_iterator Const_Iter;
Const_Iter i2_end = ls2.end();
for (Iter i1 = ls1.begin(), i1_end = ls1.end(); i1 != i1_end; ) {
Const_Iter i2 = ls2.find(i1->first);
if ((i2 == i2_end) || (i1->second != i2->second))
i1 = ls1.erase(i1);
else
++i1;
}
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Float_defs.hh line 522. */
/* Automatically generated from PPL source file ../src/checked_defs.hh line 35. */
namespace Parma_Polyhedra_Library {
namespace Checked {
// It is a pity that function partial specialization is not permitted
// by C++. To (partly) overcome this limitation, we use class
// encapsulated functions and partial specialization of containing
// classes.
#define PPL_FUNCTION_CLASS(name) name ## _function_struct
#define PPL_DECLARE_FUN1_0_0(name, ret_type, qual, type) \
template <typename Policy, typename type> \
struct PPL_FUNCTION_CLASS(name); \
template <typename Policy, typename type> \
inline ret_type PPL_U(name)(PPL_U(qual) PPL_U(type)& arg) { \
return PPL_FUNCTION_CLASS(name)<Policy, PPL_U(type)>::function(arg); \
}
#define PPL_DECLARE_FUN1_0_1(name, ret_type, qual, type, after1) \
template <typename Policy, typename type> \
struct PPL_FUNCTION_CLASS(name); \
template <typename Policy, typename type> \
inline ret_type PPL_U(name)(PPL_U(qual) PPL_U(type)& arg, PPL_U(after1) a1) { \
return \
PPL_FUNCTION_CLASS(name)<Policy, PPL_U(type)>::function(arg, a1); \
}
#define PPL_DECLARE_FUN1_0_2(name, ret_type, qual, type, after1, after2) \
template <typename Policy, typename type> \
struct PPL_FUNCTION_CLASS(name); \
template <typename Policy, typename type> \
inline ret_type PPL_U(name)(PPL_U(qual) PPL_U(type)& arg, PPL_U(after1) a1, \
PPL_U(after2) a2) { \
return \
PPL_FUNCTION_CLASS(name)<Policy, PPL_U(type)>::function(arg, \
a1, a2); \
}
#define PPL_DECLARE_FUN1_0_3(name, ret_type, qual, type, \
after1, after2, after3) \
template <typename Policy, typename type> \
struct PPL_FUNCTION_CLASS(name); \
template <typename Policy, typename type> \
inline ret_type PPL_U(name)(PPL_U(qual) PPL_U(type)& arg, \
PPL_U(after1) a1, PPL_U(after2) a2, \
PPL_U(after3) a3) { \
return \
PPL_FUNCTION_CLASS(name)<Policy, PPL_U(type)>::function(arg, \
a1, a2, \
a3); \
}
#define PPL_DECLARE_FUN1_1_1(name, ret_type, before1, qual, type, after1) \
template <typename Policy, typename type> \
struct PPL_FUNCTION_CLASS(name); \
template <typename Policy, typename type> \
inline ret_type PPL_U(name)(PPL_U(before1) b1, PPL_U(qual) PPL_U(type)& arg, \
PPL_U(after1) a1) { \
return \
PPL_FUNCTION_CLASS(name)<Policy, PPL_U(type)>::function(b1, arg, \
a1); \
}
#define PPL_DECLARE_FUN1_1_2(name, ret_type, before1, qual, type, \
after1, after2) \
template <typename Policy, typename type> \
struct PPL_FUNCTION_CLASS(name); \
template <typename Policy, typename type> \
inline ret_type PPL_U(name)(PPL_U(before1) b1, PPL_U(qual) PPL_U(type)& arg, \
PPL_U(after1) a1, PPL_U(after2) a2) { \
return \
PPL_FUNCTION_CLASS(name)<Policy, PPL_U(type)>::function(b1, arg, \
a1, a2); \
}
#define PPL_DECLARE_FUN1_2_2(name, ret_type, before1, before2, qual, type, \
after1, after2) \
template <typename Policy, typename type> \
struct PPL_FUNCTION_CLASS(name); \
template <typename Policy, typename type> \
inline ret_type PPL_U(name)(PPL_U(before1) b1, PPL_U(before2) b2, \
PPL_U(qual) PPL_U(type)& arg, \
PPL_U(after1) a1, PPL_U(after2) a2) { \
return \
PPL_FUNCTION_CLASS(name)<Policy, PPL_U(type)>::function(b1, b2, \
arg, \
a1, a2); \
}
#define PPL_DECLARE_FUN2_0_0(name, ret_type, qual1, type1, qual2, type2) \
template <typename Policy1, typename Policy2, \
typename type1, typename type2> \
struct PPL_FUNCTION_CLASS(name); \
template <typename Policy1, typename Policy2, \
typename type1, typename type2> \
inline ret_type PPL_U(name)(PPL_U(qual1) PPL_U(type1)& arg1, \
PPL_U(qual2) PPL_U(type2)& arg2) { \
return PPL_FUNCTION_CLASS(name)<Policy1, Policy2, \
type1, PPL_U(type2)>::function(arg1, arg2); \
}
#define PPL_DECLARE_FUN2_0_1(name, ret_type, qual1, type1, \
qual2, type2, after1) \
template <typename Policy1, typename Policy2, \
typename type1, typename type2> \
struct PPL_FUNCTION_CLASS(name); \
template <typename Policy1, typename Policy2, \
typename type1, typename type2> \
inline ret_type PPL_U(name)(PPL_U(qual1) PPL_U(type1)& arg1, \
PPL_U(qual2) PPL_U(type2)& arg2, \
PPL_U(after1) a1) { \
return PPL_FUNCTION_CLASS(name)<Policy1, Policy2, \
type1, PPL_U(type2)>::function(arg1, arg2, a1); \
}
#define PPL_DECLARE_FUN2_0_2(name, ret_type, qual1, type1, qual2, type2, \
after1, after2) \
template <typename Policy1, typename Policy2, \
typename type1, typename type2> \
struct PPL_FUNCTION_CLASS(name); \
template <typename Policy1, typename Policy2, \
typename type1, typename type2> \
inline ret_type PPL_U(name)(PPL_U(qual1) PPL_U(type1)& arg1, \
PPL_U(qual2) PPL_U(type2)& arg2, \
PPL_U(after1) a1, PPL_U(after2) a2) { \
return PPL_FUNCTION_CLASS(name)<Policy1, Policy2, \
type1, PPL_U(type2)>::function(arg1, arg2, a1, a2); \
}
#define PPL_DECLARE_FUN3_0_1(name, ret_type, qual1, type1, \
qual2, type2, qual3, type3, after1) \
template <typename Policy1, typename Policy2, typename Policy3, \
typename type1, typename type2, typename type3> \
struct PPL_FUNCTION_CLASS(name); \
template <typename Policy1, typename Policy2, typename Policy3, \
typename type1, typename type2, typename type3> \
inline ret_type PPL_U(name)(PPL_U(qual1) PPL_U(type1)& arg1, \
PPL_U(qual2) PPL_U(type2)& arg2, \
PPL_U(qual3) PPL_U(type3)& arg3, \
PPL_U(after1) a1) { \
return PPL_FUNCTION_CLASS(name)<Policy1, Policy2, Policy3, \
type1, type2, PPL_U(type3)> \
::function(arg1, arg2, arg3, a1); \
}
#define PPL_DECLARE_FUN5_0_1(name, ret_type, \
qual1, type1, qual2, type2, qual3, type3, \
qual4, type4, qual5, type5, \
after1) \
template <typename Policy1, typename Policy2, typename Policy3, \
typename Policy4,typename Policy5, \
typename type1, typename type2, typename type3, \
typename type4, typename type5> \
struct PPL_FUNCTION_CLASS(name); \
template <typename Policy1, typename Policy2, typename Policy3, \
typename Policy4,typename Policy5, \
typename type1, typename type2, typename type3, \
typename type4, typename type5> \
inline ret_type PPL_U(name)(PPL_U(qual1) PPL_U(type1)& arg1, PPL_U(qual2) \
PPL_U(type2)& arg2, \
PPL_U(qual3) PPL_U(type3)& arg3, PPL_U(qual4) \
PPL_U(type4)& arg4, \
PPL_U(qual5) PPL_U(type5)& arg5, \
PPL_U(after1) a1) { \
return PPL_FUNCTION_CLASS(name)<Policy1, Policy2, Policy3, \
Policy4, Policy5, \
type1, type2, \
type3, type4, \
PPL_U(type5)> \
::function(arg1, arg2, arg3, arg4, arg5, a1); \
}
#define PPL_SPECIALIZE_FUN1_0_0(name, func, ret_type, qual, type) \
template <typename Policy> \
struct PPL_FUNCTION_CLASS(name)<Policy, PPL_U(type)> { \
static inline ret_type function(PPL_U(qual) PPL_U(type)& arg) { \
return PPL_U(func)<Policy>(arg); \
} \
};
#define PPL_SPECIALIZE_FUN1_0_1(name, func, ret_type, qual, type, after1) \
template <typename Policy> \
struct PPL_FUNCTION_CLASS(name)<Policy, PPL_U(type)> { \
static inline ret_type function(PPL_U(qual) PPL_U(type)& arg, \
PPL_U(after1) a1) { \
return PPL_U(func)<Policy>(arg, a1); \
} \
};
#define PPL_SPECIALIZE_FUN1_0_2(name, func, ret_type, qual, type, \
after1, after2) \
template <typename Policy> \
struct PPL_FUNCTION_CLASS(name)<Policy, PPL_U(type)> { \
static inline ret_type function(PPL_U(qual) PPL_U(type)& arg, \
PPL_U(after1) a1, PPL_U(after2) a2) \
{ \
return PPL_U(func)<Policy>(arg, a1, a2); \
} \
};
#define PPL_SPECIALIZE_FUN1_0_3(name, func, ret_type, qual, type, \
after1, after2, after3) \
template <typename Policy> \
struct PPL_FUNCTION_CLASS(name)<Policy, PPL_U(type)> { \
static inline ret_type function(PPL_U(qual) PPL_U(type)& arg, \
PPL_U(after1) a1, PPL_U(after2) a2, \
PPL_U(after3) a3) { \
return PPL_U(func)<Policy>(arg, a1, a2, a3); \
} \
};
#define PPL_SPECIALIZE_FUN1_1_1(name, func, ret_type, before1, \
qual, type, after1) \
template <typename Policy> \
struct PPL_FUNCTION_CLASS(name)<Policy, PPL_U(type)> { \
static inline ret_type function(PPL_U(before1) b1, PPL_U(qual) \
PPL_U(type)& arg, \
PPL_U(after1) a1) { \
return PPL_U(func)<Policy>(b1, arg, a1); \
} \
};
#define PPL_SPECIALIZE_FUN1_1_2(name, func, ret_type, before1, \
qual, type, after1, after2) \
template <typename Policy> \
struct PPL_FUNCTION_CLASS(name)<Policy, PPL_U(type)> { \
static inline ret_type function(PPL_U(before1) b1, PPL_U(qual) \
PPL_U(type)& arg, \
PPL_U(after1) a1, PPL_U(after2) a2) \
{ \
return PPL_U(func)<Policy>(b1, arg, a1, a2); \
} \
};
#define PPL_SPECIALIZE_FUN1_2_2(name, func, ret_type, before1, before2, \
qual, type, after1, after2) \
template <typename Policy> \
struct PPL_FUNCTION_CLASS(name)<Policy, PPL_U(type)> { \
static inline ret_type function(PPL_U(before1) b1, PPL_U(before2) b2, \
PPL_U(qual) PPL_U(type)& arg, \
PPL_U(after1) a1, PPL_U(after2) a2) \
{ \
return PPL_U(func)<Policy>(b1, b2, arg, a1, a2); \
} \
};
#define PPL_SPECIALIZE_FUN2_0_0(name, func, ret_type, qual1, type1, \
qual2, type2) \
template <typename Policy1, typename Policy2> \
struct PPL_FUNCTION_CLASS(name)<Policy1, Policy2, type1, \
PPL_U(type2)> { \
static inline ret_type function(PPL_U(qual1) PPL_U(type1)& arg1, \
PPL_U(qual2) PPL_U(type2) &arg2) { \
return PPL_U(func)<Policy1, Policy2>(arg1, arg2); \
} \
};
#define PPL_SPECIALIZE_FUN2_0_1(name, func, ret_type, qual1, type1, \
qual2, type2, after1) \
template <typename Policy1, typename Policy2> \
struct PPL_FUNCTION_CLASS(name)<Policy1, Policy2, type1, \
PPL_U(type2)> { \
static inline ret_type function(PPL_U(qual1) PPL_U(type1)& arg1, \
PPL_U(qual2) PPL_U(type2) &arg2, \
PPL_U(after1) a1) { \
return PPL_U(func)<Policy1, Policy2>(arg1, arg2, a1); \
} \
};
#define PPL_SPECIALIZE_FUN2_0_2(name, func, ret_type, qual1, type1, \
qual2, type2, after1, after2) \
template <typename Policy1, typename Policy2> \
struct PPL_FUNCTION_CLASS(name)<Policy1, Policy2, type1, \
PPL_U(type2)> { \
static inline ret_type function(PPL_U(qual1) PPL_U(type1)& arg1, \
PPL_U(qual2) PPL_U(type2) &arg2, \
PPL_U(after1) a1, PPL_U(after2) a2) \
{ \
return PPL_U(func)<Policy1, Policy2>(arg1, arg2, a1, a2); \
} \
};
#define PPL_SPECIALIZE_FUN3_0_1(name, func, ret_type, qual1, type1, \
qual2, type2, qual3, type3, after1) \
template <typename Policy1, typename Policy2, typename Policy3> \
struct PPL_FUNCTION_CLASS(name) <Policy1, Policy2, Policy3, \
type1, type2, \
PPL_U(type3)> { \
static inline Result function(PPL_U(qual1) PPL_U(type1)& arg1, \
PPL_U(qual2) PPL_U(type2) &arg2, \
PPL_U(qual3) PPL_U(type3) &arg3, \
PPL_U(after1) a1) { \
return PPL_U(func)<Policy1, Policy2, Policy3>(arg1, arg2, arg3, \
a1); \
} \
};
#define PPL_SPECIALIZE_FUN5_0_1(name, func, ret_type, \
qual1, type1, qual2, type2, \
qual3, type3, \
qual4, type4, qual5, type5, after1) \
template <typename Policy1, typename Policy2, typename Policy3, \
typename Policy4, typename Policy5> \
struct PPL_FUNCTION_CLASS(name) <Policy1, Policy2, Policy3, Policy4, \
Policy5, \
type1, type2, \
type3, type4, \
PPL_U(type5)> { \
static inline Result \
function(PPL_U(qual1) PPL_U(type1)& arg1, PPL_U(qual2) \
PPL_U(type2) &arg2, \
PPL_U(qual3) PPL_U(type3) &arg3, PPL_U(qual4) \
PPL_U(type4) &arg4, \
PPL_U(qual5) PPL_U(type5) &arg5, PPL_U(after1) a1) { \
return PPL_U(func)<Policy1, Policy2, Policy3, Policy4, \
Policy5>(arg1, arg2, arg3, arg4, arg5, a1); \
} \
};
// The `nonconst' macro helps readability of the sequel.
#ifdef nonconst
#define PPL_SAVED_nonconst nonconst
#undef nonconst
#endif
#define nonconst
#define PPL_SPECIALIZE_COPY(func, Type) \
PPL_SPECIALIZE_FUN2_0_0(copy, func, void, nonconst, Type, const, Type)
#define PPL_SPECIALIZE_SGN(func, From) \
PPL_SPECIALIZE_FUN1_0_0(sgn, func, Result_Relation, const, From)
#define PPL_SPECIALIZE_CMP(func, Type1, Type2) \
PPL_SPECIALIZE_FUN2_0_0(cmp, func, Result_Relation, const, Type1, const, Type2)
#define PPL_SPECIALIZE_CLASSIFY(func, Type) \
PPL_SPECIALIZE_FUN1_0_3(classify, func, Result, const, Type, bool, bool, bool)
#define PPL_SPECIALIZE_IS_NAN(func, Type) \
PPL_SPECIALIZE_FUN1_0_0(is_nan, func, bool, const, Type)
#define PPL_SPECIALIZE_IS_MINF(func, Type) \
PPL_SPECIALIZE_FUN1_0_0(is_minf, func, bool, const, Type)
#define PPL_SPECIALIZE_IS_PINF(func, Type) \
PPL_SPECIALIZE_FUN1_0_0(is_pinf, func, bool, const, Type)
#define PPL_SPECIALIZE_IS_INT(func, Type) \
PPL_SPECIALIZE_FUN1_0_0(is_int, func, bool, const, Type)
#define PPL_SPECIALIZE_ASSIGN_SPECIAL(func, Type) \
PPL_SPECIALIZE_FUN1_0_2(assign_special, func, Result, \
nonconst, Type, Result_Class, Rounding_Dir)
#define PPL_SPECIALIZE_CONSTRUCT_SPECIAL(func, Type) \
PPL_SPECIALIZE_FUN1_0_2(construct_special, func, Result, nonconst, \
Type, Result_Class, Rounding_Dir)
#define PPL_SPECIALIZE_CONSTRUCT(func, To, From) \
PPL_SPECIALIZE_FUN2_0_1(construct, func, Result, nonconst, To, \
const, From, Rounding_Dir)
#define PPL_SPECIALIZE_ASSIGN(func, To, From) \
PPL_SPECIALIZE_FUN2_0_1(assign, func, Result, nonconst, To, \
const, From, Rounding_Dir)
#define PPL_SPECIALIZE_FLOOR(func, To, From) \
PPL_SPECIALIZE_FUN2_0_1(floor, func, Result, nonconst, To, \
const, From, Rounding_Dir)
#define PPL_SPECIALIZE_CEIL(func, To, From) \
PPL_SPECIALIZE_FUN2_0_1(ceil, func, Result, nonconst, To, \
const, From, Rounding_Dir)
#define PPL_SPECIALIZE_TRUNC(func, To, From) \
PPL_SPECIALIZE_FUN2_0_1(trunc, func, Result, nonconst, To, \
const, From, Rounding_Dir)
#define PPL_SPECIALIZE_NEG(func, To, From) \
PPL_SPECIALIZE_FUN2_0_1(neg, func, Result, nonconst, To, \
const, From, Rounding_Dir)
#define PPL_SPECIALIZE_ABS(func, To, From) \
PPL_SPECIALIZE_FUN2_0_1(abs, func, Result, nonconst, To, \
const, From, Rounding_Dir)
#define PPL_SPECIALIZE_SQRT(func, To, From) \
PPL_SPECIALIZE_FUN2_0_1(sqrt, func, Result, nonconst, To, \
const, From, Rounding_Dir)
#define PPL_SPECIALIZE_ADD(func, To, From1, From2) \
PPL_SPECIALIZE_FUN3_0_1(add, func, Result, nonconst, To, \
const, From1, const, From2, Rounding_Dir)
#define PPL_SPECIALIZE_SUB(func, To, From1, From2) \
PPL_SPECIALIZE_FUN3_0_1(sub, func, Result, nonconst, To, \
const, From1, const, From2, Rounding_Dir)
#define PPL_SPECIALIZE_MUL(func, To, From1, From2) \
PPL_SPECIALIZE_FUN3_0_1(mul, func, Result, nonconst, To, \
const, From1, const, From2, Rounding_Dir)
#define PPL_SPECIALIZE_DIV(func, To, From1, From2) \
PPL_SPECIALIZE_FUN3_0_1(div, func, Result, nonconst, To, \
const, From1, const, From2, Rounding_Dir)
#define PPL_SPECIALIZE_REM(func, To, From1, From2) \
PPL_SPECIALIZE_FUN3_0_1(rem, func, Result, nonconst, To, \
const, From1, const, From2, Rounding_Dir)
#define PPL_SPECIALIZE_IDIV(func, To, From1, From2) \
PPL_SPECIALIZE_FUN3_0_1(idiv, func, Result, nonconst, To, \
const, From1, const, From2, Rounding_Dir)
#define PPL_SPECIALIZE_ADD_2EXP(func, To, From) \
PPL_SPECIALIZE_FUN2_0_2(add_2exp, func, Result, nonconst, To, \
const, From, unsigned int, Rounding_Dir)
#define PPL_SPECIALIZE_SUB_2EXP(func, To, From) \
PPL_SPECIALIZE_FUN2_0_2(sub_2exp, func, Result, nonconst, To, \
const, From, unsigned int, Rounding_Dir)
#define PPL_SPECIALIZE_MUL_2EXP(func, To, From) \
PPL_SPECIALIZE_FUN2_0_2(mul_2exp, func, Result, nonconst, To, \
const, From, unsigned int, Rounding_Dir)
#define PPL_SPECIALIZE_DIV_2EXP(func, To, From) \
PPL_SPECIALIZE_FUN2_0_2(div_2exp, func, Result, nonconst, To, \
const, From, unsigned int, Rounding_Dir)
#define PPL_SPECIALIZE_SMOD_2EXP(func, To, From) \
PPL_SPECIALIZE_FUN2_0_2(smod_2exp, func, Result, nonconst, To, \
const, From, unsigned int, Rounding_Dir)
#define PPL_SPECIALIZE_UMOD_2EXP(func, To, From) \
PPL_SPECIALIZE_FUN2_0_2(umod_2exp, func, Result, nonconst, To, \
const, From, unsigned int, Rounding_Dir)
#define PPL_SPECIALIZE_ADD_MUL(func, To, From1, From2) \
PPL_SPECIALIZE_FUN3_0_1(add_mul, func, Result, nonconst, To, \
const, From1, const, From2, Rounding_Dir)
#define PPL_SPECIALIZE_SUB_MUL(func, To, From1, From2) \
PPL_SPECIALIZE_FUN3_0_1(sub_mul, func, Result, nonconst, To, \
const, From1, const, From2, Rounding_Dir)
#define PPL_SPECIALIZE_GCD(func, To, From1, From2) \
PPL_SPECIALIZE_FUN3_0_1(gcd, func, Result, nonconst, To, \
const, From1, const, From2, Rounding_Dir)
#define PPL_SPECIALIZE_GCDEXT(func, To1, From1, From2, To2, To3) \
PPL_SPECIALIZE_FUN5_0_1(gcdext, func, Result, nonconst, To1, \
nonconst, To2, nonconst, To3, \
const, From1, const, From2, Rounding_Dir)
#define PPL_SPECIALIZE_LCM(func, To, From1, From2) \
PPL_SPECIALIZE_FUN3_0_1(lcm, func, Result, nonconst, To, \
const, From1, const, From2, Rounding_Dir)
#define PPL_SPECIALIZE_INPUT(func, Type) \
PPL_SPECIALIZE_FUN1_0_2(input, func, Result, nonconst, Type, \
std::istream&, Rounding_Dir)
#define PPL_SPECIALIZE_OUTPUT(func, Type) \
PPL_SPECIALIZE_FUN1_1_2(output, func, Result, std::ostream&, \
const, Type, \
const Numeric_Format&, Rounding_Dir)
PPL_DECLARE_FUN2_0_0(copy,
void, nonconst, Type1, const, Type2)
PPL_DECLARE_FUN1_0_0(sgn,
Result_Relation, const, From)
PPL_DECLARE_FUN2_0_0(cmp,
Result_Relation, const, Type1, const, Type2)
PPL_DECLARE_FUN1_0_3(classify,
Result, const, Type, bool, bool, bool)
PPL_DECLARE_FUN1_0_0(is_nan,
bool, const, Type)
PPL_DECLARE_FUN1_0_0(is_minf,
bool, const, Type)
PPL_DECLARE_FUN1_0_0(is_pinf,
bool, const, Type)
PPL_DECLARE_FUN1_0_0(is_int,
bool, const, Type)
PPL_DECLARE_FUN1_0_2(assign_special,
Result, nonconst, Type, Result_Class, Rounding_Dir)
PPL_DECLARE_FUN1_0_2(construct_special,
Result, nonconst, Type, Result_Class, Rounding_Dir)
PPL_DECLARE_FUN2_0_1(construct,
Result, nonconst, To, const, From, Rounding_Dir)
PPL_DECLARE_FUN2_0_1(assign,
Result, nonconst, To, const, From, Rounding_Dir)
PPL_DECLARE_FUN2_0_1(floor,
Result, nonconst, To, const, From, Rounding_Dir)
PPL_DECLARE_FUN2_0_1(ceil,
Result, nonconst, To, const, From, Rounding_Dir)
PPL_DECLARE_FUN2_0_1(trunc,
Result, nonconst, To, const, From, Rounding_Dir)
PPL_DECLARE_FUN2_0_1(neg,
Result, nonconst, To, const, From, Rounding_Dir)
PPL_DECLARE_FUN2_0_1(abs,
Result, nonconst, To, const, From, Rounding_Dir)
PPL_DECLARE_FUN2_0_1(sqrt,
Result, nonconst, To, const, From, Rounding_Dir)
PPL_DECLARE_FUN3_0_1(add,
Result, nonconst, To,
const, From1, const, From2, Rounding_Dir)
PPL_DECLARE_FUN3_0_1(sub,
Result, nonconst, To,
const, From1, const, From2, Rounding_Dir)
PPL_DECLARE_FUN3_0_1(mul,
Result, nonconst, To,
const, From1, const, From2, Rounding_Dir)
PPL_DECLARE_FUN3_0_1(div,
Result, nonconst, To,
const, From1, const, From2, Rounding_Dir)
PPL_DECLARE_FUN3_0_1(rem,
Result, nonconst, To,
const, From1, const, From2, Rounding_Dir)
PPL_DECLARE_FUN3_0_1(idiv,
Result, nonconst, To,
const, From1, const, From2, Rounding_Dir)
PPL_DECLARE_FUN2_0_2(add_2exp,
Result, nonconst, To,
const, From, unsigned int, Rounding_Dir)
PPL_DECLARE_FUN2_0_2(sub_2exp,
Result, nonconst, To,
const, From, unsigned int, Rounding_Dir)
PPL_DECLARE_FUN2_0_2(mul_2exp,
Result, nonconst, To,
const, From, unsigned int, Rounding_Dir)
PPL_DECLARE_FUN2_0_2(div_2exp,
Result, nonconst, To,
const, From, unsigned int, Rounding_Dir)
PPL_DECLARE_FUN2_0_2(smod_2exp,
Result, nonconst, To,
const, From, unsigned int, Rounding_Dir)
PPL_DECLARE_FUN2_0_2(umod_2exp,
Result, nonconst, To,
const, From, unsigned int, Rounding_Dir)
PPL_DECLARE_FUN3_0_1(add_mul,
Result, nonconst, To,
const, From1, const, From2, Rounding_Dir)
PPL_DECLARE_FUN3_0_1(sub_mul,
Result, nonconst, To,
const, From1, const, From2, Rounding_Dir)
PPL_DECLARE_FUN3_0_1(gcd,
Result, nonconst, To,
const, From1, const, From2, Rounding_Dir)
PPL_DECLARE_FUN5_0_1(gcdext,
Result, nonconst, To1, nonconst, To2, nonconst, To3,
const, From1, const, From2, Rounding_Dir)
PPL_DECLARE_FUN3_0_1(lcm,
Result, nonconst, To,
const, From1, const, From2, Rounding_Dir)
PPL_DECLARE_FUN1_0_2(input,
Result, nonconst, Type, std::istream&, Rounding_Dir)
PPL_DECLARE_FUN1_1_2(output,
Result, std::ostream&, const, Type,
const Numeric_Format&, Rounding_Dir)
#undef PPL_DECLARE_FUN1_0_0
#undef PPL_DECLARE_FUN1_0_1
#undef PPL_DECLARE_FUN1_0_2
#undef PPL_DECLARE_FUN1_0_3
#undef PPL_DECLARE_FUN1_1_1
#undef PPL_DECLARE_FUN1_1_2
#undef PPL_DECLARE_FUN1_2_2
#undef PPL_DECLARE_FUN2_0_0
#undef PPL_DECLARE_FUN2_0_1
#undef PPL_DECLARE_FUN2_0_2
#undef PPL_DECLARE_FUN3_0_1
#undef PPL_DECLARE_FUN5_0_1
template <typename Policy, typename To>
Result round(To& to, Result r, Rounding_Dir dir);
Result input_mpq(mpq_class& to, std::istream& is);
std::string float_mpq_to_string(mpq_class& q);
} // namespace Checked
struct Minus_Infinity {
static const Result_Class vclass = VC_MINUS_INFINITY;
};
struct Plus_Infinity {
static const Result_Class vclass = VC_PLUS_INFINITY;
};
struct Not_A_Number {
static const Result_Class vclass = VC_NAN;
};
template <typename T>
struct Is_Special : public False { };
template <>
struct Is_Special<Minus_Infinity> : public True {};
template <>
struct Is_Special<Plus_Infinity> : public True {};
template <>
struct Is_Special<Not_A_Number> : public True {};
extern Minus_Infinity MINUS_INFINITY;
extern Plus_Infinity PLUS_INFINITY;
extern Not_A_Number NOT_A_NUMBER;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
struct Checked_Number_Transparent_Policy {
//! Do not check for overflowed result.
const_bool_nodef(check_overflow, false);
//! Do not check for attempts to add infinities with different sign.
const_bool_nodef(check_inf_add_inf, false);
//! Do not check for attempts to subtract infinities with same sign.
const_bool_nodef(check_inf_sub_inf, false);
//! Do not check for attempts to multiply infinities by zero.
const_bool_nodef(check_inf_mul_zero, false);
//! Do not check for attempts to divide by zero.
const_bool_nodef(check_div_zero, false);
//! Do not check for attempts to divide infinities.
const_bool_nodef(check_inf_div_inf, false);
//! Do not check for attempts to compute remainder of infinities.
const_bool_nodef(check_inf_mod, false);
//! Do not check for attempts to take the square root of a negative number.
const_bool_nodef(check_sqrt_neg, false);
//! Handle not-a-number special value if \p T has it.
const_bool_nodef(has_nan, std::numeric_limits<T>::has_quiet_NaN);
//! Handle infinity special values if \p T have them.
const_bool_nodef(has_infinity, std::numeric_limits<T>::has_infinity);
/*! \brief
The checked number can always be safely converted to the
underlying type \p T and vice-versa.
*/
const_bool_nodef(convertible, true);
//! Do not honor requests to check for FPU inexact results.
const_bool_nodef(fpu_check_inexact, false);
//! Do not make extra checks to detect FPU NaN results.
const_bool_nodef(fpu_check_nan_result, false);
/*! \brief
For constructors, by default use the same rounding used by
underlying type.
*/
static const Rounding_Dir ROUND_DEFAULT_CONSTRUCTOR = ROUND_NATIVE;
/*! \brief
For overloaded operators (operator+(), operator-(), ...), by
default use the same rounding used by the underlying type.
*/
static const Rounding_Dir ROUND_DEFAULT_OPERATOR = ROUND_NATIVE;
/*! \brief
For input functions, by default use the same rounding used by
the underlying type.
*/
static const Rounding_Dir ROUND_DEFAULT_INPUT = ROUND_NATIVE;
/*! \brief
For output functions, by default use the same rounding used by
the underlying type.
*/
static const Rounding_Dir ROUND_DEFAULT_OUTPUT = ROUND_NATIVE;
/*! \brief
For all other functions, by default use the same rounding used by
the underlying type.
*/
static const Rounding_Dir ROUND_DEFAULT_FUNCTION = ROUND_NATIVE;
/*! \brief
Handles \p r: called by all constructors, operators and functions that
do not return a Result value.
*/
static void handle_result(Result r);
};
} // namespace Parma_Polyhedra_Library
#define CHECK_P(cond, check) ((cond) ? (check) : (assert(!(check)), false))
/* Automatically generated from PPL source file ../src/checked_inlines.hh line 1. */
/* Abstract checked arithmetic functions: fall-backs.
*/
/* Automatically generated from PPL source file ../src/checked_inlines.hh line 31. */
/*! \brief
Performs the test <CODE>a < b</CODE> avoiding the warning about the
comparison being always false due to limited range of data type.
FIXME: we have not found a working solution. The GCC option
-Wno-type-limits suppresses the warning
*/
#define PPL_LT_SILENT(a, b) ((a) < (b))
#define PPL_GT_SILENT(a, b) ((a) > (b))
namespace Parma_Polyhedra_Library {
namespace Checked {
template <typename T1, typename T2>
struct Safe_Conversion : public False {
};
template <typename T>
struct Safe_Conversion<T, T> : public True {
};
#define PPL_SAFE_CONVERSION(To, From) \
template <> struct Safe_Conversion<PPL_U(To), PPL_U(From)> \
: public True { }
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SAFE_CONVERSION(signed short, char);
#endif
PPL_SAFE_CONVERSION(signed short, signed char);
#if PPL_SIZEOF_CHAR < PPL_SIZEOF_SHORT
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SAFE_CONVERSION(signed short, char);
#endif
PPL_SAFE_CONVERSION(signed short, unsigned char);
#endif
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SAFE_CONVERSION(signed int, char);
#endif
PPL_SAFE_CONVERSION(signed int, signed char);
PPL_SAFE_CONVERSION(signed int, signed short);
#if PPL_SIZEOF_CHAR < PPL_SIZEOF_INT
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SAFE_CONVERSION(signed int, char);
#endif
PPL_SAFE_CONVERSION(signed int, unsigned char);
#endif
#if PPL_SIZEOF_SHORT < PPL_SIZEOF_INT
PPL_SAFE_CONVERSION(signed int, unsigned short);
#endif
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SAFE_CONVERSION(signed long, char);
#endif
PPL_SAFE_CONVERSION(signed long, signed char);
PPL_SAFE_CONVERSION(signed long, signed short);
PPL_SAFE_CONVERSION(signed long, signed int);
#if PPL_SIZEOF_CHAR < PPL_SIZEOF_LONG
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SAFE_CONVERSION(signed long, char);
#endif
PPL_SAFE_CONVERSION(signed long, unsigned char);
#endif
#if PPL_SIZEOF_SHORT < PPL_SIZEOF_LONG
PPL_SAFE_CONVERSION(signed long, unsigned short);
#endif
#if PPL_SIZEOF_INT < PPL_SIZEOF_LONG
PPL_SAFE_CONVERSION(signed long, unsigned int);
#endif
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SAFE_CONVERSION(signed long long, char);
#endif
PPL_SAFE_CONVERSION(signed long long, signed char);
PPL_SAFE_CONVERSION(signed long long, signed short);
PPL_SAFE_CONVERSION(signed long long, signed int);
PPL_SAFE_CONVERSION(signed long long, signed long);
#if PPL_SIZEOF_CHAR < PPL_SIZEOF_LONG_LONG
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SAFE_CONVERSION(signed long long, char);
#endif
PPL_SAFE_CONVERSION(signed long long, unsigned char);
#endif
#if PPL_SIZEOF_SHORT < PPL_SIZEOF_LONG_LONG
PPL_SAFE_CONVERSION(signed long long, unsigned short);
#endif
#if PPL_SIZEOF_INT < PPL_SIZEOF_LONG_LONG
PPL_SAFE_CONVERSION(signed long long, unsigned int);
#endif
#if PPL_SIZEOF_LONG < PPL_SIZEOF_LONG_LONG
PPL_SAFE_CONVERSION(signed long long, unsigned long);
#endif
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SAFE_CONVERSION(unsigned short, char);
#endif
PPL_SAFE_CONVERSION(unsigned short, unsigned char);
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SAFE_CONVERSION(unsigned int, char);
#endif
PPL_SAFE_CONVERSION(unsigned int, unsigned char);
PPL_SAFE_CONVERSION(unsigned int, unsigned short);
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SAFE_CONVERSION(unsigned long, char);
#endif
PPL_SAFE_CONVERSION(unsigned long, unsigned char);
PPL_SAFE_CONVERSION(unsigned long, unsigned short);
PPL_SAFE_CONVERSION(unsigned long, unsigned int);
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SAFE_CONVERSION(unsigned long long, char);
#endif
PPL_SAFE_CONVERSION(unsigned long long, unsigned char);
PPL_SAFE_CONVERSION(unsigned long long, unsigned short);
PPL_SAFE_CONVERSION(unsigned long long, unsigned int);
PPL_SAFE_CONVERSION(unsigned long long, unsigned long);
#if PPL_SIZEOF_CHAR <= PPL_SIZEOF_FLOAT - 2
PPL_SAFE_CONVERSION(float, char);
PPL_SAFE_CONVERSION(float, signed char);
PPL_SAFE_CONVERSION(float, unsigned char);
#endif
#if PPL_SIZEOF_SHORT <= PPL_SIZEOF_FLOAT - 2
PPL_SAFE_CONVERSION(float, signed short);
PPL_SAFE_CONVERSION(float, unsigned short);
#endif
#if PPL_SIZEOF_INT <= PPL_SIZEOF_FLOAT - 2
PPL_SAFE_CONVERSION(float, signed int);
PPL_SAFE_CONVERSION(float, unsigned int);
#endif
#if PPL_SIZEOF_LONG <= PPL_SIZEOF_FLOAT - 2
PPL_SAFE_CONVERSION(float, signed long);
PPL_SAFE_CONVERSION(float, unsigned long);
#endif
#if PPL_SIZEOF_LONG_LONG <= PPL_SIZEOF_FLOAT - 2
PPL_SAFE_CONVERSION(float, signed long long);
PPL_SAFE_CONVERSION(float, unsigned long long);
#endif
#if PPL_SIZEOF_CHAR <= PPL_SIZEOF_DOUBLE - 4
PPL_SAFE_CONVERSION(double, char);
PPL_SAFE_CONVERSION(double, signed char);
PPL_SAFE_CONVERSION(double, unsigned char);
#endif
#if PPL_SIZEOF_SHORT <= PPL_SIZEOF_DOUBLE - 4
PPL_SAFE_CONVERSION(double, signed short);
PPL_SAFE_CONVERSION(double, unsigned short);
#endif
#if PPL_SIZEOF_INT <= PPL_SIZEOF_DOUBLE - 4
PPL_SAFE_CONVERSION(double, signed int);
PPL_SAFE_CONVERSION(double, unsigned int);
#endif
#if PPL_SIZEOF_LONG <= PPL_SIZEOF_DOUBLE - 4
PPL_SAFE_CONVERSION(double, signed long);
PPL_SAFE_CONVERSION(double, unsigned long);
#endif
#if PPL_SIZEOF_LONG_LONG <= PPL_SIZEOF_DOUBLE - 4
PPL_SAFE_CONVERSION(double, signed long long);
PPL_SAFE_CONVERSION(double, unsigned long long);
#endif
PPL_SAFE_CONVERSION(double, float);
#if PPL_SIZEOF_CHAR <= PPL_SIZEOF_LONG_DOUBLE - 4
PPL_SAFE_CONVERSION(long double, char);
PPL_SAFE_CONVERSION(long double, signed char);
PPL_SAFE_CONVERSION(long double, unsigned char);
#endif
#if PPL_SIZEOF_SHORT <= PPL_SIZEOF_LONG_DOUBLE - 4
PPL_SAFE_CONVERSION(long double, signed short);
PPL_SAFE_CONVERSION(long double, unsigned short);
#endif
#if PPL_SIZEOF_INT <= PPL_SIZEOF_LONG_DOUBLE - 4
PPL_SAFE_CONVERSION(long double, signed int);
PPL_SAFE_CONVERSION(long double, unsigned int);
#endif
#if PPL_SIZEOF_LONG <= PPL_SIZEOF_LONG_DOUBLE - 4
PPL_SAFE_CONVERSION(long double, signed long);
PPL_SAFE_CONVERSION(long double, unsigned long);
#endif
#if PPL_SIZEOF_LONG_LONG <= PPL_SIZEOF_LONG_DOUBLE - 4
PPL_SAFE_CONVERSION(long double, signed long long);
PPL_SAFE_CONVERSION(long double, unsigned long long);
#endif
PPL_SAFE_CONVERSION(long double, float);
PPL_SAFE_CONVERSION(long double, double);
PPL_SAFE_CONVERSION(mpz_class, char);
PPL_SAFE_CONVERSION(mpz_class, signed char);
PPL_SAFE_CONVERSION(mpz_class, signed short);
PPL_SAFE_CONVERSION(mpz_class, signed int);
PPL_SAFE_CONVERSION(mpz_class, signed long);
// GMP's API does not support signed long long.
PPL_SAFE_CONVERSION(mpz_class, unsigned char);
PPL_SAFE_CONVERSION(mpz_class, unsigned short);
PPL_SAFE_CONVERSION(mpz_class, unsigned int);
PPL_SAFE_CONVERSION(mpz_class, unsigned long);
// GMP's API does not support unsigned long long.
PPL_SAFE_CONVERSION(mpq_class, char);
PPL_SAFE_CONVERSION(mpq_class, signed char);
PPL_SAFE_CONVERSION(mpq_class, signed short);
PPL_SAFE_CONVERSION(mpq_class, signed int);
PPL_SAFE_CONVERSION(mpq_class, signed long);
// GMP's API does not support signed long long.
PPL_SAFE_CONVERSION(mpq_class, unsigned char);
PPL_SAFE_CONVERSION(mpq_class, unsigned short);
PPL_SAFE_CONVERSION(mpq_class, unsigned int);
PPL_SAFE_CONVERSION(mpq_class, unsigned long);
// GMP's API does not support unsigned long long.
PPL_SAFE_CONVERSION(mpq_class, float);
PPL_SAFE_CONVERSION(mpq_class, double);
// GMP's API does not support long double.
#undef PPL_SAFE_CONVERSION
template <typename Policy, typename Type>
struct PPL_FUNCTION_CLASS(construct)<Policy, Policy, Type, Type> {
static inline Result function(Type& to, const Type& from, Rounding_Dir) {
new (&to) Type(from);
return V_EQ;
}
};
template <typename To_Policy, typename From_Policy, typename To, typename From>
struct PPL_FUNCTION_CLASS(construct) {
static inline Result function(To& to, const From& from, Rounding_Dir dir) {
new (&to) To();
return assign<To_Policy, From_Policy>(to, from, dir);
}
};
template <typename To_Policy, typename To>
struct PPL_FUNCTION_CLASS(construct_special) {
static inline Result function(To& to, Result_Class r, Rounding_Dir dir) {
new (&to) To();
return assign_special<To_Policy>(to, r, dir);
}
};
template <typename To_Policy, typename From_Policy, typename To, typename From>
inline Result
assign_exact(To& to, const From& from, Rounding_Dir) {
to = from;
return V_EQ;
}
template <typename To_Policy, typename From_Policy, typename Type>
inline typename Enable_If<Is_Same<To_Policy, From_Policy>::value, void>::type
copy_generic(Type& to, const Type& from) {
to = from;
}
template <typename To_Policy, typename From_Policy, typename To, typename From>
inline Result
abs_generic(To& to, const From& from, Rounding_Dir dir) {
if (from < 0)
return neg<To_Policy, From_Policy>(to, from, dir);
else
return assign<To_Policy, From_Policy>(to, from, dir);
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename To, typename From>
inline void
gcd_exact_no_abs(To& to, const From& x, const From& y) {
To w_x = x;
To w_y = y;
To remainder;
while (w_y != 0) {
// The following is derived from the assumption that w_x % w_y
// is always representable. This is true for both native integers
// and IEC 559 floating point numbers.
rem<To_Policy, From1_Policy, From2_Policy>(remainder, w_x, w_y,
ROUND_NOT_NEEDED);
w_x = w_y;
w_y = remainder;
}
to = w_x;
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename To, typename From1, typename From2>
inline Result
gcd_exact(To& to, const From1& x, const From2& y, Rounding_Dir dir) {
gcd_exact_no_abs<To_Policy, From1_Policy, From2_Policy>(to, x, y);
return abs<To_Policy, To_Policy>(to, to, dir);
}
template <typename To1_Policy, typename To2_Policy, typename To3_Policy,
typename From1_Policy, typename From2_Policy,
typename To1, typename To2, typename To3,
typename From1, typename From2>
inline Result
gcdext_exact(To1& to, To2& s, To3& t, const From1& x, const From2& y,
Rounding_Dir dir) {
// In case this becomes a bottleneck, we may consider using the
// Stehle'-Zimmermann algorithm (see R. Crandall and C. Pomerance,
// Prime Numbers - A Computational Perspective, Second Edition,
// Springer, 2005).
if (y == 0) {
if (x == 0) {
s = 0;
t = 1;
return V_EQ;
}
else {
if (x < 0)
s = -1;
else
s = 1;
t = 0;
return abs<To1_Policy, From1_Policy>(to, x, dir);
}
}
s = 1;
t = 0;
bool negative_x = x < 0;
bool negative_y = y < 0;
Result r;
r = abs<To1_Policy, From1_Policy>(to, x, dir);
if (r != V_EQ)
return r;
From2 a_y;
r = abs<To1_Policy, From2_Policy>(a_y, y, dir);
if (r != V_EQ)
return r;
// If PPL_MATCH_GMP_GCDEXT is defined then s is favored when the absolute
// values of the given numbers are equal. For instance if x and y
// are both 5 then s will be 1 and t will be 0, instead of the other
// way round. This is to match the behavior of GMP.
#define PPL_MATCH_GMP_GCDEXT 1
#ifdef PPL_MATCH_GMP_GCDEXT
if (to == a_y)
goto sign_check;
#endif
{
To2 v1 = 0;
To3 v2 = 1;
To1 v3 = static_cast<To1>(a_y);
while (true) {
To1 q = to / v3;
// Remainder, next candidate GCD.
To1 t3 = to - q*v3;
To2 t1 = s - static_cast<To2>(q)*v1;
To3 t2 = t - static_cast<To3>(q)*v2;
s = v1;
t = v2;
to = v3;
if (t3 == 0)
break;
v1 = t1;
v2 = t2;
v3 = t3;
}
}
#ifdef PPL_MATCH_GMP_GCDEXT
sign_check:
#endif
if (negative_x) {
r = neg<To2_Policy, To2_Policy>(s, s, dir);
if (r != V_EQ)
return r;
}
if (negative_y)
return neg<To3_Policy, To3_Policy>(t, t, dir);
return V_EQ;
#undef PPL_MATCH_GMP_GCDEXT
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename To, typename From1, typename From2>
inline Result
lcm_gcd_exact(To& to, const From1& x, const From2& y, Rounding_Dir dir) {
if (x == 0 || y == 0) {
to = 0;
return V_EQ;
}
To a_x;
To a_y;
Result r;
r = abs<From1_Policy, From1_Policy>(a_x, x, dir);
if (r != V_EQ)
return r;
r = abs<From2_Policy, From2_Policy>(a_y, y, dir);
if (r != V_EQ)
return r;
To gcd;
gcd_exact_no_abs<To_Policy, From1_Policy, From2_Policy>(gcd, a_x, a_y);
// The following is derived from the assumption that a_x / gcd(a_x, a_y)
// is always representable. This is true for both native integers
// and IEC 559 floating point numbers.
div<To_Policy, From1_Policy, To_Policy>(to, a_x, gcd, ROUND_NOT_NEEDED);
return mul<To_Policy, To_Policy, From2_Policy>(to, to, a_y, dir);
}
template <typename Policy, typename Type>
inline Result_Relation
sgn_generic(const Type& x) {
if (x > 0)
return VR_GT;
if (x == 0)
return VR_EQ;
return VR_LT;
}
template <typename T1, typename T2, typename Enable = void>
struct Safe_Int_Comparison : public False {
};
template <typename T1, typename T2>
struct Safe_Int_Comparison<T1, T2, typename Enable_If<(C_Integer<T1>::value && C_Integer<T2>::value)>::type>
: public Bool<(C_Integer<T1>::is_signed
? (C_Integer<T2>::is_signed
|| sizeof(T2) < sizeof(T1)
|| sizeof(T2) < sizeof(int))
: (!C_Integer<T2>::is_signed
|| sizeof(T1) < sizeof(T2)
|| sizeof(T1) < sizeof(int)))> {
};
template <typename T1, typename T2>
inline typename Enable_If<(Safe_Int_Comparison<T1, T2>::value
|| Safe_Conversion<T1, T2>::value
|| Safe_Conversion<T2, T1>::value), bool>::type
lt(const T1& x, const T2& y) {
return x < y;
}
template <typename T1, typename T2>
inline typename Enable_If<(Safe_Int_Comparison<T1, T2>::value
|| Safe_Conversion<T1, T2>::value
|| Safe_Conversion<T2, T1>::value), bool>::type
le(const T1& x, const T2& y) {
return x <= y;
}
template <typename T1, typename T2>
inline typename Enable_If<(Safe_Int_Comparison<T1, T2>::value
|| Safe_Conversion<T1, T2>::value
|| Safe_Conversion<T2, T1>::value), bool>::type
eq(const T1& x, const T2& y) {
return x == y;
}
template <typename S, typename U>
inline typename Enable_If<(!Safe_Int_Comparison<S, U>::value
&& C_Integer<U>::value
&& C_Integer<S>::is_signed), bool>::type
lt(const S& x, const U& y) {
return x < 0 || static_cast<typename C_Integer<S>::other_type>(x) < y;
}
template <typename U, typename S>
inline typename Enable_If<(!Safe_Int_Comparison<S, U>::value
&& C_Integer<U>::value
&& C_Integer<S>::is_signed), bool>::type
lt(const U& x, const S& y) {
return y >= 0 && x < static_cast<typename C_Integer<S>::other_type>(y);
}
template <typename S, typename U>
inline typename Enable_If<(!Safe_Int_Comparison<S, U>::value
&& C_Integer<U>::value
&& C_Integer<S>::is_signed), bool>::type
le(const S& x, const U& y) {
return x < 0 || static_cast<typename C_Integer<S>::other_type>(x) <= y;
}
template <typename U, typename S>
inline typename Enable_If<(!Safe_Int_Comparison<S, U>::value
&& C_Integer<U>::value
&& C_Integer<S>::is_signed), bool>::type
le(const U& x, const S& y) {
return y >= 0 && x <= static_cast<typename C_Integer<S>::other_type>(y);
}
template <typename S, typename U>
inline typename Enable_If<(!Safe_Int_Comparison<S, U>::value
&& C_Integer<U>::value
&& C_Integer<S>::is_signed), bool>::type
eq(const S& x, const U& y) {
return x >= 0 && static_cast<typename C_Integer<S>::other_type>(x) == y;
}
template <typename U, typename S>
inline typename Enable_If<(!Safe_Int_Comparison<S, U>::value
&& C_Integer<U>::value
&& C_Integer<S>::is_signed), bool>::type
eq(const U& x, const S& y) {
return y >= 0 && x == static_cast<typename C_Integer<S>::other_type>(y);
}
template <typename T1, typename T2>
inline typename Enable_If<(!Safe_Conversion<T1, T2>::value
&& !Safe_Conversion<T2, T1>::value
&& (!C_Integer<T1>::value || !C_Integer<T2>::value)), bool>::type
eq(const T1& x, const T2& y) {
PPL_DIRTY_TEMP(T1, tmp);
Result r = assign_r(tmp, y, ROUND_CHECK);
// FIXME: We can do this also without fpu inexact check using a
// conversion back and forth and then testing equality. We should
// code this in checked_float_inlines.hh, probably it's faster also
// if fpu supports inexact check.
PPL_ASSERT(r != V_LE && r != V_GE && r != V_LGE);
return r == V_EQ && x == tmp;
}
template <typename T1, typename T2>
inline typename Enable_If<(!Safe_Conversion<T1, T2>::value
&& !Safe_Conversion<T2, T1>::value
&& (!C_Integer<T1>::value || !C_Integer<T2>::value)), bool>::type
lt(const T1& x, const T2& y) {
PPL_DIRTY_TEMP(T1, tmp);
Result r = assign_r(tmp, y, ROUND_UP);
if (!result_representable(r))
return true;
switch (result_relation(r)) {
case VR_EQ:
case VR_LT:
case VR_LE:
return x < tmp;
default:
return false;
}
}
template <typename T1, typename T2>
inline typename
Enable_If<(!Safe_Conversion<T1, T2>::value
&& !Safe_Conversion<T2, T1>::value
&& (!C_Integer<T1>::value || !C_Integer<T2>::value)), bool>::type
le(const T1& x, const T2& y) {
PPL_DIRTY_TEMP(T1, tmp);
Result r = assign_r(tmp, y, (ROUND_UP | ROUND_STRICT_RELATION));
// FIXME: We can do this also without fpu inexact check using a
// conversion back and forth and then testing equality. We should
// code this in checked_float_inlines.hh, probably it's faster also
// if fpu supports inexact check.
PPL_ASSERT(r != V_LE && r != V_GE && r != V_LGE);
if (!result_representable(r))
return true;
switch (result_relation(r)) {
case VR_EQ:
return x <= tmp;
case VR_LT:
return x < tmp;
case VR_LE:
case VR_GE:
case VR_LGE:
// See comment above.
PPL_UNREACHABLE;
return false;
default:
return false;
}
}
template <typename Policy1, typename Policy2,
typename Type1, typename Type2>
inline bool
lt_p(const Type1& x, const Type2& y) {
return lt(x, y);
}
template <typename Policy1, typename Policy2,
typename Type1, typename Type2>
inline bool
le_p(const Type1& x, const Type2& y) {
return le(x, y);
}
template <typename Policy1, typename Policy2,
typename Type1, typename Type2>
inline bool
eq_p(const Type1& x, const Type2& y) {
return eq(x, y);
}
template <typename Policy1, typename Policy2,
typename Type1, typename Type2>
inline Result_Relation
cmp_generic(const Type1& x, const Type2& y) {
if (lt(y, x))
return VR_GT;
if (lt(x, y))
return VR_LT;
return VR_EQ;
}
template <typename Policy, typename Type>
inline Result
assign_nan(Type& to, Result r) {
assign_special<Policy>(to, VC_NAN, ROUND_IGNORE);
return r;
}
template <typename Policy, typename Type>
inline Result
input_generic(Type& to, std::istream& is, Rounding_Dir dir) {
PPL_DIRTY_TEMP(mpq_class, q);
Result r = input_mpq(q, is);
Result_Class c = result_class(r);
switch (c) {
case VC_MINUS_INFINITY:
case VC_PLUS_INFINITY:
return assign_special<Policy>(to, c, dir);
case VC_NAN:
return assign_nan<Policy>(to, r);
default:
break;
}
PPL_ASSERT(r == V_EQ);
return assign<Policy, void>(to, q, dir);
}
} // namespace Checked
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/checked_int_inlines.hh line 1. */
/* Specialized "checked" functions for native integer numbers.
*/
/* Automatically generated from PPL source file ../src/checked_int_inlines.hh line 28. */
#include <cerrno>
#include <cstdlib>
#include <climits>
#include <string>
#if !PPL_HAVE_DECL_STRTOLL
signed long long
strtoll(const char* nptr, char** endptr, int base);
#endif
#if !PPL_HAVE_DECL_STRTOULL
unsigned long long
strtoull(const char* nptr, char** endptr, int base);
#endif
namespace Parma_Polyhedra_Library {
namespace Checked {
#ifndef PPL_HAVE_INT_FAST16_T
typedef int16_t int_fast16_t;
#endif
#ifndef PPL_HAVE_INT_FAST32_T
typedef int32_t int_fast32_t;
#endif
#ifndef PPL_HAVE_INT_FAST64_T
typedef int64_t int_fast64_t;
#endif
#ifndef PPL_HAVE_UINT_FAST16_T
typedef uint16_t uint_fast16_t;
#endif
#ifndef PPL_HAVE_UINT_FAST32_T
typedef uint32_t uint_fast32_t;
#endif
#ifndef PPL_HAVE_UINT_FAST64_T
typedef uint64_t uint_fast64_t;
#endif
template <typename Policy, typename Type>
struct Extended_Int {
static const Type plus_infinity = C_Integer<Type>::max;
static const Type minus_infinity = ((C_Integer<Type>::min >= 0)
? (C_Integer<Type>::max - 1)
: C_Integer<Type>::min);
static const Type not_a_number
= ((C_Integer<Type>::min >= 0)
? (C_Integer<Type>::max - 2 * (Policy::has_infinity ? 1 : 0))
: (C_Integer<Type>::min + (Policy::has_infinity ? 1 : 0)));
static const Type min
= (C_Integer<Type>::min
+ ((C_Integer<Type>::min >= 0)
? 0
: ((Policy::has_infinity ? 1 : 0) + (Policy::has_nan ? 1 : 0))));
static const Type max
= (C_Integer<Type>::max
- ((C_Integer<Type>::min >= 0)
? (2 * (Policy::has_infinity ? 1 : 0) + (Policy::has_nan ? 1 : 0))
: (Policy::has_infinity ? 1 : 0)));
};
template <typename Policy, typename To>
inline Result
set_neg_overflow_int(To& to, Rounding_Dir dir) {
if (round_up(dir)) {
to = Extended_Int<Policy, To>::min;
return V_LT_INF;
}
else {
if (Policy::has_infinity) {
to = Extended_Int<Policy, To>::minus_infinity;
return V_GT_MINUS_INFINITY;
}
return V_GT_MINUS_INFINITY | V_UNREPRESENTABLE;
}
}
template <typename Policy, typename To>
inline Result
set_pos_overflow_int(To& to, Rounding_Dir dir) {
if (round_down(dir)) {
to = Extended_Int<Policy, To>::max;
return V_GT_SUP;
}
else {
if (Policy::has_infinity) {
to = Extended_Int<Policy, To>::plus_infinity;
return V_LT_PLUS_INFINITY;
}
return V_LT_PLUS_INFINITY | V_UNREPRESENTABLE;
}
}
template <typename Policy, typename To>
inline Result
round_lt_int_no_overflow(To& to, Rounding_Dir dir) {
if (round_down(dir)) {
--to;
return V_GT;
}
return V_LT;
}
template <typename Policy, typename To>
inline Result
round_gt_int_no_overflow(To& to, Rounding_Dir dir) {
if (round_up(dir)) {
++to;
return V_LT;
}
return V_GT;
}
template <typename Policy, typename To>
inline Result
round_lt_int(To& to, Rounding_Dir dir) {
if (round_down(dir)) {
if (to == Extended_Int<Policy, To>::min) {
if (Policy::has_infinity) {
to = Extended_Int<Policy, To>::minus_infinity;
return V_GT_MINUS_INFINITY;
}
return V_GT_MINUS_INFINITY | V_UNREPRESENTABLE;
}
else {
--to;
return V_GT;
}
}
return V_LT;
}
template <typename Policy, typename To>
inline Result
round_gt_int(To& to, Rounding_Dir dir) {
if (round_up(dir)) {
if (to == Extended_Int<Policy, To>::max) {
if (Policy::has_infinity) {
to = Extended_Int<Policy, To>::plus_infinity;
return V_LT_PLUS_INFINITY;
}
return V_LT_PLUS_INFINITY | V_UNREPRESENTABLE;
}
else {
++to;
return V_LT;
}
}
return V_GT;
}
PPL_SPECIALIZE_COPY(copy_generic, char)
PPL_SPECIALIZE_COPY(copy_generic, signed char)
PPL_SPECIALIZE_COPY(copy_generic, signed short)
PPL_SPECIALIZE_COPY(copy_generic, signed int)
PPL_SPECIALIZE_COPY(copy_generic, signed long)
PPL_SPECIALIZE_COPY(copy_generic, signed long long)
PPL_SPECIALIZE_COPY(copy_generic, unsigned char)
PPL_SPECIALIZE_COPY(copy_generic, unsigned short)
PPL_SPECIALIZE_COPY(copy_generic, unsigned int)
PPL_SPECIALIZE_COPY(copy_generic, unsigned long)
PPL_SPECIALIZE_COPY(copy_generic, unsigned long long)
template <typename Policy, typename Type>
inline Result
classify_int(const Type v, bool nan, bool inf, bool sign) {
if (Policy::has_nan
&& (nan || sign)
&& v == Extended_Int<Policy, Type>::not_a_number)
return V_NAN;
if (!inf && !sign)
return V_LGE;
if (Policy::has_infinity) {
if (v == Extended_Int<Policy, Type>::minus_infinity)
return inf ? V_EQ_MINUS_INFINITY : V_LT;
if (v == Extended_Int<Policy, Type>::plus_infinity)
return inf ? V_EQ_PLUS_INFINITY : V_GT;
}
if (sign) {
if (v < 0)
return V_LT;
if (v > 0)
return V_GT;
return V_EQ;
}
return V_LGE;
}
PPL_SPECIALIZE_CLASSIFY(classify_int, char)
PPL_SPECIALIZE_CLASSIFY(classify_int, signed char)
PPL_SPECIALIZE_CLASSIFY(classify_int, signed short)
PPL_SPECIALIZE_CLASSIFY(classify_int, signed int)
PPL_SPECIALIZE_CLASSIFY(classify_int, signed long)
PPL_SPECIALIZE_CLASSIFY(classify_int, signed long long)
PPL_SPECIALIZE_CLASSIFY(classify_int, unsigned char)
PPL_SPECIALIZE_CLASSIFY(classify_int, unsigned short)
PPL_SPECIALIZE_CLASSIFY(classify_int, unsigned int)
PPL_SPECIALIZE_CLASSIFY(classify_int, unsigned long)
PPL_SPECIALIZE_CLASSIFY(classify_int, unsigned long long)
template <typename Policy, typename Type>
inline bool
is_nan_int(const Type v) {
return Policy::has_nan && v == Extended_Int<Policy, Type>::not_a_number;
}
PPL_SPECIALIZE_IS_NAN(is_nan_int, char)
PPL_SPECIALIZE_IS_NAN(is_nan_int, signed char)
PPL_SPECIALIZE_IS_NAN(is_nan_int, signed short)
PPL_SPECIALIZE_IS_NAN(is_nan_int, signed int)
PPL_SPECIALIZE_IS_NAN(is_nan_int, signed long)
PPL_SPECIALIZE_IS_NAN(is_nan_int, signed long long)
PPL_SPECIALIZE_IS_NAN(is_nan_int, unsigned char)
PPL_SPECIALIZE_IS_NAN(is_nan_int, unsigned short)
PPL_SPECIALIZE_IS_NAN(is_nan_int, unsigned int)
PPL_SPECIALIZE_IS_NAN(is_nan_int, unsigned long)
PPL_SPECIALIZE_IS_NAN(is_nan_int, unsigned long long)
template <typename Policy, typename Type>
inline bool
is_minf_int(const Type v) {
return Policy::has_infinity
&& v == Extended_Int<Policy, Type>::minus_infinity;
}
PPL_SPECIALIZE_IS_MINF(is_minf_int, char)
PPL_SPECIALIZE_IS_MINF(is_minf_int, signed char)
PPL_SPECIALIZE_IS_MINF(is_minf_int, signed short)
PPL_SPECIALIZE_IS_MINF(is_minf_int, signed int)
PPL_SPECIALIZE_IS_MINF(is_minf_int, signed long)
PPL_SPECIALIZE_IS_MINF(is_minf_int, signed long long)
PPL_SPECIALIZE_IS_MINF(is_minf_int, unsigned char)
PPL_SPECIALIZE_IS_MINF(is_minf_int, unsigned short)
PPL_SPECIALIZE_IS_MINF(is_minf_int, unsigned int)
PPL_SPECIALIZE_IS_MINF(is_minf_int, unsigned long)
PPL_SPECIALIZE_IS_MINF(is_minf_int, unsigned long long)
template <typename Policy, typename Type>
inline bool
is_pinf_int(const Type v) {
return Policy::has_infinity
&& v == Extended_Int<Policy, Type>::plus_infinity;
}
PPL_SPECIALIZE_IS_PINF(is_pinf_int, char)
PPL_SPECIALIZE_IS_PINF(is_pinf_int, signed char)
PPL_SPECIALIZE_IS_PINF(is_pinf_int, signed short)
PPL_SPECIALIZE_IS_PINF(is_pinf_int, signed int)
PPL_SPECIALIZE_IS_PINF(is_pinf_int, signed long)
PPL_SPECIALIZE_IS_PINF(is_pinf_int, signed long long)
PPL_SPECIALIZE_IS_PINF(is_pinf_int, unsigned char)
PPL_SPECIALIZE_IS_PINF(is_pinf_int, unsigned short)
PPL_SPECIALIZE_IS_PINF(is_pinf_int, unsigned int)
PPL_SPECIALIZE_IS_PINF(is_pinf_int, unsigned long)
PPL_SPECIALIZE_IS_PINF(is_pinf_int, unsigned long long)
template <typename Policy, typename Type>
inline bool
is_int_int(const Type v) {
return !is_nan<Policy>(v);
}
PPL_SPECIALIZE_IS_INT(is_int_int, char)
PPL_SPECIALIZE_IS_INT(is_int_int, signed char)
PPL_SPECIALIZE_IS_INT(is_int_int, signed short)
PPL_SPECIALIZE_IS_INT(is_int_int, signed int)
PPL_SPECIALIZE_IS_INT(is_int_int, signed long)
PPL_SPECIALIZE_IS_INT(is_int_int, signed long long)
PPL_SPECIALIZE_IS_INT(is_int_int, unsigned char)
PPL_SPECIALIZE_IS_INT(is_int_int, unsigned short)
PPL_SPECIALIZE_IS_INT(is_int_int, unsigned int)
PPL_SPECIALIZE_IS_INT(is_int_int, unsigned long)
PPL_SPECIALIZE_IS_INT(is_int_int, unsigned long long)
template <typename Policy, typename Type>
inline Result
assign_special_int(Type& v, Result_Class c, Rounding_Dir dir) {
PPL_ASSERT(c == VC_MINUS_INFINITY || c == VC_PLUS_INFINITY || c == VC_NAN);
switch (c) {
case VC_NAN:
if (Policy::has_nan) {
v = Extended_Int<Policy, Type>::not_a_number;
return V_NAN;
}
return V_NAN | V_UNREPRESENTABLE;
case VC_MINUS_INFINITY:
if (Policy::has_infinity) {
v = Extended_Int<Policy, Type>::minus_infinity;
return V_EQ_MINUS_INFINITY;
}
if (round_up(dir)) {
v = Extended_Int<Policy, Type>::min;
return V_LT_INF;
}
return V_EQ_MINUS_INFINITY | V_UNREPRESENTABLE;
case VC_PLUS_INFINITY:
if (Policy::has_infinity) {
v = Extended_Int<Policy, Type>::plus_infinity;
return V_EQ_PLUS_INFINITY;
}
if (round_down(dir)) {
v = Extended_Int<Policy, Type>::max;
return V_GT_SUP;
}
return V_EQ_PLUS_INFINITY | V_UNREPRESENTABLE;
default:
PPL_UNREACHABLE;
return V_NAN | V_UNREPRESENTABLE;
}
}
PPL_SPECIALIZE_ASSIGN_SPECIAL(assign_special_int, char)
PPL_SPECIALIZE_ASSIGN_SPECIAL(assign_special_int, signed char)
PPL_SPECIALIZE_ASSIGN_SPECIAL(assign_special_int, signed short)
PPL_SPECIALIZE_ASSIGN_SPECIAL(assign_special_int, signed int)
PPL_SPECIALIZE_ASSIGN_SPECIAL(assign_special_int, signed long)
PPL_SPECIALIZE_ASSIGN_SPECIAL(assign_special_int, signed long long)
PPL_SPECIALIZE_ASSIGN_SPECIAL(assign_special_int, unsigned char)
PPL_SPECIALIZE_ASSIGN_SPECIAL(assign_special_int, unsigned short)
PPL_SPECIALIZE_ASSIGN_SPECIAL(assign_special_int, unsigned int)
PPL_SPECIALIZE_ASSIGN_SPECIAL(assign_special_int, unsigned long)
PPL_SPECIALIZE_ASSIGN_SPECIAL(assign_special_int, unsigned long long)
template <typename To_Policy, typename From_Policy, typename To, typename From>
inline Result
assign_signed_int_signed_int(To& to, const From from, Rounding_Dir dir) {
if (sizeof(To) < sizeof(From)
|| (sizeof(To) == sizeof(From)
&& (Extended_Int<To_Policy, To>::min > Extended_Int<From_Policy, From>::min
|| Extended_Int<To_Policy, To>::max < Extended_Int<From_Policy, From>::max))) {
if (CHECK_P(To_Policy::check_overflow,
PPL_LT_SILENT(from,
static_cast<From>(Extended_Int<To_Policy, To>::min))))
return set_neg_overflow_int<To_Policy>(to, dir);
if (CHECK_P(To_Policy::check_overflow,
PPL_GT_SILENT(from,
static_cast<From>(Extended_Int<To_Policy, To>::max))))
return set_pos_overflow_int<To_Policy>(to, dir);
}
to = static_cast<To>(from);
return V_EQ;
}
template <typename To_Policy, typename From_Policy, typename To, typename From>
inline Result
assign_signed_int_unsigned_int(To& to, const From from, Rounding_Dir dir) {
if (sizeof(To) <= sizeof(From)) {
if (CHECK_P(To_Policy::check_overflow,
from > static_cast<From>(Extended_Int<To_Policy, To>::max)))
return set_pos_overflow_int<To_Policy>(to, dir);
}
to = static_cast<To>(from);
return V_EQ;
}
template <typename To_Policy, typename From_Policy, typename To, typename From>
inline Result
assign_unsigned_int_signed_int(To& to, const From from, Rounding_Dir dir) {
if (CHECK_P(To_Policy::check_overflow, from < 0))
return set_neg_overflow_int<To_Policy>(to, dir);
if (sizeof(To) < sizeof(From)) {
if (CHECK_P(To_Policy::check_overflow,
from > static_cast<From>(Extended_Int<To_Policy, To>::max)))
return set_pos_overflow_int<To_Policy>(to, dir);
}
to = static_cast<To>(from);
return V_EQ;
}
template <typename To_Policy, typename From_Policy, typename To, typename From>
inline Result
assign_unsigned_int_unsigned_int(To& to, const From from, Rounding_Dir dir) {
if (sizeof(To) < sizeof(From)
|| (sizeof(To) == sizeof(From)
&& Extended_Int<To_Policy, To>::max < Extended_Int<From_Policy, From>::max)) {
if (CHECK_P(To_Policy::check_overflow,
PPL_GT_SILENT(from,
static_cast<From>(Extended_Int<To_Policy, To>::max))))
return set_pos_overflow_int<To_Policy>(to, dir);
}
to = static_cast<To>(from);
return V_EQ;
}
#define PPL_ASSIGN2_SIGNED_SIGNED(Smaller, Larger) \
PPL_SPECIALIZE_ASSIGN(assign_signed_int_signed_int, Smaller, Larger) \
PPL_SPECIALIZE_ASSIGN(assign_signed_int_signed_int, Larger, Smaller)
#define PPL_ASSIGN2_UNSIGNED_UNSIGNED(Smaller, Larger) \
PPL_SPECIALIZE_ASSIGN(assign_unsigned_int_unsigned_int, Smaller, Larger) \
PPL_SPECIALIZE_ASSIGN(assign_unsigned_int_unsigned_int, Larger, Smaller)
#define PPL_ASSIGN2_UNSIGNED_SIGNED(Smaller, Larger) \
PPL_SPECIALIZE_ASSIGN(assign_unsigned_int_signed_int, Smaller, Larger) \
PPL_SPECIALIZE_ASSIGN(assign_signed_int_unsigned_int, Larger, Smaller)
#define PPL_ASSIGN2_SIGNED_UNSIGNED(Smaller, Larger) \
PPL_SPECIALIZE_ASSIGN(assign_signed_int_unsigned_int, Smaller, Larger) \
PPL_SPECIALIZE_ASSIGN(assign_unsigned_int_signed_int, Larger, Smaller)
#define PPL_ASSIGN_SIGNED(Type) \
PPL_SPECIALIZE_ASSIGN(assign_signed_int_signed_int, Type, Type)
#define PPL_ASSIGN_UNSIGNED(Type) \
PPL_SPECIALIZE_ASSIGN(assign_unsigned_int_unsigned_int, Type, Type)
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_ASSIGN_SIGNED(char)
#endif
PPL_ASSIGN_SIGNED(signed char)
PPL_ASSIGN_SIGNED(signed short)
PPL_ASSIGN_SIGNED(signed int)
PPL_ASSIGN_SIGNED(signed long)
PPL_ASSIGN_SIGNED(signed long long)
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_ASSIGN_UNSIGNED(char)
#endif
PPL_ASSIGN_UNSIGNED(unsigned char)
PPL_ASSIGN_UNSIGNED(unsigned short)
PPL_ASSIGN_UNSIGNED(unsigned int)
PPL_ASSIGN_UNSIGNED(unsigned long)
PPL_ASSIGN_UNSIGNED(unsigned long long)
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_ASSIGN2_SIGNED_SIGNED(char, signed short)
PPL_ASSIGN2_SIGNED_SIGNED(char, signed int)
PPL_ASSIGN2_SIGNED_SIGNED(char, signed long)
PPL_ASSIGN2_SIGNED_SIGNED(char, signed long long)
#endif
PPL_ASSIGN2_SIGNED_SIGNED(signed char, signed short)
PPL_ASSIGN2_SIGNED_SIGNED(signed char, signed int)
PPL_ASSIGN2_SIGNED_SIGNED(signed char, signed long)
PPL_ASSIGN2_SIGNED_SIGNED(signed char, signed long long)
PPL_ASSIGN2_SIGNED_SIGNED(signed short, signed int)
PPL_ASSIGN2_SIGNED_SIGNED(signed short, signed long)
PPL_ASSIGN2_SIGNED_SIGNED(signed short, signed long long)
PPL_ASSIGN2_SIGNED_SIGNED(signed int, signed long)
PPL_ASSIGN2_SIGNED_SIGNED(signed int, signed long long)
PPL_ASSIGN2_SIGNED_SIGNED(signed long, signed long long)
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_ASSIGN2_UNSIGNED_UNSIGNED(char, unsigned short)
PPL_ASSIGN2_UNSIGNED_UNSIGNED(char, unsigned int)
PPL_ASSIGN2_UNSIGNED_UNSIGNED(char, unsigned long)
PPL_ASSIGN2_UNSIGNED_UNSIGNED(char, unsigned long long)
#endif
PPL_ASSIGN2_UNSIGNED_UNSIGNED(unsigned char, unsigned short)
PPL_ASSIGN2_UNSIGNED_UNSIGNED(unsigned char, unsigned int)
PPL_ASSIGN2_UNSIGNED_UNSIGNED(unsigned char, unsigned long)
PPL_ASSIGN2_UNSIGNED_UNSIGNED(unsigned char, unsigned long long)
PPL_ASSIGN2_UNSIGNED_UNSIGNED(unsigned short, unsigned int)
PPL_ASSIGN2_UNSIGNED_UNSIGNED(unsigned short, unsigned long)
PPL_ASSIGN2_UNSIGNED_UNSIGNED(unsigned short, unsigned long long)
PPL_ASSIGN2_UNSIGNED_UNSIGNED(unsigned int, unsigned long)
PPL_ASSIGN2_UNSIGNED_UNSIGNED(unsigned int, unsigned long long)
PPL_ASSIGN2_UNSIGNED_UNSIGNED(unsigned long, unsigned long long)
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_ASSIGN2_UNSIGNED_SIGNED(char, signed short)
PPL_ASSIGN2_UNSIGNED_SIGNED(char, signed int)
PPL_ASSIGN2_UNSIGNED_SIGNED(char, signed long)
PPL_ASSIGN2_UNSIGNED_SIGNED(char, signed long long)
#endif
PPL_ASSIGN2_UNSIGNED_SIGNED(unsigned char, signed short)
PPL_ASSIGN2_UNSIGNED_SIGNED(unsigned char, signed int)
PPL_ASSIGN2_UNSIGNED_SIGNED(unsigned char, signed long)
PPL_ASSIGN2_UNSIGNED_SIGNED(unsigned char, signed long long)
PPL_ASSIGN2_UNSIGNED_SIGNED(unsigned short, signed int)
PPL_ASSIGN2_UNSIGNED_SIGNED(unsigned short, signed long)
PPL_ASSIGN2_UNSIGNED_SIGNED(unsigned short, signed long long)
PPL_ASSIGN2_UNSIGNED_SIGNED(unsigned int, signed long)
PPL_ASSIGN2_UNSIGNED_SIGNED(unsigned int, signed long long)
PPL_ASSIGN2_UNSIGNED_SIGNED(unsigned long, signed long long)
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_ASSIGN2_SIGNED_UNSIGNED(char, unsigned char)
PPL_ASSIGN2_SIGNED_UNSIGNED(char, unsigned short)
PPL_ASSIGN2_SIGNED_UNSIGNED(char, unsigned int)
PPL_ASSIGN2_SIGNED_UNSIGNED(char, unsigned long)
PPL_ASSIGN2_SIGNED_UNSIGNED(char, unsigned long long)
#else
PPL_ASSIGN2_SIGNED_UNSIGNED(signed char, char)
#endif
PPL_ASSIGN2_SIGNED_UNSIGNED(signed char, unsigned char)
PPL_ASSIGN2_SIGNED_UNSIGNED(signed char, unsigned short)
PPL_ASSIGN2_SIGNED_UNSIGNED(signed char, unsigned int)
PPL_ASSIGN2_SIGNED_UNSIGNED(signed char, unsigned long)
PPL_ASSIGN2_SIGNED_UNSIGNED(signed char, unsigned long long)
PPL_ASSIGN2_SIGNED_UNSIGNED(signed short, unsigned short)
PPL_ASSIGN2_SIGNED_UNSIGNED(signed short, unsigned int)
PPL_ASSIGN2_SIGNED_UNSIGNED(signed short, unsigned long)
PPL_ASSIGN2_SIGNED_UNSIGNED(signed short, unsigned long long)
PPL_ASSIGN2_SIGNED_UNSIGNED(signed int, unsigned int)
PPL_ASSIGN2_SIGNED_UNSIGNED(signed int, unsigned long)
PPL_ASSIGN2_SIGNED_UNSIGNED(signed int, unsigned long long)
PPL_ASSIGN2_SIGNED_UNSIGNED(signed long, unsigned long)
PPL_ASSIGN2_SIGNED_UNSIGNED(signed long, unsigned long long)
PPL_ASSIGN2_SIGNED_UNSIGNED(signed long long, unsigned long long)
template <typename To_Policy, typename From_Policy, typename To, typename From>
inline Result
assign_int_float(To& to, const From from, Rounding_Dir dir) {
if (is_nan<From_Policy>(from))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (is_minf<From_Policy>(from))
return assign_special<To_Policy>(to, VC_MINUS_INFINITY, dir);
else if (is_pinf<From_Policy>(from))
return assign_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
#if 0
// FIXME: this is correct but it is inefficient and breaks the build
// for the missing definition of static const members (a problem present
// also in other areas of the PPL).
if (CHECK_P(To_Policy::check_overflow, lt(from, Extended_Int<To_Policy, To>::min)))
return set_neg_overflow_int<To_Policy>(to, dir);
if (CHECK_P(To_Policy::check_overflow, !le(from, Extended_Int<To_Policy, To>::max)))
return set_pos_overflow_int<To_Policy>(to, dir);
#else
if (CHECK_P(To_Policy::check_overflow, (from < Extended_Int<To_Policy, To>::min)))
return set_neg_overflow_int<To_Policy>(to, dir);
if (CHECK_P(To_Policy::check_overflow, (from > Extended_Int<To_Policy, To>::max)))
return set_pos_overflow_int<To_Policy>(to, dir);
#endif
if (round_not_requested(dir)) {
to = from;
return V_LGE;
}
From i_from = rint(from);
to = i_from;
if (from == i_from)
return V_EQ;
if (round_direct(ROUND_UP))
return round_lt_int<To_Policy>(to, dir);
if (round_direct(ROUND_DOWN))
return round_gt_int<To_Policy>(to, dir);
if (from < i_from)
return round_lt_int<To_Policy>(to, dir);
PPL_ASSERT(from > i_from);
return round_gt_int<To_Policy>(to, dir);
}
PPL_SPECIALIZE_ASSIGN(assign_int_float, char, float)
PPL_SPECIALIZE_ASSIGN(assign_int_float, signed char, float)
PPL_SPECIALIZE_ASSIGN(assign_int_float, signed short, float)
PPL_SPECIALIZE_ASSIGN(assign_int_float, signed int, float)
PPL_SPECIALIZE_ASSIGN(assign_int_float, signed long, float)
PPL_SPECIALIZE_ASSIGN(assign_int_float, signed long long, float)
PPL_SPECIALIZE_ASSIGN(assign_int_float, unsigned char, float)
PPL_SPECIALIZE_ASSIGN(assign_int_float, unsigned short, float)
PPL_SPECIALIZE_ASSIGN(assign_int_float, unsigned int, float)
PPL_SPECIALIZE_ASSIGN(assign_int_float, unsigned long, float)
PPL_SPECIALIZE_ASSIGN(assign_int_float, unsigned long long, float)
PPL_SPECIALIZE_ASSIGN(assign_int_float, char, double)
PPL_SPECIALIZE_ASSIGN(assign_int_float, signed char, double)
PPL_SPECIALIZE_ASSIGN(assign_int_float, signed short, double)
PPL_SPECIALIZE_ASSIGN(assign_int_float, signed int, double)
PPL_SPECIALIZE_ASSIGN(assign_int_float, signed long, double)
PPL_SPECIALIZE_ASSIGN(assign_int_float, signed long long, double)
PPL_SPECIALIZE_ASSIGN(assign_int_float, unsigned char, double)
PPL_SPECIALIZE_ASSIGN(assign_int_float, unsigned short, double)
PPL_SPECIALIZE_ASSIGN(assign_int_float, unsigned int, double)
PPL_SPECIALIZE_ASSIGN(assign_int_float, unsigned long, double)
PPL_SPECIALIZE_ASSIGN(assign_int_float, unsigned long long, double)
PPL_SPECIALIZE_ASSIGN(assign_int_float, char, long double)
PPL_SPECIALIZE_ASSIGN(assign_int_float, signed char, long double)
PPL_SPECIALIZE_ASSIGN(assign_int_float, signed short, long double)
PPL_SPECIALIZE_ASSIGN(assign_int_float, signed int, long double)
PPL_SPECIALIZE_ASSIGN(assign_int_float, signed long, long double)
PPL_SPECIALIZE_ASSIGN(assign_int_float, signed long long, long double)
PPL_SPECIALIZE_ASSIGN(assign_int_float, unsigned char, long double)
PPL_SPECIALIZE_ASSIGN(assign_int_float, unsigned short, long double)
PPL_SPECIALIZE_ASSIGN(assign_int_float, unsigned int, long double)
PPL_SPECIALIZE_ASSIGN(assign_int_float, unsigned long, long double)
PPL_SPECIALIZE_ASSIGN(assign_int_float, unsigned long long, long double)
#undef PPL_ASSIGN_SIGNED
#undef PPL_ASSIGN_UNSIGNED
#undef PPL_ASSIGN2_SIGNED_SIGNED
#undef PPL_ASSIGN2_UNSIGNED_UNSIGNED
#undef PPL_ASSIGN2_UNSIGNED_SIGNED
#undef PPL_ASSIGN2_SIGNED_UNSIGNED
template <typename To_Policy, typename From_Policy, typename To>
inline Result
assign_signed_int_mpz(To& to, const mpz_class& from, Rounding_Dir dir) {
if (sizeof(To) <= sizeof(signed long)) {
if (!To_Policy::check_overflow) {
to = from.get_si();
return V_EQ;
}
if (from.fits_slong_p()) {
signed long v = from.get_si();
if (PPL_LT_SILENT(v, (Extended_Int<To_Policy, To>::min)))
return set_neg_overflow_int<To_Policy>(to, dir);
if (PPL_GT_SILENT(v, (Extended_Int<To_Policy, To>::max)))
return set_pos_overflow_int<To_Policy>(to, dir);
to = v;
return V_EQ;
}
}
else {
mpz_srcptr m = from.get_mpz_t();
size_t sz = mpz_size(m);
if (sz <= sizeof(To) / sizeof(mp_limb_t)) {
if (sz == 0) {
to = 0;
return V_EQ;
}
To v;
mpz_export(&v, 0, -1, sizeof(To), 0, 0, m);
if (v >= 0) {
if (::sgn(from) < 0)
return neg<To_Policy, To_Policy>(to, v, dir);
to = v;
return V_EQ;
}
}
}
return (::sgn(from) < 0)
? set_neg_overflow_int<To_Policy>(to, dir)
: set_pos_overflow_int<To_Policy>(to, dir);
}
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_ASSIGN(assign_signed_int_mpz, char, mpz_class)
#endif
PPL_SPECIALIZE_ASSIGN(assign_signed_int_mpz, signed char, mpz_class)
PPL_SPECIALIZE_ASSIGN(assign_signed_int_mpz, signed short, mpz_class)
PPL_SPECIALIZE_ASSIGN(assign_signed_int_mpz, signed int, mpz_class)
PPL_SPECIALIZE_ASSIGN(assign_signed_int_mpz, signed long, mpz_class)
PPL_SPECIALIZE_ASSIGN(assign_signed_int_mpz, signed long long, mpz_class)
template <typename To_Policy, typename From_Policy, typename To>
inline Result
assign_unsigned_int_mpz(To& to, const mpz_class& from, Rounding_Dir dir) {
if (CHECK_P(To_Policy::check_overflow, ::sgn(from) < 0))
return set_neg_overflow_int<To_Policy>(to, dir);
if (sizeof(To) <= sizeof(unsigned long)) {
if (!To_Policy::check_overflow) {
to = static_cast<To>(from.get_ui());
return V_EQ;
}
if (from.fits_ulong_p()) {
const unsigned long v = from.get_ui();
if (PPL_GT_SILENT(v, (Extended_Int<To_Policy, To>::max)))
return set_pos_overflow_int<To_Policy>(to, dir);
to = static_cast<To>(v);
return V_EQ;
}
}
else {
const mpz_srcptr m = from.get_mpz_t();
const size_t sz = mpz_size(m);
if (sz <= sizeof(To) / sizeof(mp_limb_t)) {
if (sz == 0)
to = 0;
else
mpz_export(&to, 0, -1, sizeof(To), 0, 0, m);
return V_EQ;
}
}
return set_pos_overflow_int<To_Policy>(to, dir);
}
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_ASSIGN(assign_unsigned_int_mpz, char, mpz_class)
#endif
PPL_SPECIALIZE_ASSIGN(assign_unsigned_int_mpz, unsigned char, mpz_class)
PPL_SPECIALIZE_ASSIGN(assign_unsigned_int_mpz, unsigned short, mpz_class)
PPL_SPECIALIZE_ASSIGN(assign_unsigned_int_mpz, unsigned int, mpz_class)
PPL_SPECIALIZE_ASSIGN(assign_unsigned_int_mpz, unsigned long, mpz_class)
PPL_SPECIALIZE_ASSIGN(assign_unsigned_int_mpz, unsigned long long, mpz_class)
template <typename To_Policy, typename From_Policy, typename To>
inline Result
assign_int_mpq(To& to, const mpq_class& from, Rounding_Dir dir) {
mpz_srcptr n = from.get_num().get_mpz_t();
mpz_srcptr d = from.get_den().get_mpz_t();
PPL_DIRTY_TEMP(mpz_class, q);
mpz_ptr q_z = q.get_mpz_t();
if (round_not_requested(dir)) {
mpz_tdiv_q(q_z, n, d);
Result r = assign<To_Policy, void>(to, q, dir);
if (r != V_EQ)
return r;
return V_LGE;
}
mpz_t rem;
int sign;
mpz_init(rem);
mpz_tdiv_qr(q_z, rem, n, d);
sign = mpz_sgn(rem);
mpz_clear(rem);
Result r = assign<To_Policy, void>(to, q, dir);
if (r != V_EQ)
return r;
switch (sign) {
case -1:
return round_lt_int<To_Policy>(to, dir);
case 1:
return round_gt_int<To_Policy>(to, dir);
default:
return V_EQ;
}
}
PPL_SPECIALIZE_ASSIGN(assign_int_mpq, char, mpq_class)
PPL_SPECIALIZE_ASSIGN(assign_int_mpq, signed char, mpq_class)
PPL_SPECIALIZE_ASSIGN(assign_int_mpq, signed short, mpq_class)
PPL_SPECIALIZE_ASSIGN(assign_int_mpq, signed int, mpq_class)
PPL_SPECIALIZE_ASSIGN(assign_int_mpq, signed long, mpq_class)
PPL_SPECIALIZE_ASSIGN(assign_int_mpq, signed long long, mpq_class)
PPL_SPECIALIZE_ASSIGN(assign_int_mpq, unsigned char, mpq_class)
PPL_SPECIALIZE_ASSIGN(assign_int_mpq, unsigned short, mpq_class)
PPL_SPECIALIZE_ASSIGN(assign_int_mpq, unsigned int, mpq_class)
PPL_SPECIALIZE_ASSIGN(assign_int_mpq, unsigned long, mpq_class)
PPL_SPECIALIZE_ASSIGN(assign_int_mpq, unsigned long long, mpq_class)
#if ~0 != -1
#error "Only two's complement is supported"
#endif
#if UCHAR_MAX == 0xff
#define CHAR_BITS 8
#else
#error "Unexpected max for unsigned char"
#endif
#if USHRT_MAX == 0xffff
#define SHRT_BITS 16
#else
#error "Unexpected max for unsigned short"
#endif
#if UINT_MAX == 0xffffffff
#define INT_BITS 32
#else
#error "Unexpected max for unsigned int"
#endif
#if ULONG_MAX == 0xffffffffUL
#define LONG_BITS 32
#elif ULONG_MAX == 0xffffffffffffffffULL
#define LONG_BITS 64
#else
#error "Unexpected max for unsigned long"
#endif
#if ULLONG_MAX == 0xffffffffffffffffULL
#define LONG_LONG_BITS 64
#else
#error "Unexpected max for unsigned long long"
#endif
template <typename T>
struct Larger;
// The following may be tuned for performance on specific architectures.
//
// Current guidelines:
// - avoid division where possible (larger type variant for mul)
// - use larger type variant for types smaller than architecture bit size
template <>
struct Larger<char> {
const_bool_nodef(use_for_neg, true);
const_bool_nodef(use_for_add, true);
const_bool_nodef(use_for_sub, true);
const_bool_nodef(use_for_mul, true);
typedef int_fast16_t type_for_neg;
typedef int_fast16_t type_for_add;
typedef int_fast16_t type_for_sub;
typedef int_fast16_t type_for_mul;
};
template <>
struct Larger<signed char> {
const_bool_nodef(use_for_neg, true);
const_bool_nodef(use_for_add, true);
const_bool_nodef(use_for_sub, true);
const_bool_nodef(use_for_mul, true);
typedef int_fast16_t type_for_neg;
typedef int_fast16_t type_for_add;
typedef int_fast16_t type_for_sub;
typedef int_fast16_t type_for_mul;
};
template <>
struct Larger<unsigned char> {
const_bool_nodef(use_for_neg, true);
const_bool_nodef(use_for_add, true);
const_bool_nodef(use_for_sub, true);
const_bool_nodef(use_for_mul, true);
typedef int_fast16_t type_for_neg;
typedef uint_fast16_t type_for_add;
typedef int_fast16_t type_for_sub;
typedef uint_fast16_t type_for_mul;
};
template <>
struct Larger<signed short> {
const_bool_nodef(use_for_neg, true);
const_bool_nodef(use_for_add, true);
const_bool_nodef(use_for_sub, true);
const_bool_nodef(use_for_mul, true);
typedef int_fast32_t type_for_neg;
typedef int_fast32_t type_for_add;
typedef int_fast32_t type_for_sub;
typedef int_fast32_t type_for_mul;
};
template <>
struct Larger<unsigned short> {
const_bool_nodef(use_for_neg, true);
const_bool_nodef(use_for_add, true);
const_bool_nodef(use_for_sub, true);
const_bool_nodef(use_for_mul, true);
typedef int_fast32_t type_for_neg;
typedef uint_fast32_t type_for_add;
typedef int_fast32_t type_for_sub;
typedef uint_fast32_t type_for_mul;
};
template <>
struct Larger<signed int> {
const_bool_nodef(use_for_neg, (LONG_BITS == 64));
const_bool_nodef(use_for_add, (LONG_BITS == 64));
const_bool_nodef(use_for_sub, (LONG_BITS == 64));
const_bool_nodef(use_for_mul, true);
typedef int_fast64_t type_for_neg;
typedef int_fast64_t type_for_add;
typedef int_fast64_t type_for_sub;
typedef int_fast64_t type_for_mul;
};
template <>
struct Larger<unsigned int> {
const_bool_nodef(use_for_neg, (LONG_BITS == 64));
const_bool_nodef(use_for_add, (LONG_BITS == 64));
const_bool_nodef(use_for_sub, (LONG_BITS == 64));
const_bool_nodef(use_for_mul, true);
typedef int_fast64_t type_for_neg;
typedef uint_fast64_t type_for_add;
typedef int_fast64_t type_for_sub;
typedef uint_fast64_t type_for_mul;
};
template <>
struct Larger<signed long> {
const_bool_nodef(use_for_neg, false);
const_bool_nodef(use_for_add, false);
const_bool_nodef(use_for_sub, false);
const_bool_nodef(use_for_mul, (LONG_BITS == 32));
typedef int_fast64_t type_for_neg;
typedef int_fast64_t type_for_add;
typedef int_fast64_t type_for_sub;
typedef int_fast64_t type_for_mul;
};
template <>
struct Larger<unsigned long> {
const_bool_nodef(use_for_neg, false);
const_bool_nodef(use_for_add, false);
const_bool_nodef(use_for_sub, false);
const_bool_nodef(use_for_mul, (LONG_BITS == 32));
typedef int_fast64_t type_for_neg;
typedef uint_fast64_t type_for_add;
typedef int_fast64_t type_for_sub;
typedef uint_fast64_t type_for_mul;
};
template <>
struct Larger<signed long long> {
const_bool_nodef(use_for_neg, false);
const_bool_nodef(use_for_add, false);
const_bool_nodef(use_for_sub, false);
const_bool_nodef(use_for_mul, false);
typedef int_fast64_t type_for_neg;
typedef int_fast64_t type_for_add;
typedef int_fast64_t type_for_sub;
typedef int_fast64_t type_for_mul;
};
template <>
struct Larger<unsigned long long> {
const_bool_nodef(use_for_neg, false);
const_bool_nodef(use_for_add, false);
const_bool_nodef(use_for_sub, false);
const_bool_nodef(use_for_mul, false);
typedef int_fast64_t type_for_neg;
typedef uint_fast64_t type_for_add;
typedef int_fast64_t type_for_sub;
typedef uint_fast64_t type_for_mul;
};
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
neg_int_larger(Type& to, const Type x, Rounding_Dir dir) {
typename Larger<Type>::type_for_neg l = x;
l = -l;
return assign<To_Policy, To_Policy>(to, l, dir);
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
add_int_larger(Type& to, const Type x, const Type y, Rounding_Dir dir) {
typename Larger<Type>::type_for_add l = x;
l += y;
return assign<To_Policy, To_Policy>(to, l, dir);
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
sub_int_larger(Type& to, const Type x, const Type y, Rounding_Dir dir) {
typename Larger<Type>::type_for_sub l = x;
l -= y;
return assign<To_Policy, To_Policy>(to, l, dir);
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
mul_int_larger(Type& to, const Type x, const Type y, Rounding_Dir dir) {
typename Larger<Type>::type_for_mul l = x;
l *= y;
return assign<To_Policy, To_Policy>(to, l, dir);
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
neg_signed_int(Type& to, const Type from, Rounding_Dir dir) {
if (To_Policy::check_overflow && Larger<Type>::use_for_neg)
return neg_int_larger<To_Policy, From_Policy>(to, from, dir);
if (CHECK_P(To_Policy::check_overflow,
(from < -Extended_Int<To_Policy, Type>::max)))
return set_pos_overflow_int<To_Policy>(to, dir);
to = -from;
return V_EQ;
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
neg_unsigned_int(Type& to, const Type from, Rounding_Dir dir) {
if (To_Policy::check_overflow && Larger<Type>::use_for_neg)
return neg_int_larger<To_Policy, From_Policy>(to, from, dir);
if (CHECK_P(To_Policy::check_overflow, from != 0))
return set_neg_overflow_int<To_Policy>(to, dir);
to = from;
return V_EQ;
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
add_signed_int(Type& to, const Type x, const Type y, Rounding_Dir dir) {
if (To_Policy::check_overflow && Larger<Type>::use_for_add)
return add_int_larger<To_Policy, From1_Policy, From2_Policy>(to, x, y, dir);
if (To_Policy::check_overflow) {
if (y >= 0) {
if (x > Extended_Int<To_Policy, Type>::max - y)
return set_pos_overflow_int<To_Policy>(to, dir);
}
else if (x < Extended_Int<To_Policy, Type>::min - y)
return set_neg_overflow_int<To_Policy>(to, dir);
}
to = x + y;
return V_EQ;
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
add_unsigned_int(Type& to, const Type x, const Type y, Rounding_Dir dir) {
if (To_Policy::check_overflow && Larger<Type>::use_for_add)
return add_int_larger<To_Policy, From1_Policy, From2_Policy>(to, x, y, dir);
if (CHECK_P(To_Policy::check_overflow,
(x > Extended_Int<To_Policy, Type>::max - y)))
return set_pos_overflow_int<To_Policy>(to, dir);
to = x + y;
return V_EQ;
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
sub_signed_int(Type& to, const Type x, const Type y, Rounding_Dir dir) {
if (To_Policy::check_overflow && Larger<Type>::use_for_sub)
return sub_int_larger<To_Policy, From1_Policy, From2_Policy>(to, x, y, dir);
if (To_Policy::check_overflow) {
if (y >= 0) {
if (x < Extended_Int<To_Policy, Type>::min + y)
return set_neg_overflow_int<To_Policy>(to, dir);
}
else if (x > Extended_Int<To_Policy, Type>::max + y)
return set_pos_overflow_int<To_Policy>(to, dir);
}
to = x - y;
return V_EQ;
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
sub_unsigned_int(Type& to, const Type x, const Type y, Rounding_Dir dir) {
if (To_Policy::check_overflow && Larger<Type>::use_for_sub)
return sub_int_larger<To_Policy, From1_Policy, From2_Policy>(to, x, y, dir);
if (CHECK_P(To_Policy::check_overflow,
(x < Extended_Int<To_Policy, Type>::min + y)))
return set_neg_overflow_int<To_Policy>(to, dir);
to = x - y;
return V_EQ;
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
mul_signed_int(Type& to, const Type x, const Type y, Rounding_Dir dir) {
if (To_Policy::check_overflow && Larger<Type>::use_for_mul)
return mul_int_larger<To_Policy, From1_Policy, From2_Policy>(to, x, y, dir);
if (!To_Policy::check_overflow) {
to = x * y;
return V_EQ;
}
if (y == 0) {
to = 0;
return V_EQ;
}
if (y == -1)
return neg_signed_int<To_Policy, From1_Policy>(to, x, dir);
if (x >= 0) {
if (y > 0) {
if (x > Extended_Int<To_Policy, Type>::max / y)
return set_pos_overflow_int<To_Policy>(to, dir);
}
else {
if (x > Extended_Int<To_Policy, Type>::min / y)
return set_neg_overflow_int<To_Policy>(to, dir);
}
}
else {
if (y < 0) {
if (x < Extended_Int<To_Policy, Type>::max / y)
return set_pos_overflow_int<To_Policy>(to, dir);
}
else {
if (x < Extended_Int<To_Policy, Type>::min / y)
return set_neg_overflow_int<To_Policy>(to, dir);
}
}
to = x * y;
return V_EQ;
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
mul_unsigned_int(Type& to, const Type x, const Type y, Rounding_Dir dir) {
if (To_Policy::check_overflow && Larger<Type>::use_for_mul)
return mul_int_larger<To_Policy, From1_Policy, From2_Policy>(to, x, y, dir);
if (!To_Policy::check_overflow) {
to = x * y;
return V_EQ;
}
if (y == 0) {
to = 0;
return V_EQ;
}
if (x > Extended_Int<To_Policy, Type>::max / y)
return set_pos_overflow_int<To_Policy>(to, dir);
to = x * y;
return V_EQ;
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
div_signed_int(Type& to, const Type x, const Type y, Rounding_Dir dir) {
if (CHECK_P(To_Policy::check_div_zero, y == 0)) {
return assign_nan<To_Policy>(to, V_DIV_ZERO);
}
if (To_Policy::check_overflow && y == -1)
return neg_signed_int<To_Policy, From1_Policy>(to, x, dir);
to = x / y;
if (round_not_requested(dir))
return V_LGE;
if (y == -1)
return V_EQ;
Type m = x % y;
if (m < 0)
return round_lt_int_no_overflow<To_Policy>(to, dir);
else if (m > 0)
return round_gt_int_no_overflow<To_Policy>(to, dir);
else
return V_EQ;
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
div_unsigned_int(Type& to, const Type x, const Type y, Rounding_Dir dir) {
if (CHECK_P(To_Policy::check_div_zero, y == 0)) {
return assign_nan<To_Policy>(to, V_DIV_ZERO);
}
to = x / y;
if (round_not_requested(dir))
return V_GE;
Type m = x % y;
if (m == 0)
return V_EQ;
return round_gt_int<To_Policy>(to, dir);
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
idiv_signed_int(Type& to, const Type x, const Type y, Rounding_Dir dir) {
if (CHECK_P(To_Policy::check_div_zero, y == 0)) {
return assign_nan<To_Policy>(to, V_DIV_ZERO);
}
if (To_Policy::check_overflow && y == -1)
return neg_signed_int<To_Policy, From1_Policy>(to, x, dir);
to = x / y;
return V_EQ;
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
idiv_unsigned_int(Type& to, const Type x, const Type y, Rounding_Dir) {
if (CHECK_P(To_Policy::check_div_zero, y == 0)) {
return assign_nan<To_Policy>(to, V_DIV_ZERO);
}
to = x / y;
return V_EQ;
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
rem_signed_int(Type& to, const Type x, const Type y, Rounding_Dir) {
if (CHECK_P(To_Policy::check_div_zero, y == 0)) {
return assign_nan<To_Policy>(to, V_MOD_ZERO);
}
to = (y == -1) ? 0 : (x % y);
return V_EQ;
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
rem_unsigned_int(Type& to, const Type x, const Type y, Rounding_Dir) {
if (CHECK_P(To_Policy::check_div_zero, y == 0)) {
return assign_nan<To_Policy>(to, V_MOD_ZERO);
}
to = x % y;
return V_EQ;
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
div_2exp_unsigned_int(Type& to, const Type x, unsigned int exp,
Rounding_Dir dir) {
if (exp >= sizeof_to_bits(sizeof(Type))) {
to = 0;
if (round_not_requested(dir))
return V_GE;
if (x == 0)
return V_EQ;
return round_gt_int_no_overflow<To_Policy>(to, dir);
}
to = x >> exp;
if (round_not_requested(dir))
return V_GE;
if (x & ((Type(1) << exp) - 1))
return round_gt_int_no_overflow<To_Policy>(to, dir);
else
return V_EQ;
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
div_2exp_signed_int(Type& to, const Type x, unsigned int exp,
Rounding_Dir dir) {
if (x < 0) {
if (exp >= sizeof_to_bits(sizeof(Type))) {
to = 0;
if (round_not_requested(dir))
return V_LE;
return round_lt_int_no_overflow<To_Policy>(to, dir);
}
typedef typename C_Integer<Type>::other_type UType;
UType ux = x;
ux = -ux;
to = ~Type(~-(ux >> exp));
if (round_not_requested(dir))
return V_LE;
if (ux & ((UType(1) << exp) -1))
return round_lt_int_no_overflow<To_Policy>(to, dir);
return V_EQ;
}
else {
if (exp >= sizeof_to_bits(sizeof(Type)) - 1) {
to = 0;
if (round_not_requested(dir))
return V_GE;
if (x == 0)
return V_EQ;
return round_gt_int_no_overflow<To_Policy>(to, dir);
}
to = x >> exp;
if (round_not_requested(dir))
return V_GE;
if (x & ((Type(1) << exp) - 1))
return round_gt_int_no_overflow<To_Policy>(to, dir);
else
return V_EQ;
}
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
add_2exp_unsigned_int(Type& to, const Type x, unsigned int exp,
Rounding_Dir dir) {
if (!To_Policy::check_overflow) {
to = x + (Type(1) << exp);
return V_EQ;
}
if (exp >= sizeof_to_bits(sizeof(Type)))
return set_pos_overflow_int<To_Policy>(to, dir);
Type n = Type(1) << exp;
return add_unsigned_int<To_Policy, From_Policy, void>(to, x, n, dir);
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
add_2exp_signed_int(Type& to, const Type x, unsigned int exp,
Rounding_Dir dir) {
if (!To_Policy::check_overflow) {
to = x + (Type(1) << exp);
return V_EQ;
}
if (exp >= sizeof_to_bits(sizeof(Type)))
return set_pos_overflow_int<To_Policy>(to, dir);
if (exp == sizeof_to_bits(sizeof(Type)) - 1) {
Type n = -2 * (Type(1) << (exp - 1));
return sub_signed_int<To_Policy, From_Policy, void>(to, x, n, dir);
}
else {
Type n = Type(1) << exp;
return add_signed_int<To_Policy, From_Policy, void>(to, x, n, dir);
}
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
sub_2exp_unsigned_int(Type& to, const Type x, unsigned int exp,
Rounding_Dir dir) {
if (!To_Policy::check_overflow) {
to = x - (Type(1) << exp);
return V_EQ;
}
if (exp >= sizeof_to_bits(sizeof(Type)))
return set_neg_overflow_int<To_Policy>(to, dir);
Type n = Type(1) << exp;
return sub_unsigned_int<To_Policy, From_Policy, void>(to, x, n, dir);
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
sub_2exp_signed_int(Type& to, const Type x, unsigned int exp,
Rounding_Dir dir) {
if (!To_Policy::check_overflow) {
to = x - (Type(1) << exp);
return V_EQ;
}
if (exp >= sizeof_to_bits(sizeof(Type)))
return set_neg_overflow_int<To_Policy>(to, dir);
if (exp == sizeof_to_bits(sizeof(Type)) - 1) {
Type n = -2 * (Type(1) << (exp - 1));
return add_signed_int<To_Policy, From_Policy, void>(to, x, n, dir);
}
else {
Type n = Type(1) << exp;
return sub_signed_int<To_Policy, From_Policy, void>(to, x, n, dir);
}
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
mul_2exp_unsigned_int(Type& to, const Type x, unsigned int exp,
Rounding_Dir dir) {
if (!To_Policy::check_overflow) {
to = x << exp;
return V_EQ;
}
if (exp >= sizeof_to_bits(sizeof(Type))) {
if (x == 0) {
to = 0;
return V_EQ;
}
return set_pos_overflow_int<To_Policy>(to, dir);
}
if (x > Extended_Int<To_Policy, Type>::max >> exp)
return set_pos_overflow_int<To_Policy>(to, dir);
to = x << exp;
return V_EQ;
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
mul_2exp_signed_int(Type& to, const Type x, unsigned int exp,
Rounding_Dir dir) {
if (x < 0) {
if (!To_Policy::check_overflow) {
to = x * (Type(1) << exp);
return V_EQ;
}
if (exp >= sizeof_to_bits(sizeof(Type)))
return set_neg_overflow_int<To_Policy>(to, dir);
typedef typename C_Integer<Type>::other_type UType;
UType mask = UType(-1) << (sizeof_to_bits(sizeof(Type)) - exp - 1);
UType ux = x;
if ((ux & mask) != mask)
return set_neg_overflow_int<To_Policy>(to, dir);
ux <<= exp;
Type n = ~(Type(~ux));
if (PPL_LT_SILENT(n, (Extended_Int<To_Policy, Type>::min)))
return set_neg_overflow_int<To_Policy>(to, dir);
to = n;
}
else {
if (!To_Policy::check_overflow) {
to = x << exp;
return V_EQ;
}
if (exp >= sizeof_to_bits(sizeof(Type)) - 1) {
if (x == 0) {
to = 0;
return V_EQ;
}
return set_pos_overflow_int<To_Policy>(to, dir);
}
if (x > Extended_Int<To_Policy, Type>::max >> exp)
return set_pos_overflow_int<To_Policy>(to, dir);
to = x << exp;
}
return V_EQ;
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
smod_2exp_unsigned_int(Type& to, const Type x, unsigned int exp,
Rounding_Dir dir) {
if (exp > sizeof_to_bits(sizeof(Type)))
to = x;
else {
Type v = (exp == sizeof_to_bits(sizeof(Type)) ? x : (x & ((Type(1) << exp) - 1)));
if (v >= (Type(1) << (exp - 1)))
return set_neg_overflow_int<To_Policy>(to, dir);
else
to = v;
}
return V_EQ;
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
smod_2exp_signed_int(Type& to, const Type x, unsigned int exp,
Rounding_Dir) {
if (exp >= sizeof_to_bits(sizeof(Type)))
to = x;
else {
Type m = Type(1) << (exp - 1);
to = (x & (m - 1)) - (x & m);
}
return V_EQ;
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
umod_2exp_unsigned_int(Type& to, const Type x, unsigned int exp,
Rounding_Dir) {
if (exp >= sizeof_to_bits(sizeof(Type)))
to = x;
else
to = x & ((Type(1) << exp) - 1);
return V_EQ;
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
umod_2exp_signed_int(Type& to, const Type x, unsigned int exp,
Rounding_Dir dir) {
if (exp >= sizeof_to_bits(sizeof(Type))) {
if (x < 0)
return set_pos_overflow_int<To_Policy>(to, dir);
to = x;
}
else
to = x & ((Type(1) << exp) - 1);
return V_EQ;
}
template <typename Type>
inline void
isqrt_rem(Type& q, Type& r, const Type from) {
q = 0;
r = from;
Type t(1);
for (t <<= sizeof_to_bits(sizeof(Type)) - 2; t != 0; t >>= 2) {
Type s = q + t;
if (s <= r) {
r -= s;
q = s + t;
}
q >>= 1;
}
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
sqrt_unsigned_int(Type& to, const Type from, Rounding_Dir dir) {
Type rem;
isqrt_rem(to, rem, from);
if (round_not_requested(dir))
return V_GE;
if (rem == 0)
return V_EQ;
return round_gt_int<To_Policy>(to, dir);
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
sqrt_signed_int(Type& to, const Type from, Rounding_Dir dir) {
if (CHECK_P(To_Policy::check_sqrt_neg, from < 0)) {
return assign_nan<To_Policy>(to, V_SQRT_NEG);
}
return sqrt_unsigned_int<To_Policy, From_Policy>(to, from, dir);
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
add_mul_int(Type& to, const Type x, const Type y, Rounding_Dir dir) {
Type z;
Result r = mul<To_Policy, From1_Policy, From2_Policy>(z, x, y, dir);
switch (result_overflow(r)) {
case 0:
return add<To_Policy, To_Policy, To_Policy>(to, to, z, dir);
case -1:
if (to <= 0)
return set_neg_overflow_int<To_Policy>(to, dir);
return assign_nan<To_Policy>(to, V_UNKNOWN_NEG_OVERFLOW);
case 1:
if (to >= 0)
return set_pos_overflow_int<To_Policy>(to, dir);
return assign_nan<To_Policy>(to, V_UNKNOWN_POS_OVERFLOW);
default:
PPL_UNREACHABLE;
return V_NAN;
}
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
sub_mul_int(Type& to, const Type x, const Type y, Rounding_Dir dir) {
Type z;
Result r = mul<To_Policy, From1_Policy, From2_Policy>(z, x, y, dir);
switch (result_overflow(r)) {
case 0:
return sub<To_Policy, To_Policy, To_Policy>(to, to, z, dir);
case -1:
if (to >= 0)
return set_pos_overflow_int<To_Policy>(to, dir);
return assign_nan<To_Policy>(to, V_UNKNOWN_NEG_OVERFLOW);
case 1:
if (to <= 0)
return set_neg_overflow_int<To_Policy>(to, dir);
return assign_nan<To_Policy>(to, V_UNKNOWN_POS_OVERFLOW);
default:
PPL_UNREACHABLE;
return V_NAN;
}
}
template <typename Policy, typename Type>
inline Result
output_char(std::ostream& os, Type& from,
const Numeric_Format&, Rounding_Dir) {
os << int(from);
return V_EQ;
}
template <typename Policy, typename Type>
inline Result
output_int(std::ostream& os, Type& from, const Numeric_Format&, Rounding_Dir) {
os << from;
return V_EQ;
}
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_FLOOR(assign_signed_int_signed_int, char, char)
#endif
PPL_SPECIALIZE_FLOOR(assign_signed_int_signed_int, signed char, signed char)
PPL_SPECIALIZE_FLOOR(assign_signed_int_signed_int, signed short, signed short)
PPL_SPECIALIZE_FLOOR(assign_signed_int_signed_int, signed int, signed int)
PPL_SPECIALIZE_FLOOR(assign_signed_int_signed_int, signed long, signed long)
PPL_SPECIALIZE_FLOOR(assign_signed_int_signed_int, signed long long, signed long long)
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_FLOOR(assign_unsigned_int_unsigned_int, char, char)
#endif
PPL_SPECIALIZE_FLOOR(assign_unsigned_int_unsigned_int, unsigned char, unsigned char)
PPL_SPECIALIZE_FLOOR(assign_unsigned_int_unsigned_int, unsigned short, unsigned short)
PPL_SPECIALIZE_FLOOR(assign_unsigned_int_unsigned_int, unsigned int, unsigned int)
PPL_SPECIALIZE_FLOOR(assign_unsigned_int_unsigned_int, unsigned long, unsigned long)
PPL_SPECIALIZE_FLOOR(assign_unsigned_int_unsigned_int, unsigned long long, unsigned long long)
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_CEIL(assign_signed_int_signed_int, char, char)
#endif
PPL_SPECIALIZE_CEIL(assign_signed_int_signed_int, signed char, signed char)
PPL_SPECIALIZE_CEIL(assign_signed_int_signed_int, signed short, signed short)
PPL_SPECIALIZE_CEIL(assign_signed_int_signed_int, signed int, signed int)
PPL_SPECIALIZE_CEIL(assign_signed_int_signed_int, signed long, signed long)
PPL_SPECIALIZE_CEIL(assign_signed_int_signed_int, signed long long, signed long long)
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_CEIL(assign_unsigned_int_unsigned_int, char, char)
#endif
PPL_SPECIALIZE_CEIL(assign_unsigned_int_unsigned_int, unsigned char, unsigned char)
PPL_SPECIALIZE_CEIL(assign_unsigned_int_unsigned_int, unsigned short, unsigned short)
PPL_SPECIALIZE_CEIL(assign_unsigned_int_unsigned_int, unsigned int, unsigned int)
PPL_SPECIALIZE_CEIL(assign_unsigned_int_unsigned_int, unsigned long, unsigned long)
PPL_SPECIALIZE_CEIL(assign_unsigned_int_unsigned_int, unsigned long long, unsigned long long)
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_TRUNC(assign_signed_int_signed_int, char, char)
#endif
PPL_SPECIALIZE_TRUNC(assign_signed_int_signed_int, signed char, signed char)
PPL_SPECIALIZE_TRUNC(assign_signed_int_signed_int, signed short, signed short)
PPL_SPECIALIZE_TRUNC(assign_signed_int_signed_int, signed int, signed int)
PPL_SPECIALIZE_TRUNC(assign_signed_int_signed_int, signed long, signed long)
PPL_SPECIALIZE_TRUNC(assign_signed_int_signed_int, signed long long, signed long long)
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_TRUNC(assign_unsigned_int_unsigned_int, char, char)
#endif
PPL_SPECIALIZE_TRUNC(assign_unsigned_int_unsigned_int, unsigned char, unsigned char)
PPL_SPECIALIZE_TRUNC(assign_unsigned_int_unsigned_int, unsigned short, unsigned short)
PPL_SPECIALIZE_TRUNC(assign_unsigned_int_unsigned_int, unsigned int, unsigned int)
PPL_SPECIALIZE_TRUNC(assign_unsigned_int_unsigned_int, unsigned long, unsigned long)
PPL_SPECIALIZE_TRUNC(assign_unsigned_int_unsigned_int, unsigned long long, unsigned long long)
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_NEG(neg_signed_int, char, char)
#endif
PPL_SPECIALIZE_NEG(neg_signed_int, signed char, signed char)
PPL_SPECIALIZE_NEG(neg_signed_int, signed short, signed short)
PPL_SPECIALIZE_NEG(neg_signed_int, signed int, signed int)
PPL_SPECIALIZE_NEG(neg_signed_int, signed long, signed long)
PPL_SPECIALIZE_NEG(neg_signed_int, signed long long, signed long long)
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_NEG(neg_unsigned_int, char, char)
#endif
PPL_SPECIALIZE_NEG(neg_unsigned_int, unsigned char, unsigned char)
PPL_SPECIALIZE_NEG(neg_unsigned_int, unsigned short, unsigned short)
PPL_SPECIALIZE_NEG(neg_unsigned_int, unsigned int, unsigned int)
PPL_SPECIALIZE_NEG(neg_unsigned_int, unsigned long, unsigned long)
PPL_SPECIALIZE_NEG(neg_unsigned_int, unsigned long long, unsigned long long)
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_ADD(add_signed_int, char, char, char)
#endif
PPL_SPECIALIZE_ADD(add_signed_int, signed char, signed char, signed char)
PPL_SPECIALIZE_ADD(add_signed_int, signed short, signed short, signed short)
PPL_SPECIALIZE_ADD(add_signed_int, signed int, signed int, signed int)
PPL_SPECIALIZE_ADD(add_signed_int, signed long, signed long, signed long)
PPL_SPECIALIZE_ADD(add_signed_int, signed long long, signed long long, signed long long)
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_ADD(add_unsigned_int, char, char, char)
#endif
PPL_SPECIALIZE_ADD(add_unsigned_int, unsigned char, unsigned char, unsigned char)
PPL_SPECIALIZE_ADD(add_unsigned_int, unsigned short, unsigned short, unsigned short)
PPL_SPECIALIZE_ADD(add_unsigned_int, unsigned int, unsigned int, unsigned int)
PPL_SPECIALIZE_ADD(add_unsigned_int, unsigned long, unsigned long, unsigned long)
PPL_SPECIALIZE_ADD(add_unsigned_int, unsigned long long, unsigned long long, unsigned long long)
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_SUB(sub_signed_int, char, char, char)
#endif
PPL_SPECIALIZE_SUB(sub_signed_int, signed char, signed char, signed char)
PPL_SPECIALIZE_SUB(sub_signed_int, signed short, signed short, signed short)
PPL_SPECIALIZE_SUB(sub_signed_int, signed int, signed int, signed int)
PPL_SPECIALIZE_SUB(sub_signed_int, signed long, signed long, signed long)
PPL_SPECIALIZE_SUB(sub_signed_int, signed long long, signed long long, signed long long)
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_SUB(sub_unsigned_int, char, char, char)
#endif
PPL_SPECIALIZE_SUB(sub_unsigned_int, unsigned char, unsigned char, unsigned char)
PPL_SPECIALIZE_SUB(sub_unsigned_int, unsigned short, unsigned short, unsigned short)
PPL_SPECIALIZE_SUB(sub_unsigned_int, unsigned int, unsigned int, unsigned int)
PPL_SPECIALIZE_SUB(sub_unsigned_int, unsigned long, unsigned long, unsigned long)
PPL_SPECIALIZE_SUB(sub_unsigned_int, unsigned long long, unsigned long long, unsigned long long)
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_MUL(mul_signed_int, char, char, char)
#endif
PPL_SPECIALIZE_MUL(mul_signed_int, signed char, signed char, signed char)
PPL_SPECIALIZE_MUL(mul_signed_int, signed short, signed short, signed short)
PPL_SPECIALIZE_MUL(mul_signed_int, signed int, signed int, signed int)
PPL_SPECIALIZE_MUL(mul_signed_int, signed long, signed long, signed long)
PPL_SPECIALIZE_MUL(mul_signed_int, signed long long, signed long long, signed long long)
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_MUL(mul_unsigned_int, char, char, char)
#endif
PPL_SPECIALIZE_MUL(mul_unsigned_int, unsigned char, unsigned char, unsigned char)
PPL_SPECIALIZE_MUL(mul_unsigned_int, unsigned short, unsigned short, unsigned short)
PPL_SPECIALIZE_MUL(mul_unsigned_int, unsigned int, unsigned int, unsigned int)
PPL_SPECIALIZE_MUL(mul_unsigned_int, unsigned long, unsigned long, unsigned long)
PPL_SPECIALIZE_MUL(mul_unsigned_int, unsigned long long, unsigned long long, unsigned long long)
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_DIV(div_signed_int, char, char, char)
#endif
PPL_SPECIALIZE_DIV(div_signed_int, signed char, signed char, signed char)
PPL_SPECIALIZE_DIV(div_signed_int, signed short, signed short, signed short)
PPL_SPECIALIZE_DIV(div_signed_int, signed int, signed int, signed int)
PPL_SPECIALIZE_DIV(div_signed_int, signed long, signed long, signed long)
PPL_SPECIALIZE_DIV(div_signed_int, signed long long, signed long long, signed long long)
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_DIV(div_unsigned_int, char, char, char)
#endif
PPL_SPECIALIZE_DIV(div_unsigned_int, unsigned char, unsigned char, unsigned char)
PPL_SPECIALIZE_DIV(div_unsigned_int, unsigned short, unsigned short, unsigned short)
PPL_SPECIALIZE_DIV(div_unsigned_int, unsigned int, unsigned int, unsigned int)
PPL_SPECIALIZE_DIV(div_unsigned_int, unsigned long, unsigned long, unsigned long)
PPL_SPECIALIZE_DIV(div_unsigned_int, unsigned long long, unsigned long long, unsigned long long)
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_IDIV(idiv_signed_int, char, char, char)
#endif
PPL_SPECIALIZE_IDIV(idiv_signed_int, signed char, signed char, signed char)
PPL_SPECIALIZE_IDIV(idiv_signed_int, signed short, signed short, signed short)
PPL_SPECIALIZE_IDIV(idiv_signed_int, signed int, signed int, signed int)
PPL_SPECIALIZE_IDIV(idiv_signed_int, signed long, signed long, signed long)
PPL_SPECIALIZE_IDIV(idiv_signed_int, signed long long, signed long long, signed long long)
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_IDIV(idiv_unsigned_int, char, char, char)
#endif
PPL_SPECIALIZE_IDIV(idiv_unsigned_int, unsigned char, unsigned char, unsigned char)
PPL_SPECIALIZE_IDIV(idiv_unsigned_int, unsigned short, unsigned short, unsigned short)
PPL_SPECIALIZE_IDIV(idiv_unsigned_int, unsigned int, unsigned int, unsigned int)
PPL_SPECIALIZE_IDIV(idiv_unsigned_int, unsigned long, unsigned long, unsigned long)
PPL_SPECIALIZE_IDIV(idiv_unsigned_int, unsigned long long, unsigned long long, unsigned long long)
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_REM(rem_signed_int, char, char, char)
#endif
PPL_SPECIALIZE_REM(rem_signed_int, signed char, signed char, signed char)
PPL_SPECIALIZE_REM(rem_signed_int, signed short, signed short, signed short)
PPL_SPECIALIZE_REM(rem_signed_int, signed int, signed int, signed int)
PPL_SPECIALIZE_REM(rem_signed_int, signed long, signed long, signed long)
PPL_SPECIALIZE_REM(rem_signed_int, signed long long, signed long long, signed long long)
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_REM(rem_unsigned_int, char, char, char)
#endif
PPL_SPECIALIZE_REM(rem_unsigned_int, unsigned char, unsigned char, unsigned char)
PPL_SPECIALIZE_REM(rem_unsigned_int, unsigned short, unsigned short, unsigned short)
PPL_SPECIALIZE_REM(rem_unsigned_int, unsigned int, unsigned int, unsigned int)
PPL_SPECIALIZE_REM(rem_unsigned_int, unsigned long, unsigned long, unsigned long)
PPL_SPECIALIZE_REM(rem_unsigned_int, unsigned long long, unsigned long long, unsigned long long)
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_ADD_2EXP(add_2exp_signed_int, char, char)
#endif
PPL_SPECIALIZE_ADD_2EXP(add_2exp_signed_int, signed char, signed char)
PPL_SPECIALIZE_ADD_2EXP(add_2exp_signed_int, signed short, signed short)
PPL_SPECIALIZE_ADD_2EXP(add_2exp_signed_int, signed int, signed int)
PPL_SPECIALIZE_ADD_2EXP(add_2exp_signed_int, signed long, signed long)
PPL_SPECIALIZE_ADD_2EXP(add_2exp_signed_int, signed long long, signed long long)
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_ADD_2EXP(add_2exp_unsigned_int, char, char)
#endif
PPL_SPECIALIZE_ADD_2EXP(add_2exp_unsigned_int, unsigned char, unsigned char)
PPL_SPECIALIZE_ADD_2EXP(add_2exp_unsigned_int, unsigned short, unsigned short)
PPL_SPECIALIZE_ADD_2EXP(add_2exp_unsigned_int, unsigned int, unsigned int)
PPL_SPECIALIZE_ADD_2EXP(add_2exp_unsigned_int, unsigned long, unsigned long)
PPL_SPECIALIZE_ADD_2EXP(add_2exp_unsigned_int, unsigned long long, unsigned long long)
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_SUB_2EXP(sub_2exp_signed_int, char, char)
#endif
PPL_SPECIALIZE_SUB_2EXP(sub_2exp_signed_int, signed char, signed char)
PPL_SPECIALIZE_SUB_2EXP(sub_2exp_signed_int, signed short, signed short)
PPL_SPECIALIZE_SUB_2EXP(sub_2exp_signed_int, signed int, signed int)
PPL_SPECIALIZE_SUB_2EXP(sub_2exp_signed_int, signed long, signed long)
PPL_SPECIALIZE_SUB_2EXP(sub_2exp_signed_int, signed long long, signed long long)
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_SUB_2EXP(sub_2exp_unsigned_int, char, char)
#endif
PPL_SPECIALIZE_SUB_2EXP(sub_2exp_unsigned_int, unsigned char, unsigned char)
PPL_SPECIALIZE_SUB_2EXP(sub_2exp_unsigned_int, unsigned short, unsigned short)
PPL_SPECIALIZE_SUB_2EXP(sub_2exp_unsigned_int, unsigned int, unsigned int)
PPL_SPECIALIZE_SUB_2EXP(sub_2exp_unsigned_int, unsigned long, unsigned long)
PPL_SPECIALIZE_SUB_2EXP(sub_2exp_unsigned_int, unsigned long long, unsigned long long)
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_MUL_2EXP(mul_2exp_signed_int, char, char)
#endif
PPL_SPECIALIZE_MUL_2EXP(mul_2exp_signed_int, signed char, signed char)
PPL_SPECIALIZE_MUL_2EXP(mul_2exp_signed_int, signed short, signed short)
PPL_SPECIALIZE_MUL_2EXP(mul_2exp_signed_int, signed int, signed int)
PPL_SPECIALIZE_MUL_2EXP(mul_2exp_signed_int, signed long, signed long)
PPL_SPECIALIZE_MUL_2EXP(mul_2exp_signed_int, signed long long, signed long long)
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_MUL_2EXP(mul_2exp_unsigned_int, char, char)
#endif
PPL_SPECIALIZE_MUL_2EXP(mul_2exp_unsigned_int, unsigned char, unsigned char)
PPL_SPECIALIZE_MUL_2EXP(mul_2exp_unsigned_int, unsigned short, unsigned short)
PPL_SPECIALIZE_MUL_2EXP(mul_2exp_unsigned_int, unsigned int, unsigned int)
PPL_SPECIALIZE_MUL_2EXP(mul_2exp_unsigned_int, unsigned long, unsigned long)
PPL_SPECIALIZE_MUL_2EXP(mul_2exp_unsigned_int, unsigned long long, unsigned long long)
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_DIV_2EXP(div_2exp_signed_int, char, char)
#endif
PPL_SPECIALIZE_DIV_2EXP(div_2exp_signed_int, signed char, signed char)
PPL_SPECIALIZE_DIV_2EXP(div_2exp_signed_int, signed short, signed short)
PPL_SPECIALIZE_DIV_2EXP(div_2exp_signed_int, signed int, signed int)
PPL_SPECIALIZE_DIV_2EXP(div_2exp_signed_int, signed long, signed long)
PPL_SPECIALIZE_DIV_2EXP(div_2exp_signed_int, signed long long, signed long long)
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_DIV_2EXP(div_2exp_unsigned_int, char, char)
#endif
PPL_SPECIALIZE_DIV_2EXP(div_2exp_unsigned_int, unsigned char, unsigned char)
PPL_SPECIALIZE_DIV_2EXP(div_2exp_unsigned_int, unsigned short, unsigned short)
PPL_SPECIALIZE_DIV_2EXP(div_2exp_unsigned_int, unsigned int, unsigned int)
PPL_SPECIALIZE_DIV_2EXP(div_2exp_unsigned_int, unsigned long, unsigned long)
PPL_SPECIALIZE_DIV_2EXP(div_2exp_unsigned_int, unsigned long long, unsigned long long)
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_SMOD_2EXP(smod_2exp_signed_int, char, char)
#endif
PPL_SPECIALIZE_SMOD_2EXP(smod_2exp_signed_int, signed char, signed char)
PPL_SPECIALIZE_SMOD_2EXP(smod_2exp_signed_int, signed short, signed short)
PPL_SPECIALIZE_SMOD_2EXP(smod_2exp_signed_int, signed int, signed int)
PPL_SPECIALIZE_SMOD_2EXP(smod_2exp_signed_int, signed long, signed long)
PPL_SPECIALIZE_SMOD_2EXP(smod_2exp_signed_int, signed long long, signed long long)
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_SMOD_2EXP(smod_2exp_unsigned_int, char, char)
#endif
PPL_SPECIALIZE_SMOD_2EXP(smod_2exp_unsigned_int, unsigned char, unsigned char)
PPL_SPECIALIZE_SMOD_2EXP(smod_2exp_unsigned_int, unsigned short, unsigned short)
PPL_SPECIALIZE_SMOD_2EXP(smod_2exp_unsigned_int, unsigned int, unsigned int)
PPL_SPECIALIZE_SMOD_2EXP(smod_2exp_unsigned_int, unsigned long, unsigned long)
PPL_SPECIALIZE_SMOD_2EXP(smod_2exp_unsigned_int, unsigned long long, unsigned long long)
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_UMOD_2EXP(umod_2exp_signed_int, char, char)
#endif
PPL_SPECIALIZE_UMOD_2EXP(umod_2exp_signed_int, signed char, signed char)
PPL_SPECIALIZE_UMOD_2EXP(umod_2exp_signed_int, signed short, signed short)
PPL_SPECIALIZE_UMOD_2EXP(umod_2exp_signed_int, signed int, signed int)
PPL_SPECIALIZE_UMOD_2EXP(umod_2exp_signed_int, signed long, signed long)
PPL_SPECIALIZE_UMOD_2EXP(umod_2exp_signed_int, signed long long, signed long long)
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_UMOD_2EXP(umod_2exp_unsigned_int, char, char)
#endif
PPL_SPECIALIZE_UMOD_2EXP(umod_2exp_unsigned_int, unsigned char, unsigned char)
PPL_SPECIALIZE_UMOD_2EXP(umod_2exp_unsigned_int, unsigned short, unsigned short)
PPL_SPECIALIZE_UMOD_2EXP(umod_2exp_unsigned_int, unsigned int, unsigned int)
PPL_SPECIALIZE_UMOD_2EXP(umod_2exp_unsigned_int, unsigned long, unsigned long)
PPL_SPECIALIZE_UMOD_2EXP(umod_2exp_unsigned_int, unsigned long long, unsigned long long)
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_SQRT(sqrt_signed_int, char, char)
#endif
PPL_SPECIALIZE_SQRT(sqrt_signed_int, signed char, signed char)
PPL_SPECIALIZE_SQRT(sqrt_signed_int, signed short, signed short)
PPL_SPECIALIZE_SQRT(sqrt_signed_int, signed int, signed int)
PPL_SPECIALIZE_SQRT(sqrt_signed_int, signed long, signed long)
PPL_SPECIALIZE_SQRT(sqrt_signed_int, signed long long, signed long long)
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_SQRT(sqrt_unsigned_int, char, char)
#endif
PPL_SPECIALIZE_SQRT(sqrt_unsigned_int, unsigned char, unsigned char)
PPL_SPECIALIZE_SQRT(sqrt_unsigned_int, unsigned short, unsigned short)
PPL_SPECIALIZE_SQRT(sqrt_unsigned_int, unsigned int, unsigned int)
PPL_SPECIALIZE_SQRT(sqrt_unsigned_int, unsigned long, unsigned long)
PPL_SPECIALIZE_SQRT(sqrt_unsigned_int, unsigned long long, unsigned long long)
#if PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_ABS(abs_generic, char, char)
#endif
PPL_SPECIALIZE_ABS(abs_generic, signed char, signed char)
PPL_SPECIALIZE_ABS(abs_generic, signed short, signed short)
PPL_SPECIALIZE_ABS(abs_generic, signed int, signed int)
PPL_SPECIALIZE_ABS(abs_generic, signed long, signed long)
PPL_SPECIALIZE_ABS(abs_generic, signed long long, signed long long)
#if !PPL_CXX_PLAIN_CHAR_IS_SIGNED
PPL_SPECIALIZE_ABS(assign_unsigned_int_unsigned_int, char, char)
#endif
PPL_SPECIALIZE_ABS(assign_unsigned_int_unsigned_int, unsigned char, unsigned char)
PPL_SPECIALIZE_ABS(assign_unsigned_int_unsigned_int, unsigned short, unsigned short)
PPL_SPECIALIZE_ABS(assign_unsigned_int_unsigned_int, unsigned int, unsigned int)
PPL_SPECIALIZE_ABS(assign_unsigned_int_unsigned_int, unsigned long, unsigned long)
PPL_SPECIALIZE_ABS(assign_unsigned_int_unsigned_int, unsigned long long, unsigned long long)
PPL_SPECIALIZE_GCD(gcd_exact, char, char, char)
PPL_SPECIALIZE_GCD(gcd_exact, signed char, signed char, signed char)
PPL_SPECIALIZE_GCD(gcd_exact, signed short, signed short, signed short)
PPL_SPECIALIZE_GCD(gcd_exact, signed int, signed int, signed int)
PPL_SPECIALIZE_GCD(gcd_exact, signed long, signed long, signed long)
PPL_SPECIALIZE_GCD(gcd_exact, signed long long, signed long long, signed long long)
PPL_SPECIALIZE_GCD(gcd_exact, unsigned char, unsigned char, unsigned char)
PPL_SPECIALIZE_GCD(gcd_exact, unsigned short, unsigned short, unsigned short)
PPL_SPECIALIZE_GCD(gcd_exact, unsigned int, unsigned int, unsigned int)
PPL_SPECIALIZE_GCD(gcd_exact, unsigned long, unsigned long, unsigned long)
PPL_SPECIALIZE_GCD(gcd_exact, unsigned long long, unsigned long long, unsigned long long)
PPL_SPECIALIZE_GCDEXT(gcdext_exact, char, char, char, char, char)
PPL_SPECIALIZE_GCDEXT(gcdext_exact, signed char, signed char, signed char, signed char, signed char)
PPL_SPECIALIZE_GCDEXT(gcdext_exact, signed short, signed short, signed short, signed short, signed short)
PPL_SPECIALIZE_GCDEXT(gcdext_exact, signed int, signed int, signed int, signed int, signed int)
PPL_SPECIALIZE_GCDEXT(gcdext_exact, signed long, signed long, signed long, signed long, signed long)
PPL_SPECIALIZE_GCDEXT(gcdext_exact, signed long long, signed long long, signed long long, signed long long, signed long long)
PPL_SPECIALIZE_GCDEXT(gcdext_exact, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)
PPL_SPECIALIZE_GCDEXT(gcdext_exact, unsigned short, unsigned short, unsigned short, unsigned short, unsigned short)
PPL_SPECIALIZE_GCDEXT(gcdext_exact, unsigned int, unsigned int, unsigned int, unsigned int, unsigned int)
PPL_SPECIALIZE_GCDEXT(gcdext_exact, unsigned long, unsigned long, unsigned long, unsigned long, unsigned long)
PPL_SPECIALIZE_GCDEXT(gcdext_exact, unsigned long long, unsigned long long, unsigned long long, unsigned long long, unsigned long long)
PPL_SPECIALIZE_LCM(lcm_gcd_exact, char, char, char)
PPL_SPECIALIZE_LCM(lcm_gcd_exact, signed char, signed char, signed char)
PPL_SPECIALIZE_LCM(lcm_gcd_exact, signed short, signed short, signed short)
PPL_SPECIALIZE_LCM(lcm_gcd_exact, signed int, signed int, signed int)
PPL_SPECIALIZE_LCM(lcm_gcd_exact, signed long, signed long, signed long)
PPL_SPECIALIZE_LCM(lcm_gcd_exact, signed long long, signed long long, signed long long)
PPL_SPECIALIZE_LCM(lcm_gcd_exact, unsigned char, unsigned char, unsigned char)
PPL_SPECIALIZE_LCM(lcm_gcd_exact, unsigned short, unsigned short, unsigned short)
PPL_SPECIALIZE_LCM(lcm_gcd_exact, unsigned int, unsigned int, unsigned int)
PPL_SPECIALIZE_LCM(lcm_gcd_exact, unsigned long, unsigned long, unsigned long)
PPL_SPECIALIZE_LCM(lcm_gcd_exact, unsigned long long, unsigned long long, unsigned long long)
PPL_SPECIALIZE_SGN(sgn_generic, char)
PPL_SPECIALIZE_SGN(sgn_generic, signed char)
PPL_SPECIALIZE_SGN(sgn_generic, signed short)
PPL_SPECIALIZE_SGN(sgn_generic, signed int)
PPL_SPECIALIZE_SGN(sgn_generic, signed long)
PPL_SPECIALIZE_SGN(sgn_generic, signed long long)
PPL_SPECIALIZE_SGN(sgn_generic, unsigned char)
PPL_SPECIALIZE_SGN(sgn_generic, unsigned short)
PPL_SPECIALIZE_SGN(sgn_generic, unsigned int)
PPL_SPECIALIZE_SGN(sgn_generic, unsigned long)
PPL_SPECIALIZE_SGN(sgn_generic, unsigned long long)
PPL_SPECIALIZE_CMP(cmp_generic, char, char)
PPL_SPECIALIZE_CMP(cmp_generic, signed char, signed char)
PPL_SPECIALIZE_CMP(cmp_generic, signed short, signed short)
PPL_SPECIALIZE_CMP(cmp_generic, signed int, signed int)
PPL_SPECIALIZE_CMP(cmp_generic, signed long, signed long)
PPL_SPECIALIZE_CMP(cmp_generic, signed long long, signed long long)
PPL_SPECIALIZE_CMP(cmp_generic, unsigned char, unsigned char)
PPL_SPECIALIZE_CMP(cmp_generic, unsigned short, unsigned short)
PPL_SPECIALIZE_CMP(cmp_generic, unsigned int, unsigned int)
PPL_SPECIALIZE_CMP(cmp_generic, unsigned long, unsigned long)
PPL_SPECIALIZE_CMP(cmp_generic, unsigned long long, unsigned long long)
PPL_SPECIALIZE_ADD_MUL(add_mul_int, char, char, char)
PPL_SPECIALIZE_ADD_MUL(add_mul_int, signed char, signed char, signed char)
PPL_SPECIALIZE_ADD_MUL(add_mul_int, signed short, signed short, signed short)
PPL_SPECIALIZE_ADD_MUL(add_mul_int, signed int, signed int, signed int)
PPL_SPECIALIZE_ADD_MUL(add_mul_int, signed long, signed long, signed long)
PPL_SPECIALIZE_ADD_MUL(add_mul_int, signed long long, signed long long, signed long long)
PPL_SPECIALIZE_ADD_MUL(add_mul_int, unsigned char, unsigned char, unsigned char)
PPL_SPECIALIZE_ADD_MUL(add_mul_int, unsigned short, unsigned short, unsigned short)
PPL_SPECIALIZE_ADD_MUL(add_mul_int, unsigned int, unsigned int, unsigned int)
PPL_SPECIALIZE_ADD_MUL(add_mul_int, unsigned long, unsigned long, unsigned long)
PPL_SPECIALIZE_ADD_MUL(add_mul_int, unsigned long long, unsigned long long, unsigned long long)
PPL_SPECIALIZE_SUB_MUL(sub_mul_int, char, char, char)
PPL_SPECIALIZE_SUB_MUL(sub_mul_int, signed char, signed char, signed char)
PPL_SPECIALIZE_SUB_MUL(sub_mul_int, signed short, signed short, signed short)
PPL_SPECIALIZE_SUB_MUL(sub_mul_int, signed int, signed int, signed int)
PPL_SPECIALIZE_SUB_MUL(sub_mul_int, signed long, signed long, signed long)
PPL_SPECIALIZE_SUB_MUL(sub_mul_int, signed long long, signed long long, signed long long)
PPL_SPECIALIZE_SUB_MUL(sub_mul_int, unsigned char, unsigned char, unsigned char)
PPL_SPECIALIZE_SUB_MUL(sub_mul_int, unsigned short, unsigned short, unsigned short)
PPL_SPECIALIZE_SUB_MUL(sub_mul_int, unsigned int, unsigned int, unsigned int)
PPL_SPECIALIZE_SUB_MUL(sub_mul_int, unsigned long, unsigned long, unsigned long)
PPL_SPECIALIZE_SUB_MUL(sub_mul_int, unsigned long long, unsigned long long, unsigned long long)
PPL_SPECIALIZE_INPUT(input_generic, char)
PPL_SPECIALIZE_INPUT(input_generic, signed char)
PPL_SPECIALIZE_INPUT(input_generic, signed short)
PPL_SPECIALIZE_INPUT(input_generic, signed int)
PPL_SPECIALIZE_INPUT(input_generic, signed long)
PPL_SPECIALIZE_INPUT(input_generic, signed long long)
PPL_SPECIALIZE_INPUT(input_generic, unsigned char)
PPL_SPECIALIZE_INPUT(input_generic, unsigned short)
PPL_SPECIALIZE_INPUT(input_generic, unsigned int)
PPL_SPECIALIZE_INPUT(input_generic, unsigned long)
PPL_SPECIALIZE_INPUT(input_generic, unsigned long long)
PPL_SPECIALIZE_OUTPUT(output_char, char)
PPL_SPECIALIZE_OUTPUT(output_char, signed char)
PPL_SPECIALIZE_OUTPUT(output_int, signed short)
PPL_SPECIALIZE_OUTPUT(output_int, signed int)
PPL_SPECIALIZE_OUTPUT(output_int, signed long)
PPL_SPECIALIZE_OUTPUT(output_int, signed long long)
PPL_SPECIALIZE_OUTPUT(output_char, unsigned char)
PPL_SPECIALIZE_OUTPUT(output_int, unsigned short)
PPL_SPECIALIZE_OUTPUT(output_int, unsigned int)
PPL_SPECIALIZE_OUTPUT(output_int, unsigned long)
PPL_SPECIALIZE_OUTPUT(output_int, unsigned long long)
} // namespace Checked
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/checked_float_inlines.hh line 1. */
/* Specialized "checked" functions for native floating-point numbers.
*/
/* Automatically generated from PPL source file ../src/checked_float_inlines.hh line 28. */
#include <cmath>
namespace Parma_Polyhedra_Library {
namespace Checked {
inline float
multiply_add(float x, float y, float z) {
#if PPL_HAVE_DECL_FMAF && defined(FP_FAST_FMAF) \
&& !defined(__alpha) && !defined(__FreeBSD__)
return fmaf(x, y, z);
#else
return x*y + z;
#endif
}
inline double
multiply_add(double x, double y, double z) {
#if PPL_HAVE_DECL_FMA && defined(FP_FAST_FMA) \
&& !defined(__alpha) && !defined(__FreeBSD__)
return fma(x, y, z);
#else
return x*y + z;
#endif
}
inline long double
multiply_add(long double x, long double y, long double z) {
#if PPL_HAVE_DECL_FMAL && defined(FP_FAST_FMAL) \
&& !defined(__alpha) && !defined(__FreeBSD__)
return fmal(x, y, z);
#else
return x*y + z;
#endif
}
#if PPL_HAVE_DECL_RINTF
inline float
round_to_integer(float x) {
return rintf(x);
}
#endif
inline double
round_to_integer(double x) {
return rint(x);
}
#if PPL_HAVE_DECL_RINTL
inline long double
round_to_integer(long double x) {
return rintl(x);
}
#elif !PPL_CXX_PROVIDES_PROPER_LONG_DOUBLE
// If proper long doubles are not provided, this is most likely
// because long double and double are the same type: use rint().
inline long double
round_to_integer(long double x) {
return rint(x);
}
#elif defined(__i386__) && (defined(__GNUC__) || defined(__INTEL_COMPILER))
// On Cygwin, we have proper long doubles but rintl() is not defined:
// luckily, one machine instruction is enough to save the day.
inline long double
round_to_integer(long double x) {
long double i;
__asm__ ("frndint" : "=t" (i) : "0" (x));
return i;
}
#endif
inline bool
fpu_direct_rounding(Rounding_Dir dir) {
return round_direct(dir) || round_not_requested(dir);
}
inline bool
fpu_inverse_rounding(Rounding_Dir dir) {
return round_inverse(dir);
}
// The FPU mode is "round down".
//
// The result of the rounded down multiplication is thus computed directly.
//
// a = 0.3
// b = 0.1
// c_i = a * b = 0.03
// c = c_i = 0.0
//
// To obtain the result of the rounded up multiplication
// we do -(-a * b).
//
// a = 0.3
// b = 0.1
// c_i = -a * b = -0.03
//
// Here c_i should be forced to lose excess precision, otherwise the
// FPU will truncate using the rounding mode in force, which is "round down".
//
// c_i = -c_i = 0.03
// c = c_i = 0.0
//
// Wrong result: we should have obtained c = 0.1.
inline void
limit_precision(const float& v) {
PPL_CC_FLUSH(v);
}
inline void
limit_precision(const double& v) {
PPL_CC_FLUSH(v);
}
inline void
limit_precision(const long double&) {
}
template <typename Policy, typename T>
inline Result
classify_float(const T v, bool nan, bool inf, bool sign) {
Float<T> f(v);
if ((nan || sign) && CHECK_P(Policy::has_nan, f.u.binary.is_nan()))
return V_NAN;
if (inf) {
if (Policy::has_infinity) {
int sign_inf = f.u.binary.inf_sign();
if (sign_inf < 0)
return V_EQ_MINUS_INFINITY;
if (sign_inf > 0)
return V_EQ_PLUS_INFINITY;
}
else
PPL_ASSERT(f.u.binary.inf_sign() == 0);
}
if (sign) {
if (v < 0)
return V_LT;
if (v > 0)
return V_GT;
return V_EQ;
}
return V_LGE;
}
template <typename Policy, typename T>
inline bool
is_nan_float(const T v) {
Float<T> f(v);
return CHECK_P(Policy::has_nan, f.u.binary.is_nan());
}
template <typename Policy, typename T>
inline bool
is_inf_float(const T v) {
Float<T> f(v);
return CHECK_P(Policy::has_infinity, (f.u.binary.inf_sign() != 0));
}
template <typename Policy, typename T>
inline bool
is_minf_float(const T v) {
Float<T> f(v);
return CHECK_P(Policy::has_infinity, (f.u.binary.inf_sign() < 0));
}
template <typename Policy, typename T>
inline bool
is_pinf_float(const T v) {
Float<T> f(v);
return CHECK_P(Policy::has_infinity, (f.u.binary.inf_sign() > 0));
}
template <typename Policy, typename T>
inline bool
is_int_float(const T v) {
return round_to_integer(v) == v;
}
template <typename Policy, typename T>
inline Result
assign_special_float(T& v, Result_Class c, Rounding_Dir) {
PPL_ASSERT(c == VC_MINUS_INFINITY || c == VC_PLUS_INFINITY || c == VC_NAN);
switch (c) {
case VC_MINUS_INFINITY:
v = -HUGE_VAL;
return V_EQ_MINUS_INFINITY;
case VC_PLUS_INFINITY:
v = HUGE_VAL;
return V_EQ_PLUS_INFINITY;
case VC_NAN:
v = PPL_NAN;
return V_NAN;
default:
PPL_UNREACHABLE;
return V_NAN | V_UNREPRESENTABLE;
}
}
template <typename T>
inline void
pred_float(T& v) {
Float<T> f(v);
PPL_ASSERT(!f.u.binary.is_nan());
PPL_ASSERT(f.u.binary.inf_sign() >= 0);
if (f.u.binary.zero_sign() > 0) {
f.u.binary.negate();
f.u.binary.inc();
}
else if (f.u.binary.sign_bit()) {
f.u.binary.inc();
}
else {
f.u.binary.dec();
}
v = f.value();
}
template <typename T>
inline void
succ_float(T& v) {
Float<T> f(v);
PPL_ASSERT(!f.u.binary.is_nan());
PPL_ASSERT(f.u.binary.inf_sign() <= 0);
if (f.u.binary.zero_sign() < 0) {
f.u.binary.negate();
f.u.binary.inc();
}
else if (!f.u.binary.sign_bit()) {
f.u.binary.inc();
}
else {
f.u.binary.dec();
}
v = f.value();
}
template <typename Policy, typename To>
inline Result
round_lt_float(To& to, Rounding_Dir dir) {
if (round_down(dir)) {
pred_float(to);
return V_GT;
}
return V_LT;
}
template <typename Policy, typename To>
inline Result
round_gt_float(To& to, Rounding_Dir dir) {
if (round_up(dir)) {
succ_float(to);
return V_LT;
}
return V_GT;
}
template <typename Policy>
inline void
prepare_inexact(Rounding_Dir dir) {
if (Policy::fpu_check_inexact
&& !round_not_needed(dir) && round_strict_relation(dir))
fpu_reset_inexact();
}
template <typename Policy>
inline Result
result_relation(Rounding_Dir dir) {
if (Policy::fpu_check_inexact
&& !round_not_needed(dir) && round_strict_relation(dir)) {
switch (fpu_check_inexact()) {
case 0:
return V_EQ;
case -1:
goto unknown;
case 1:
break;
}
switch (round_dir(dir)) {
case ROUND_DOWN:
return V_GT;
case ROUND_UP:
return V_LT;
default:
return V_NE;
}
}
else {
unknown:
switch (round_dir(dir)) {
case ROUND_DOWN:
return V_GE;
case ROUND_UP:
return V_LE;
default:
return V_LGE;
}
}
}
template <typename To_Policy, typename From_Policy, typename To, typename From>
inline Result
assign_float_float_exact(To& to, const From from, Rounding_Dir) {
if (To_Policy::fpu_check_nan_result && is_nan<From_Policy>(from))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
to = from;
return V_EQ;
}
template <typename To_Policy, typename From_Policy, typename To, typename From>
inline Result
assign_float_float_inexact(To& to, const From from, Rounding_Dir dir) {
if (To_Policy::fpu_check_nan_result && is_nan<From_Policy>(from))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
prepare_inexact<To_Policy>(dir);
if (fpu_direct_rounding(dir))
to = from;
else if (fpu_inverse_rounding(dir)) {
From tmp = -from;
to = tmp;
limit_precision(to);
to = -to;
}
else {
fpu_rounding_control_word_type old
= fpu_save_rounding_direction(round_fpu_dir(dir));
limit_precision(from);
to = from;
limit_precision(to);
fpu_restore_rounding_direction(old);
}
return result_relation<To_Policy>(dir);
}
template <typename To_Policy, typename From_Policy, typename To, typename From>
inline Result
assign_float_float(To& to, const From from, Rounding_Dir dir) {
if (sizeof(From) > sizeof(To))
return assign_float_float_inexact<To_Policy, From_Policy>(to, from, dir);
else
return assign_float_float_exact<To_Policy, From_Policy>(to, from, dir);
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
floor_float(Type& to, const Type from, Rounding_Dir) {
if (To_Policy::fpu_check_nan_result && is_nan<From_Policy>(from))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
if (fpu_direct_rounding(ROUND_DOWN))
to = round_to_integer(from);
else if (fpu_inverse_rounding(ROUND_DOWN)) {
to = round_to_integer(-from);
limit_precision(to);
to = -to;
}
else {
fpu_rounding_control_word_type old
= fpu_save_rounding_direction(round_fpu_dir(ROUND_DOWN));
limit_precision(from);
to = round_to_integer(from);
limit_precision(to);
fpu_restore_rounding_direction(old);
}
return V_EQ;
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
ceil_float(Type& to, const Type from, Rounding_Dir) {
if (To_Policy::fpu_check_nan_result && is_nan<From_Policy>(from))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
if (fpu_direct_rounding(ROUND_UP))
to = round_to_integer(from);
else if (fpu_inverse_rounding(ROUND_UP)) {
to = round_to_integer(-from);
limit_precision(to);
to = -to;
}
else {
fpu_rounding_control_word_type old
= fpu_save_rounding_direction(round_fpu_dir(ROUND_UP));
limit_precision(from);
to = round_to_integer(from);
limit_precision(to);
fpu_restore_rounding_direction(old);
}
return V_EQ;
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
trunc_float(Type& to, const Type from, Rounding_Dir dir) {
if (To_Policy::fpu_check_nan_result && is_nan<From_Policy>(from))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
if (from >= 0)
return floor<To_Policy, From_Policy>(to, from, dir);
else
return ceil<To_Policy, From_Policy>(to, from, dir);
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
neg_float(Type& to, const Type from, Rounding_Dir) {
if (To_Policy::fpu_check_nan_result && is_nan<From_Policy>(from))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
to = -from;
return V_EQ;
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
add_float(Type& to, const Type x, const Type y, Rounding_Dir dir) {
if (To_Policy::check_inf_add_inf
&& is_inf_float<From1_Policy>(x) && x == -y) {
return assign_nan<To_Policy>(to, V_INF_ADD_INF);
}
prepare_inexact<To_Policy>(dir);
if (fpu_direct_rounding(dir))
to = x + y;
else if (fpu_inverse_rounding(dir)) {
to = -x - y;
limit_precision(to);
to = -to;
}
else {
fpu_rounding_control_word_type old
= fpu_save_rounding_direction(round_fpu_dir(dir));
limit_precision(x);
limit_precision(y);
to = x + y;
limit_precision(to);
fpu_restore_rounding_direction(old);
}
if (To_Policy::fpu_check_nan_result && is_nan<To_Policy>(to))
return V_NAN;
return result_relation<To_Policy>(dir);
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
sub_float(Type& to, const Type x, const Type y, Rounding_Dir dir) {
if (To_Policy::check_inf_sub_inf
&& is_inf_float<From1_Policy>(x) && x == y) {
return assign_nan<To_Policy>(to, V_INF_SUB_INF);
}
prepare_inexact<To_Policy>(dir);
if (fpu_direct_rounding(dir))
to = x - y;
else if (fpu_inverse_rounding(dir)) {
to = y - x;
limit_precision(to);
to = -to;
}
else {
fpu_rounding_control_word_type old
= fpu_save_rounding_direction(round_fpu_dir(dir));
limit_precision(x);
limit_precision(y);
to = x - y;
limit_precision(to);
fpu_restore_rounding_direction(old);
}
if (To_Policy::fpu_check_nan_result && is_nan<To_Policy>(to))
return V_NAN;
return result_relation<To_Policy>(dir);
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
mul_float(Type& to, const Type x, const Type y, Rounding_Dir dir) {
if (To_Policy::check_inf_mul_zero
&& ((x == 0 && is_inf_float<From2_Policy>(y))
||
(y == 0 && is_inf_float<From1_Policy>(x)))) {
return assign_nan<To_Policy>(to, V_INF_MUL_ZERO);
}
prepare_inexact<To_Policy>(dir);
if (fpu_direct_rounding(dir))
to = x * y;
else if (fpu_inverse_rounding(dir)) {
to = x * -y;
limit_precision(to);
to = -to;
}
else {
fpu_rounding_control_word_type old
= fpu_save_rounding_direction(round_fpu_dir(dir));
limit_precision(x);
limit_precision(y);
to = x * y;
limit_precision(to);
fpu_restore_rounding_direction(old);
}
if (To_Policy::fpu_check_nan_result && is_nan<To_Policy>(to))
return V_NAN;
return result_relation<To_Policy>(dir);
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
div_float(Type& to, const Type x, const Type y, Rounding_Dir dir) {
if (To_Policy::check_inf_div_inf
&& is_inf_float<From1_Policy>(x) && is_inf_float<From2_Policy>(y)) {
return assign_nan<To_Policy>(to, V_INF_DIV_INF);
}
if (To_Policy::check_div_zero && y == 0) {
return assign_nan<To_Policy>(to, V_DIV_ZERO);
}
prepare_inexact<To_Policy>(dir);
if (fpu_direct_rounding(dir))
to = x / y;
else if (fpu_inverse_rounding(dir)) {
to = x / -y;
limit_precision(to);
to = -to;
}
else {
fpu_rounding_control_word_type old
= fpu_save_rounding_direction(round_fpu_dir(dir));
limit_precision(x);
limit_precision(y);
to = x / y;
limit_precision(to);
fpu_restore_rounding_direction(old);
}
if (To_Policy::fpu_check_nan_result && is_nan<To_Policy>(to))
return V_NAN;
return result_relation<To_Policy>(dir);
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
idiv_float(Type& to, const Type x, const Type y, Rounding_Dir dir) {
Type temp;
// The inexact check is useless
dir = round_dir(dir);
Result r = div<To_Policy, From1_Policy, From2_Policy>(temp, x, y, dir);
if (result_class(r) != VC_NORMAL) {
to = temp;
return r;
}
Result r1 = trunc<To_Policy, To_Policy>(to, temp, ROUND_NOT_NEEDED);
PPL_ASSERT(r1 == V_EQ);
if (r == V_EQ || to != temp)
return r1;
// FIXME: Prove that it is impossible to return a strict relation
return (dir == ROUND_UP) ? V_LE : V_GE;
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
rem_float(Type& to, const Type x, const Type y, Rounding_Dir) {
if (To_Policy::check_inf_mod && is_inf_float<From1_Policy>(x)) {
return assign_nan<To_Policy>(to, V_INF_MOD);
}
if (To_Policy::check_div_zero && y == 0) {
return assign_nan<To_Policy>(to, V_MOD_ZERO);
}
to = std::fmod(x, y);
if (To_Policy::fpu_check_nan_result && is_nan<To_Policy>(to))
return V_NAN;
return V_EQ;
}
struct Float_2exp {
const_bool_nodef(has_nan, false);
const_bool_nodef(has_infinity, false);
};
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
add_2exp_float(Type& to, const Type x, unsigned int exp, Rounding_Dir dir) {
if (To_Policy::fpu_check_nan_result && is_nan<From_Policy>(x))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
PPL_ASSERT(exp < sizeof_to_bits(sizeof(unsigned long long)));
return
add<To_Policy, From_Policy, Float_2exp>(to,
x,
Type(1ULL << exp),
dir);
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
sub_2exp_float(Type& to, const Type x, unsigned int exp, Rounding_Dir dir) {
if (To_Policy::fpu_check_nan_result && is_nan<From_Policy>(x))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
PPL_ASSERT(exp < sizeof_to_bits(sizeof(unsigned long long)));
return
sub<To_Policy, From_Policy, Float_2exp>(to,
x,
Type(1ULL << exp),
dir);
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
mul_2exp_float(Type& to, const Type x, unsigned int exp, Rounding_Dir dir) {
if (To_Policy::fpu_check_nan_result && is_nan<From_Policy>(x))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
PPL_ASSERT(exp < sizeof_to_bits(sizeof(unsigned long long)));
return
mul<To_Policy, From_Policy, Float_2exp>(to,
x,
Type(1ULL << exp),
dir);
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
div_2exp_float(Type& to, const Type x, unsigned int exp, Rounding_Dir dir) {
if (To_Policy::fpu_check_nan_result && is_nan<From_Policy>(x))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
PPL_ASSERT(exp < sizeof_to_bits(sizeof(unsigned long long)));
return
div<To_Policy, From_Policy, Float_2exp>(to,
x,
Type(1ULL << exp),
dir);
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
smod_2exp_float(Type& to, const Type x, unsigned int exp, Rounding_Dir dir) {
if (To_Policy::fpu_check_nan_result && is_nan<From_Policy>(x))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
if (To_Policy::check_inf_mod && is_inf_float<From_Policy>(x)) {
return assign_nan<To_Policy>(to, V_INF_MOD);
}
PPL_ASSERT(exp < sizeof_to_bits(sizeof(unsigned long long)));
Type m = 1ULL << exp;
rem_float<To_Policy, From_Policy, Float_2exp>(to, x, m, ROUND_IGNORE);
Type m2 = m / 2;
if (to < -m2)
return add_float<To_Policy, From_Policy, Float_2exp>(to, to, m, dir);
else if (to >= m2)
return sub_float<To_Policy, From_Policy, Float_2exp>(to, to, m, dir);
return V_EQ;
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
umod_2exp_float(Type& to, const Type x, unsigned int exp, Rounding_Dir dir) {
if (To_Policy::fpu_check_nan_result && is_nan<From_Policy>(x))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
if (To_Policy::check_inf_mod && is_inf_float<From_Policy>(x)) {
return assign_nan<To_Policy>(to, V_INF_MOD);
}
PPL_ASSERT(exp < sizeof_to_bits(sizeof(unsigned long long)));
Type m = 1ULL << exp;
rem_float<To_Policy, From_Policy, Float_2exp>(to, x, m, ROUND_IGNORE);
if (to < 0)
return add_float<To_Policy, From_Policy, Float_2exp>(to, to, m, dir);
return V_EQ;
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
abs_float(Type& to, const Type from, Rounding_Dir) {
if (To_Policy::fpu_check_nan_result && is_nan<From_Policy>(from))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
to = std::abs(from);
return V_EQ;
}
template <typename To_Policy, typename From_Policy, typename Type>
inline Result
sqrt_float(Type& to, const Type from, Rounding_Dir dir) {
if (To_Policy::fpu_check_nan_result && is_nan<From_Policy>(from))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
if (To_Policy::check_sqrt_neg && from < 0) {
return assign_nan<To_Policy>(to, V_SQRT_NEG);
}
prepare_inexact<To_Policy>(dir);
if (fpu_direct_rounding(dir))
to = std::sqrt(from);
else {
fpu_rounding_control_word_type old
= fpu_save_rounding_direction(round_fpu_dir(dir));
limit_precision(from);
to = std::sqrt(from);
limit_precision(to);
fpu_restore_rounding_direction(old);
}
return result_relation<To_Policy>(dir);
}
template <typename Policy, typename Type>
inline Result_Relation
sgn_float(const Type x) {
if (x > 0)
return VR_GT;
if (x < 0)
return VR_LT;
if (x == 0)
return VR_EQ;
return VR_EMPTY;
}
template <typename Policy1, typename Policy2, typename Type>
inline Result_Relation
cmp_float(const Type x, const Type y) {
if (x > y)
return VR_GT;
if (x < y)
return VR_LT;
if (x == y)
return VR_EQ;
return VR_EMPTY;
}
template <typename To_Policy, typename From_Policy, typename To, typename From>
inline Result
assign_float_int_inexact(To& to, const From from, Rounding_Dir dir) {
prepare_inexact<To_Policy>(dir);
if (fpu_direct_rounding(dir))
to = from;
else {
fpu_rounding_control_word_type old
= fpu_save_rounding_direction(round_fpu_dir(dir));
to = from;
limit_precision(to);
fpu_restore_rounding_direction(old);
}
return result_relation<To_Policy>(dir);
}
template <typename To_Policy, typename From_Policy, typename To, typename From>
inline Result
assign_float_int(To& to, const From from, Rounding_Dir dir) {
if (sizeof_to_bits(sizeof(From)) > Float<To>::Binary::MANTISSA_BITS)
return assign_float_int_inexact<To_Policy, From_Policy>(to, from, dir);
else
return assign_exact<To_Policy, From_Policy>(to, from, dir);
}
template <typename Policy, typename T>
inline Result
set_neg_overflow_float(T& to, Rounding_Dir dir) {
switch (round_dir(dir)) {
case ROUND_UP:
{
Float<T> f;
f.u.binary.set_max(true);
to = f.value();
return V_LT_INF;
}
case ROUND_DOWN: // Fall through.
case ROUND_IGNORE:
to = -HUGE_VAL;
return V_GT_MINUS_INFINITY;
default:
PPL_UNREACHABLE;
return V_GT_MINUS_INFINITY;
}
}
template <typename Policy, typename T>
inline Result
set_pos_overflow_float(T& to, Rounding_Dir dir) {
switch (round_dir(dir)) {
case ROUND_DOWN:
{
Float<T> f;
f.u.binary.set_max(false);
to = f.value();
return V_GT_SUP;
}
case ROUND_UP: // Fall through.
case ROUND_IGNORE:
to = HUGE_VAL;
return V_LT_PLUS_INFINITY;
default:
PPL_UNREACHABLE;
return V_LT_PLUS_INFINITY;
}
}
template <typename To_Policy, typename From_Policy, typename T>
inline Result
assign_float_mpz(T& to, const mpz_class& from, Rounding_Dir dir) {
int sign = sgn(from);
if (sign == 0) {
to = 0;
return V_EQ;
}
mpz_srcptr from_z = from.get_mpz_t();
size_t exponent = mpz_sizeinbase(from_z, 2) - 1;
if (exponent > size_t(Float<T>::Binary::EXPONENT_MAX)) {
if (sign < 0)
return set_neg_overflow_float<To_Policy>(to, dir);
else
return set_pos_overflow_float<To_Policy>(to, dir);
}
unsigned long zeroes = mpn_scan1(from_z->_mp_d, 0);
size_t meaningful_bits = exponent - zeroes;
mpz_t mantissa;
mpz_init(mantissa);
if (exponent > Float<T>::Binary::MANTISSA_BITS)
mpz_tdiv_q_2exp(mantissa,
from_z,
exponent - Float<T>::Binary::MANTISSA_BITS);
else
mpz_mul_2exp(mantissa, from_z, Float<T>::Binary::MANTISSA_BITS - exponent);
Float<T> f;
f.u.binary.build(sign < 0, mantissa, static_cast<long>(exponent));
mpz_clear(mantissa);
to = f.value();
if (meaningful_bits > Float<T>::Binary::MANTISSA_BITS) {
if (sign < 0)
return round_lt_float<To_Policy>(to, dir);
else
return round_gt_float<To_Policy>(to, dir);
}
return V_EQ;
}
template <typename To_Policy, typename From_Policy, typename T>
inline Result
assign_float_mpq(T& to, const mpq_class& from, Rounding_Dir dir) {
const mpz_class& numer = from.get_num();
const mpz_class& denom = from.get_den();
if (denom == 1)
return assign_float_mpz<To_Policy, From_Policy>(to, numer, dir);
mpz_srcptr numer_z = numer.get_mpz_t();
mpz_srcptr denom_z = denom.get_mpz_t();
int sign = sgn(numer);
long exponent = static_cast<long>(mpz_sizeinbase(numer_z, 2))
- static_cast<long>(mpz_sizeinbase(denom_z, 2));
if (exponent < Float<T>::Binary::EXPONENT_MIN_DENORM) {
to = 0;
inexact:
if (sign < 0)
return round_lt_float<To_Policy>(to, dir);
else
return round_gt_float<To_Policy>(to, dir);
}
if (exponent > Float<T>::Binary::EXPONENT_MAX + 1) {
overflow:
if (sign < 0)
return set_neg_overflow_float<To_Policy>(to, dir);
else
return set_pos_overflow_float<To_Policy>(to, dir);
}
unsigned int needed_bits = Float<T>::Binary::MANTISSA_BITS + 1;
if (exponent < Float<T>::Binary::EXPONENT_MIN) {
long diff = Float<T>::Binary::EXPONENT_MIN - exponent;
needed_bits -= static_cast<unsigned int>(diff);
}
mpz_t mantissa;
mpz_init(mantissa);
{
long shift = static_cast<long>(needed_bits) - exponent;
if (shift > 0) {
mpz_mul_2exp(mantissa, numer_z, static_cast<unsigned long>(shift));
numer_z = mantissa;
}
else if (shift < 0) {
shift = -shift;
mpz_mul_2exp(mantissa, denom_z, static_cast<unsigned long>(shift));
denom_z = mantissa;
}
}
mpz_t r;
mpz_init(r);
mpz_tdiv_qr(mantissa, r, numer_z, denom_z);
size_t bits = mpz_sizeinbase(mantissa, 2);
bool inexact = (mpz_sgn(r) != 0);
mpz_clear(r);
if (bits == needed_bits + 1) {
inexact = (inexact || mpz_odd_p(mantissa));
mpz_tdiv_q_2exp(mantissa, mantissa, 1);
}
else
--exponent;
if (exponent > Float<T>::Binary::EXPONENT_MAX) {
mpz_clear(mantissa);
goto overflow;
}
else if (exponent < Float<T>::Binary::EXPONENT_MIN - 1) {
// Denormalized.
exponent = Float<T>::Binary::EXPONENT_MIN - 1;
}
Float<T> f;
f.u.binary.build(sign < 0, mantissa, exponent);
mpz_clear(mantissa);
to = f.value();
if (inexact)
goto inexact;
return V_EQ;
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename Type>
inline Result
add_mul_float(Type& to, const Type x, const Type y, Rounding_Dir dir) {
if (To_Policy::check_inf_mul_zero
&& ((x == 0 && is_inf_float<From2_Policy>(y))
||
(y == 0 && is_inf_float<From1_Policy>(x)))) {
return assign_nan<To_Policy>(to, V_INF_MUL_ZERO);
}
// FIXME: missing check_inf_add_inf
prepare_inexact<To_Policy>(dir);
if (fpu_direct_rounding(dir))
to = multiply_add(x, y, to);
else if (fpu_inverse_rounding(dir)) {
to = multiply_add(-x, y, -to);
limit_precision(to);
to = -to;
}
else {
fpu_rounding_control_word_type old
= fpu_save_rounding_direction(round_fpu_dir(dir));
limit_precision(x);
limit_precision(y);
limit_precision(to);
to = multiply_add(x, y, to);
limit_precision(to);
fpu_restore_rounding_direction(old);
}
if (To_Policy::fpu_check_nan_result && is_nan<To_Policy>(to))
return V_NAN;
return result_relation<To_Policy>(dir);
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy, typename Type>
inline Result
sub_mul_float(Type& to, const Type x, const Type y, Rounding_Dir dir) {
if (To_Policy::check_inf_mul_zero
&& ((x == 0 && is_inf_float<From2_Policy>(y))
||
(y == 0 && is_inf_float<From1_Policy>(x)))) {
return assign_nan<To_Policy>(to, V_INF_MUL_ZERO);
}
// FIXME: missing check_inf_add_inf
prepare_inexact<To_Policy>(dir);
if (fpu_direct_rounding(dir))
to = multiply_add(x, -y, to);
else if (fpu_inverse_rounding(dir)) {
to = multiply_add(x, y, -to);
limit_precision(to);
to = -to;
}
else {
fpu_rounding_control_word_type old
= fpu_save_rounding_direction(round_fpu_dir(dir));
limit_precision(x);
limit_precision(y);
limit_precision(to);
to = multiply_add(x, -y, to);
limit_precision(to);
fpu_restore_rounding_direction(old);
}
if (To_Policy::fpu_check_nan_result && is_nan<To_Policy>(to))
return V_NAN;
return result_relation<To_Policy>(dir);
}
template <typename From>
inline void
assign_mpq_numeric_float(mpq_class& to, const From from) {
to = from;
}
template <>
inline void
assign_mpq_numeric_float(mpq_class& to, const long double from) {
to = 0;
if (from == 0.0L)
return;
mpz_class& num = to.get_num();
mpz_class& den = to.get_den();
int exp;
long double n = std::frexp(from, &exp);
bool neg = false;
if (n < 0.0L) {
neg = true;
n = -n;
}
const long double mult = static_cast<long double>(ULONG_MAX) + 1.0L;
const unsigned int bits = sizeof(unsigned long) * CHAR_BIT;
while (true) {
n *= mult;
exp -= bits;
const long double intpart = std::floor(n);
num += static_cast<unsigned long>(intpart);
n -= intpart;
if (n == 0.0L)
break;
num <<= bits;
}
if (exp < 0)
den <<= -exp;
else
num <<= exp;
if (neg)
to = -to;
to.canonicalize();
}
template <typename Policy, typename Type>
inline Result
output_float(std::ostream& os, const Type from, const Numeric_Format&,
Rounding_Dir) {
if (from == 0)
os << "0";
else if (is_minf<Policy>(from))
os << "-inf";
else if (is_pinf<Policy>(from))
os << "+inf";
else if (is_nan<Policy>(from))
os << "nan";
else {
mpq_class q;
assign_mpq_numeric_float(q, from);
std::string s = float_mpq_to_string(q);
os << s;
}
return V_EQ;
}
#if PPL_SUPPORTED_FLOAT
PPL_SPECIALIZE_ASSIGN(assign_float_float_exact, float, float)
#if PPL_SUPPORTED_DOUBLE
PPL_SPECIALIZE_ASSIGN(assign_float_float, float, double)
PPL_SPECIALIZE_ASSIGN(assign_float_float_exact, double, float)
#endif
#if PPL_SUPPORTED_LONG_DOUBLE
PPL_SPECIALIZE_ASSIGN(assign_float_float, float, long double)
PPL_SPECIALIZE_ASSIGN(assign_float_float_exact, long double, float)
#endif
#endif
#if PPL_SUPPORTED_DOUBLE
PPL_SPECIALIZE_ASSIGN(assign_float_float_exact, double, double)
#if PPL_SUPPORTED_LONG_DOUBLE
PPL_SPECIALIZE_ASSIGN(assign_float_float, double, long double)
PPL_SPECIALIZE_ASSIGN(assign_float_float_exact, long double, double)
#endif
#endif
#if PPL_SUPPORTED_LONG_DOUBLE
PPL_SPECIALIZE_ASSIGN(assign_float_float_exact, long double, long double)
#endif
#if PPL_SUPPORTED_FLOAT
PPL_SPECIALIZE_CLASSIFY(classify_float, float)
PPL_SPECIALIZE_IS_NAN(is_nan_float, float)
PPL_SPECIALIZE_IS_MINF(is_minf_float, float)
PPL_SPECIALIZE_IS_PINF(is_pinf_float, float)
PPL_SPECIALIZE_ASSIGN_SPECIAL(assign_special_float, float)
PPL_SPECIALIZE_ASSIGN(assign_float_int, float, char)
PPL_SPECIALIZE_ASSIGN(assign_float_int, float, signed char)
PPL_SPECIALIZE_ASSIGN(assign_float_int, float, signed short)
PPL_SPECIALIZE_ASSIGN(assign_float_int, float, signed int)
PPL_SPECIALIZE_ASSIGN(assign_float_int, float, signed long)
PPL_SPECIALIZE_ASSIGN(assign_float_int, float, signed long long)
PPL_SPECIALIZE_ASSIGN(assign_float_int, float, unsigned char)
PPL_SPECIALIZE_ASSIGN(assign_float_int, float, unsigned short)
PPL_SPECIALIZE_ASSIGN(assign_float_int, float, unsigned int)
PPL_SPECIALIZE_ASSIGN(assign_float_int, float, unsigned long)
PPL_SPECIALIZE_ASSIGN(assign_float_int, float, unsigned long long)
PPL_SPECIALIZE_ASSIGN(assign_float_mpz, float, mpz_class)
PPL_SPECIALIZE_ASSIGN(assign_float_mpq, float, mpq_class)
PPL_SPECIALIZE_COPY(copy_generic, float)
PPL_SPECIALIZE_IS_INT(is_int_float, float)
PPL_SPECIALIZE_FLOOR(floor_float, float, float)
PPL_SPECIALIZE_CEIL(ceil_float, float, float)
PPL_SPECIALIZE_TRUNC(trunc_float, float, float)
PPL_SPECIALIZE_NEG(neg_float, float, float)
PPL_SPECIALIZE_ABS(abs_float, float, float)
PPL_SPECIALIZE_ADD(add_float, float, float, float)
PPL_SPECIALIZE_SUB(sub_float, float, float, float)
PPL_SPECIALIZE_MUL(mul_float, float, float, float)
PPL_SPECIALIZE_DIV(div_float, float, float, float)
PPL_SPECIALIZE_REM(rem_float, float, float, float)
PPL_SPECIALIZE_ADD_2EXP(add_2exp_float, float, float)
PPL_SPECIALIZE_SUB_2EXP(sub_2exp_float, float, float)
PPL_SPECIALIZE_MUL_2EXP(mul_2exp_float, float, float)
PPL_SPECIALIZE_DIV_2EXP(div_2exp_float, float, float)
PPL_SPECIALIZE_SMOD_2EXP(smod_2exp_float, float, float)
PPL_SPECIALIZE_UMOD_2EXP(umod_2exp_float, float, float)
PPL_SPECIALIZE_SQRT(sqrt_float, float, float)
PPL_SPECIALIZE_GCD(gcd_exact, float, float, float)
PPL_SPECIALIZE_GCDEXT(gcdext_exact, float, float, float, float, float)
PPL_SPECIALIZE_LCM(lcm_gcd_exact, float, float, float)
PPL_SPECIALIZE_SGN(sgn_float, float)
PPL_SPECIALIZE_CMP(cmp_float, float, float)
PPL_SPECIALIZE_ADD_MUL(add_mul_float, float, float, float)
PPL_SPECIALIZE_SUB_MUL(sub_mul_float, float, float, float)
PPL_SPECIALIZE_INPUT(input_generic, float)
PPL_SPECIALIZE_OUTPUT(output_float, float)
#endif
#if PPL_SUPPORTED_DOUBLE
PPL_SPECIALIZE_CLASSIFY(classify_float, double)
PPL_SPECIALIZE_IS_NAN(is_nan_float, double)
PPL_SPECIALIZE_IS_MINF(is_minf_float, double)
PPL_SPECIALIZE_IS_PINF(is_pinf_float, double)
PPL_SPECIALIZE_ASSIGN_SPECIAL(assign_special_float, double)
PPL_SPECIALIZE_ASSIGN(assign_float_int, double, char)
PPL_SPECIALIZE_ASSIGN(assign_float_int, double, signed char)
PPL_SPECIALIZE_ASSIGN(assign_float_int, double, signed short)
PPL_SPECIALIZE_ASSIGN(assign_float_int, double, signed int)
PPL_SPECIALIZE_ASSIGN(assign_float_int, double, signed long)
PPL_SPECIALIZE_ASSIGN(assign_float_int, double, signed long long)
PPL_SPECIALIZE_ASSIGN(assign_float_int, double, unsigned char)
PPL_SPECIALIZE_ASSIGN(assign_float_int, double, unsigned short)
PPL_SPECIALIZE_ASSIGN(assign_float_int, double, unsigned int)
PPL_SPECIALIZE_ASSIGN(assign_float_int, double, unsigned long)
PPL_SPECIALIZE_ASSIGN(assign_float_int, double, unsigned long long)
PPL_SPECIALIZE_ASSIGN(assign_float_mpz, double, mpz_class)
PPL_SPECIALIZE_ASSIGN(assign_float_mpq, double, mpq_class)
PPL_SPECIALIZE_COPY(copy_generic, double)
PPL_SPECIALIZE_IS_INT(is_int_float, double)
PPL_SPECIALIZE_FLOOR(floor_float, double, double)
PPL_SPECIALIZE_CEIL(ceil_float, double, double)
PPL_SPECIALIZE_TRUNC(trunc_float, double, double)
PPL_SPECIALIZE_NEG(neg_float, double, double)
PPL_SPECIALIZE_ABS(abs_float, double, double)
PPL_SPECIALIZE_ADD(add_float, double, double, double)
PPL_SPECIALIZE_SUB(sub_float, double, double, double)
PPL_SPECIALIZE_MUL(mul_float, double, double, double)
PPL_SPECIALIZE_DIV(div_float, double, double, double)
PPL_SPECIALIZE_REM(rem_float, double, double, double)
PPL_SPECIALIZE_ADD_2EXP(add_2exp_float, double, double)
PPL_SPECIALIZE_SUB_2EXP(sub_2exp_float, double, double)
PPL_SPECIALIZE_MUL_2EXP(mul_2exp_float, double, double)
PPL_SPECIALIZE_DIV_2EXP(div_2exp_float, double, double)
PPL_SPECIALIZE_SMOD_2EXP(smod_2exp_float, double, double)
PPL_SPECIALIZE_UMOD_2EXP(umod_2exp_float, double, double)
PPL_SPECIALIZE_SQRT(sqrt_float, double, double)
PPL_SPECIALIZE_GCD(gcd_exact, double, double, double)
PPL_SPECIALIZE_GCDEXT(gcdext_exact, double, double, double, double, double)
PPL_SPECIALIZE_LCM(lcm_gcd_exact, double, double, double)
PPL_SPECIALIZE_SGN(sgn_float, double)
PPL_SPECIALIZE_CMP(cmp_float, double, double)
PPL_SPECIALIZE_ADD_MUL(add_mul_float, double, double, double)
PPL_SPECIALIZE_SUB_MUL(sub_mul_float, double, double, double)
PPL_SPECIALIZE_INPUT(input_generic, double)
PPL_SPECIALIZE_OUTPUT(output_float, double)
#endif
#if PPL_SUPPORTED_LONG_DOUBLE
PPL_SPECIALIZE_CLASSIFY(classify_float, long double)
PPL_SPECIALIZE_IS_NAN(is_nan_float, long double)
PPL_SPECIALIZE_IS_MINF(is_minf_float, long double)
PPL_SPECIALIZE_IS_PINF(is_pinf_float, long double)
PPL_SPECIALIZE_ASSIGN_SPECIAL(assign_special_float, long double)
PPL_SPECIALIZE_ASSIGN(assign_float_int, long double, char)
PPL_SPECIALIZE_ASSIGN(assign_float_int, long double, signed char)
PPL_SPECIALIZE_ASSIGN(assign_float_int, long double, signed short)
PPL_SPECIALIZE_ASSIGN(assign_float_int, long double, signed int)
PPL_SPECIALIZE_ASSIGN(assign_float_int, long double, signed long)
PPL_SPECIALIZE_ASSIGN(assign_float_int, long double, signed long long)
PPL_SPECIALIZE_ASSIGN(assign_float_int, long double, unsigned char)
PPL_SPECIALIZE_ASSIGN(assign_float_int, long double, unsigned short)
PPL_SPECIALIZE_ASSIGN(assign_float_int, long double, unsigned int)
PPL_SPECIALIZE_ASSIGN(assign_float_int, long double, unsigned long)
PPL_SPECIALIZE_ASSIGN(assign_float_int, long double, unsigned long long)
PPL_SPECIALIZE_ASSIGN(assign_float_mpz, long double, mpz_class)
PPL_SPECIALIZE_ASSIGN(assign_float_mpq, long double, mpq_class)
PPL_SPECIALIZE_COPY(copy_generic, long double)
PPL_SPECIALIZE_IS_INT(is_int_float, long double)
PPL_SPECIALIZE_FLOOR(floor_float, long double, long double)
PPL_SPECIALIZE_CEIL(ceil_float, long double, long double)
PPL_SPECIALIZE_TRUNC(trunc_float, long double, long double)
PPL_SPECIALIZE_NEG(neg_float, long double, long double)
PPL_SPECIALIZE_ABS(abs_float, long double, long double)
PPL_SPECIALIZE_ADD(add_float, long double, long double, long double)
PPL_SPECIALIZE_SUB(sub_float, long double, long double, long double)
PPL_SPECIALIZE_MUL(mul_float, long double, long double, long double)
PPL_SPECIALIZE_DIV(div_float, long double, long double, long double)
PPL_SPECIALIZE_REM(rem_float, long double, long double, long double)
PPL_SPECIALIZE_ADD_2EXP(add_2exp_float, long double, long double)
PPL_SPECIALIZE_SUB_2EXP(sub_2exp_float, long double, long double)
PPL_SPECIALIZE_MUL_2EXP(mul_2exp_float, long double, long double)
PPL_SPECIALIZE_DIV_2EXP(div_2exp_float, long double, long double)
PPL_SPECIALIZE_SMOD_2EXP(smod_2exp_float, long double, long double)
PPL_SPECIALIZE_UMOD_2EXP(umod_2exp_float, long double, long double)
PPL_SPECIALIZE_SQRT(sqrt_float, long double, long double)
PPL_SPECIALIZE_GCD(gcd_exact, long double, long double, long double)
PPL_SPECIALIZE_GCDEXT(gcdext_exact, long double, long double, long double,
long double, long double)
PPL_SPECIALIZE_LCM(lcm_gcd_exact, long double, long double, long double)
PPL_SPECIALIZE_SGN(sgn_float, long double)
PPL_SPECIALIZE_CMP(cmp_float, long double, long double)
PPL_SPECIALIZE_ADD_MUL(add_mul_float, long double, long double, long double)
PPL_SPECIALIZE_SUB_MUL(sub_mul_float, long double, long double, long double)
PPL_SPECIALIZE_INPUT(input_generic, long double)
PPL_SPECIALIZE_OUTPUT(output_float, long double)
#endif
} // namespace Checked
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/checked_mpz_inlines.hh line 1. */
/* Specialized "checked" functions for GMP's mpz_class numbers.
*/
#include <sstream>
namespace Parma_Polyhedra_Library {
namespace Checked {
template <typename Policy>
inline Result
round_lt_mpz(mpz_class& to, Rounding_Dir dir) {
if (round_down(dir)) {
--to;
return V_GT;
}
return V_LT;
}
template <typename Policy>
inline Result
round_gt_mpz(mpz_class& to, Rounding_Dir dir) {
if (round_up(dir)) {
++to;
return V_LT;
}
return V_GT;
}
#ifdef PPL_HAVE_TYPEOF
//! Type of the _mp_size field of GMP's __mpz_struct.
typedef typeof(__mpz_struct()._mp_size) mp_size_field_t;
#else
//! This is assumed to be the type of the _mp_size field of GMP's __mpz_struct.
typedef int mp_size_field_t;
#endif
inline mp_size_field_t
get_mp_size(const mpz_class &v) {
return v.get_mpz_t()->_mp_size;
}
inline void
set_mp_size(mpz_class &v, mp_size_field_t size) {
v.get_mpz_t()->_mp_size = size;
}
template <typename Policy>
inline Result
classify_mpz(const mpz_class& v, bool nan, bool inf, bool sign) {
if (Policy::has_nan || Policy::has_infinity) {
mp_size_field_t s = get_mp_size(v);
if (Policy::has_nan
&& (nan || sign)
&& s == C_Integer<mp_size_field_t>::min + 1)
return V_NAN;
if (!inf && !sign)
return V_LGE;
if (Policy::has_infinity) {
if (s == C_Integer<mp_size_field_t>::min)
return inf ? V_EQ_MINUS_INFINITY : V_LT;
if (s == C_Integer<mp_size_field_t>::max)
return inf ? V_EQ_PLUS_INFINITY : V_GT;
}
}
if (sign)
return static_cast<Result>(sgn<Policy>(v));
return V_LGE;
}
PPL_SPECIALIZE_CLASSIFY(classify_mpz, mpz_class)
template <typename Policy>
inline bool
is_nan_mpz(const mpz_class& v) {
return Policy::has_nan
&& get_mp_size(v) == C_Integer<mp_size_field_t>::min + 1;
}
PPL_SPECIALIZE_IS_NAN(is_nan_mpz, mpz_class)
template <typename Policy>
inline bool
is_minf_mpz(const mpz_class& v) {
return Policy::has_infinity
&& get_mp_size(v) == C_Integer<mp_size_field_t>::min;
}
PPL_SPECIALIZE_IS_MINF(is_minf_mpz, mpz_class)
template <typename Policy>
inline bool
is_pinf_mpz(const mpz_class& v) {
return Policy::has_infinity
&& get_mp_size(v) == C_Integer<mp_size_field_t>::max;
}
PPL_SPECIALIZE_IS_PINF(is_pinf_mpz, mpz_class)
template <typename Policy>
inline bool
is_int_mpz(const mpz_class& v) {
return !is_nan<Policy>(v);
}
PPL_SPECIALIZE_IS_INT(is_int_mpz, mpz_class)
template <typename Policy>
inline Result
assign_special_mpz(mpz_class& v, Result_Class c, Rounding_Dir) {
switch (c) {
case VC_NAN:
if (Policy::has_nan)
set_mp_size(v, C_Integer<mp_size_field_t>::min + 1);
return V_NAN;
case VC_MINUS_INFINITY:
if (Policy::has_infinity) {
set_mp_size(v, C_Integer<mp_size_field_t>::min);
return V_EQ_MINUS_INFINITY;
}
return V_EQ_MINUS_INFINITY | V_UNREPRESENTABLE;
case VC_PLUS_INFINITY:
if (Policy::has_infinity) {
set_mp_size(v, C_Integer<mp_size_field_t>::max);
return V_EQ_PLUS_INFINITY;
}
return V_EQ_PLUS_INFINITY | V_UNREPRESENTABLE;
default:
PPL_UNREACHABLE;
return V_NAN;
}
}
PPL_SPECIALIZE_ASSIGN_SPECIAL(assign_special_mpz, mpz_class)
template <typename To_Policy, typename From_Policy>
inline void
copy_mpz(mpz_class& to, const mpz_class& from) {
if (is_nan_mpz<From_Policy>(from))
PPL_ASSERT(To_Policy::has_nan);
else if (is_minf_mpz<From_Policy>(from) || is_pinf_mpz<From_Policy>(from))
PPL_ASSERT(To_Policy::has_infinity);
else {
to = from;
return;
}
set_mp_size(to, get_mp_size(from));
}
PPL_SPECIALIZE_COPY(copy_mpz, mpz_class)
template <typename To_Policy, typename From_Policy, typename From>
inline Result
construct_mpz_base(mpz_class& to, const From from, Rounding_Dir) {
new (&to) mpz_class(from);
return V_EQ;
}
PPL_SPECIALIZE_CONSTRUCT(construct_mpz_base, mpz_class, char)
PPL_SPECIALIZE_CONSTRUCT(construct_mpz_base, mpz_class, signed char)
PPL_SPECIALIZE_CONSTRUCT(construct_mpz_base, mpz_class, signed short)
PPL_SPECIALIZE_CONSTRUCT(construct_mpz_base, mpz_class, signed int)
PPL_SPECIALIZE_CONSTRUCT(construct_mpz_base, mpz_class, signed long)
PPL_SPECIALIZE_CONSTRUCT(construct_mpz_base, mpz_class, unsigned char)
PPL_SPECIALIZE_CONSTRUCT(construct_mpz_base, mpz_class, unsigned short)
PPL_SPECIALIZE_CONSTRUCT(construct_mpz_base, mpz_class, unsigned int)
PPL_SPECIALIZE_CONSTRUCT(construct_mpz_base, mpz_class, unsigned long)
template <typename To_Policy, typename From_Policy, typename From>
inline Result
construct_mpz_float(mpz_class& to, const From& from, Rounding_Dir dir) {
if (is_nan<From_Policy>(from))
return construct_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (is_minf<From_Policy>(from))
return construct_special<To_Policy>(to, VC_MINUS_INFINITY, dir);
else if (is_pinf<From_Policy>(from))
return construct_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
if (round_not_requested(dir)) {
new (&to) mpz_class(from);
return V_LGE;
}
From n = rint(from);
new (&to) mpz_class(n);
if (from == n)
return V_EQ;
if (from < 0)
return round_lt_mpz<To_Policy>(to, dir);
else
return round_gt_mpz<To_Policy>(to, dir);
}
PPL_SPECIALIZE_CONSTRUCT(construct_mpz_float, mpz_class, float)
PPL_SPECIALIZE_CONSTRUCT(construct_mpz_float, mpz_class, double)
PPL_SPECIALIZE_ASSIGN(assign_exact, mpz_class, mpz_class)
PPL_SPECIALIZE_ASSIGN(assign_exact, mpz_class, char)
PPL_SPECIALIZE_ASSIGN(assign_exact, mpz_class, signed char)
PPL_SPECIALIZE_ASSIGN(assign_exact, mpz_class, signed short)
PPL_SPECIALIZE_ASSIGN(assign_exact, mpz_class, signed int)
PPL_SPECIALIZE_ASSIGN(assign_exact, mpz_class, signed long)
PPL_SPECIALIZE_ASSIGN(assign_exact, mpz_class, unsigned char)
PPL_SPECIALIZE_ASSIGN(assign_exact, mpz_class, unsigned short)
PPL_SPECIALIZE_ASSIGN(assign_exact, mpz_class, unsigned int)
PPL_SPECIALIZE_ASSIGN(assign_exact, mpz_class, unsigned long)
template <typename To_Policy, typename From_Policy, typename From>
inline Result
assign_mpz_signed_int(mpz_class& to, const From from, Rounding_Dir) {
if (sizeof(From) <= sizeof(signed long))
to = static_cast<signed long>(from);
else {
mpz_ptr m = to.get_mpz_t();
if (from >= 0)
mpz_import(m, 1, 1, sizeof(From), 0, 0, &from);
else {
From n = -from;
mpz_import(m, 1, 1, sizeof(From), 0, 0, &n);
mpz_neg(m, m);
}
}
return V_EQ;
}
PPL_SPECIALIZE_ASSIGN(assign_mpz_signed_int, mpz_class, signed long long)
template <typename To_Policy, typename From_Policy, typename From>
inline Result
assign_mpz_unsigned_int(mpz_class& to, const From from, Rounding_Dir) {
if (sizeof(From) <= sizeof(unsigned long))
to = static_cast<unsigned long>(from);
else
mpz_import(to.get_mpz_t(), 1, 1, sizeof(From), 0, 0, &from);
return V_EQ;
}
PPL_SPECIALIZE_ASSIGN(assign_mpz_unsigned_int, mpz_class, unsigned long long)
template <typename To_Policy, typename From_Policy, typename From>
inline Result
assign_mpz_float(mpz_class& to, const From from, Rounding_Dir dir) {
if (is_nan<From_Policy>(from))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (is_minf<From_Policy>(from))
return assign_special<To_Policy>(to, VC_MINUS_INFINITY, dir);
else if (is_pinf<From_Policy>(from))
return assign_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
if (round_not_requested(dir)) {
to = from;
return V_LGE;
}
From i_from = rint(from);
to = i_from;
if (from == i_from)
return V_EQ;
if (round_direct(ROUND_UP))
return round_lt_mpz<To_Policy>(to, dir);
if (round_direct(ROUND_DOWN))
return round_gt_mpz<To_Policy>(to, dir);
if (from < i_from)
return round_lt_mpz<To_Policy>(to, dir);
if (from > i_from)
return round_gt_mpz<To_Policy>(to, dir);
PPL_UNREACHABLE;
return V_NAN;
}
PPL_SPECIALIZE_ASSIGN(assign_mpz_float, mpz_class, float)
PPL_SPECIALIZE_ASSIGN(assign_mpz_float, mpz_class, double)
template <typename To_Policy, typename From_Policy, typename From>
inline Result
assign_mpz_long_double(mpz_class& to, const From& from, Rounding_Dir dir) {
if (is_nan<From_Policy>(from))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (is_minf<From_Policy>(from))
return assign_special<To_Policy>(to, VC_MINUS_INFINITY, dir);
else if (is_pinf<From_Policy>(from))
return assign_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
// FIXME: this is an incredibly inefficient implementation!
std::stringstream ss;
output<From_Policy>(ss, from, Numeric_Format(), dir);
PPL_DIRTY_TEMP(mpq_class, tmp);
#ifndef NDEBUG
Result r =
#endif
input_mpq(tmp, ss);
PPL_ASSERT(r == V_EQ);
return assign<To_Policy, From_Policy>(to, tmp, dir);
}
PPL_SPECIALIZE_ASSIGN(assign_mpz_long_double, mpz_class, long double)
template <typename To_Policy, typename From_Policy>
inline Result
assign_mpz_mpq(mpz_class& to, const mpq_class& from, Rounding_Dir dir) {
if (round_not_needed(dir)) {
to = from.get_num();
return V_LGE;
}
if (round_ignore(dir)) {
to = from;
return V_LGE;
}
const mpz_srcptr n = from.get_num().get_mpz_t();
const mpz_srcptr d = from.get_den().get_mpz_t();
if (round_down(dir)) {
mpz_fdiv_q(to.get_mpz_t(), n, d);
if (round_strict_relation(dir))
return (mpz_divisible_p(n, d) != 0) ? V_EQ : V_GT;
return V_GE;
}
else {
PPL_ASSERT(round_up(dir));
mpz_cdiv_q(to.get_mpz_t(), n, d);
if (round_strict_relation(dir))
return (mpz_divisible_p(n, d) != 0) ? V_EQ : V_LT;
return V_LE;
}
}
PPL_SPECIALIZE_ASSIGN(assign_mpz_mpq, mpz_class, mpq_class)
PPL_SPECIALIZE_FLOOR(assign_exact, mpz_class, mpz_class)
PPL_SPECIALIZE_CEIL(assign_exact, mpz_class, mpz_class)
PPL_SPECIALIZE_TRUNC(assign_exact, mpz_class, mpz_class)
template <typename To_Policy, typename From_Policy>
inline Result
neg_mpz(mpz_class& to, const mpz_class& from, Rounding_Dir) {
mpz_neg(to.get_mpz_t(), from.get_mpz_t());
return V_EQ;
}
PPL_SPECIALIZE_NEG(neg_mpz, mpz_class, mpz_class)
template <typename To_Policy, typename From1_Policy, typename From2_Policy>
inline Result
add_mpz(mpz_class& to, const mpz_class& x, const mpz_class& y, Rounding_Dir) {
to = x + y;
return V_EQ;
}
PPL_SPECIALIZE_ADD(add_mpz, mpz_class, mpz_class, mpz_class)
template <typename To_Policy, typename From1_Policy, typename From2_Policy>
inline Result
sub_mpz(mpz_class& to, const mpz_class& x, const mpz_class& y, Rounding_Dir) {
to = x - y;
return V_EQ;
}
PPL_SPECIALIZE_SUB(sub_mpz, mpz_class, mpz_class, mpz_class)
template <typename To_Policy, typename From1_Policy, typename From2_Policy>
inline Result
mul_mpz(mpz_class& to, const mpz_class& x, const mpz_class& y, Rounding_Dir) {
to = x * y;
return V_EQ;
}
PPL_SPECIALIZE_MUL(mul_mpz, mpz_class, mpz_class, mpz_class)
template <typename To_Policy, typename From1_Policy, typename From2_Policy>
inline Result
div_mpz(mpz_class& to, const mpz_class& x, const mpz_class& y,
Rounding_Dir dir) {
if (CHECK_P(To_Policy::check_div_zero, ::sgn(y) == 0)) {
return assign_nan<To_Policy>(to, V_DIV_ZERO);
}
const mpz_srcptr n = x.get_mpz_t();
const mpz_srcptr d = y.get_mpz_t();
if (round_not_needed(dir)) {
mpz_divexact(to.get_mpz_t(), n, d);
return V_LGE;
}
if (round_ignore(dir)) {
mpz_cdiv_q(to.get_mpz_t(), n, d);
return V_LE;
}
if (round_down(dir)) {
mpz_fdiv_q(to.get_mpz_t(), n, d);
if (round_strict_relation(dir))
return (mpz_divisible_p(n, d) != 0) ? V_EQ : V_GT;
return V_GE;
}
else {
PPL_ASSERT(round_up(dir));
mpz_cdiv_q(to.get_mpz_t(), n, d);
if (round_strict_relation(dir))
return (mpz_divisible_p(n, d) != 0) ? V_EQ : V_LT;
return V_LE;
}
}
PPL_SPECIALIZE_DIV(div_mpz, mpz_class, mpz_class, mpz_class)
template <typename To_Policy, typename From1_Policy, typename From2_Policy>
inline Result
idiv_mpz(mpz_class& to, const mpz_class& x, const mpz_class& y,
Rounding_Dir) {
if (CHECK_P(To_Policy::check_div_zero, ::sgn(y) == 0)) {
return assign_nan<To_Policy>(to, V_DIV_ZERO);
}
mpz_srcptr n = x.get_mpz_t();
mpz_srcptr d = y.get_mpz_t();
mpz_tdiv_q(to.get_mpz_t(), n, d);
return V_EQ;
}
PPL_SPECIALIZE_IDIV(idiv_mpz, mpz_class, mpz_class, mpz_class)
template <typename To_Policy, typename From1_Policy, typename From2_Policy>
inline Result
rem_mpz(mpz_class& to, const mpz_class& x, const mpz_class& y, Rounding_Dir) {
if (CHECK_P(To_Policy::check_div_zero, ::sgn(y) == 0)) {
return assign_nan<To_Policy>(to, V_MOD_ZERO);
}
to = x % y;
return V_EQ;
}
PPL_SPECIALIZE_REM(rem_mpz, mpz_class, mpz_class, mpz_class)
template <typename To_Policy, typename From_Policy>
inline Result
add_2exp_mpz(mpz_class& to, const mpz_class& x, unsigned int exp,
Rounding_Dir) {
PPL_DIRTY_TEMP(mpz_class, v);
v = 1;
mpz_mul_2exp(v.get_mpz_t(), v.get_mpz_t(), exp);
to = x + v;
return V_EQ;
}
PPL_SPECIALIZE_ADD_2EXP(add_2exp_mpz, mpz_class, mpz_class)
template <typename To_Policy, typename From_Policy>
inline Result
sub_2exp_mpz(mpz_class& to, const mpz_class& x, unsigned int exp,
Rounding_Dir) {
PPL_DIRTY_TEMP(mpz_class, v);
v = 1;
mpz_mul_2exp(v.get_mpz_t(), v.get_mpz_t(), exp);
to = x - v;
return V_EQ;
}
PPL_SPECIALIZE_SUB_2EXP(sub_2exp_mpz, mpz_class, mpz_class)
template <typename To_Policy, typename From_Policy>
inline Result
mul_2exp_mpz(mpz_class& to, const mpz_class& x, unsigned int exp,
Rounding_Dir) {
mpz_mul_2exp(to.get_mpz_t(), x.get_mpz_t(), exp);
return V_EQ;
}
PPL_SPECIALIZE_MUL_2EXP(mul_2exp_mpz, mpz_class, mpz_class)
template <typename To_Policy, typename From_Policy>
inline Result
div_2exp_mpz(mpz_class& to, const mpz_class& x, unsigned int exp,
Rounding_Dir dir) {
const mpz_srcptr n = x.get_mpz_t();
if (round_not_requested(dir)) {
mpz_tdiv_q_2exp(to.get_mpz_t(), x.get_mpz_t(), exp);
return V_LGE;
}
if (round_down(dir)) {
mpz_fdiv_q_2exp(to.get_mpz_t(), n, exp);
if (round_strict_relation(dir))
return (mpz_divisible_2exp_p(n, exp) != 0) ? V_EQ : V_GT;
return V_GE;
}
else {
PPL_ASSERT(round_up(dir));
mpz_cdiv_q_2exp(to.get_mpz_t(), n, exp);
if (round_strict_relation(dir))
return (mpz_divisible_2exp_p(n, exp) != 0) ? V_EQ : V_LT;
return V_LE;
}
}
PPL_SPECIALIZE_DIV_2EXP(div_2exp_mpz, mpz_class, mpz_class)
template <typename To_Policy, typename From_Policy>
inline Result
smod_2exp_mpz(mpz_class& to, const mpz_class& x, unsigned int exp,
Rounding_Dir) {
if (mpz_tstbit(x.get_mpz_t(), exp - 1) != 0)
mpz_cdiv_r_2exp(to.get_mpz_t(), x.get_mpz_t(), exp);
else
mpz_fdiv_r_2exp(to.get_mpz_t(), x.get_mpz_t(), exp);
return V_EQ;
}
PPL_SPECIALIZE_SMOD_2EXP(smod_2exp_mpz, mpz_class, mpz_class)
template <typename To_Policy, typename From_Policy>
inline Result
umod_2exp_mpz(mpz_class& to, const mpz_class& x, unsigned int exp,
Rounding_Dir) {
mpz_fdiv_r_2exp(to.get_mpz_t(), x.get_mpz_t(), exp);
return V_EQ;
}
PPL_SPECIALIZE_UMOD_2EXP(umod_2exp_mpz, mpz_class, mpz_class)
template <typename To_Policy, typename From_Policy>
inline Result
abs_mpz(mpz_class& to, const mpz_class& from, Rounding_Dir) {
to = abs(from);
return V_EQ;
}
PPL_SPECIALIZE_ABS(abs_mpz, mpz_class, mpz_class)
template <typename To_Policy, typename From1_Policy, typename From2_Policy>
inline Result
add_mul_mpz(mpz_class& to, const mpz_class& x, const mpz_class& y,
Rounding_Dir) {
mpz_addmul(to.get_mpz_t(), x.get_mpz_t(), y.get_mpz_t());
return V_EQ;
}
PPL_SPECIALIZE_ADD_MUL(add_mul_mpz, mpz_class, mpz_class, mpz_class)
template <typename To_Policy, typename From1_Policy, typename From2_Policy>
inline Result
sub_mul_mpz(mpz_class& to, const mpz_class& x, const mpz_class& y,
Rounding_Dir) {
mpz_submul(to.get_mpz_t(), x.get_mpz_t(), y.get_mpz_t());
return V_EQ;
}
PPL_SPECIALIZE_SUB_MUL(sub_mul_mpz, mpz_class, mpz_class, mpz_class)
template <typename To_Policy, typename From1_Policy, typename From2_Policy>
inline Result
gcd_mpz(mpz_class& to, const mpz_class& x, const mpz_class& y, Rounding_Dir) {
mpz_gcd(to.get_mpz_t(), x.get_mpz_t(), y.get_mpz_t());
return V_EQ;
}
PPL_SPECIALIZE_GCD(gcd_mpz, mpz_class, mpz_class, mpz_class)
template <typename To_Policy, typename From1_Policy, typename From2_Policy>
inline Result
gcdext_mpz(mpz_class& to, mpz_class& s, mpz_class& t,
const mpz_class& x, const mpz_class& y,
Rounding_Dir) {
mpz_gcdext(to.get_mpz_t(), s.get_mpz_t(), t.get_mpz_t(),
x.get_mpz_t(), y.get_mpz_t());
return V_EQ;
}
PPL_SPECIALIZE_GCDEXT(gcdext_mpz, mpz_class, mpz_class, mpz_class, mpz_class, mpz_class)
template <typename To_Policy, typename From1_Policy, typename From2_Policy>
inline Result
lcm_mpz(mpz_class& to, const mpz_class& x, const mpz_class& y, Rounding_Dir) {
mpz_lcm(to.get_mpz_t(), x.get_mpz_t(), y.get_mpz_t());
return V_EQ;
}
PPL_SPECIALIZE_LCM(lcm_mpz, mpz_class, mpz_class, mpz_class)
template <typename To_Policy, typename From_Policy>
inline Result
sqrt_mpz(mpz_class& to, const mpz_class& from, Rounding_Dir dir) {
if (CHECK_P(To_Policy::check_sqrt_neg, from < 0)) {
return assign_nan<To_Policy>(to, V_SQRT_NEG);
}
if (round_not_requested(dir)) {
to = sqrt(from);
return V_GE;
}
PPL_DIRTY_TEMP(mpz_class, r);
mpz_sqrtrem(to.get_mpz_t(), r.get_mpz_t(), from.get_mpz_t());
if (r == 0)
return V_EQ;
return round_gt_mpz<To_Policy>(to, dir);
}
PPL_SPECIALIZE_SQRT(sqrt_mpz, mpz_class, mpz_class)
template <typename Policy, typename Type>
inline Result_Relation
sgn_mp(const Type& x) {
const int sign = ::sgn(x);
return (sign > 0) ? VR_GT : ((sign < 0) ? VR_LT : VR_EQ);
}
PPL_SPECIALIZE_SGN(sgn_mp, mpz_class)
PPL_SPECIALIZE_SGN(sgn_mp, mpq_class)
template <typename Policy1, typename Policy2, typename Type>
inline Result_Relation
cmp_mp(const Type& x, const Type& y) {
int i = ::cmp(x, y);
return (i > 0) ? VR_GT : ((i < 0) ? VR_LT : VR_EQ);
}
PPL_SPECIALIZE_CMP(cmp_mp, mpz_class, mpz_class)
PPL_SPECIALIZE_CMP(cmp_mp, mpq_class, mpq_class)
template <typename Policy>
inline Result
output_mpz(std::ostream& os, const mpz_class& from, const Numeric_Format&,
Rounding_Dir) {
os << from;
return V_EQ;
}
PPL_SPECIALIZE_INPUT(input_generic, mpz_class)
PPL_SPECIALIZE_OUTPUT(output_mpz, mpz_class)
} // namespace Checked
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/checked_mpq_inlines.hh line 1. */
/* Specialized "checked" functions for GMP's mpq_class numbers.
*/
#include <sstream>
#include <climits>
#include <stdexcept>
namespace Parma_Polyhedra_Library {
namespace Checked {
template <typename Policy>
inline Result
classify_mpq(const mpq_class& v, bool nan, bool inf, bool sign) {
if ((Policy::has_nan || Policy::has_infinity)
&& ::sgn(v.get_den()) == 0) {
int s = ::sgn(v.get_num());
if (Policy::has_nan && (nan || sign) && s == 0)
return V_NAN;
if (!inf && !sign)
return V_LGE;
if (Policy::has_infinity) {
if (s < 0)
return inf ? V_EQ_MINUS_INFINITY : V_LT;
if (s > 0)
return inf ? V_EQ_PLUS_INFINITY : V_GT;
}
}
if (sign)
return static_cast<Result>(sgn<Policy>(v));
return V_LGE;
}
PPL_SPECIALIZE_CLASSIFY(classify_mpq, mpq_class)
template <typename Policy>
inline bool
is_nan_mpq(const mpq_class& v) {
return Policy::has_nan
&& ::sgn(v.get_den()) == 0
&& ::sgn(v.get_num()) == 0;
}
PPL_SPECIALIZE_IS_NAN(is_nan_mpq, mpq_class)
template <typename Policy>
inline bool
is_minf_mpq(const mpq_class& v) {
return Policy::has_infinity
&& ::sgn(v.get_den()) == 0
&& ::sgn(v.get_num()) < 0;
}
PPL_SPECIALIZE_IS_MINF(is_minf_mpq, mpq_class)
template <typename Policy>
inline bool
is_pinf_mpq(const mpq_class& v) {
return Policy::has_infinity
&& ::sgn(v.get_den()) == 0
&& ::sgn(v.get_num()) > 0;
}
PPL_SPECIALIZE_IS_PINF(is_pinf_mpq, mpq_class)
template <typename Policy>
inline bool
is_int_mpq(const mpq_class& v) {
if ((Policy::has_infinity || Policy::has_nan)
&& ::sgn(v.get_den()) == 0)
return !(Policy::has_nan && ::sgn(v.get_num()) == 0);
else
return v.get_den() == 1;
}
PPL_SPECIALIZE_IS_INT(is_int_mpq, mpq_class)
template <typename Policy>
inline Result
assign_special_mpq(mpq_class& v, Result_Class c, Rounding_Dir) {
switch (c) {
case VC_NAN:
if (Policy::has_nan) {
v.get_num() = 0;
v.get_den() = 0;
return V_NAN | V_UNREPRESENTABLE;
}
return V_NAN;
case VC_MINUS_INFINITY:
if (Policy::has_infinity) {
v.get_num() = -1;
v.get_den() = 0;
return V_EQ_MINUS_INFINITY;
}
return V_EQ_MINUS_INFINITY | V_UNREPRESENTABLE;
case VC_PLUS_INFINITY:
if (Policy::has_infinity) {
v.get_num() = 1;
v.get_den() = 0;
return V_EQ_PLUS_INFINITY;
}
return V_EQ_PLUS_INFINITY | V_UNREPRESENTABLE;
default:
PPL_UNREACHABLE;
return V_NAN | V_UNREPRESENTABLE;
}
}
PPL_SPECIALIZE_ASSIGN_SPECIAL(assign_special_mpq, mpq_class)
PPL_SPECIALIZE_COPY(copy_generic, mpq_class)
template <typename To_Policy, typename From_Policy, typename From>
inline Result
construct_mpq_base(mpq_class& to, const From& from, Rounding_Dir) {
new (&to) mpq_class(from);
return V_EQ;
}
PPL_SPECIALIZE_CONSTRUCT(construct_mpq_base, mpq_class, mpz_class)
PPL_SPECIALIZE_CONSTRUCT(construct_mpq_base, mpq_class, char)
PPL_SPECIALIZE_CONSTRUCT(construct_mpq_base, mpq_class, signed char)
PPL_SPECIALIZE_CONSTRUCT(construct_mpq_base, mpq_class, signed short)
PPL_SPECIALIZE_CONSTRUCT(construct_mpq_base, mpq_class, signed int)
PPL_SPECIALIZE_CONSTRUCT(construct_mpq_base, mpq_class, signed long)
PPL_SPECIALIZE_CONSTRUCT(construct_mpq_base, mpq_class, unsigned char)
PPL_SPECIALIZE_CONSTRUCT(construct_mpq_base, mpq_class, unsigned short)
PPL_SPECIALIZE_CONSTRUCT(construct_mpq_base, mpq_class, unsigned int)
PPL_SPECIALIZE_CONSTRUCT(construct_mpq_base, mpq_class, unsigned long)
template <typename To_Policy, typename From_Policy, typename From>
inline Result
construct_mpq_float(mpq_class& to, const From& from, Rounding_Dir dir) {
if (is_nan<From_Policy>(from))
return construct_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (is_minf<From_Policy>(from))
return construct_special<To_Policy>(to, VC_MINUS_INFINITY, dir);
else if (is_pinf<From_Policy>(from))
return construct_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
new (&to) mpq_class(from);
return V_EQ;
}
PPL_SPECIALIZE_CONSTRUCT(construct_mpq_float, mpq_class, float)
PPL_SPECIALIZE_CONSTRUCT(construct_mpq_float, mpq_class, double)
PPL_SPECIALIZE_ASSIGN(assign_exact, mpq_class, mpq_class)
PPL_SPECIALIZE_ASSIGN(assign_exact, mpq_class, mpz_class)
PPL_SPECIALIZE_ASSIGN(assign_exact, mpq_class, char)
PPL_SPECIALIZE_ASSIGN(assign_exact, mpq_class, signed char)
PPL_SPECIALIZE_ASSIGN(assign_exact, mpq_class, signed short)
PPL_SPECIALIZE_ASSIGN(assign_exact, mpq_class, signed int)
PPL_SPECIALIZE_ASSIGN(assign_exact, mpq_class, signed long)
PPL_SPECIALIZE_ASSIGN(assign_exact, mpq_class, unsigned char)
PPL_SPECIALIZE_ASSIGN(assign_exact, mpq_class, unsigned short)
PPL_SPECIALIZE_ASSIGN(assign_exact, mpq_class, unsigned int)
PPL_SPECIALIZE_ASSIGN(assign_exact, mpq_class, unsigned long)
template <typename To_Policy, typename From_Policy, typename From>
inline Result
assign_mpq_float(mpq_class& to, const From& from, Rounding_Dir dir) {
if (is_nan<From_Policy>(from))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (is_minf<From_Policy>(from))
return assign_special<To_Policy>(to, VC_MINUS_INFINITY, dir);
else if (is_pinf<From_Policy>(from))
return assign_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
assign_mpq_numeric_float(to, from);
return V_EQ;
}
PPL_SPECIALIZE_ASSIGN(assign_mpq_float, mpq_class, float)
PPL_SPECIALIZE_ASSIGN(assign_mpq_float, mpq_class, double)
PPL_SPECIALIZE_ASSIGN(assign_mpq_float, mpq_class, long double)
template <typename To_Policy, typename From_Policy, typename From>
inline Result
assign_mpq_signed_int(mpq_class& to, const From from, Rounding_Dir) {
if (sizeof(From) <= sizeof(signed long))
to = static_cast<signed long>(from);
else {
mpz_ptr m = to.get_num().get_mpz_t();
if (from >= 0)
mpz_import(m, 1, 1, sizeof(From), 0, 0, &from);
else {
From n = -from;
mpz_import(m, 1, 1, sizeof(From), 0, 0, &n);
mpz_neg(m, m);
}
to.get_den() = 1;
}
return V_EQ;
}
PPL_SPECIALIZE_ASSIGN(assign_mpq_signed_int, mpq_class, signed long long)
template <typename To_Policy, typename From_Policy, typename From>
inline Result
assign_mpq_unsigned_int(mpq_class& to, const From from, Rounding_Dir) {
if (sizeof(From) <= sizeof(unsigned long))
to = static_cast<unsigned long>(from);
else {
mpz_import(to.get_num().get_mpz_t(), 1, 1, sizeof(From), 0, 0, &from);
to.get_den() = 1;
}
return V_EQ;
}
PPL_SPECIALIZE_ASSIGN(assign_mpq_unsigned_int, mpq_class, unsigned long long)
template <typename To_Policy, typename From_Policy>
inline Result
floor_mpq(mpq_class& to, const mpq_class& from, Rounding_Dir) {
mpz_fdiv_q(to.get_num().get_mpz_t(),
from.get_num().get_mpz_t(), from.get_den().get_mpz_t());
to.get_den() = 1;
return V_EQ;
}
PPL_SPECIALIZE_FLOOR(floor_mpq, mpq_class, mpq_class)
template <typename To_Policy, typename From_Policy>
inline Result
ceil_mpq(mpq_class& to, const mpq_class& from, Rounding_Dir) {
mpz_cdiv_q(to.get_num().get_mpz_t(),
from.get_num().get_mpz_t(), from.get_den().get_mpz_t());
to.get_den() = 1;
return V_EQ;
}
PPL_SPECIALIZE_CEIL(ceil_mpq, mpq_class, mpq_class)
template <typename To_Policy, typename From_Policy>
inline Result
trunc_mpq(mpq_class& to, const mpq_class& from, Rounding_Dir) {
mpz_tdiv_q(to.get_num().get_mpz_t(),
from.get_num().get_mpz_t(), from.get_den().get_mpz_t());
to.get_den() = 1;
return V_EQ;
}
PPL_SPECIALIZE_TRUNC(trunc_mpq, mpq_class, mpq_class)
template <typename To_Policy, typename From_Policy>
inline Result
neg_mpq(mpq_class& to, const mpq_class& from, Rounding_Dir) {
mpq_neg(to.get_mpq_t(), from.get_mpq_t());
return V_EQ;
}
PPL_SPECIALIZE_NEG(neg_mpq, mpq_class, mpq_class)
template <typename To_Policy, typename From1_Policy, typename From2_Policy>
inline Result
add_mpq(mpq_class& to, const mpq_class& x, const mpq_class& y, Rounding_Dir) {
to = x + y;
return V_EQ;
}
PPL_SPECIALIZE_ADD(add_mpq, mpq_class, mpq_class, mpq_class)
template <typename To_Policy, typename From1_Policy, typename From2_Policy>
inline Result
sub_mpq(mpq_class& to, const mpq_class& x, const mpq_class& y, Rounding_Dir) {
to = x - y;
return V_EQ;
}
PPL_SPECIALIZE_SUB(sub_mpq, mpq_class, mpq_class, mpq_class)
template <typename To_Policy, typename From1_Policy, typename From2_Policy>
inline Result
mul_mpq(mpq_class& to, const mpq_class& x, const mpq_class& y, Rounding_Dir) {
to = x * y;
return V_EQ;
}
PPL_SPECIALIZE_MUL(mul_mpq, mpq_class, mpq_class, mpq_class)
template <typename To_Policy, typename From1_Policy, typename From2_Policy>
inline Result
div_mpq(mpq_class& to, const mpq_class& x, const mpq_class& y, Rounding_Dir) {
if (CHECK_P(To_Policy::check_div_zero, sgn(y) == 0)) {
return assign_nan<To_Policy>(to, V_DIV_ZERO);
}
to = x / y;
return V_EQ;
}
PPL_SPECIALIZE_DIV(div_mpq, mpq_class, mpq_class, mpq_class)
template <typename To_Policy, typename From1_Policy, typename From2_Policy>
inline Result
idiv_mpq(mpq_class& to, const mpq_class& x, const mpq_class& y, Rounding_Dir dir) {
if (CHECK_P(To_Policy::check_div_zero, sgn(y) == 0)) {
return assign_nan<To_Policy>(to, V_DIV_ZERO);
}
to = x / y;
return trunc<To_Policy, To_Policy>(to, to, dir);
}
PPL_SPECIALIZE_IDIV(idiv_mpq, mpq_class, mpq_class, mpq_class)
template <typename To_Policy, typename From1_Policy, typename From2_Policy>
inline Result
rem_mpq(mpq_class& to, const mpq_class& x, const mpq_class& y, Rounding_Dir) {
if (CHECK_P(To_Policy::check_div_zero, sgn(y) == 0)) {
return assign_nan<To_Policy>(to, V_MOD_ZERO);
}
PPL_DIRTY_TEMP(mpq_class, tmp);
tmp = x / y;
tmp.get_num() %= tmp.get_den();
to = tmp * y;
return V_EQ;
}
PPL_SPECIALIZE_REM(rem_mpq, mpq_class, mpq_class, mpq_class)
template <typename To_Policy, typename From_Policy>
inline Result
add_2exp_mpq(mpq_class& to, const mpq_class& x, unsigned int exp,
Rounding_Dir) {
PPL_DIRTY_TEMP(mpz_class, v);
v = 1;
mpz_mul_2exp(v.get_mpz_t(), v.get_mpz_t(), exp);
to = x + v;
return V_EQ;
}
PPL_SPECIALIZE_ADD_2EXP(add_2exp_mpq, mpq_class, mpq_class)
template <typename To_Policy, typename From_Policy>
inline Result
sub_2exp_mpq(mpq_class& to, const mpq_class& x, unsigned int exp,
Rounding_Dir) {
PPL_DIRTY_TEMP(mpz_class, v);
v = 1;
mpz_mul_2exp(v.get_mpz_t(), v.get_mpz_t(), exp);
to = x - v;
return V_EQ;
}
PPL_SPECIALIZE_SUB_2EXP(sub_2exp_mpq, mpq_class, mpq_class)
template <typename To_Policy, typename From_Policy>
inline Result
mul_2exp_mpq(mpq_class& to, const mpq_class& x, unsigned int exp,
Rounding_Dir) {
mpz_mul_2exp(to.get_num().get_mpz_t(), x.get_num().get_mpz_t(), exp);
to.get_den() = x.get_den();
to.canonicalize();
return V_EQ;
}
PPL_SPECIALIZE_MUL_2EXP(mul_2exp_mpq, mpq_class, mpq_class)
template <typename To_Policy, typename From_Policy>
inline Result
div_2exp_mpq(mpq_class& to, const mpq_class& x, unsigned int exp,
Rounding_Dir) {
to.get_num() = x.get_num();
mpz_mul_2exp(to.get_den().get_mpz_t(), x.get_den().get_mpz_t(), exp);
to.canonicalize();
return V_EQ;
}
PPL_SPECIALIZE_DIV_2EXP(div_2exp_mpq, mpq_class, mpq_class)
template <typename To_Policy, typename From_Policy>
inline Result
smod_2exp_mpq(mpq_class& to, const mpq_class& x, unsigned int exp,
Rounding_Dir) {
mpz_mul_2exp(to.get_den().get_mpz_t(), x.get_den().get_mpz_t(), exp);
mpz_fdiv_r(to.get_num().get_mpz_t(), x.get_num().get_mpz_t(), to.get_den().get_mpz_t());
mpz_fdiv_q_2exp(to.get_den().get_mpz_t(), to.get_den().get_mpz_t(), 1);
bool neg = to.get_num() >= to.get_den();
mpz_mul_2exp(to.get_den().get_mpz_t(), to.get_den().get_mpz_t(), 1);
if (neg)
to.get_num() -= to.get_den();
mpz_mul_2exp(to.get_num().get_mpz_t(), to.get_num().get_mpz_t(), exp);
to.canonicalize();
return V_EQ;
}
PPL_SPECIALIZE_SMOD_2EXP(smod_2exp_mpq, mpq_class, mpq_class)
template <typename To_Policy, typename From_Policy>
inline Result
umod_2exp_mpq(mpq_class& to, const mpq_class& x, unsigned int exp,
Rounding_Dir) {
mpz_mul_2exp(to.get_den().get_mpz_t(), x.get_den().get_mpz_t(), exp);
mpz_fdiv_r(to.get_num().get_mpz_t(), x.get_num().get_mpz_t(), to.get_den().get_mpz_t());
mpz_mul_2exp(to.get_num().get_mpz_t(), to.get_num().get_mpz_t(), exp);
to.canonicalize();
return V_EQ;
}
PPL_SPECIALIZE_UMOD_2EXP(umod_2exp_mpq, mpq_class, mpq_class)
template <typename To_Policy, typename From_Policy>
inline Result
abs_mpq(mpq_class& to, const mpq_class& from, Rounding_Dir) {
to = abs(from);
return V_EQ;
}
PPL_SPECIALIZE_ABS(abs_mpq, mpq_class, mpq_class)
template <typename To_Policy, typename From1_Policy, typename From2_Policy>
inline Result
add_mul_mpq(mpq_class& to, const mpq_class& x, const mpq_class& y,
Rounding_Dir) {
to += x * y;
return V_EQ;
}
PPL_SPECIALIZE_ADD_MUL(add_mul_mpq, mpq_class, mpq_class, mpq_class)
template <typename To_Policy, typename From1_Policy, typename From2_Policy>
inline Result
sub_mul_mpq(mpq_class& to, const mpq_class& x, const mpq_class& y,
Rounding_Dir) {
to -= x * y;
return V_EQ;
}
PPL_SPECIALIZE_SUB_MUL(sub_mul_mpq, mpq_class, mpq_class, mpq_class)
extern unsigned irrational_precision;
template <typename To_Policy, typename From_Policy>
inline Result
sqrt_mpq(mpq_class& to, const mpq_class& from, Rounding_Dir dir) {
if (CHECK_P(To_Policy::check_sqrt_neg, from < 0)) {
return assign_nan<To_Policy>(to, V_SQRT_NEG);
}
if (from == 0) {
to = 0;
return V_EQ;
}
bool gt1 = from.get_num() > from.get_den();
const mpz_class& from_a = gt1 ? from.get_num() : from.get_den();
const mpz_class& from_b = gt1 ? from.get_den() : from.get_num();
mpz_class& to_a = gt1 ? to.get_num() : to.get_den();
mpz_class& to_b = gt1 ? to.get_den() : to.get_num();
Rounding_Dir rdir = gt1 ? dir : inverse(dir);
mul_2exp<To_Policy, From_Policy>(to_a, from_a,
2*irrational_precision, ROUND_IGNORE);
Result r_div
= div<To_Policy, To_Policy, To_Policy>(to_a, to_a, from_b, rdir);
Result r_sqrt = sqrt<To_Policy, To_Policy>(to_a, to_a, rdir);
to_b = 1;
mul_2exp<To_Policy, To_Policy>(to_b, to_b,
irrational_precision, ROUND_IGNORE);
to.canonicalize();
return (r_div != V_EQ) ? r_div : r_sqrt;
}
PPL_SPECIALIZE_SQRT(sqrt_mpq, mpq_class, mpq_class)
template <typename Policy>
inline Result
input_mpq(mpq_class& to, std::istream& is, Rounding_Dir dir) {
Result r = input_mpq(to, is);
Result_Class c = result_class(r);
switch (c) {
case VC_MINUS_INFINITY:
case VC_PLUS_INFINITY:
return assign_special<Policy>(to, c, dir);
case VC_NAN:
return assign_nan<Policy>(to, r);
default:
return r;
}
}
PPL_SPECIALIZE_INPUT(input_mpq, mpq_class)
template <typename Policy>
inline Result
output_mpq(std::ostream& os,
const mpq_class& from,
const Numeric_Format&,
Rounding_Dir) {
os << from;
return V_EQ;
}
PPL_SPECIALIZE_OUTPUT(output_mpq, mpq_class)
} // namespace Checked
//! Returns the precision parameter used for irrational calculations.
inline unsigned
irrational_precision() {
return Checked::irrational_precision;
}
//! Sets the precision parameter used for irrational calculations.
/*! The lesser between numerator and denominator is limited to 2**\p p.
If \p p is less than or equal to <CODE>INT_MAX</CODE>, sets the
precision parameter used for irrational calculations to \p p.
\exception std::invalid_argument
Thrown if \p p is greater than <CODE>INT_MAX</CODE>.
*/
inline void
set_irrational_precision(const unsigned p) {
if (p <= INT_MAX)
Checked::irrational_precision = p;
else
throw std::invalid_argument("PPL::set_irrational_precision(p)"
" with p > INT_MAX");
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/checked_ext_inlines.hh line 1. */
/* Checked extended arithmetic functions.
*/
namespace Parma_Polyhedra_Library {
template <typename T> struct FPU_Related : public False {};
template <> struct FPU_Related<float> : public True {};
template <> struct FPU_Related<double> : public True {};
template <> struct FPU_Related<long double> : public True {};
namespace Checked {
template <typename T>
inline bool
handle_ext_natively(const T&) {
return FPU_Related<T>::value;
}
template <typename Policy, typename Type>
inline bool
ext_to_handle(const Type& x) {
return !handle_ext_natively(x)
&& (Policy::has_infinity || Policy::has_nan);
}
template <typename Policy, typename Type>
inline Result_Relation
sgn_ext(const Type& x) {
if (!ext_to_handle<Policy>(x))
goto native;
if (is_nan<Policy>(x))
return VR_EMPTY;
else if (is_minf<Policy>(x))
return VR_LT;
else if (is_pinf<Policy>(x))
return VR_GT;
else {
native:
return sgn<Policy>(x);
}
}
template <typename To_Policy, typename From_Policy,
typename To, typename From>
inline Result
construct_ext(To& to, const From& x, Rounding_Dir dir) {
if (!ext_to_handle<From_Policy>(x))
goto native;
if (is_nan<From_Policy>(x))
return construct_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (is_minf<From_Policy>(x))
return construct_special<To_Policy>(to, VC_MINUS_INFINITY, dir);
else if (is_pinf<From_Policy>(x))
return construct_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
else {
native:
return construct<To_Policy, From_Policy>(to, x, dir);
}
}
template <typename To_Policy, typename From_Policy,
typename To, typename From>
inline Result
assign_ext(To& to, const From& x, Rounding_Dir dir) {
if (!ext_to_handle<From_Policy>(x))
goto native;
if (is_nan<From_Policy>(x))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (is_minf<From_Policy>(x))
return assign_special<To_Policy>(to, VC_MINUS_INFINITY, dir);
else if (is_pinf<From_Policy>(x))
return assign_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
else {
native:
return assign<To_Policy, From_Policy>(to, x, dir);
}
}
template <typename To_Policy, typename From_Policy,
typename To, typename From>
inline Result
neg_ext(To& to, const From& x, Rounding_Dir dir) {
if (!ext_to_handle<From_Policy>(x))
goto native;
if (is_nan<From_Policy>(x))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (is_minf<From_Policy>(x))
return assign_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
else if (is_pinf<From_Policy>(x))
return assign_special<To_Policy>(to, VC_MINUS_INFINITY, dir);
else {
native:
return neg<To_Policy, From_Policy>(to, x, dir);
}
}
template <typename To_Policy, typename From_Policy,
typename To, typename From>
inline Result
floor_ext(To& to, const From& x, Rounding_Dir dir) {
if (!ext_to_handle<From_Policy>(x))
goto native;
if (is_nan<From_Policy>(x))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (is_minf<From_Policy>(x))
return assign_special<To_Policy>(to, VC_MINUS_INFINITY, dir);
else if (is_pinf<From_Policy>(x))
return assign_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
else {
native:
return floor<To_Policy, From_Policy>(to, x, dir);
}
}
template <typename To_Policy, typename From_Policy,
typename To, typename From>
inline Result
ceil_ext(To& to, const From& x, Rounding_Dir dir) {
if (!ext_to_handle<From_Policy>(x))
goto native;
if (is_nan<From_Policy>(x))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (is_minf<From_Policy>(x))
return assign_special<To_Policy>(to, VC_MINUS_INFINITY, dir);
else if (is_pinf<From_Policy>(x))
return assign_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
else {
native:
return ceil<To_Policy, From_Policy>(to, x, dir);
}
}
template <typename To_Policy, typename From_Policy,
typename To, typename From>
inline Result
trunc_ext(To& to, const From& x, Rounding_Dir dir) {
if (!ext_to_handle<From_Policy>(x))
goto native;
if (is_nan<From_Policy>(x))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (is_minf<From_Policy>(x))
return assign_special<To_Policy>(to, VC_MINUS_INFINITY, dir);
else if (is_pinf<From_Policy>(x))
return assign_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
else {
native:
return trunc<To_Policy, From_Policy>(to, x, dir);
}
}
template <typename To_Policy, typename From_Policy,
typename To, typename From>
inline Result
abs_ext(To& to, const From& x, Rounding_Dir dir) {
if (!ext_to_handle<From_Policy>(x))
goto native;
if (is_nan<From_Policy>(x))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (is_minf<From_Policy>(x) || is_pinf<From_Policy>(x))
return assign_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
else {
native:
return abs<To_Policy, From_Policy>(to, x, dir);
}
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename To, typename From1, typename From2>
inline Result
add_ext(To& to, const From1& x, const From2& y, Rounding_Dir dir) {
if (!ext_to_handle<From1_Policy>(x) && !ext_to_handle<From2_Policy>(y))
goto native;
if (is_nan<From1_Policy>(x) || is_nan<From2_Policy>(y))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (is_minf<From1_Policy>(x)) {
if (CHECK_P(To_Policy::check_inf_add_inf, is_pinf<From2_Policy>(y)))
goto inf_add_inf;
else
goto minf;
}
else if (is_pinf<From1_Policy>(x)) {
if (CHECK_P(To_Policy::check_inf_add_inf, is_minf<From2_Policy>(y))) {
inf_add_inf:
return assign_nan<To_Policy>(to, V_INF_ADD_INF);
}
else
goto pinf;
}
else {
if (is_minf<From2_Policy>(y)) {
minf:
return assign_special<To_Policy>(to, VC_MINUS_INFINITY, dir);
}
else if (is_pinf<From2_Policy>(y)) {
pinf:
return assign_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
}
else {
native:
return add<To_Policy, From1_Policy, From2_Policy>(to, x, y, dir);
}
}
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename To, typename From1, typename From2>
inline Result
sub_ext(To& to, const From1& x, const From2& y, Rounding_Dir dir) {
if (!ext_to_handle<From1_Policy>(x) && !ext_to_handle<From2_Policy>(y))
goto native;
if (is_nan<From1_Policy>(x) || is_nan<From2_Policy>(y))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (is_minf<From1_Policy>(x)) {
if (CHECK_P(To_Policy::check_inf_sub_inf, is_minf<From2_Policy>(y)))
goto inf_sub_inf;
else
goto minf;
}
else if (is_pinf<From1_Policy>(x)) {
if (CHECK_P(To_Policy::check_inf_sub_inf, is_pinf<From2_Policy>(y))) {
inf_sub_inf:
return assign_nan<To_Policy>(to, V_INF_SUB_INF);
}
else
goto pinf;
}
else {
if (is_pinf<From2_Policy>(y)) {
minf:
return assign_special<To_Policy>(to, VC_MINUS_INFINITY, dir);
}
else if (is_minf<From2_Policy>(y)) {
pinf:
return assign_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
}
else {
native:
return sub<To_Policy, From1_Policy, From2_Policy>(to, x, y, dir);
}
}
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename To, typename From1, typename From2>
inline Result
mul_ext(To& to, const From1& x, const From2& y, Rounding_Dir dir) {
if (!ext_to_handle<From1_Policy>(x) && !ext_to_handle<From2_Policy>(y))
goto native;
if (is_nan<From1_Policy>(x) || is_nan<From2_Policy>(y))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
if (is_minf<From1_Policy>(x)) {
switch (sgn_ext<From2_Policy>(y)) {
case VR_LT:
goto pinf;
case VR_GT:
goto minf;
default:
goto inf_mul_zero;
}
}
else if (is_pinf<From1_Policy>(x)) {
switch (sgn_ext<From2_Policy>(y)) {
case VR_LT:
goto minf;
case VR_GT:
goto pinf;
default:
goto inf_mul_zero;
}
}
else {
if (is_minf<From2_Policy>(y)) {
switch (sgn<From1_Policy>(x)) {
case VR_LT:
goto pinf;
case VR_GT:
goto minf;
default:
goto inf_mul_zero;
}
}
else if (is_pinf<From2_Policy>(y)) {
switch (sgn<From1_Policy>(x)) {
case VR_LT:
minf:
return assign_special<To_Policy>(to, VC_MINUS_INFINITY, dir);
case VR_GT:
pinf:
return assign_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
default:
inf_mul_zero:
PPL_ASSERT(To_Policy::check_inf_mul_zero);
return assign_nan<To_Policy>(to, V_INF_MUL_ZERO);
}
}
else {
native:
return mul<To_Policy, From1_Policy, From2_Policy>(to, x, y, dir);
}
}
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename To, typename From1, typename From2>
inline Result
add_mul_ext(To& to, const From1& x, const From2& y, Rounding_Dir dir) {
if (!ext_to_handle<To_Policy>(to)
&& !ext_to_handle<From1_Policy>(x) && !ext_to_handle<From2_Policy>(y))
goto native;
if (is_nan<To_Policy>(to)
|| is_nan<From1_Policy>(x) || is_nan<From2_Policy>(y))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
if (is_minf<From1_Policy>(x)) {
switch (sgn_ext<From2_Policy>(y)) {
case VR_LT:
goto a_pinf;
case VR_GT:
goto a_minf;
default:
goto inf_mul_zero;
}
}
else if (is_pinf<From1_Policy>(x)) {
switch (sgn_ext<From2_Policy>(y)) {
case VR_LT:
goto a_minf;
case VR_GT:
goto a_pinf;
default:
goto inf_mul_zero;
}
}
else {
if (is_minf<From2_Policy>(y)) {
switch (sgn<From1_Policy>(x)) {
case VR_LT:
goto a_pinf;
case VR_GT:
goto a_minf;
default:
goto inf_mul_zero;
}
}
else if (is_pinf<From2_Policy>(y)) {
switch (sgn<From1_Policy>(x)) {
case VR_LT:
a_minf:
if (CHECK_P(To_Policy::check_inf_add_inf, is_pinf<To_Policy>(to)))
goto inf_add_inf;
else
goto minf;
case VR_GT:
a_pinf:
if (CHECK_P(To_Policy::check_inf_add_inf, is_minf<To_Policy>(to))) {
inf_add_inf:
return assign_nan<To_Policy>(to, V_INF_ADD_INF);
}
else
goto pinf;
default:
inf_mul_zero:
PPL_ASSERT(To_Policy::check_inf_mul_zero);
return assign_nan<To_Policy>(to, V_INF_MUL_ZERO);
}
}
else {
if (is_minf<To_Policy>(to)) {
minf:
return assign_special<To_Policy>(to, VC_MINUS_INFINITY, dir);
}
if (is_pinf<To_Policy>(to)) {
pinf:
return assign_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
}
native:
return add_mul<To_Policy, From1_Policy, From2_Policy>(to, x, y, dir);
}
}
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename To, typename From1, typename From2>
inline Result
sub_mul_ext(To& to, const From1& x, const From2& y, Rounding_Dir dir) {
if (!ext_to_handle<To_Policy>(to)
&& !ext_to_handle<From1_Policy>(x) && !ext_to_handle<From2_Policy>(y))
goto native;
if (is_nan<To_Policy>(to)
|| is_nan<From1_Policy>(x) || is_nan<From2_Policy>(y))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
if (is_minf<From1_Policy>(x)) {
switch (sgn_ext<From2_Policy>(y)) {
case VR_LT:
goto a_pinf;
case VR_GT:
goto a_minf;
default:
goto inf_mul_zero;
}
}
else if (is_pinf<From1_Policy>(x)) {
switch (sgn_ext<From2_Policy>(y)) {
case VR_LT:
goto a_minf;
case VR_GT:
goto a_pinf;
default:
goto inf_mul_zero;
}
}
else {
if (is_minf<From2_Policy>(y)) {
switch (sgn<From1_Policy>(x)) {
case VR_LT:
goto a_pinf;
case VR_GT:
goto a_minf;
default:
goto inf_mul_zero;
}
}
else if (is_pinf<From2_Policy>(y)) {
switch (sgn<From1_Policy>(x)) {
case VR_LT:
a_minf:
if (CHECK_P(To_Policy::check_inf_sub_inf, is_minf<To_Policy>(to)))
goto inf_sub_inf;
else
goto pinf;
case VR_GT:
a_pinf:
if (CHECK_P(To_Policy::check_inf_sub_inf, is_pinf<To_Policy>(to))) {
inf_sub_inf:
return assign_nan<To_Policy>(to, V_INF_SUB_INF);
}
else
goto minf;
default:
inf_mul_zero:
PPL_ASSERT(To_Policy::check_inf_mul_zero);
return assign_nan<To_Policy>(to, V_INF_MUL_ZERO);
}
}
else {
if (is_minf<To_Policy>(to)) {
minf:
return assign_special<To_Policy>(to, VC_MINUS_INFINITY, dir);
}
if (is_pinf<To_Policy>(to)) {
pinf:
return assign_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
}
native:
return sub_mul<To_Policy, From1_Policy, From2_Policy>(to, x, y, dir);
}
}
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename To, typename From1, typename From2>
inline Result
div_ext(To& to, const From1& x, const From2& y, Rounding_Dir dir) {
if (!ext_to_handle<From1_Policy>(x) && !ext_to_handle<From2_Policy>(y))
goto native;
if (is_nan<From1_Policy>(x) || is_nan<From2_Policy>(y))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
if (is_minf<From1_Policy>(x)) {
if (CHECK_P(To_Policy::check_inf_div_inf, is_minf<From2_Policy>(y)
|| is_pinf<From2_Policy>(y)))
goto inf_div_inf;
else {
switch (sgn<From2_Policy>(y)) {
case VR_LT:
goto pinf;
case VR_GT:
goto minf;
default:
goto div_zero;
}
}
}
else if (is_pinf<From1_Policy>(x)) {
if (CHECK_P(To_Policy::check_inf_div_inf, is_minf<From2_Policy>(y)
|| is_pinf<From2_Policy>(y))) {
inf_div_inf:
return assign_nan<To_Policy>(to, V_INF_DIV_INF);
}
else {
switch (sgn<From2_Policy>(y)) {
case VR_LT:
minf:
return assign_special<To_Policy>(to, VC_MINUS_INFINITY, dir);
case VR_GT:
pinf:
return assign_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
default:
div_zero:
PPL_ASSERT(To_Policy::check_div_zero);
return assign_nan<To_Policy>(to, V_DIV_ZERO);
}
}
}
else {
if (is_minf<From2_Policy>(y) || is_pinf<From2_Policy>(y)) {
to = 0;
return V_EQ;
}
else {
native:
return div<To_Policy, From1_Policy, From2_Policy>(to, x, y, dir);
}
}
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename To, typename From1, typename From2>
inline Result
idiv_ext(To& to, const From1& x, const From2& y, Rounding_Dir dir) {
if (!ext_to_handle<From1_Policy>(x) && !ext_to_handle<From2_Policy>(y))
goto native;
if (is_nan<From1_Policy>(x) || is_nan<From2_Policy>(y))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
if (is_minf<From1_Policy>(x)) {
if (CHECK_P(To_Policy::check_inf_div_inf, is_minf<From2_Policy>(y)
|| is_pinf<From2_Policy>(y)))
goto inf_div_inf;
else {
switch (sgn<From2_Policy>(y)) {
case VR_LT:
goto pinf;
case VR_GT:
goto minf;
default:
goto div_zero;
}
}
}
else if (is_pinf<From1_Policy>(x)) {
if (CHECK_P(To_Policy::check_inf_div_inf, is_minf<From2_Policy>(y)
|| is_pinf<From2_Policy>(y))) {
inf_div_inf:
return assign_nan<To_Policy>(to, V_INF_DIV_INF);
}
else {
switch (sgn<From2_Policy>(y)) {
case VR_LT:
minf:
return assign_special<To_Policy>(to, VC_MINUS_INFINITY, dir);
case VR_GT:
pinf:
return assign_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
default:
div_zero:
PPL_ASSERT(To_Policy::check_div_zero);
return assign_nan<To_Policy>(to, V_DIV_ZERO);
}
}
}
else {
if (is_minf<From2_Policy>(y) || is_pinf<From2_Policy>(y)) {
to = 0;
return V_EQ;
}
else {
native:
return idiv<To_Policy, From1_Policy, From2_Policy>(to, x, y, dir);
}
}
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename To, typename From1, typename From2>
inline Result
rem_ext(To& to, const From1& x, const From2& y, Rounding_Dir dir) {
if (!ext_to_handle<From1_Policy>(x) && !ext_to_handle<From2_Policy>(y))
goto native;
if (is_nan<From1_Policy>(x) || is_nan<From2_Policy>(y))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (CHECK_P(To_Policy::check_inf_mod, is_minf<From1_Policy>(x)
|| is_pinf<From1_Policy>(x))) {
return assign_nan<To_Policy>(to, V_INF_MOD);
}
else {
if (is_minf<From1_Policy>(y) || is_pinf<From2_Policy>(y)) {
to = x;
return V_EQ;
}
else {
native:
return rem<To_Policy, From1_Policy, From2_Policy>(to, x, y, dir);
}
}
}
template <typename To_Policy, typename From_Policy,
typename To, typename From>
inline Result
add_2exp_ext(To& to, const From& x, unsigned int exp, Rounding_Dir dir) {
if (!ext_to_handle<From_Policy>(x))
goto native;
if (is_nan<From_Policy>(x))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (is_minf<From_Policy>(x))
return assign_special<To_Policy>(to, VC_MINUS_INFINITY, dir);
else if (is_pinf<From_Policy>(x))
return assign_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
else {
native:
return add_2exp<To_Policy, From_Policy>(to, x, exp, dir);
}
}
template <typename To_Policy, typename From_Policy,
typename To, typename From>
inline Result
sub_2exp_ext(To& to, const From& x, unsigned int exp, Rounding_Dir dir) {
if (!ext_to_handle<From_Policy>(x))
goto native;
if (is_nan<From_Policy>(x))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (is_minf<From_Policy>(x))
return assign_special<To_Policy>(to, VC_MINUS_INFINITY, dir);
else if (is_pinf<From_Policy>(x))
return assign_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
else {
native:
return sub_2exp<To_Policy, From_Policy>(to, x, exp, dir);
}
}
template <typename To_Policy, typename From_Policy,
typename To, typename From>
inline Result
mul_2exp_ext(To& to, const From& x, unsigned int exp, Rounding_Dir dir) {
if (!ext_to_handle<From_Policy>(x))
goto native;
if (is_nan<From_Policy>(x))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (is_minf<From_Policy>(x))
return assign_special<To_Policy>(to, VC_MINUS_INFINITY, dir);
else if (is_pinf<From_Policy>(x))
return assign_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
else {
native:
return mul_2exp<To_Policy, From_Policy>(to, x, exp, dir);
}
}
template <typename To_Policy, typename From_Policy,
typename To, typename From>
inline Result
div_2exp_ext(To& to, const From& x, unsigned int exp, Rounding_Dir dir) {
if (!ext_to_handle<From_Policy>(x))
goto native;
if (is_nan<From_Policy>(x))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (is_minf<From_Policy>(x))
return assign_special<To_Policy>(to, VC_MINUS_INFINITY, dir);
else if (is_pinf<From_Policy>(x))
return assign_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
else {
native:
return div_2exp<To_Policy, From_Policy>(to, x, exp, dir);
}
}
template <typename To_Policy, typename From_Policy,
typename To, typename From>
inline Result
smod_2exp_ext(To& to, const From& x, unsigned int exp, Rounding_Dir dir) {
if (!ext_to_handle<From_Policy>(x))
goto native;
if (is_nan<From_Policy>(x))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (CHECK_P(To_Policy::check_inf_mod, is_minf<From_Policy>(x)
|| is_pinf<From_Policy>(x))) {
return assign_nan<To_Policy>(to, V_INF_MOD);
}
else {
native:
return smod_2exp<To_Policy, From_Policy>(to, x, exp, dir);
}
}
template <typename To_Policy, typename From_Policy,
typename To, typename From>
inline Result
umod_2exp_ext(To& to, const From& x, unsigned int exp, Rounding_Dir dir) {
if (!ext_to_handle<From_Policy>(x))
goto native;
if (is_nan<From_Policy>(x))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (CHECK_P(To_Policy::check_inf_mod, is_minf<From_Policy>(x)
|| is_pinf<From_Policy>(x))) {
return assign_nan<To_Policy>(to, V_INF_MOD);
}
else {
native:
return umod_2exp<To_Policy, From_Policy>(to, x, exp, dir);
}
}
template <typename To_Policy, typename From_Policy,
typename To, typename From>
inline Result
sqrt_ext(To& to, const From& x, Rounding_Dir dir) {
if (!ext_to_handle<From_Policy>(x))
goto native;
if (is_nan<From_Policy>(x))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (is_minf<From_Policy>(x)) {
return assign_nan<To_Policy>(to, V_SQRT_NEG);
}
else if (is_pinf<From_Policy>(x))
return assign_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
else {
native:
return sqrt<To_Policy, From_Policy>(to, x, dir);
}
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename To, typename From1, typename From2>
inline Result
gcd_ext(To& to, const From1& x, const From2& y, Rounding_Dir dir) {
if (is_nan<From1_Policy>(x) || is_nan<From2_Policy>(y))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (is_minf<From1_Policy>(x) || is_pinf<From1_Policy>(x))
return abs_ext<To_Policy, From2_Policy>(to, y, dir);
else if (is_minf<From2_Policy>(y) || is_pinf<From2_Policy>(y))
return abs_ext<To_Policy, From1_Policy>(to, x, dir);
else
return gcd<To_Policy, From1_Policy, From2_Policy>(to, x, y, dir);
}
template <typename To1_Policy, typename To2_Policy, typename To3_Policy,
typename From1_Policy, typename From2_Policy,
typename To1, typename To2, typename To3,
typename From1, typename From2>
inline Result
gcdext_ext(To1& to, To2& s, To3& t, const From1& x, const From2& y,
Rounding_Dir dir) {
if (is_nan<From1_Policy>(x) || is_nan<From2_Policy>(y))
return assign_special<To1_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (is_minf<From1_Policy>(x) || is_pinf<From1_Policy>(x)) {
s = 0;
t = y > 0 ? -1 : 1;
return abs_ext<To1_Policy, From2_Policy>(to, y, dir);
}
else if (is_minf<From2_Policy>(y) || is_pinf<From2_Policy>(y)) {
s = x > 0 ? -1 : 1;
t = 0;
return abs_ext<To1_Policy, From1_Policy>(to, x, dir);
}
else
return gcdext<To1_Policy, To2_Policy, To3_Policy, From1_Policy, From2_Policy>(to, s, t, x, y, dir);
}
template <typename To_Policy, typename From1_Policy, typename From2_Policy,
typename To, typename From1, typename From2>
inline Result
lcm_ext(To& to, const From1& x, const From2& y, Rounding_Dir dir) {
if (is_nan<From1_Policy>(x) || is_nan<From2_Policy>(y))
return assign_special<To_Policy>(to, VC_NAN, ROUND_IGNORE);
else if (is_minf<From1_Policy>(x) || is_pinf<From1_Policy>(x)
|| is_minf<From2_Policy>(y) || is_pinf<From2_Policy>(y))
return assign_special<To_Policy>(to, VC_PLUS_INFINITY, dir);
else
return lcm<To_Policy, From1_Policy, From2_Policy>(to, x, y, dir);
}
template <typename Policy1, typename Policy2,
typename Type1, typename Type2>
inline Result_Relation
cmp_ext(const Type1& x, const Type2& y) {
if (!ext_to_handle<Policy1>(x) && !ext_to_handle<Policy2>(y))
goto native;
if (is_nan<Policy1>(x) || is_nan<Policy2>(y))
return VR_EMPTY;
else if (is_minf<Policy1>(x))
return is_minf<Policy2>(y) ? VR_EQ : VR_LT;
else if (is_pinf<Policy1>(x))
return is_pinf<Policy2>(y) ? VR_EQ : VR_GT;
else {
if (is_minf<Policy2>(y))
return VR_GT;
if (is_pinf<Policy2>(y))
return VR_LT;
native:
return cmp<Policy1, Policy2>(x, y);
}
}
template <typename Policy1, typename Policy2,
typename Type1, typename Type2>
inline bool
lt_ext(const Type1& x, const Type2& y) {
if (!ext_to_handle<Policy1>(x) && !ext_to_handle<Policy2>(y))
goto native;
if (is_nan<Policy1>(x) || is_nan<Policy2>(y))
return false;
if (is_pinf<Policy1>(x) || is_minf<Policy2>(y))
return false;
if (is_minf<Policy1>(x) || is_pinf<Policy2>(y))
return true;
native:
return lt_p<Policy1, Policy2>(x, y);
}
template <typename Policy1, typename Policy2,
typename Type1, typename Type2>
inline bool
gt_ext(const Type1& x, const Type2& y) {
return lt_ext<Policy1, Policy2>(y, x);
}
template <typename Policy1, typename Policy2,
typename Type1, typename Type2>
inline bool
le_ext(const Type1& x, const Type2& y) {
if (!ext_to_handle<Policy1>(x) && !ext_to_handle<Policy2>(y))
goto native;
if (is_nan<Policy1>(x) || is_nan<Policy2>(y))
return false;
if (is_minf<Policy1>(x) || is_pinf<Policy2>(y))
return true;
if (is_pinf<Policy1>(x) || is_minf<Policy2>(y))
return false;
native:
return le_p<Policy1, Policy2>(x, y);
}
template <typename Policy1, typename Policy2,
typename Type1, typename Type2>
inline bool
ge_ext(const Type1& x, const Type2& y) {
return le_ext<Policy1, Policy2>(y, x);
}
template <typename Policy1, typename Policy2,
typename Type1, typename Type2>
inline bool
eq_ext(const Type1& x, const Type2& y) {
if (!ext_to_handle<Policy1>(x) && !ext_to_handle<Policy2>(y))
goto native;
if (is_nan<Policy1>(x) || is_nan<Policy2>(y))
return false;
if (is_minf<Policy1>(x))
return is_minf<Policy2>(y);
if (is_pinf<Policy1>(x))
return is_pinf<Policy2>(y);
else if (is_minf<Policy2>(y) || is_pinf<Policy2>(y))
return false;
native:
return eq_p<Policy1, Policy2>(x, y);
}
template <typename Policy1, typename Policy2,
typename Type1, typename Type2>
inline bool
ne_ext(const Type1& x, const Type2& y) {
return !eq_ext<Policy1, Policy2>(x, y);
}
template <typename Policy, typename Type>
inline Result
output_ext(std::ostream& os, const Type& x,
const Numeric_Format& format, Rounding_Dir dir) {
if (!ext_to_handle<Policy>(x))
goto native;
if (is_nan<Policy>(x)) {
os << "nan";
return V_NAN;
}
if (is_minf<Policy>(x)) {
os << "-inf";
return V_EQ;
}
if (is_pinf<Policy>(x)) {
os << "+inf";
return V_EQ;
}
native:
return output<Policy>(os, x, format, dir);
}
template <typename To_Policy, typename To>
inline Result
input_ext(To& to, std::istream& is, Rounding_Dir dir) {
return input<To_Policy>(to, is, dir);
}
} // namespace Checked
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/checked_defs.hh line 706. */
#undef nonconst
#ifdef PPL_SAVED_nonconst
#define nonconst PPL_SAVED_nonconst
#undef PPL_SAVED_nonconst
#endif
#undef PPL_FUNCTION_CLASS
#undef PPL_NAN
/* Automatically generated from PPL source file ../src/Checked_Number_defs.hh line 31. */
#include <iosfwd>
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
struct Extended_Number_Policy {
const_bool_nodef(check_overflow, true);
const_bool_nodef(check_inf_add_inf, false);
const_bool_nodef(check_inf_sub_inf, false);
const_bool_nodef(check_inf_mul_zero, false);
const_bool_nodef(check_div_zero, false);
const_bool_nodef(check_inf_div_inf, false);
const_bool_nodef(check_inf_mod, false);
const_bool_nodef(check_sqrt_neg, false);
const_bool_nodef(has_nan, true);
const_bool_nodef(has_infinity, true);
// `convertible' is intentionally not defined: the compile time
// error on conversions is the expected behavior.
const_bool_nodef(fpu_check_inexact, true);
const_bool_nodef(fpu_check_nan_result, true);
// ROUND_DEFAULT_CONSTRUCTOR is intentionally not defined.
// ROUND_DEFAULT_OPERATOR is intentionally not defined.
// ROUND_DEFAULT_FUNCTION is intentionally not defined.
// ROUND_DEFAULT_INPUT is intentionally not defined.
// ROUND_DEFAULT_OUTPUT is intentionally not defined.
static void handle_result(Result r);
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! A policy checking for overflows.
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
struct Check_Overflow_Policy {
const_bool_nodef(check_overflow, true);
const_bool_nodef(check_inf_add_inf, false);
const_bool_nodef(check_inf_sub_inf, false);
const_bool_nodef(check_inf_mul_zero, false);
const_bool_nodef(check_div_zero, false);
const_bool_nodef(check_inf_div_inf, false);
const_bool_nodef(check_inf_mod, false);
const_bool_nodef(check_sqrt_neg, false);
const_bool_nodef(has_nan, std::numeric_limits<T>::has_quiet_NaN);
const_bool_nodef(has_infinity, std::numeric_limits<T>::has_infinity);
const_bool_nodef(convertible, true);
const_bool_nodef(fpu_check_inexact, true);
const_bool_nodef(fpu_check_nan_result, true);
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T, typename Enable = void>
struct Native_Checked_From_Wrapper;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
struct Native_Checked_From_Wrapper<T, typename Enable_If<Is_Native<T>::value>::type> {
typedef Checked_Number_Transparent_Policy<T> Policy;
static const T& raw_value(const T& v) {
return v;
}
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T, typename P>
struct Native_Checked_From_Wrapper<Checked_Number<T, P> > {
typedef P Policy;
static const T& raw_value(const Checked_Number<T, P>& v) {
return v.raw_value();
}
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T, typename Enable = void>
struct Native_Checked_To_Wrapper;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
struct Native_Checked_To_Wrapper<T, typename Enable_If<Is_Native<T>::value>::type> {
typedef Check_Overflow_Policy<T> Policy;
static T& raw_value(T& v) {
return v;
}
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T, typename P>
struct Native_Checked_To_Wrapper<Checked_Number<T, P> > {
typedef P Policy;
static T& raw_value(Checked_Number<T, P>& v) {
return v.raw_value();
}
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
struct Is_Checked : public False { };
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T, typename P>
struct Is_Checked<Checked_Number<T, P> > : public True { };
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
struct Is_Native_Or_Checked
: public Bool<Is_Native<T>::value || Is_Checked<T>::value> { };
//! A wrapper for numeric types implementing a given policy.
/*! \ingroup PPL_CXX_interface
The wrapper and related functions implement an interface which is common
to all kinds of coefficient types, therefore allowing for a uniform
coding style. This class also implements the policy encoded by the
second template parameter. The default policy is to perform the detection
of overflow errors.
*/
template <typename T, typename Policy>
class Checked_Number {
public:
//! \name Constructors
//@{
//! Default constructor.
Checked_Number();
//! Copy constructor.
Checked_Number(const Checked_Number& y);
//! Direct initialization from a Checked_Number and rounding mode.
template <typename From, typename From_Policy>
Checked_Number(const Checked_Number<From, From_Policy>& y, Rounding_Dir dir);
//! Direct initialization from a plain char and rounding mode.
Checked_Number(char y, Rounding_Dir dir);
//! Direct initialization from a signed char and rounding mode.
Checked_Number(signed char y, Rounding_Dir dir);
//! Direct initialization from a signed short and rounding mode.
Checked_Number(signed short y, Rounding_Dir dir);
//! Direct initialization from a signed int and rounding mode.
Checked_Number(signed int y, Rounding_Dir dir);
//! Direct initialization from a signed long and rounding mode.
Checked_Number(signed long y, Rounding_Dir dir);
//! Direct initialization from a signed long long and rounding mode.
Checked_Number(signed long long y, Rounding_Dir dir);
//! Direct initialization from an unsigned char and rounding mode.
Checked_Number(unsigned char y, Rounding_Dir dir);
//! Direct initialization from an unsigned short and rounding mode.
Checked_Number(unsigned short y, Rounding_Dir dir);
//! Direct initialization from an unsigned int and rounding mode.
Checked_Number(unsigned int y, Rounding_Dir dir);
//! Direct initialization from an unsigned long and rounding mode.
Checked_Number(unsigned long y, Rounding_Dir dir);
//! Direct initialization from an unsigned long long and rounding mode.
Checked_Number(unsigned long long y, Rounding_Dir dir);
#if PPL_SUPPORTED_FLOAT
//! Direct initialization from a float and rounding mode.
Checked_Number(float y, Rounding_Dir dir);
#endif
#if PPL_SUPPORTED_DOUBLE
//! Direct initialization from a double and rounding mode.
Checked_Number(double y, Rounding_Dir dir);
#endif
#if PPL_SUPPORTED_LONG_DOUBLE
//! Direct initialization from a long double and rounding mode.
Checked_Number(long double y, Rounding_Dir dir);
#endif
//! Direct initialization from a rational and rounding mode.
Checked_Number(const mpq_class& y, Rounding_Dir dir);
//! Direct initialization from an unbounded integer and rounding mode.
Checked_Number(const mpz_class& y, Rounding_Dir dir);
//! Direct initialization from a C string and rounding mode.
Checked_Number(const char* y, Rounding_Dir dir);
//! Direct initialization from special and rounding mode.
template <typename From>
Checked_Number(const From&, Rounding_Dir dir, typename Enable_If<Is_Special<From>::value, bool>::type ignored = false);
//! Direct initialization from a Checked_Number, default rounding mode.
template <typename From, typename From_Policy>
explicit Checked_Number(const Checked_Number<From, From_Policy>& y);
//! Direct initialization from a plain char, default rounding mode.
Checked_Number(char y);
//! Direct initialization from a signed char, default rounding mode.
Checked_Number(signed char y);
//! Direct initialization from a signed short, default rounding mode.
Checked_Number(signed short y);
//! Direct initialization from a signed int, default rounding mode.
Checked_Number(signed int y);
//! Direct initialization from a signed long, default rounding mode.
Checked_Number(signed long y);
//! Direct initialization from a signed long long, default rounding mode.
Checked_Number(signed long long y);
//! Direct initialization from an unsigned char, default rounding mode.
Checked_Number(unsigned char y);
//! Direct initialization from an unsigned short, default rounding mode.
Checked_Number(unsigned short y);
//! Direct initialization from an unsigned int, default rounding mode.
Checked_Number(unsigned int y);
//! Direct initialization from an unsigned long, default rounding mode.
Checked_Number(unsigned long y);
//! Direct initialization from an unsigned long long, default rounding mode.
Checked_Number(unsigned long long y);
//! Direct initialization from a float, default rounding mode.
Checked_Number(float y);
//! Direct initialization from a double, default rounding mode.
Checked_Number(double y);
//! Direct initialization from a long double, default rounding mode.
Checked_Number(long double y);
//! Direct initialization from a rational, default rounding mode.
Checked_Number(const mpq_class& y);
//! Direct initialization from an unbounded integer, default rounding mode.
Checked_Number(const mpz_class& y);
//! Direct initialization from a C string, default rounding mode.
Checked_Number(const char* y);
//! Direct initialization from special, default rounding mode
template <typename From>
Checked_Number(const From&, typename Enable_If<Is_Special<From>::value, bool>::type ignored = false);
//@} // Constructors
//! \name Accessors and Conversions
//@{
//! Conversion operator: returns a copy of the underlying numeric value.
operator T() const;
//! Returns a reference to the underlying numeric value.
T& raw_value();
//! Returns a const reference to the underlying numeric value.
const T& raw_value() const;
//@} // Accessors and Conversions
//! Checks if all the invariants are satisfied.
bool OK() const;
//! Classifies *this.
/*!
Returns the appropriate Result characterizing:
- whether \p *this is NaN,
if \p nan is <CODE>true</CODE>;
- whether \p *this is a (positive or negative) infinity,
if \p inf is <CODE>true</CODE>;
- the sign of \p *this,
if \p sign is <CODE>true</CODE>.
*/
Result classify(bool nan = true, bool inf = true, bool sign = true) const;
//! \name Assignment Operators
//@{
//! Assignment operator.
Checked_Number& operator=(const Checked_Number& y);
//! Assignment operator.
template <typename From>
Checked_Number& operator=(const From& y);
//! Add and assign operator.
template <typename From_Policy>
Checked_Number& operator+=(const Checked_Number<T, From_Policy>& y);
//! Add and assign operator.
Checked_Number& operator+=(const T& y);
//! Add and assign operator.
template <typename From>
typename Enable_If<Is_Native_Or_Checked<From>::value,
Checked_Number<T, Policy>&>::type
operator+=(const From& y);
//! Subtract and assign operator.
template <typename From_Policy>
Checked_Number& operator-=(const Checked_Number<T, From_Policy>& y);
//! Subtract and assign operator.
Checked_Number& operator-=(const T& y);
//! Subtract and assign operator.
template <typename From>
typename Enable_If<Is_Native_Or_Checked<From>::value,
Checked_Number<T, Policy>&>::type
operator-=(const From& y);
//! Multiply and assign operator.
template <typename From_Policy>
Checked_Number& operator*=(const Checked_Number<T, From_Policy>& y);
//! Multiply and assign operator.
Checked_Number& operator*=(const T& y);
//! Multiply and assign operator.
template <typename From>
typename Enable_If<Is_Native_Or_Checked<From>::value,
Checked_Number<T, Policy>&>::type
operator*=(const From& y);
//! Divide and assign operator.
template <typename From_Policy>
Checked_Number& operator/=(const Checked_Number<T, From_Policy>& y);
//! Divide and assign operator.
Checked_Number& operator/=(const T& y);
//! Divide and assign operator.
template <typename From>
typename Enable_If<Is_Native_Or_Checked<From>::value,
Checked_Number<T, Policy>&>::type
operator/=(const From& y);
//! Compute remainder and assign operator.
template <typename From_Policy>
Checked_Number& operator%=(const Checked_Number<T, From_Policy>& y);
//! Compute remainder and assign operator.
Checked_Number& operator%=(const T& y);
//! Compute remainder and assign operator.
template <typename From>
typename Enable_If<Is_Native_Or_Checked<From>::value,
Checked_Number<T, Policy>& >::type
operator%=(const From& y);
//@} // Assignment Operators
//! \name Increment and Decrement Operators
//@{
//! Pre-increment operator.
Checked_Number& operator++();
//! Post-increment operator.
Checked_Number operator++(int);
//! Pre-decrement operator.
Checked_Number& operator--();
//! Post-decrement operator.
Checked_Number operator--(int);
//@} // Increment and Decrement Operators
private:
//! The underlying numeric value.
T v;
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T, typename P>
struct Slow_Copy<Checked_Number<T, P> > : public Bool<Slow_Copy<T>::value> {};
/*! \relates Checked_Number */
template <typename T>
typename Enable_If<Is_Native_Or_Checked<T>::value, bool>::type
is_not_a_number(const T& x);
/*! \relates Checked_Number */
template <typename T>
typename Enable_If<Is_Native_Or_Checked<T>::value, bool>::type
is_minus_infinity(const T& x);
/*! \relates Checked_Number */
template <typename T>
typename Enable_If<Is_Native_Or_Checked<T>::value, bool>::type
is_plus_infinity(const T& x);
/*! \relates Checked_Number */
template <typename T>
typename Enable_If<Is_Native_Or_Checked<T>::value, int>::type
infinity_sign(const T& x);
/*! \relates Checked_Number */
template <typename T>
typename Enable_If<Is_Native_Or_Checked<T>::value, bool>::type
is_integer(const T& x);
/*! \relates Checked_Number */
template <typename To, typename From>
typename Enable_If<Is_Native_Or_Checked<To>::value && Is_Special<From>::value, Result>::type
construct(To& to, const From& x, Rounding_Dir dir);
/*! \relates Checked_Number */
template <typename To, typename From>
typename Enable_If<Is_Native_Or_Checked<To>::value && Is_Special<From>::value, Result>::type
assign_r(To& to, const From& x, Rounding_Dir dir);
/*! \relates Checked_Number */
template <typename To>
typename Enable_If<Is_Native_Or_Checked<To>::value, Result>::type
assign_r(To& to, const char* x, Rounding_Dir dir);
/*! \relates Checked_Number */
template <typename To, typename To_Policy>
typename Enable_If<Is_Native_Or_Checked<To>::value, Result>::type
assign_r(To& to, char* x, Rounding_Dir dir);
#define PPL_DECLARE_FUNC1_A(name) \
template <typename To, typename From> \
typename Enable_If<Is_Native_Or_Checked<To>::value \
&& Is_Native_Or_Checked<From>::value, \
Result>::type \
PPL_U(name)(To& to, const From& x, Rounding_Dir dir);
PPL_DECLARE_FUNC1_A(assign_r)
PPL_DECLARE_FUNC1_A(floor_assign_r)
PPL_DECLARE_FUNC1_A(ceil_assign_r)
PPL_DECLARE_FUNC1_A(trunc_assign_r)
PPL_DECLARE_FUNC1_A(neg_assign_r)
PPL_DECLARE_FUNC1_A(abs_assign_r)
PPL_DECLARE_FUNC1_A(sqrt_assign_r)
#undef PPL_DECLARE_FUNC1_A
#define PPL_DECLARE_FUNC1_B(name) \
template <typename To, typename From> \
typename Enable_If<Is_Native_Or_Checked<To>::value \
&& Is_Native_Or_Checked<From>::value, \
Result>::type \
PPL_U(name)(To& to, const From& x, unsigned int exp, Rounding_Dir dir);
PPL_DECLARE_FUNC1_B(add_2exp_assign_r)
PPL_DECLARE_FUNC1_B(sub_2exp_assign_r)
PPL_DECLARE_FUNC1_B(mul_2exp_assign_r)
PPL_DECLARE_FUNC1_B(div_2exp_assign_r)
PPL_DECLARE_FUNC1_B(smod_2exp_assign_r)
PPL_DECLARE_FUNC1_B(umod_2exp_assign_r)
#undef PPL_DECLARE_FUNC1_B
#define PPL_DECLARE_FUNC2(name) \
template <typename To, typename From1, typename From2> \
typename Enable_If<Is_Native_Or_Checked<To>::value \
&& Is_Native_Or_Checked<From1>::value \
&& Is_Native_Or_Checked<From2>::value, \
Result>::type \
PPL_U(name)(To& to, const From1& x, const From2& y, Rounding_Dir dir);
PPL_DECLARE_FUNC2(add_assign_r)
PPL_DECLARE_FUNC2(sub_assign_r)
PPL_DECLARE_FUNC2(mul_assign_r)
PPL_DECLARE_FUNC2(div_assign_r)
PPL_DECLARE_FUNC2(idiv_assign_r)
PPL_DECLARE_FUNC2(rem_assign_r)
PPL_DECLARE_FUNC2(gcd_assign_r)
PPL_DECLARE_FUNC2(lcm_assign_r)
PPL_DECLARE_FUNC2(add_mul_assign_r)
PPL_DECLARE_FUNC2(sub_mul_assign_r)
#undef PPL_DECLARE_FUNC2
#define PPL_DECLARE_FUNC4(name) \
template <typename To1, typename To2, typename To3, \
typename From1, typename From2> \
typename Enable_If<Is_Native_Or_Checked<To1>::value \
&& Is_Native_Or_Checked<To2>::value \
&& Is_Native_Or_Checked<To3>::value \
&& Is_Native_Or_Checked<From1>::value \
&& Is_Native_Or_Checked<From2>::value, \
Result>::type \
PPL_U(name)(To1& to, To2& s, To3& t, \
const From1& x, const From2& y, \
Rounding_Dir dir);
PPL_DECLARE_FUNC4(gcdext_assign_r)
#undef PPL_DECLARE_FUNC4
//! \name Accessor Functions
//@{
//@} // Accessor Functions
//! \name Memory Size Inspection Functions
//@{
//! Returns the total size in bytes of the memory occupied by \p x.
/*! \relates Checked_Number */
template <typename T, typename Policy>
memory_size_type
total_memory_in_bytes(const Checked_Number<T, Policy>& x);
//! Returns the size in bytes of the memory managed by \p x.
/*! \relates Checked_Number */
template <typename T, typename Policy>
memory_size_type
external_memory_in_bytes(const Checked_Number<T, Policy>& x);
//@} // Memory Size Inspection Functions
//! \name Arithmetic Operators
//@{
//! Unary plus operator.
/*! \relates Checked_Number */
template <typename T, typename Policy>
Checked_Number<T, Policy>
operator+(const Checked_Number<T, Policy>& x);
//! Unary minus operator.
/*! \relates Checked_Number */
template <typename T, typename Policy>
Checked_Number<T, Policy>
operator-(const Checked_Number<T, Policy>& x);
//! Assigns to \p x largest integral value not greater than \p x.
/*! \relates Checked_Number */
template <typename T, typename Policy>
void
floor_assign(Checked_Number<T, Policy>& x);
//! Assigns to \p x largest integral value not greater than \p y.
/*! \relates Checked_Number */
template <typename T, typename Policy>
void
floor_assign(Checked_Number<T, Policy>& x, const Checked_Number<T, Policy>& y);
//! Assigns to \p x smallest integral value not less than \p x.
/*! \relates Checked_Number */
template <typename T, typename Policy>
void
ceil_assign(Checked_Number<T, Policy>& x);
//! Assigns to \p x smallest integral value not less than \p y.
/*! \relates Checked_Number */
template <typename T, typename Policy>
void
ceil_assign(Checked_Number<T, Policy>& x, const Checked_Number<T, Policy>& y);
//! Round \p x to the nearest integer not larger in absolute value.
/*! \relates Checked_Number */
template <typename T, typename Policy>
void
trunc_assign(Checked_Number<T, Policy>& x);
//! Assigns to \p x the value of \p y rounded to the nearest integer not larger in absolute value.
/*! \relates Checked_Number */
template <typename T, typename Policy>
void
trunc_assign(Checked_Number<T, Policy>& x, const Checked_Number<T, Policy>& y);
//! Assigns to \p x its negation.
/*! \relates Checked_Number */
template <typename T, typename Policy>
void
neg_assign(Checked_Number<T, Policy>& x);
//! Assigns to \p x the negation of \p y.
/*! \relates Checked_Number */
template <typename T, typename Policy>
void
neg_assign(Checked_Number<T, Policy>& x, const Checked_Number<T, Policy>& y);
//! Assigns to \p x its absolute value.
/*! \relates Checked_Number */
template <typename T, typename Policy>
void
abs_assign(Checked_Number<T, Policy>& x);
//! Assigns to \p x the absolute value of \p y.
/*! \relates Checked_Number */
template <typename T, typename Policy>
void
abs_assign(Checked_Number<T, Policy>& x, const Checked_Number<T, Policy>& y);
//! Assigns to \p x the value <CODE>x + y * z</CODE>.
/*! \relates Checked_Number */
template <typename T, typename Policy>
void
add_mul_assign(Checked_Number<T, Policy>& x,
const Checked_Number<T, Policy>& y,
const Checked_Number<T, Policy>& z);
//! Assigns to \p x the value <CODE>x - y * z</CODE>.
/*! \relates Checked_Number */
template <typename T, typename Policy>
void
sub_mul_assign(Checked_Number<T, Policy>& x,
const Checked_Number<T, Policy>& y,
const Checked_Number<T, Policy>& z);
//! Assigns to \p x the greatest common divisor of \p y and \p z.
/*! \relates Checked_Number */
template <typename T, typename Policy>
void
gcd_assign(Checked_Number<T, Policy>& x,
const Checked_Number<T, Policy>& y,
const Checked_Number<T, Policy>& z);
/*! \brief
Assigns to \p x the greatest common divisor of \p y and \p z,
setting \p s and \p t such that s*y + t*z = x = gcd(y, z).
*/
/*! \relates Checked_Number */
template <typename T, typename Policy>
void
gcdext_assign(Checked_Number<T, Policy>& x,
Checked_Number<T, Policy>& s,
Checked_Number<T, Policy>& t,
const Checked_Number<T, Policy>& y,
const Checked_Number<T, Policy>& z);
//! Assigns to \p x the least common multiple of \p y and \p z.
/*! \relates Checked_Number */
template <typename T, typename Policy>
void
lcm_assign(Checked_Number<T, Policy>& x,
const Checked_Number<T, Policy>& y,
const Checked_Number<T, Policy>& z);
//! Assigns to \p x the value \f$ y \cdot 2^\mathtt{exp} \f$.
/*! \relates Checked_Number */
template <typename T, typename Policy>
void
mul_2exp_assign(Checked_Number<T, Policy>& x,
const Checked_Number<T, Policy>& y,
unsigned int exp);
//! Assigns to \p x the value \f$ y / 2^\mathtt{exp} \f$.
/*! \relates Checked_Number */
template <typename T, typename Policy>
void
div_2exp_assign(Checked_Number<T, Policy>& x,
const Checked_Number<T, Policy>& y,
unsigned int exp);
/*! \brief
If \p z divides \p y, assigns to \p x the quotient of the integer
division of \p y and \p z.
\relates Checked_Number
The behavior is undefined if \p z does not divide \p y.
*/
template <typename T, typename Policy>
void
exact_div_assign(Checked_Number<T, Policy>& x,
const Checked_Number<T, Policy>& y,
const Checked_Number<T, Policy>& z);
//! Assigns to \p x the integer square root of \p y.
/*! \relates Checked_Number */
template <typename T, typename Policy>
void sqrt_assign(Checked_Number<T, Policy>& x,
const Checked_Number<T, Policy>& y);
//@} // Arithmetic Operators
//! \name Relational Operators and Comparison Functions
//@{
//! Equality operator.
/*! \relates Checked_Number */
template <typename T1, typename T2>
inline
typename Enable_If<Is_Native_Or_Checked<T1>::value
&& Is_Native_Or_Checked<T2>::value
&& (Is_Checked<T1>::value || Is_Checked<T2>::value),
bool>::type
operator==(const T1& x, const T2& y);
/*! \relates Checked_Number */
template <typename T1, typename T2>
inline typename Enable_If<Is_Native_Or_Checked<T1>::value
&& Is_Native_Or_Checked<T2>::value,
bool>::type
equal(const T1& x, const T2& y);
//! Disequality operator.
/*! \relates Checked_Number */
template <typename T1, typename T2>
inline
typename Enable_If<Is_Native_Or_Checked<T1>::value
&& Is_Native_Or_Checked<T2>::value
&& (Is_Checked<T1>::value || Is_Checked<T2>::value),
bool>::type
operator!=(const T1& x, const T2& y);
/*! \relates Checked_Number */
template <typename T1, typename T2>
inline typename Enable_If<Is_Native_Or_Checked<T1>::value
&& Is_Native_Or_Checked<T2>::value,
bool>::type
not_equal(const T1& x, const T2& y);
//! Greater than or equal to operator.
/*! \relates Checked_Number */
template <typename T1, typename T2>
inline
typename Enable_If<Is_Native_Or_Checked<T1>::value
&& Is_Native_Or_Checked<T2>::value
&& (Is_Checked<T1>::value || Is_Checked<T2>::value),
bool>::type
operator>=(const T1& x, const T2& y);
/*! \relates Checked_Number */
template <typename T1, typename T2>
inline typename Enable_If<Is_Native_Or_Checked<T1>::value
&& Is_Native_Or_Checked<T2>::value,
bool>::type
greater_or_equal(const T1& x, const T2& y);
//! Greater than operator.
/*! \relates Checked_Number */
template <typename T1, typename T2>
inline
typename Enable_If<Is_Native_Or_Checked<T1>::value
&& Is_Native_Or_Checked<T2>::value
&& (Is_Checked<T1>::value || Is_Checked<T2>::value),
bool>::type
operator>(const T1& x, const T2& y);
/*! \relates Checked_Number */
template <typename T1, typename T2>
inline typename Enable_If<Is_Native_Or_Checked<T1>::value
&& Is_Native_Or_Checked<T2>::value,
bool>::type
greater_than(const T1& x, const T2& y);
//! Less than or equal to operator.
/*! \relates Checked_Number */
template <typename T1, typename T2>
inline
typename Enable_If<Is_Native_Or_Checked<T1>::value
&& Is_Native_Or_Checked<T2>::value
&& (Is_Checked<T1>::value || Is_Checked<T2>::value),
bool>::type
operator<=(const T1& x, const T2& y);
/*! \relates Checked_Number */
template <typename T1, typename T2>
inline typename Enable_If<Is_Native_Or_Checked<T1>::value
&& Is_Native_Or_Checked<T2>::value,
bool>::type
less_or_equal(const T1& x, const T2& y);
//! Less than operator.
/*! \relates Checked_Number */
template <typename T1, typename T2>
inline
typename Enable_If<Is_Native_Or_Checked<T1>::value
&& Is_Native_Or_Checked<T2>::value
&& (Is_Checked<T1>::value || Is_Checked<T2>::value),
bool>::type
operator<(const T1& x, const T2& y);
/*! \relates Checked_Number */
template <typename T1, typename T2>
inline typename Enable_If<Is_Native_Or_Checked<T1>::value
&& Is_Native_Or_Checked<T2>::value,
bool>::type
less_than(const T1& x, const T2& y);
/*! \brief
Returns \f$-1\f$, \f$0\f$ or \f$1\f$ depending on whether the value
of \p x is negative, zero or positive, respectively.
\relates Checked_Number
*/
template <typename From>
inline typename Enable_If<Is_Native_Or_Checked<From>::value, int>::type \
sgn(const From& x);
/*! \brief
Returns a negative, zero or positive value depending on whether
\p x is lower than, equal to or greater than \p y, respectively.
\relates Checked_Number
*/
template <typename From1, typename From2>
inline typename Enable_If<Is_Native_Or_Checked<From1>::value
&& Is_Native_Or_Checked<From2>::value,
int>::type
cmp(const From1& x, const From2& y);
//@} // Relational Operators and Comparison Functions
//! \name Input-Output Operators
//@{
/*! \relates Checked_Number */
template <typename T>
typename Enable_If<Is_Native_Or_Checked<T>::value, Result>::type
output(std::ostream& os,
const T& x,
const Numeric_Format& format,
Rounding_Dir dir);
//! Output operator.
/*! \relates Checked_Number */
template <typename T, typename Policy>
std::ostream&
operator<<(std::ostream& os, const Checked_Number<T, Policy>& x);
//! Ascii dump for native or checked.
/*! \relates Checked_Number */
template <typename T>
typename Enable_If<Is_Native_Or_Checked<T>::value, void>::type
ascii_dump(std::ostream& s, const T& t);
//! Input function.
/*!
\relates Checked_Number
\param is
Input stream to read from;
\param x
Number (possibly extended) to assign to in case of successful reading;
\param dir
Rounding mode to be applied.
\return
Result of the input operation. Success, success with imprecision,
overflow, parsing error: all possibilities are taken into account,
checked for, and properly reported.
This function attempts reading a (possibly extended) number from the given
stream \p is, possibly rounding as specified by \p dir, assigning the result
to \p x upon success, and returning the appropriate Result.
The input syntax allows the specification of:
- plain base-10 integer numbers as <CODE>34976098</CODE>,
<CODE>-77</CODE> and <CODE>+13</CODE>;
- base-10 integer numbers in scientific notation as <CODE>15e2</CODE>
and <CODE>15*^2</CODE> (both meaning \f$15 \cdot 10^2 = 1500\f$),
<CODE>9200e-2</CODE> and <CODE>-18*^+11111111111111111</CODE>;
- base-10 rational numbers in fraction notation as
<CODE>15/3</CODE> and <CODE>15/-3</CODE>;
- base-10 rational numbers in fraction/scientific notation as
<CODE>15/30e-1</CODE> (meaning \f$5\f$) and <CODE>15*^-3/29e2</CODE>
(meaning \f$3/580000\f$);
- base-10 rational numbers in floating point notation as
<CODE>71.3</CODE> (meaning \f$713/10\f$) and
<CODE>-0.123456</CODE> (meaning \f$-1929/15625\f$);
- base-10 rational numbers in floating point scientific notation as
<CODE>2.2e-1</CODE> (meaning \f$11/50\f$) and <CODE>-2.20001*^+3</CODE>
(meaning \f$-220001/100\f$);
- integers and rationals (in fractional, floating point and scientific
notations) specified by using Mathematica-style bases, in the range
from 2 to 36, as
<CODE>2^^11</CODE> (meaning \f$3\f$),
<CODE>36^^z</CODE> (meaning \f$35\f$),
<CODE>36^^xyz</CODE> (meaning \f$44027\f$),
<CODE>2^^11.1</CODE> (meaning \f$7/2\f$),
<CODE>10^^2e3</CODE> (meaning \f$2000\f$),
<CODE>8^^2e3</CODE> (meaning \f$1024\f$),
<CODE>8^^2.1e3</CODE> (meaning \f$1088\f$),
<CODE>8^^20402543.120347e7</CODE> (meaning \f$9073863231288\f$),
<CODE>8^^2.1</CODE> (meaning \f$17/8\f$);
note that the base and the exponent are always written as plain
base-10 integer numbers; also, when an ambiguity may arise, the
character <CODE>e</CODE> is interpreted as a digit, so that
<CODE>16^^1e2</CODE> (meaning \f$482\f$) is different from
<CODE>16^^1*^2</CODE> (meaning \f$256\f$);
- the C-style hexadecimal prefix <CODE>0x</CODE> is interpreted as
the Mathematica-style prefix <CODE>16^^</CODE>;
- the C-style binary exponent indicator <CODE>p</CODE> can only be used
when base 16 has been specified; if used, the exponent will be
applied to base 2 (instead of base 16, as is the case when the
indicator <CODE>e</CODE> is used);
- special values like <CODE>inf</CODE> and <CODE>+inf</CODE>
(meaning \f$+\infty\f$), <CODE>-inf</CODE> (meaning \f$-\infty\f$),
and <CODE>nan</CODE> (meaning "not a number").
The rationale behind the accepted syntax can be summarized as follows:
- if the syntax is accepted by Mathematica, then this function
accepts it with the same semantics;
- if the syntax is acceptable as standard C++ integer or floating point
literal (except for octal notation and type suffixes, which are not
supported), then this function accepts it with the same semantics;
- natural extensions of the above are accepted with the natural
extensions of the semantics;
- special values are accepted.
Valid syntax is more formally and completely specified by the
following grammar, with the additional provisos that everything is
<EM>case insensitive</EM>, that the syntactic category
<CODE>BDIGIT</CODE> is further restricted by the current base
and that for all bases above 14, any <CODE>e</CODE> is always
interpreted as a digit and never as a delimiter for the exponent part
(if such a delimiter is desired, it has to be written as <CODE>*^</CODE>).
\code
number : NAN INF : 'inf'
| SIGN INF ;
| INF
| num NAN : 'nan'
| num DIV num ;
;
SIGN : '-'
num : u_num | '+'
| SIGN u_num ;
u_num : u_num1 EXP : 'e'
| HEX u_num1 | 'p'
| base BASE u_num1 | '*^'
; ;
POINT : '.'
u_num1 : mantissa ;
| mantissa EXP exponent
; DIV : '/'
;
mantissa: bdigits
| POINT bdigits MINUS : '-'
| bdigits POINT ;
| bdigits POINT bdigits
; PLUS : '+'
;
exponent: SIGN digits
| digits HEX : '0x'
; ;
bdigits : BDIGIT BASE : '^^'
| bdigits BDIGIT ;
;
DIGIT : '0' .. '9'
digits : DIGIT ;
| digits DIGIT
; BDIGIT : '0' .. '9'
| 'a' .. 'z'
;
\endcode
*/
template <typename T>
typename Enable_If<Is_Native_Or_Checked<T>::value, Result>::type
input(T& x, std::istream& is, Rounding_Dir dir);
//! Input operator.
/*! \relates Checked_Number */
template <typename T, typename Policy>
std::istream&
operator>>(std::istream& is, Checked_Number<T, Policy>& x);
//! Ascii load for native or checked.
/*! \relates Checked_Number */
template <typename T>
typename Enable_If<Is_Native_Or_Checked<T>::value, bool>::type
ascii_load(std::ostream& s, T& t);
//@} // Input-Output Operators
void throw_result_exception(Result r);
template <typename T>
T
plus_infinity();
template <typename T>
T
minus_infinity();
template <typename T>
T
not_a_number();
//! Swaps \p x with \p y.
/*! \relates Checked_Number */
template <typename T, typename Policy>
void swap(Checked_Number<T, Policy>& x, Checked_Number<T, Policy>& y);
template <typename T, typename Policy>
struct FPU_Related<Checked_Number<T, Policy> > : public FPU_Related<T> {};
template <typename T>
void maybe_reset_fpu_inexact();
template <typename T>
int maybe_check_fpu_inexact();
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Checked_Number_inlines.hh line 1. */
/* Checked_Number class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Checked_Number_inlines.hh line 28. */
#include <stdexcept>
#include <sstream>
namespace Parma_Polyhedra_Library {
#ifndef NDEBUG
#define DEBUG_ROUND_NOT_NEEDED
#endif
inline Rounding_Dir
rounding_dir(Rounding_Dir dir) {
if (dir == ROUND_NOT_NEEDED) {
#ifdef DEBUG_ROUND_NOT_NEEDED
return ROUND_CHECK;
#endif
}
return dir;
}
inline Result
check_result(Result r, Rounding_Dir dir) {
if (dir == ROUND_NOT_NEEDED) {
#ifdef DEBUG_ROUND_NOT_NEEDED
PPL_ASSERT(result_relation(r) == VR_EQ);
#endif
return r;
}
return r;
}
template <typename T>
inline void
Checked_Number_Transparent_Policy<T>::handle_result(Result) {
}
inline void
Extended_Number_Policy::handle_result(Result r) {
if (result_class(r) == VC_NAN)
throw_result_exception(r);
}
template <typename T, typename Policy>
inline
Checked_Number<T, Policy>::Checked_Number()
: v(0) {
}
template <typename T, typename Policy>
inline
Checked_Number<T, Policy>::Checked_Number(const Checked_Number& y) {
// TODO: avoid default construction of value member.
Checked::copy<Policy, Policy>(v, y.raw_value());
}
template <typename T, typename Policy>
template <typename From, typename From_Policy>
inline
Checked_Number<T, Policy>
::Checked_Number(const Checked_Number<From, From_Policy>& y,
Rounding_Dir dir) {
// TODO: avoid default construction of value member.
Policy::handle_result(check_result(Checked::assign_ext<Policy, From_Policy>
(v,
y.raw_value(),
rounding_dir(dir)),
dir)
);
}
template <typename T, typename Policy>
template <typename From, typename From_Policy>
inline
Checked_Number<T, Policy>
::Checked_Number(const Checked_Number<From, From_Policy>& y) {
// TODO: avoid default construction of value member.
Rounding_Dir dir = Policy::ROUND_DEFAULT_CONSTRUCTOR;
Policy::handle_result(check_result(Checked::assign_ext<Policy, From_Policy>
(v,
y.raw_value(),
rounding_dir(dir)),
dir));
}
// TODO: avoid default construction of value member.
#define PPL_DEFINE_CTOR(type) \
template <typename T, typename Policy> \
inline \
Checked_Number<T, Policy>::Checked_Number(const type y, Rounding_Dir dir) { \
Policy::handle_result \
(check_result(Checked::assign_ext<Policy, \
Checked_Number_Transparent_Policy<PPL_U(type)> > \
(v, y, rounding_dir(dir)), \
dir)); \
} \
template <typename T, typename Policy> \
inline \
Checked_Number<T, Policy>::Checked_Number(const type y) { \
Rounding_Dir dir = Policy::ROUND_DEFAULT_CONSTRUCTOR; \
Policy::handle_result \
(check_result(Checked::assign_ext<Policy, \
Checked_Number_Transparent_Policy<PPL_U(type)> > \
(v, y, rounding_dir(dir)), \
dir)); \
}
PPL_DEFINE_CTOR(char)
PPL_DEFINE_CTOR(signed char)
PPL_DEFINE_CTOR(signed short)
PPL_DEFINE_CTOR(signed int)
PPL_DEFINE_CTOR(signed long)
PPL_DEFINE_CTOR(signed long long)
PPL_DEFINE_CTOR(unsigned char)
PPL_DEFINE_CTOR(unsigned short)
PPL_DEFINE_CTOR(unsigned int)
PPL_DEFINE_CTOR(unsigned long)
PPL_DEFINE_CTOR(unsigned long long)
#if PPL_SUPPORTED_FLOAT
PPL_DEFINE_CTOR(float)
#endif
#if PPL_SUPPORTED_DOUBLE
PPL_DEFINE_CTOR(double)
#endif
#if PPL_SUPPORTED_LONG_DOUBLE
PPL_DEFINE_CTOR(long double)
#endif
PPL_DEFINE_CTOR(mpq_class&)
PPL_DEFINE_CTOR(mpz_class&)
#undef PPL_DEFINE_CTOR
template <typename T, typename Policy>
inline
Checked_Number<T, Policy>::Checked_Number(const char* y, Rounding_Dir dir) {
std::istringstream s(y);
Policy::handle_result(check_result(Checked::input<Policy>(v,
s,
rounding_dir(dir)),
dir));
}
template <typename T, typename Policy>
inline
Checked_Number<T, Policy>::Checked_Number(const char* y) {
std::istringstream s(y);
Rounding_Dir dir = Policy::ROUND_DEFAULT_CONSTRUCTOR;
Policy::handle_result(check_result(Checked::input<Policy>(v,
s,
rounding_dir(dir)),
dir));
}
template <typename T, typename Policy>
template <typename From>
inline
Checked_Number<T, Policy>
::Checked_Number(const From&,
Rounding_Dir dir,
typename Enable_If<Is_Special<From>::value, bool>::type) {
Policy::handle_result(check_result(Checked::assign_special<Policy>(v,
From::vclass,
rounding_dir(dir)),
dir));
}
template <typename T, typename Policy>
template <typename From>
inline
Checked_Number<T, Policy>::Checked_Number(const From&, typename Enable_If<Is_Special<From>::value, bool>::type) {
Rounding_Dir dir = Policy::ROUND_DEFAULT_CONSTRUCTOR;
Policy::handle_result(check_result(Checked::assign_special<Policy>(v,
From::vclass,
rounding_dir(dir)),
dir));
}
template <typename To, typename From>
inline typename Enable_If<Is_Native_Or_Checked<To>::value
&& Is_Special<From>::value, Result>::type
assign_r(To& to, const From&, Rounding_Dir dir) {
return check_result(Checked::assign_special<typename Native_Checked_To_Wrapper<To>
::Policy>(Native_Checked_To_Wrapper<To>::raw_value(to),
From::vclass,
rounding_dir(dir)),
dir);
}
template <typename To, typename From>
inline typename Enable_If<Is_Native_Or_Checked<To>::value && Is_Special<From>::value, Result>::type
construct(To& to, const From&, Rounding_Dir dir) {
return check_result(Checked::construct_special<typename Native_Checked_To_Wrapper<To>
::Policy>(Native_Checked_To_Wrapper<To>::raw_value(to),
From::vclass,
rounding_dir(dir)),
dir);
}
template <typename T>
inline typename Enable_If<Is_Native_Or_Checked<T>::value, bool>::type
is_minus_infinity(const T& x) {
return Checked::is_minf<typename Native_Checked_From_Wrapper<T>
::Policy>(Native_Checked_From_Wrapper<T>::raw_value(x));
}
template <typename T>
inline typename Enable_If<Is_Native_Or_Checked<T>::value, bool>::type
is_plus_infinity(const T& x) {
return Checked::is_pinf<typename Native_Checked_From_Wrapper<T>
::Policy>(Native_Checked_From_Wrapper<T>::raw_value(x));
}
template <typename T>
inline typename Enable_If<Is_Native_Or_Checked<T>::value, int>::type
infinity_sign(const T& x) {
return is_minus_infinity(x) ? -1 : (is_plus_infinity(x) ? 1 : 0);
}
template <typename T>
inline typename Enable_If<Is_Native_Or_Checked<T>::value, bool>::type
is_not_a_number(const T& x) {
return Checked::is_nan<typename Native_Checked_From_Wrapper<T>
::Policy>(Native_Checked_From_Wrapper<T>::raw_value(x));
}
template <typename T>
inline typename Enable_If<Is_Native_Or_Checked<T>::value, bool>::type
is_integer(const T& x) {
return Checked::is_int<typename Native_Checked_From_Wrapper<T>
::Policy>(Native_Checked_From_Wrapper<T>::raw_value(x));
}
template <typename T, typename Policy>
inline
Checked_Number<T, Policy>::operator T() const {
if (Policy::convertible)
return v;
}
template <typename T, typename Policy>
inline T&
Checked_Number<T, Policy>::raw_value() {
return v;
}
template <typename T, typename Policy>
inline const T&
Checked_Number<T, Policy>::raw_value() const {
return v;
}
/*! \relates Checked_Number */
template <typename T, typename Policy>
inline const T&
raw_value(const Checked_Number<T, Policy>& x) {
return x.raw_value();
}
/*! \relates Checked_Number */
template <typename T, typename Policy>
inline T&
raw_value(Checked_Number<T, Policy>& x) {
return x.raw_value();
}
template <typename T, typename Policy>
inline bool
Checked_Number<T, Policy>::OK() const {
return true;
}
template <typename T, typename Policy>
inline Result
Checked_Number<T, Policy>::classify(bool nan, bool inf, bool sign) const {
return Checked::classify<Policy>(v, nan, inf, sign);
}
template <typename T, typename Policy>
inline bool
is_not_a_number(const Checked_Number<T, Policy>& x) {
return Checked::is_nan<Policy>(x.raw_value());
}
template <typename T, typename Policy>
inline bool
is_minus_infinity(const Checked_Number<T, Policy>& x) {
return Checked::is_minf<Policy>(x.raw_value());
}
template <typename T, typename Policy>
inline bool
is_plus_infinity(const Checked_Number<T, Policy>& x) {
return Checked::is_pinf<Policy>(x.raw_value());
}
/*! \relates Checked_Number */
template <typename T, typename Policy>
inline memory_size_type
total_memory_in_bytes(const Checked_Number<T, Policy>& x) {
return total_memory_in_bytes(x.raw_value());
}
/*! \relates Checked_Number */
template <typename T, typename Policy>
inline memory_size_type
external_memory_in_bytes(const Checked_Number<T, Policy>& x) {
return external_memory_in_bytes(x.raw_value());
}
/*! \relates Checked_Number */
template <typename To>
inline typename Enable_If<Is_Native_Or_Checked<To>::value, Result>::type
assign_r(To& to, const char* x, Rounding_Dir dir) {
std::istringstream s(x);
return check_result(Checked::input<typename Native_Checked_To_Wrapper<To>
::Policy>(Native_Checked_To_Wrapper<To>::raw_value(to),
s,
rounding_dir(dir)),
dir);
}
#define PPL_DEFINE_FUNC1_A(name, func) \
template <typename To, typename From> \
inline typename Enable_If<Is_Native_Or_Checked<To>::value \
&& Is_Native_Or_Checked<From>::value, \
Result>::type \
PPL_U(name)(To& to, const From& x, Rounding_Dir dir) { \
return \
check_result(Checked::func<typename Native_Checked_To_Wrapper<To> \
::Policy, \
typename Native_Checked_From_Wrapper<From> \
::Policy>(Native_Checked_To_Wrapper<To>::raw_value(to), \
Native_Checked_From_Wrapper<From>::raw_value(x), \
rounding_dir(dir)), dir); \
}
PPL_DEFINE_FUNC1_A(construct, construct_ext)
PPL_DEFINE_FUNC1_A(assign_r, assign_ext)
PPL_DEFINE_FUNC1_A(floor_assign_r, floor_ext)
PPL_DEFINE_FUNC1_A(ceil_assign_r, ceil_ext)
PPL_DEFINE_FUNC1_A(trunc_assign_r, trunc_ext)
PPL_DEFINE_FUNC1_A(neg_assign_r, neg_ext)
PPL_DEFINE_FUNC1_A(abs_assign_r, abs_ext)
PPL_DEFINE_FUNC1_A(sqrt_assign_r, sqrt_ext)
#undef PPL_DEFINE_FUNC1_A
#define PPL_DEFINE_FUNC1_B(name, func) \
template <typename To, typename From> \
inline typename Enable_If<Is_Native_Or_Checked<To>::value \
&& Is_Native_Or_Checked<From>::value, \
Result>::type \
PPL_U(name)(To& to, const From& x, unsigned int exp, Rounding_Dir dir) { \
return \
check_result(Checked::func<typename Native_Checked_To_Wrapper<To> \
::Policy, \
typename Native_Checked_From_Wrapper<From> \
::Policy>(Native_Checked_To_Wrapper<To>::raw_value(to), \
Native_Checked_From_Wrapper<From>::raw_value(x), \
exp, \
rounding_dir(dir)), \
dir); \
}
PPL_DEFINE_FUNC1_B(add_2exp_assign_r, add_2exp_ext)
PPL_DEFINE_FUNC1_B(sub_2exp_assign_r, sub_2exp_ext)
PPL_DEFINE_FUNC1_B(mul_2exp_assign_r, mul_2exp_ext)
PPL_DEFINE_FUNC1_B(div_2exp_assign_r, div_2exp_ext)
PPL_DEFINE_FUNC1_B(smod_2exp_assign_r, smod_2exp_ext)
PPL_DEFINE_FUNC1_B(umod_2exp_assign_r, umod_2exp_ext)
#undef PPL_DEFINE_FUNC1_B
#define PPL_DEFINE_FUNC2(name, func) \
template <typename To, typename From1, typename From2> \
inline typename Enable_If<Is_Native_Or_Checked<To>::value \
&& Is_Native_Or_Checked<From1>::value \
&& Is_Native_Or_Checked<From2>::value, \
Result>::type \
PPL_U(name)(To& to, const From1& x, const From2& y, Rounding_Dir dir) { \
return \
check_result(Checked::func<typename Native_Checked_To_Wrapper<To> \
::Policy, \
typename Native_Checked_From_Wrapper<From1> \
::Policy, \
typename Native_Checked_From_Wrapper<From2> \
::Policy>(Native_Checked_To_Wrapper<To>::raw_value(to), \
Native_Checked_From_Wrapper<From1>::raw_value(x), \
Native_Checked_From_Wrapper<From2>::raw_value(y), \
rounding_dir(dir)), \
dir); \
}
PPL_DEFINE_FUNC2(add_assign_r, add_ext)
PPL_DEFINE_FUNC2(sub_assign_r, sub_ext)
PPL_DEFINE_FUNC2(mul_assign_r, mul_ext)
PPL_DEFINE_FUNC2(div_assign_r, div_ext)
PPL_DEFINE_FUNC2(idiv_assign_r, idiv_ext)
PPL_DEFINE_FUNC2(rem_assign_r, rem_ext)
PPL_DEFINE_FUNC2(gcd_assign_r, gcd_ext)
PPL_DEFINE_FUNC2(lcm_assign_r, lcm_ext)
PPL_DEFINE_FUNC2(add_mul_assign_r, add_mul_ext)
PPL_DEFINE_FUNC2(sub_mul_assign_r, sub_mul_ext)
#undef PPL_DEFINE_FUNC2
#define PPL_DEFINE_FUNC4(name, func) \
template <typename To1, \
typename To2, \
typename To3, \
typename From1, \
typename From2> \
inline typename Enable_If<Is_Native_Or_Checked<To1>::value \
&& Is_Native_Or_Checked<To2>::value \
&& Is_Native_Or_Checked<To3>::value \
&& Is_Native_Or_Checked<From1>::value \
&& Is_Native_Or_Checked<From2>::value, \
Result>::type \
PPL_U(name)(To1& to, To2& s, To3& t, const From1& x, const From2& y, \
Rounding_Dir dir) { \
return \
check_result \
(Checked::func<typename Native_Checked_To_Wrapper<To1>::Policy, \
typename Native_Checked_To_Wrapper<To2>::Policy, \
typename Native_Checked_To_Wrapper<To3>::Policy, \
typename Native_Checked_From_Wrapper<From1>::Policy, \
typename Native_Checked_From_Wrapper<From2>::Policy> \
(Native_Checked_To_Wrapper<To1>::raw_value(to), \
Native_Checked_To_Wrapper<To2>::raw_value(s), \
Native_Checked_To_Wrapper<To3>::raw_value(t), \
Native_Checked_From_Wrapper<From1>::raw_value(x), \
Native_Checked_From_Wrapper<From2>::raw_value(y), \
rounding_dir(dir)), \
dir); \
}
PPL_DEFINE_FUNC4(gcdext_assign_r, gcdext_ext)
#undef PPL_DEFINE_PPL_DEFINE_FUNC4
#define PPL_DEFINE_INCREMENT(f, fun) \
template <typename T, typename Policy> \
inline Checked_Number<T, Policy>& \
Checked_Number<T, Policy>::f() { \
Policy::handle_result((fun)(*this, *this, T(1), \
Policy::ROUND_DEFAULT_OPERATOR)); \
return *this; \
} \
template <typename T, typename Policy> \
inline Checked_Number<T, Policy> \
Checked_Number<T, Policy>::f(int) {\
T r = v;\
Policy::handle_result((fun)(*this, *this, T(1), \
Policy::ROUND_DEFAULT_OPERATOR)); \
return r;\
}
PPL_DEFINE_INCREMENT(operator ++, add_assign_r)
PPL_DEFINE_INCREMENT(operator --, sub_assign_r)
#undef PPL_DEFINE_INCREMENT
template <typename T, typename Policy>
inline Checked_Number<T, Policy>&
Checked_Number<T, Policy>::operator=(const Checked_Number<T, Policy>& y) {
Checked::copy<Policy, Policy>(v, y.raw_value());
return *this;
}
template <typename T, typename Policy>
template <typename From>
inline Checked_Number<T, Policy>&
Checked_Number<T, Policy>::operator=(const From& y) {
Policy::handle_result(assign_r(*this, y, Policy::ROUND_DEFAULT_OPERATOR));
return *this;
}
#define PPL_DEFINE_BINARY_OP_ASSIGN(f, fun) \
template <typename T, typename Policy> \
template <typename From_Policy> \
inline Checked_Number<T, Policy>& \
Checked_Number<T, Policy>::f(const Checked_Number<T, From_Policy>& y) { \
Policy::handle_result((fun)(*this, *this, y, \
Policy::ROUND_DEFAULT_OPERATOR)); \
return *this; \
} \
template <typename T, typename Policy> \
inline Checked_Number<T, Policy>& \
Checked_Number<T, Policy>::f(const T& y) { \
Policy::handle_result((fun)(*this, *this, y, \
Policy::ROUND_DEFAULT_OPERATOR)); \
return *this; \
} \
template <typename T, typename Policy> \
template <typename From> \
inline typename Enable_If<Is_Native_Or_Checked<From>::value, \
Checked_Number<T, Policy>& >::type \
Checked_Number<T, Policy>::f(const From& y) { \
Checked_Number<T, Policy> cy(y); \
Policy::handle_result((fun)(*this, *this, cy, \
Policy::ROUND_DEFAULT_OPERATOR)); \
return *this; \
}
PPL_DEFINE_BINARY_OP_ASSIGN(operator +=, add_assign_r)
PPL_DEFINE_BINARY_OP_ASSIGN(operator -=, sub_assign_r)
PPL_DEFINE_BINARY_OP_ASSIGN(operator *=, mul_assign_r)
PPL_DEFINE_BINARY_OP_ASSIGN(operator /=, div_assign_r)
PPL_DEFINE_BINARY_OP_ASSIGN(operator %=, rem_assign_r)
#undef PPL_DEFINE_BINARY_OP_ASSIGN
#define PPL_DEFINE_BINARY_OP(f, fun) \
template <typename T, typename Policy> \
inline Checked_Number<T, Policy> \
PPL_U(f)(const Checked_Number<T, Policy>& x, \
const Checked_Number<T, Policy>& y) { \
Checked_Number<T, Policy> r; \
Policy::handle_result((fun)(r, x, y, Policy::ROUND_DEFAULT_OPERATOR)); \
return r; \
} \
template <typename Type, typename T, typename Policy> \
inline \
typename Enable_If<Is_Native<Type>::value, Checked_Number<T, Policy> >::type \
PPL_U(f)(const Type& x, const Checked_Number<T, Policy>& y) { \
Checked_Number<T, Policy> r(x); \
Policy::handle_result((fun)(r, r, y, Policy::ROUND_DEFAULT_OPERATOR)); \
return r; \
} \
template <typename T, typename Policy, typename Type> \
inline \
typename Enable_If<Is_Native<Type>::value, Checked_Number<T, Policy> >::type \
PPL_U(f)(const Checked_Number<T, Policy>& x, const Type& y) { \
Checked_Number<T, Policy> r(y); \
Policy::handle_result((fun)(r, x, r, Policy::ROUND_DEFAULT_OPERATOR)); \
return r; \
}
PPL_DEFINE_BINARY_OP(operator +, add_assign_r)
PPL_DEFINE_BINARY_OP(operator -, sub_assign_r)
PPL_DEFINE_BINARY_OP(operator *, mul_assign_r)
PPL_DEFINE_BINARY_OP(operator /, div_assign_r)
PPL_DEFINE_BINARY_OP(operator %, rem_assign_r)
#undef PPL_DEFINE_BINARY_OP
#define PPL_DEFINE_COMPARE_OP(f, fun) \
template <typename T1, typename T2> \
inline \
typename Enable_If<Is_Native_Or_Checked<T1>::value \
&& Is_Native_Or_Checked<T2>::value \
&& (Is_Checked<T1>::value || Is_Checked<T2>::value), \
bool>::type \
PPL_U(f)(const T1& x, const T2& y) { \
return Checked::fun<typename Native_Checked_From_Wrapper<T1>::Policy, \
typename Native_Checked_From_Wrapper<T2>::Policy> \
(Native_Checked_From_Wrapper<T1>::raw_value(x), \
Native_Checked_From_Wrapper<T2>::raw_value(y)); \
}
PPL_DEFINE_COMPARE_OP(operator ==, eq_ext)
PPL_DEFINE_COMPARE_OP(operator !=, ne_ext)
PPL_DEFINE_COMPARE_OP(operator >=, ge_ext)
PPL_DEFINE_COMPARE_OP(operator >, gt_ext)
PPL_DEFINE_COMPARE_OP(operator <=, le_ext)
PPL_DEFINE_COMPARE_OP(operator <, lt_ext)
#undef PPL_DEFINE_COMPARE_OP
#define PPL_DEFINE_COMPARE(f, fun) \
template <typename T1, typename T2> \
inline typename Enable_If<Is_Native_Or_Checked<T1>::value \
&& Is_Native_Or_Checked<T2>::value, \
bool>::type \
PPL_U(f)(const T1& x, const T2& y) { \
return Checked::fun<typename Native_Checked_From_Wrapper<T1>::Policy, \
typename Native_Checked_From_Wrapper<T2>::Policy> \
(Native_Checked_From_Wrapper<T1>::raw_value(x), \
Native_Checked_From_Wrapper<T2>::raw_value(y)); \
}
PPL_DEFINE_COMPARE(equal, eq_ext)
PPL_DEFINE_COMPARE(not_equal, ne_ext)
PPL_DEFINE_COMPARE(greater_or_equal, ge_ext)
PPL_DEFINE_COMPARE(greater_than, gt_ext)
PPL_DEFINE_COMPARE(less_or_equal, le_ext)
PPL_DEFINE_COMPARE(less_than, lt_ext)
#undef PPL_DEFINE_COMPARE
/*! \relates Checked_Number */
template <typename T, typename Policy>
inline Checked_Number<T, Policy>
operator+(const Checked_Number<T, Policy>& x) {
return x;
}
/*! \relates Checked_Number */
template <typename T, typename Policy>
inline Checked_Number<T, Policy>
operator-(const Checked_Number<T, Policy>& x) {
Checked_Number<T, Policy> r;
Policy::handle_result(neg_assign_r(r, x, Policy::ROUND_DEFAULT_OPERATOR));
return r;
}
#define PPL_DEFINE_ASSIGN_FUN2_1(f, fun) \
template <typename T, typename Policy> \
inline void \
PPL_U(f)(Checked_Number<T, Policy>& x) { \
Policy::handle_result((fun)(x, x, Policy::ROUND_DEFAULT_FUNCTION)); \
}
#define PPL_DEFINE_ASSIGN_FUN2_2(f, fun) \
template <typename T, typename Policy> \
inline void \
PPL_U(f)(Checked_Number<T, Policy>& x, const Checked_Number<T, Policy>& y) { \
Policy::handle_result((fun)(x, y, Policy::ROUND_DEFAULT_FUNCTION)); \
}
#define PPL_DEFINE_ASSIGN_FUN3_3(f, fun) \
template <typename T, typename Policy> \
inline void \
PPL_U(f)(Checked_Number<T, Policy>& x, const Checked_Number<T, Policy>& y, \
const Checked_Number<T, Policy>& z) { \
Policy::handle_result((fun)(x, y, z, Policy::ROUND_DEFAULT_FUNCTION)); \
}
#define PPL_DEFINE_ASSIGN_FUN5_5(f, fun) \
template <typename T, typename Policy> \
inline void \
PPL_U(f)(Checked_Number<T, Policy>& x, \
Checked_Number<T, Policy>& s, Checked_Number<T, Policy>& t, \
const Checked_Number<T, Policy>& y, \
const Checked_Number<T, Policy>& z) { \
Policy::handle_result((fun)(x, s, t, y, z, Policy::ROUND_DEFAULT_FUNCTION)); \
}
PPL_DEFINE_ASSIGN_FUN2_2(sqrt_assign, sqrt_assign_r)
PPL_DEFINE_ASSIGN_FUN2_1(floor_assign, floor_assign_r)
PPL_DEFINE_ASSIGN_FUN2_2(floor_assign, floor_assign_r)
PPL_DEFINE_ASSIGN_FUN2_1(ceil_assign, ceil_assign_r)
PPL_DEFINE_ASSIGN_FUN2_2(ceil_assign, ceil_assign_r)
PPL_DEFINE_ASSIGN_FUN2_1(trunc_assign, trunc_assign_r)
PPL_DEFINE_ASSIGN_FUN2_2(trunc_assign, trunc_assign_r)
PPL_DEFINE_ASSIGN_FUN2_1(neg_assign, neg_assign_r)
PPL_DEFINE_ASSIGN_FUN2_2(neg_assign, neg_assign_r)
PPL_DEFINE_ASSIGN_FUN2_1(abs_assign, abs_assign_r)
PPL_DEFINE_ASSIGN_FUN2_2(abs_assign, abs_assign_r)
PPL_DEFINE_ASSIGN_FUN3_3(add_mul_assign, add_mul_assign_r)
PPL_DEFINE_ASSIGN_FUN3_3(sub_mul_assign, sub_mul_assign_r)
PPL_DEFINE_ASSIGN_FUN3_3(rem_assign, rem_assign_r)
PPL_DEFINE_ASSIGN_FUN3_3(gcd_assign, gcd_assign_r)
PPL_DEFINE_ASSIGN_FUN5_5(gcdext_assign, gcdext_assign_r)
PPL_DEFINE_ASSIGN_FUN3_3(lcm_assign, lcm_assign_r)
#undef PPL_DEFINE_ASSIGN_FUN2_1
#undef PPL_DEFINE_ASSIGN_FUN2_2
#undef PPL_DEFINE_ASSIGN_FUN3_2
#undef PPL_DEFINE_ASSIGN_FUN3_3
#undef PPL_DEFINE_ASSIGN_FUN5_5
#define PPL_DEFINE_ASSIGN_2EXP(f, fun) \
template <typename T, typename Policy> \
inline void \
PPL_U(f)(Checked_Number<T, Policy>& x, \
const Checked_Number<T, Policy>& y, unsigned int exp) { \
Policy::handle_result((fun)(x, y, exp, Policy::ROUND_DEFAULT_FUNCTION)); \
}
PPL_DEFINE_ASSIGN_2EXP(mul_2exp_assign, mul_2exp_assign_r)
PPL_DEFINE_ASSIGN_2EXP(div_2exp_assign, div_2exp_assign_r)
template <typename T, typename Policy>
inline void
exact_div_assign(Checked_Number<T, Policy>& x,
const Checked_Number<T, Policy>& y,
const Checked_Number<T, Policy>& z) {
Policy::handle_result(div_assign_r(x, y, z, ROUND_NOT_NEEDED));
}
/*! \relates Checked_Number */
template <typename From>
inline typename Enable_If<Is_Native_Or_Checked<From>::value, int>::type
sgn(const From& x) {
Result_Relation r = Checked::sgn_ext<typename Native_Checked_From_Wrapper<From>::Policy>(Native_Checked_From_Wrapper<From>::raw_value(x));
switch (r) {
case VR_LT:
return -1;
case VR_EQ:
return 0;
case VR_GT:
return 1;
default:
throw(0);
}
}
/*! \relates Checked_Number */
template <typename From1, typename From2>
inline typename Enable_If<Is_Native_Or_Checked<From1>::value
&& Is_Native_Or_Checked<From2>::value,
int>::type
cmp(const From1& x, const From2& y) {
Result_Relation r
= Checked::cmp_ext<typename Native_Checked_From_Wrapper<From1>::Policy,
typename Native_Checked_From_Wrapper<From2>::Policy>
(Native_Checked_From_Wrapper<From1>::raw_value(x),
Native_Checked_From_Wrapper<From2>::raw_value(y));
switch (r) {
case VR_LT:
return -1;
case VR_EQ:
return 0;
case VR_GT:
return 1;
default:
throw(0);
}
}
/*! \relates Checked_Number */
template <typename T>
typename Enable_If<Is_Native_Or_Checked<T>::value, Result>::type
output(std::ostream& os, const T& x,
const Numeric_Format& format, Rounding_Dir dir) {
return check_result(Checked::output_ext<typename Native_Checked_From_Wrapper<T>::Policy>
(os,
Native_Checked_From_Wrapper<T>::raw_value(x),
format,
rounding_dir(dir)),
dir);
}
/*! \relates Checked_Number */
template <typename T, typename Policy>
inline std::ostream&
operator<<(std::ostream& os, const Checked_Number<T, Policy>& x) {
Policy::handle_result(output(os, x, Numeric_Format(), ROUND_IGNORE));
return os;
}
/*! \relates Checked_Number */
template <typename T>
typename Enable_If<Is_Native_Or_Checked<T>::value, Result>::type
input(T& x, std::istream& is, Rounding_Dir dir) {
return check_result(Checked::input_ext<typename Native_Checked_To_Wrapper<T>::Policy>
(Native_Checked_To_Wrapper<T>::raw_value(x),
is,
rounding_dir(dir)),
dir);
}
/*! \relates Checked_Number */
template <typename T, typename Policy>
inline std::istream& operator>>(std::istream& is,
Checked_Number<T, Policy>& x) {
Result r = input(x, is, Policy::ROUND_DEFAULT_INPUT);
if (r == V_CVT_STR_UNK)
is.setstate(std::ios::failbit);
else
Policy::handle_result(r);
return is;
}
template <typename T>
inline T
plus_infinity() {
return PLUS_INFINITY;
}
template <typename T>
inline T
minus_infinity() {
return MINUS_INFINITY;
}
template <typename T>
inline T
not_a_number() {
return NOT_A_NUMBER;
}
/*! \relates Checked_Number */
template <typename T, typename Policy>
inline void
swap(Checked_Number<T, Policy>& x, Checked_Number<T, Policy>& y) {
using std::swap;
swap(x.raw_value(), y.raw_value());
}
template <typename T>
inline void
maybe_reset_fpu_inexact() {
if (FPU_Related<T>::value)
return fpu_reset_inexact();
}
template <typename T>
inline int
maybe_check_fpu_inexact() {
if (FPU_Related<T>::value)
return fpu_check_inexact();
else
return 0;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Checked_Number_templates.hh line 1. */
/* Checked_Number class implementation: non-inline template functions.
*/
/* Automatically generated from PPL source file ../src/Checked_Number_templates.hh line 28. */
#include <iomanip>
#include <limits>
namespace Parma_Polyhedra_Library {
template <typename T>
typename Enable_If<Is_Native_Or_Checked<T>::value, void>::type
ascii_dump(std::ostream& s, const T& t) {
if (std::numeric_limits<T>::is_exact)
// An exact data type: pretty printer is accurate.
s << t;
else {
// An inexact data type (probably floating point):
// first dump its hexadecimal representation ...
const std::ios::fmtflags old_flags = s.setf(std::ios::hex,
std::ios::basefield);
const unsigned char* p = reinterpret_cast<const unsigned char*>(&t);
for (unsigned i = 0; i < sizeof(T); ++i) {
s << std::setw(2) << std::setfill('0') << static_cast<unsigned>(p[i]);
}
s.flags(old_flags);
// ... and then pretty print it for readability.
s << " (" << t << ")";
}
}
template <typename T>
typename Enable_If<Is_Native_Or_Checked<T>::value, bool>::type
ascii_load(std::istream& s, T& t) {
if (std::numeric_limits<T>::is_exact) {
// An exact data type: input from pretty printed version is accurate.
s >> t;
return !s.fail();
}
else {
// An inexact data type (probably floating point):
// first load its hexadecimal representation ...
std::string str;
if (!(s >> str) || str.size() != 2*sizeof(T))
return false;
unsigned char* p = reinterpret_cast<unsigned char*>(&t);
// CHECKME: any (portable) simpler way?
for (unsigned i = 0; i < sizeof(T); ++i) {
unsigned byte_value = 0;
for (unsigned j = 0; j < 2; ++j) {
byte_value <<= 4;
unsigned half_byte_value;
// Interpret single hex character.
switch (str[2*i + j]) {
case '0':
half_byte_value = 0;
break;
case '1':
half_byte_value = 1;
break;
case '2':
half_byte_value = 2;
break;
case '3':
half_byte_value = 3;
break;
case '4':
half_byte_value = 4;
break;
case '5':
half_byte_value = 5;
break;
case '6':
half_byte_value = 6;
break;
case '7':
half_byte_value = 7;
break;
case '8':
half_byte_value = 8;
break;
case '9':
half_byte_value = 9;
break;
case 'A':
case 'a':
half_byte_value = 10;
break;
case 'B':
case 'b':
half_byte_value = 11;
break;
case 'C':
case 'c':
half_byte_value = 12;
break;
case 'D':
case 'd':
half_byte_value = 13;
break;
case 'E':
case 'e':
half_byte_value = 14;
break;
case 'F':
case 'f':
half_byte_value = 15;
break;
default:
return false;
}
byte_value += half_byte_value;
}
PPL_ASSERT(byte_value <= 255);
p[i] = static_cast<unsigned char>(byte_value);
}
// ... then read and discard pretty printed value.
if (!(s >> str))
return false;
const std::string::size_type sz = str.size();
return sz > 2 && str[0] == '(' && str[sz-1] == ')';
}
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Checked_Number_defs.hh line 1067. */
/* Automatically generated from PPL source file ../src/checked_numeric_limits.hh line 29. */
#include <limits>
namespace std {
using namespace Parma_Polyhedra_Library;
#define PPL_SPECIALIZE_LIMITS_INT(T) \
/*! \brief Partial specialization of std::numeric_limits. */ \
template <typename Policy> \
class numeric_limits<Checked_Number<PPL_U(T), Policy> > \
: public numeric_limits<PPL_U(T)> { \
private: \
typedef Checked_Number<PPL_U(T), Policy> Type; \
\
public: \
static const bool has_infinity = Policy::has_infinity; \
static const bool has_quiet_NaN = Policy::has_nan; \
\
static Type min() { \
Type v; \
v.raw_value() = Checked::Extended_Int<Policy, PPL_U(T)>::min; \
return v; \
} \
\
static Type max() { \
Type v; \
v.raw_value() = Checked::Extended_Int<Policy, PPL_U(T)>::max; \
return v; \
} \
\
static Type infinity() { \
Type v; \
Checked::assign_special<Policy>(v.raw_value(), VC_PLUS_INFINITY, \
ROUND_IGNORE); \
return v; \
} \
\
static Type quiet_NaN() { \
Type v; \
Checked::assign_special<Policy>(v.raw_value(), VC_NAN, \
ROUND_IGNORE); \
return v; \
} \
};
PPL_SPECIALIZE_LIMITS_INT(char)
PPL_SPECIALIZE_LIMITS_INT(signed char)
PPL_SPECIALIZE_LIMITS_INT(signed short)
PPL_SPECIALIZE_LIMITS_INT(signed int)
PPL_SPECIALIZE_LIMITS_INT(signed long)
PPL_SPECIALIZE_LIMITS_INT(signed long long)
PPL_SPECIALIZE_LIMITS_INT(unsigned char)
PPL_SPECIALIZE_LIMITS_INT(unsigned short)
PPL_SPECIALIZE_LIMITS_INT(unsigned int)
PPL_SPECIALIZE_LIMITS_INT(unsigned long)
PPL_SPECIALIZE_LIMITS_INT(unsigned long long)
#undef PPL_SPECIALIZE_LIMITS_INT
#define PPL_SPECIALIZE_LIMITS_FLOAT(T) \
/*! \brief Partial specialization of std::numeric_limits. */ \
template <typename Policy> \
struct numeric_limits<Checked_Number<PPL_U(T), Policy> > \
: public numeric_limits<PPL_U(T)> { \
};
#if PPL_SUPPORTED_FLOAT
PPL_SPECIALIZE_LIMITS_FLOAT(float)
#endif
#if PPL_SUPPORTED_DOUBLE
PPL_SPECIALIZE_LIMITS_FLOAT(double)
#endif
#if PPL_SUPPORTED_LONG_DOUBLE
PPL_SPECIALIZE_LIMITS_FLOAT(long double)
#endif
#undef PPL_SPECIALIZE_LIMITS_FLOAT
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Partial specialization of std::numeric_limits.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Policy>
class
numeric_limits<Checked_Number<mpz_class, Policy> >
: public numeric_limits<mpz_class> {
private:
typedef Checked_Number<mpz_class, Policy> Type;
public:
static const bool has_infinity = Policy::has_infinity;
static const bool has_quiet_NaN = Policy::has_nan;
static Type infinity() {
Type v;
Checked::assign_special<Policy>(v.raw_value(), VC_PLUS_INFINITY,
ROUND_IGNORE);
return v;
}
static Type quiet_NaN() {
Type v;
Checked::assign_special<Policy>(v.raw_value(), VC_NAN, ROUND_IGNORE);
return v;
}
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Partial specialization of std::numeric_limits.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Policy>
class
numeric_limits<Checked_Number<mpq_class, Policy> >
: public numeric_limits<mpq_class> {
private:
typedef Checked_Number<mpq_class, Policy> Type;
public:
static const bool has_infinity = Policy::has_infinity;
static const bool has_quiet_NaN = Policy::has_nan;
static Type infinity() {
Type v;
Checked::assign_special<Policy>(v.raw_value(), VC_PLUS_INFINITY,
ROUND_IGNORE);
return v;
}
static Type quiet_NaN() {
Type v;
Checked::assign_special<Policy>(v.raw_value(), VC_NAN, ROUND_IGNORE);
return v;
}
};
} // namespace std
/* Automatically generated from PPL source file ../src/stdiobuf_defs.hh line 1. */
/* stdiobuf class declaration.
*/
/* Automatically generated from PPL source file ../src/stdiobuf_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class stdiobuf;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/stdiobuf_defs.hh line 28. */
#include <cstdio>
#include <streambuf>
class Parma_Polyhedra_Library::stdiobuf
: public std::basic_streambuf<char, std::char_traits<char> > {
public:
//! Constructor.
stdiobuf(FILE* file);
protected:
/*! \brief
Gets a character in case of underflow.
\remarks
Specified by ISO/IEC 14882:1998: 27.5.2.4.3.
*/
virtual int_type underflow();
/*! \brief
In case of underflow, gets a character and advances the next pointer.
\remarks
Specified by ISO/IEC 14882:1998: 27.5.2.4.3.
*/
virtual int_type uflow();
/*! \brief
Gets a sequence of characters.
\remarks
Specified by ISO/IEC 14882:1998: 27.5.2.4.3.
*/
virtual std::streamsize xsgetn(char_type* s, std::streamsize n);
/*! \brief
Puts character back in case of backup underflow.
\remarks
Specified by ISO/IEC 14882:1998: 27.5.2.4.4.
*/
virtual int_type pbackfail(int_type c = traits_type::eof());
/*! \brief
Writes a sequence of characters.
\remarks
Specified by ISO/IEC 14882:1998: 27.5.2.4.5.
*/
virtual std::streamsize xsputn(const char_type* s, std::streamsize n);
/*! \brief
Writes a character in case of overflow.
Specified by ISO/IEC 14882:1998: 27.5.2.4.5.
*/
virtual int_type overflow(int_type c);
/*! \brief
Synchronizes the stream buffer.
Specified by ISO/IEC 14882:1998: 27.5.2.4.2.
*/
virtual int sync();
private:
//! Character type of the streambuf.
typedef char char_type;
//! Traits type of the streambuf.
typedef std::char_traits<char_type> traits_type;
//! Integer type of the streambuf.
typedef traits_type::int_type int_type;
//! The encapsulated stdio file.
FILE* fp;
//! Buffer for the last character read.
int_type unget_char_buf;
};
/* Automatically generated from PPL source file ../src/stdiobuf_inlines.hh line 1. */
/* stdiobuf class implementation: inline functions.
*/
namespace Parma_Polyhedra_Library {
inline
stdiobuf::stdiobuf(FILE* file)
: fp(file), unget_char_buf(traits_type::eof()) {
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/stdiobuf_defs.hh line 110. */
/* Automatically generated from PPL source file ../src/c_streambuf_defs.hh line 1. */
/* c_streambuf class declaration.
*/
/* Automatically generated from PPL source file ../src/c_streambuf_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class c_streambuf;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/c_streambuf_defs.hh line 28. */
#include <streambuf>
#include <cstddef>
class Parma_Polyhedra_Library::c_streambuf
: public std::basic_streambuf<char, std::char_traits<char> > {
public:
//! Constructor.
c_streambuf();
//! Destructor.
virtual ~c_streambuf();
protected:
/*! \brief
Gets a character in case of underflow.
\remarks
Specified by ISO/IEC 14882:1998: 27.5.2.4.3.
*/
virtual int_type underflow();
/*! \brief
In case of underflow, gets a character and advances the next pointer.
\remarks
Specified by ISO/IEC 14882:1998: 27.5.2.4.3.
*/
virtual int_type uflow();
/*! \brief
Gets a sequence of characters.
\remarks
Specified by ISO/IEC 14882:1998: 27.5.2.4.3.
*/
virtual std::streamsize xsgetn(char_type* s, std::streamsize n);
/*! \brief
Puts character back in case of backup underflow.
\remarks
Specified by ISO/IEC 14882:1998: 27.5.2.4.4.
*/
virtual int_type pbackfail(int_type c = traits_type::eof());
/*! \brief
Writes a sequence of characters.
\remarks
Specified by ISO/IEC 14882:1998: 27.5.2.4.5.
*/
virtual std::streamsize xsputn(const char_type* s, std::streamsize n);
/*! \brief
Writes a character in case of overflow.
Specified by ISO/IEC 14882:1998: 27.5.2.4.5.
*/
virtual int_type overflow(int_type c);
/*! \brief
Synchronizes the stream buffer.
Specified by ISO/IEC 14882:1998: 27.5.2.4.2.
*/
virtual int sync();
private:
//! Character type of the streambuf.
typedef char char_type;
//! Traits type of the streambuf.
typedef std::char_traits<char_type> traits_type;
//! Integer type of the streambuf.
typedef traits_type::int_type int_type;
//! Buffer for the last character read.
int_type unget_char_buf;
//! Buffer for next character
int_type next_char_buf;
virtual size_t cb_read(char *, size_t) {
return 0;
}
virtual size_t cb_write(const char *, size_t) {
return 0;
}
virtual int cb_sync() {
return 0;
}
virtual int cb_flush() {
return 0;
}
};
/* Automatically generated from PPL source file ../src/c_streambuf_inlines.hh line 1. */
/* c_streambuf class implementation: inline functions.
*/
namespace Parma_Polyhedra_Library {
inline
c_streambuf::c_streambuf()
: unget_char_buf(traits_type::eof()), next_char_buf(traits_type::eof()) {
}
inline
c_streambuf::~c_streambuf() {
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/c_streambuf_defs.hh line 126. */
/* Automatically generated from PPL source file ../src/Integer_Interval.hh line 1. */
/* Integer_Interval class declaration and implementation.
*/
/* Automatically generated from PPL source file ../src/Interval_defs.hh line 1. */
/* Declarations for the Interval class and its constituents.
*/
/* Automatically generated from PPL source file ../src/assign_or_swap.hh line 1. */
/* The assign_or_swap() utility functions.
*/
/* Automatically generated from PPL source file ../src/Has_Assign_Or_Swap.hh line 1. */
/* Has_Assign_Or_Swap classes declarations.
*/
/* Automatically generated from PPL source file ../src/Has_Assign_Or_Swap.hh line 28. */
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface
The assign_or_swap() method is not present by default.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T, typename Enable = void>
struct Has_Assign_Or_Swap : public False {
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface
The assign_or_swap() method is present if it is present (!).
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
struct Has_Assign_Or_Swap<T,
typename Enable_If_Is<void (T::*)(T& x),
&T::assign_or_swap>::type>
: public True {
};
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/assign_or_swap.hh line 30. */
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface
If there is an assign_or_swap() method, use it.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
inline typename Enable_If<Has_Assign_Or_Swap<T>::value, void>::type
assign_or_swap(T& to, T& from) {
to.assign_or_swap(from);
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface
If there is no assign_or_swap() method but copies are not slow, copy.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
inline typename Enable_If<!Has_Assign_Or_Swap<T>::value
&& !Slow_Copy<T>::value, void>::type
assign_or_swap(T& to, T& from) {
to = from;
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface
If there is no assign_or_swap() and copies are slow, delegate to swap().
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
inline typename Enable_If<!Has_Assign_Or_Swap<T>::value
&& Slow_Copy<T>::value, void>::type
assign_or_swap(T& to, T& from) {
using std::swap;
swap(to, from);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/intervals_defs.hh line 1. */
/* Helper classes for intervals.
*/
/* Automatically generated from PPL source file ../src/intervals_defs.hh line 28. */
#include <cstdlib>
/* Automatically generated from PPL source file ../src/intervals_defs.hh line 31. */
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! The result of an operation on intervals.
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
enum I_Result {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! \hideinitializer Result may be empty.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
I_EMPTY = 1U,
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! \hideinitializer Result may have only one value.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
I_SINGLETON = 2U,
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief \hideinitializer
Result may have more than one value, but it is not the domain universe.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
I_SOME = 4U,
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! \hideinitializer Result may be the domain universe.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
I_UNIVERSE = 8U,
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! \hideinitializer Result is not empty.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
I_NOT_EMPTY = I_SINGLETON | I_SOME | I_UNIVERSE,
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! \hideinitializer Result may be empty or not empty.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
I_ANY = I_EMPTY | I_NOT_EMPTY,
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! \hideinitializer Result may be empty or not empty.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
I_NOT_UNIVERSE = I_EMPTY | I_SINGLETON | I_SOME,
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! \hideinitializer Result is neither empty nor the domain universe.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
I_NOT_DEGENERATE = I_SINGLETON | I_SOME,
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! \hideinitializer Result is definitely exact.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
I_EXACT = 16,
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! \hideinitializer Result is definitely inexact.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
I_INEXACT = 32,
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! \hideinitializer Operation has definitely changed the set.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
I_CHANGED = 64,
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! \hideinitializer Operation has left the set definitely unchanged.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
I_UNCHANGED = 128,
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! \hideinitializer Operation is undefined for some combination of values.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
I_SINGULARITIES = 256
};
inline I_Result
operator|(I_Result a, I_Result b) {
return static_cast<I_Result>(static_cast<unsigned>(a)
| static_cast<unsigned>(b));
}
inline I_Result
operator&(I_Result a, I_Result b) {
return static_cast<I_Result>(static_cast<unsigned>(a)
& static_cast<unsigned>(b));
}
inline I_Result
operator-(I_Result a, I_Result b) {
return static_cast<I_Result>(static_cast<unsigned>(a)
& ~static_cast<unsigned>(b));
}
template <typename Criteria, typename T>
struct Use_By_Ref;
struct Use_Slow_Copy;
template <typename T>
struct Use_By_Ref<Use_Slow_Copy, T>
: public Bool<Slow_Copy<T>::value> {
};
struct By_Value;
template <typename T>
struct Use_By_Ref<By_Value, T>
: public False {
};
struct By_Ref;
template <typename T>
struct Use_By_Ref<By_Ref, T>
: public True {
};
template <typename T, typename Criteria = Use_Slow_Copy, typename Enable = void>
class Val_Or_Ref;
template <typename T, typename Criteria>
class Val_Or_Ref<T, Criteria,
typename Enable_If<!Use_By_Ref<Criteria, T>::value>::type> {
T value;
public:
typedef T Arg_Type;
typedef T Return_Type;
Val_Or_Ref()
: value() {
}
explicit Val_Or_Ref(Arg_Type v, bool = false)
: value(v) {
}
Val_Or_Ref& operator=(Arg_Type v) {
value = v;
return *this;
}
void set(Arg_Type v, bool = false) {
value = v;
}
Return_Type get() const {
return value;
}
operator Return_Type () const {
return get();
}
};
template <typename T, typename Criteria>
class Val_Or_Ref<T, Criteria,
typename Enable_If<Use_By_Ref<Criteria, T>::value>::type> {
const T* ptr;
public:
typedef T& Arg_Type;
typedef const T& Return_Type;
Val_Or_Ref()
: ptr(0) {
}
explicit Val_Or_Ref(Arg_Type v)
: ptr(&v) {
}
Val_Or_Ref(const T& v, bool)
: ptr(&v) {
}
Val_Or_Ref& operator=(Arg_Type v) {
ptr = &v;
return *this;
}
void set(Arg_Type v) {
ptr = &v;
}
void set(const T& v, bool) {
ptr = &v;
}
Return_Type get() const {
return *ptr;
}
operator Return_Type () const {
return get();
}
};
class I_Constraint_Base {
};
template <typename Derived>
class I_Constraint_Common : public I_Constraint_Base {
public:
template <typename T>
Result convert_real(T& to) const {
const Derived& c = static_cast<const Derived&>(*this);
Result r = c.rel();
switch (r) {
case V_EMPTY:
case V_LGE:
return r;
case V_LE:
r = assign_r(to, c.value(), (ROUND_UP | ROUND_STRICT_RELATION));
r = result_relation_class(r);
if (r == V_EQ)
return V_LE;
goto lt;
case V_LT:
r = assign_r(to, c.value(), ROUND_UP);
r = result_relation_class(r);
lt:
switch (r) {
case V_EMPTY:
case V_LT_PLUS_INFINITY:
case V_EQ_MINUS_INFINITY:
return r;
case V_LT:
case V_LE:
case V_EQ:
return V_LT;
default:
break;
}
break;
case V_GE:
r = assign_r(to, c.value(), (ROUND_DOWN | ROUND_STRICT_RELATION));
r = result_relation_class(r);
if (r == V_EQ)
return V_GE;
goto gt;
case V_GT:
r = assign_r(to, c.value(), ROUND_DOWN);
r = result_relation_class(r);
gt:
switch (r) {
case V_EMPTY:
case V_GT_MINUS_INFINITY:
case V_EQ_PLUS_INFINITY:
return r;
case V_LT:
case V_LE:
case V_EQ:
return V_GT;
default:
break;
}
break;
case V_EQ:
r = assign_r(to, c.value(), ROUND_CHECK);
r = result_relation_class(r);
PPL_ASSERT(r != V_LT && r != V_GT);
if (r == V_EQ)
return V_EQ;
else
return V_EMPTY;
case V_NE:
r = assign_r(to, c.value(), ROUND_CHECK);
r = result_relation_class(r);
if (r == V_EQ)
return V_NE;
else
return V_LGE;
default:
break;
}
PPL_UNREACHABLE;
return V_EMPTY;
}
template <typename T>
Result convert_real(T& to1, Result& rel2, T& to2) const {
const Derived& c = static_cast<const Derived&>(*this);
Result rel1;
if (c.rel() != V_EQ) {
rel2 = convert(to2);
return V_LGE;
}
rel2 = assign_r(to2, c.value(), ROUND_UP);
rel2 = result_relation_class(rel2);
switch (rel2) {
case V_EMPTY:
case V_EQ_MINUS_INFINITY:
case V_EQ:
return V_LGE;
default:
break;
}
rel1 = assign_r(to1, c.value(), ROUND_DOWN);
rel1 = result_relation_class(rel1);
switch (rel1) {
case V_EQ:
PPL_ASSERT(rel2 == V_LE);
goto eq;
case V_EQ_PLUS_INFINITY:
case V_EMPTY:
rel2 = rel1;
return V_LGE;
case V_GE:
if (rel2 == V_LE && to1 == to2) {
eq:
rel2 = V_EQ;
return V_LGE;
}
/* Fall through*/
case V_GT:
case V_GT_MINUS_INFINITY:
return rel1;
default:
PPL_UNREACHABLE;
return V_EMPTY;
}
switch (rel2) {
case V_LE:
case V_LT:
case V_LT_PLUS_INFINITY:
return rel1;
default:
PPL_UNREACHABLE;
return V_EMPTY;
}
}
template <typename T>
Result convert_integer(T& to) const {
Result rel = convert_real(to);
switch (rel) {
case V_LT:
if (is_integer(to)) {
rel = sub_assign_r(to, to, T(1), (ROUND_UP | ROUND_STRICT_RELATION));
rel = result_relation_class(rel);
return (rel == V_EQ) ? V_LE : rel;
}
/* Fall through */
case V_LE:
rel = floor_assign_r(to, to, ROUND_UP);
rel = result_relation_class(rel);
PPL_ASSERT(rel == V_EQ);
return V_LE;
case V_GT:
if (is_integer(to)) {
rel = add_assign_r(to, to, T(1), (ROUND_DOWN | ROUND_STRICT_RELATION));
rel = result_relation_class(rel);
return (rel == V_EQ) ? V_GE : rel;
}
/* Fall through */
case V_GE:
rel = ceil_assign_r(to, to, ROUND_DOWN);
rel = result_relation_class(rel);
PPL_ASSERT(rel == V_EQ);
return V_GE;
case V_EQ:
if (is_integer(to))
return V_EQ;
return V_EMPTY;
case V_NE:
if (is_integer(to))
return V_NE;
return V_LGE;
default:
return rel;
}
}
};
struct I_Constraint_Rel {
Result rel;
I_Constraint_Rel(Result r)
: rel(r) {
PPL_ASSERT(result_relation_class(r) == r);
}
I_Constraint_Rel(Relation_Symbol r)
: rel(static_cast<Result>(r)) {
}
operator Result() const {
return rel;
}
};
template <typename T, typename Val_Or_Ref_Criteria = Use_Slow_Copy,
bool extended = false>
class I_Constraint
: public I_Constraint_Common<I_Constraint<T, Val_Or_Ref_Criteria,
extended> > {
typedef Val_Or_Ref<T, Val_Or_Ref_Criteria> Val_Ref;
typedef typename Val_Ref::Arg_Type Arg_Type;
typedef typename Val_Ref::Return_Type Return_Type;
Result rel_;
Val_Ref value_;
public:
typedef T value_type;
explicit I_Constraint()
: rel_(V_LGE) {
}
I_Constraint(I_Constraint_Rel r, Arg_Type v)
: rel_(r), value_(v) {
}
I_Constraint(I_Constraint_Rel r, const T& v, bool force)
: rel_(r), value_(v, force) {
}
template <typename U>
I_Constraint(I_Constraint_Rel r, const U& v)
: rel_(r), value_(v) {
}
void set(I_Constraint_Rel r, Arg_Type v) {
rel_ = r;
value_.set(v);
}
void set(I_Constraint_Rel r, const T& v, bool force) {
rel_ = r;
value_.set(v, force);
}
template <typename U>
void set(I_Constraint_Rel r, const U& v) {
rel_ = r;
value_.set(v);
}
Return_Type value() const {
return value_;
}
Result rel() const {
return rel_;
}
};
template <typename T>
inline I_Constraint<T>
i_constraint(I_Constraint_Rel rel, const T& v) {
return I_Constraint<T>(rel, v);
}
template <typename T>
inline I_Constraint<T>
i_constraint(I_Constraint_Rel rel, const T& v, bool force) {
return I_Constraint<T>(rel, v, force);
}
template <typename T>
inline I_Constraint<T>
i_constraint(I_Constraint_Rel rel, T& v) {
return I_Constraint<T>(rel, v);
}
template <typename T, typename Val_Or_Ref_Criteria>
inline I_Constraint<T, Val_Or_Ref_Criteria>
i_constraint(I_Constraint_Rel rel, const T& v, const Val_Or_Ref_Criteria&) {
return I_Constraint<T, Val_Or_Ref_Criteria>(rel, v);
}
template <typename T, typename Val_Or_Ref_Criteria>
inline I_Constraint<T, Val_Or_Ref_Criteria>
i_constraint(I_Constraint_Rel rel, const T& v, bool force,
const Val_Or_Ref_Criteria&) {
return I_Constraint<T, Val_Or_Ref_Criteria>(rel, v, force);
}
template <typename T, typename Val_Or_Ref_Criteria>
inline I_Constraint<T, Val_Or_Ref_Criteria>
i_constraint(I_Constraint_Rel rel, T& v, const Val_Or_Ref_Criteria&) {
return I_Constraint<T, Val_Or_Ref_Criteria>(rel, v);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Interval_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename Boundary, typename Info>
class Interval;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Interval_Info_defs.hh line 1. */
/* Interval_Info class declaration and implementation.
*/
/* Automatically generated from PPL source file ../src/Boundary_defs.hh line 1. */
/* Interval boundary functions.
*/
/* Automatically generated from PPL source file ../src/Boundary_defs.hh line 28. */
namespace Parma_Polyhedra_Library {
namespace Boundary_NS {
struct Property {
enum Type {
SPECIAL_,
OPEN_,
};
typedef bool Value;
static const Value default_value = true;
static const Value unsupported_value = false;
Property(Type t)
: type(t) {
}
Type type;
};
static const Property SPECIAL(Property::SPECIAL_);
static const Property OPEN(Property::OPEN_);
enum Boundary_Type {
LOWER = ROUND_DOWN,
UPPER = ROUND_UP
};
inline Rounding_Dir
round_dir_check(Boundary_Type t, bool check = false) {
if (check)
return static_cast<Rounding_Dir>(t) | ROUND_STRICT_RELATION;
else
return static_cast<Rounding_Dir>(t);
}
template <typename T, typename Info>
inline Result
special_set_boundary_infinity(Boundary_Type type, T&, Info& info) {
PPL_ASSERT(Info::store_special);
info.set_boundary_property(type, SPECIAL);
return V_EQ;
}
template <typename T, typename Info>
inline bool
special_is_open(Boundary_Type, const T&, const Info&) {
return !Info::may_contain_infinity;
}
template <typename T, typename Info>
inline bool
normal_is_open(Boundary_Type type, const T& x, const Info& info) {
if (Info::store_open)
return info.get_boundary_property(type, OPEN);
else
return !Info::store_special && !Info::may_contain_infinity
&& normal_is_boundary_infinity(type, x, info);
}
template <typename T, typename Info>
inline bool
is_open(Boundary_Type type, const T& x, const Info& info) {
if (Info::store_open)
return info.get_boundary_property(type, OPEN);
else
return !Info::may_contain_infinity
&& is_boundary_infinity(type, x, info);
}
template <typename T, typename Info>
inline Result
set_unbounded(Boundary_Type type, T& x, Info& info) {
PPL_COMPILE_TIME_CHECK(Info::store_special
|| std::numeric_limits<T>::is_bounded
|| std::numeric_limits<T>::has_infinity,
"unbounded is not representable");
Result r;
if (Info::store_special)
r = special_set_boundary_infinity(type, x, info);
else if (type == LOWER)
r = assign_r(x, MINUS_INFINITY, ROUND_UP);
else
r = assign_r(x, PLUS_INFINITY, ROUND_DOWN);
if (result_relation(r) == VR_EQ && !Info::may_contain_infinity)
info.set_boundary_property(type, OPEN);
return r;
}
template <typename T, typename Info>
inline Result
set_minus_infinity(Boundary_Type type, T& x, Info& info, bool open = false) {
if (open) {
PPL_ASSERT(type == LOWER);
}
else {
PPL_ASSERT(Info::may_contain_infinity);
}
Result r;
if (Info::store_special) {
PPL_ASSERT(type == LOWER);
r = special_set_boundary_infinity(type, x, info);
}
else {
r = assign_r(x, MINUS_INFINITY, round_dir_check(type));
PPL_ASSERT(result_representable(r));
}
if (open || result_relation(r) != VR_EQ)
info.set_boundary_property(type, OPEN);
return r;
}
template <typename T, typename Info>
inline Result
set_plus_infinity(Boundary_Type type, T& x, Info& info, bool open = false) {
if (open) {
PPL_ASSERT(type == UPPER);
}
else {
PPL_ASSERT(Info::may_contain_infinity);
}
Result r;
if (Info::store_special) {
PPL_ASSERT(type == UPPER);
r = special_set_boundary_infinity(type, x, info);
}
else {
r = assign_r(x, PLUS_INFINITY, round_dir_check(type));
PPL_ASSERT(result_representable(r));
}
if (open || result_relation(r) != VR_EQ)
info.set_boundary_property(type, OPEN);
return r;
}
template <typename T, typename Info>
inline Result
set_boundary_infinity(Boundary_Type type, T& x, Info& info, bool open = false) {
PPL_ASSERT(open || Info::may_contain_infinity);
Result r;
if (Info::store_special)
r = special_set_boundary_infinity(type, x, info);
else if (type == LOWER)
r = assign_r(x, MINUS_INFINITY, round_dir_check(type));
else
r = assign_r(x, PLUS_INFINITY, round_dir_check(type));
PPL_ASSERT(result_representable(r));
if (open)
info.set_boundary_property(type, OPEN);
return r;
}
template <typename T, typename Info>
inline bool
is_domain_inf(Boundary_Type type, const T& x, const Info& info) {
if (Info::store_special && type == LOWER)
return info.get_boundary_property(type, SPECIAL);
else if (std::numeric_limits<T>::has_infinity)
return Parma_Polyhedra_Library::is_minus_infinity(x);
else if (std::numeric_limits<T>::is_bounded)
return x == std::numeric_limits<T>::min();
else
return false;
}
template <typename T, typename Info>
inline bool
is_domain_sup(Boundary_Type type, const T& x, const Info& info) {
if (Info::store_special && type == UPPER)
return info.get_boundary_property(type, SPECIAL);
else if (std::numeric_limits<T>::has_infinity)
return Parma_Polyhedra_Library::is_plus_infinity(x);
else if (std::numeric_limits<T>::is_bounded)
return x == std::numeric_limits<T>::max();
else
return false;
}
template <typename T, typename Info>
inline bool
normal_is_boundary_infinity(Boundary_Type type, const T& x, const Info&) {
if (!std::numeric_limits<T>::has_infinity)
return false;
if (type == LOWER)
return Parma_Polyhedra_Library::is_minus_infinity(x);
else
return Parma_Polyhedra_Library::is_plus_infinity(x);
}
template <typename T, typename Info>
inline bool
is_boundary_infinity(Boundary_Type type, const T& x, const Info& info) {
if (Info::store_special)
return info.get_boundary_property(type, SPECIAL);
else
return normal_is_boundary_infinity(type, x, info);
}
template <typename T, typename Info>
inline bool
normal_is_reverse_infinity(Boundary_Type type, const T& x, const Info&) {
if (!Info::may_contain_infinity)
return false;
else if (type == LOWER)
return Parma_Polyhedra_Library::is_plus_infinity(x);
else
return Parma_Polyhedra_Library::is_minus_infinity(x);
}
template <typename T, typename Info>
inline bool
is_minus_infinity(Boundary_Type type, const T& x, const Info& info) {
if (type == LOWER) {
if (Info::store_special)
return info.get_boundary_property(type, SPECIAL);
else
return normal_is_boundary_infinity(type, x, info);
}
else
return !Info::store_special && normal_is_reverse_infinity(type, x, info);
}
template <typename T, typename Info>
inline bool
is_plus_infinity(Boundary_Type type, const T& x, const Info& info) {
if (type == UPPER) {
if (Info::store_special)
return info.get_boundary_property(type, SPECIAL);
else
return normal_is_boundary_infinity(type, x, info);
}
else
return !Info::store_special && normal_is_reverse_infinity(type, x, info);
}
template <typename T, typename Info>
inline bool
is_reverse_infinity(Boundary_Type type, const T& x, const Info& info) {
return normal_is_reverse_infinity(type, x, info);
}
template <typename T, typename Info>
inline int
infinity_sign(Boundary_Type type, const T& x, const Info& info) {
if (is_boundary_infinity(type, x, info))
return (type == LOWER) ? -1 : 1;
else if (is_reverse_infinity(type, x, info))
return (type == UPPER) ? -1 : 1;
else
return 0;
}
template <typename T, typename Info>
inline bool
is_boundary_infinity_closed(Boundary_Type type, const T& x, const Info& info) {
return Info::may_contain_infinity
&& !info.get_boundary_property(type, OPEN)
&& is_boundary_infinity(type, x, info);
}
template <typename Info>
inline bool
boundary_infinity_is_open(Boundary_Type type, const Info& info) {
return !Info::may_contain_infinity
|| info.get_boundary_property(type, OPEN);
}
template <typename T, typename Info>
inline int
sgn_b(Boundary_Type type, const T& x, const Info& info) {
if (info.get_boundary_property(type, SPECIAL))
return (type == LOWER) ? -1 : 1;
else
// The following Parma_Polyhedra_Library:: qualification is to work
// around a bug of GCC 4.0.x.
return Parma_Polyhedra_Library::sgn(x);
}
template <typename T, typename Info>
inline int
sgn(Boundary_Type type, const T& x, const Info& info) {
int sign = sgn_b(type, x, info);
if (x == 0 && info.get_boundary_property(type, OPEN))
return (type == LOWER) ? -1 : 1;
else
return sign;
}
template <typename T1, typename Info1, typename T2, typename Info2>
inline bool
eq(Boundary_Type type1, const T1& x1, const Info1& info1,
Boundary_Type type2, const T2& x2, const Info2& info2) {
if (type1 == type2) {
if (is_open(type1, x1, info1)
!= is_open(type2, x2, info2))
return false;
}
else if (is_open(type1, x1, info1)
|| is_open(type2, x2, info2))
return false;
if (is_minus_infinity(type1, x1, info1))
return is_minus_infinity(type2, x2, info2);
else if (is_plus_infinity(type1, x1, info1))
return is_plus_infinity(type2, x2, info2);
else if (is_minus_infinity(type2, x2, info2)
|| is_plus_infinity(type2, x2, info2))
return false;
else
return equal(x1, x2);
}
template <typename T1, typename Info1, typename T2, typename Info2>
inline bool
lt(Boundary_Type type1, const T1& x1, const Info1& info1,
Boundary_Type type2, const T2& x2, const Info2& info2) {
if (is_open(type1, x1, info1)) {
if (type1 == UPPER
&& (type2 == LOWER
|| !is_open(type2, x2, info2)))
goto le;
}
else if (type2 == LOWER
&& is_open(type2, x2, info2)) {
le:
if (is_minus_infinity(type1, x1, info1)
|| is_plus_infinity(type2, x2, info2))
return true;
if (is_plus_infinity(type1, x1, info1)
|| is_minus_infinity(type2, x2, info2))
return false;
else
return less_or_equal(x1, x2);
}
if (is_plus_infinity(type1, x1, info1)
|| is_minus_infinity(type2, x2, info2))
return false;
if (is_minus_infinity(type1, x1, info1)
|| is_plus_infinity(type2, x2, info2))
return true;
else
return less_than(x1, x2);
}
template <typename T1, typename Info1, typename T2, typename Info2>
inline bool
gt(Boundary_Type type1, const T1& x1, const Info1& info1,
Boundary_Type type2, const T2& x2, const Info2& info2) {
return lt(type2, x2, info2, type1, x1, info1);
}
template <typename T1, typename Info1, typename T2, typename Info2>
inline bool
le(Boundary_Type type1, const T1& x1, const Info1& info1,
Boundary_Type type2, const T2& x2, const Info2& info2) {
return !gt(type1, x1, info1, type2, x2, info2);
}
template <typename T1, typename Info1, typename T2, typename Info2>
inline bool
ge(Boundary_Type type1, const T1& x1, const Info1& info1,
Boundary_Type type2, const T2& x2, const Info2& info2) {
return !lt(type1, x1, info1, type2, x2, info2);
}
template <typename T, typename Info>
inline Result
adjust_boundary(Boundary_Type type, T& x, Info& info,
bool open, Result r) {
r = result_relation_class(r);
if (type == LOWER) {
switch (r) {
case V_GT_MINUS_INFINITY:
open = true;
/* Fall through */
case V_EQ_MINUS_INFINITY:
if (!Info::store_special)
return r;
if (open)
info.set_boundary_property(type, OPEN);
return special_set_boundary_infinity(type, x, info);
case V_GT:
open = true;
/* Fall through */
case V_GE:
case V_EQ:
if (open)
info.set_boundary_property(type, OPEN);
return r;
default:
PPL_UNREACHABLE;
return V_NAN;
}
}
else {
switch (r) {
case V_LT_PLUS_INFINITY:
open = true;
/* Fall through */
case V_EQ_PLUS_INFINITY:
if (!Info::store_special)
return r;
if (open)
info.set_boundary_property(type, OPEN);
return special_set_boundary_infinity(type, x, info);
case V_LT:
open = true;
/* Fall through */
case V_LE:
case V_EQ:
if (open)
info.set_boundary_property(type, OPEN);
return r;
default:
PPL_UNREACHABLE;
return V_NAN;
}
}
}
template <typename To, typename To_Info, typename T, typename Info>
inline Result
complement(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type, const T& x, const Info& info) {
PPL_ASSERT(to_type != type);
bool should_shrink;
if (info.get_boundary_property(type, SPECIAL)) {
should_shrink = !special_is_open(type, x, info);
if (type == LOWER)
return set_minus_infinity(to_type, to, to_info, should_shrink);
else
return set_plus_infinity(to_type, to, to_info, should_shrink);
}
should_shrink = !normal_is_open(type, x, info);
bool check = (To_Info::check_inexact || (!should_shrink && To_Info::store_open));
Result r = assign_r(to, x, round_dir_check(to_type, check));
return adjust_boundary(to_type, to, to_info, should_shrink, r);
}
template <typename To, typename To_Info, typename T, typename Info>
inline Result
assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type, const T& x, const Info& info,
bool should_shrink = false) {
PPL_ASSERT(to_type == type);
if (info.get_boundary_property(type, SPECIAL)) {
should_shrink = (should_shrink || special_is_open(type, x, info));
return set_boundary_infinity(to_type, to, to_info, should_shrink);
}
should_shrink = (should_shrink || normal_is_open(type, x, info));
const bool check
= (To_Info::check_inexact || (!should_shrink && To_Info::store_open));
const Result r = assign_r(to, x, round_dir_check(to_type, check));
return adjust_boundary(to_type, to, to_info, should_shrink, r);
}
template <typename To, typename To_Info, typename T, typename Info>
inline Result
min_assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type, const T& x, const Info& info) {
if (lt(type, x, info, to_type, to, to_info)) {
to_info.clear_boundary_properties(to_type);
return assign(to_type, to, to_info, type, x, info);
}
return V_EQ;
}
template <typename To, typename To_Info, typename T1, typename Info1, typename T2, typename Info2>
inline Result
min_assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type1, const T1& x1, const Info1& info1,
Boundary_Type type2, const T2& x2, const Info2& info2) {
if (lt(type1, x1, info1, type2, x2, info2))
return assign(to_type, to, to_info, type1, x1, info1);
else
return assign(to_type, to, to_info, type2, x2, info2);
}
template <typename To, typename To_Info, typename T, typename Info>
inline Result
max_assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type, const T& x, const Info& info) {
if (gt(type, x, info, to_type, to, to_info)) {
to_info.clear_boundary_properties(to_type);
return assign(to_type, to, to_info, type, x, info);
}
return V_EQ;
}
template <typename To, typename To_Info, typename T1, typename Info1, typename T2, typename Info2>
inline Result
max_assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type1, const T1& x1, const Info1& info1,
Boundary_Type type2, const T2& x2, const Info2& info2) {
if (gt(type1, x1, info1, type2, x2, info2))
return assign(to_type, to, to_info, type1, x1, info1);
else
return assign(to_type, to, to_info, type2, x2, info2);
}
template <typename To, typename To_Info, typename T, typename Info>
inline Result
neg_assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type, const T& x, const Info& info) {
PPL_ASSERT(to_type != type);
bool should_shrink;
if (info.get_boundary_property(type, SPECIAL)) {
should_shrink = special_is_open(type, x, info);
return set_boundary_infinity(to_type, to, to_info, should_shrink);
}
should_shrink = normal_is_open(type, x, info);
bool check = (To_Info::check_inexact || (!should_shrink && To_Info::store_open));
Result r = neg_assign_r(to, x, round_dir_check(to_type, check));
return adjust_boundary(to_type, to, to_info, should_shrink, r);
}
template <typename To, typename To_Info, typename T1, typename Info1, typename T2, typename Info2>
inline Result
add_assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type1, const T1& x1, const Info1& info1,
Boundary_Type type2, const T2& x2, const Info2& info2) {
PPL_ASSERT(type1 == type2);
bool should_shrink;
if (is_boundary_infinity(type1, x1, info1)) {
should_shrink = (boundary_infinity_is_open(type1, info1)
&& !is_boundary_infinity_closed(type2, x2, info2));
return set_boundary_infinity(to_type, to, to_info, should_shrink);
}
else if (is_boundary_infinity(type2, x2, info2)) {
should_shrink = (boundary_infinity_is_open(type2, info2)
&& !is_boundary_infinity_closed(type1, x1, info1));
return set_boundary_infinity(to_type, to, to_info, should_shrink);
}
should_shrink = (normal_is_open(type1, x1, info1)
|| normal_is_open(type2, x2, info2));
bool check = (To_Info::check_inexact || (!should_shrink && To_Info::store_open));
// FIXME: extended handling is not needed
Result r = add_assign_r(to, x1, x2, round_dir_check(to_type, check));
return adjust_boundary(to_type, to, to_info, should_shrink, r);
}
template <typename To, typename To_Info, typename T1, typename Info1, typename T2, typename Info2>
inline Result
sub_assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type1, const T1& x1, const Info1& info1,
Boundary_Type type2, const T2& x2, const Info2& info2) {
PPL_ASSERT(type1 != type2);
bool should_shrink;
if (is_boundary_infinity(type1, x1, info1)) {
should_shrink = (boundary_infinity_is_open(type1, info1)
&& !is_boundary_infinity_closed(type2, x2, info2));
return set_boundary_infinity(to_type, to, to_info, should_shrink);
}
else if (is_boundary_infinity(type2, x2, info2)) {
should_shrink = (boundary_infinity_is_open(type2, info2)
&& !is_boundary_infinity_closed(type1, x1, info1));
return set_boundary_infinity(to_type, to, to_info, should_shrink);
}
should_shrink = (normal_is_open(type1, x1, info1)
|| normal_is_open(type2, x2, info2));
bool check = (To_Info::check_inexact || (!should_shrink && To_Info::store_open));
// FIXME: extended handling is not needed
Result r = sub_assign_r(to, x1, x2, round_dir_check(to_type, check));
return adjust_boundary(to_type, to, to_info, should_shrink, r);
}
template <typename To, typename To_Info, typename T1, typename Info1, typename T2, typename Info2>
inline Result
mul_assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type1, const T1& x1, const Info1& info1,
Boundary_Type type2, const T2& x2, const Info2& info2) {
bool should_shrink;
if (is_boundary_infinity(type1, x1, info1)) {
should_shrink = (boundary_infinity_is_open(type1, info1)
&& !is_boundary_infinity_closed(type2, x2, info2));
return set_boundary_infinity(to_type, to, to_info, should_shrink);
}
else if (is_boundary_infinity(type2, x2, info2)) {
should_shrink = (boundary_infinity_is_open(type2, info2)
&& !is_boundary_infinity_closed(type1, x1, info1));
return set_boundary_infinity(to_type, to, to_info, should_shrink);
}
should_shrink = (normal_is_open(type1, x1, info1)
|| normal_is_open(type2, x2, info2));
bool check = (To_Info::check_inexact || (!should_shrink && To_Info::store_open));
PPL_ASSERT(x1 != Constant<0>::value && x2 != Constant<0>::value);
// FIXME: extended handling is not needed
Result r = mul_assign_r(to, x1, x2, round_dir_check(to_type, check));
return adjust_boundary(to_type, to, to_info, should_shrink, r);
}
template <typename To, typename To_Info>
inline Result
set_zero(Boundary_Type to_type, To& to, To_Info& to_info, bool should_shrink) {
bool check = (To_Info::check_inexact || (!should_shrink && To_Info::store_open));
Result r = assign_r(to, Constant<0>::value, round_dir_check(to_type, check));
return adjust_boundary(to_type, to, to_info, should_shrink, r);
}
template <typename To, typename To_Info, typename T1, typename Info1, typename T2, typename Info2>
inline Result
mul_assign_z(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type1, const T1& x1, const Info1& info1, int x1s,
Boundary_Type type2, const T2& x2, const Info2& info2, int x2s) {
bool should_shrink;
if (x1s != 0) {
if (x2s != 0)
return mul_assign(to_type, to, to_info,
type1, x1, info1,
type2, x2, info2);
else
should_shrink = info2.get_boundary_property(type2, OPEN);
}
else {
should_shrink = (info1.get_boundary_property(type1, OPEN)
&& (x2s != 0 || info2.get_boundary_property(type2, OPEN)));
}
return set_zero(to_type, to, to_info, should_shrink);
}
template <typename To, typename To_Info, typename T1, typename Info1, typename T2, typename Info2>
inline Result
div_assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type1, const T1& x1, const Info1& info1,
Boundary_Type type2, const T2& x2, const Info2& info2) {
bool should_shrink;
if (is_boundary_infinity(type1, x1, info1)) {
should_shrink = boundary_infinity_is_open(type1, info1);
return set_boundary_infinity(to_type, to, to_info, should_shrink);
}
else if (is_boundary_infinity(type2, x2, info2)) {
should_shrink = boundary_infinity_is_open(type2, info2);
return set_zero(to_type, to, to_info, should_shrink);
}
should_shrink = (normal_is_open(type1, x1, info1)
|| normal_is_open(type2, x2, info2));
bool check = (To_Info::check_inexact || (!should_shrink && To_Info::store_open));
PPL_ASSERT(x1 != Constant<0>::value && x2 != Constant<0>::value);
// FIXME: extended handling is not needed
Result r = div_assign_r(to, x1, x2, round_dir_check(to_type, check));
return adjust_boundary(to_type, to, to_info, should_shrink, r);
}
template <typename To, typename To_Info, typename T1, typename Info1, typename T2, typename Info2>
inline Result
div_assign_z(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type1, const T1& x1, const Info1& info1, int x1s,
Boundary_Type type2, const T2& x2, const Info2& info2, int x2s) {
if (x1s != 0) {
if (x2s != 0)
return div_assign(to_type, to, to_info,
type1, x1, info1,
type2, x2, info2);
else {
return set_boundary_infinity(to_type, to, to_info, true);
}
}
else {
bool should_shrink = info1.get_boundary_property(type1, OPEN)
&& !is_boundary_infinity_closed(type2, x2, info2);
return set_zero(to_type, to, to_info, should_shrink);
}
}
template <typename To, typename To_Info, typename T, typename Info>
inline Result
umod_2exp_assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type, const T& x, const Info& info,
unsigned int exp) {
PPL_ASSERT(to_type == type);
bool should_shrink;
if (is_boundary_infinity(type, x, info)) {
should_shrink = boundary_infinity_is_open(type, info);
return set_boundary_infinity(to_type, to, to_info, should_shrink);
}
should_shrink = normal_is_open(type, x, info);
bool check = (To_Info::check_inexact || (!should_shrink && To_Info::store_open));
Result r = umod_2exp_assign_r(to, x, exp, round_dir_check(to_type, check));
return adjust_boundary(to_type, to, to_info, should_shrink, r);
}
template <typename To, typename To_Info, typename T, typename Info>
inline Result
smod_2exp_assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type, const T& x, const Info& info,
unsigned int exp) {
PPL_ASSERT(to_type == type);
bool should_shrink;
if (is_boundary_infinity(type, x, info)) {
should_shrink = boundary_infinity_is_open(type, info);
return set_boundary_infinity(to_type, to, to_info, should_shrink);
}
should_shrink = normal_is_open(type, x, info);
bool check = (To_Info::check_inexact || (!should_shrink && To_Info::store_open));
Result r = smod_2exp_assign_r(to, x, exp, round_dir_check(to_type, check));
return adjust_boundary(to_type, to, to_info, should_shrink, r);
}
} // namespace Boundary_NS
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Interval_Info_defs.hh line 28. */
#include <iostream>
namespace Parma_Polyhedra_Library {
namespace Interval_NS {
struct Property {
enum Type {
CARDINALITY_0_,
CARDINALITY_1_,
CARDINALITY_IS_
};
typedef bool Value;
static const Value default_value = true;
static const Value unsupported_value = false;
Property(Type t)
: type(t) {
}
Type type;
};
const Property CARDINALITY_0(Property::CARDINALITY_0_);
const Property CARDINALITY_1(Property::CARDINALITY_1_);
const Property CARDINALITY_IS(Property::CARDINALITY_IS_);
template <typename T>
inline void
reset_bits(T& bits) {
bits = 0;
}
template <typename T>
inline void
reset_bit(T& bits, unsigned int bit) {
bits &= ~(static_cast<T>(1) << bit);
}
template <typename T>
inline void
set_bit(T& bits, unsigned int bit, bool value) {
if (value)
bits |= static_cast<T>(1) << bit;
else
reset_bit(bits, bit);
}
template <typename T>
inline bool
get_bit(const T& bits, unsigned int bit) {
return (bits & (static_cast<T>(1) << bit)) != 0;
}
template <typename T>
inline void
set_bits(T& bits, unsigned int start, unsigned int len, T value) {
bits &= ~(((static_cast<T>(1) << len) - 1) << start);
bits |= value << start;
}
template <typename T>
inline T
get_bits(T& bits, unsigned int start, unsigned int len) {
return (bits >> start) & ((static_cast<T>(1) << len) - 1);
}
} // namespace Interval_NS
using namespace Interval_NS;
using namespace Boundary_NS;
template <typename Policy>
class Interval_Info_Null {
public:
const_bool_nodef(may_be_empty, Policy::may_be_empty);
const_bool_nodef(may_contain_infinity, Policy::may_contain_infinity);
const_bool_nodef(check_inexact, Policy::check_inexact);
const_bool_nodef(store_special, false);
const_bool_nodef(store_open, false);
const_bool_nodef(cache_empty, false);
const_bool_nodef(cache_singleton, false);
Interval_Info_Null() {
}
void clear() {
}
void clear_boundary_properties(Boundary_Type) {
}
template <typename Property>
void set_boundary_property(Boundary_Type, const Property&, typename Property::Value = Property::default_value) {
}
template <typename Property>
typename Property::Value get_boundary_property(Boundary_Type, const Property&) const {
return Property::unsupported_value;
}
template <typename Property>
void set_interval_property(const Property&, typename Property::Value = Property::default_value) {
}
template <typename Property>
typename Property::Value get_interval_property(const Property&) const {
return Property::unsupported_value;
}
//! Swaps \p *this with \p y.
void m_swap(Interval_Info_Null& y);
void ascii_dump(std::ostream& s) const;
bool ascii_load(std::istream& s);
};
template <typename Policy>
class Interval_Info_Null_Open : public Interval_Info_Null<Policy> {
public:
const_bool_nodef(store_open, true);
Interval_Info_Null_Open(bool o)
: open(o) {
}
bool get_boundary_property(Boundary_Type,
const Boundary_NS::Property& p) const {
if (p.type == Boundary_NS::Property::OPEN_)
return open;
else
return Boundary_NS::Property::unsupported_value;
}
void ascii_dump(std::ostream& s) const;
bool ascii_load(std::istream& s);
private:
bool open;
};
template <typename T, typename Policy>
class Interval_Info_Bitset {
public:
const_bool_nodef(may_be_empty, Policy::may_be_empty);
const_bool_nodef(may_contain_infinity, Policy::may_contain_infinity);
const_bool_nodef(check_inexact, Policy::check_inexact);
const_bool_nodef(store_special, Policy::store_special);
const_bool_nodef(store_open, Policy::store_open);
const_bool_nodef(cache_empty, Policy::cache_empty);
const_bool_nodef(cache_singleton, Policy::cache_singleton);
const_int_nodef(lower_special_bit, Policy::next_bit);
const_int_nodef(lower_open_bit, lower_special_bit + (store_special ? 1 : 0));
const_int_nodef(upper_special_bit, lower_open_bit + (store_open ? 1 : 0));
const_int_nodef(upper_open_bit, upper_special_bit + (store_special ? 1 : 0));
const_int_nodef(cardinality_is_bit, upper_open_bit + (store_open ? 1 : 0));
const_int_nodef(cardinality_0_bit, cardinality_is_bit
+ ((cache_empty || cache_singleton) ? 1 : 0));
const_int_nodef(cardinality_1_bit, cardinality_0_bit + (cache_empty ? 1 : 0));
const_int_nodef(next_bit, cardinality_1_bit + (cache_singleton ? 1 : 0));
Interval_Info_Bitset() {
// FIXME: would we have speed benefits with uninitialized info?
// (Dirty_Temp)
clear();
}
void clear() {
reset_bits(bitset);
}
void clear_boundary_properties(Boundary_Type t) {
set_boundary_property(t, SPECIAL, false);
set_boundary_property(t, OPEN, false);
}
void set_boundary_property(Boundary_Type t,
const Boundary_NS::Property& p,
bool value = true) {
switch (p.type) {
case Boundary_NS::Property::SPECIAL_:
if (store_special) {
if (t == LOWER)
set_bit(bitset, lower_special_bit, value);
else
set_bit(bitset, upper_special_bit, value);
}
break;
case Boundary_NS::Property::OPEN_:
if (store_open) {
if (t == LOWER)
set_bit(bitset, lower_open_bit, value);
else
set_bit(bitset, upper_open_bit, value);
}
break;
default:
break;
}
}
bool get_boundary_property(Boundary_Type t, const Boundary_NS::Property& p) const {
switch (p.type) {
case Boundary_NS::Property::SPECIAL_:
if (!store_special)
return false;
if (t == LOWER)
return get_bit(bitset, lower_special_bit);
else
return get_bit(bitset, upper_special_bit);
case Boundary_NS::Property::OPEN_:
if (!store_open)
return false;
else if (t == LOWER)
return get_bit(bitset, lower_open_bit);
else
return get_bit(bitset, upper_open_bit);
default:
return false;
}
}
void set_interval_property(const Interval_NS::Property& p, bool value = true) {
switch (p.type) {
case Interval_NS::Property::CARDINALITY_0_:
if (cache_empty)
set_bit(bitset, cardinality_0_bit, value);
break;
case Interval_NS::Property::CARDINALITY_1_:
if (cache_singleton)
set_bit(bitset, cardinality_1_bit, value);
break;
case Interval_NS::Property::CARDINALITY_IS_:
if (cache_empty || cache_singleton)
set_bit(bitset, cardinality_is_bit, value);
break;
default:
break;
}
}
bool get_interval_property(Interval_NS::Property p) const {
switch (p.type) {
case Interval_NS::Property::CARDINALITY_0_:
return cache_empty && get_bit(bitset, cardinality_0_bit);
case Interval_NS::Property::CARDINALITY_1_:
return cache_singleton && get_bit(bitset, cardinality_1_bit);
case Interval_NS::Property::CARDINALITY_IS_:
return (cache_empty || cache_singleton)
&& get_bit(bitset, cardinality_is_bit);
default:
return false;
}
}
//! Swaps \p *this with \p y.
void m_swap(Interval_Info_Bitset& y);
void ascii_dump(std::ostream& s) const;
bool ascii_load(std::istream& s);
protected:
T bitset;
};
}
/* Automatically generated from PPL source file ../src/Interval_Info_inlines.hh line 1. */
/* Interval_Info class implementation: inline functions.
*/
#include <iomanip>
namespace Parma_Polyhedra_Library {
template <typename Policy>
inline void
Interval_Info_Null<Policy>::m_swap(Interval_Info_Null<Policy>&) {
}
template <typename Policy>
inline void
Interval_Info_Null<Policy>::ascii_dump(std::ostream&) const {
}
template <typename Policy>
inline bool
Interval_Info_Null<Policy>::ascii_load(std::istream&) {
return true;
}
template <typename Policy>
inline void
Interval_Info_Null_Open<Policy>::ascii_dump(std::ostream& s) const {
s << (open ? "open" : "closed");
}
template <typename Policy>
inline bool
Interval_Info_Null_Open<Policy>::ascii_load(std::istream& s) {
std::string str;
if (!(s >> str))
return false;
if (str == "open") {
open = true;
return true;
}
if (str == "closed") {
open = false;
return true;
}
return false;
}
template <typename T, typename Policy>
inline void
Interval_Info_Bitset<T, Policy>::m_swap(Interval_Info_Bitset<T, Policy>& y) {
using std::swap;
swap(bitset, y.bitset);
}
template <typename T, typename Policy>
inline void
Interval_Info_Bitset<T, Policy>::ascii_dump(std::ostream& s) const {
const std::ios::fmtflags old_flags = s.setf(std::ios::hex,
std::ios::basefield);
s << bitset;
s.flags(old_flags);
}
template <typename T, typename Policy>
inline bool
Interval_Info_Bitset<T, Policy>::ascii_load(std::istream& s) {
const std::ios::fmtflags old_flags = s.setf(std::ios::hex,
std::ios::basefield);
s >> bitset;
s.flags(old_flags);
return !s.fail();
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates Interval_Info_Null */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Policy>
inline void
swap(Interval_Info_Null<Policy>& x, Interval_Info_Null<Policy>& y) {
x.m_swap(y);
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates Interval_Info_Bitset */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T, typename Policy>
inline void
swap(Interval_Info_Bitset<T, Policy>& x, Interval_Info_Bitset<T, Policy>& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Interval_Info_defs.hh line 284. */
/* Automatically generated from PPL source file ../src/Interval_defs.hh line 33. */
#include <iosfwd>
// Temporary!
#include <iostream>
namespace Parma_Polyhedra_Library {
enum Ternary { T_YES, T_NO, T_MAYBE };
inline I_Result
combine(Result l, Result u) {
const unsigned res
= static_cast<unsigned>(l) | (static_cast<unsigned>(u) << 6);
return static_cast<I_Result>(res);
}
struct Interval_Base {
};
using namespace Boundary_NS;
using namespace Interval_NS;
template <typename T, typename Enable = void>
struct Is_Singleton : public Is_Native_Or_Checked<T> {};
template <typename T>
struct Is_Interval : public Is_Same_Or_Derived<Interval_Base, T> {};
//! A generic, not necessarily closed, possibly restricted interval.
/*! \ingroup PPL_CXX_interface
The class template type parameter \p Boundary represents the type
of the interval boundaries, and can be chosen, among other possibilities,
within one of the following number families:
- a bounded precision native integer type (that is,
from <CODE>signed char</CODE> to <CODE>long long</CODE>
and from <CODE>int8_t</CODE> to <CODE>int64_t</CODE>);
- a bounded precision floating point type (<CODE>float</CODE>,
<CODE>double</CODE> or <CODE>long double</CODE>);
- an unbounded integer or rational type, as provided by the C++ interface
of GMP (<CODE>mpz_class</CODE> or <CODE>mpq_class</CODE>).
The class template type parameter \p Info allows to control a number
of features of the class, among which:
- the ability to support open as well as closed boundaries;
- the ability to represent empty intervals in addition to nonempty ones;
- the ability to represent intervals of extended number families
that contain positive and negative infinities;
*/
template <typename Boundary, typename Info>
class Interval : public Interval_Base, private Info {
private:
PPL_COMPILE_TIME_CHECK(!Info::store_special
|| !std::numeric_limits<Boundary>::has_infinity,
"store_special is meaningless"
" when boundary type may contains infinity");
Info& w_info() const {
return const_cast<Interval&>(*this);
}
public:
typedef Boundary boundary_type;
typedef Info info_type;
typedef Interval_NS::Property Property;
template <typename T>
typename Enable_If<Is_Singleton<T>::value || Is_Interval<T>::value, Interval&>::type
operator=(const T& x) {
assign(x);
return *this;
}
template <typename T>
typename Enable_If<Is_Singleton<T>::value || Is_Interval<T>::value, Interval&>::type
operator+=(const T& x) {
add_assign(*this, x);
return *this;
}
template <typename T>
typename Enable_If<Is_Singleton<T>::value || Is_Interval<T>::value, Interval&>::type
operator-=(const T& x) {
sub_assign(*this, x);
return *this;
}
template <typename T>
typename Enable_If<Is_Singleton<T>::value || Is_Interval<T>::value, Interval&>::type
operator*=(const T& x) {
mul_assign(*this, x);
return *this;
}
template <typename T>
typename Enable_If<Is_Singleton<T>::value || Is_Interval<T>::value, Interval&>::type
operator/=(const T& x) {
div_assign(*this, x);
return *this;
}
//! Swaps \p *this with \p y.
void m_swap(Interval& y);
Info& info() {
return *this;
}
const Info& info() const {
return *this;
}
Boundary& lower() {
return lower_;
}
const Boundary& lower() const {
return lower_;
}
Boundary& upper() {
return upper_;
}
const Boundary& upper() const {
return upper_;
}
I_Constraint<boundary_type> lower_constraint() const {
PPL_ASSERT(!is_empty());
if (info().get_boundary_property(LOWER, SPECIAL))
return I_Constraint<boundary_type>();
return i_constraint(lower_is_open() ? GREATER_THAN : GREATER_OR_EQUAL,
lower(), true);
}
I_Constraint<boundary_type> upper_constraint() const {
PPL_ASSERT(!is_empty());
if (info().get_boundary_property(UPPER, SPECIAL))
return I_Constraint<boundary_type>();
return i_constraint(upper_is_open() ? LESS_THAN : LESS_OR_EQUAL,
upper(), true);
}
bool is_empty() const {
return lt(UPPER, upper(), info(), LOWER, lower(), info());
}
bool check_empty(I_Result r) const {
return (r & I_ANY) == I_EMPTY
|| ((r & I_ANY) != I_NOT_EMPTY && is_empty());
}
bool is_singleton() const {
return eq(LOWER, lower(), info(), UPPER, upper(), info());
}
bool lower_is_open() const {
PPL_ASSERT(OK());
return is_open(LOWER, lower(), info());
}
bool upper_is_open() const {
PPL_ASSERT(OK());
return is_open(UPPER, upper(), info());
}
bool lower_is_boundary_infinity() const {
PPL_ASSERT(OK());
return Boundary_NS::is_boundary_infinity(LOWER, lower(), info());
}
bool upper_is_boundary_infinity() const {
PPL_ASSERT(OK());
return Boundary_NS::is_boundary_infinity(UPPER, upper(), info());
}
bool lower_is_domain_inf() const {
PPL_ASSERT(OK());
return Boundary_NS::is_domain_inf(LOWER, lower(), info());
}
bool upper_is_domain_sup() const {
PPL_ASSERT(OK());
return Boundary_NS::is_domain_sup(UPPER, upper(), info());
}
bool is_bounded() const {
PPL_ASSERT(OK());
return !lower_is_boundary_infinity() && !upper_is_boundary_infinity();
}
bool is_universe() const {
PPL_ASSERT(OK());
return lower_is_domain_inf() && upper_is_domain_sup();
}
I_Result lower_extend() {
info().clear_boundary_properties(LOWER);
set_unbounded(LOWER, lower(), info());
return I_ANY;
}
template <typename C>
typename Enable_If<Is_Same_Or_Derived<I_Constraint_Base, C>::value, I_Result>::type
lower_extend(const C& c);
I_Result upper_extend() {
info().clear_boundary_properties(UPPER);
set_unbounded(UPPER, upper(), info());
return I_ANY;
}
template <typename C>
typename Enable_If<Is_Same_Or_Derived<I_Constraint_Base, C>::value, I_Result>::type
upper_extend(const C& c);
I_Result build() {
return assign(UNIVERSE);
}
template <typename C>
typename Enable_If<Is_Same_Or_Derived<I_Constraint_Base, C>::value, I_Result>::type
build(const C& c) {
Relation_Symbol rs;
switch (c.rel()) {
case V_LGE:
case V_GT_MINUS_INFINITY:
case V_LT_PLUS_INFINITY:
return assign(UNIVERSE);
default:
return assign(EMPTY);
case V_LT:
case V_LE:
case V_GT:
case V_GE:
case V_EQ:
case V_NE:
assign(UNIVERSE);
rs = static_cast<Relation_Symbol>(c.rel());
return refine_existential(rs, c.value());
}
}
template <typename C1, typename C2>
typename Enable_If<Is_Same_Or_Derived<I_Constraint_Base, C1>::value
&&
Is_Same_Or_Derived<I_Constraint_Base, C2>::value,
I_Result>::type
build(const C1& c1, const C2& c2) {
switch (c1.rel()) {
case V_LGE:
return build(c2);
case V_NAN:
return assign(EMPTY);
default:
break;
}
switch (c2.rel()) {
case V_LGE:
return build(c1);
case V_NAN:
return assign(EMPTY);
default:
break;
}
build(c1);
const I_Result r = add_constraint(c2);
return r - (I_CHANGED | I_UNCHANGED);
}
template <typename C>
typename Enable_If<Is_Same_Or_Derived<I_Constraint_Base, C>::value, I_Result>::type
add_constraint(const C& c) {
Interval x;
x.build(c);
return intersect_assign(x);
}
I_Result assign(Degenerate_Element e) {
I_Result r;
info().clear();
switch (e) {
case EMPTY:
lower_ = 1;
upper_ = 0;
r = I_EMPTY | I_EXACT;
break;
case UNIVERSE:
set_unbounded(LOWER, lower(), info());
set_unbounded(UPPER, upper(), info());
r = I_UNIVERSE | I_EXACT;
break;
default:
PPL_UNREACHABLE;
r = I_EMPTY;
break;
}
PPL_ASSERT(OK());
return r;
}
template <typename From>
typename Enable_If<Is_Special<From>::value, I_Result>::type
assign(const From&) {
info().clear();
Result rl;
Result ru;
switch (From::vclass) {
case VC_MINUS_INFINITY:
rl = Boundary_NS::set_minus_infinity(LOWER, lower(), info());
ru = Boundary_NS::set_minus_infinity(UPPER, upper(), info());
break;
case VC_PLUS_INFINITY:
rl = Boundary_NS::set_plus_infinity(LOWER, lower(), info());
ru = Boundary_NS::set_plus_infinity(UPPER, upper(), info());
break;
default:
PPL_UNREACHABLE;
rl = V_NAN;
ru = V_NAN;
break;
}
PPL_ASSERT(OK());
return combine(rl, ru);
}
I_Result set_infinities() {
info().clear();
Result rl = Boundary_NS::set_minus_infinity(LOWER, lower(), info());
Result ru = Boundary_NS::set_plus_infinity(UPPER, upper(), info());
PPL_ASSERT(OK());
return combine(rl, ru);
}
static bool is_always_topologically_closed() {
return !Info::store_open;
}
bool is_topologically_closed() const {
PPL_ASSERT(OK());
return is_always_topologically_closed()
|| is_empty()
|| ((lower_is_boundary_infinity() || !lower_is_open())
&& (upper_is_boundary_infinity() || !upper_is_open()));
}
//! Assigns to \p *this its topological closure.
void topological_closure_assign() {
if (!Info::store_open || is_empty())
return;
if (lower_is_open() && !lower_is_boundary_infinity())
info().set_boundary_property(LOWER, OPEN, false);
if (upper_is_open() && !upper_is_boundary_infinity())
info().set_boundary_property(UPPER, OPEN, false);
}
void remove_inf() {
PPL_ASSERT(!is_empty());
if (!Info::store_open)
return;
info().set_boundary_property(LOWER, OPEN, true);
}
void remove_sup() {
PPL_ASSERT(!is_empty());
if (!Info::store_open)
return;
info().set_boundary_property(UPPER, OPEN, true);
}
int infinity_sign() const {
PPL_ASSERT(OK());
if (is_reverse_infinity(LOWER, lower(), info()))
return 1;
else if (is_reverse_infinity(UPPER, upper(), info()))
return -1;
else
return 0;
}
bool contains_integer_point() const {
PPL_ASSERT(OK());
if (is_empty())
return false;
if (!is_bounded())
return true;
Boundary l;
if (lower_is_open()) {
add_assign_r(l, lower(), Boundary(1), ROUND_DOWN);
floor_assign_r(l, l, ROUND_DOWN);
}
else
ceil_assign_r(l, lower(), ROUND_DOWN);
Boundary u;
if (upper_is_open()) {
sub_assign_r(u, upper(), Boundary(1), ROUND_UP);
ceil_assign_r(u, u, ROUND_UP);
}
else
floor_assign_r(u, upper(), ROUND_UP);
return u >= l;
}
void drop_some_non_integer_points() {
if (is_empty())
return;
if (lower_is_open() && !lower_is_boundary_infinity()) {
add_assign_r(lower(), lower(), Boundary(1), ROUND_DOWN);
floor_assign_r(lower(), lower(), ROUND_DOWN);
info().set_boundary_property(LOWER, OPEN, false);
}
else
ceil_assign_r(lower(), lower(), ROUND_DOWN);
if (upper_is_open() && !upper_is_boundary_infinity()) {
sub_assign_r(upper(), upper(), Boundary(1), ROUND_UP);
ceil_assign_r(upper(), upper(), ROUND_UP);
info().set_boundary_property(UPPER, OPEN, false);
}
else
floor_assign_r(upper(), upper(), ROUND_UP);
}
template <typename From>
typename Enable_If<Is_Singleton<From>::value || Is_Interval<From>::value, I_Result>::type
wrap_assign(Bounded_Integer_Type_Width w,
Bounded_Integer_Type_Representation r,
const From& refinement) {
if (is_empty())
return I_EMPTY;
if (lower_is_boundary_infinity() || upper_is_boundary_infinity())
return assign(refinement);
PPL_DIRTY_TEMP(Boundary, u);
Result result = sub_2exp_assign_r(u, upper(), w, ROUND_UP);
if (result_overflow(result) == 0 && u > lower())
return assign(refinement);
info().clear();
switch (r) {
case UNSIGNED:
umod_2exp_assign(LOWER, lower(), info(),
LOWER, lower(), info(), w);
umod_2exp_assign(UPPER, upper(), info(),
UPPER, upper(), info(), w);
break;
case SIGNED_2_COMPLEMENT:
smod_2exp_assign(LOWER, lower(), info(),
LOWER, lower(), info(), w);
smod_2exp_assign(UPPER, upper(), info(),
UPPER, upper(), info(), w);
break;
default:
PPL_UNREACHABLE;
break;
}
if (le(LOWER, lower(), info(), UPPER, upper(), info()))
return intersect_assign(refinement);
PPL_DIRTY_TEMP(Interval, tmp);
tmp.info().clear();
Boundary_NS::assign(LOWER, tmp.lower(), tmp.info(),
LOWER, lower(), info());
set_unbounded(UPPER, tmp.upper(), tmp.info());
tmp.intersect_assign(refinement);
lower_extend();
intersect_assign(refinement);
return join_assign(tmp);
}
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
void ascii_dump(std::ostream& s) const;
bool ascii_load(std::istream& s);
bool OK() const {
if (!Info::may_be_empty && is_empty()) {
#ifndef NDEBUG
std::cerr << "The interval is unexpectedly empty.\n";
#endif
return false;
}
if (is_open(LOWER, lower(), info())) {
if (is_plus_infinity(LOWER, lower(), info())) {
#ifndef NDEBUG
std::cerr << "The lower boundary is +inf open.\n";
#endif
}
}
else if (!Info::may_contain_infinity
&& (is_minus_infinity(LOWER, lower(), info())
|| is_plus_infinity(LOWER, lower(), info()))) {
#ifndef NDEBUG
std::cerr << "The lower boundary is unexpectedly infinity.\n";
#endif
return false;
}
if (!info().get_boundary_property(LOWER, SPECIAL)) {
if (is_not_a_number(lower())) {
#ifndef NDEBUG
std::cerr << "The lower boundary is not a number.\n";
#endif
return false;
}
}
if (is_open(UPPER, upper(), info())) {
if (is_minus_infinity(UPPER, upper(), info())) {
#ifndef NDEBUG
std::cerr << "The upper boundary is -inf open.\n";
#endif
}
}
else if (!Info::may_contain_infinity
&& (is_minus_infinity(UPPER, upper(), info())
|| is_plus_infinity(UPPER, upper(), info()))) {
#ifndef NDEBUG
std::cerr << "The upper boundary is unexpectedly infinity."
<< std::endl;
#endif
return false;
}
if (!info().get_boundary_property(UPPER, SPECIAL)) {
if (is_not_a_number(upper())) {
#ifndef NDEBUG
std::cerr << "The upper boundary is not a number.\n";
#endif
return false;
}
}
// Everything OK.
return true;
}
Interval() {
}
template <typename T>
explicit Interval(const T& x) {
assign(x);
}
/*! \brief
Builds the smallest interval containing the number whose textual
representation is contained in \p s.
*/
explicit Interval(const char* s);
template <typename T>
typename Enable_If<Is_Singleton<T>::value
|| Is_Interval<T>::value, bool>::type
contains(const T& y) const;
template <typename T>
typename Enable_If<Is_Singleton<T>::value
|| Is_Interval<T>::value, bool>::type
strictly_contains(const T& y) const;
template <typename T>
typename Enable_If<Is_Singleton<T>::value
|| Is_Interval<T>::value, bool>::type
is_disjoint_from(const T& y) const;
template <typename From>
typename Enable_If<Is_Singleton<From>::value
|| Is_Interval<From>::value, I_Result>::type
assign(const From& x);
template <typename Type>
typename Enable_If<Is_Singleton<Type>::value
|| Is_Interval<Type>::value, bool>::type
can_be_exactly_joined_to(const Type& x) const;
template <typename From>
typename Enable_If<Is_Singleton<From>::value
|| Is_Interval<From>::value, I_Result>::type
join_assign(const From& x);
template <typename From1, typename From2>
typename Enable_If<((Is_Singleton<From1>::value
|| Is_Interval<From1>::value)
&& (Is_Singleton<From2>::value
|| Is_Interval<From2>::value)), I_Result>::type
join_assign(const From1& x, const From2& y);
template <typename From>
typename Enable_If<Is_Singleton<From>::value
|| Is_Interval<From>::value, I_Result>::type
intersect_assign(const From& x);
template <typename From1, typename From2>
typename Enable_If<((Is_Singleton<From1>::value
|| Is_Interval<From1>::value)
&& (Is_Singleton<From2>::value
|| Is_Interval<From2>::value)), I_Result>::type
intersect_assign(const From1& x, const From2& y);
/*! \brief
Assigns to \p *this the smallest interval containing the set-theoretic
difference of \p *this and \p x.
*/
template <typename From>
typename Enable_If<Is_Singleton<From>::value
|| Is_Interval<From>::value, I_Result>::type
difference_assign(const From& x);
/*! \brief
Assigns to \p *this the smallest interval containing the set-theoretic
difference of \p x and \p y.
*/
template <typename From1, typename From2>
typename Enable_If<((Is_Singleton<From1>::value
|| Is_Interval<From1>::value)
&& (Is_Singleton<From2>::value
|| Is_Interval<From2>::value)), I_Result>::type
difference_assign(const From1& x, const From2& y);
/*! \brief
Assigns to \p *this the largest interval contained in the set-theoretic
difference of \p *this and \p x.
*/
template <typename From>
typename Enable_If<Is_Singleton<From>::value
|| Is_Interval<From>::value, I_Result>::type
lower_approximation_difference_assign(const From& x);
/*! \brief
Assigns to \p *this a \ref Meet_Preserving_Simplification
"meet-preserving simplification" of \p *this with respect to \p y.
\return
\c false if and only if the meet of \p *this and \p y is empty.
*/
template <typename From>
typename Enable_If<Is_Interval<From>::value, bool>::type
simplify_using_context_assign(const From& y);
/*! \brief
Assigns to \p *this an interval having empty intersection with \p y.
The assigned interval should be as large as possible.
*/
template <typename From>
typename Enable_If<Is_Interval<From>::value, void>::type
empty_intersection_assign(const From& y);
/*! \brief
Refines \p to according to the existential relation \p rel with \p x.
The \p to interval is restricted to become, upon successful exit,
the smallest interval of its type that contains the set
\f[
\{\,
a \in \mathtt{to}
\mid
\exists b \in \mathtt{x} \st a \mathrel{\mathtt{rel}} b
\,\}.
\f]
\return
???
*/
template <typename From>
typename Enable_If<Is_Singleton<From>::value
|| Is_Interval<From>::value, I_Result>::type
refine_existential(Relation_Symbol rel, const From& x);
/*! \brief
Refines \p to so that it satisfies the universal relation \p rel with \p x.
The \p to interval is restricted to become, upon successful exit,
the smallest interval of its type that contains the set
\f[
\{\,
a \in \mathtt{to}
\mid
\forall b \in \mathtt{x} \itc a \mathrel{\mathtt{rel}} b
\,\}.
\f]
\return
???
*/
template <typename From>
typename Enable_If<Is_Singleton<From>::value
|| Is_Interval<From>::value, I_Result>::type
refine_universal(Relation_Symbol rel, const From& x);
template <typename From>
typename Enable_If<Is_Singleton<From>::value
|| Is_Interval<From>::value, I_Result>::type
neg_assign(const From& x);
template <typename From1, typename From2>
typename Enable_If<((Is_Singleton<From1>::value || Is_Interval<From1>::value)
&& (Is_Singleton<From2>::value || Is_Interval<From2>::value)), I_Result>::type
add_assign(const From1& x, const From2& y);
template <typename From1, typename From2>
typename Enable_If<((Is_Singleton<From1>::value || Is_Interval<From1>::value)
&& (Is_Singleton<From2>::value || Is_Interval<From2>::value)), I_Result>::type
sub_assign(const From1& x, const From2& y);
template <typename From1, typename From2>
typename Enable_If<((Is_Singleton<From1>::value || Is_Interval<From1>::value)
&& (Is_Singleton<From2>::value || Is_Interval<From2>::value)), I_Result>::type
mul_assign(const From1& x, const From2& y);
template <typename From1, typename From2>
typename Enable_If<((Is_Singleton<From1>::value || Is_Interval<From1>::value)
&& (Is_Singleton<From2>::value || Is_Interval<From2>::value)), I_Result>::type
div_assign(const From1& x, const From2& y);
template <typename From, typename Iterator>
typename Enable_If<Is_Interval<From>::value, void>::type
CC76_widening_assign(const From& y, Iterator first, Iterator last);
private:
Boundary lower_;
Boundary upper_;
};
//! Swaps \p x with \p y.
/*! \relates Interval */
template <typename Boundary, typename Info>
void swap(Interval<Boundary, Info>& x, Interval<Boundary, Info>& y);
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Interval_inlines.hh line 1. */
/* Inline functions for the Interval class and its constituents.
*/
namespace Parma_Polyhedra_Library {
template <typename Boundary, typename Info>
inline memory_size_type
Interval<Boundary, Info>::external_memory_in_bytes() const {
return Parma_Polyhedra_Library::external_memory_in_bytes(lower())
+ Parma_Polyhedra_Library::external_memory_in_bytes(upper());
}
template <typename Boundary, typename Info>
inline memory_size_type
Interval<Boundary, Info>::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
template <typename Boundary, typename Info>
inline void
Interval<Boundary, Info>::m_swap(Interval<Boundary, Info>& y) {
using std::swap;
swap(lower(), y.lower());
swap(upper(), y.upper());
swap(info(), y.info());
}
template <typename Boundary, typename Info>
inline bool
f_is_empty(const Interval<Boundary, Info>& x) {
return x.is_empty();
}
template <typename Boundary, typename Info>
inline bool
f_is_singleton(const Interval<Boundary, Info>& x) {
return x.is_singleton();
}
template <typename Boundary, typename Info>
inline int
infinity_sign(const Interval<Boundary, Info>& x) {
return x.infinity_sign();
}
namespace Interval_NS {
template <typename Boundary, typename Info>
inline const Boundary&
f_lower(const Interval<Boundary, Info>& x) {
return x.lower();
}
template <typename Boundary, typename Info>
inline const Boundary&
f_upper(const Interval<Boundary, Info>& x) {
return x.upper();
}
template <typename Boundary, typename Info>
inline const Info&
f_info(const Interval<Boundary, Info>& x) {
return x.info();
}
struct Scalar_As_Interval_Policy {
const_bool_nodef(may_be_empty, true);
const_bool_nodef(may_contain_infinity, true);
const_bool_nodef(check_inexact, false);
};
typedef Interval_Info_Null<Scalar_As_Interval_Policy>
Scalar_As_Interval_Info;
const Scalar_As_Interval_Info SCALAR_INFO;
typedef Interval_Info_Null_Open<Scalar_As_Interval_Policy>
Scalar_As_Interval_Info_Open;
template <typename T>
inline typename Enable_If<Is_Singleton<T>::value, const T&>::type
f_lower(const T& x) {
return x;
}
template <typename T>
inline typename Enable_If<Is_Singleton<T>::value, const T&>::type
f_upper(const T& x) {
return x;
}
template <typename T>
inline typename Enable_If<Is_Singleton<T>::value,
const Scalar_As_Interval_Info&>::type
f_info(const T&) {
return SCALAR_INFO;
}
template <typename T>
inline typename Enable_If<Is_Singleton<T>::value,
Scalar_As_Interval_Info_Open>::type
f_info(const T&, bool open) {
return Scalar_As_Interval_Info_Open(open);
}
template <typename T>
inline typename Enable_If<Is_Singleton<T>::value, bool>::type
f_is_empty(const T& x) {
return is_not_a_number(x);
}
template <typename T>
inline typename Enable_If<Is_Singleton<T>::value, bool>::type
f_is_singleton(const T& x) {
return !f_is_empty(x);
}
} // namespace Interval_NS
template <typename T>
inline typename Enable_If<Is_Singleton<T>::value
|| Is_Interval<T>::value, bool>::type
is_singleton_integer(const T& x) {
return is_singleton(x) && is_integer(f_lower(x));
}
template <typename T>
inline typename Enable_If<Is_Singleton<T>::value
|| Is_Interval<T>::value, bool>::type
check_empty_arg(const T& x) {
if (f_info(x).may_be_empty)
return f_is_empty(x);
else {
PPL_ASSERT(!f_is_empty(x));
return false;
}
}
template <typename T1, typename T2>
inline typename Enable_If<((Is_Singleton<T1>::value
|| Is_Interval<T1>::value)
&& (Is_Singleton<T2>::value
|| Is_Interval<T2>::value)
&& (Is_Interval<T1>::value
|| Is_Interval<T2>::value)),
bool>::type
operator==(const T1& x, const T2& y) {
PPL_ASSERT(f_OK(x));
PPL_ASSERT(f_OK(y));
if (check_empty_arg(x))
return check_empty_arg(y);
else if (check_empty_arg(y))
return false;
return eq(LOWER, f_lower(x), f_info(x), LOWER, f_lower(y), f_info(y))
&& eq(UPPER, f_upper(x), f_info(x), UPPER, f_upper(y), f_info(y));
}
template <typename T1, typename T2>
inline typename Enable_If<((Is_Singleton<T1>::value
|| Is_Interval<T1>::value)
&& (Is_Singleton<T2>::value
|| Is_Interval<T2>::value)
&& (Is_Interval<T1>::value
|| Is_Interval<T2>::value)),
bool>::type
operator!=(const T1& x, const T2& y) {
return !(x == y);
}
template <typename Boundary, typename Info>
template <typename T>
inline typename Enable_If<Is_Singleton<T>::value
|| Is_Interval<T>::value, bool>::type
Interval<Boundary, Info>::contains(const T& y) const {
PPL_ASSERT(OK());
PPL_ASSERT(f_OK(y));
if (check_empty_arg(y))
return true;
if (check_empty_arg(*this))
return false;
return le(LOWER, lower(), info(), LOWER, f_lower(y), f_info(y))
&& ge(UPPER, upper(), info(), UPPER, f_upper(y), f_info(y));
}
template <typename Boundary, typename Info>
template <typename T>
inline typename Enable_If<Is_Singleton<T>::value
|| Is_Interval<T>::value, bool>::type
Interval<Boundary, Info>::strictly_contains(const T& y) const {
PPL_ASSERT(OK());
PPL_ASSERT(f_OK(y));
if (check_empty_arg(y))
return !check_empty_arg(*this);
if (check_empty_arg(*this))
return false;
return (lt(LOWER, lower(), info(), LOWER, f_lower(y), f_info(y))
&& ge(UPPER, upper(), info(), UPPER, f_upper(y), f_info(y)))
|| (le(LOWER, lower(), info(), LOWER, f_lower(y), f_info(y))
&& gt(UPPER, upper(), info(), UPPER, f_upper(y), f_info(y)));
}
template <typename Boundary, typename Info>
template <typename T>
inline typename Enable_If<Is_Singleton<T>::value
|| Is_Interval<T>::value, bool>::type
Interval<Boundary, Info>::is_disjoint_from(const T& y) const {
PPL_ASSERT(OK());
PPL_ASSERT(f_OK(y));
if (check_empty_arg(*this) || check_empty_arg(y))
return true;
return gt(LOWER, lower(), info(), UPPER, f_upper(y), f_info(y))
|| lt(UPPER, upper(), info(), LOWER, f_lower(y), f_info(y));
}
template <typename To_Boundary, typename To_Info>
template <typename From>
inline typename Enable_If<Is_Singleton<From>::value
|| Is_Interval<From>::value, I_Result>::type
Interval<To_Boundary, To_Info>::assign(const From& x) {
PPL_ASSERT(f_OK(x));
if (check_empty_arg(x))
return assign(EMPTY);
PPL_DIRTY_TEMP(To_Info, to_info);
to_info.clear();
const Result rl = Boundary_NS::assign(LOWER, lower(), to_info,
LOWER, f_lower(x), f_info(x));
const Result ru = Boundary_NS::assign(UPPER, upper(), to_info,
UPPER, f_upper(x), f_info(x));
assign_or_swap(info(), to_info);
PPL_ASSERT(OK());
return combine(rl, ru);
}
template <typename To_Boundary, typename To_Info>
template <typename From>
inline typename Enable_If<Is_Singleton<From>::value
|| Is_Interval<From>::value, I_Result>::type
Interval<To_Boundary, To_Info>::join_assign(const From& x) {
PPL_ASSERT(f_OK(x));
if (check_empty_arg(*this))
return assign(x);
if (check_empty_arg(x))
return combine(V_EQ, V_EQ);
Result rl;
Result ru;
rl = min_assign(LOWER, lower(), info(), LOWER, f_lower(x), f_info(x));
ru = max_assign(UPPER, upper(), info(), UPPER, f_upper(x), f_info(x));
PPL_ASSERT(OK());
return combine(rl, ru);
}
template <typename To_Boundary, typename To_Info>
template <typename From1, typename From2>
inline typename Enable_If<((Is_Singleton<From1>::value
|| Is_Interval<From1>::value)
&& (Is_Singleton<From2>::value
|| Is_Interval<From2>::value)), I_Result>::type
Interval<To_Boundary, To_Info>::join_assign(const From1& x, const From2& y) {
PPL_ASSERT(f_OK(x));
PPL_ASSERT(f_OK(y));
if (check_empty_arg(x))
return assign(y);
if (check_empty_arg(y))
return assign(x);
PPL_DIRTY_TEMP(To_Info, to_info);
to_info.clear();
Result rl;
Result ru;
rl = min_assign(LOWER, lower(), to_info,
LOWER, f_lower(x), f_info(x),
LOWER, f_lower(y), f_info(y));
ru = max_assign(UPPER, upper(), to_info,
UPPER, f_upper(x), f_info(x),
UPPER, f_upper(y), f_info(y));
assign_or_swap(info(), to_info);
PPL_ASSERT(OK());
return combine(rl, ru);
}
template <typename Boundary, typename Info>
template <typename Type>
inline typename Enable_If<Is_Singleton<Type>::value
|| Is_Interval<Type>::value, bool>::type
Interval<Boundary, Info>::can_be_exactly_joined_to(const Type& x) const {
PPL_DIRTY_TEMP(Boundary, b);
if (gt(LOWER, lower(), info(), UPPER, f_upper(x), f_info(x))) {
b = lower();
return eq(LOWER, b, info(), UPPER, f_upper(x), f_info(x));
}
else if (lt(UPPER, upper(), info(), LOWER, f_lower(x), f_info(x))) {
b = upper();
return eq(UPPER, b, info(), LOWER, f_lower(x), f_info(x));
}
return true;
}
template <typename To_Boundary, typename To_Info>
template <typename From>
inline typename Enable_If<Is_Singleton<From>::value
|| Is_Interval<From>::value, I_Result>::type
Interval<To_Boundary, To_Info>::intersect_assign(const From& x) {
PPL_ASSERT(f_OK(x));
max_assign(LOWER, lower(), info(), LOWER, f_lower(x), f_info(x));
min_assign(UPPER, upper(), info(), UPPER, f_upper(x), f_info(x));
PPL_ASSERT(OK());
return I_ANY;
}
template <typename To_Boundary, typename To_Info>
template <typename From1, typename From2>
inline typename Enable_If<((Is_Singleton<From1>::value
|| Is_Interval<From1>::value)
&& (Is_Singleton<From2>::value
|| Is_Interval<From2>::value)), I_Result>::type
Interval<To_Boundary, To_Info>::intersect_assign(const From1& x,
const From2& y) {
PPL_ASSERT(f_OK(x));
PPL_ASSERT(f_OK(y));
PPL_DIRTY_TEMP(To_Info, to_info);
to_info.clear();
max_assign(LOWER, lower(), to_info,
LOWER, f_lower(x), f_info(x),
LOWER, f_lower(y), f_info(y));
min_assign(UPPER, upper(), to_info,
UPPER, f_upper(x), f_info(x),
UPPER, f_upper(y), f_info(y));
assign_or_swap(info(), to_info);
PPL_ASSERT(OK());
return I_NOT_EMPTY;
}
template <typename To_Boundary, typename To_Info>
template <typename From>
inline typename Enable_If<Is_Singleton<From>::value
|| Is_Interval<From>::value, I_Result>::type
Interval<To_Boundary, To_Info>::difference_assign(const From& x) {
PPL_ASSERT(f_OK(x));
if (lt(UPPER, upper(), info(), LOWER, f_lower(x), f_info(x))
|| gt(LOWER, lower(), info(), UPPER, f_upper(x), f_info(x)))
return combine(V_EQ, V_EQ);
bool nl = ge(LOWER, lower(), info(), LOWER, f_lower(x), f_info(x));
bool nu = le(UPPER, upper(), info(), UPPER, f_upper(x), f_info(x));
Result rl = V_EQ;
Result ru = V_EQ;
if (nl) {
if (nu)
return assign(EMPTY);
else {
info().clear_boundary_properties(LOWER);
rl = complement(LOWER, lower(), info(), UPPER, f_upper(x), f_info(x));
}
}
else if (nu) {
info().clear_boundary_properties(UPPER);
ru = complement(UPPER, upper(), info(), LOWER, f_lower(x), f_info(x));
}
PPL_ASSERT(OK());
return combine(rl, ru);
}
template <typename To_Boundary, typename To_Info>
template <typename From1, typename From2>
inline typename Enable_If<((Is_Singleton<From1>::value
|| Is_Interval<From1>::value)
&& (Is_Singleton<From2>::value
|| Is_Interval<From2>::value)), I_Result>::type
Interval<To_Boundary, To_Info>::difference_assign(const From1& x,
const From2& y) {
PPL_ASSERT(f_OK(x));
PPL_ASSERT(f_OK(y));
PPL_DIRTY_TEMP(To_Info, to_info);
to_info.clear();
if (lt(UPPER, f_upper(x), f_info(x), LOWER, f_lower(y), f_info(y))
|| gt(LOWER, f_lower(x), f_info(x), UPPER, f_upper(y), f_info(y)))
return assign(x);
bool nl = ge(LOWER, f_lower(x), f_info(x), LOWER, f_lower(y), f_info(y));
bool nu = le(UPPER, f_upper(x), f_info(x), UPPER, f_upper(y), f_info(y));
Result rl = V_EQ;
Result ru = V_EQ;
if (nl) {
if (nu)
return assign(EMPTY);
else {
rl = complement(LOWER, lower(), info(), UPPER, f_upper(y), f_info(y));
ru = Boundary_NS::assign(UPPER, upper(), info(), UPPER, f_upper(x), f_info(x));
}
}
else if (nu) {
ru = complement(UPPER, upper(), info(), LOWER, f_lower(y), f_info(y));
rl = Boundary_NS::assign(LOWER, lower(), info(),
LOWER, f_lower(x), f_info(x));
}
assign_or_swap(info(), to_info);
PPL_ASSERT(OK());
return combine(rl, ru);
}
template <typename To_Boundary, typename To_Info>
template <typename From>
inline typename Enable_If<Is_Singleton<From>::value
|| Is_Interval<From>::value, I_Result>::type
Interval<To_Boundary, To_Info>
::refine_existential(Relation_Symbol rel, const From& x) {
PPL_ASSERT(OK());
PPL_ASSERT(f_OK(x));
if (check_empty_arg(x))
return assign(EMPTY);
switch (rel) {
case LESS_THAN:
{
if (lt(UPPER, upper(), info(), UPPER, f_upper(x), f_info(x)))
return combine(V_EQ, V_EQ);
info().clear_boundary_properties(UPPER);
Boundary_NS::assign(UPPER, upper(), info(),
UPPER, f_upper(x), f_info(x), true);
return I_ANY;
}
case LESS_OR_EQUAL:
{
if (le(UPPER, upper(), info(), UPPER, f_upper(x), f_info(x)))
return combine(V_EQ, V_EQ);
info().clear_boundary_properties(UPPER);
Boundary_NS::assign(UPPER, upper(), info(),
UPPER, f_upper(x), f_info(x));
return I_ANY;
}
case GREATER_THAN:
{
if (gt(LOWER, lower(), info(), LOWER, f_lower(x), f_info(x)))
return combine(V_EQ, V_EQ);
info().clear_boundary_properties(LOWER);
Boundary_NS::assign(LOWER, lower(), info(),
LOWER, f_lower(x), f_info(x), true);
return I_ANY;
}
case GREATER_OR_EQUAL:
{
if (ge(LOWER, lower(), info(), LOWER, f_lower(x), f_info(x)))
return combine(V_EQ, V_EQ);
info().clear_boundary_properties(LOWER);
Boundary_NS::assign(LOWER, lower(), info(),
LOWER, f_lower(x), f_info(x));
return I_ANY;
}
case EQUAL:
return intersect_assign(x);
case NOT_EQUAL:
{
if (!f_is_singleton(x))
return combine(V_EQ, V_EQ);
if (check_empty_arg(*this))
return I_EMPTY;
if (eq(LOWER, lower(), info(), LOWER, f_lower(x), f_info(x)))
remove_inf();
if (eq(UPPER, upper(), info(), UPPER, f_upper(x), f_info(x)))
remove_sup();
return I_ANY;
}
default:
PPL_UNREACHABLE;
return I_EMPTY;
}
}
template <typename To_Boundary, typename To_Info>
template <typename From>
inline typename Enable_If<Is_Singleton<From>::value
|| Is_Interval<From>::value, I_Result>::type
Interval<To_Boundary, To_Info>::refine_universal(Relation_Symbol rel,
const From& x) {
PPL_ASSERT(OK());
PPL_ASSERT(f_OK(x));
if (check_empty_arg(x))
return combine(V_EQ, V_EQ);
switch (rel) {
case LESS_THAN:
{
if (lt(UPPER, upper(), info(), LOWER, f_lower(x), f_info(x)))
return combine(V_EQ, V_EQ);
info().clear_boundary_properties(UPPER);
Result ru = Boundary_NS::assign(UPPER, upper(), info(),
LOWER, f_lower(x), SCALAR_INFO,
!is_open(LOWER, f_lower(x), f_info(x)));
PPL_USED(ru);
return I_ANY;
}
case LESS_OR_EQUAL:
{
if (le(UPPER, upper(), info(), LOWER, f_lower(x), f_info(x)))
return combine(V_EQ, V_EQ);
info().clear_boundary_properties(UPPER);
Result ru = Boundary_NS::assign(UPPER, upper(), info(),
LOWER, f_lower(x), SCALAR_INFO);
PPL_USED(ru);
return I_ANY;
}
case GREATER_THAN:
{
if (gt(LOWER, lower(), info(), UPPER, f_upper(x), f_info(x)))
return combine(V_EQ, V_EQ);
info().clear_boundary_properties(LOWER);
Result rl = Boundary_NS::assign(LOWER, lower(), info(),
UPPER, f_upper(x), SCALAR_INFO,
!is_open(UPPER, f_upper(x), f_info(x)));
PPL_USED(rl);
return I_ANY;
}
case GREATER_OR_EQUAL:
{
if (ge(LOWER, lower(), info(), UPPER, f_upper(x), f_info(x)))
return combine(V_EQ, V_EQ);
info().clear_boundary_properties(LOWER);
Result rl = Boundary_NS::assign(LOWER, lower(), info(),
UPPER, f_upper(x), SCALAR_INFO);
PPL_USED(rl);
return I_ANY;
}
case EQUAL:
if (!f_is_singleton(x))
return assign(EMPTY);
return intersect_assign(x);
case NOT_EQUAL:
{
if (check_empty_arg(*this))
return I_EMPTY;
if (eq(LOWER, lower(), info(), LOWER, f_lower(x), f_info(x)))
remove_inf();
if (eq(UPPER, upper(), info(), UPPER, f_upper(x), f_info(x)))
remove_sup();
return I_ANY;
}
default:
PPL_UNREACHABLE;
return I_EMPTY;
}
}
template <typename To_Boundary, typename To_Info>
template <typename From>
inline typename Enable_If<Is_Singleton<From>::value
|| Is_Interval<From>::value, I_Result>::type
Interval<To_Boundary, To_Info>::neg_assign(const From& x) {
PPL_ASSERT(f_OK(x));
if (check_empty_arg(x))
return assign(EMPTY);
PPL_DIRTY_TEMP(To_Info, to_info);
to_info.clear();
Result rl;
Result ru;
PPL_DIRTY_TEMP(To_Boundary, to_lower);
rl = Boundary_NS::neg_assign(LOWER, to_lower, to_info, UPPER, f_upper(x), f_info(x));
ru = Boundary_NS::neg_assign(UPPER, upper(), to_info, LOWER, f_lower(x), f_info(x));
assign_or_swap(lower(), to_lower);
assign_or_swap(info(), to_info);
PPL_ASSERT(OK());
return combine(rl, ru);
}
template <typename To_Boundary, typename To_Info>
template <typename From1, typename From2>
inline typename Enable_If<((Is_Singleton<From1>::value
|| Is_Interval<From1>::value)
&& (Is_Singleton<From2>::value
|| Is_Interval<From2>::value)), I_Result>::type
Interval<To_Boundary, To_Info>::add_assign(const From1& x, const From2& y) {
PPL_ASSERT(f_OK(x));
PPL_ASSERT(f_OK(y));
if (check_empty_arg(x) || check_empty_arg(y))
return assign(EMPTY);
int inf_sign = Parma_Polyhedra_Library::infinity_sign(x);
if (inf_sign != 0) {
if (Parma_Polyhedra_Library::infinity_sign(y) == -inf_sign)
return assign(EMPTY);
}
else
inf_sign = Parma_Polyhedra_Library::infinity_sign(y);
if (inf_sign < 0)
return assign(MINUS_INFINITY);
else if (inf_sign > 0)
return assign(PLUS_INFINITY);
PPL_DIRTY_TEMP(To_Info, to_info);
to_info.clear();
Result rl = Boundary_NS::add_assign(LOWER, lower(), to_info,
LOWER, f_lower(x), f_info(x),
LOWER, f_lower(y), f_info(y));
Result ru = Boundary_NS::add_assign(UPPER, upper(), to_info,
UPPER, f_upper(x), f_info(x),
UPPER, f_upper(y), f_info(y));
assign_or_swap(info(), to_info);
PPL_ASSERT(OK());
return combine(rl, ru);
}
template <typename To_Boundary, typename To_Info>
template <typename From1, typename From2>
inline typename Enable_If<((Is_Singleton<From1>::value
|| Is_Interval<From1>::value)
&& (Is_Singleton<From2>::value
|| Is_Interval<From2>::value)), I_Result>::type
Interval<To_Boundary, To_Info>::sub_assign(const From1& x, const From2& y) {
PPL_ASSERT(f_OK(x));
PPL_ASSERT(f_OK(y));
if (check_empty_arg(x) || check_empty_arg(y))
return assign(EMPTY);
int inf_sign = Parma_Polyhedra_Library::infinity_sign(x);
if (inf_sign != 0) {
if (Parma_Polyhedra_Library::infinity_sign(y) == inf_sign)
return assign(EMPTY);
}
else
inf_sign = -Parma_Polyhedra_Library::infinity_sign(y);
if (inf_sign < 0)
return assign(MINUS_INFINITY);
else if (inf_sign > 0)
return assign(PLUS_INFINITY);
PPL_DIRTY_TEMP(To_Info, to_info);
to_info.clear();
Result rl;
Result ru;
PPL_DIRTY_TEMP(To_Boundary, to_lower);
rl = Boundary_NS::sub_assign(LOWER, to_lower, to_info,
LOWER, f_lower(x), f_info(x),
UPPER, f_upper(y), f_info(y));
ru = Boundary_NS::sub_assign(UPPER, upper(), to_info,
UPPER, f_upper(x), f_info(x),
LOWER, f_lower(y), f_info(y));
assign_or_swap(lower(), to_lower);
assign_or_swap(info(), to_info);
PPL_ASSERT(OK());
return combine(rl, ru);
}
/**
+---------+-----------+-----------+-----------------+
| * | yl > 0 | yu < 0 | yl < 0, yu > 0 |
+---------+-----------+-----------+-----------------+
| xl > 0 |xl*yl,xu*yu|xu*yl,xl*yu| xu*yl,xu*yu |
+---------+-----------+-----------+-----------------+
| xu < 0 |xl*yu,xu*yl|xu*yu,xl*yl| xl*yu,xl*yl |
+---------+-----------+-----------+-----------------+
|xl<0 xu>0|xl*yu,xu*yu|xu*yl,xl*yl|min(xl*yu,xu*yl),|
| | | |max(xl*yl,xu*yu) |
+---------+-----------+-----------+-----------------+
**/
template <typename To_Boundary, typename To_Info>
template <typename From1, typename From2>
inline typename Enable_If<((Is_Singleton<From1>::value
|| Is_Interval<From1>::value)
&& (Is_Singleton<From2>::value
|| Is_Interval<From2>::value)), I_Result>::type
Interval<To_Boundary, To_Info>::mul_assign(const From1& x, const From2& y) {
PPL_ASSERT(f_OK(x));
PPL_ASSERT(f_OK(y));
if (check_empty_arg(x) || check_empty_arg(y))
return assign(EMPTY);
int xls = sgn_b(LOWER, f_lower(x), f_info(x));
int xus = (xls > 0) ? 1 : sgn_b(UPPER, f_upper(x), f_info(x));
int yls = sgn_b(LOWER, f_lower(y), f_info(y));
int yus = (yls > 0) ? 1 : sgn_b(UPPER, f_upper(y), f_info(y));
int inf_sign = Parma_Polyhedra_Library::infinity_sign(x);
int ls;
int us;
if (inf_sign != 0) {
ls = yls;
us = yus;
goto inf;
}
else {
inf_sign = Parma_Polyhedra_Library::infinity_sign(y);
if (inf_sign != 0) {
ls = xls;
us = xus;
inf:
if (ls == 0 && us == 0)
return assign(EMPTY);
if (ls == -us)
return set_infinities();
if (ls < 0 || us < 0)
inf_sign = -inf_sign;
if (inf_sign < 0)
return assign(MINUS_INFINITY);
else
return assign(PLUS_INFINITY);
}
}
PPL_DIRTY_TEMP(To_Info, to_info);
to_info.clear();
Result rl;
Result ru;
PPL_DIRTY_TEMP(To_Boundary, to_lower);
if (xls >= 0) {
if (yls >= 0) {
// 0 <= xl <= xu, 0 <= yl <= yu
rl = mul_assign_z(LOWER, to_lower, to_info,
LOWER, f_lower(x), f_info(x), xls,
LOWER, f_lower(y), f_info(y), yls);
ru = mul_assign_z(UPPER, upper(), to_info,
UPPER, f_upper(x), f_info(x), xus,
UPPER, f_upper(y), f_info(y), yus);
}
else if (yus <= 0) {
// 0 <= xl <= xu, yl <= yu <= 0
rl = mul_assign_z(LOWER, to_lower, to_info,
UPPER, f_upper(x), f_info(x), xus,
LOWER, f_lower(y), f_info(y), yls);
ru = mul_assign_z(UPPER, upper(), to_info,
LOWER, f_lower(x), f_info(x), xls,
UPPER, f_upper(y), f_info(y), yus);
}
else {
// 0 <= xl <= xu, yl < 0 < yu
rl = mul_assign_z(LOWER, to_lower, to_info,
UPPER, f_upper(x), f_info(x), xus,
LOWER, f_lower(y), f_info(y), yls);
ru = mul_assign_z(UPPER, upper(), to_info,
UPPER, f_upper(x), f_info(x), xus,
UPPER, f_upper(y), f_info(y), yus);
}
}
else if (xus <= 0) {
if (yls >= 0) {
// xl <= xu <= 0, 0 <= yl <= yu
rl = mul_assign_z(LOWER, to_lower, to_info,
LOWER, f_lower(x), f_info(x), xls,
UPPER, f_upper(y), f_info(y), yus);
ru = mul_assign_z(UPPER, upper(), to_info,
UPPER, f_upper(x), f_info(x), xus,
LOWER, f_lower(y), f_info(y), yls);
}
else if (yus <= 0) {
// xl <= xu <= 0, yl <= yu <= 0
rl = mul_assign_z(LOWER, to_lower, to_info,
UPPER, f_upper(x), f_info(x), xus,
UPPER, f_upper(y), f_info(y), yus);
ru = mul_assign_z(UPPER, upper(), to_info,
LOWER, f_lower(x), f_info(x), xls,
LOWER, f_lower(y), f_info(y), yls);
}
else {
// xl <= xu <= 0, yl < 0 < yu
rl = mul_assign_z(LOWER, to_lower, to_info,
LOWER, f_lower(x), f_info(x), xls,
UPPER, f_upper(y), f_info(y), yus);
ru = mul_assign_z(UPPER, upper(), to_info,
LOWER, f_lower(x), f_info(x), xls,
LOWER, f_lower(y), f_info(y), yls);
}
}
else if (yls >= 0) {
// xl < 0 < xu, 0 <= yl <= yu
rl = mul_assign_z(LOWER, to_lower, to_info,
LOWER, f_lower(x), f_info(x), xls,
UPPER, f_upper(y), f_info(y), yus);
ru = mul_assign_z(UPPER, upper(), to_info,
UPPER, f_upper(x), f_info(x), xus,
UPPER, f_upper(y), f_info(y), yus);
}
else if (yus <= 0) {
// xl < 0 < xu, yl <= yu <= 0
rl = mul_assign_z(LOWER, to_lower, to_info,
UPPER, f_upper(x), f_info(x), xus,
LOWER, f_lower(y), f_info(y), yls);
ru = mul_assign_z(UPPER, upper(), to_info,
LOWER, f_lower(x), f_info(x), xls,
LOWER, f_lower(y), f_info(y), yls);
}
else {
// xl < 0 < xu, yl < 0 < yu
PPL_DIRTY_TEMP(To_Boundary, tmp);
PPL_DIRTY_TEMP(To_Info, tmp_info);
tmp_info.clear();
Result tmp_r;
tmp_r = Boundary_NS::mul_assign(LOWER, tmp, tmp_info,
UPPER, f_upper(x), f_info(x),
LOWER, f_lower(y), f_info(y));
rl = Boundary_NS::mul_assign(LOWER, to_lower, to_info,
LOWER, f_lower(x), f_info(x),
UPPER, f_upper(y), f_info(y));
if (gt(LOWER, to_lower, to_info, LOWER, tmp, tmp_info)) {
to_lower = tmp;
rl = tmp_r;
}
tmp_info.clear();
tmp_r = Boundary_NS::mul_assign(UPPER, tmp, tmp_info,
UPPER, f_upper(x), f_info(x),
UPPER, f_upper(y), f_info(y));
ru = Boundary_NS::mul_assign(UPPER, upper(), to_info,
LOWER, f_lower(x), f_info(x),
LOWER, f_lower(y), f_info(y));
if (lt(UPPER, upper(), to_info, UPPER, tmp, tmp_info)) {
upper() = tmp;
ru = tmp_r;
}
}
assign_or_swap(lower(), to_lower);
assign_or_swap(info(), to_info);
PPL_ASSERT(OK());
return combine(rl, ru);
}
/**
+-----------+-----------+-----------+
| / | yu < 0 | yl > 0 |
+-----------+-----------+-----------+
| xu<=0 |xu/yl,xl/yu|xl/yl,xu/yu|
+-----------+-----------+-----------+
|xl<=0 xu>=0|xu/yu,xl/yu|xl/yl,xu/yl|
+-----------+-----------+-----------+
| xl>=0 |xu/yu,xl/yl|xl/yu,xu/yl|
+-----------+-----------+-----------+
**/
template <typename To_Boundary, typename To_Info>
template <typename From1, typename From2>
inline typename Enable_If<((Is_Singleton<From1>::value
|| Is_Interval<From1>::value)
&& (Is_Singleton<From2>::value
|| Is_Interval<From2>::value)), I_Result>::type
Interval<To_Boundary, To_Info>::div_assign(const From1& x, const From2& y) {
PPL_ASSERT(f_OK(x));
PPL_ASSERT(f_OK(y));
if (check_empty_arg(x) || check_empty_arg(y))
return assign(EMPTY);
int yls = sgn_b(LOWER, f_lower(y), f_info(y));
int yus = (yls > 0) ? 1 : sgn_b(UPPER, f_upper(y), f_info(y));
if (yls == 0 && yus == 0)
return assign(EMPTY);
int inf_sign = Parma_Polyhedra_Library::infinity_sign(x);
if (inf_sign != 0) {
if (Parma_Polyhedra_Library::infinity_sign(y) != 0)
return assign(EMPTY);
if (yls == -yus)
return set_infinities();
if (yls < 0 || yus < 0)
inf_sign = -inf_sign;
if (inf_sign < 0)
return assign(MINUS_INFINITY);
else
return assign(PLUS_INFINITY);
}
int xls = sgn_b(LOWER, f_lower(x), f_info(x));
int xus = (xls > 0) ? 1 : sgn_b(UPPER, f_upper(x), f_info(x));
PPL_DIRTY_TEMP(To_Info, to_info);
to_info.clear();
Result rl;
Result ru;
PPL_DIRTY_TEMP(To_Boundary, to_lower);
if (yls >= 0) {
if (xls >= 0) {
rl = div_assign_z(LOWER, to_lower, to_info,
LOWER, f_lower(x), f_info(x), xls,
UPPER, f_upper(y), f_info(y), yus);
ru = div_assign_z(UPPER, upper(), to_info,
UPPER, f_upper(x), f_info(x), xus,
LOWER, f_lower(y), f_info(y), yls);
}
else if (xus <= 0) {
rl = div_assign_z(LOWER, to_lower, to_info,
LOWER, f_lower(x), f_info(x), xls,
LOWER, f_lower(y), f_info(y), yls);
ru = div_assign_z(UPPER, upper(), to_info,
UPPER, f_upper(x), f_info(x), xus,
UPPER, f_upper(y), f_info(y), yus);
}
else {
rl = div_assign_z(LOWER, to_lower, to_info,
LOWER, f_lower(x), f_info(x), xls,
LOWER, f_lower(y), f_info(y), yls);
ru = div_assign_z(UPPER, upper(), to_info,
UPPER, f_upper(x), f_info(x), xus,
LOWER, f_lower(y), f_info(y), yls);
}
}
else if (yus <= 0) {
if (xls >= 0) {
rl = div_assign_z(LOWER, to_lower, to_info,
UPPER, f_upper(x), f_info(x), xus,
UPPER, f_upper(y), f_info(y), yus);
ru = div_assign_z(UPPER, upper(), to_info,
LOWER, f_lower(x), f_info(x), xls,
LOWER, f_lower(y), f_info(y), yls);
}
else if (xus <= 0) {
rl = div_assign_z(LOWER, to_lower, to_info,
UPPER, f_upper(x), f_info(x), xus,
LOWER, f_lower(y), f_info(y), yls);
ru = div_assign_z(UPPER, upper(), to_info,
LOWER, f_lower(x), f_info(x), xls,
UPPER, f_upper(y), f_info(y), yus);
}
else {
rl = div_assign_z(LOWER, to_lower, to_info,
UPPER, f_upper(x), f_info(x), xus,
UPPER, f_upper(y), f_info(y), yus);
ru = div_assign_z(UPPER, upper(), to_info,
LOWER, f_lower(x), f_info(x), xls,
UPPER, f_upper(y), f_info(y), yus);
}
}
else {
return static_cast<I_Result>(assign(UNIVERSE) | I_SINGULARITIES);
}
assign_or_swap(lower(), to_lower);
assign_or_swap(info(), to_info);
PPL_ASSERT(OK());
return combine(rl, ru);
}
template <typename B, typename Info, typename T>
inline typename Enable_If<Is_Singleton<T>::value, Interval<B, Info> >::type
operator+(const Interval<B, Info>& x, const T& y) {
Interval<B, Info> z;
z.add_assign(x, y);
return z;
}
template <typename B, typename Info, typename T>
inline typename Enable_If<Is_Singleton<T>::value, Interval<B, Info> >::type
operator+(const T& x, const Interval<B, Info>& y) {
Interval<B, Info> z;
z.add_assign(x, y);
return z;
}
template <typename B, typename Info>
inline Interval<B, Info>
operator+(const Interval<B, Info>& x, const Interval<B, Info>& y) {
Interval<B, Info> z;
z.add_assign(x, y);
return z;
}
template <typename B, typename Info, typename T>
inline typename Enable_If<Is_Singleton<T>::value, Interval<B, Info> >::type
operator-(const Interval<B, Info>& x, const T& y) {
Interval<B, Info> z;
z.sub_assign(x, y);
return z;
}
template <typename B, typename Info, typename T>
inline typename Enable_If<Is_Singleton<T>::value, Interval<B, Info> >::type
operator-(const T& x, const Interval<B, Info>& y) {
Interval<B, Info> z;
z.sub_assign(x, y);
return z;
}
template <typename B, typename Info>
inline Interval<B, Info>
operator-(const Interval<B, Info>& x, const Interval<B, Info>& y) {
Interval<B, Info> z;
z.sub_assign(x, y);
return z;
}
template <typename B, typename Info, typename T>
inline typename Enable_If<Is_Singleton<T>::value, Interval<B, Info> >::type
operator*(const Interval<B, Info>& x, const T& y) {
Interval<B, Info> z;
z.mul_assign(x, y);
return z;
}
template <typename B, typename Info, typename T>
inline typename Enable_If<Is_Singleton<T>::value, Interval<B, Info> >::type
operator*(const T& x, const Interval<B, Info>& y) {
Interval<B, Info> z;
z.mul_assign(x, y);
return z;
}
template <typename B, typename Info>
inline Interval<B, Info>
operator*(const Interval<B, Info>& x, const Interval<B, Info>& y) {
Interval<B, Info> z;
z.mul_assign(x, y);
return z;
}
template <typename B, typename Info, typename T>
inline typename Enable_If<Is_Singleton<T>::value, Interval<B, Info> >::type
operator/(const Interval<B, Info>& x, const T& y) {
Interval<B, Info> z;
z.div_assign(x, y);
return z;
}
template <typename B, typename Info, typename T>
inline typename Enable_If<Is_Singleton<T>::value, Interval<B, Info> >::type
operator/(const T& x, const Interval<B, Info>& y) {
Interval<B, Info> z;
z.div_assign(x, y);
return z;
}
template <typename B, typename Info>
inline Interval<B, Info>
operator/(const Interval<B, Info>& x, const Interval<B, Info>& y) {
Interval<B, Info> z;
z.div_assign(x, y);
return z;
}
template <typename Boundary, typename Info>
inline std::ostream&
operator<<(std::ostream& os, const Interval<Boundary, Info>& x) {
if (check_empty_arg(x))
return os << "[]";
if (x.is_singleton()) {
output(os, x.lower(), Numeric_Format(), ROUND_NOT_NEEDED);
return os;
}
os << (x.lower_is_open() ? "(" : "[");
if (x.info().get_boundary_property(LOWER, SPECIAL))
os << "-inf";
else
output(os, x.lower(), Numeric_Format(), ROUND_NOT_NEEDED);
os << ", ";
if (x.info().get_boundary_property(UPPER, SPECIAL))
os << "+inf";
else
output(os, x.upper(), Numeric_Format(), ROUND_NOT_NEEDED);
os << (x.upper_is_open() ? ")" : "]");
return os;
}
template <typename Boundary, typename Info>
inline void
Interval<Boundary, Info>::ascii_dump(std::ostream& s) const {
using Parma_Polyhedra_Library::ascii_dump;
s << "info ";
info().ascii_dump(s);
s << " lower ";
ascii_dump(s, lower());
s << " upper ";
ascii_dump(s, upper());
s << '\n';
}
template <typename Boundary, typename Info>
inline bool
Interval<Boundary, Info>::ascii_load(std::istream& s) {
using Parma_Polyhedra_Library::ascii_load;
std::string str;
if (!(s >> str) || str != "info")
return false;
if (!info().ascii_load(s))
return false;
if (!(s >> str) || str != "lower")
return false;
if (!ascii_load(s, lower()))
return false;
if (!(s >> str) || str != "upper")
return false;
if (!ascii_load(s, upper()))
return false;
PPL_ASSERT(OK());
return true;
}
/*! \brief
Helper class to select the appropriate numerical type to perform
boundary computations so as to reduce the chances of overflow without
incurring too much overhead.
*/
template <typename Interval_Boundary_Type> struct Select_Temp_Boundary_Type;
template <typename Interval_Boundary_Type>
struct Select_Temp_Boundary_Type {
typedef Interval_Boundary_Type type;
};
#if PPL_SUPPORTED_DOUBLE
template <>
struct Select_Temp_Boundary_Type<float> {
typedef double type;
};
#endif
template <>
struct Select_Temp_Boundary_Type<char> {
typedef signed long long type;
};
template <>
struct Select_Temp_Boundary_Type<signed char> {
typedef signed long long type;
};
template <>
struct Select_Temp_Boundary_Type<unsigned char> {
typedef signed long long type;
};
template <>
struct Select_Temp_Boundary_Type<signed short> {
typedef signed long long type;
};
template <>
struct Select_Temp_Boundary_Type<unsigned short> {
typedef signed long long type;
};
template <>
struct Select_Temp_Boundary_Type<signed int> {
typedef signed long long type;
};
template <>
struct Select_Temp_Boundary_Type<unsigned int> {
typedef signed long long type;
};
template <>
struct Select_Temp_Boundary_Type<signed long> {
typedef signed long long type;
};
template <>
struct Select_Temp_Boundary_Type<unsigned long> {
typedef signed long long type;
};
template <>
struct Select_Temp_Boundary_Type<unsigned long long> {
typedef signed long long type;
};
/*! \relates Interval */
template <typename Boundary, typename Info>
inline void
swap(Interval<Boundary, Info>& x, Interval<Boundary, Info>& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Interval_templates.hh line 1. */
/* Interval class implementation: non-inline template functions.
*/
#include <algorithm>
namespace Parma_Polyhedra_Library {
template <typename Boundary, typename Info>
template <typename C>
typename Enable_If<Is_Same_Or_Derived<I_Constraint_Base, C>::value, I_Result>::type
Interval<Boundary, Info>::lower_extend(const C& c) {
PPL_ASSERT(OK());
bool open;
switch (c.rel()) {
case V_LGE:
return lower_extend();
case V_NAN:
return I_NOT_EMPTY | I_EXACT | I_UNCHANGED;
case V_GT:
open = true;
break;
case V_GE: // Fall through.
case V_EQ:
open = false;
break;
default:
PPL_UNREACHABLE;
return I_NOT_EMPTY | I_EXACT | I_UNCHANGED;
}
min_assign(LOWER, lower(), info(), LOWER, c.value(), f_info(c.value(), open));
PPL_ASSERT(OK());
return I_ANY;
}
template <typename Boundary, typename Info>
template <typename C>
typename Enable_If<Is_Same_Or_Derived<I_Constraint_Base, C>::value, I_Result>::type
Interval<Boundary, Info>::upper_extend(const C& c) {
PPL_ASSERT(OK());
bool open;
switch (c.rel()) {
case V_LGE:
return lower_extend();
case V_NAN:
return I_NOT_EMPTY | I_EXACT | I_UNCHANGED;
case V_LT:
open = true;
break;
case V_LE: // Fall through.
case V_EQ:
open = false;
break;
default:
PPL_UNREACHABLE;
return I_NOT_EMPTY | I_EXACT | I_UNCHANGED;
}
max_assign(UPPER, upper(), info(), UPPER, c.value(), f_info(c.value(), open));
PPL_ASSERT(OK());
return I_ANY;
}
template <typename Boundary, typename Info>
template <typename From, typename Iterator>
typename Enable_If<Is_Interval<From>::value, void>::type
Interval<Boundary, Info>::CC76_widening_assign(const From& y,
Iterator first,
Iterator last) {
// We assume that `y' is contained in or equal to `*this'.
PPL_ASSERT(contains(y));
Interval<Boundary, Info>& x = *this;
// Upper bound.
if (!x.upper_is_boundary_infinity()) {
Boundary& x_ub = x.upper();
const Boundary& y_ub = y.upper();
PPL_ASSERT(!y.upper_is_boundary_infinity() && y_ub <= x_ub);
if (y_ub < x_ub) {
Iterator k = std::lower_bound(first, last, x_ub);
if (k != last) {
if (x_ub < *k)
x_ub = *k;
}
else
x.upper_extend();
}
}
// Lower bound.
if (!x.lower_is_boundary_infinity()) {
Boundary& x_lb = x.lower();
const Boundary& y_lb = y.lower();
PPL_ASSERT(!y.lower_is_boundary_infinity() && y_lb >= x_lb);
if (y_lb > x_lb) {
Iterator k = std::lower_bound(first, last, x_lb);
if (k != last) {
if (x_lb < *k) {
if (k != first)
x_lb = *--k;
else
x.lower_extend();
}
}
else {
if (k != first)
x_lb = *--k;
else
x.lower_extend();
}
}
}
}
template <typename Boundary, typename Info>
Interval<Boundary, Info>::Interval(const char* s) {
// Get the lower bound.
Boundary lower_bound;
Result lower_r = assign_r(lower_bound, s, ROUND_DOWN);
if (lower_r == V_CVT_STR_UNK || lower_r == V_NAN) {
throw std::invalid_argument("PPL::Interval(const char* s)"
" with s invalid");
}
lower_r = result_relation_class(lower_r);
// Get the upper bound.
Boundary upper_bound;
Result upper_r = assign_r(upper_bound, s, ROUND_UP);
PPL_ASSERT(upper_r != V_CVT_STR_UNK && upper_r != V_NAN);
upper_r = result_relation_class(upper_r);
// Build the interval.
bool lower_open = false;
bool upper_open = false;
bool lower_boundary_infinity = false;
bool upper_boundary_infinity = false;
switch (lower_r) {
case V_EQ: // Fall through.
case V_GE:
break;
case V_GT:
lower_open = true;
break;
case V_GT_MINUS_INFINITY:
lower_open = true;
// Fall through.
case V_EQ_MINUS_INFINITY:
lower_boundary_infinity = true;
break;
case V_EQ_PLUS_INFINITY: // Fall through.
case V_LT_PLUS_INFINITY:
if (upper_r == V_EQ_PLUS_INFINITY || upper_r == V_LT_PLUS_INFINITY)
assign(UNIVERSE);
else
assign(EMPTY);
break;
default:
PPL_UNREACHABLE;
break;
}
switch (upper_r) {
case V_EQ: // Fall through.
case V_LE:
break;
case V_LT:
upper_open = true;
break;
case V_EQ_MINUS_INFINITY: // Fall through.
case V_GT_MINUS_INFINITY:
if (lower_r == V_EQ_MINUS_INFINITY || lower_r == V_GT_MINUS_INFINITY)
assign(UNIVERSE);
else
assign(EMPTY);
break;
case V_LT_PLUS_INFINITY:
upper_open = true;
// Fall through.
case V_EQ_PLUS_INFINITY:
upper_boundary_infinity = true;
break;
default:
PPL_UNREACHABLE;
break;
}
if (!lower_boundary_infinity
&& !upper_boundary_infinity
&& (lower_bound > upper_bound
|| (lower_open && lower_bound == upper_bound)))
assign(EMPTY);
else {
if (lower_boundary_infinity)
set_minus_infinity(LOWER, lower(), info(), lower_open);
else
Boundary_NS::assign(LOWER, lower(), info(),
LOWER, lower_bound, SCALAR_INFO, lower_open);
if (upper_boundary_infinity)
set_plus_infinity(UPPER, upper(), info(), upper_open);
else
Boundary_NS::assign(UPPER, upper(), info(),
UPPER, upper_bound, SCALAR_INFO, upper_open);
}
}
template <typename Boundary, typename Info>
inline std::istream&
operator>>(std::istream& is, Interval<Boundary, Info>& x) {
Boundary lower_bound;
Boundary upper_bound;
bool lower_boundary_infinity = false;
bool upper_boundary_infinity = false;
bool lower_open = false;
bool upper_open = false;
Result lower_r;
Result upper_r;
// Eat leading white space.
char c;
do {
if (!is.get(c))
goto fail;
} while (is_space(c));
// Get the opening parenthesis and handle the empty interval case.
if (c == '(')
lower_open = true;
else if (c == '[') {
if (!is.get(c))
goto fail;
if (c == ']') {
// Empty interval.
x.assign(EMPTY);
return is;
}
else
is.unget();
}
else
goto unexpected;
// Get the lower bound.
lower_r = input(lower_bound, is, ROUND_DOWN);
if (lower_r == V_CVT_STR_UNK || lower_r == V_NAN)
goto fail;
lower_r = result_relation_class(lower_r);
// Match the comma separating the lower and upper bounds.
do {
if (!is.get(c))
goto fail;
} while (is_space(c));
if (c != ',')
goto unexpected;
// Get the upper bound.
upper_r = input(upper_bound, is, ROUND_UP);
if (upper_r == V_CVT_STR_UNK || upper_r == V_NAN)
goto fail;
upper_r = result_relation_class(upper_r);
// Get the closing parenthesis.
do {
if (!is.get(c))
goto fail;
} while (is_space(c));
if (c == ')')
upper_open = true;
else if (c != ']') {
unexpected:
is.unget();
fail:
is.setstate(std::ios::failbit);
return is;
}
// Build interval.
switch (lower_r) {
case V_EQ: // Fall through.
case V_GE:
break;
case V_GT:
lower_open = true;
break;
case V_GT_MINUS_INFINITY:
lower_open = true;
// Fall through.
case V_EQ_MINUS_INFINITY:
lower_boundary_infinity = true;
break;
case V_EQ_PLUS_INFINITY: // Fall through.
case V_LT_PLUS_INFINITY:
if (upper_r == V_EQ_PLUS_INFINITY || upper_r == V_LT_PLUS_INFINITY)
x.assign(UNIVERSE);
else
x.assign(EMPTY);
return is;
default:
PPL_UNREACHABLE;
break;
}
switch (upper_r) {
case V_EQ: // Fall through.
case V_LE:
break;
case V_LT:
upper_open = true;
break;
case V_GT_MINUS_INFINITY:
upper_open = true;
// Fall through.
case V_EQ_MINUS_INFINITY:
if (lower_r == V_EQ_MINUS_INFINITY || lower_r == V_GT_MINUS_INFINITY)
x.assign(UNIVERSE);
else
x.assign(EMPTY);
return is;
case V_EQ_PLUS_INFINITY: // Fall through.
case V_LT_PLUS_INFINITY:
upper_boundary_infinity = true;
break;
default:
PPL_UNREACHABLE;
break;
}
if (!lower_boundary_infinity
&& !upper_boundary_infinity
&& (lower_bound > upper_bound
|| (lower_open && lower_bound == upper_bound)))
x.assign(EMPTY);
else {
if (lower_boundary_infinity)
set_minus_infinity(LOWER, x.lower(), x.info(), lower_open);
else
assign(LOWER, x.lower(), x.info(),
LOWER, lower_bound, SCALAR_INFO, lower_open);
if (upper_boundary_infinity)
set_plus_infinity(UPPER, x.upper(), x.info(), upper_open);
else
assign(UPPER, x.upper(), x.info(),
UPPER, upper_bound, SCALAR_INFO, upper_open);
}
return is;
}
template <typename Boundary, typename Info>
template <typename From>
typename Enable_If<Is_Interval<From>::value, bool>::type
Interval<Boundary, Info>::simplify_using_context_assign(const From& y) {
// FIXME: the following code wrongly assumes that intervals are closed
if (lt(UPPER, upper(), info(), LOWER, f_lower(y), f_info(y))) {
lower_extend();
return false;
}
if (gt(LOWER, lower(), info(), UPPER, f_upper(y), f_info(y))) {
upper_extend();
return false;
}
// Weakening the upper bound.
if (!upper_is_boundary_infinity() && !y.upper_is_boundary_infinity()
&& y.upper() <= upper())
upper_extend();
// Weakening the lower bound.
if (!lower_is_boundary_infinity() && !y.lower_is_boundary_infinity()
&& y.lower() >= lower())
lower_extend();
return true;
}
template <typename Boundary, typename Info>
template <typename From>
typename Enable_If<Is_Interval<From>::value, void>::type
Interval<Boundary, Info>::empty_intersection_assign(const From&) {
// FIXME: write me.
assign(EMPTY);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Interval_defs.hh line 762. */
/* Automatically generated from PPL source file ../src/Integer_Interval.hh line 28. */
#include <gmpxx.h>
namespace Parma_Polyhedra_Library {
struct Integer_Interval_Info_Policy {
const_bool_nodef(store_special, true);
const_bool_nodef(store_open, false);
const_bool_nodef(cache_empty, true);
const_bool_nodef(cache_singleton, true);
const_int_nodef(next_bit, 0);
const_bool_nodef(may_be_empty, true);
const_bool_nodef(may_contain_infinity, false);
const_bool_nodef(check_empty_result, false);
const_bool_nodef(check_inexact, false);
};
typedef Interval_Info_Bitset<unsigned int, Integer_Interval_Info_Policy> Integer_Interval_Info;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! An interval with integral, necessarily closed boundaries.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
typedef Interval<mpz_class, Integer_Interval_Info> Integer_Interval;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/initializer.hh line 1. */
/* Nifty counter object for the initialization of the library.
*/
/* Automatically generated from PPL source file ../src/Init_defs.hh line 1. */
/* Init class declaration.
*/
/* Automatically generated from PPL source file ../src/Init_defs.hh line 29. */
namespace Parma_Polyhedra_Library {
/*! \brief
Sets the FPU rounding mode so that the PPL abstractions based on
floating point numbers work correctly.
This is performed automatically at initialization-time. Calling
this function is needed only if restore_pre_PPL_rounding() has been
previously called.
*/
void set_rounding_for_PPL();
/*! \brief
Sets the FPU rounding mode as it was before initialization of the PPL.
This is important if the application uses floating-point computations
outside the PPL. It is crucial when the application uses functions
from a mathematical library that are not guaranteed to work correctly
under all rounding modes.
After calling this function it is absolutely necessary to call
set_rounding_for_PPL() before using any PPL abstractions based on
floating point numbers.
This is performed automatically at finalization-time.
*/
void restore_pre_PPL_rounding();
} // namespace Parma_Polyhedra_Library
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Class for initialization and finalization.
/*! \ingroup PPL_CXX_interface
<EM>Nifty Counter</EM> initialization class,
ensuring that the library is initialized only once
and before its first use.
A count of the number of translation units using the library
is maintained. A static object of Init type will be declared
by each translation unit using the library. As a result,
only one of them will initialize and properly finalize
the library.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
class Parma_Polyhedra_Library::Init {
public:
//! Initializes the PPL.
Init();
//! Finalizes the PPL.
~Init();
private:
/*! \brief
Default precision parameter used for irrational calculations.
The default is chosen to have a precision greater than most
precise IEC 559 floating point (112 bits of mantissa).
*/
static const unsigned DEFAULT_IRRATIONAL_PRECISION = 128U;
//! Count the number of objects created.
static unsigned int count;
static fpu_rounding_direction_type old_rounding_direction;
friend void set_rounding_for_PPL();
friend void restore_pre_PPL_rounding();
};
/* Automatically generated from PPL source file ../src/Init_inlines.hh line 1. */
/* Init class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Init_inlines.hh line 29. */
namespace Parma_Polyhedra_Library {
inline void
set_rounding_for_PPL() {
#if PPL_CAN_CONTROL_FPU
fpu_set_rounding_direction(round_fpu_dir(ROUND_DIRECT));
#endif
}
inline void
restore_pre_PPL_rounding() {
#if PPL_CAN_CONTROL_FPU
fpu_set_rounding_direction(Init::old_rounding_direction);
#endif
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Init_defs.hh line 98. */
/* Automatically generated from PPL source file ../src/initializer.hh line 28. */
#ifndef PPL_NO_AUTOMATIC_INITIALIZATION
static Parma_Polyhedra_Library::Init Parma_Polyhedra_Library_initializer;
#else
static Parma_Polyhedra_Library::Init* Parma_Polyhedra_Library_initializer_p;
#endif
namespace Parma_Polyhedra_Library {
//! Initializes the library.
inline void
initialize() {
#ifdef PPL_NO_AUTOMATIC_INITIALIZATION
if (Parma_Polyhedra_Library_initializer_p == 0)
Parma_Polyhedra_Library_initializer_p = new Init();
#endif
}
//! Finalizes the library.
inline void
finalize() {
#ifdef PPL_NO_AUTOMATIC_INITIALIZATION
PPL_ASSERT(Parma_Polyhedra_Library_initializer_p != 0);
delete Parma_Polyhedra_Library_initializer_p;
Parma_Polyhedra_Library_initializer_p = 0;
#endif
}
} //namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Linear_Expression_Impl_defs.hh line 1. */
/* Linear_Expression_Impl class declaration.
*/
/* Automatically generated from PPL source file ../src/Linear_Expression_Impl_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename Row>
class Linear_Expression_Impl;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Coefficient_defs.hh line 1. */
/* Coefficient class declaration.
*/
/* Automatically generated from PPL source file ../src/Coefficient_types.hh line 1. */
/* Automatically generated from PPL source file ../src/Coefficient_types.hh line 17. */
#ifdef PPL_GMP_INTEGERS
/* Automatically generated from PPL source file ../src/GMP_Integer_types.hh line 1. */
/* Automatically generated from PPL source file ../src/GMP_Integer_types.hh line 17. */
#include <gmpxx.h>
/* Automatically generated from PPL source file ../src/GMP_Integer_types.hh line 19. */
namespace Parma_Polyhedra_Library {
/*! \class Parma_Polyhedra_Library::GMP_Integer
\brief
Unbounded integers as provided by the GMP library.
\ingroup PPL_CXX_interface
GMP_Integer is an alias for the <CODE>mpz_class</CODE> type
defined in the C++ interface of the GMP library.
For more information, see <CODE>http://gmplib.org/</CODE>
*/
typedef mpz_class GMP_Integer;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Coefficient traits specialization for unbounded integers.
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <>
struct Coefficient_traits_template<GMP_Integer> {
//! The type used for references to const unbounded integers.
typedef const GMP_Integer& const_reference;
};
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Coefficient_types.hh line 20. */
#endif
#if defined(PPL_CHECKED_INTEGERS) || defined(PPL_NATIVE_INTEGERS)
namespace Parma_Polyhedra_Library {
//! A policy for checked bounded integer coefficients.
/*! \ingroup PPL_CXX_interface */
struct Bounded_Integer_Coefficient_Policy {
//! Check for overflowed result.
const_bool_nodef(check_overflow, true);
//! Do not check for attempts to add infinities with different sign.
const_bool_nodef(check_inf_add_inf, false);
//! Do not check for attempts to subtract infinities with same sign.
const_bool_nodef(check_inf_sub_inf, false);
//! Do not check for attempts to multiply infinities by zero.
const_bool_nodef(check_inf_mul_zero, false);
//! Do not check for attempts to divide by zero.
const_bool_nodef(check_div_zero, false);
//! Do not check for attempts to divide infinities.
const_bool_nodef(check_inf_div_inf, false);
//! Do not check for attempts to compute remainder of infinities.
const_bool_nodef(check_inf_mod, false);
//! Do not checks for attempts to take the square root of a negative number.
const_bool_nodef(check_sqrt_neg, false);
//! Do not handle not-a-number special value.
const_bool_nodef(has_nan, false);
//! Do not handle infinity special values.
const_bool_nodef(has_infinity, false);
/*! \brief
The checked number can always be safely converted to the
underlying type \p T and vice-versa.
*/
const_bool_nodef(convertible, true);
//! Do not honor requests to check for FPU inexact results.
const_bool_nodef(fpu_check_inexact, false);
//! Do not make extra checks to detect FPU NaN results.
const_bool_nodef(fpu_check_nan_result, true);
/*! \brief
For constructors, by default use the same rounding used by
underlying type.
*/
static const Rounding_Dir ROUND_DEFAULT_CONSTRUCTOR = ROUND_NATIVE;
/*! \brief
For overloaded operators (operator+(), operator-(), ...), by
default use the same rounding used by the underlying type.
*/
static const Rounding_Dir ROUND_DEFAULT_OPERATOR = ROUND_NATIVE;
/*! \brief
For input functions, by default use the same rounding used by
the underlying type.
*/
static const Rounding_Dir ROUND_DEFAULT_INPUT = ROUND_NATIVE;
/*! \brief
For output functions, by default use the same rounding used by
the underlying type.
*/
static const Rounding_Dir ROUND_DEFAULT_OUTPUT = ROUND_NATIVE;
/*! \brief
For all other functions, by default use the same rounding used by
the underlying type.
*/
static const Rounding_Dir ROUND_DEFAULT_FUNCTION = ROUND_NATIVE;
/*! \brief
Handles \p r: called by all constructors, operators and functions that
do not return a Result value.
*/
static void handle_result(Result r);
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Coefficient traits specialization for 8 bits checked integers.
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Policy>
struct Coefficient_traits_template<Checked_Number<int8_t, Policy> > {
//! The type used for references to const 8 bit checked integers.
typedef Checked_Number<int8_t, Policy> const_reference;
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Coefficient traits specialization for 16 bits checked integers.
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Policy>
struct Coefficient_traits_template<Checked_Number<int16_t, Policy> > {
//! The type used for references to const 16 bit checked integers.
typedef Checked_Number<int16_t, Policy> const_reference;
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Coefficient traits specialization for 32 bits checked integers.
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Policy>
struct Coefficient_traits_template<Checked_Number<int32_t, Policy> > {
//! The type used for references to const 32 bit checked integers.
typedef Checked_Number<int32_t, Policy> const_reference;
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Coefficient traits specialization for 64 bits checked integers.
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Policy>
struct Coefficient_traits_template<Checked_Number<int64_t, Policy> > {
//! The type used for references to const 64 bit checked integers.
typedef const Checked_Number<int64_t, Policy>& const_reference;
};
} // namespace Parma_Polyhedra_Library
#endif // defined(PPL_CHECKED_INTEGERS) || defined(PPL_NATIVE_INTEGERS)
namespace Parma_Polyhedra_Library {
//! An alias for easily naming the type of PPL coefficients.
/*! \ingroup PPL_CXX_interface
Objects of type Coefficient are used to implement the integral valued
coefficients occurring in linear expressions, constraints, generators,
intervals, bounding boxes and so on. Depending on the chosen
configuration options (see file <CODE>README.configure</CODE>),
a Coefficient may actually be:
- The GMP_Integer type, which in turn is an alias for the
<CODE>mpz_class</CODE> type implemented by the C++ interface
of the GMP library (this is the default configuration).
- An instance of the Checked_Number class template: with the policy
Bounded_Integer_Coefficient_Policy, this implements overflow
detection on top of a native integral type (available template
instances include checked integers having 8, 16, 32 or 64 bits);
with the Checked_Number_Transparent_Policy, this is a wrapper
for native integral types with no overflow detection
(available template instances are as above).
*/
typedef PPL_COEFFICIENT_TYPE Coefficient;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! An alias for easily naming the coefficient traits.
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
typedef Coefficient_traits_template<Coefficient> Coefficient_traits;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Coefficient_defs.hh line 28. */
#include <iosfwd>
#if defined(PPL_CHECKED_INTEGERS) || defined(PPL_NATIVE_INTEGERS)
/* Automatically generated from PPL source file ../src/Coefficient_defs.hh line 33. */
#endif
#ifdef PPL_GMP_INTEGERS
/* Automatically generated from PPL source file ../src/GMP_Integer_defs.hh line 1. */
/* GMP_Integer class declaration.
*/
/* Automatically generated from PPL source file ../src/GMP_Integer_defs.hh line 29. */
#include <cstddef>
namespace Parma_Polyhedra_Library {
//! \name Accessor Functions
//@{
//! Returns a const reference to the underlying integer value.
/*! \relates GMP_Integer */
const mpz_class& raw_value(const GMP_Integer& x);
//! Returns a reference to the underlying integer value.
/*! \relates GMP_Integer */
mpz_class& raw_value(GMP_Integer& x);
//@} // Accessor Functions
//! \name Arithmetic Operators
//@{
//! Assigns to \p x its negation.
/*! \relates GMP_Integer */
void neg_assign(GMP_Integer& x);
//! Assigns to \p x the negation of \p y.
/*! \relates GMP_Integer */
void neg_assign(GMP_Integer& x, const GMP_Integer& y);
//! Assigns to \p x its absolute value.
/*! \relates GMP_Integer */
void abs_assign(GMP_Integer& x);
//! Assigns to \p x the absolute value of \p y.
/*! \relates GMP_Integer */
void abs_assign(GMP_Integer& x, const GMP_Integer& y);
//! Assigns to \p x the remainder of the division of \p y by \p z.
/*! \relates GMP_Integer */
void rem_assign(GMP_Integer& x,
const GMP_Integer& y, const GMP_Integer& z);
//! Assigns to \p x the greatest common divisor of \p y and \p z.
/*! \relates GMP_Integer */
void gcd_assign(GMP_Integer& x,
const GMP_Integer& y, const GMP_Integer& z);
//! Extended GCD.
/*! \relates GMP_Integer
Assigns to \p x the greatest common divisor of \p y and \p z, and to
\p s and \p t the values such that \p y * \p s + \p z * \p t = \p x.
*/
void gcdext_assign(GMP_Integer& x, GMP_Integer& s, GMP_Integer& t,
const GMP_Integer& y, const GMP_Integer& z);
//! Assigns to \p x the least common multiple of \p y and \p z.
/*! \relates GMP_Integer */
void lcm_assign(GMP_Integer& x,
const GMP_Integer& y, const GMP_Integer& z);
//! Assigns to \p x the value <CODE>x + y * z</CODE>.
/*! \relates GMP_Integer */
void add_mul_assign(GMP_Integer& x,
const GMP_Integer& y, const GMP_Integer& z);
//! Assigns to \p x the value <CODE>x - y * z</CODE>.
/*! \relates GMP_Integer */
void sub_mul_assign(GMP_Integer& x,
const GMP_Integer& y, const GMP_Integer& z);
//! Assigns to \p x the value \f$ y \cdot 2^\mathtt{exp} \f$.
/*! \relates GMP_Integer */
void mul_2exp_assign(GMP_Integer& x, const GMP_Integer& y, unsigned int exp);
//! Assigns to \p x the value \f$ y / 2^\mathtt{exp} \f$.
/*! \relates GMP_Integer */
void div_2exp_assign(GMP_Integer& x, const GMP_Integer& y, unsigned int exp);
/*! \brief
If \p z divides \p y, assigns to \p x the quotient of the integer
division of \p y and \p z.
\relates GMP_Integer
The behavior is undefined if \p z does not divide \p y.
*/
void exact_div_assign(GMP_Integer& x,
const GMP_Integer& y, const GMP_Integer& z);
//! Assigns to \p x the integer square root of \p y.
/*! \relates GMP_Integer */
void sqrt_assign(GMP_Integer& x, const GMP_Integer& y);
/*! \brief
Returns a negative, zero or positive value depending on whether
\p x is lower than, equal to or greater than \p y, respectively.
\relates GMP_Integer
*/
int cmp(const GMP_Integer& x, const GMP_Integer& y);
//@} // Arithmetic Operators
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/GMP_Integer_inlines.hh line 1. */
/* GMP_Integer class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/GMP_Integer_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
inline void
neg_assign(GMP_Integer& x) {
mpz_neg(x.get_mpz_t(), x.get_mpz_t());
}
inline void
neg_assign(GMP_Integer& x, const GMP_Integer& y) {
mpz_neg(x.get_mpz_t(), y.get_mpz_t());
}
inline void
abs_assign(GMP_Integer& x) {
mpz_abs(x.get_mpz_t(), x.get_mpz_t());
}
inline void
abs_assign(GMP_Integer& x, const GMP_Integer& y) {
mpz_abs(x.get_mpz_t(), y.get_mpz_t());
}
inline void
gcd_assign(GMP_Integer& x, const GMP_Integer& y, const GMP_Integer& z) {
mpz_gcd(x.get_mpz_t(), y.get_mpz_t(), z.get_mpz_t());
}
inline void
rem_assign(GMP_Integer& x, const GMP_Integer& y, const GMP_Integer& z) {
mpz_tdiv_r(x.get_mpz_t(), y.get_mpz_t(), z.get_mpz_t());
}
inline void
gcdext_assign(GMP_Integer& x, GMP_Integer& s, GMP_Integer& t,
const GMP_Integer& y, const GMP_Integer& z) {
mpz_gcdext(x.get_mpz_t(),
s.get_mpz_t(), t.get_mpz_t(),
y.get_mpz_t(), z.get_mpz_t());
}
inline void
lcm_assign(GMP_Integer& x, const GMP_Integer& y, const GMP_Integer& z) {
mpz_lcm(x.get_mpz_t(), y.get_mpz_t(), z.get_mpz_t());
}
inline void
add_mul_assign(GMP_Integer& x, const GMP_Integer& y, const GMP_Integer& z) {
mpz_addmul(x.get_mpz_t(), y.get_mpz_t(), z.get_mpz_t());
}
inline void
sub_mul_assign(GMP_Integer& x, const GMP_Integer& y, const GMP_Integer& z) {
mpz_submul(x.get_mpz_t(), y.get_mpz_t(), z.get_mpz_t());
}
inline void
mul_2exp_assign(GMP_Integer& x, const GMP_Integer& y, unsigned int exp) {
mpz_mul_2exp(x.get_mpz_t(), y.get_mpz_t(), exp);
}
inline void
div_2exp_assign(GMP_Integer& x, const GMP_Integer& y, unsigned int exp) {
mpz_tdiv_q_2exp(x.get_mpz_t(), y.get_mpz_t(), exp);
}
inline void
exact_div_assign(GMP_Integer& x, const GMP_Integer& y, const GMP_Integer& z) {
PPL_ASSERT(y % z == 0);
mpz_divexact(x.get_mpz_t(), y.get_mpz_t(), z.get_mpz_t());
}
inline void
sqrt_assign(GMP_Integer& x, const GMP_Integer& y) {
mpz_sqrt(x.get_mpz_t(), y.get_mpz_t());
}
inline int
cmp(const GMP_Integer& x, const GMP_Integer& y) {
return mpz_cmp(x.get_mpz_t(), y.get_mpz_t());
}
inline const mpz_class&
raw_value(const GMP_Integer& x) {
return x;
}
inline mpz_class&
raw_value(GMP_Integer& x) {
return x;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/GMP_Integer_defs.hh line 133. */
/* Automatically generated from PPL source file ../src/Coefficient_defs.hh line 37. */
#endif
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Initializes the Coefficient constants.
#endif
void Coefficient_constants_initialize();
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Finalizes the Coefficient constants.
#endif
void Coefficient_constants_finalize();
//! Returns a const reference to a Coefficient with value 0.
Coefficient_traits::const_reference Coefficient_zero();
//! Returns a const reference to a Coefficient with value 1.
Coefficient_traits::const_reference Coefficient_one();
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Coefficient_inlines.hh line 1. */
/* Coefficient class implementation: inline functions.
*/
namespace Parma_Polyhedra_Library {
#ifdef PPL_CHECKED_INTEGERS
inline void
Bounded_Integer_Coefficient_Policy::handle_result(Result r) {
// Note that the input functions can return VC_NAN.
if (result_overflow(r) || result_class(r) == VC_NAN)
throw_result_exception(r);
}
#endif // PPL_CHECKED_INTEGERS
#if defined(PPL_CHECKED_INTEGERS) || defined(PPL_NATIVE_INTEGERS)
inline Coefficient_traits::const_reference
Coefficient_zero() {
// FIXME: is there a way to avoid this static variable?
static Coefficient zero(0);
return zero;
}
inline Coefficient_traits::const_reference
Coefficient_one() {
// FIXME: is there a way to avoid this static variable?
static Coefficient one(1);
return one;
}
#endif // defined(PPL_CHECKED_INTEGERS) || defined(PPL_NATIVE_INTEGERS)
#ifdef PPL_GMP_INTEGERS
inline Coefficient_traits::const_reference
Coefficient_zero() {
extern const Coefficient* Coefficient_zero_p;
return *Coefficient_zero_p;
}
inline Coefficient_traits::const_reference
Coefficient_one() {
extern const Coefficient* Coefficient_one_p;
PPL_ASSERT(*Coefficient_one_p != 0);
return *Coefficient_one_p;
}
#endif // PPL_GMP_INTEGERS
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Coefficient_defs.hh line 60. */
/* Automatically generated from PPL source file ../src/Variables_Set_defs.hh line 1. */
/* Variables_Set class declaration.
*/
/* Automatically generated from PPL source file ../src/Variables_Set_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Variables_Set;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Variables_Set_defs.hh line 30. */
#include <iosfwd>
#include <set>
namespace Parma_Polyhedra_Library {
namespace IO_Operators {
//! Output operator.
/*! \relates Parma_Polyhedra_Library::Variables_Set */
std::ostream&
operator<<(std::ostream& s, const Variables_Set& vs);
} // namespace IO_Operators
} // namespace Parma_Polyhedra_Library
//! An std::set of variables' indexes.
class Parma_Polyhedra_Library::Variables_Set
: public std::set<dimension_type> {
private:
typedef std::set<dimension_type> Base;
public:
//! Builds the empty set of variable indexes.
Variables_Set();
//! Builds the singleton set of indexes containing <CODE>v.id()</CODE>;
explicit Variables_Set(const Variable v);
/*! \brief
Builds the set of variables's indexes in the range from
<CODE>v.id()</CODE> to <CODE>w.id()</CODE>.
If <CODE>v.id() <= w.id()</CODE>, this constructor builds the
set of variables' indexes
<CODE>v.id()</CODE>, <CODE>v.id()+1</CODE>, ..., <CODE>w.id()</CODE>.
The empty set is built otherwise.
*/
Variables_Set(const Variable v, const Variable w);
//! Returns the maximum space dimension a Variables_Set can handle.
static dimension_type max_space_dimension();
/*! \brief
Returns the dimension of the smallest vector space enclosing all
the variables whose indexes are in the set.
*/
dimension_type space_dimension() const;
//! Inserts the index of variable \p v into the set.
void insert(Variable v);
// The `insert' method above overloads (instead of hiding) the
// other `insert' method of std::set.
using Base::insert;
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
//! Checks if all the invariants are satisfied.
bool OK() const;
PPL_OUTPUT_DECLARATIONS
};
/* Automatically generated from PPL source file ../src/Variables_Set_inlines.hh line 1. */
/* Variables_Set class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Variables_Set_inlines.hh line 28. */
#include <stdexcept>
namespace Parma_Polyhedra_Library {
inline
Variables_Set::Variables_Set()
: Base() {
}
inline void
Variables_Set::insert(const Variable v) {
insert(v.id());
}
inline
Variables_Set::Variables_Set(const Variable v)
: Base() {
insert(v);
}
inline dimension_type
Variables_Set::max_space_dimension() {
return Variable::max_space_dimension();
}
inline dimension_type
Variables_Set::space_dimension() const {
reverse_iterator i = rbegin();
return (i == rend()) ? 0 : (*i + 1);
}
inline memory_size_type
Variables_Set::external_memory_in_bytes() const {
// We assume sets are implemented by means of red-black trees that
// require to store the color (we assume an enum) and three pointers
// to the parent, left and right child, respectively.
enum color { red, black };
return size() * (sizeof(color) + 3*sizeof(void*) + sizeof(dimension_type));
}
inline memory_size_type
Variables_Set::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Variables_Set_defs.hh line 106. */
/* Automatically generated from PPL source file ../src/Dense_Row_defs.hh line 1. */
/* Dense_Row class declaration.
*/
/* Automatically generated from PPL source file ../src/Dense_Row_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Dense_Row;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Dense_Row_defs.hh line 28. */
/* Automatically generated from PPL source file ../src/Dense_Row_defs.hh line 30. */
/* Automatically generated from PPL source file ../src/Sparse_Row_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Sparse_Row;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Dense_Row_defs.hh line 33. */
#include <memory>
#include <vector>
#include <limits>
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! A finite sequence of coefficients.
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
class Parma_Polyhedra_Library::Dense_Row {
public:
class iterator;
class const_iterator;
//! Constructs an empty row.
Dense_Row();
explicit Dense_Row(const Sparse_Row& row);
//! Tight constructor: resizing may require reallocation.
/*!
Constructs a row with size and capacity \p sz.
*/
Dense_Row(dimension_type sz);
//! Sizing constructor with capacity.
/*!
\param sz
The size of the row that will be constructed;
\param capacity
The capacity of the row that will be constructed;
The row that is constructed has storage for \p capacity elements,
\p sz of which are default-constructed now.
*/
Dense_Row(dimension_type sz, dimension_type capacity);
//! Ordinary copy constructor.
Dense_Row(const Dense_Row& y);
//! Copy constructor with specified capacity.
/*!
It is assumed that \p capacity is greater than or equal to
the size of \p y.
*/
Dense_Row(const Dense_Row& y, dimension_type capacity);
//! Copy constructor with specified size and capacity.
/*!
It is assumed that \p sz is less than or equal to \p capacity.
*/
Dense_Row(const Dense_Row& y, dimension_type sz, dimension_type capacity);
//! Copy constructor with specified size and capacity from a Sparse_Row.
/*!
It is assumed that \p sz is less than or equal to \p capacity.
*/
Dense_Row(const Sparse_Row& y, dimension_type sz, dimension_type capacity);
//! Destructor.
~Dense_Row();
//! Assignment operator.
Dense_Row& operator=(const Dense_Row& y);
//! Assignment operator.
Dense_Row& operator=(const Sparse_Row& y);
//! Swaps \p *this with \p y.
void m_swap(Dense_Row& y);
//! Resizes the row to \p sz.
void resize(dimension_type sz);
//! Resizes the row to \p sz, with capacity \p capacity.
void resize(dimension_type sz, dimension_type capacity);
//! Resets all the elements of this row.
void clear();
//! Adds \p n zeroes before index \p i.
/*!
\param n
The number of zeroes that will be added to the row.
\param i
The index of the element before which the zeroes will be added.
Existing elements with index greater than or equal to \p i are shifted
to the right by \p n positions. The size is increased by \p n.
Existing iterators are invalidated.
*/
void add_zeroes_and_shift(dimension_type n, dimension_type i);
//! Expands the row to size \p new_size.
/*!
Adds new positions to the implementation of the row
obtaining a new row with size \p new_size.
It is assumed that \p new_size is between the current size
and capacity of the row.
*/
void expand_within_capacity(dimension_type new_size);
//! Shrinks the row by erasing elements at the end.
/*!
Destroys elements of the row implementation
from position \p new_size to the end.
It is assumed that \p new_size is not greater than the current size.
*/
void shrink(dimension_type new_size);
//! Returns the size() of the largest possible Dense_Row.
static dimension_type max_size();
//! Gives the number of coefficients currently in use.
dimension_type size() const;
//! \name Subscript operators
//@{
//! Returns a reference to the element of the row indexed by \p k.
Coefficient& operator[](dimension_type k);
//! Returns a constant reference to the element of the row indexed by \p k.
Coefficient_traits::const_reference operator[](dimension_type k) const;
//@} // Subscript operators
//! Normalizes the modulo of coefficients so that they are mutually prime.
/*!
Computes the Greatest Common Divisor (GCD) among the elements of
the row and normalizes them by the GCD itself.
*/
void normalize();
//! Swaps the i-th element with the j-th element.
//! Provided for compatibility with Sparse_Row
void swap_coefficients(dimension_type i, dimension_type j);
//! Swaps the element pointed to by i with the element pointed to by j.
//! Provided for compatibility with Sparse_Row
void swap_coefficients(iterator i, iterator j);
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
//! Resets the i-th element to 0.
//! Provided for compatibility with Sparse_Row
void reset(dimension_type i);
//! Resets the elements [first,last) to 0.
//! Provided for compatibility with Sparse_Row
void reset(dimension_type first, dimension_type last);
//! Resets the element pointed to by itr to 0.
//! Provided for compatibility with Sparse_Row.
iterator reset(iterator itr);
//! Gets the i-th element.
//! Provided for compatibility with Sparse_Row.
Coefficient_traits::const_reference get(dimension_type i) const;
//! Provided for compatibility with Sparse_Row.
iterator find(dimension_type i);
//! Provided for compatibility with Sparse_Row.
const_iterator find(dimension_type i) const;
//! Provided for compatibility with Sparse_Row.
iterator find(iterator itr, dimension_type i);
//! Provided for compatibility with Sparse_Row.
const_iterator find(const_iterator itr, dimension_type i) const;
//! Provided for compatibility with Sparse_Row.
iterator lower_bound(dimension_type i);
//! Provided for compatibility with Sparse_Row.
const_iterator lower_bound(dimension_type i) const;
//! Provided for compatibility with Sparse_Row.
iterator lower_bound(iterator itr, dimension_type i);
//! Provided for compatibility with Sparse_Row.
const_iterator lower_bound(const_iterator itr, dimension_type i) const;
//! Provided for compatibility with Sparse_Row.
iterator insert(dimension_type i, Coefficient_traits::const_reference x);
//! Provided for compatibility with Sparse_Row.
iterator insert(dimension_type i);
//! Provided for compatibility with Sparse_Row.
iterator insert(iterator itr, dimension_type i,
Coefficient_traits::const_reference x);
//! Provided for compatibility with Sparse_Row.
iterator insert(iterator itr, dimension_type i);
//! Calls g(x[i],y[i]), for each i.
/*!
\param y
The row that will be combined with *this.
\param f
A functor that should take a Coefficient&.
f(c1) must be equivalent to g(c1, 0).
\param g
A functor that should take a Coefficient& and a
Coefficient_traits::const_reference.
g(c1, c2) must do nothing when c1 is zero.
This method takes \f$O(n)\f$ time.
\note
The functors will only be called when necessary, assuming the requested
properties hold.
\see combine_needs_second
\see combine
*/
template <typename Func1, typename Func2>
void combine_needs_first(const Dense_Row& y,
const Func1& f, const Func2& g);
//! Calls g(x[i],y[i]), for each i.
/*!
\param y
The row that will be combined with *this.
\param g
A functor that should take a Coefficient& and a
Coefficient_traits::const_reference.
g(c1, 0) must do nothing, for every c1.
\param h
A functor that should take a Coefficient& and a
Coefficient_traits::const_reference.
h(c1, c2) must be equivalent to g(c1, c2) when c1 is zero.
This method takes \f$O(n)\f$ time.
\note
The functors will only be called when necessary, assuming the requested
properties hold.
\see combine_needs_first
\see combine
*/
template <typename Func1, typename Func2>
void combine_needs_second(const Dense_Row& y,
const Func1& g, const Func2& h);
//! Calls g(x[i],y[i]), for each i.
/*!
\param y
The row that will be combined with *this.
\param f
A functor that should take a Coefficient&.
f(c1) must be equivalent to g(c1, 0).
\param g
A functor that should take a Coefficient& and a
Coefficient_traits::const_reference.
g(c1, c2) must do nothing when both c1 and c2 are zero.
\param h
A functor that should take a Coefficient& and a
Coefficient_traits::const_reference.
h(c1, c2) must be equivalent to g(c1, c2) when c1 is zero.
This method takes \f$O(n)\f$ time.
\note
The functors will only be called when necessary, assuming the requested
properties hold.
\see combine_needs_first
\see combine_needs_second
*/
template <typename Func1, typename Func2, typename Func3>
void combine(const Dense_Row& y,
const Func1& f, const Func2& g, const Func3& h);
//! Executes <CODE>(*this)[i] = (*this)[i]*coeff1 + y[i]*coeff2</CODE>, for
//! each i.
/*!
\param y
The row that will be combined with *this.
\param coeff1
The coefficient used for elements of *this.
It must not be 0.
\param coeff2
The coefficient used for elements of y.
It must not be 0.
This method takes \f$O(n)\f$ time.
\see combine_needs_first
\see combine_needs_second
\see combine
*/
void linear_combine(const Dense_Row& y,
Coefficient_traits::const_reference coeff1,
Coefficient_traits::const_reference coeff2);
//! Equivalent to <CODE>(*this)[i] = (*this)[i] * c1 + y[i] * c2</CODE>,
//! for each i in [start, end).
/*!
This method detects when coeff1==1 and/or coeff2==1 or coeff2==-1 in
order to save some work.
coeff1 and coeff2 must not be 0.
*/
void linear_combine(const Dense_Row& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end);
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
/*! \brief
Returns a lower bound to the total size in bytes of the memory
occupied by \p *this.
*/
memory_size_type total_memory_in_bytes() const;
/*! \brief
Returns a lower bound to the size in bytes of the memory
managed by \p *this.
*/
memory_size_type external_memory_in_bytes() const;
/*! \brief
Returns the total size in bytes of the memory occupied by \p *this,
provided the capacity of \p *this is given by \p capacity.
*/
memory_size_type total_memory_in_bytes(dimension_type capacity) const;
/*! \brief
Returns the size in bytes of the memory managed by \p *this,
provided the capacity of \p *this is given by \p capacity.
*/
memory_size_type external_memory_in_bytes(dimension_type capacity) const;
//! Checks if all the invariants are satisfied.
bool OK() const;
/*! \brief
Checks if all the invariants are satisfied and that the actual
size matches the value provided as argument.
*/
bool OK(dimension_type row_size) const;
private:
void init(const Sparse_Row& row);
void destroy();
struct Impl {
Impl();
~Impl();
//! The number of coefficients in the row.
dimension_type size;
//! The capacity of the row.
dimension_type capacity;
//! The allocator used to allocate/deallocate vec.
std::allocator<Coefficient> coeff_allocator;
//! The vector of coefficients.
//! An empty vector may be stored as NULL instead of using a valid pointer.
Coefficient* vec;
};
Impl impl;
//! Returns the capacity of the row.
dimension_type capacity() const;
};
class Parma_Polyhedra_Library::Dense_Row::iterator {
public:
typedef std::bidirectional_iterator_tag iterator_category;
typedef Coefficient value_type;
typedef ptrdiff_t difference_type;
typedef value_type* pointer;
typedef value_type& reference;
iterator();
iterator(Dense_Row& row1, dimension_type i1);
Coefficient& operator*();
Coefficient_traits::const_reference operator*() const;
//! Returns the index of the element pointed to by \c *this.
/*!
If itr is a valid iterator for row, <CODE>row[itr.index()]</CODE> is
equivalent to *itr.
\returns the index of the element pointed to by \c *this.
*/
dimension_type index() const;
iterator& operator++();
iterator operator++(int);
iterator& operator--();
iterator operator--(int);
bool operator==(const iterator& x) const;
bool operator!=(const iterator& x) const;
operator const_iterator() const;
bool OK() const;
private:
Dense_Row* row;
dimension_type i;
};
class Parma_Polyhedra_Library::Dense_Row::const_iterator {
public:
typedef const Coefficient value_type;
typedef ptrdiff_t difference_type;
typedef value_type* pointer;
typedef Coefficient_traits::const_reference reference;
const_iterator();
const_iterator(const Dense_Row& row1, dimension_type i1);
Coefficient_traits::const_reference operator*() const;
//! Returns the index of the element pointed to by \c *this.
/*!
If itr is a valid iterator for row, <CODE>row[itr.index()]</CODE> is
equivalent to *itr.
\returns the index of the element pointed to by \c *this.
*/
dimension_type index() const;
const_iterator& operator++();
const_iterator operator++(int);
const_iterator& operator--();
const_iterator operator--(int);
bool operator==(const const_iterator& x) const;
bool operator!=(const const_iterator& x) const;
bool OK() const;
private:
const Dense_Row* row;
dimension_type i;
};
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Swaps \p x with \p y.
/*! \relates Dense_Row */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
void swap(Dense_Row& x, Dense_Row& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Swaps objects referred by \p x and \p y.
/*! \relates Dense_Row */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
void iter_swap(std::vector<Dense_Row>::iterator x,
std::vector<Dense_Row>::iterator y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x and \p y are equal.
/*! \relates Dense_Row */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool operator==(const Dense_Row& x, const Dense_Row& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x and \p y are different.
/*! \relates Dense_Row */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool operator!=(const Dense_Row& x, const Dense_Row& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates Dense_Row */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
void linear_combine(Dense_Row& x, const Dense_Row& y,
Coefficient_traits::const_reference coeff1,
Coefficient_traits::const_reference coeff2);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Equivalent to <CODE>x[i] = x[i] * c1 + y[i] * c2</CODE>,
//! for each i in [start, end).
/*! \relates Dense_Row */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
void linear_combine(Dense_Row& x, const Dense_Row& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end);
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Dense_Row_inlines.hh line 1. */
/* Dense_Row class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Dense_Row_inlines.hh line 28. */
#include <cstddef>
#include <limits>
#include <algorithm>
namespace Parma_Polyhedra_Library {
inline
Dense_Row::Impl::Impl()
: size(0), capacity(0), coeff_allocator(), vec(0) {
}
inline
Dense_Row::Impl::~Impl() {
while (size != 0) {
--size;
vec[size].~Coefficient();
}
coeff_allocator.deallocate(vec, capacity);
}
inline dimension_type
Dense_Row::max_size() {
return std::numeric_limits<size_t>::max() / sizeof(Coefficient);
}
inline dimension_type
Dense_Row::size() const {
return impl.size;
}
inline dimension_type
Dense_Row::capacity() const {
return impl.capacity;
}
inline
Dense_Row::Dense_Row()
: impl() {
PPL_ASSERT(OK());
}
inline
Dense_Row::Dense_Row(const dimension_type sz,
const dimension_type capacity)
: impl() {
resize(sz, capacity);
PPL_ASSERT(size() == sz);
PPL_ASSERT(impl.capacity == capacity);
PPL_ASSERT(OK());
}
inline
Dense_Row::Dense_Row(const dimension_type sz)
: impl() {
resize(sz);
PPL_ASSERT(size() == sz);
PPL_ASSERT(OK());
}
inline
Dense_Row::Dense_Row(const Dense_Row& y)
: impl() {
impl.coeff_allocator = y.impl.coeff_allocator;
if (y.impl.vec != 0) {
impl.capacity = y.capacity();
impl.vec = impl.coeff_allocator.allocate(impl.capacity);
while (impl.size != y.size()) {
new (&impl.vec[impl.size]) Coefficient(y[impl.size]);
++impl.size;
}
}
PPL_ASSERT(size() == y.size());
PPL_ASSERT(capacity() == y.capacity());
PPL_ASSERT(OK());
}
inline
Dense_Row::Dense_Row(const Dense_Row& y,
const dimension_type capacity)
: impl() {
PPL_ASSERT(y.size() <= capacity);
PPL_ASSERT(capacity <= max_size());
impl.capacity = capacity;
impl.coeff_allocator = y.impl.coeff_allocator;
impl.vec = impl.coeff_allocator.allocate(impl.capacity);
if (y.impl.vec != 0) {
while (impl.size != y.size()) {
new (&impl.vec[impl.size]) Coefficient(y[impl.size]);
++impl.size;
}
}
PPL_ASSERT(size() == y.size());
PPL_ASSERT(impl.capacity == capacity);
PPL_ASSERT(OK());
}
inline
Dense_Row::Dense_Row(const Dense_Row& y,
const dimension_type sz,
const dimension_type capacity)
: impl() {
PPL_ASSERT(sz <= capacity);
PPL_ASSERT(capacity <= max_size());
PPL_ASSERT(capacity != 0);
impl.capacity = capacity;
impl.coeff_allocator = y.impl.coeff_allocator;
impl.vec = impl.coeff_allocator.allocate(impl.capacity);
const dimension_type n = std::min(sz, y.size());
while (impl.size != n) {
new (&impl.vec[impl.size]) Coefficient(y[impl.size]);
++impl.size;
}
while (impl.size != sz) {
new (&impl.vec[impl.size]) Coefficient();
++impl.size;
}
PPL_ASSERT(size() == sz);
PPL_ASSERT(impl.capacity == capacity);
PPL_ASSERT(OK());
}
inline
Dense_Row::~Dense_Row() {
// The `impl' field will be destroyed automatically.
}
inline void
Dense_Row::destroy() {
resize(0);
impl.coeff_allocator.deallocate(impl.vec, impl.capacity);
}
inline void
Dense_Row::m_swap(Dense_Row& y) {
using std::swap;
swap(impl.size, y.impl.size);
swap(impl.capacity, y.impl.capacity);
swap(impl.coeff_allocator, y.impl.coeff_allocator);
swap(impl.vec, y.impl.vec);
PPL_ASSERT(OK());
PPL_ASSERT(y.OK());
}
inline Dense_Row&
Dense_Row::operator=(const Dense_Row& y) {
if (this != &y && size() == y.size()) {
// Avoid reallocation.
for (dimension_type i = size(); i-- > 0; )
(*this)[i] = y[i];
return *this;
}
Dense_Row x(y);
swap(*this, x);
return *this;
}
inline Coefficient&
Dense_Row::operator[](const dimension_type k) {
PPL_ASSERT(impl.vec != 0);
PPL_ASSERT(k < size());
return impl.vec[k];
}
inline Coefficient_traits::const_reference
Dense_Row::operator[](const dimension_type k) const {
PPL_ASSERT(impl.vec != 0);
PPL_ASSERT(k < size());
return impl.vec[k];
}
inline void
Dense_Row::swap_coefficients(dimension_type i, dimension_type j) {
std::swap((*this)[i], (*this)[j]);
}
inline void
Dense_Row::swap_coefficients(iterator i, iterator j) {
std::swap(*i, *j);
}
inline void
Dense_Row::reset(dimension_type i) {
(*this)[i] = 0;
}
inline Dense_Row::iterator
Dense_Row::reset(iterator itr) {
*itr = 0;
++itr;
return itr;
}
inline Dense_Row::iterator
Dense_Row::begin() {
return iterator(*this, 0);
}
inline Dense_Row::const_iterator
Dense_Row::begin() const {
return const_iterator(*this, 0);
}
inline Dense_Row::iterator
Dense_Row::end() {
return iterator(*this, size());
}
inline Dense_Row::const_iterator
Dense_Row::end() const {
return const_iterator(*this, size());
}
inline Coefficient_traits::const_reference
Dense_Row::get(dimension_type i) const {
return (*this)[i];
}
inline Dense_Row::iterator
Dense_Row::find(dimension_type i) {
return iterator(*this, i);
}
inline Dense_Row::const_iterator
Dense_Row::find(dimension_type i) const {
return const_iterator(*this, i);
}
inline Dense_Row::iterator
Dense_Row::find(iterator itr, dimension_type i) {
(void)itr;
return iterator(*this, i);
}
inline Dense_Row::const_iterator
Dense_Row::find(const_iterator itr, dimension_type i) const {
(void)itr;
return const_iterator(*this, i);
}
inline Dense_Row::iterator
Dense_Row::lower_bound(dimension_type i) {
return find(i);
}
inline Dense_Row::const_iterator
Dense_Row::lower_bound(dimension_type i) const {
return find(i);
}
inline Dense_Row::iterator
Dense_Row::lower_bound(iterator itr, dimension_type i) {
return find(itr, i);
}
inline Dense_Row::const_iterator
Dense_Row::lower_bound(const_iterator itr, dimension_type i) const {
return find(itr, i);
}
inline Dense_Row::iterator
Dense_Row::insert(dimension_type i,
Coefficient_traits::const_reference x) {
(*this)[i] = x;
return find(i);
}
inline Dense_Row::iterator
Dense_Row::insert(dimension_type i) {
return find(i);
}
inline Dense_Row::iterator
Dense_Row::insert(iterator itr, dimension_type i,
Coefficient_traits::const_reference x) {
(void)itr;
(*this)[i] = x;
return find(i);
}
inline Dense_Row::iterator
Dense_Row::insert(iterator itr, dimension_type i) {
(void)itr;
return find(i);
}
inline memory_size_type
Dense_Row::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
inline memory_size_type
Dense_Row::total_memory_in_bytes(dimension_type capacity) const {
return sizeof(*this) + external_memory_in_bytes(capacity);
}
/*! \relates Dense_Row */
inline bool
operator!=(const Dense_Row& x, const Dense_Row& y) {
return !(x == y);
}
inline
Dense_Row::iterator::iterator()
: row(NULL), i(0) {
PPL_ASSERT(OK());
}
inline
Dense_Row::iterator::iterator(Dense_Row& row1,dimension_type i1)
: row(&row1), i(i1) {
PPL_ASSERT(OK());
}
inline Coefficient&
Dense_Row::iterator::operator*() {
PPL_ASSERT(i < row->size());
return (*row)[i];
}
inline Coefficient_traits::const_reference
Dense_Row::iterator::operator*() const {
PPL_ASSERT(i < row->size());
return (*row)[i];
}
inline dimension_type
Dense_Row::iterator::index() const {
return i;
}
inline Dense_Row::iterator&
Dense_Row::iterator::operator++() {
PPL_ASSERT(i < row->size());
++i;
PPL_ASSERT(OK());
return *this;
}
inline Dense_Row::iterator
Dense_Row::iterator::operator++(int) {
iterator tmp(*this);
++(*this);
return tmp;
}
inline Dense_Row::iterator&
Dense_Row::iterator::operator--() {
PPL_ASSERT(i > 0);
--i;
PPL_ASSERT(OK());
return *this;
}
inline Dense_Row::iterator
Dense_Row::iterator::operator--(int) {
iterator tmp(*this);
--(*this);
return tmp;
}
inline bool
Dense_Row::iterator::operator==(const iterator& x) const {
return (row == x.row) && (i == x.i);
}
inline bool
Dense_Row::iterator::operator!=(const iterator& x) const {
return !(*this == x);
}
inline
Dense_Row::iterator::operator const_iterator() const {
return const_iterator(*row, i);
}
inline bool
Dense_Row::iterator::OK() const {
if (row == NULL)
return true;
// i can be equal to row.size() for past-the-end iterators
return (i <= row->size());
}
inline
Dense_Row::const_iterator::const_iterator()
: row(NULL), i(0) {
PPL_ASSERT(OK());
}
inline
Dense_Row::const_iterator::const_iterator(const Dense_Row& row1,
dimension_type i1)
: row(&row1), i(i1) {
PPL_ASSERT(OK());
}
inline Coefficient_traits::const_reference
Dense_Row::const_iterator::operator*() const {
PPL_ASSERT(i < row->size());
return (*row)[i];
}
inline dimension_type
Dense_Row::const_iterator::index() const {
return i;
}
inline Dense_Row::const_iterator&
Dense_Row::const_iterator::operator++() {
PPL_ASSERT(i < row->size());
++i;
PPL_ASSERT(OK());
return *this;
}
inline Dense_Row::const_iterator
Dense_Row::const_iterator::operator++(int) {
const_iterator tmp(*this);
++(*this);
return tmp;
}
inline Dense_Row::const_iterator&
Dense_Row::const_iterator::operator--() {
PPL_ASSERT(i > 0);
--i;
PPL_ASSERT(OK());
return *this;
}
inline Dense_Row::const_iterator
Dense_Row::const_iterator::operator--(int) {
const_iterator tmp(*this);
--(*this);
return tmp;
}
inline bool
Dense_Row::const_iterator::operator==(const const_iterator& x) const {
return (row == x.row) && (i == x.i);
}
inline bool
Dense_Row::const_iterator::operator!=(const const_iterator& x) const {
return !(*this == x);
}
inline bool
Dense_Row::const_iterator::OK() const {
if (row == NULL)
return true;
// i can be equal to row.size() for past-the-end iterators
return (i <= row->size());
}
inline void
linear_combine(Dense_Row& x, const Dense_Row& y,
Coefficient_traits::const_reference coeff1,
Coefficient_traits::const_reference coeff2) {
x.linear_combine(y, coeff1, coeff2);
}
inline void
linear_combine(Dense_Row& x, const Dense_Row& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end) {
x.linear_combine(y, c1, c2, start, end);
}
/*! \relates Dense_Row */
inline void
swap(Dense_Row& x, Dense_Row& y) {
x.m_swap(y);
}
/*! \relates Dense_Row */
inline void
iter_swap(std::vector<Dense_Row>::iterator x,
std::vector<Dense_Row>::iterator y) {
swap(*x, *y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Dense_Row_templates.hh line 1. */
/* Dense_Row class implementation: non-inline template functions.
*/
namespace Parma_Polyhedra_Library {
template <typename Func1, typename Func2>
void
Dense_Row::combine_needs_first(const Dense_Row& y, const Func1& /* f */,
const Func2& g) {
for (dimension_type i = size(); i-- > 0; )
g((*this)[i], y[i]);
}
template <typename Func1, typename Func2>
void
Dense_Row::combine_needs_second(const Dense_Row& y, const Func1& g,
const Func2& /* h */) {
for (dimension_type i = size(); i-- > 0; )
g((*this)[i], y[i]);
}
template <typename Func1, typename Func2, typename Func3>
void
Dense_Row::combine(const Dense_Row& y, const Func1& /* f */, const Func2& g,
const Func3& /* h */) {
for (dimension_type i = size(); i-- > 0; )
g((*this)[i], y[i]);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Dense_Row_defs.hh line 560. */
/* Automatically generated from PPL source file ../src/Sparse_Row_defs.hh line 1. */
/* Sparse_Row class declaration.
*/
/* Automatically generated from PPL source file ../src/Sparse_Row_defs.hh line 28. */
/* Automatically generated from PPL source file ../src/CO_Tree_defs.hh line 1. */
/* CO_Tree class declaration.
*/
/* Automatically generated from PPL source file ../src/CO_Tree_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class CO_Tree;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/CO_Tree_defs.hh line 28. */
/* Automatically generated from PPL source file ../src/CO_Tree_defs.hh line 30. */
#include <memory>
#ifndef PPL_CO_TREE_EXTRA_DEBUG
#ifdef PPL_ABI_BREAKING_EXTRA_DEBUG
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*!
\brief
Enables extra debugging information for class CO_Tree.
\ingroup PPL_CXX_interface
When <CODE>PPL_CO_TREE_EXTRA_DEBUG</CODE> evaluates to <CODE>true</CODE>,
each CO_Tree iterator and const_iterator carries a pointer to the associated
tree; this enables extra consistency checks to be performed.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
#define PPL_CO_TREE_EXTRA_DEBUG 1
#else // !defined(PPL_ABI_BREAKING_EXTRA_DEBUG)
#define PPL_CO_TREE_EXTRA_DEBUG 0
#endif // !defined(PPL_ABI_BREAKING_EXTRA_DEBUG)
#endif // !defined(PPL_CO_TREE_EXTRA_DEBUG)
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! A cache-oblivious binary search tree of pairs.
/*! \ingroup PPL_CXX_interface
This class implements a binary search tree with keys of dimension_type type
and data of Coefficient type, laid out in a dynamically-sized array.
The array-based layout saves calls to new/delete (to insert \f$n\f$ elements
only \f$O(\log n)\f$ allocations are performed) and, more importantly, is
much more cache-friendly than a standard (pointer-based) tree, because the
elements are stored sequentially in memory (leaving some holes to allow
fast insertion of new elements).
The downside of this representation is that all iterators are invalidated
when an element is added or removed, because the array could have been
enlarged or shrunk. This is partially addressed by providing references to
internal end iterators that are updated when needed.
B-trees are cache-friendly too, but the cache size is fixed (usually at
compile-time). This raises two problems: firstly the cache size must be
known in advance and those data structures do not perform well with other
cache sizes and, secondly, even if the cache size is known, the
optimizations target only one level of cache. This kind of data structures
are called cache aware. This implementation, instead, is cache oblivious:
it performs well with every cache size, and thus exploits all of the
available caches.
Assuming \p n is the number of elements in the tree and \p B is the number
of (dimension_type, Coefficient) pairs that fit in a cache line, the
time and cache misses complexities are the following:
- Insertions/Queries/Deletions: \f$O(\log^2 n)\f$ time,
\f$O(\log \frac{n}{B}))\f$ cache misses.
- Tree traversal from begin() to end(), using an %iterator: \f$O(n)\f$ time,
\f$O(\frac{n}{B})\f$ cache misses.
- Queries with a hint: \f$O(\log k)\f$ time and \f$O(\log \frac{k}{B})\f$
cache misses, where k is the distance between the given %iterator and the
searched element (or the position where it would have been).
The binary search tree is embedded in a (slightly bigger) complete tree,
that is enlarged and shrunk when needed. The complete tree is laid out
in an in-order DFS layout in two arrays: one for the keys and one for the
associated data.
The indexes and values are stored in different arrays to reduce
cache-misses during key queries.
The tree can store up to \f$(-(dimension_type)1)/100\f$ elements.
This limit allows faster density computations, but can be removed if needed.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
class CO_Tree {
public:
class const_iterator;
class iterator;
private:
//! This is used for node heights and depths in the tree.
typedef unsigned height_t;
PPL_COMPILE_TIME_CHECK(C_Integer<height_t>::max
>= sizeof_to_bits(sizeof(dimension_type)),
"height_t is too small to store depths.");
class tree_iterator;
// This must be declared here, because it is a friend of const_iterator.
//! Returns the index of the current element in the DFS layout of the
//! complete tree.
/*!
\return the index of the current element in the DFS layout of the complete
tree.
\param itr the iterator that points to the desired element.
*/
dimension_type dfs_index(const_iterator itr) const;
// This must be declared here, because it is a friend of iterator.
//! Returns the index of the current element in the DFS layout of the
//! complete tree.
/*!
\return the index of the current element in the DFS layout of the complete
tree.
\param itr the iterator that points to the desired element.
*/
dimension_type dfs_index(iterator itr) const;
public:
//! The type of the data elements associated with keys.
/*!
If this is changed, occurrences of Coefficient_zero() in the CO_Tree
implementation have to be replaced with constants of the correct type.
*/
typedef Coefficient data_type;
typedef Coefficient_traits::const_reference data_type_const_reference;
//! A const %iterator on the tree elements, ordered by key.
/*!
Iterator increment and decrement operations are \f$O(1)\f$ time.
These iterators are invalidated by operations that add or remove elements
from the tree.
*/
class const_iterator {
private:
public:
typedef std::bidirectional_iterator_tag iterator_category;
typedef const data_type value_type;
typedef ptrdiff_t difference_type;
typedef value_type* pointer;
typedef data_type_const_reference reference;
//! Constructs an invalid const_iterator.
/*!
This constructor takes \f$O(1)\f$ time.
*/
explicit const_iterator();
//! Constructs an %iterator pointing to the first element of the tree.
/*!
\param tree
The tree that the new %iterator will point to.
This constructor takes \f$O(1)\f$ time.
*/
explicit const_iterator(const CO_Tree& tree);
//! Constructs a const_iterator pointing to the i-th node of the tree.
/*!
\param tree
The tree that the new %iterator will point to.
\param i
The index of the element in \p tree to which the %iterator will point
to.
The i-th node must be a node with a value or end().
This constructor takes \f$O(1)\f$ time.
*/
const_iterator(const CO_Tree& tree, dimension_type i);
//! The copy constructor.
/*!
\param itr
The %iterator that will be copied.
This constructor takes \f$O(1)\f$ time.
*/
const_iterator(const const_iterator& itr);
//! Converts an iterator into a const_iterator.
/*!
\param itr
The iterator that will be converted into a const_iterator.
This constructor takes \f$O(1)\f$ time.
*/
const_iterator(const iterator& itr);
//! Swaps itr with *this.
/*!
\param itr
The %iterator that will be swapped with *this.
This method takes \f$O(1)\f$ time.
*/
void m_swap(const_iterator& itr);
//! Assigns \p itr to *this .
/*!
\param itr
The %iterator that will be assigned into *this.
This method takes \f$O(1)\f$ time.
*/
const_iterator& operator=(const const_iterator& itr);
//! Assigns \p itr to *this .
/*!
\param itr
The %iterator that will be assigned into *this.
This method takes \f$O(1)\f$ time.
*/
const_iterator& operator=(const iterator& itr);
//! Navigates to the next element.
/*!
This method takes \f$O(1)\f$ time.
*/
const_iterator& operator++();
//! Navigates to the previous element.
/*!
This method takes \f$O(1)\f$ time.
*/
const_iterator& operator--();
//! Navigates to the next element.
/*!
This method takes \f$O(1)\f$ time.
*/
const_iterator operator++(int);
//! Navigates to the previous element.
/*!
This method takes \f$O(1)\f$ time.
*/
const_iterator operator--(int);
//! Returns the current element.
data_type_const_reference operator*() const;
//! Returns the index of the element pointed to by \c *this.
/*!
\returns the index of the element pointed to by \c *this.
*/
dimension_type index() const;
//! Compares \p *this with x .
/*!
\param x
The %iterator that will be compared with *this.
*/
bool operator==(const const_iterator& x) const;
//! Compares \p *this with x .
/*!
\param x
The %iterator that will be compared with *this.
*/
bool operator!=(const const_iterator& x) const;
private:
//! Checks the internal invariants, in debug mode only.
bool OK() const;
//! A pointer to the corresponding element of the tree's indexes[] array.
const dimension_type* current_index;
//! A pointer to the corresponding element of the tree's data[] array.
const data_type* current_data;
#if PPL_CO_TREE_EXTRA_DEBUG
//! A pointer to the corresponding tree, used for debug purposes only.
const CO_Tree* tree;
#endif
friend dimension_type CO_Tree::dfs_index(const_iterator itr) const;
};
//! An %iterator on the tree elements, ordered by key.
/*!
Iterator increment and decrement operations are \f$O(1)\f$ time.
These iterators are invalidated by operations that add or remove elements
from the tree.
*/
class iterator {
public:
typedef std::bidirectional_iterator_tag iterator_category;
typedef data_type value_type;
typedef ptrdiff_t difference_type;
typedef value_type* pointer;
typedef value_type& reference;
//! Constructs an invalid iterator.
/*!
This constructor takes \f$O(1)\f$ time.
*/
iterator();
//! Constructs an %iterator pointing to first element of the tree.
/*!
\param tree
The tree to which the new %iterator will point to.
This constructor takes \f$O(1)\f$ time.
*/
explicit iterator(CO_Tree& tree);
//! Constructs an %iterator pointing to the i-th node.
/*!
\param tree
The tree to which the new %iterator will point to.
\param i
The index of the element in \p tree to which the new %iterator will
point to.
The i-th node must be a node with a value or end().
This constructor takes \f$O(1)\f$ time.
*/
iterator(CO_Tree& tree, dimension_type i);
//! The constructor from a tree_iterator.
/*!
\param itr
The tree_iterator that will be converted into an iterator.
This is meant for use by CO_Tree only.
This is not private to avoid the friend declaration.
This constructor takes \f$O(1)\f$ time.
*/
explicit iterator(const tree_iterator& itr);
//! The copy constructor.
/*!
\param itr
The %iterator that will be copied.
This constructor takes \f$O(1)\f$ time.
*/
iterator(const iterator& itr);
//! Swaps itr with *this.
/*!
\param itr
The %iterator that will be swapped with *this.
This method takes \f$O(1)\f$ time.
*/
void m_swap(iterator& itr);
//! Assigns \p itr to *this .
/*!
\param itr
The %iterator that will be assigned into *this.
This method takes \f$O(1)\f$ time.
*/
iterator& operator=(const iterator& itr);
//! Assigns \p itr to *this .
/*!
\param itr
The %iterator that will be assigned into *this.
This method takes \f$O(1)\f$ time.
*/
iterator& operator=(const tree_iterator& itr);
//! Navigates to the next element in the tree.
/*!
This method takes \f$O(1)\f$ time.
*/
iterator& operator++();
//! Navigates to the previous element in the tree.
/*!
This method takes \f$O(1)\f$ time.
*/
iterator& operator--();
//! Navigates to the next element in the tree.
/*!
This method takes \f$O(1)\f$ time.
*/
iterator operator++(int);
//! Navigates to the previous element in the tree.
/*!
This method takes \f$O(1)\f$ time.
*/
iterator operator--(int);
//! Returns the current element.
data_type& operator*();
//! Returns the current element.
data_type_const_reference operator*() const;
//! Returns the index of the element pointed to by \c *this.
/*!
\returns the index of the element pointed to by \c *this.
*/
dimension_type index() const;
//! Compares \p *this with x .
/*!
\param x
The %iterator that will be compared with *this.
*/
bool operator==(const iterator& x) const;
//! Compares \p *this with x .
/*!
\param x
The %iterator that will be compared with *this.
*/
bool operator!=(const iterator& x) const;
private:
//! Checks the internal invariants, in debug mode only.
bool OK() const;
//! A pointer to the corresponding element of the tree's indexes[] array.
const dimension_type* current_index;
//! A pointer to the corresponding element of the tree's data[] array.
data_type* current_data;
#if PPL_CO_TREE_EXTRA_DEBUG
//! A pointer to the corresponding tree, used for debug purposes only.
CO_Tree* tree;
#endif
friend const_iterator& const_iterator::operator=(const iterator&);
friend dimension_type CO_Tree::dfs_index(iterator itr) const;
};
//! Constructs an empty tree.
/*!
This constructor takes \f$O(1)\f$ time.
*/
CO_Tree();
//! The copy constructor.
/*!
\param y
The tree that will be copied.
This constructor takes \f$O(n)\f$ time.
*/
CO_Tree(const CO_Tree& y);
//! A constructor from a sequence of \p n elements.
/*!
\param i
An iterator that points to the first element of the sequence.
\param n
The number of elements in the [i, i_end) sequence.
i must be an input iterator on a sequence of data_type elements,
sorted by index.
Objects of Iterator type must have an index() method that returns the
index with which the element pointed to by the iterator must be inserted.
This constructor takes \f$O(n)\f$ time, so it is more efficient than
the construction of an empty tree followed by n insertions, that would
take \f$O(n*\log^2 n)\f$ time.
*/
template <typename Iterator>
CO_Tree(Iterator i, dimension_type n);
//! The assignment operator.
/*!
\param y
The tree that will be assigned to *this.
This method takes \f$O(n)\f$ time.
*/
CO_Tree& operator=(const CO_Tree& y);
//! Removes all elements from the tree.
/*!
This method takes \f$O(n)\f$ time.
*/
void clear();
//! The destructor.
/*!
This destructor takes \f$O(n)\f$ time.
*/
~CO_Tree();
//! Returns \p true if the tree has no elements.
/*!
This method takes \f$O(1)\f$ time.
*/
bool empty() const;
//! Returns the number of elements stored in the tree.
/*!
This method takes \f$O(1)\f$ time.
*/
dimension_type size() const;
//! Returns the size() of the largest possible CO_Tree.
static dimension_type max_size();
//! Dumps the tree to stdout, for debugging purposes.
void dump_tree() const;
//! Returns the size in bytes of the memory managed by \p *this.
/*!
This method takes \f$O(n)\f$ time.
*/
dimension_type external_memory_in_bytes() const;
//! Inserts an element in the tree.
/*!
\returns
An %iterator that points to the inserted pair.
\param key
The key that will be inserted into the tree, associated with the default
data.
If such a pair already exists, an %iterator pointing to that pair is
returned.
This operation invalidates existing iterators.
This method takes \f$O(\log n)\f$ time if the element already exists, and
\f$O(\log^2 n)\f$ amortized time otherwise.
*/
iterator insert(dimension_type key);
//! Inserts an element in the tree.
/*!
\returns
An %iterator that points to the inserted element.
\param key
The key that will be inserted into the tree..
\param data
The data that will be inserted into the tree.
If an element with the specified key already exists, its associated data
is set to \p data and an %iterator pointing to that pair is returned.
This operation invalidates existing iterators.
This method takes \f$O(\log n)\f$ time if the element already exists, and
\f$O(\log^2 n)\f$ amortized time otherwise.amortized
*/
iterator insert(dimension_type key, data_type_const_reference data);
//! Inserts an element in the tree.
/*!
\return
An %iterator that points to the inserted element.
\param itr
The %iterator used as hint
\param key
The key that will be inserted into the tree, associated with the default
data.
This will be faster if \p itr points near to the place where the new
element will be inserted (or where is already stored).
However, the value of \p itr does not affect the result of this
method, as long it is a valid %iterator for this tree. \p itr may even be
end().
If an element with the specified key already exists, an %iterator pointing
to that pair is returned.
This operation invalidates existing iterators.
This method takes \f$O(\log n)\f$ time if the element already exists, and
\f$O(\log^2 n)\f$ amortized time otherwise.
*/
iterator insert(iterator itr, dimension_type key);
//! Inserts an element in the tree.
/*!
\return
An iterator that points to the inserted element.
\param itr
The iterator used as hint
\param key
The key that will be inserted into the tree.
\param data
The data that will be inserted into the tree.
This will be faster if \p itr points near to the place where the new
element will be inserted (or where is already stored).
However, the value of \p itr does not affect the result of this
method, as long it is a valid iterator for this tree. \p itr may even be
end().
If an element with the specified key already exists, its associated data
is set to \p data and an iterator pointing to that pair is returned.
This operation invalidates existing iterators.
This method takes \f$O(\log n)\f$ time if the element already exists,
and \f$O(\log^2 n)\f$ amortized time otherwise.
*/
iterator insert(iterator itr, dimension_type key,
data_type_const_reference data);
//! Erases the element with key \p key from the tree.
/*!
This operation invalidates existing iterators.
\returns an iterator to the next element (or end() if there are no
elements with key greater than \p key ).
\param key
The key of the element that will be erased from the tree.
This method takes \f$O(\log n)\f$ time if the element already exists,
and \f$O(\log^2 n)\f$ amortized time otherwise.
*/
iterator erase(dimension_type key);
//! Erases the element pointed to by \p itr from the tree.
/*!
This operation invalidates existing iterators.
\returns an iterator to the next element (or end() if there are no
elements with key greater than \p key ).
\param itr
An iterator pointing to the element that will be erased from the tree.
This method takes \f$O(\log n)\f$ time if the element already exists, and
\f$O(\log^2 n)\f$ amortized time otherwise.
*/
iterator erase(iterator itr);
/*!
\brief Removes the element with key \p key (if it exists) and decrements
by 1 all elements' keys that were greater than \p key.
\param key
The key of the element that will be erased from the tree.
This operation invalidates existing iterators.
This method takes \f$O(k+\log^2 n)\f$ expected time, where k is the number
of elements with keys greater than \p key.
*/
void erase_element_and_shift_left(dimension_type key);
//! Adds \p n to all keys greater than or equal to \p key.
/*!
\param key
The key of the first element whose key will be increased.
\param n
Specifies how much the keys will be increased.
This method takes \f$O(k+\log n)\f$ expected time, where k is the number
of elements with keys greater than or equal to \p key.
*/
void increase_keys_from(dimension_type key, dimension_type n);
//! Sets to \p i the key of *itr. Assumes that i<=itr.index() and that there
//! are no elements with keys in [i,itr.index()).
/*!
All existing iterators remain valid.
This method takes \f$O(1)\f$ time.
*/
void fast_shift(dimension_type i, iterator itr);
//! Swaps x with *this.
/*!
\param x
The tree that will be swapped with *this.
This operation invalidates existing iterators.
This method takes \f$O(1)\f$ time.
*/
void m_swap(CO_Tree& x);
//! Returns an iterator that points at the first element.
/*!
This method takes \f$O(1)\f$ time.
*/
iterator begin();
//! Returns an iterator that points after the last element.
/*!
This method always returns a reference to the same internal %iterator,
that is updated at each operation that modifies the structure.
Client code can keep a const reference to that %iterator instead of
keep updating a local %iterator.
This method takes \f$O(1)\f$ time.
*/
const iterator& end();
//! Equivalent to cbegin().
const_iterator begin() const;
//! Equivalent to cend().
const const_iterator& end() const;
//! Returns a const_iterator that points at the first element.
/*!
This method takes \f$O(1)\f$ time.
*/
const_iterator cbegin() const;
//! Returns a const_iterator that points after the last element.
/*!
This method always returns a reference to the same internal %iterator,
that is updated at each operation that modifies the structure.
Client code can keep a const reference to that %iterator instead of
keep updating a local %iterator.
This method takes \f$O(1)\f$ time.
*/
const const_iterator& cend() const;
//! Searches an element with key \p key using bisection.
/*!
\param key
The key that will be searched for.
If the element is found, an %iterator pointing to that element is
returned; otherwise, the returned %iterator refers to the immediately
preceding or succeeding value.
If the tree is empty, end() is returned.
This method takes \f$O(\log n)\f$ time.
*/
iterator bisect(dimension_type key);
//! Searches an element with key \p key using bisection.
/*!
\param key
The key that will be searched for.
If the element is found, an %iterator pointing to that element is
returned; otherwise, the returned %iterator refers to the immediately
preceding or succeeding value.
If the tree is empty, end() is returned.
This method takes \f$O(\log n)\f$ time.
*/
const_iterator bisect(dimension_type key) const;
//! Searches an element with key \p key in [first, last] using bisection.
/*!
\param first
An %iterator pointing to the first element in the range.
It must not be end().
\param last
An %iterator pointing to the last element in the range.
Note that this is included in the search.
It must not be end().
\param key
The key that will be searched for.
\return
If the specified key is found, an %iterator pointing to that element is
returned; otherwise, the returned %iterator refers to the immediately
preceding or succeeding value.
If the tree is empty, end() is returned.
This method takes \f$O(\log(last - first + 1))\f$ time.
*/
iterator bisect_in(iterator first, iterator last, dimension_type key);
//! Searches an element with key \p key in [first, last] using bisection.
/*!
\param first
An %iterator pointing to the first element in the range.
It must not be end().
\param last
An %iterator pointing to the last element in the range.
Note that this is included in the search.
It must not be end().
\param key
The key that will be searched for.
\return
If the specified key is found, an %iterator pointing to that element is
returned; otherwise, the returned %iterator refers to the immediately
preceding or succeeding value.
If the tree is empty, end() is returned.
This method takes \f$O(\log(last - first + 1))\f$ time.
*/
const_iterator bisect_in(const_iterator first, const_iterator last,
dimension_type key) const;
//! Searches an element with key \p key near \p hint.
/*!
\param hint
An %iterator used as a hint.
\param key
The key that will be searched for.
If the element is found, the returned %iterator points to that element;
otherwise, it points to the immediately preceding or succeeding value.
If the tree is empty, end() is returned.
The value of \p itr does not affect the result of this method, as long it
is a valid %iterator for this tree. \p itr may even be end().
This method takes \f$O(\log n)\f$ time. If the distance between the
returned position and \p hint is \f$O(1)\f$ it takes \f$O(1)\f$ time.
*/
iterator bisect_near(iterator hint, dimension_type key);
//! Searches an element with key \p key near \p hint.
/*!
\param hint
An %iterator used as a hint.
\param key
The key that will be searched for.
If the element is found, the returned %iterator points to that element;
otherwise, it points to the immediately preceding or succeeding value.
If the tree is empty, end() is returned.
The value of \p itr does not affect the result of this method, as long it
is a valid %iterator for this tree. \p itr may even be end().
This method takes \f$O(\log n)\f$ time. If the distance between the
returned position and \p hint is \f$O(1)\f$ it takes \f$O(1)\f$ time.
*/
const_iterator bisect_near(const_iterator hint, dimension_type key) const;
private:
//! Searches an element with key \p key in [first, last] using bisection.
/*!
\param first
The index of the first element in the range.
It must be the index of an element with a value.
\param last
The index of the last element in the range.
It must be the index of an element with a value.
Note that this is included in the search.
\param key
The key that will be searched for.
\return
If the element is found, the index of that element is returned; otherwise,
the returned index refers to the immediately preceding or succeeding
value.
This method takes \f$O(\log n)\f$ time.
*/
dimension_type bisect_in(dimension_type first, dimension_type last,
dimension_type key) const;
//! Searches an element with key \p key near \p hint.
/*!
\param hint
An index used as a hint.
It must be the index of an element with a value.
\param key
The key that will be searched for.
\return
If the element is found, the index of that element is returned; otherwise,
the returned index refers to the immediately preceding or succeeding
value.
This uses a binary progression and then a bisection, so this method is
\f$O(\log n)\f$, and it is \f$O(1)\f$ if the distance between the returned
position and \p hint is \f$O(1)\f$.
This method takes \f$O(\log n)\f$ time. If the distance between the
returned position and \p hint is \f$O(1)\f$ it takes \f$O(1)\f$ time.
*/
dimension_type bisect_near(dimension_type hint, dimension_type key) const;
//! Inserts an element in the tree.
/*!
If there is already an element with key \p key in the tree, its
associated data is set to \p data.
This operation invalidates existing iterators.
\return
An %iterator that points to the inserted element.
\param key
The key that will be inserted into the tree.
\param data
The data that will be associated with \p key.
\param itr
It must point to the element in the tree with key \p key or, if no such
element exists, it must point to the node that would be his parent.
This method takes \f$O(1)\f$ time if the element already exists, and
\f$O(\log^2 n)\f$ amortized time otherwise.
*/
tree_iterator insert_precise(dimension_type key,
data_type_const_reference data,
tree_iterator itr);
//! Helper for \c insert_precise.
/*!
This helper method takes the same arguments as \c insert_precise,
but besides assuming that \p itr is a correct hint, it also assumes
that \p key and \p data are not in the tree; namely, a proper
insertion has to be done and the insertion can not invalidate \p data.
*/
tree_iterator insert_precise_aux(dimension_type key,
data_type_const_reference data,
tree_iterator itr);
//! Inserts an element in the tree.
/*!
\param key
The key that will be inserted into the tree.
\param data
The data that will be associated with \p key.
The tree must be empty.
This operation invalidates existing iterators.
This method takes \f$O(1)\f$ time.
*/
void insert_in_empty_tree(dimension_type key,
data_type_const_reference data);
//! Erases from the tree the element pointed to by \p itr .
/*!
This operation invalidates existing iterators.
\returns
An %iterator to the next element (or end() if there are no elements with
key greater than \p key ).
\param itr
An %iterator pointing to the element that will be erased.
This method takes \f$O(\log^2 n)\f$ amortized time.
*/
iterator erase(tree_iterator itr);
//! Initializes a tree with reserved size at least \p n .
/*!
\param n
A lower bound on the tree's desired reserved size.
This method takes \f$O(n)\f$ time.
*/
void init(dimension_type n);
//! Deallocates the tree's dynamic arrays.
/*!
After this call, the tree fields are uninitialized, so init() must be
called again before using the tree.
This method takes \f$O(n)\f$ time.
*/
void destroy();
//! Checks the internal invariants, but not the densities.
bool structure_OK() const;
//! Checks the internal invariants.
bool OK() const;
//! Returns the floor of the base-2 logarithm of \p n .
/*!
\param n
It must be greater than zero.
This method takes \f$O(\log n)\f$ time.
*/
static unsigned integer_log2(dimension_type n);
//! Compares the fractions numer/denom with ratio/100.
/*!
\returns Returns true if the fraction numer/denom is less
than the fraction ratio/100.
\param ratio
It must be less than or equal to 100.
\param numer
The numerator of the fraction.
\param denom
The denominator of the fraction.
This method takes \f$O(1)\f$ time.
*/
static bool is_less_than_ratio(dimension_type numer, dimension_type denom,
dimension_type ratio);
//! Compares the fractions numer/denom with ratio/100.
/*!
\returns
Returns true if the fraction numer/denom is greater than the fraction
ratio/100.
\param ratio
It must be less than or equal to 100.
\param numer
The numerator of the fraction.
\param denom
The denominator of the fraction.
This method takes \f$O(1)\f$ time.
*/
static bool is_greater_than_ratio(dimension_type numer, dimension_type denom,
dimension_type ratio);
//! Dumps the subtree rooted at \p itr to stdout, for debugging purposes.
/*!
\param itr
A tree_iterator pointing to the root of the desired subtree.
*/
static void dump_subtree(tree_iterator itr);
//! Increases the tree's reserved size.
/*!
This is called when the density is about to exceed the maximum density
(specified by max_density_percent).
This method takes \f$O(n)\f$ time.
*/
void rebuild_bigger_tree();
//! Decreases the tree's reserved size.
/*!
This is called when the density is about to become less than the minimum
allowed density (specified by min_density_percent).
\p reserved_size must be greater than 3 (otherwise the tree can just be
cleared).
This method takes \f$O(n)\f$ time.
*/
void rebuild_smaller_tree();
//! Re-initializes the cached iterators.
/*!
This method must be called when the indexes[] and data[] vector are
reallocated.
This method takes \f$O(1)\f$ time.
*/
void refresh_cached_iterators();
//! Rebalances the tree.
/*!
For insertions, it adds the pair (key, value) in the process.
This operation invalidates existing iterators that point to nodes in the
rebalanced subtree.
\returns an %iterator pointing to the root of the subtree that was
rebalanced.
\param itr
It points to the node where the new element has to be inserted or where an
element has just been deleted.
\param key
The index that will be inserted in the tree (for insertions only).
\param value
The value that will be inserted in the tree (for insertions only).
This method takes \f$O(\log^2 n)\f$ amortized time.
*/
tree_iterator rebalance(tree_iterator itr, dimension_type key,
data_type_const_reference value);
//! Moves all elements of a subtree to the rightmost end.
/*!
\returns
The index of the rightmost unused node in the subtree after the process.
\param last_in_subtree
It is the index of the last element in the subtree.
\param subtree_size
It is the number of valid elements in the subtree.
It must be greater than zero.
\param key
The key that may be added to the tree if add_element is \c true.
\param value
The value that may be added to the tree if add_element is \c true.
\param add_element
If it is true, it tries to add an element with key \p key and value
\p value in the process (but it may not).
This method takes \f$O(k)\f$ time, where k is \p subtree_size.
*/
dimension_type compact_elements_in_the_rightmost_end(
dimension_type last_in_subtree, dimension_type subtree_size,
dimension_type key, data_type_const_reference value,
bool add_element);
//! Redistributes the elements in the subtree rooted at \p root_index.
/*!
The subtree's elements must be compacted to the rightmost end.
\param root_index
The index of the subtree's root node.
\param subtree_size
It is the number of used elements in the subtree.
It must be greater than zero.
\param last_used
It points to the leftmost element with a value in the subtree.
\param add_element
If it is true, this method adds an element with the specified key and
value in the process.
\param key
The key that will be added to the tree if \p add_element is \c true.
\param value
The data that will be added to the tree if \p add_element is \c true.
This method takes \f$O(k)\f$ time, where k is \p subtree_size.
*/
void redistribute_elements_in_subtree(dimension_type root_index,
dimension_type subtree_size,
dimension_type last_used,
dimension_type key,
data_type_const_reference value,
bool add_element);
//! Moves all data in the tree \p tree into *this.
/*!
\param tree
The tree from which the element will be moved into *this.
*this must be empty and big enough to contain all of tree's data without
exceeding max_density.
This method takes \f$O(n)\f$ time.
*/
void move_data_from(CO_Tree& tree);
//! Copies all data in the tree \p tree into *this.
/*!
\param tree
The tree from which the element will be copied into *this.
*this must be empty and must have the same reserved size of \p tree.
this->OK() may return false before this method is called, but
this->structure_OK() must return true.
This method takes \f$O(n)\f$ time.
*/
void copy_data_from(const CO_Tree& tree);
//! Counts the number of used elements in the subtree rooted at itr.
/*!
\param itr
An %iterator pointing to the root of the desired subtree.
This method takes \f$O(k)\f$ time, where k is the number of elements in
the subtree.
*/
static dimension_type count_used_in_subtree(tree_iterator itr);
//! Moves the value of \p from in \p to .
/*!
\param from
It must be a valid value.
\param to
It must be a non-constructed chunk of memory.
After the move, \p from becomes a non-constructed chunk of memory and
\p to gets the value previously stored by \p from.
The implementation of this method assumes that data_type values do not
keep pointers to themselves nor to their fields.
This method takes \f$O(1)\f$ time.
*/
static void move_data_element(data_type& to, data_type& from);
//! The maximum density of used nodes.
/*!
This must be greater than or equal to 50 and lower than 100.
*/
static const dimension_type max_density_percent = 91;
//! The minimum density of used nodes.
/*!
Must be strictly lower than the half of max_density_percent.
*/
static const dimension_type min_density_percent = 38;
//! The minimum density at the leaves' depth.
/*!
Must be greater than zero and strictly lower than min_density_percent.
Increasing the value is safe but leads to time inefficiencies
(measured against ppl_lpsol on 24 August 2010), because it forces trees to
be more balanced, increasing the cost of rebalancing.
*/
static const dimension_type min_leaf_density_percent = 1;
//! An index used as a marker for unused nodes in the tree.
/*!
This must not be used as a key.
*/
static const dimension_type unused_index = C_Integer<dimension_type>::max;
//! The %iterator returned by end().
/*!
It is updated when needed, to keep it valid.
*/
iterator cached_end;
//! The %iterator returned by the const version of end().
/*!
It is updated when needed, to keep it valid.
*/
const_iterator cached_const_end;
//! The depth of the leaves in the complete tree.
height_t max_depth;
//! The vector that contains the keys in the tree.
/*!
If an element of this vector is \p unused_index , it means that that
element and the corresponding element of data[] are not used.
Its size is reserved_size + 2, because the first and the last elements
are used as markers for iterators.
*/
dimension_type* indexes;
//! The allocator used to allocate/deallocate data.
std::allocator<data_type> data_allocator;
//! The vector that contains the data of the keys in the tree.
/*!
If index[i] is \p unused_index, data[i] is unused.
Otherwise, data[i] contains the data associated to the indexes[i] key.
Its size is reserved_size + 1, because the first element is not used (to
allow using the same index in both indexes[] and data[] instead of
adding 1 to access data[]).
*/
data_type* data;
//! The number of nodes in the complete tree.
/*!
It is one less than a power of 2.
If this is 0, data and indexes are set to NULL.
*/
dimension_type reserved_size;
//! The number of values stored in the tree.
dimension_type size_;
};
class CO_Tree::tree_iterator {
public:
/*!
\brief Constructs a tree_iterator pointing at the root node of the
specified tree
\param tree
The tree to which the new %iterator will point to.
It must not be empty.
*/
explicit tree_iterator(CO_Tree& tree);
//! Constructs a tree_iterator pointing at the specified node of the tree.
/*!
\param tree
The tree to which the new %iterator will point to.
It must not be empty.
\param i
The index of the element in \p tree to which the new %iterator will point
to.
*/
tree_iterator(CO_Tree& tree, dimension_type i);
//! Constructs a tree_iterator from an iterator.
/*!
\param itr
The iterator that will be converted into a tree_iterator.
It must not be end().
\param tree
The tree to which the new %iterator will point to.
It must not be empty.
*/
tree_iterator(const iterator& itr, CO_Tree& tree);
//! The assignment operator.
/*!
\param itr
The %iterator that will be assigned into *this.
*/
tree_iterator& operator=(const tree_iterator& itr);
//! The assignment operator from an iterator.
/*!
\param itr
The iterator that will be assigned into *this.
*/
tree_iterator& operator=(const iterator& itr);
//! Compares *this with \p itr.
/*!
\param itr
The %iterator that will compared with *this.
*/
bool operator==(const tree_iterator& itr) const;
//! Compares *this with \p itr.
/*!
\param itr
The %iterator that will compared with *this.
*/
bool operator!=(const tree_iterator& itr) const;
//! Makes the %iterator point to the root of \p tree.
/*!
The values of all fields (beside tree) are overwritten.
This method takes \f$O(1)\f$ time.
*/
void get_root();
//! Makes the %iterator point to the left child of the current node.
/*!
This method takes \f$O(1)\f$ time.
*/
void get_left_child();
//! Makes the %iterator point to the right child of the current node.
/*!
This method takes \f$O(1)\f$ time.
*/
void get_right_child();
//! Makes the %iterator point to the parent of the current node.
/*!
This method takes \f$O(1)\f$ time.
*/
void get_parent();
/*!
\brief Searches for an element with key \p key in the subtree rooted at
\p *this.
\param key
The searched for key.
After this method, *this points to the found node (if it exists) or to
the node that would be his parent (otherwise).
This method takes \f$O(\log n)\f$ time.
*/
void go_down_searching_key(dimension_type key);
/*!
\brief Follows left children with a value, until it arrives at a leaf or at
a node with no value.
This method takes \f$O(1)\f$ time.
*/
void follow_left_children_with_value();
/*!
\brief Follows right children with a value, until it arrives at a leaf or at
a node with no value.
This method takes \f$O(1)\f$ time.
*/
void follow_right_children_with_value();
//! Returns true if the pointed node is the root node.
/*!
This method takes \f$O(1)\f$ time.
*/
bool is_root() const;
//! Returns true if the pointed node has a parent and is its right child.
/*!
This method takes \f$O(1)\f$ time.
*/
bool is_right_child() const;
//! Returns true if the pointed node is a leaf of the complete tree.
/*!
This method takes \f$O(1)\f$ time.
*/
bool is_leaf() const;
//! Returns the key and value of the current node.
data_type& operator*();
//! Returns the key and value of the current node.
Coefficient_traits::const_reference operator*() const;
//! Returns a reference to the index of the element pointed to by \c *this.
/*!
\returns a reference to the index of the element pointed to by \c *this.
*/
dimension_type& index();
//! Returns the index of the element pointed to by \c *this.
/*!
\returns the index of the element pointed to by \c *this.
*/
dimension_type index() const;
//! Returns the index of the node pointed to by \c *this.
/*!
\returns the key of the node pointed to by \c *this, or unused_index if
the current node does not contain a valid element.
*/
dimension_type key() const;
//! The tree containing the element pointed to by this %iterator.
CO_Tree& tree;
/*!
\brief Returns the index of the current node in the DFS layout of the
complete tree.
*/
dimension_type dfs_index() const;
/*!
\brief Returns 2^h, with h the height of the current node in the tree,
counting from 0.
Thus leaves have offset 1.
This is faster than depth(), so it is useful to compare node depths.
This method takes \f$O(1)\f$ time.
*/
dimension_type get_offset() const;
//! Returns the depth of the current node in the complete tree.
/*!
This method takes \f$O(\log n)\f$ time.
*/
height_t depth() const;
private:
//! Checks the internal invariant.
bool OK() const;
//! The index of the current node in the DFS layout of the complete tree.
dimension_type i;
/*!
\brief This is 2^h, with h the height of the current node in the tree,
counting from 0.
Thus leaves have offset 1.
This is equal to (i & -i), and is only stored to increase performance.
*/
dimension_type offset;
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Swaps \p x with \p y.
/*! \relates CO_Tree */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
void swap(CO_Tree& x, CO_Tree& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Swaps \p x with \p y.
/*! \relates CO_Tree::const_iterator */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
void swap(CO_Tree::const_iterator& x, CO_Tree::const_iterator& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Swaps \p x with \p y.
/*! \relates CO_Tree::iterator */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
void swap(CO_Tree::iterator& x, CO_Tree::iterator& y);
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/CO_Tree_inlines.hh line 1. */
/* CO_Tree class implementation: inline functions.
*/
namespace Parma_Polyhedra_Library {
inline dimension_type
CO_Tree::dfs_index(const_iterator itr) const {
PPL_ASSERT(itr.current_index != 0);
PPL_ASSERT(itr.current_index >= indexes + 1);
PPL_ASSERT(itr.current_index <= indexes + reserved_size);
const ptrdiff_t index = itr.current_index - indexes;
return static_cast<dimension_type>(index);
}
inline dimension_type
CO_Tree::dfs_index(iterator itr) const {
PPL_ASSERT(itr.current_index != 0);
PPL_ASSERT(itr.current_index >= indexes + 1);
PPL_ASSERT(itr.current_index <= indexes + reserved_size);
const ptrdiff_t index = itr.current_index - indexes;
return static_cast<dimension_type>(index);
}
inline
CO_Tree::CO_Tree() {
init(0);
PPL_ASSERT(OK());
}
inline
CO_Tree::CO_Tree(const CO_Tree& y) {
PPL_ASSERT(y.OK());
data_allocator = y.data_allocator;
init(y.reserved_size);
copy_data_from(y);
}
inline CO_Tree&
CO_Tree::operator=(const CO_Tree& y) {
if (this != &y) {
destroy();
data_allocator = y.data_allocator;
init(y.reserved_size);
copy_data_from(y);
}
return *this;
}
inline void
CO_Tree::clear() {
*this = CO_Tree();
}
inline
CO_Tree::~CO_Tree() {
destroy();
}
inline bool
CO_Tree::empty() const {
return size_ == 0;
}
inline dimension_type
CO_Tree::size() const {
return size_;
}
inline dimension_type
CO_Tree::max_size() {
return C_Integer<dimension_type>::max/100;
}
inline void
CO_Tree::dump_tree() const {
if (empty())
std::cout << "(empty tree)" << std::endl;
else
dump_subtree(tree_iterator(*const_cast<CO_Tree*>(this)));
}
inline CO_Tree::iterator
CO_Tree::insert(const dimension_type key) {
if (empty())
return insert(key, Coefficient_zero());
else {
tree_iterator itr(*this);
itr.go_down_searching_key(key);
if (itr.index() == key)
return iterator(itr);
else
return iterator(insert_precise(key, Coefficient_zero(), itr));
}
}
inline CO_Tree::iterator
CO_Tree::insert(dimension_type key, data_type_const_reference data1) {
if (empty()) {
insert_in_empty_tree(key, data1);
tree_iterator itr(*this);
PPL_ASSERT(itr.index() != unused_index);
return iterator(itr);
}
else {
tree_iterator itr(*this);
itr.go_down_searching_key(key);
return iterator(insert_precise(key, data1, itr));
}
}
inline CO_Tree::iterator
CO_Tree::erase(dimension_type key) {
PPL_ASSERT(key != unused_index);
if (empty())
return end();
tree_iterator itr(*this);
itr.go_down_searching_key(key);
if (itr.index() == key)
return erase(itr);
iterator result(itr);
if (result.index() < key)
++result;
PPL_ASSERT(result == end() || result.index() > key);
#ifndef NDEBUG
iterator last = end();
--last;
PPL_ASSERT((result == end()) == (last.index() < key));
#endif
return result;
}
inline CO_Tree::iterator
CO_Tree::erase(iterator itr) {
PPL_ASSERT(itr != end());
return erase(tree_iterator(itr, *this));
}
inline void
CO_Tree::m_swap(CO_Tree& x) {
using std::swap;
swap(max_depth, x.max_depth);
swap(indexes, x.indexes);
swap(data_allocator, x.data_allocator);
swap(data, x.data);
swap(reserved_size, x.reserved_size);
swap(size_, x.size_);
// Cached iterators have been invalidated by the swap,
// they must be refreshed here.
refresh_cached_iterators();
x.refresh_cached_iterators();
PPL_ASSERT(structure_OK());
PPL_ASSERT(x.structure_OK());
}
inline CO_Tree::iterator
CO_Tree::begin() {
return iterator(*this);
}
inline const CO_Tree::iterator&
CO_Tree::end() {
return cached_end;
}
inline CO_Tree::const_iterator
CO_Tree::begin() const {
return const_iterator(*this);
}
inline const CO_Tree::const_iterator&
CO_Tree::end() const {
return cached_const_end;
}
inline CO_Tree::const_iterator
CO_Tree::cbegin() const {
return const_iterator(*this);
}
inline const CO_Tree::const_iterator&
CO_Tree::cend() const {
return cached_const_end;
}
inline CO_Tree::iterator
CO_Tree::bisect(dimension_type key) {
if (empty())
return end();
iterator last = end();
--last;
return bisect_in(begin(), last, key);
}
inline CO_Tree::const_iterator
CO_Tree::bisect(dimension_type key) const {
if (empty())
return end();
const_iterator last = end();
--last;
return bisect_in(begin(), last, key);
}
inline CO_Tree::iterator
CO_Tree::bisect_in(iterator first, iterator last, dimension_type key) {
PPL_ASSERT(first != end());
PPL_ASSERT(last != end());
const dimension_type index
= bisect_in(dfs_index(first), dfs_index(last), key);
return iterator(*this, index);
}
inline CO_Tree::const_iterator
CO_Tree::bisect_in(const_iterator first, const_iterator last,
dimension_type key) const {
PPL_ASSERT(first != end());
PPL_ASSERT(last != end());
const dimension_type index
= bisect_in(dfs_index(first), dfs_index(last), key);
return const_iterator(*this, index);
}
inline CO_Tree::iterator
CO_Tree::bisect_near(iterator hint, dimension_type key) {
if (hint == end())
return bisect(key);
const dimension_type index
= bisect_near(dfs_index(hint), key);
return iterator(*this, index);
}
inline CO_Tree::const_iterator
CO_Tree::bisect_near(const_iterator hint, dimension_type key) const {
if (hint == end())
return bisect(key);
const dimension_type index = bisect_near(dfs_index(hint), key);
return const_iterator(*this, index);
}
inline void
CO_Tree::fast_shift(dimension_type i, iterator itr) {
PPL_ASSERT(itr != end());
PPL_ASSERT(i <= itr.index());
indexes[dfs_index(itr)] = i;
PPL_ASSERT(OK());
}
inline void
CO_Tree::insert_in_empty_tree(dimension_type key,
data_type_const_reference data1) {
PPL_ASSERT(empty());
rebuild_bigger_tree();
tree_iterator itr(*this);
PPL_ASSERT(itr.index() == unused_index);
new (&(*itr)) data_type(data1);
// Set the index afterwards, so that if the constructor above throws
// the tree's structure is consistent.
itr.index() = key;
++size_;
PPL_ASSERT(OK());
}
inline bool
CO_Tree::is_less_than_ratio(dimension_type numer, dimension_type denom,
dimension_type ratio) {
PPL_ASSERT(ratio <= 100);
// If these are true, no overflows are possible.
PPL_ASSERT(denom <= unused_index/100);
PPL_ASSERT(numer <= unused_index/100);
return 100*numer < ratio*denom;
}
inline bool
CO_Tree::is_greater_than_ratio(dimension_type numer, dimension_type denom,
dimension_type ratio) {
PPL_ASSERT(ratio <= 100);
// If these are true, no overflows are possible.
PPL_ASSERT(denom <= unused_index/100);
PPL_ASSERT(numer <= unused_index/100);
return 100*numer > ratio*denom;
}
inline void
CO_Tree::rebuild_smaller_tree() {
PPL_ASSERT(reserved_size > 3);
CO_Tree new_tree;
new_tree.init(reserved_size / 2);
new_tree.move_data_from(*this);
m_swap(new_tree);
PPL_ASSERT(new_tree.structure_OK());
PPL_ASSERT(structure_OK());
}
inline void
CO_Tree::refresh_cached_iterators() {
cached_end = iterator(*this, reserved_size + 1);
cached_const_end = const_iterator(*this, reserved_size + 1);
}
inline void
CO_Tree::move_data_element(data_type& to, data_type& from) {
// The following code is equivalent (but slower):
//
// <CODE>
// new (&to) data_type(from);
// from.~data_type();
// </CODE>
std::memcpy(&to, &from, sizeof(data_type));
}
inline
CO_Tree::const_iterator::const_iterator()
: current_index(0), current_data(0) {
#if PPL_CO_TREE_EXTRA_DEBUG
tree = 0;
#endif
PPL_ASSERT(OK());
}
inline
CO_Tree::const_iterator::const_iterator(const CO_Tree& tree1)
: current_index(&(tree1.indexes[1])), current_data(&(tree1.data[1])) {
#if PPL_CO_TREE_EXTRA_DEBUG
tree = &tree1;
#endif
if (!tree1.empty())
while (*current_index == unused_index) {
++current_index;
++current_data;
}
PPL_ASSERT(OK());
}
inline
CO_Tree::const_iterator::const_iterator(const CO_Tree& tree1,
dimension_type i)
: current_index(&(tree1.indexes[i])), current_data(&(tree1.data[i])) {
#if PPL_CO_TREE_EXTRA_DEBUG
tree = &tree1;
#endif
PPL_ASSERT(i != 0);
PPL_ASSERT(i <= tree1.reserved_size + 1);
PPL_ASSERT(tree1.empty() || tree1.indexes[i] != unused_index);
PPL_ASSERT(OK());
}
inline
CO_Tree::const_iterator::const_iterator(const const_iterator& itr2) {
(*this) = itr2;
PPL_ASSERT(OK());
}
inline
CO_Tree::const_iterator::const_iterator(const iterator& itr2) {
(*this) = itr2;
PPL_ASSERT(OK());
}
inline void
CO_Tree::const_iterator::m_swap(const_iterator& itr) {
using std::swap;
swap(current_data, itr.current_data);
swap(current_index, itr.current_index);
#if PPL_CO_TREE_EXTRA_DEBUG
swap(tree, itr.tree);
#endif
PPL_ASSERT(OK());
PPL_ASSERT(itr.OK());
}
inline CO_Tree::const_iterator&
CO_Tree::const_iterator::operator=(const const_iterator& itr2) {
current_index = itr2.current_index;
current_data = itr2.current_data;
#if PPL_CO_TREE_EXTRA_DEBUG
tree = itr2.tree;
#endif
PPL_ASSERT(OK());
return *this;
}
inline CO_Tree::const_iterator&
CO_Tree::const_iterator::operator=(const iterator& itr2) {
current_index = itr2.current_index;
current_data = itr2.current_data;
#if PPL_CO_TREE_EXTRA_DEBUG
tree = itr2.tree;
#endif
PPL_ASSERT(OK());
return *this;
}
inline CO_Tree::const_iterator&
CO_Tree::const_iterator::operator++() {
PPL_ASSERT(current_index != 0);
PPL_ASSERT(current_data != 0);
#if PPL_CO_TREE_EXTRA_DEBUG
PPL_ASSERT(current_index != &(tree->indexes[tree->reserved_size + 1]));
#endif
++current_index;
++current_data;
while (*current_index == unused_index) {
++current_index;
++current_data;
}
PPL_ASSERT(OK());
return *this;
}
inline CO_Tree::const_iterator&
CO_Tree::const_iterator::operator--() {
PPL_ASSERT(current_index != 0);
PPL_ASSERT(current_data != 0);
--current_index;
--current_data;
while (*current_index == unused_index) {
--current_index;
--current_data;
}
PPL_ASSERT(OK());
return *this;
}
inline CO_Tree::const_iterator
CO_Tree::const_iterator::operator++(int) {
const_iterator itr(*this);
++(*this);
return itr;
}
inline CO_Tree::const_iterator
CO_Tree::const_iterator::operator--(int) {
const_iterator itr(*this);
--(*this);
return itr;
}
inline Coefficient_traits::const_reference
CO_Tree::const_iterator::operator*() const {
PPL_ASSERT(current_index != 0);
PPL_ASSERT(current_data != 0);
PPL_ASSERT(OK());
#if PPL_CO_TREE_EXTRA_DEBUG
PPL_ASSERT(current_index != &(tree->indexes[tree->reserved_size + 1]));
#endif
return *current_data;
}
inline dimension_type
CO_Tree::const_iterator::index() const {
PPL_ASSERT(current_index != 0);
PPL_ASSERT(current_data != 0);
PPL_ASSERT(OK());
#if PPL_CO_TREE_EXTRA_DEBUG
PPL_ASSERT(current_index != &(tree->indexes[tree->reserved_size + 1]));
#endif
return *current_index;
}
inline bool
CO_Tree::const_iterator::operator==(const const_iterator& x) const {
PPL_ASSERT((current_index == x.current_index)
== (current_data == x.current_data));
PPL_ASSERT(OK());
return (current_index == x.current_index);
}
inline bool
CO_Tree::const_iterator::operator!=(const const_iterator& x) const {
return !(*this == x);
}
inline
CO_Tree::iterator::iterator()
: current_index(0), current_data(0) {
#if PPL_CO_TREE_EXTRA_DEBUG
tree = 0;
#endif
PPL_ASSERT(OK());
}
inline
CO_Tree::iterator::iterator(CO_Tree& tree1)
: current_index(&(tree1.indexes[1])), current_data(&(tree1.data[1])) {
#if PPL_CO_TREE_EXTRA_DEBUG
tree = &tree1;
#endif
if (!tree1.empty())
while (*current_index == unused_index) {
++current_index;
++current_data;
}
PPL_ASSERT(OK());
}
inline
CO_Tree::iterator::iterator(CO_Tree& tree1, dimension_type i)
: current_index(&(tree1.indexes[i])), current_data(&(tree1.data[i])) {
#if PPL_CO_TREE_EXTRA_DEBUG
tree = &tree1;
#endif
PPL_ASSERT(i != 0);
PPL_ASSERT(i <= tree1.reserved_size + 1);
PPL_ASSERT(tree1.empty() || tree1.indexes[i] != unused_index);
PPL_ASSERT(OK());
}
inline
CO_Tree::iterator::iterator(const tree_iterator& itr) {
*this = itr;
PPL_ASSERT(OK());
}
inline
CO_Tree::iterator::iterator(const iterator& itr2) {
(*this) = itr2;
PPL_ASSERT(OK());
}
inline void
CO_Tree::iterator::m_swap(iterator& itr) {
using std::swap;
swap(current_data, itr.current_data);
swap(current_index, itr.current_index);
#if PPL_CO_TREE_EXTRA_DEBUG
swap(tree, itr.tree);
#endif
PPL_ASSERT(OK());
PPL_ASSERT(itr.OK());
}
inline CO_Tree::iterator&
CO_Tree::iterator::operator=(const tree_iterator& itr) {
current_index = &(itr.tree.indexes[itr.dfs_index()]);
current_data = &(itr.tree.data[itr.dfs_index()]);
#if PPL_CO_TREE_EXTRA_DEBUG
tree = &(itr.tree);
#endif
PPL_ASSERT(OK());
return *this;
}
inline CO_Tree::iterator&
CO_Tree::iterator::operator=(const iterator& itr2) {
current_index = itr2.current_index;
current_data = itr2.current_data;
#if PPL_CO_TREE_EXTRA_DEBUG
tree = itr2.tree;
#endif
PPL_ASSERT(OK());
return *this;
}
inline CO_Tree::iterator&
CO_Tree::iterator::operator++() {
PPL_ASSERT(current_index != 0);
PPL_ASSERT(current_data != 0);
#if PPL_CO_TREE_EXTRA_DEBUG
PPL_ASSERT(current_index != &(tree->indexes[tree->reserved_size + 1]));
#endif
++current_index;
++current_data;
while (*current_index == unused_index) {
++current_index;
++current_data;
}
PPL_ASSERT(OK());
return *this;
}
inline CO_Tree::iterator&
CO_Tree::iterator::operator--() {
PPL_ASSERT(current_index != 0);
PPL_ASSERT(current_data != 0);
--current_index;
--current_data;
while (*current_index == unused_index) {
--current_index;
--current_data;
}
PPL_ASSERT(OK());
return *this;
}
inline CO_Tree::iterator
CO_Tree::iterator::operator++(int) {
iterator itr(*this);
++(*this);
return itr;
}
inline CO_Tree::iterator
CO_Tree::iterator::operator--(int) {
iterator itr(*this);
--(*this);
return itr;
}
inline CO_Tree::data_type&
CO_Tree::iterator::operator*() {
PPL_ASSERT(current_index != 0);
PPL_ASSERT(current_data != 0);
PPL_ASSERT(OK());
#if PPL_CO_TREE_EXTRA_DEBUG
PPL_ASSERT(current_index != &(tree->indexes[tree->reserved_size + 1]));
#endif
return *current_data;
}
inline Coefficient_traits::const_reference
CO_Tree::iterator::operator*() const {
PPL_ASSERT(current_index != 0);
PPL_ASSERT(current_data != 0);
PPL_ASSERT(OK());
#if PPL_CO_TREE_EXTRA_DEBUG
PPL_ASSERT(current_index != &(tree->indexes[tree->reserved_size + 1]));
#endif
return *current_data;
}
inline dimension_type
CO_Tree::iterator::index() const {
PPL_ASSERT(current_index != 0);
PPL_ASSERT(current_data != 0);
PPL_ASSERT(OK());
#if PPL_CO_TREE_EXTRA_DEBUG
PPL_ASSERT(current_index != &(tree->indexes[tree->reserved_size + 1]));
#endif
return *current_index;
}
inline bool
CO_Tree::iterator::operator==(const iterator& x) const {
PPL_ASSERT((current_index == x.current_index)
== (current_data == x.current_data));
PPL_ASSERT(OK());
return (current_index == x.current_index);
}
inline bool
CO_Tree::iterator::operator!=(const iterator& x) const {
return !(*this == x);
}
inline
CO_Tree::tree_iterator::tree_iterator(CO_Tree& tree1)
: tree(tree1) {
PPL_ASSERT(tree.reserved_size != 0);
get_root();
PPL_ASSERT(OK());
}
inline
CO_Tree::tree_iterator::tree_iterator(CO_Tree& tree1, dimension_type i1)
: tree(tree1) {
PPL_ASSERT(tree.reserved_size != 0);
PPL_ASSERT(i1 <= tree.reserved_size + 1);
i = i1;
offset = least_significant_one_mask(i);
PPL_ASSERT(OK());
}
inline
CO_Tree::tree_iterator::tree_iterator(const iterator& itr, CO_Tree& tree1)
: tree(tree1) {
PPL_ASSERT(tree.reserved_size != 0);
*this = itr;
PPL_ASSERT(OK());
}
inline CO_Tree::tree_iterator&
CO_Tree::tree_iterator::operator=(const tree_iterator& itr) {
PPL_ASSERT(&tree == &(itr.tree));
i = itr.i;
offset = itr.offset;
return *this;
}
inline CO_Tree::tree_iterator&
CO_Tree::tree_iterator::operator=(const iterator& itr) {
PPL_ASSERT(itr != tree.end());
i = tree.dfs_index(itr);
offset = least_significant_one_mask(i);
return *this;
}
inline bool
CO_Tree::tree_iterator::operator==(const tree_iterator& itr) const {
return i == itr.i;
}
inline bool
CO_Tree::tree_iterator::operator!=(const tree_iterator& itr) const {
return !(*this == itr);
}
inline void
CO_Tree::tree_iterator::get_root() {
i = tree.reserved_size / 2 + 1;
offset = i;
PPL_ASSERT(OK());
}
inline void
CO_Tree::tree_iterator::get_left_child() {
PPL_ASSERT(offset != 0);
PPL_ASSERT(offset != 1);
offset /= 2;
i -= offset;
PPL_ASSERT(OK());
}
inline void
CO_Tree::tree_iterator::get_right_child() {
PPL_ASSERT(offset != 0);
PPL_ASSERT(offset != 1);
offset /= 2;
i += offset;
PPL_ASSERT(OK());
}
inline void
CO_Tree::tree_iterator::get_parent() {
PPL_ASSERT(!is_root());
PPL_ASSERT(offset != 0);
i &= ~offset;
offset *= 2;
i |= offset;
PPL_ASSERT(OK());
}
inline void
CO_Tree::tree_iterator::follow_left_children_with_value() {
PPL_ASSERT(index() != unused_index);
const dimension_type* p = tree.indexes;
p += i;
p -= (offset - 1);
while (*p == unused_index)
++p;
const ptrdiff_t distance = p - tree.indexes;
PPL_ASSERT(distance >= 0);
i = static_cast<dimension_type>(distance);
offset = least_significant_one_mask(i);
PPL_ASSERT(OK());
}
inline void
CO_Tree::tree_iterator::follow_right_children_with_value() {
PPL_ASSERT(index() != unused_index);
const dimension_type* p = tree.indexes;
p += i;
p += (offset - 1);
while (*p == unused_index)
--p;
const ptrdiff_t distance = p - tree.indexes;
PPL_ASSERT(distance >= 0);
i = static_cast<dimension_type>(distance);
offset = least_significant_one_mask(i);
PPL_ASSERT(OK());
}
inline bool
CO_Tree::tree_iterator::is_root() const {
// This is implied by OK(), it is here for reference only.
PPL_ASSERT(offset <= (tree.reserved_size / 2 + 1));
return offset == (tree.reserved_size / 2 + 1);
}
inline bool
CO_Tree::tree_iterator::is_right_child() const {
if (is_root())
return false;
return (i & (2*offset)) != 0;
}
inline bool
CO_Tree::tree_iterator::is_leaf() const {
return offset == 1;
}
inline CO_Tree::data_type&
CO_Tree::tree_iterator::operator*() {
return tree.data[i];
}
inline Coefficient_traits::const_reference
CO_Tree::tree_iterator::operator*() const {
return tree.data[i];
}
inline dimension_type&
CO_Tree::tree_iterator::index() {
return tree.indexes[i];
}
inline dimension_type
CO_Tree::tree_iterator::index() const {
return tree.indexes[i];
}
inline dimension_type
CO_Tree::tree_iterator::dfs_index() const {
return i;
}
inline dimension_type
CO_Tree::tree_iterator::get_offset() const {
return offset;
}
inline CO_Tree::height_t
CO_Tree::tree_iterator::depth() const {
return integer_log2((tree.reserved_size + 1) / offset);
}
inline void
swap(CO_Tree& x, CO_Tree& y) {
x.m_swap(y);
}
inline void
swap(CO_Tree::const_iterator& x, CO_Tree::const_iterator& y) {
x.m_swap(y);
}
inline void
swap(CO_Tree::iterator& x, CO_Tree::iterator& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/CO_Tree_templates.hh line 1. */
/* CO_Tree class implementation: non-inline template functions.
*/
namespace Parma_Polyhedra_Library {
template <typename Iterator>
CO_Tree::CO_Tree(Iterator i, dimension_type n) {
if (n == 0) {
init(0);
PPL_ASSERT(OK());
return;
}
const dimension_type new_max_depth = integer_log2(n) + 1;
reserved_size = (static_cast<dimension_type>(1) << new_max_depth) - 1;
if (is_greater_than_ratio(n, reserved_size, max_density_percent)
&& reserved_size != 3)
reserved_size = reserved_size*2 + 1;
init(reserved_size);
tree_iterator root(*this);
// This is static and with static allocation, to improve performance.
// sizeof_to_bits(sizeof(dimension_type)) is the maximum k such that
// 2^k-1 is a dimension_type, so it is the maximum tree height.
// For each node level, the stack may contain up to 4 elements: two elements
// with operation 0, one element with operation 2 and one element
// with operation 3. An additional element with operation 1 can be at the
// top of the tree.
static std::pair<dimension_type, signed char>
stack[4U * sizeof_to_bits(sizeof(dimension_type)) + 1U];
dimension_type stack_first_empty = 0;
// A pair (n, operation) in the stack means:
//
// * Go to the parent, if operation is 0.
// * Go to the left child, then fill the current tree with n elements, if
// operation is 1.
// * Go to the right child, then fill the current tree with n elements, if
// operation is 2.
// * Fill the current tree with n elements, if operation is 3.
stack[0].first = n;
stack[0].second = 3;
++stack_first_empty;
while (stack_first_empty != 0) {
// Implement
//
// <CODE>
// top_n = stack.top().first;
// top_operation = stack.top().second;
// </CODE>
const dimension_type top_n = stack[stack_first_empty - 1].first;
const signed char top_operation = stack[stack_first_empty - 1].second;
switch (top_operation) {
case 0:
root.get_parent();
--stack_first_empty;
continue;
case 1:
root.get_left_child();
break;
case 2:
root.get_right_child();
break;
#ifndef NDEBUG
case 3:
break;
default:
// We should not be here
PPL_UNREACHABLE;
#endif
}
// We now visit the current tree
if (top_n == 0) {
--stack_first_empty;
}
else {
if (top_n == 1) {
PPL_ASSERT(root.index() == unused_index);
root.index() = i.index();
new (&(*root)) data_type(*i);
++i;
--stack_first_empty;
}
else {
PPL_ASSERT(stack_first_empty + 3 < sizeof(stack)/sizeof(stack[0]));
const dimension_type half = (top_n + 1) / 2;
stack[stack_first_empty - 1].second = 0;
stack[stack_first_empty ] = std::make_pair(top_n - half, 2);
stack[stack_first_empty + 1] = std::make_pair(1, 3);
stack[stack_first_empty + 2].second = 0;
stack[stack_first_empty + 3] = std::make_pair(half - 1, 1);
stack_first_empty += 4;
}
}
}
size_ = n;
PPL_ASSERT(OK());
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/CO_Tree_defs.hh line 1558. */
/* Automatically generated from PPL source file ../src/Sparse_Row_defs.hh line 32. */
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! A finite sparse sequence of coefficients.
/*! \ingroup PPL_CXX_interface
This class is implemented using a CO_Tree. See the documentation of CO_Tree
for details on the implementation and the performance.
This class is a drop-in replacement of Dense_Row, meaning that code
using Dense_Row can be ported to Sparse_Row changing only the type.
The resulting code will work, but probably needs more CPU and memory (it
does not exploit the sparse representation yet).
To take advantage of the sparse representation, the client code must then be
modified to use methods which can have a faster implementation on sparse
data structures.
The main changes are the replacement of calls to operator[] with calls to
find(), lower_bound() or insert(), using hint iterators when possible.
Sequential scanning of rows should probably be implemented using iterators
rather than indexes, to improve performance.
reset() should be called to zero elements.
\see Sparse_Matrix
\see CO_Tree
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
class Parma_Polyhedra_Library::Sparse_Row {
public:
//! An %iterator on the row elements
/*!
This %iterator skips non-stored zeroes.
\see CO_Tree::iterator
*/
typedef CO_Tree::iterator iterator;
//! A const %iterator on the row elements
/*!
This %iterator skips non-stored zeroes.
\see CO_Tree::const_iterator
*/
typedef CO_Tree::const_iterator const_iterator;
//! Constructs a row with the specified size.
/*!
\param n
The size for the new row.
The row will contain only non-stored zeroes.
This constructor takes \f$O(1)\f$ time.
*/
explicit Sparse_Row(dimension_type n = 0);
//! Constructs a row with the specified size.
/*!
\param n
The size for the new row.
\param capacity
It is ignored. This parameter is needed for compatibility with Dense_Row.
The row will contain only non-stored zeroes.
This constructor takes \f$O(1)\f$ time.
*/
Sparse_Row(dimension_type n, dimension_type capacity);
//! Copy constructor with specified capacity.
/*!
It is assumed that \p capacity is greater than or equal to
the size of \p y.
*/
Sparse_Row(const Sparse_Row& y, dimension_type capacity);
//! Copy constructor with specified size and capacity.
/*!
It is assumed that \p sz is less than or equal to \p capacity.
*/
Sparse_Row(const Sparse_Row& y, dimension_type sz, dimension_type capacity);
//! Constructor from a Dense_Row.
/*!
\param row
The row that will be copied into *this.
This constructor takes \f$O(n)\f$ time. Note that constructing of a row of
zeroes and then inserting n elements costs \f$O(n*\log^2 n)\f$ time.
*/
explicit Sparse_Row(const Dense_Row& row);
//! Copy constructor from a Dense_Row with specified size and capacity.
/*!
It is assumed that \p sz is less than or equal to \p capacity.
*/
Sparse_Row(const Dense_Row& y, dimension_type sz, dimension_type capacity);
Sparse_Row& operator=(const Dense_Row& row);
//! Swaps *this and x.
/*!
\param x
The row that will be swapped with *this.
This method takes \f$O(1)\f$ time.
*/
void m_swap(Sparse_Row& x);
//! Returns the size of the row.
/*!
This method takes \f$O(1)\f$ time.
*/
dimension_type size() const;
//! Returns the number of elements explicitly stored in the row.
/*!
This is equivalent to std::distance(begin(), end()), but it's much faster.
This method takes \f$O(1)\f$ time.
*/
dimension_type num_stored_elements() const;
//! Resizes the row to the specified size.
/*!
\param n
The new size for the row.
This method takes \f$O(k*\log^2 n)\f$ amortized time when shrinking the
row and removing the trailing k elements.
It takes \f$O(1)\f$ time when enlarging the row.
*/
void resize(dimension_type n);
//! Resizes the row to size \p n.
/*!
\param n
The new size for the row.
This method, with this signature, is needed for compatibility with
Dense_Row.
This method takes \f$O(1)\f$ time.
*/
void expand_within_capacity(dimension_type n);
//! Resizes the row to size \p n.
/*!
\param n
The new size for the row.
This method, with this signature, is needed for compatibility with
Dense_Row.
This method takes \f$O(k*\log^2 n)\f$ amortized time where k is the number
of removed elements.
*/
void shrink(dimension_type n);
/*!
\brief Deletes the i-th element from the row, shifting the next elements
to the left.
\param i
The index of the element that will be deleted.
The size of the row is decreased by 1.
This operation invalidates existing iterators.
This method takes \f$O(k+\log^2 n)\f$ amortized time, where k is the
number of elements with index greater than i.
*/
void delete_element_and_shift(dimension_type i);
//! Adds \p n zeroes before index \p i.
/*!
\param n
The number of non-stored zeroes that will be added to the row.
\param i
The index of the element before which the zeroes will be added.
Existing elements with index greater than or equal to \p i are shifted to
the right by \p n positions. The size is increased by \p n.
Existing iterators are not invalidated, but are shifted to the right
by \p n if they pointed at or after index \p i (i.e., they point to
the same, possibly shifted, values as before).
This method takes \f$O(k + \log m)\f$ expected time, where \f$k\f$ is
the number of elements with index greater than or equal to \p i and
\f$m\f$ the number of stored elements.
*/
void add_zeroes_and_shift(dimension_type n, dimension_type i);
//! Returns an %iterator that points at the first stored element.
/*!
This method takes \f$O(1)\f$ time.
*/
iterator begin();
//! Returns an %iterator that points after the last stored element.
/*!
This method always returns a reference to the same internal %iterator,
that is kept valid.
Client code can keep a const reference to that %iterator instead of
keep updating a local %iterator.
This method takes \f$O(1)\f$ time.
*/
const iterator& end();
//! Equivalent to <CODE>cbegin()</CODE>.
const_iterator begin() const;
//! Equivalent to <CODE>cend()</CODE>.
const const_iterator& end() const;
//! Returns an %iterator that points at the first element.
/*!
This method takes \f$O(1)\f$ time.
*/
const_iterator cbegin() const;
//! Returns an %iterator that points after the last element.
/*!
This method always returns a reference to the same internal %iterator,
that is updated at each operation that modifies the structure.
Client code can keep a const reference to that %iterator instead of
keep updating a local %iterator.
This method takes \f$O(1)\f$ time.
*/
const const_iterator& cend() const;
//! Returns the size() of the largest possible Sparse_Row.
static dimension_type max_size();
//! Resets all the elements of this row.
/*!
This method takes \f$O(n)\f$ time.
*/
void clear();
//! Gets a reference to the i-th element.
/*!
\param i
The index of the desired element.
For read-only access it's better to use get(), that avoids allocating
space for zeroes.
If possible, use the insert(), find() or lower_bound() methods with
a hint instead of this, to improve performance.
This operation invalidates existing iterators.
This method takes \f$O(\log n)\f$ amortized time when there is already an
element with index \p i, and \f$O(\log^2 n)\f$ otherwise.
*/
Coefficient& operator[](dimension_type i);
//! Equivalent to <CODE>get(i)</CODE>, provided for convenience.
/*!
This method takes \f$O(\log n)\f$ time.
*/
Coefficient_traits::const_reference operator[](dimension_type i) const;
//! Gets the i-th element in the sequence.
/*!
\param i
The index of the desired element.
If possible, use the insert(), find() or lower_bound() methods with
a hint instead of this, to improve performance.
This method takes \f$O(\log n)\f$ time.
*/
Coefficient_traits::const_reference get(dimension_type i) const;
//! Looks for an element with index i.
/*!
\param i
The index of the desired element.
If possible, use the find() method that takes a hint %iterator, to improve
performance.
This method takes \f$O(\log n)\f$ time.
*/
iterator find(dimension_type i);
//! Looks for an element with index i.
/*!
\param i
The index of the desired element.
\param itr
It is used as a hint. This method will be faster if the searched element
is near to \p itr.
The value of \p itr does not affect the result of this method, as long it
is a valid %iterator for this row. \p itr may even be end().
This method takes \f$O(\log n)\f$ time.
If the distance between \p itr and the searched position is \f$O(1)\f$,
this method takes \f$O(1)\f$ time.
*/
iterator find(iterator itr, dimension_type i);
//! Looks for an element with index i.
/*!
\param i
The index of the desired element.
If possible, use the find() method that takes a hint %iterator, to improve
performance.
This method takes \f$O(\log n)\f$ time.
*/
const_iterator find(dimension_type i) const;
//! Looks for an element with index i.
/*!
\param i
The index of the desired element.
\param itr
It is used as a hint. This method will be faster if the searched element
is near to \p itr.
The value of \p itr does not affect the result of this method, as long it
is a valid %iterator for this row. \p itr may even be end().
This method takes \f$O(\log n)\f$ time.
If the distance between \p itr and the searched position is \f$O(1)\f$,
this method takes \f$O(1)\f$ time.
*/
const_iterator find(const_iterator itr, dimension_type i) const;
//! Lower bound of index i.
/*!
\param i
The index of the desired element.
\returns an %iterator to the first element with index greater than or
equal to i.
If there are no such elements, returns end().
If possible, use the find() method that takes a hint %iterator, to improve
performance.
This method takes \f$O(\log n)\f$ time.
*/
iterator lower_bound(dimension_type i);
//! Lower bound of index i.
/*!
\param i
The index of the desired element.
\param itr
It is used as a hint. This method will be faster if the searched element
is near to \p itr.
\returns an %iterator to the first element with index greater than or
equal to i.
If there are no such elements, returns end().
The value of \p itr does not affect the result of this method, as long it
is a valid %iterator for this row. \p itr may even be end().
This method takes \f$O(\log n)\f$ time.
If the distance between \p itr and the searched position is \f$O(1)\f$,
this method takes \f$O(1)\f$ time.
*/
iterator lower_bound(iterator itr, dimension_type i);
//! Lower bound of index i.
/*!
\param i
The index of the desired element.
\returns an %iterator to the first element with index greater than or
equal to i.
If there are no such elements, returns end().
If possible, use the find() method that takes a hint %iterator, to improve
performance.
This method takes \f$O(\log n)\f$ time.
*/
const_iterator lower_bound(dimension_type i) const;
//! Lower bound of index i.
/*!
\param i
The index of the desired element.
\param itr
It is used as a hint. This method will be faster if the searched element
is near to \p itr.
\returns an %iterator to the first element with index greater than or
equal to i.
If there are no such elements, returns end().
The value of \p itr does not affect the result of this method, as long it
is a valid %iterator for this row. \p itr may even be end().
This method takes \f$O(\log n)\f$ time.
If the distance between \p itr and the searched position is \f$O(1)\f$,
this method takes \f$O(1)\f$ time.
*/
const_iterator lower_bound(const_iterator itr, dimension_type i) const;
//! Equivalent to <CODE>(*this)[i] = x; find(i)</CODE>, but faster.
/*!
\param i
The index of the desired element.
\param x
The value that will be associated to the element.
If possible, use versions of this method that take a hint, to improve
performance.
This operation invalidates existing iterators.
This method takes \f$O(\log^2 n)\f$ amortized time.
*/
iterator insert(dimension_type i, Coefficient_traits::const_reference x);
//! Equivalent to <CODE>(*this)[i] = x; find(i)</CODE>, but faster.
/*!
\param i
The index of the desired element.
\param x
The value that will be associated to the element.
\param itr
It is used as a hint. This method will be faster if the searched element
is near to \p itr, even faster than <CODE>(*this)[i] = x</CODE>.
The value of \p itr does not affect the result of this method, as long it
is a valid %iterator for this row. \p itr may even be end().
This operation invalidates existing iterators.
This method takes \f$O(\log^2 n)\f$ amortized time. If the distance
between \p itr and the searched position is \f$O(1)\f$ and the row already
contains an element with this index, this method takes \f$O(1)\f$ time.
*/
iterator insert(iterator itr, dimension_type i,
Coefficient_traits::const_reference x);
//! Equivalent to <CODE>(*this)[i]; find(i)</CODE>, but faster.
/*!
\param i
The index of the desired element.
If possible, use versions of this method that take a hint, to improve
performance.
This operation invalidates existing iterators.
This method takes \f$O(\log^2 n)\f$ amortized time.
*/
iterator insert(dimension_type i);
//! Equivalent to <CODE>(*this)[i]; find(i)</CODE>, but faster.
/*!
\param i
The index of the desired element.
\param itr
It is used as a hint. This method will be faster if the searched element
is near to \p itr, even faster than <CODE>(*this)[i]</CODE>.
The value of \p itr does not affect the result of this method, as long it
is a valid %iterator for this row. \p itr may even be end().
This operation invalidates existing iterators.
This method takes \f$O(\log^2 n)\f$ amortized time. If the distance
between \p itr and the searched position is \f$O(1)\f$ and the row already
contains an element with this index, this method takes \f$O(1)\f$ time.
*/
iterator insert(iterator itr, dimension_type i);
//! Swaps the i-th element with the j-th element.
/*!
\param i
The index of an element.
\param j
The index of another element.
This operation invalidates existing iterators.
This method takes \f$O(\log^2 n)\f$ amortized time.
*/
void swap_coefficients(dimension_type i, dimension_type j);
//! Equivalent to swap(i,itr.index()), but it assumes that
//! lower_bound(i)==itr.
/*!
Iterators that pointed to the itr.index()-th element remain valid
but now point to the i-th element. Other iterators are unaffected.
This method takes \f$O(1)\f$ time.
*/
void fast_swap(dimension_type i, iterator itr);
//! Swaps the element pointed to by i with the element pointed to by j.
/*!
\param i
An %iterator pointing to an element.
\param j
An %iterator pointing to another element.
This method takes \f$O(1)\f$ time.
*/
void swap_coefficients(iterator i, iterator j);
//! Resets to zero the value pointed to by i.
/*!
\param i
An %iterator pointing to the element that will be reset (not stored
anymore).
By calling this method instead of getting a reference to the value and
setting it to zero, the element will no longer be stored.
This operation invalidates existing iterators.
This method takes \f$O(\log^2 n)\f$ amortized time.
*/
iterator reset(iterator i);
//! Resets to zero the values in the range [first,last).
/*!
\param first
An %iterator pointing to the first element to reset.
\param last
An %iterator pointing after the last element to reset.
By calling this method instead of getting a reference to the values and
setting them to zero, the elements will no longer be stored.
This operation invalidates existing iterators.
This method takes \f$O(k*\log^2 n)\f$ amortized time, where k is the
number of elements in [first,last).
*/
iterator reset(iterator first, iterator last);
//! Resets to zero the i-th element.
/*!
\param i
The index of the element to reset.
By calling this method instead of getting a reference to the value and
setting it to zero, the element will no longer be stored.
This operation invalidates existing iterators.
This method takes \f$O(\log^2 n)\f$ amortized time.
*/
void reset(dimension_type i);
//! Resets to zero the elements with index greater than or equal to i.
/*!
\param i
The index of the first element to reset.
By calling this method instead of getting a reference to the values and
setting them to zero, the elements will no longer be stored.
This operation invalidates existing iterators.
This method takes \f$O(k*\log^2 n)\f$ amortized time, where k is the
number of elements with index greater than or equal to i.
*/
void reset_after(dimension_type i);
//! Normalizes the modulo of coefficients so that they are mutually prime.
/*!
Computes the Greatest Common Divisor (GCD) among the elements of the row
and normalizes them by the GCD itself.
This method takes \f$O(n)\f$ time.
*/
void normalize();
//! Calls g(x[i],y[i]), for each i.
/*!
\param y
The row that will be combined with *this.
\param f
A functor that should take a Coefficient&.
f(c1) must be equivalent to g(c1, 0).
\param g
A functor that should take a Coefficient& and a
Coefficient_traits::const_reference.
g(c1, c2) must do nothing when c1 is zero.
This method takes \f$O(n*\log^2 n)\f$ time.
\note
The functors will only be called when necessary, assuming the requested
properties hold.
\see combine_needs_second
\see combine
*/
template <typename Func1, typename Func2>
void combine_needs_first(const Sparse_Row& y,
const Func1& f, const Func2& g);
//! Calls g(x[i],y[i]), for each i.
/*!
\param y
The row that will be combined with *this.
\param g
A functor that should take a Coefficient& and a
Coefficient_traits::const_reference.
g(c1, 0) must do nothing, for every c1.
\param h
A functor that should take a Coefficient& and a
Coefficient_traits::const_reference.
h(c1, c2) must be equivalent to g(c1, c2) when c1 is zero.
This method takes \f$O(n*\log^2 n)\f$ time.
\note
The functors will only be called when necessary, assuming the requested
properties hold.
\see combine_needs_first
\see combine
*/
template <typename Func1, typename Func2>
void combine_needs_second(const Sparse_Row& y,
const Func1& g, const Func2& h);
//! Calls g(x[i],y[i]), for each i.
/*!
\param y
The row that will be combined with *this.
\param f
A functor that should take a Coefficient&.
f(c1) must be equivalent to g(c1, 0).
\param g
A functor that should take a Coefficient& and a
Coefficient_traits::const_reference.
g(c1, c2) must do nothing when both c1 and c2 are zero.
\param h
A functor that should take a Coefficient& and a
Coefficient_traits::const_reference.
h(c1, c2) must be equivalent to g(c1, c2) when c1 is zero.
This method takes \f$O(n*\log^2 n)\f$ time.
\note
The functors will only be called when necessary, assuming the requested
properties hold.
\see combine_needs_first
\see combine_needs_second
*/
template <typename Func1, typename Func2, typename Func3>
void combine(const Sparse_Row& y,
const Func1& f, const Func2& g, const Func3& h);
//! Executes <CODE>(*this)[i] = (*this)[i]*coeff1 + y[i]*coeff2</CODE>, for
//! each i.
/*!
\param y
The row that will be combined with *this.
\param coeff1
The coefficient used for elements of *this.
This must not be 0.
\param coeff2
The coefficient used for elements of y.
This must not be 0.
This method takes \f$O(n*\log^2 n)\f$ time.
\note
The functors will only be called when necessary.
This method can be implemented in user code, too. It is provided for
convenience only.
\see combine_needs_first
\see combine_needs_second
\see combine
*/
void linear_combine(const Sparse_Row& y,
Coefficient_traits::const_reference coeff1,
Coefficient_traits::const_reference coeff2);
//! Equivalent to <CODE>(*this)[i] = (*this)[i] * c1 + y[i] * c2</CODE>,
//! for each i in [start, end).
/*!
This method, unlike the other linear_combine() method, detects when
coeff1==1 and/or coeff2==1 or coeff2==-1 in order to save some work.
*/
void linear_combine(const Sparse_Row& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end);
PPL_OUTPUT_DECLARATIONS
//! Loads the row from an ASCII representation generated using ascii_dump().
/*!
\param s
The stream from which the ASCII representation will be loaded.
*/
bool ascii_load(std::istream& s);
//! Returns the size in bytes of the memory managed by \p *this.
/*!
This method takes \f$O(n)\f$ time.
*/
memory_size_type external_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
/*!
This method is provided for compatibility with Dense_Row.
This method takes \f$O(n)\f$ time.
\param capacity
This parameter is ignored.
*/
memory_size_type external_memory_in_bytes(dimension_type capacity) const;
//! Returns the size in bytes of the memory managed by \p *this.
/*!
This method takes \f$O(n)\f$ time.
*/
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
/*!
This method is provided for compatibility with Dense_Row.
This method takes \f$O(n)\f$ time.
\param capacity
This parameter is ignored.
*/
memory_size_type total_memory_in_bytes(dimension_type capacity) const;
//! Checks the invariant.
bool OK() const;
//! Checks the invariant.
/*!
This method is provided for compatibility with Dense_Row.
\param capacity
This parameter is ignored.
*/
bool OK(dimension_type capacity) const;
private:
//! The tree used to store the elements.
CO_Tree tree;
//! The size of the row.
/*!
The elements contained in this row have indexes that are less than size_.
*/
dimension_type size_;
};
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Swaps \p x with \p y.
/*! \relates Sparse_Row */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
void swap(Parma_Polyhedra_Library::Sparse_Row& x,
Parma_Polyhedra_Library::Sparse_Row& y);
void swap(Parma_Polyhedra_Library::Sparse_Row& x,
Parma_Polyhedra_Library::Dense_Row& y);
void swap(Parma_Polyhedra_Library::Dense_Row& x,
Parma_Polyhedra_Library::Sparse_Row& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x and \p y are equal.
/*! \relates Sparse_Row */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool operator==(const Sparse_Row& x, const Sparse_Row& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x and \p y are different.
/*! \relates Sparse_Row */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool operator!=(const Sparse_Row& x, const Sparse_Row& y);
bool operator==(const Dense_Row& x, const Sparse_Row& y);
bool operator!=(const Dense_Row& x, const Sparse_Row& y);
bool operator==(const Sparse_Row& x, const Dense_Row& y);
bool operator!=(const Sparse_Row& x, const Dense_Row& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Equivalent to <CODE>x[i] = x[i] * c1 + y[i] * c2</CODE>,
//! for each i in [start, end).
/*! \relates Sparse_Row */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
void linear_combine(Sparse_Row& x, const Dense_Row& y,
Coefficient_traits::const_reference coeff1,
Coefficient_traits::const_reference coeff2);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Equivalent to <CODE>x[i] = x[i] * c1 + y[i] * c2</CODE>,
//! for each i in [start, end).
/*! \relates Sparse_Row
This function detects when coeff1==1 and/or coeff2==1 or coeff2==-1 in
order to save some work.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
void linear_combine(Sparse_Row& x, const Dense_Row& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Equivalent to <CODE>x[i] = x[i] * c1 + y[i] * c2</CODE>,
//! for each i in [start, end).
/*! \relates Sparse_Row */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
void linear_combine(Dense_Row& x, const Sparse_Row& y,
Coefficient_traits::const_reference coeff1,
Coefficient_traits::const_reference coeff2);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Equivalent to <CODE>x[i] = x[i] * c1 + y[i] * c2</CODE>,
//! for each i in [start, end).
/*! \relates Sparse_Row
This function detects when coeff1==1 and/or coeff2==1 or coeff2==-1 in
order to save some work.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
void linear_combine(Dense_Row& x, const Sparse_Row& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Equivalent to <CODE>x[i] = x[i] * c1 + y[i] * c2</CODE>,
//! for each i in [start, end).
/*! \relates Sparse_Row */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
void linear_combine(Sparse_Row& x, const Sparse_Row& y,
Coefficient_traits::const_reference coeff1,
Coefficient_traits::const_reference coeff2);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Equivalent to <CODE>x[i] = x[i] * c1 + y[i] * c2</CODE>,
//! for each i in [start, end).
/*! \relates Sparse_Row
This function detects when coeff1==1 and/or coeff2==1 or coeff2==-1 in
order to save some work.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
void linear_combine(Sparse_Row& x, const Sparse_Row& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end);
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Sparse_Row_inlines.hh line 1. */
/* Sparse_Row class implementation: inline functions.
*/
#include <algorithm>
namespace Parma_Polyhedra_Library {
inline
Sparse_Row::Sparse_Row(dimension_type n)
: size_(n) {
PPL_ASSERT(OK());
}
inline
Sparse_Row::Sparse_Row(dimension_type n, dimension_type)
: size_(n) {
PPL_ASSERT(OK());
}
inline
Sparse_Row::Sparse_Row(const Sparse_Row& y, dimension_type)
: tree(y.tree), size_(y.size_) {
}
inline
Sparse_Row::Sparse_Row(const Sparse_Row& y, dimension_type sz, dimension_type)
: tree(y.begin(),
std::distance(y.begin(), y.lower_bound(std::min(y.size(), sz)))),
size_(sz) {
PPL_ASSERT(OK());
}
inline void
Sparse_Row::m_swap(Sparse_Row& x) {
using std::swap;
swap(tree, x.tree);
swap(size_, x.size_);
PPL_ASSERT(OK());
PPL_ASSERT(x.OK());
}
inline dimension_type
Sparse_Row::size() const {
return size_;
}
inline dimension_type
Sparse_Row::num_stored_elements() const {
return tree.size();
}
inline void
Sparse_Row::resize(dimension_type n) {
if (n < size_)
reset_after(n);
size_ = n;
PPL_ASSERT(OK());
}
inline void
Sparse_Row::shrink(dimension_type n) {
PPL_ASSERT(size() >= n);
resize(n);
}
inline void
Sparse_Row::expand_within_capacity(dimension_type n) {
PPL_ASSERT(size() <= n);
resize(n);
}
inline void
Sparse_Row::delete_element_and_shift(dimension_type i) {
PPL_ASSERT(i < size_);
tree.erase_element_and_shift_left(i);
--size_;
PPL_ASSERT(OK());
}
inline void
Sparse_Row::add_zeroes_and_shift(dimension_type n, dimension_type i) {
PPL_ASSERT(i <= size_);
tree.increase_keys_from(i, n);
size_ += n;
PPL_ASSERT(OK());
}
inline Sparse_Row::iterator
Sparse_Row::begin() {
return tree.begin();
}
inline const Sparse_Row::iterator&
Sparse_Row::end() {
return tree.end();
}
inline Sparse_Row::const_iterator
Sparse_Row::begin() const {
return tree.cbegin();
}
inline const Sparse_Row::const_iterator&
Sparse_Row::end() const {
return tree.cend();
}
inline Sparse_Row::const_iterator
Sparse_Row::cbegin() const {
return tree.cbegin();
}
inline const Sparse_Row::const_iterator&
Sparse_Row::cend() const {
return tree.cend();
}
inline dimension_type
Sparse_Row::max_size() {
return CO_Tree::max_size();
}
inline void
Sparse_Row::clear() {
tree.clear();
}
inline Coefficient&
Sparse_Row::operator[](dimension_type i) {
PPL_ASSERT(i < size_);
iterator itr = insert(i);
return *itr;
}
inline Coefficient_traits::const_reference
Sparse_Row::operator[](dimension_type i) const {
return get(i);
}
inline Coefficient_traits::const_reference
Sparse_Row::get(dimension_type i) const {
PPL_ASSERT(i < size_);
if (tree.empty())
return Coefficient_zero();
const_iterator itr = find(i);
if (itr != end())
return *itr;
else
return Coefficient_zero();
}
inline Sparse_Row::iterator
Sparse_Row::find(dimension_type i) {
PPL_ASSERT(i < size());
iterator itr = tree.bisect(i);
if (itr != end() && itr.index() == i)
return itr;
return end();
}
inline Sparse_Row::iterator
Sparse_Row::find(iterator hint, dimension_type i) {
PPL_ASSERT(i < size());
iterator itr = tree.bisect_near(hint, i);
if (itr != end() && itr.index() == i)
return itr;
return end();
}
inline Sparse_Row::const_iterator
Sparse_Row::find(dimension_type i) const {
PPL_ASSERT(i < size());
const_iterator itr = tree.bisect(i);
if (itr != end() && itr.index() == i)
return itr;
return end();
}
inline Sparse_Row::const_iterator
Sparse_Row::find(const_iterator hint, dimension_type i) const {
PPL_ASSERT(i < size());
const_iterator itr = tree.bisect_near(hint, i);
if (itr != end() && itr.index() == i)
return itr;
return end();
}
inline Sparse_Row::iterator
Sparse_Row::lower_bound(dimension_type i) {
PPL_ASSERT(i <= size());
iterator itr = tree.bisect(i);
if (itr == end())
return end();
if (itr.index() < i)
++itr;
PPL_ASSERT(itr == end() || itr.index() >= i);
return itr;
}
inline Sparse_Row::iterator
Sparse_Row::lower_bound(iterator hint, dimension_type i) {
PPL_ASSERT(i <= size());
iterator itr = tree.bisect_near(hint, i);
if (itr == end())
return end();
if (itr.index() < i)
++itr;
PPL_ASSERT(itr == end() || itr.index() >= i);
return itr;
}
inline Sparse_Row::const_iterator
Sparse_Row::lower_bound(dimension_type i) const {
PPL_ASSERT(i <= size());
const_iterator itr = tree.bisect(i);
if (itr == end())
return end();
if (itr.index() < i)
++itr;
PPL_ASSERT(itr == end() || itr.index() >= i);
return itr;
}
inline Sparse_Row::const_iterator
Sparse_Row::lower_bound(const_iterator hint, dimension_type i) const {
PPL_ASSERT(i <= size());
const_iterator itr = tree.bisect_near(hint, i);
if (itr == end())
return end();
if (itr.index() < i)
++itr;
PPL_ASSERT(itr == end() || itr.index() >= i);
return itr;
}
inline Sparse_Row::iterator
Sparse_Row::insert(dimension_type i, Coefficient_traits::const_reference x) {
PPL_ASSERT(i < size_);
return tree.insert(i, x);
}
inline Sparse_Row::iterator
Sparse_Row::insert(iterator itr, dimension_type i,
Coefficient_traits::const_reference x) {
PPL_ASSERT(i < size_);
return tree.insert(itr, i, x);
}
inline Sparse_Row::iterator
Sparse_Row::insert(dimension_type i) {
PPL_ASSERT(i < size_);
return tree.insert(i);
}
inline Sparse_Row::iterator
Sparse_Row::insert(iterator itr, dimension_type i) {
PPL_ASSERT(i < size_);
return tree.insert(itr, i);
}
inline void
Sparse_Row::swap_coefficients(iterator i, iterator j) {
PPL_ASSERT(i != end());
PPL_ASSERT(j != end());
using std::swap;
swap(*i, *j);
PPL_ASSERT(OK());
}
inline void
Sparse_Row::fast_swap(dimension_type i, iterator itr) {
PPL_ASSERT(lower_bound(i) == itr);
PPL_ASSERT(itr != end());
tree.fast_shift(i, itr);
PPL_ASSERT(OK());
}
inline Sparse_Row::iterator
Sparse_Row::reset(iterator i) {
iterator res = tree.erase(i);
PPL_ASSERT(OK());
return res;
}
inline void
Sparse_Row::reset(dimension_type i) {
PPL_ASSERT(i < size());
tree.erase(i);
PPL_ASSERT(OK());
}
inline memory_size_type
Sparse_Row::external_memory_in_bytes() const {
return tree.external_memory_in_bytes();
}
inline memory_size_type
Sparse_Row::external_memory_in_bytes(dimension_type /* capacity */) const {
return external_memory_in_bytes();
}
inline memory_size_type
Sparse_Row::total_memory_in_bytes() const {
return external_memory_in_bytes() + sizeof(*this);
}
inline memory_size_type
Sparse_Row::total_memory_in_bytes(dimension_type /* capacity */) const {
return total_memory_in_bytes();
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates Sparse_Row */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
inline void
swap(Sparse_Row& x, Sparse_Row& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Sparse_Row_templates.hh line 1. */
/* Sparse_Row class implementation: non-inline template functions.
*/
namespace Parma_Polyhedra_Library {
template <typename Func1, typename Func2>
void
Sparse_Row::combine_needs_first(const Sparse_Row& y,
const Func1& f, const Func2& g) {
if (this == &y) {
for (iterator i = begin(), i_end = end(); i != i_end; ++i)
g(*i, *i);
}
else {
iterator i = begin();
// This is a const reference to an internal iterator, that is kept valid.
// If we just stored a copy, that would be invalidated by the calls to
// reset().
const iterator& i_end = end();
const_iterator j = y.begin();
const_iterator j_end = y.end();
while (i != i_end && j != j_end)
if (i.index() == j.index()) {
g(*i, *j);
if (*i == 0)
i = reset(i);
else
++i;
++j;
}
else
if (i.index() < j.index()) {
f(*i);
if (*i == 0)
i = reset(i);
else
++i;
}
else
j = y.lower_bound(j, i.index());
while (i != i_end) {
f(*i);
if (*i == 0)
i = reset(i);
else
++i;
}
}
}
template <typename Func1, typename Func2>
void
Sparse_Row::combine_needs_second(const Sparse_Row& y,
const Func1& g,
const Func2& /* h */) {
iterator i = begin();
for (const_iterator j = y.begin(), j_end = y.end(); j != j_end; ++j) {
i = insert(i, j.index());
g(*i, *j);
if (*i == 0)
i = reset(i);
}
}
template <typename Func1, typename Func2, typename Func3>
void
Sparse_Row::combine(const Sparse_Row& y, const Func1& f,
const Func2& g, const Func3& h) {
if (this == &y) {
for (iterator i = begin(), i_end = end(); i != i_end; ++i)
g(*i, *i);
}
else {
iterator i = begin();
// This is a const reference to an internal iterator, that is kept valid.
// If we just stored a copy, that would be invalidated by the calls to
// reset() and insert().
const iterator& i_end = end();
const_iterator j = y.begin();
const_iterator j_end = y.end();
while (i != i_end && j != j_end) {
if (i.index() == j.index()) {
g(*i, *j);
if (*i == 0)
i = reset(i);
else
++i;
++j;
}
else
if (i.index() < j.index()) {
f(*i);
if (*i == 0)
i = reset(i);
else
++i;
}
else {
PPL_ASSERT(i.index() > j.index());
i = insert(i, j.index());
h(*i, *j);
if (*i == 0)
i = reset(i);
else
++i;
++j;
}
}
PPL_ASSERT(i == i_end || j == j_end);
while (i != i_end) {
f(*i);
if (*i == 0)
i = reset(i);
else
++i;
}
while (j != j_end) {
i = insert(i, j.index());
h(*i, *j);
if (*i == 0)
i = reset(i);
++j;
}
}
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Sparse_Row_defs.hh line 929. */
/* Automatically generated from PPL source file ../src/Linear_Expression_Impl_defs.hh line 33. */
#include <cstddef>
/* Automatically generated from PPL source file ../src/Linear_Expression_Interface_defs.hh line 1. */
/* Linear_Expression_Interface class declaration.
*/
/* Automatically generated from PPL source file ../src/Linear_Expression_Interface_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Linear_Expression_Interface;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Linear_Expression_Interface_defs.hh line 33. */
#include <vector>
#include <set>
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! A linear expression.
/*! \ingroup PPL_CXX_interface
An object of a class implementing Linear_Expression_Interface
represents a linear expression
\f[
\sum_{i=0}^{n-1} a_i x_i + b
\f]
where \f$n\f$ is the dimension of the vector space,
each \f$a_i\f$ is the integer coefficient
of the \f$i\f$-th variable \f$x_i\f$
and \f$b\f$ is the integer for the inhomogeneous term.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
class Parma_Polyhedra_Library::Linear_Expression_Interface {
public:
virtual ~Linear_Expression_Interface();
virtual bool OK() const = 0;
//! Returns the current representation of this linear expression.
virtual Representation representation() const = 0;
//! An interface for const iterators on the expression (homogeneous)
//! coefficients that are nonzero.
/*!
These iterators are invalidated by operations that modify the expression.
*/
class const_iterator_interface {
public:
typedef std::bidirectional_iterator_tag iterator_category;
typedef const Coefficient value_type;
typedef ptrdiff_t difference_type;
typedef value_type* pointer;
typedef Coefficient_traits::const_reference reference;
//! Returns a copy of *this.
//! This returns a pointer to dynamic-allocated memory. The caller has the
//! duty to free the memory when it's not needed anymore.
virtual const_iterator_interface* clone() const = 0;
virtual ~const_iterator_interface();
//! Navigates to the next nonzero coefficient.
//! Note that this method does *not* return a reference, to increase
//! efficiency since it's virtual.
virtual void operator++() = 0;
//! Navigates to the previous nonzero coefficient.
//! Note that this method does *not* return a reference, to increase
//! efficiency since it's virtual.
virtual void operator--() = 0;
//! Returns the current element.
virtual reference operator*() const = 0;
//! Returns the variable of the coefficient pointed to by \c *this.
/*!
\returns the variable of the coefficient pointed to by \c *this.
*/
virtual Variable variable() const = 0;
//! Compares \p *this with x .
/*!
\param x
The %iterator that will be compared with *this.
*/
virtual bool operator==(const const_iterator_interface& x) const = 0;
};
//! This returns a pointer to dynamic-allocated memory. The caller has the
//! duty to free the memory when it's not needed anymore.
virtual const_iterator_interface* begin() const = 0;
//! This returns a pointer to dynamic-allocated memory. The caller has the
//! duty to free the memory when it's not needed anymore.
virtual const_iterator_interface* end() const = 0;
//! This returns a pointer to dynamic-allocated memory. The caller has the
//! duty to free the memory when it's not needed anymore.
//! Returns (a pointer to) an iterator that points to the first nonzero
//! coefficient of a variable greater than or equal to v, or at end if no
//! such coefficient exists.
virtual const_iterator_interface* lower_bound(Variable v) const = 0;
//! Returns the dimension of the vector space enclosing \p *this.
virtual dimension_type space_dimension() const = 0;
//! Sets the dimension of the vector space enclosing \p *this to \p n .
virtual void set_space_dimension(dimension_type n) = 0;
//! Returns the coefficient of \p v in \p *this.
virtual Coefficient_traits::const_reference
coefficient(Variable v) const = 0;
//! Sets the coefficient of \p v in \p *this to \p n.
virtual void
set_coefficient(Variable v, Coefficient_traits::const_reference n) = 0;
//! Returns the inhomogeneous term of \p *this.
virtual Coefficient_traits::const_reference inhomogeneous_term() const = 0;
//! Sets the inhomogeneous term of \p *this to \p n.
virtual void
set_inhomogeneous_term(Coefficient_traits::const_reference n) = 0;
//! Linearly combines \p *this with \p y so that the coefficient of \p v
//! is 0.
/*!
\param y
The expression that will be combined with \p *this object;
\param v
The variable whose coefficient has to become \f$0\f$.
Computes a linear combination of \p *this and \p y having
the coefficient of variable \p v equal to \f$0\f$. Then it assigns
the resulting expression to \p *this.
\p *this and \p y must have the same space dimension.
*/
virtual void
linear_combine(const Linear_Expression_Interface& y, Variable v) = 0;
//! Equivalent to <CODE>*this = *this * c1 + y * c2</CODE>, but assumes that
//! \p *this and \p y have the same space dimension.
virtual void linear_combine(const Linear_Expression_Interface& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2) = 0;
//! Equivalent to <CODE>*this = *this * c1 + y * c2</CODE>.
//! c1 and c2 may be 0.
virtual void linear_combine_lax(const Linear_Expression_Interface& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2) = 0;
//! Swaps the coefficients of the variables \p v1 and \p v2 .
virtual void swap_space_dimensions(Variable v1, Variable v2) = 0;
//! Removes all the specified dimensions from the expression.
/*!
The space dimension of the variable with the highest space
dimension in \p vars must be at most the space dimension
of \p this.
*/
virtual void remove_space_dimensions(const Variables_Set& vars) = 0;
//! Shift by \p n positions the coefficients of variables, starting from
//! the coefficient of \p v. This increases the space dimension by \p n.
virtual void shift_space_dimensions(Variable v, dimension_type n) = 0;
//! Permutes the space dimensions of the expression.
/*!
\param cycle
A vector representing a cycle of the permutation according to which the
space dimensions must be rearranged.
The \p cycle vector represents a cycle of a permutation of space
dimensions.
For example, the permutation
\f$ \{ x_1 \mapsto x_2, x_2 \mapsto x_3, x_3 \mapsto x_1 \}\f$ can be
represented by the vector containing \f$ x_1, x_2, x_3 \f$.
*/
virtual void
permute_space_dimensions(const std::vector<Variable>& cycle) = 0;
//! Returns <CODE>true</CODE> if and only if \p *this is \f$0\f$.
virtual bool is_zero() const = 0;
/*! \brief
Returns <CODE>true</CODE> if and only if all the homogeneous
terms of \p *this are \f$0\f$.
*/
virtual bool all_homogeneous_terms_are_zero() const = 0;
/*! \brief
Returns a lower bound to the total size in bytes of the memory
occupied by \p *this.
*/
virtual memory_size_type total_memory_in_bytes() const = 0;
//! Returns the size in bytes of the memory managed by \p *this.
virtual memory_size_type external_memory_in_bytes() const = 0;
//! Writes to \p s an ASCII representation of \p *this.
virtual void ascii_dump(std::ostream& s) const = 0;
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
virtual bool ascii_load(std::istream& s) = 0;
//! Returns \p true if *this is equal to \p x.
//! Note that (*this == x) has a completely different meaning.
virtual bool is_equal_to(const Linear_Expression_Interface& x) const = 0;
//! Normalizes the modulo of the coefficients and of the inhomogeneous term
//! so that they are mutually prime.
/*!
Computes the Greatest Common Divisor (GCD) among the coefficients
and the inhomogeneous term and normalizes them by the GCD itself.
*/
virtual void normalize() = 0;
//! Ensures that the first nonzero homogeneous coefficient is positive,
//! by negating the row if necessary.
virtual void sign_normalize() = 0;
/*! \brief
Negates the elements from index \p first (included)
to index \p last (excluded).
*/
virtual void negate(dimension_type first, dimension_type last) = 0;
virtual Linear_Expression_Interface&
operator+=(Coefficient_traits::const_reference n) = 0;
virtual Linear_Expression_Interface&
operator-=(Coefficient_traits::const_reference n) = 0;
//! The basic comparison function.
/*! \relates Linear_Expression_Interface
\returns -1 or -2 if x is less than y, 0 if they are equal and 1 or 2 is y
is greater. The absolute value of the result is 1 if the difference
is only in the inhomogeneous terms, 2 otherwise
The order is a lexicographic. It starts comparing the variables'
coefficient, starting from Variable(0), and at the end it compares
the inhomogeneous terms.
*/
virtual int compare(const Linear_Expression_Interface& y) const = 0;
virtual Linear_Expression_Interface&
operator+=(const Linear_Expression_Interface& e2) = 0;
virtual Linear_Expression_Interface&
operator+=(const Variable v) = 0;
virtual Linear_Expression_Interface&
operator-=(const Linear_Expression_Interface& e2) = 0;
virtual Linear_Expression_Interface&
operator-=(const Variable v) = 0;
virtual Linear_Expression_Interface&
operator*=(Coefficient_traits::const_reference n) = 0;
virtual Linear_Expression_Interface&
operator/=(Coefficient_traits::const_reference n) = 0;
virtual void negate() = 0;
virtual Linear_Expression_Interface&
add_mul_assign(Coefficient_traits::const_reference n, const Variable v) = 0;
virtual Linear_Expression_Interface&
sub_mul_assign(Coefficient_traits::const_reference n, const Variable v) = 0;
virtual void add_mul_assign(Coefficient_traits::const_reference factor,
const Linear_Expression_Interface& e2) = 0;
virtual void sub_mul_assign(Coefficient_traits::const_reference factor,
const Linear_Expression_Interface& e2) = 0;
virtual void print(std::ostream& s) const = 0;
/*! \brief
Returns <CODE>true</CODE> if the coefficient of each variable in
\p vars[i] is \f$0\f$.
*/
virtual bool all_zeroes(const Variables_Set& vars) const = 0;
//! Returns true if there is a variable in [first,last) whose coefficient
//! is nonzero in both *this and x.
virtual bool have_a_common_variable(const Linear_Expression_Interface& x,
Variable first, Variable last) const = 0;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Returns the i-th coefficient.
virtual Coefficient_traits::const_reference get(dimension_type i) const = 0;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Sets the i-th coefficient to n.
virtual void set(dimension_type i, Coefficient_traits::const_reference n) = 0;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
/*! \brief
Returns <CODE>true</CODE> if (*this)[i] is \f$0\f$, for each i in
[start, end).
*/
virtual bool all_zeroes(dimension_type start, dimension_type end) const = 0;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
/*! \brief
Returns the number of zero coefficient in [start, end).
*/
virtual dimension_type
num_zeroes(dimension_type start, dimension_type end) const = 0;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
/*! \brief
Returns the gcd of the nonzero coefficients in [start,end). If all the
coefficients in this range are 0 returns 0.
*/
virtual Coefficient gcd(dimension_type start, dimension_type end) const = 0;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
virtual void exact_div_assign(Coefficient_traits::const_reference c,
dimension_type start, dimension_type end) = 0;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Equivalent to <CODE>(*this)[i] *= n</CODE>, for each i in [start, end).
virtual void mul_assign(Coefficient_traits::const_reference n,
dimension_type start, dimension_type end) = 0;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Linearly combines \p *this with \p y so that the coefficient of \p v
//! is 0.
/*!
\param y
The expression that will be combined with \p *this object;
\param i
The index of the coefficient that has to become \f$0\f$.
Computes a linear combination of \p *this and \p y having
the i-th coefficient equal to \f$0\f$. Then it assigns
the resulting expression to \p *this.
\p *this and \p y must have the same space dimension.
*/
virtual void
linear_combine(const Linear_Expression_Interface& y, dimension_type i) = 0;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Equivalent to <CODE>(*this)[i] = (*this)[i] * c1 + y[i] * c2</CODE>,
//! for each i in [start, end).
virtual void linear_combine(const Linear_Expression_Interface& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end) = 0;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Equivalent to <CODE>(*this)[i] = (*this)[i] * c1 + y[i] * c2</CODE>,
//! for each i in [start, end). c1 and c2 may be zero.
virtual void linear_combine_lax(const Linear_Expression_Interface& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end) = 0;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Returns the index of the last nonzero element, or 0 if there are no
//! nonzero elements.
virtual dimension_type last_nonzero() const = 0;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Returns the index of the last nonzero element in [first,last), or last
//! if there are no nonzero elements.
virtual dimension_type
last_nonzero(dimension_type first, dimension_type last) const = 0;
//! Returns the index of the first nonzero element, or \p last if there are no
//! nonzero elements, considering only elements in [first,last).
virtual dimension_type
first_nonzero(dimension_type first, dimension_type last) const = 0;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
/*! \brief
Returns <CODE>true</CODE> if each coefficient in [start,end) is *not* in
\f$0\f$, disregarding coefficients of variables in \p vars.
*/
virtual bool
all_zeroes_except(const Variables_Set& vars,
dimension_type start, dimension_type end) const = 0;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Sets results to the sum of (*this)[i]*y[i], for each i in [start,end).
virtual void
scalar_product_assign(Coefficient& result,
const Linear_Expression_Interface& y,
dimension_type start, dimension_type end) const = 0;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Computes the sign of the sum of (*this)[i]*y[i],
//! for each i in [start,end).
virtual int
scalar_product_sign(const Linear_Expression_Interface& y,
dimension_type start, dimension_type end) const = 0;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Removes from the set x all the indexes of nonzero elements of *this.
virtual void
has_a_free_dimension_helper(std::set<dimension_type>& x) const = 0;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Returns \p true if (*this)[i] is equal to x[i], for each i in [start,end).
virtual bool is_equal_to(const Linear_Expression_Interface& x,
dimension_type start, dimension_type end) const = 0;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Returns \p true if (*this)[i]*c1 is equal to x[i]*c2, for each i in
//! [start,end).
virtual bool is_equal_to(const Linear_Expression_Interface& x,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end) const = 0;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Sets `row' to a copy of the row that implements *this.
virtual void get_row(Dense_Row& row) const = 0;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Sets `row' to a copy of the row that implements *this.
virtual void get_row(Sparse_Row& row) const = 0;
};
/* Automatically generated from PPL source file ../src/Linear_Expression_Impl_defs.hh line 35. */
namespace Parma_Polyhedra_Library {
namespace IO_Operators {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Output operator.
/*! \relates Parma_Polyhedra_Library::Linear_Expression_Impl */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Row>
std::ostream&
operator<<(std::ostream& s, const Linear_Expression_Impl<Row>& e);
} // namespace IO_Operators
} // namespace Parma_Polyhedra_Library
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! A linear expression.
/*! \ingroup PPL_CXX_interface
An object of the class Linear_Expression_Impl represents the linear
expression
\f[
\sum_{i=0}^{n-1} a_i x_i + b
\f]
where \f$n\f$ is the dimension of the vector space,
each \f$a_i\f$ is the integer coefficient
of the \f$i\f$-th variable \f$x_i\f$
and \f$b\f$ is the integer for the inhomogeneous term.
\par How to build a linear expression.
Linear expressions are the basic blocks for defining
both constraints (i.e., linear equalities or inequalities)
and generators (i.e., lines, rays, points and closure points).
A full set of functions is defined to provide a convenient interface
for building complex linear expressions starting from simpler ones
and from objects of the classes Variable and Coefficient:
available operators include unary negation,
binary addition and subtraction,
as well as multiplication by a Coefficient.
The space dimension of a linear expression is defined as the maximum
space dimension of the arguments used to build it:
in particular, the space dimension of a Variable <CODE>x</CODE>
is defined as <CODE>x.id()+1</CODE>,
whereas all the objects of the class Coefficient have space dimension zero.
\par Example
The following code builds the linear expression \f$4x - 2y - z + 14\f$,
having space dimension \f$3\f$:
\code
Linear_Expression_Impl e = 4*x - 2*y - z + 14;
\endcode
Another way to build the same linear expression is:
\code
Linear_Expression_Impl e1 = 4*x;
Linear_Expression_Impl e2 = 2*y;
Linear_Expression_Impl e3 = z;
Linear_Expression_Impl e = Linear_Expression_Impl(14);
e += e1 - e2 - e3;
\endcode
Note that \p e1, \p e2 and \p e3 have space dimension 1, 2 and 3,
respectively; also, in the fourth line of code, \p e is created
with space dimension zero and then extended to space dimension 3
in the fifth line.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Row>
class Parma_Polyhedra_Library::Linear_Expression_Impl
: public Linear_Expression_Interface {
public:
//! Default constructor: returns a copy of Linear_Expression_Impl::zero().
Linear_Expression_Impl();
//! Ordinary copy constructor.
Linear_Expression_Impl(const Linear_Expression_Impl& e);
//! Copy constructor for other row types.
template <typename Row2>
Linear_Expression_Impl(const Linear_Expression_Impl<Row2>& e);
//! Copy constructor from any implementation of Linear_Expression_Interface.
Linear_Expression_Impl(const Linear_Expression_Interface& e);
//! Destructor.
virtual ~Linear_Expression_Impl();
//! Checks if all the invariants are satisfied.
virtual bool OK() const;
/*! \brief
Builds the linear expression corresponding
to the inhomogeneous term \p n.
*/
explicit Linear_Expression_Impl(Coefficient_traits::const_reference n);
//! Builds the linear expression corresponding to the variable \p v.
/*!
\exception std::length_error
Thrown if the space dimension of \p v exceeds
<CODE>Linear_Expression_Impl::max_space_dimension()</CODE>.
*/
Linear_Expression_Impl(Variable v);
//! Returns the current representation of this linear expression.
virtual Representation representation() const;
//! An interface for const iterators on the expression (homogeneous)
//! coefficients that are nonzero.
/*!
These iterators are invalidated by operations that modify the expression.
*/
class const_iterator: public const_iterator_interface {
public:
explicit const_iterator(const Row& row, dimension_type i);
//! Returns a copy of *this.
//! This returns a pointer to dynamic-allocated memory. The caller has the
//! duty to free the memory when it's not needed anymore.
virtual const_iterator_interface* clone() const;
//! Navigates to the next nonzero coefficient.
//! Note that this method does *not* return a reference, to increase
//! efficiency since it's virtual.
virtual void operator++();
//! Navigates to the previous nonzero coefficient.
//! Note that this method does *not* return a reference, to increase
//! efficiency since it's virtual.
virtual void operator--();
//! Returns the current element.
virtual reference operator*() const;
//! Returns the variable of the coefficient pointed to by \c *this.
/*!
\returns the variable of the coefficient pointed to by \c *this.
*/
virtual Variable variable() const;
//! Compares \p *this with x .
/*!
\param x
The %iterator that will be compared with *this.
*/
virtual bool operator==(const const_iterator_interface& x) const;
private:
void skip_zeroes_forward();
void skip_zeroes_backward();
const Row* row;
typename Row::const_iterator itr;
};
//! This returns a pointer to dynamic-allocated memory. The caller has the
//! duty to free the memory when it's not needed anymore.
virtual const_iterator_interface* begin() const;
//! This returns a pointer to dynamic-allocated memory. The caller has the
//! duty to free the memory when it's not needed anymore.
virtual const_iterator_interface* end() const;
//! This returns a pointer to dynamic-allocated memory. The caller has the
//! duty to free the memory when it's not needed anymore.
//! Returns (a pointer to) an iterator that points to the first nonzero
//! coefficient of a variable greater than or equal to v, or at end if no
//! such coefficient exists.
virtual const_iterator_interface* lower_bound(Variable v) const;
//! Returns the maximum space dimension a Linear_Expression_Impl can handle.
static dimension_type max_space_dimension();
//! Returns the dimension of the vector space enclosing \p *this.
virtual dimension_type space_dimension() const;
//! Sets the dimension of the vector space enclosing \p *this to \p n .
virtual void set_space_dimension(dimension_type n);
//! Returns the coefficient of \p v in \p *this.
virtual Coefficient_traits::const_reference coefficient(Variable v) const;
//! Sets the coefficient of \p v in \p *this to \p n.
virtual void set_coefficient(Variable v,
Coefficient_traits::const_reference n);
//! Returns the inhomogeneous term of \p *this.
virtual Coefficient_traits::const_reference inhomogeneous_term() const;
//! Sets the inhomogeneous term of \p *this to \p n.
virtual void set_inhomogeneous_term(Coefficient_traits::const_reference n);
//! Linearly combines \p *this with \p y so that the coefficient of \p v
//! is 0.
/*!
\param y
The expression that will be combined with \p *this object;
\param v
The variable whose coefficient has to become \f$0\f$.
Computes a linear combination of \p *this and \p y having
the coefficient of variable \p v equal to \f$0\f$. Then it assigns
the resulting expression to \p *this.
\p *this and \p y must have the same space dimension.
*/
virtual void linear_combine(const Linear_Expression_Interface& y, Variable v);
//! Equivalent to <CODE>*this = *this * c1 + y * c2</CODE>, but assumes that
//! \p *this and \p y have the same space dimension.
virtual void linear_combine(const Linear_Expression_Interface& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2);
//! Equivalent to <CODE>*this = *this * c1 + y * c2</CODE>.
//! c1 and c2 may be 0.
virtual void linear_combine_lax(const Linear_Expression_Interface& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2);
//! Swaps the coefficients of the variables \p v1 and \p v2 .
virtual void swap_space_dimensions(Variable v1, Variable v2);
//! Removes all the specified dimensions from the expression.
/*!
The space dimension of the variable with the highest space
dimension in \p vars must be at most the space dimension
of \p this.
*/
virtual void remove_space_dimensions(const Variables_Set& vars);
//! Shift by \p n positions the coefficients of variables, starting from
//! the coefficient of \p v. This increases the space dimension by \p n.
virtual void shift_space_dimensions(Variable v, dimension_type n);
//! Permutes the space dimensions of the expression.
/*!
\param cycle
A vector representing a cycle of the permutation according to which the
space dimensions must be rearranged.
The \p cycle vector represents a cycle of a permutation of space
dimensions.
For example, the permutation
\f$ \{ x_1 \mapsto x_2, x_2 \mapsto x_3, x_3 \mapsto x_1 \}\f$ can be
represented by the vector containing \f$ x_1, x_2, x_3 \f$.
*/
virtual void permute_space_dimensions(const std::vector<Variable>& cycle);
//! Returns <CODE>true</CODE> if and only if \p *this is \f$0\f$.
virtual bool is_zero() const;
/*! \brief
Returns <CODE>true</CODE> if and only if all the homogeneous
terms of \p *this are \f$0\f$.
*/
virtual bool all_homogeneous_terms_are_zero() const;
/*! \brief
Returns a lower bound to the total size in bytes of the memory
occupied by \p *this.
*/
virtual memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
virtual memory_size_type external_memory_in_bytes() const;
//! Writes to \p s an ASCII representation of \p *this.
virtual void ascii_dump(std::ostream& s) const;
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
virtual bool ascii_load(std::istream& s);
//! Copy constructor with a specified space dimension.
Linear_Expression_Impl(const Linear_Expression_Interface& e,
dimension_type space_dim);
//! Returns \p true if *this is equal to \p x.
//! Note that (*this == x) has a completely different meaning.
virtual bool is_equal_to(const Linear_Expression_Interface& x) const;
//! Normalizes the modulo of the coefficients and of the inhomogeneous term
//! so that they are mutually prime.
/*!
Computes the Greatest Common Divisor (GCD) among the coefficients
and the inhomogeneous term and normalizes them by the GCD itself.
*/
virtual void normalize();
//! Ensures that the first nonzero homogeneous coefficient is positive,
//! by negating the row if necessary.
virtual void sign_normalize();
/*! \brief
Negates the elements from index \p first (included)
to index \p last (excluded).
*/
virtual void negate(dimension_type first, dimension_type last);
virtual Linear_Expression_Impl&
operator+=(Coefficient_traits::const_reference n);
virtual Linear_Expression_Impl&
operator-=(Coefficient_traits::const_reference n);
//! The basic comparison function.
/*! \relates Linear_Expression_Impl
\returns
-1 or -2 if x is less than y, 0 if they are equal and 1 or 2 is y
is greater. The absolute value of the result is 1 if the difference
is only in the inhomogeneous terms, 2 otherwise.
The order is a lexicographic. It starts comparing the variables'
coefficient, starting from Variable(0), and at the end it compares
the inhomogeneous terms.
*/
virtual int compare(const Linear_Expression_Interface& y) const;
virtual Linear_Expression_Impl&
operator+=(const Linear_Expression_Interface& e2);
virtual Linear_Expression_Impl& operator+=(const Variable v);
virtual Linear_Expression_Impl&
operator-=(const Linear_Expression_Interface& e2);
virtual Linear_Expression_Impl& operator-=(const Variable v);
virtual Linear_Expression_Impl&
operator*=(Coefficient_traits::const_reference n);
virtual Linear_Expression_Impl&
operator/=(Coefficient_traits::const_reference n);
virtual void negate();
virtual Linear_Expression_Impl&
add_mul_assign(Coefficient_traits::const_reference n, const Variable v);
virtual Linear_Expression_Impl&
sub_mul_assign(Coefficient_traits::const_reference n, const Variable v);
virtual void add_mul_assign(Coefficient_traits::const_reference factor,
const Linear_Expression_Interface& e2);
virtual void sub_mul_assign(Coefficient_traits::const_reference factor,
const Linear_Expression_Interface& e2);
virtual void print(std::ostream& s) const;
/*! \brief
Returns <CODE>true</CODE> if the coefficient of each variable in
\p vars[i] is \f$0\f$.
*/
virtual bool all_zeroes(const Variables_Set& vars) const;
//! Returns true if there is a variable in [first,last) whose coefficient
//! is nonzero in both *this and x.
virtual bool have_a_common_variable(const Linear_Expression_Interface& x,
Variable first, Variable last) const;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Returns the i-th coefficient.
virtual Coefficient_traits::const_reference get(dimension_type i) const;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Sets the i-th coefficient to n.
virtual void set(dimension_type i, Coefficient_traits::const_reference n);
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
/*! \brief
Returns <CODE>true</CODE> if (*this)[i] is \f$0\f$, for each i in
[start, end).
*/
virtual bool all_zeroes(dimension_type start, dimension_type end) const;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
/*! \brief
Returns the number of zero coefficient in [start, end).
*/
virtual dimension_type num_zeroes(dimension_type start, dimension_type end) const;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
/*! \brief
Returns the gcd of the nonzero coefficients in [start,end). If all the
coefficients in this range are 0 returns 0.
*/
virtual Coefficient gcd(dimension_type start, dimension_type end) const;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
virtual void exact_div_assign(Coefficient_traits::const_reference c,
dimension_type start, dimension_type end);
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Equivalent to <CODE>(*this)[i] *= n</CODE>, for each i in [start, end).
virtual void mul_assign(Coefficient_traits::const_reference n,
dimension_type start, dimension_type end);
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Linearly combines \p *this with \p y so that the coefficient of \p v
//! is 0.
/*!
\param y
The expression that will be combined with \p *this object;
\param i
The index of the coefficient that has to become \f$0\f$.
Computes a linear combination of \p *this and \p y having
the i-th coefficient equal to \f$0\f$. Then it assigns
the resulting expression to \p *this.
\p *this and \p y must have the same space dimension.
*/
virtual void
linear_combine(const Linear_Expression_Interface& y, dimension_type i);
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Equivalent to <CODE>(*this)[i] = (*this)[i] * c1 + y[i] * c2</CODE>,
//! for each i in [start, end).
virtual void linear_combine(const Linear_Expression_Interface& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end);
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Equivalent to <CODE>(*this)[i] = (*this)[i] * c1 + y[i] * c2</CODE>,
//! for each i in [start, end). c1 and c2 may be zero.
virtual void linear_combine_lax(const Linear_Expression_Interface& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end);
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Returns the index of the last nonzero element, or 0 if there are no
//! nonzero elements.
virtual dimension_type last_nonzero() const;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
/*! \brief
Returns <CODE>true</CODE> if each coefficient in [start,end) is *not* in
\f$0\f$, disregarding coefficients of variables in \p vars.
*/
virtual bool
all_zeroes_except(const Variables_Set& vars,
dimension_type start, dimension_type end) const;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Sets results to the sum of (*this)[i]*y[i], for each i in [start,end).
virtual void
scalar_product_assign(Coefficient& result,
const Linear_Expression_Interface& y,
dimension_type start, dimension_type end) const;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Computes the sign of the sum of (*this)[i]*y[i], for each i in [start,end).
virtual int
scalar_product_sign(const Linear_Expression_Interface& y,
dimension_type start, dimension_type end) const;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Returns the index of the first nonzero element, or \p last if there are no
//! nonzero elements, considering only elements in [first,last).
virtual dimension_type
first_nonzero(dimension_type first, dimension_type last) const;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Returns the index of the last nonzero element in [first,last), or last
//! if there are no nonzero elements.
virtual dimension_type
last_nonzero(dimension_type first, dimension_type last) const;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Removes from the set x all the indexes of nonzero elements of *this.
virtual void has_a_free_dimension_helper(std::set<dimension_type>& x) const;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Returns \p true if (*this)[i] is equal to x[i], for each i in [start,end).
virtual bool is_equal_to(const Linear_Expression_Interface& x,
dimension_type start, dimension_type end) const;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Returns \p true if (*this)[i]*c1 is equal to x[i]*c2, for each i in
//! [start,end).
virtual bool is_equal_to(const Linear_Expression_Interface& x,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end) const;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Sets `row' to a copy of the row that implements *this.
virtual void get_row(Dense_Row& row) const;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Sets `row' to a copy of the row that implements *this.
virtual void get_row(Sparse_Row& row) const;
//! Implementation sizing constructor.
/*!
The bool parameter is just to avoid problems with the constructor
Linear_Expression_Impl(Coefficient_traits::const_reference n).
*/
Linear_Expression_Impl(dimension_type space_dim, bool);
//! Linearly combines \p *this with \p y so that the coefficient of \p v
//! is 0.
/*!
\param y
The expression that will be combined with \p *this object;
\param v
The variable whose coefficient has to become \f$0\f$.
Computes a linear combination of \p *this and \p y having
the coefficient of variable \p v equal to \f$0\f$. Then it assigns
the resulting expression to \p *this.
\p *this and \p y must have the same space dimension.
*/
template <typename Row2>
void linear_combine(const Linear_Expression_Impl<Row2>& y, Variable v);
//! Equivalent to <CODE>*this = *this * c1 + y * c2</CODE>, but assumes that
//! \p *this and \p y have the same space dimension.
template <typename Row2>
void linear_combine(const Linear_Expression_Impl<Row2>& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2);
//! Equivalent to <CODE>*this = *this * c1 + y * c2</CODE>.
//! c1 and c2 may be 0.
template <typename Row2>
void linear_combine_lax(const Linear_Expression_Impl<Row2>& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2);
//! Returns \p true if *this is equal to \p x.
//! Note that (*this == x) has a completely different meaning.
template <typename Row2>
bool is_equal_to(const Linear_Expression_Impl<Row2>& x) const;
template <typename Row2>
Linear_Expression_Impl& operator+=(const Linear_Expression_Impl<Row2>& e2);
template <typename Row2>
Linear_Expression_Impl& operator-=(const Linear_Expression_Impl<Row2>& e2);
template <typename Row2>
Linear_Expression_Impl&
sub_mul_assign(Coefficient_traits::const_reference n,
const Linear_Expression_Impl<Row2>& y,
dimension_type start, dimension_type end);
template <typename Row2>
void add_mul_assign(Coefficient_traits::const_reference factor,
const Linear_Expression_Impl<Row2>& e2);
template <typename Row2>
void sub_mul_assign(Coefficient_traits::const_reference factor,
const Linear_Expression_Impl<Row2>& e2);
//! Linearly combines \p *this with \p y so that the coefficient of \p v
//! is 0.
/*!
\param y
The expression that will be combined with \p *this object;
\param i
The index of the coefficient that has to become \f$0\f$.
Computes a linear combination of \p *this and \p y having
the i-th coefficient equal to \f$0\f$. Then it assigns
the resulting expression to \p *this.
\p *this and \p y must have the same space dimension.
*/
template <typename Row2>
void linear_combine(const Linear_Expression_Impl<Row2>& y, dimension_type i);
//! Equivalent to <CODE>(*this)[i] = (*this)[i] * c1 + y[i] * c2</CODE>,
//! for each i in [start, end).
template <typename Row2>
void linear_combine(const Linear_Expression_Impl<Row2>& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end);
//! Equivalent to <CODE>(*this)[i] = (*this)[i] * c1 + y[i] * c2</CODE>,
//! for each i in [start, end). c1 and c2 may be zero.
template <typename Row2>
void linear_combine_lax(const Linear_Expression_Impl<Row2>& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end);
//! The basic comparison function.
/*! \relates Linear_Expression_Impl
\returns
-1 or -2 if x is less than y, 0 if they are equal and 1 or 2 is y
is greater. The absolute value of the result is 1 if the difference
is only in the inhomogeneous terms, 2 otherwise.
The order is a lexicographic. It starts comparing the variables'
coefficient, starting from Variable(0), and at the end it compares
the inhomogeneous terms.
*/
template <typename Row2>
int compare(const Linear_Expression_Impl<Row2>& y) const;
//! Sets results to the sum of (*this)[i]*y[i], for each i in [start,end).
template <typename Row2>
void
scalar_product_assign(Coefficient& result,
const Linear_Expression_Impl<Row2>& y,
dimension_type start, dimension_type end) const;
//! Computes the sign of the sum of (*this)[i]*y[i],
//! for each i in [start,end).
template <typename Row2>
int scalar_product_sign(const Linear_Expression_Impl<Row2>& y,
dimension_type start, dimension_type end) const;
//! Returns \p true if (*this)[i] is equal to x[i], for each i in [start,end).
template <typename Row2>
bool is_equal_to(const Linear_Expression_Impl<Row2>& x,
dimension_type start, dimension_type end) const;
//! Returns \p true if (*this)[i]*c1 is equal to x[i]*c2, for each i in
//! [start,end).
template <typename Row2>
bool is_equal_to(const Linear_Expression_Impl<Row2>& x,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end) const;
//! Returns true if there is a variable in [first,last) whose coefficient
//! is nonzero in both *this and x.
template <typename Row2>
bool have_a_common_variable(const Linear_Expression_Impl<Row2>& x,
Variable first, Variable last) const;
private:
void construct(const Linear_Expression_Interface& e);
void construct(const Linear_Expression_Interface& e,
dimension_type space_dim);
template <typename Row2>
void construct(const Linear_Expression_Impl<Row2>& e);
template <typename Row2>
void construct(const Linear_Expression_Impl<Row2>& e,
dimension_type space_dim);
Row row;
template <typename Row2>
friend class Linear_Expression_Impl;
}; // class Parma_Polyhedra_Library::Linear_Expression_Impl
namespace Parma_Polyhedra_Library {
// NOTE: declaring explicit specializations.
template <>
bool
Linear_Expression_Impl<Dense_Row>::OK() const;
template <>
bool
Linear_Expression_Impl<Sparse_Row>::OK() const;
template <>
bool
Linear_Expression_Impl<Dense_Row>::all_homogeneous_terms_are_zero() const;
template <>
bool
Linear_Expression_Impl<Sparse_Row>::all_homogeneous_terms_are_zero() const;
template <>
bool
Linear_Expression_Impl<Dense_Row>::all_zeroes(dimension_type start,
dimension_type end) const;
template <>
bool
Linear_Expression_Impl<Sparse_Row>::all_zeroes(dimension_type start,
dimension_type end) const;
template <>
bool
Linear_Expression_Impl<Dense_Row>
::all_zeroes(const Variables_Set& vars) const;
template <>
bool
Linear_Expression_Impl<Sparse_Row>
::all_zeroes(const Variables_Set& vars) const;
template <>
bool
Linear_Expression_Impl<Dense_Row>
::all_zeroes_except(const Variables_Set& vars,
dimension_type start, dimension_type end) const;
template <>
bool
Linear_Expression_Impl<Sparse_Row>
::all_zeroes_except(const Variables_Set& vars,
dimension_type start, dimension_type end) const;
template <>
dimension_type
Linear_Expression_Impl<Dense_Row>
::first_nonzero(dimension_type first, dimension_type last) const;
template <>
dimension_type
Linear_Expression_Impl<Sparse_Row>
::first_nonzero(dimension_type first, dimension_type last) const;
template <>
Coefficient
Linear_Expression_Impl<Dense_Row>::gcd(dimension_type start,
dimension_type end) const;
template <>
Coefficient
Linear_Expression_Impl<Sparse_Row>::gcd(dimension_type start,
dimension_type end) const;
template <>
void
Linear_Expression_Impl<Dense_Row>
::has_a_free_dimension_helper(std::set<dimension_type>& x) const;
template <>
void
Linear_Expression_Impl<Sparse_Row>
::has_a_free_dimension_helper(std::set<dimension_type>& x) const;
template <>
template <>
bool
Linear_Expression_Impl<Dense_Row>
::have_a_common_variable(const Linear_Expression_Impl<Dense_Row>& y,
Variable first, Variable last) const;
template <>
template <>
bool
Linear_Expression_Impl<Dense_Row>
::have_a_common_variable(const Linear_Expression_Impl<Sparse_Row>& y,
Variable first, Variable last) const;
template <>
template <>
bool
Linear_Expression_Impl<Sparse_Row>
::have_a_common_variable(const Linear_Expression_Impl<Dense_Row>& y,
Variable first, Variable last) const;
template <>
template <>
bool
Linear_Expression_Impl<Sparse_Row>
::have_a_common_variable(const Linear_Expression_Impl<Sparse_Row>& y,
Variable first, Variable last) const;
template <>
bool
Linear_Expression_Impl<Dense_Row>::is_zero() const;
template <>
bool
Linear_Expression_Impl<Sparse_Row>::is_zero() const;
template <>
dimension_type
Linear_Expression_Impl<Dense_Row>::last_nonzero() const;
template <>
dimension_type
Linear_Expression_Impl<Sparse_Row>::last_nonzero() const;
template <>
dimension_type
Linear_Expression_Impl<Dense_Row>
::last_nonzero(dimension_type first, dimension_type last) const;
template <>
dimension_type
Linear_Expression_Impl<Sparse_Row>
::last_nonzero(dimension_type first, dimension_type last) const;
template <>
dimension_type
Linear_Expression_Impl<Dense_Row>::num_zeroes(dimension_type start,
dimension_type end) const;
template <>
dimension_type
Linear_Expression_Impl<Sparse_Row>::num_zeroes(dimension_type start,
dimension_type end) const;
template <>
void
Linear_Expression_Impl<Dense_Row>
::remove_space_dimensions(const Variables_Set& vars);
template <>
void
Linear_Expression_Impl<Sparse_Row>
::remove_space_dimensions(const Variables_Set& vars);
template <>
Representation
Linear_Expression_Impl<Dense_Row>::representation() const;
template <>
Representation
Linear_Expression_Impl<Sparse_Row>::representation() const;
template <>
void
Linear_Expression_Impl<Dense_Row>::const_iterator::skip_zeroes_backward();
template <>
void
Linear_Expression_Impl<Sparse_Row>::const_iterator::skip_zeroes_backward();
template <>
void
Linear_Expression_Impl<Dense_Row>::const_iterator::skip_zeroes_forward();
template <>
void
Linear_Expression_Impl<Sparse_Row>::const_iterator::skip_zeroes_forward();
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Linear_Expression_Impl_inlines.hh line 1. */
/* Linear_Expression_Impl class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/math_utilities_defs.hh line 1. */
/* Declarations of some math utility functions.
*/
/* Automatically generated from PPL source file ../src/math_utilities_defs.hh line 29. */
#include <gmpxx.h>
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Extract the numerator and denominator components of \p from.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
typename Enable_If<Is_Native_Or_Checked<T>::value, void>::type
numer_denom(const T& from,
Coefficient& numer, Coefficient& denom);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Divides \p x by \p y into \p to, rounding the result towards plus infinity.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
typename Enable_If<Is_Native_Or_Checked<T>::value, void>::type
div_round_up(T& to,
Coefficient_traits::const_reference x,
Coefficient_traits::const_reference y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Assigns to \p x the minimum between \p x and \p y.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename N>
void
min_assign(N& x, const N& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Assigns to \p x the maximum between \p x and \p y.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename N>
void
max_assign(N& x, const N& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x is an even number.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
typename Enable_If<Is_Native_Or_Checked<T>::value, bool>::type
is_even(const T& x);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \f$x = -y\f$.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
typename Enable_If<Is_Native_Or_Checked<T>::value, bool>::type
is_additive_inverse(const T& x, const T& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
If \f$g\f$ is the GCD of \p x and \p y, the values of \p x and \p y
divided by \f$g\f$ are assigned to \p n_x and \p n_y, respectively.
\note
\p x and \p n_x may be the same object and likewise for
\p y and \p n_y. Any other aliasing results in undefined behavior.
*/
#endif
void
normalize2(Coefficient_traits::const_reference x,
Coefficient_traits::const_reference y,
Coefficient& n_x, Coefficient& n_y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x is in canonical form.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool
is_canonical(const mpq_class& x);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns a mask for the lowest \p n bits,
#endif
template <typename T>
T
low_bits_mask(unsigned n);
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/math_utilities_inlines.hh line 1. */
/* Implementation of some math utility functions: inline functions.
*/
/* Automatically generated from PPL source file ../src/math_utilities_inlines.hh line 28. */
#include <limits>
/* Automatically generated from PPL source file ../src/math_utilities_inlines.hh line 30. */
namespace Parma_Polyhedra_Library {
inline void
normalize2(Coefficient_traits::const_reference x,
Coefficient_traits::const_reference y,
Coefficient& n_x, Coefficient& n_y) {
PPL_DIRTY_TEMP_COEFFICIENT(gcd);
gcd_assign(gcd, x, y);
exact_div_assign(n_x, x, gcd);
exact_div_assign(n_y, y, gcd);
}
template <typename T>
inline T
low_bits_mask(const unsigned n) {
PPL_ASSERT(n < unsigned(std::numeric_limits<T>::digits));
return ~((~static_cast<T>(0)) << n);
}
template <typename T>
inline typename Enable_If<Is_Native_Or_Checked<T>::value, void>::type
numer_denom(const T& from,
Coefficient& numer, Coefficient& denom) {
PPL_ASSERT(!is_not_a_number(from)
&& !is_minus_infinity(from)
&& !is_plus_infinity(from));
PPL_DIRTY_TEMP(mpq_class, q);
assign_r(q, from, ROUND_NOT_NEEDED);
numer = q.get_num();
denom = q.get_den();
}
template <typename T>
inline typename Enable_If<Is_Native_Or_Checked<T>::value, void>::type
div_round_up(T& to,
Coefficient_traits::const_reference x,
Coefficient_traits::const_reference y) {
PPL_DIRTY_TEMP(mpq_class, q_x);
PPL_DIRTY_TEMP(mpq_class, q_y);
// Note: this code assumes that a Coefficient is always convertible
// to an mpq_class without loss of precision.
assign_r(q_x, x, ROUND_NOT_NEEDED);
assign_r(q_y, y, ROUND_NOT_NEEDED);
div_assign_r(q_x, q_x, q_y, ROUND_NOT_NEEDED);
assign_r(to, q_x, ROUND_UP);
}
template <typename N>
inline void
min_assign(N& x, const N& y) {
if (x > y)
x = y;
}
template <typename N>
inline void
max_assign(N& x, const N& y) {
if (x < y)
x = y;
}
template <typename T>
inline typename Enable_If<Is_Native_Or_Checked<T>::value, bool>::type
is_even(const T& x) {
T mod;
return umod_2exp_assign_r(mod, x, 1, ROUND_DIRECT | ROUND_STRICT_RELATION) == V_EQ
&& mod == 0;
}
template <typename T>
inline typename Enable_If<Is_Native_Or_Checked<T>::value, bool>::type
is_additive_inverse(const T& x, const T& y) {
T negated_x;
return neg_assign_r(negated_x, x, ROUND_DIRECT | ROUND_STRICT_RELATION) == V_EQ
&& negated_x == y;
}
inline bool
is_canonical(const mpq_class& x) {
if (x.get_den() <= 0)
return false;
PPL_DIRTY_TEMP(mpq_class, temp);
temp = x;
temp.canonicalize();
return temp.get_num() == x.get_num();
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/math_utilities_defs.hh line 109. */
/* Automatically generated from PPL source file ../src/Linear_Expression_Impl_inlines.hh line 28. */
#include <stdexcept>
namespace Parma_Polyhedra_Library {
template <typename Row>
inline dimension_type
Linear_Expression_Impl<Row>::max_space_dimension() {
return Row::max_size() - 1;
}
template <typename Row>
inline
Linear_Expression_Impl<Row>::Linear_Expression_Impl()
: row(1) {
PPL_ASSERT(OK());
}
template <typename Row>
inline
Linear_Expression_Impl<Row>
::Linear_Expression_Impl(dimension_type space_dim, bool)
: row(space_dim + 1) {
PPL_ASSERT(OK());
}
template <typename Row>
inline
Linear_Expression_Impl<Row>::~Linear_Expression_Impl() {
}
template <typename Row>
inline
Linear_Expression_Impl<Row>
::Linear_Expression_Impl(Coefficient_traits::const_reference n)
: row(1) {
if (n != 0)
row.insert(0, n);
PPL_ASSERT(OK());
}
template <typename Row>
inline dimension_type
Linear_Expression_Impl<Row>::space_dimension() const {
return row.size() - 1;
}
template <typename Row>
inline void
Linear_Expression_Impl<Row>::set_space_dimension(dimension_type n) {
row.resize(n + 1);
PPL_ASSERT(OK());
}
template <typename Row>
inline Coefficient_traits::const_reference
Linear_Expression_Impl<Row>::coefficient(Variable v) const {
if (v.space_dimension() > space_dimension())
return Coefficient_zero();
return row.get(v.id() + 1);
}
template <typename Row>
inline void
Linear_Expression_Impl<Row>
::set_coefficient(Variable v, Coefficient_traits::const_reference n) {
PPL_ASSERT(v.space_dimension() <= space_dimension());
const dimension_type i = v.space_dimension();
if (n == 0)
row.reset(i);
else
row.insert(i, n);
PPL_ASSERT(OK());
}
template <typename Row>
inline Coefficient_traits::const_reference
Linear_Expression_Impl<Row>::inhomogeneous_term() const {
return row.get(0);
}
template <typename Row>
inline void
Linear_Expression_Impl<Row>
::set_inhomogeneous_term(Coefficient_traits::const_reference n) {
if (n == 0)
row.reset(0);
else
row.insert(0, n);
PPL_ASSERT(OK());
}
template <typename Row>
inline void
Linear_Expression_Impl<Row>::swap_space_dimensions(Variable v1, Variable v2) {
row.swap_coefficients(v1.space_dimension(), v2.space_dimension());
PPL_ASSERT(OK());
}
template <typename Row>
inline void
Linear_Expression_Impl<Row>::shift_space_dimensions(Variable v,
dimension_type n) {
row.add_zeroes_and_shift(n, v.space_dimension());
PPL_ASSERT(OK());
}
template <typename Row>
inline memory_size_type
Linear_Expression_Impl<Row>::external_memory_in_bytes() const {
return row.external_memory_in_bytes();
}
template <typename Row>
inline memory_size_type
Linear_Expression_Impl<Row>::total_memory_in_bytes() const {
return external_memory_in_bytes() + sizeof(*this);
}
template <typename Row>
inline Linear_Expression_Impl<Row>&
Linear_Expression_Impl<Row>::operator+=(Coefficient_traits::const_reference n) {
typename Row::iterator itr = row.insert(0);
(*itr) += n;
if (*itr == 0)
row.reset(itr);
PPL_ASSERT(OK());
return *this;
}
template <typename Row>
inline Linear_Expression_Impl<Row>&
Linear_Expression_Impl<Row>::operator-=(Coefficient_traits::const_reference n) {
typename Row::iterator itr = row.insert(0);
(*itr) -= n;
if (*itr == 0)
row.reset(itr);
PPL_ASSERT(OK());
return *this;
}
template <typename Row>
inline void
Linear_Expression_Impl<Row>::normalize() {
row.normalize();
PPL_ASSERT(OK());
}
template <>
inline bool
Linear_Expression_Impl<Sparse_Row>::is_zero() const {
return row.num_stored_elements() == 0;
}
template <>
inline bool
Linear_Expression_Impl<Sparse_Row>::all_homogeneous_terms_are_zero() const {
return row.lower_bound(1) == row.end();
}
template <>
inline bool
Linear_Expression_Impl<Sparse_Row>::all_zeroes(dimension_type start,
dimension_type end) const {
return row.lower_bound(start) == row.lower_bound(end);
}
template <>
inline dimension_type
Linear_Expression_Impl<Sparse_Row>::num_zeroes(dimension_type start,
dimension_type end) const {
PPL_ASSERT(start <= end);
return (end - start)
- std::distance(row.lower_bound(start), row.lower_bound(end));
}
template <>
inline dimension_type
Linear_Expression_Impl<Sparse_Row>::last_nonzero() const {
if (row.num_stored_elements() == 0)
return 0;
Sparse_Row::const_iterator i = row.end();
--i;
return i.index();
}
template <>
inline dimension_type
Linear_Expression_Impl<Sparse_Row>
::first_nonzero(dimension_type first, dimension_type last) const {
PPL_ASSERT(first <= last);
PPL_ASSERT(last <= row.size());
Sparse_Row::const_iterator i = row.lower_bound(first);
if (i != row.end() && i.index() < last)
return i.index();
else
return last;
}
template <>
inline dimension_type
Linear_Expression_Impl<Sparse_Row>
::last_nonzero(dimension_type first, dimension_type last) const {
PPL_ASSERT(first <= last);
PPL_ASSERT(last <= row.size());
Sparse_Row::const_iterator itr1 = row.lower_bound(first);
Sparse_Row::const_iterator itr2 = row.lower_bound(last);
if (itr1 == itr2)
return last;
--itr2;
return itr2.index();
}
template <>
inline Representation
Linear_Expression_Impl<Dense_Row>::representation() const {
return DENSE;
}
template <>
inline Representation
Linear_Expression_Impl<Sparse_Row>::representation() const {
return SPARSE;
}
template <>
inline void
Linear_Expression_Impl<Sparse_Row>::const_iterator
::skip_zeroes_forward() {
// Nothing to do.
}
template <>
inline void
Linear_Expression_Impl<Sparse_Row>::const_iterator
::skip_zeroes_backward() {
// Nothing to do.
}
namespace IO_Operators {
template <typename Row>
inline std::ostream&
operator<<(std::ostream& s, const Linear_Expression_Impl<Row>& e) {
e.print(s);
return s;
}
} // namespace IO_Operators
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Linear_Expression_Impl_templates.hh line 1. */
/* Linear_Expression_Impl class implementation: non-inline template functions.
*/
/* Automatically generated from PPL source file ../src/Linear_Expression_Impl_templates.hh line 29. */
/* Automatically generated from PPL source file ../src/Constraint_defs.hh line 1. */
/* Constraint class declaration.
*/
/* Automatically generated from PPL source file ../src/Constraint_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Constraint;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Constraint_defs.hh line 28. */
/* Automatically generated from PPL source file ../src/Congruence_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Congruence;
}
/* Automatically generated from PPL source file ../src/Polyhedron_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Polyhedron;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/termination_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Termination_Helpers;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Octagonal_Shape_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename T>
class Octagonal_Shape;
class Octagonal_Shape_Helper;
}
/* Automatically generated from PPL source file ../src/Grid_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Grid;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Constraint_defs.hh line 35. */
/* Automatically generated from PPL source file ../src/Linear_Expression_defs.hh line 1. */
/* Linear_Expression class declaration.
*/
/* Automatically generated from PPL source file ../src/Linear_Expression_defs.hh line 28. */
/* Automatically generated from PPL source file ../src/Generator_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Generator;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Grid_Generator_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Grid_Generator;
}
/* Automatically generated from PPL source file ../src/Linear_System_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename Row>
class Linear_System;
template <typename Row>
class Linear_System_With_Bit_Matrix_iterator;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Constraint_System_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Constraint_System;
class Constraint_System_const_iterator;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Congruence_System_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Congruence_System;
}
/* Automatically generated from PPL source file ../src/PIP_Problem_types.hh line 1. */
namespace Parma_Polyhedra_Library {
//! Possible outcomes of the PIP_Problem solver.
/*! \ingroup PPL_CXX_interface */
enum PIP_Problem_Status {
//! The problem is unfeasible.
UNFEASIBLE_PIP_PROBLEM,
//! The problem has an optimal solution.
OPTIMIZED_PIP_PROBLEM
};
class PIP_Problem;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/BHRZ03_Certificate_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class BHRZ03_Certificate;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Scalar_Products_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Scalar_Products;
class Topology_Adjusted_Scalar_Product_Sign;
class Topology_Adjusted_Scalar_Product_Assign;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/MIP_Problem_types.hh line 1. */
namespace Parma_Polyhedra_Library {
//! Possible outcomes of the MIP_Problem solver.
/*! \ingroup PPL_CXX_interface */
enum MIP_Problem_Status {
//! The problem is unfeasible.
UNFEASIBLE_MIP_PROBLEM,
//! The problem is unbounded.
UNBOUNDED_MIP_PROBLEM,
//! The problem has an optimal solution.
OPTIMIZED_MIP_PROBLEM
};
class MIP_Problem;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/BD_Shape_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename T>
class BD_Shape;
class BD_Shape_Helpers;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Linear_Expression_defs.hh line 47. */
/* Automatically generated from PPL source file ../src/Expression_Adapter_defs.hh line 1. */
/* Expression_Adapter class declaration.
*/
/* Automatically generated from PPL source file ../src/Expression_Adapter_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Expression_Adapter_Base;
template <typename T>
class Expression_Adapter;
template <typename T>
class Expression_Adapter_Transparent;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Expression_Adapter_defs.hh line 32. */
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Adapters' base type (for template meta-programming).
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
class Parma_Polyhedra_Library::Expression_Adapter_Base {
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! An adapter for Linear_Expression objects.
/*!
The adapters are meant to provide read-only, customized access to the
Linear_Expression members in Constraint, Generator, Congruence and
Grid_Generator objects. They typically implement the user-level view
of these expressions.
\note
A few methods implement low-level access routines and will take
bare indexes as arguments (rather than Variable objects):
when such a bare index \c i is zero, the inhomogeneous term is meant;
when the bare index \c i is greater than zero, the coefficient of the
variable having id <CODE>i - 1</CODE> is meant.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
class Parma_Polyhedra_Library::Expression_Adapter
: public Expression_Adapter_Base {
public:
//! The type of this object.
typedef Expression_Adapter<T> const_reference;
//! The type obtained by one-level unwrapping.
typedef typename T::const_reference inner_type;
//! The raw, completely unwrapped type.
typedef typename T::raw_type raw_type;
//! Returns an adapter after one-level unwrapping.
inner_type inner() const;
//! The type of const iterators on coefficients.
typedef typename raw_type::const_iterator const_iterator;
//! Returns the current representation of \p *this.
Representation representation() const;
//! Iterator pointing to the first nonzero variable coefficient.
const_iterator begin() const;
//! Iterator pointing after the last nonzero variable coefficient.
const_iterator end() const;
//! Iterator pointing to the first nonzero variable coefficient
//! of a variable bigger than or equal to \p v.
const_iterator lower_bound(Variable v) const;
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
//! Returns the coefficient of \p v in \p *this.
Coefficient_traits::const_reference coefficient(Variable v) const;
//! Returns the inhomogeneous term of \p *this.
Coefficient_traits::const_reference inhomogeneous_term() const;
//! Returns <CODE>true</CODE> if and only if \p *this is zero.
bool is_zero() const;
/*! \brief
Returns <CODE>true</CODE> if and only if all the homogeneous
terms of \p *this are zero.
*/
bool all_homogeneous_terms_are_zero() const;
/*! \brief Returns \p true if \p *this is equal to \p y.
Note that <CODE>(*this == y)</CODE> has a completely different meaning.
*/
template <typename Expression>
bool is_equal_to(const Expression& y) const;
/*! \brief
Returns <CODE>true</CODE> if the coefficient of each variable in
\p vars is zero.
*/
bool all_zeroes(const Variables_Set& vars) const;
//! Returns the \p i -th coefficient.
Coefficient_traits::const_reference get(dimension_type i) const;
//! Returns the coefficient of variable \p v.
Coefficient_traits::const_reference get(Variable v) const;
/*! \brief
Returns <CODE>true</CODE> if (*this)[i] is zero,
for each i in [start, end).
*/
bool all_zeroes(dimension_type start, dimension_type end) const;
//! Returns the number of zero coefficient in [start, end).
dimension_type num_zeroes(dimension_type start, dimension_type end) const;
/*! \brief
Returns the gcd of the nonzero coefficients in [start,end).
Returns zero if all the coefficients in the range are zero.
*/
Coefficient gcd(dimension_type start, dimension_type end) const;
//! Returns the index of the last nonzero element, or zero if there are no
//! nonzero elements.
dimension_type last_nonzero() const;
//! Returns the index of the last nonzero element in [first,last),
//! or \p last if there are no nonzero elements.
dimension_type last_nonzero(dimension_type first, dimension_type last) const;
//! Returns the index of the first nonzero element, or \p last if there
//! are no nonzero elements, considering only elements in [first,last).
dimension_type first_nonzero(dimension_type first, dimension_type last) const;
/*! \brief
Returns <CODE>true</CODE> if all coefficients in [start,end),
except those corresponding to variables in \p vars, are zero.
*/
bool all_zeroes_except(const Variables_Set& vars,
dimension_type start, dimension_type end) const;
//! Removes from set \p x all the indexes of nonzero elements in \p *this.
void has_a_free_dimension_helper(std::set<dimension_type>& x) const;
//! Returns \c true if <CODE>(*this)[i]</CODE> is equal to <CODE>y[i]</CODE>,
//! for each i in [start,end).
template <typename Expression>
bool is_equal_to(const Expression& y,
dimension_type start, dimension_type end) const;
//! Returns \c true if <CODE>(*this)[i]*c1</CODE> is equal to
//! <CODE>y[i]*c2</CODE>, for each i in [start,end).
template <typename Expression>
bool is_equal_to(const Expression& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end) const;
//! Sets \p row to a copy of the row as adapted by \p *this.
void get_row(Dense_Row& row) const;
//! Sets \p row to a copy of the row as adapted by \p *this.
void get_row(Sparse_Row& row) const;
//! Returns \c true if there is a variable in [first,last) whose coefficient
//! is nonzero in both \p *this and \p y.
template <typename Expression>
bool have_a_common_variable(const Expression& y,
Variable first, Variable last) const;
protected:
//! Constructor.
explicit Expression_Adapter(const raw_type& expr);
//! The raw, completely unwrapped object subject to adaptation.
const raw_type& raw_;
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! A transparent adapter for Linear_Expression objects.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
class Parma_Polyhedra_Library::Expression_Adapter_Transparent
: public Expression_Adapter<T> {
typedef Expression_Adapter<T> base_type;
public:
//! The type of this object.
typedef Expression_Adapter_Transparent<T> const_reference;
//! The type obtained by one-level unwrapping.
typedef typename base_type::inner_type inner_type;
//! The raw, completely unwrapped type.
typedef typename base_type::raw_type raw_type;
//! The type of const iterators on coefficients.
typedef typename base_type::const_iterator const_iterator;
//! Constructor.
explicit Expression_Adapter_Transparent(const raw_type& expr);
};
/* Automatically generated from PPL source file ../src/Expression_Adapter_inlines.hh line 1. */
/* Expression_Adapter class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Expression_Adapter_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
template <typename T>
inline
Expression_Adapter<T>::Expression_Adapter(const raw_type& expr)
: raw_(expr) {
}
template <typename T>
inline typename Expression_Adapter<T>::inner_type
Expression_Adapter<T>::inner() const {
return inner_type(raw_);
}
template <typename T>
inline Representation
Expression_Adapter<T>::representation() const {
return inner().representation();
}
template <typename T>
inline typename Expression_Adapter<T>::const_iterator
Expression_Adapter<T>::begin() const {
return inner().begin();
}
template <typename T>
inline typename Expression_Adapter<T>::const_iterator
Expression_Adapter<T>::end() const {
return inner().end();
}
template <typename T>
inline typename Expression_Adapter<T>::const_iterator
Expression_Adapter<T>::lower_bound(Variable v) const {
return inner().lower_bound(v);
}
template <typename T>
inline dimension_type
Expression_Adapter<T>::space_dimension() const {
return inner().space_dimension();
}
template <typename T>
inline Coefficient_traits::const_reference
Expression_Adapter<T>::coefficient(Variable v) const {
return inner().coefficient(v);
}
template <typename T>
inline Coefficient_traits::const_reference
Expression_Adapter<T>::inhomogeneous_term() const {
return inner().inhomogeneous_term();
}
template <typename T>
inline bool
Expression_Adapter<T>::is_zero() const {
return inner().is_zero();
}
template <typename T>
inline bool
Expression_Adapter<T>::all_homogeneous_terms_are_zero() const {
return inner().all_homogeneous_terms_are_zero();
}
template <typename T>
template <typename Expression>
inline bool
Expression_Adapter<T>::is_equal_to(const Expression& y) const {
return inner().is_equal_to(y);
}
template <typename T>
inline bool
Expression_Adapter<T>
::all_zeroes(const Variables_Set& vars) const {
return inner().all_zeroes(vars);
}
template <typename T>
inline Coefficient_traits::const_reference
Expression_Adapter<T>::get(dimension_type i) const {
return inner().get(i);
}
template <typename T>
inline Coefficient_traits::const_reference
Expression_Adapter<T>::get(Variable v) const {
return inner().get(v);
}
template <typename T>
inline bool
Expression_Adapter<T>::all_zeroes(dimension_type start,
dimension_type end) const {
return inner().all_zeroes(start, end);
}
template <typename T>
inline dimension_type
Expression_Adapter<T>::num_zeroes(dimension_type start,
dimension_type end) const {
return inner().num_zeroes(start, end);
}
template <typename T>
inline Coefficient
Expression_Adapter<T>::gcd(dimension_type start,
dimension_type end) const {
return inner().gcd(start, end);
}
template <typename T>
inline dimension_type
Expression_Adapter<T>::last_nonzero() const {
return inner().last_nonzero();
}
template <typename T>
inline dimension_type
Expression_Adapter<T>::last_nonzero(dimension_type first,
dimension_type last) const {
return inner().last_nonzero(first, last);
}
template <typename T>
inline dimension_type
Expression_Adapter<T>::first_nonzero(dimension_type first,
dimension_type last) const {
return inner().first_nonzero(first, last);
}
template <typename T>
inline bool
Expression_Adapter<T>
::all_zeroes_except(const Variables_Set& vars,
dimension_type start, dimension_type end) const {
return inner().all_zeroes_except(vars, start, end);
}
template <typename T>
inline void
Expression_Adapter<T>
::has_a_free_dimension_helper(std::set<dimension_type>& x) const {
inner().has_a_free_dimension_helper(x);
}
template <typename T>
template <typename Expression>
inline bool
Expression_Adapter<T>
::is_equal_to(const Expression& y,
dimension_type start, dimension_type end) const {
return inner().is_equal_to(y, start, end);
}
template <typename T>
template <typename Expression>
inline bool
Expression_Adapter<T>
::is_equal_to(const Expression& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end) const {
return inner().is_equal_to(y, c1, c2, start, end);
}
template <typename T>
inline void
Expression_Adapter<T>::get_row(Dense_Row& row) const {
inner().get_row(row);
}
template <typename T>
inline void
Expression_Adapter<T>::get_row(Sparse_Row& row) const {
inner().get_row(row);
}
template <typename T>
template <typename Expression>
inline bool
Expression_Adapter<T>
::have_a_common_variable(const Expression& y,
Variable first, Variable last) const {
return inner().have_a_common_variable(y, first, last);
}
template <typename T>
inline
Expression_Adapter_Transparent<T>
::Expression_Adapter_Transparent(const raw_type& expr)
: base_type(expr) {
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Expression_Adapter_defs.hh line 215. */
/* Automatically generated from PPL source file ../src/Expression_Hide_Inhomo_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename T>
class Expression_Hide_Inhomo;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Expression_Hide_Last_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename T>
class Expression_Hide_Last;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Linear_Expression_defs.hh line 51. */
/* Automatically generated from PPL source file ../src/Linear_Expression_defs.hh line 54. */
namespace Parma_Polyhedra_Library {
// Put them in the namespace here to declare them friend later.
//! Returns the linear expression \p e1 + \p e2.
/*! \relates Linear_Expression */
Linear_Expression
operator+(const Linear_Expression& e1, const Linear_Expression& e2);
//! Returns the linear expression \p v + \p w.
/*! \relates Linear_Expression */
Linear_Expression
operator+(Variable v, Variable w);
//! Returns the linear expression \p v + \p e.
/*! \relates Linear_Expression */
Linear_Expression
operator+(Variable v, const Linear_Expression& e);
//! Returns the linear expression \p e + \p v.
/*! \relates Linear_Expression */
Linear_Expression
operator+(const Linear_Expression& e, Variable v);
//! Returns the linear expression \p n + \p e.
/*! \relates Linear_Expression */
Linear_Expression
operator+(Coefficient_traits::const_reference n, const Linear_Expression& e);
//! Returns the linear expression \p e + \p n.
/*! \relates Linear_Expression */
Linear_Expression
operator+(const Linear_Expression& e, Coefficient_traits::const_reference n);
//! Returns the linear expression \p e.
/*! \relates Linear_Expression */
Linear_Expression
operator+(const Linear_Expression& e);
//! Returns the linear expression - \p e.
/*! \relates Linear_Expression */
Linear_Expression
operator-(const Linear_Expression& e);
//! Returns the linear expression \p e1 - \p e2.
/*! \relates Linear_Expression */
Linear_Expression
operator-(const Linear_Expression& e1, const Linear_Expression& e2);
//! Returns the linear expression \p v - \p w.
/*! \relates Linear_Expression */
Linear_Expression
operator-(Variable v, Variable w);
//! Returns the linear expression \p v - \p e.
/*! \relates Linear_Expression */
Linear_Expression
operator-(Variable v, const Linear_Expression& e);
//! Returns the linear expression \p e - \p v.
/*! \relates Linear_Expression */
Linear_Expression
operator-(const Linear_Expression& e, Variable v);
//! Returns the linear expression \p n - \p e.
/*! \relates Linear_Expression */
Linear_Expression
operator-(Coefficient_traits::const_reference n, const Linear_Expression& e);
//! Returns the linear expression \p e - \p n.
/*! \relates Linear_Expression */
Linear_Expression
operator-(const Linear_Expression& e, Coefficient_traits::const_reference n);
//! Returns the linear expression \p n * \p e.
/*! \relates Linear_Expression */
Linear_Expression
operator*(Coefficient_traits::const_reference n, const Linear_Expression& e);
//! Returns the linear expression \p e * \p n.
/*! \relates Linear_Expression */
Linear_Expression
operator*(const Linear_Expression& e, Coefficient_traits::const_reference n);
//! Returns the linear expression \p e1 + \p e2 and assigns it to \p e1.
/*! \relates Linear_Expression */
Linear_Expression&
operator+=(Linear_Expression& e1, const Linear_Expression& e2);
//! Returns the linear expression \p e + \p v and assigns it to \p e.
/*! \relates Linear_Expression
\exception std::length_error
Thrown if the space dimension of \p v exceeds
<CODE>Linear_Expression::max_space_dimension()</CODE>.
*/
Linear_Expression&
operator+=(Linear_Expression& e, Variable v);
//! Returns the linear expression \p e + \p n and assigns it to \p e.
/*! \relates Linear_Expression */
Linear_Expression&
operator+=(Linear_Expression& e, Coefficient_traits::const_reference n);
//! Returns the linear expression \p e1 - \p e2 and assigns it to \p e1.
/*! \relates Linear_Expression */
Linear_Expression&
operator-=(Linear_Expression& e1, const Linear_Expression& e2);
//! Returns the linear expression \p e - \p v and assigns it to \p e.
/*! \relates Linear_Expression
\exception std::length_error
Thrown if the space dimension of \p v exceeds
<CODE>Linear_Expression::max_space_dimension()</CODE>.
*/
Linear_Expression&
operator-=(Linear_Expression& e, Variable v);
//! Returns the linear expression \p e - \p n and assigns it to \p e.
/*! \relates Linear_Expression */
Linear_Expression&
operator-=(Linear_Expression& e, Coefficient_traits::const_reference n);
//! Returns the linear expression \p n * \p e and assigns it to \p e.
/*! \relates Linear_Expression */
Linear_Expression&
operator*=(Linear_Expression& e, Coefficient_traits::const_reference n);
//! Returns the linear expression \p n / \p e and assigns it to \p e.
/*! \relates Linear_Expression */
Linear_Expression&
operator/=(Linear_Expression& e, Coefficient_traits::const_reference n);
//! Assigns to \p e its own negation.
/*! \relates Linear_Expression */
void
neg_assign(Linear_Expression& e);
//! Returns the linear expression \p e + \p n * \p v and assigns it to \p e.
/*! \relates Linear_Expression */
Linear_Expression&
add_mul_assign(Linear_Expression& e,
Coefficient_traits::const_reference n, Variable v);
//! Sums \p e2 multiplied by \p factor into \p e1.
/*! \relates Linear_Expression */
void add_mul_assign(Linear_Expression& e1,
Coefficient_traits::const_reference factor,
const Linear_Expression& e2);
//! Subtracts \p e2 multiplied by \p factor from \p e1.
/*! \relates Linear_Expression */
void sub_mul_assign(Linear_Expression& e1,
Coefficient_traits::const_reference factor,
const Linear_Expression& e2);
//! Returns the linear expression \p e - \p n * \p v and assigns it to \p e.
/*! \relates Linear_Expression */
Linear_Expression&
sub_mul_assign(Linear_Expression& e,
Coefficient_traits::const_reference n, Variable v);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! The basic comparison function.
/*! \relates Linear_Expression
\returns -1 or -2 if x is less than y, 0 if they are equal and 1 or 2 is y
is greater. The absolute value of the result is 1 if the difference
is only in the inhomogeneous terms, 2 otherwise
The order is a lexicographic. It starts comparing the variables' coefficient,
starting from Variable(0), and at the end it compares the inhomogeneous
terms.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
int compare(const Linear_Expression& x, const Linear_Expression& y);
namespace IO_Operators {
//! Output operator.
/*! \relates Parma_Polyhedra_Library::Linear_Expression */
std::ostream& operator<<(std::ostream& s, const Linear_Expression& e);
} // namespace IO_Operators
} // namespace Parma_Polyhedra_Library
//! A linear expression.
/*! \ingroup PPL_CXX_interface
An object of the class Linear_Expression represents the linear expression
\f[
\sum_{i=0}^{n-1} a_i x_i + b
\f]
where \f$n\f$ is the dimension of the vector space,
each \f$a_i\f$ is the integer coefficient
of the \f$i\f$-th variable \f$x_i\f$
and \f$b\f$ is the integer for the inhomogeneous term.
\par How to build a linear expression.
Linear expressions are the basic blocks for defining
both constraints (i.e., linear equalities or inequalities)
and generators (i.e., lines, rays, points and closure points).
A full set of functions is defined to provide a convenient interface
for building complex linear expressions starting from simpler ones
and from objects of the classes Variable and Coefficient:
available operators include unary negation,
binary addition and subtraction,
as well as multiplication by a Coefficient.
The space dimension of a linear expression is defined as the maximum
space dimension of the arguments used to build it:
in particular, the space dimension of a Variable <CODE>x</CODE>
is defined as <CODE>x.id()+1</CODE>,
whereas all the objects of the class Coefficient have space dimension zero.
\par Example
The following code builds the linear expression \f$4x - 2y - z + 14\f$,
having space dimension \f$3\f$:
\code
Linear_Expression e = 4*x - 2*y - z + 14;
\endcode
Another way to build the same linear expression is:
\code
Linear_Expression e1 = 4*x;
Linear_Expression e2 = 2*y;
Linear_Expression e3 = z;
Linear_Expression e = Linear_Expression(14);
e += e1 - e2 - e3;
\endcode
Note that \p e1, \p e2 and \p e3 have space dimension 1, 2 and 3,
respectively; also, in the fourth line of code, \p e is created
with space dimension zero and then extended to space dimension 3
in the fifth line.
*/
class Parma_Polyhedra_Library::Linear_Expression {
public:
static const Representation default_representation = SPARSE;
//! Default constructor: returns a copy of Linear_Expression::zero().
explicit Linear_Expression(Representation r = default_representation);
/*! \brief Ordinary copy constructor.
\note
The new expression will have the same representation as \p e
(not necessarily the default_representation).
*/
Linear_Expression(const Linear_Expression& e);
//! Copy constructor that takes also a Representation.
Linear_Expression(const Linear_Expression& e, Representation r);
// Queried by expression adapters.
typedef const Linear_Expression& const_reference;
typedef Linear_Expression raw_type;
/*! \brief Copy constructor from a linear expression adapter.
\note
The new expression will have the same representation as \p e
(not necessarily the default_representation).
*/
template <typename LE_Adapter>
explicit
Linear_Expression(const LE_Adapter& e,
typename Enable_If<Is_Same_Or_Derived<Expression_Adapter_Base, LE_Adapter>::value, void*>::type = 0);
/*! \brief Copy constructor from a linear expression adapter that takes a
Representation.
*/
template <typename LE_Adapter>
Linear_Expression(const LE_Adapter& e, Representation r,
typename Enable_If<Is_Same_Or_Derived<Expression_Adapter_Base, LE_Adapter>::value, void*>::type = 0);
/*! \brief
Copy constructor from a linear expression adapter that takes a
space dimension.
\note
The new expression will have the same representation as \p e
(not necessarily default_representation).
*/
template <typename LE_Adapter>
explicit
Linear_Expression(const LE_Adapter& e, dimension_type space_dim,
typename Enable_If<Is_Same_Or_Derived<Expression_Adapter_Base, LE_Adapter>::value, void*>::type = 0);
/*! \brief
Copy constructor from a linear expression adapter that takes a
space dimension and a Representation.
*/
template <typename LE_Adapter>
Linear_Expression(const LE_Adapter& e,
dimension_type space_dim, Representation r,
typename Enable_If<Is_Same_Or_Derived<Expression_Adapter_Base, LE_Adapter>::value, void*>::type = 0);
//! Assignment operator.
Linear_Expression& operator=(const Linear_Expression& e);
//! Destructor.
~Linear_Expression();
/*! \brief
Builds the linear expression corresponding
to the inhomogeneous term \p n.
*/
explicit Linear_Expression(Coefficient_traits::const_reference n,
Representation r = default_representation);
//! Builds the linear expression corresponding to the variable \p v.
/*!
\exception std::length_error
Thrown if the space dimension of \p v exceeds
<CODE>Linear_Expression::max_space_dimension()</CODE>.
*/
Linear_Expression(Variable v, Representation r = default_representation);
//! Returns the current representation of *this.
Representation representation() const;
//! Converts *this to the specified representation.
void set_representation(Representation r);
//! A const %iterator on the expression (homogeneous) coefficient that are
//! nonzero.
/*!
These iterators are invalidated by operations that modify the expression.
*/
class const_iterator {
private:
public:
typedef std::bidirectional_iterator_tag iterator_category;
typedef const Coefficient value_type;
typedef ptrdiff_t difference_type;
typedef value_type* pointer;
typedef Coefficient_traits::const_reference reference;
//! Constructs an invalid const_iterator.
/*!
This constructor takes \f$O(1)\f$ time.
*/
explicit const_iterator();
//! The copy constructor.
/*!
\param itr
The %iterator that will be copied.
This constructor takes \f$O(1)\f$ time.
*/
const_iterator(const const_iterator& itr);
~const_iterator();
//! Swaps itr with *this.
/*!
\param itr
The %iterator that will be swapped with *this.
This method takes \f$O(1)\f$ time.
*/
void m_swap(const_iterator& itr);
//! Assigns \p itr to *this .
/*!
\param itr
The %iterator that will be assigned into *this.
This method takes \f$O(1)\f$ time.
*/
const_iterator& operator=(const const_iterator& itr);
//! Navigates to the next nonzero coefficient.
/*!
This method takes \f$O(n)\f$ time for dense expressions, and
\f$O(1)\f$ time for sparse expressions.
*/
const_iterator& operator++();
//! Navigates to the previous nonzero coefficient.
/*!
This method takes \f$O(n)\f$ time for dense expressions, and
\f$O(1)\f$ time for sparse expressions.
*/
const_iterator& operator--();
//! Returns the current element.
reference operator*() const;
//! Returns the variable of the coefficient pointed to by \c *this.
/*!
\returns the variable of the coefficient pointed to by \c *this.
*/
Variable variable() const;
//! Compares \p *this with x .
/*!
\param x
The %iterator that will be compared with *this.
*/
bool operator==(const const_iterator& x) const;
//! Compares \p *this with x .
/*!
\param x
The %iterator that will be compared with *this.
*/
bool operator!=(const const_iterator& x) const;
private:
//! Constructor from a const_iterator_interface*.
//! The new object takes ownership of the dynamic object.
const_iterator(Linear_Expression_Interface::const_iterator_interface* itr);
Linear_Expression_Interface::const_iterator_interface* itr;
friend class Linear_Expression;
};
//! Returns an iterator that points to the first nonzero coefficient in the
//! expression.
const_iterator begin() const;
//! Returns an iterator that points to the last nonzero coefficient in the
//! expression.
const_iterator end() const;
//! Returns an iterator that points to the first nonzero coefficient of a
//! variable bigger than or equal to v.
const_iterator lower_bound(Variable v) const;
//! Returns the maximum space dimension a Linear_Expression can handle.
static dimension_type max_space_dimension();
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
//! Sets the dimension of the vector space enclosing \p *this to \p n .
void set_space_dimension(dimension_type n);
//! Returns the coefficient of \p v in \p *this.
Coefficient_traits::const_reference coefficient(Variable v) const;
//! Sets the coefficient of \p v in \p *this to \p n.
void set_coefficient(Variable v,
Coefficient_traits::const_reference n);
//! Returns the inhomogeneous term of \p *this.
Coefficient_traits::const_reference inhomogeneous_term() const;
//! Sets the inhomogeneous term of \p *this to \p n.
void set_inhomogeneous_term(Coefficient_traits::const_reference n);
//! Linearly combines \p *this with \p y so that the coefficient of \p v
//! is 0.
/*!
\param y
The expression that will be combined with \p *this object;
\param v
The variable whose coefficient has to become \f$0\f$.
Computes a linear combination of \p *this and \p y having
the coefficient of variable \p v equal to \f$0\f$. Then it assigns
the resulting expression to \p *this.
\p *this and \p y must have the same space dimension.
*/
void linear_combine(const Linear_Expression& y, Variable v);
//! Equivalent to <CODE>*this = *this * c1 + y * c2</CODE>, but assumes that
//! c1 and c2 are not 0.
void linear_combine(const Linear_Expression& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2);
//! Equivalent to <CODE>*this = *this * c1 + y * c2</CODE>.
//! c1 and c2 may be 0.
void linear_combine_lax(const Linear_Expression& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2);
//! Swaps the coefficients of the variables \p v1 and \p v2 .
void swap_space_dimensions(Variable v1, Variable v2);
//! Removes all the specified dimensions from the expression.
/*!
The space dimension of the variable with the highest space
dimension in \p vars must be at most the space dimension
of \p this.
*/
void remove_space_dimensions(const Variables_Set& vars);
//! Shift by \p n positions the coefficients of variables, starting from
//! the coefficient of \p v. This increases the space dimension by \p n.
void shift_space_dimensions(Variable v, dimension_type n);
//! Permutes the space dimensions of the expression.
/*!
\param cycle
A vector representing a cycle of the permutation according to which the
space dimensions must be rearranged.
The \p cycle vector represents a cycle of a permutation of space
dimensions.
For example, the permutation
\f$ \{ x_1 \mapsto x_2, x_2 \mapsto x_3, x_3 \mapsto x_1 \}\f$ can be
represented by the vector containing \f$ x_1, x_2, x_3 \f$.
*/
void permute_space_dimensions(const std::vector<Variable>& cycle);
//! Returns <CODE>true</CODE> if and only if \p *this is \f$0\f$.
bool is_zero() const;
/*! \brief
Returns <CODE>true</CODE> if and only if all the homogeneous
terms of \p *this are \f$0\f$.
*/
bool all_homogeneous_terms_are_zero() const;
//! Initializes the class.
static void initialize();
//! Finalizes the class.
static void finalize();
//! Returns the (zero-dimension space) constant 0.
static const Linear_Expression& zero();
/*! \brief
Returns a lower bound to the total size in bytes of the memory
occupied by \p *this.
*/
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
//! Checks if all the invariants are satisfied.
bool OK() const;
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Swaps \p *this with \p y.
void m_swap(Linear_Expression& y);
//! Copy constructor with a specified space dimension.
Linear_Expression(const Linear_Expression& e, dimension_type space_dim);
//! Copy constructor with a specified space dimension and representation.
Linear_Expression(const Linear_Expression& e, dimension_type space_dim,
Representation r);
//! Returns \p true if *this is equal to \p x.
//! Note that (*this == x) has a completely different meaning.
bool is_equal_to(const Linear_Expression& x) const;
//! Normalizes the modulo of the coefficients and of the inhomogeneous term
//! so that they are mutually prime.
/*!
Computes the Greatest Common Divisor (GCD) among the coefficients
and the inhomogeneous term and normalizes them by the GCD itself.
*/
void normalize();
//! Ensures that the first nonzero homogeneous coefficient is positive,
//! by negating the row if necessary.
void sign_normalize();
/*! \brief
Returns <CODE>true</CODE> if the coefficient of each variable in
\p vars[i] is \f$0\f$.
*/
bool all_zeroes(const Variables_Set& vars) const;
private:
/*! \brief
Holds (between class initialization and finalization) a pointer to
the (zero-dimension space) constant 0.
*/
static const Linear_Expression* zero_p;
Linear_Expression_Interface* impl;
//! Implementation sizing constructor.
/*!
The bool parameter is just to avoid problems with
the constructor Linear_Expression(Coefficient_traits::const_reference n).
*/
Linear_Expression(dimension_type space_dim, bool,
Representation r = default_representation);
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Returns the i-th coefficient.
Coefficient_traits::const_reference get(dimension_type i) const;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Sets the i-th coefficient to n.
void set(dimension_type i, Coefficient_traits::const_reference n);
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Returns the coefficient of v.
Coefficient_traits::const_reference get(Variable v) const;
// NOTE: This method is public, but it's not exposed in Linear_Expression,
// so that it can be used internally in the PPL, by friends of
// Linear_Expression.
//! Sets the coefficient of v to n.
void set(Variable v, Coefficient_traits::const_reference n);
/*! \brief
Returns <CODE>true</CODE> if (*this)[i] is \f$0\f$, for each i in
[start, end).
*/
bool all_zeroes(dimension_type start, dimension_type end) const;
/*! \brief
Returns the number of zero coefficient in [start, end).
*/
dimension_type num_zeroes(dimension_type start, dimension_type end) const;
/*! \brief
Returns the gcd of the nonzero coefficients in [start,end). If all the
coefficients in this range are 0 returns 0.
*/
Coefficient gcd(dimension_type start, dimension_type end) const;
void exact_div_assign(Coefficient_traits::const_reference c,
dimension_type start, dimension_type end);
//! Linearly combines \p *this with \p y so that the coefficient of \p v
//! is 0.
/*!
\param y
The expression that will be combined with \p *this object;
\param i
The index of the coefficient that has to become \f$0\f$.
Computes a linear combination of \p *this and \p y having
the i-th coefficient equal to \f$0\f$. Then it assigns
the resulting expression to \p *this.
\p *this and \p y must have the same space dimension.
*/
void linear_combine(const Linear_Expression& y, dimension_type i);
//! Equivalent to <CODE>(*this)[i] = (*this)[i] * c1 + y[i] * c2</CODE>,
//! for each i in [start, end). It assumes that c1 and c2 are nonzero.
void linear_combine(const Linear_Expression& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end);
//! Equivalent to <CODE>(*this)[i] = (*this)[i] * c1 + y[i] * c2</CODE>,
//! for each i in [start, end). c1 and c2 may be zero.
void linear_combine_lax(const Linear_Expression& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end);
//! Equivalent to <CODE>(*this)[i] *= n</CODE>, for each i in [start, end).
void mul_assign(Coefficient_traits::const_reference n,
dimension_type start, dimension_type end);
//! Returns the index of the last nonzero element, or 0 if there are no
//! nonzero elements.
dimension_type last_nonzero() const;
//! Returns the index of the last nonzero element in [first,last), or last
//! if there are no nonzero elements.
dimension_type last_nonzero(dimension_type first, dimension_type last) const;
//! Returns the index of the first nonzero element, or \p last if there are no
//! nonzero elements, considering only elements in [first,last).
dimension_type first_nonzero(dimension_type first, dimension_type last) const;
/*! \brief
Returns <CODE>true</CODE> if all coefficients in [start,end),
except those corresponding to variables in \p vars, are zero.
*/
bool all_zeroes_except(const Variables_Set& vars,
dimension_type start, dimension_type end) const;
//! Sets results to the sum of (*this)[i]*y[i], for each i.
void scalar_product_assign(Coefficient& result,
const Linear_Expression& y) const;
//! Sets results to the sum of (*this)[i]*y[i], for each i in [start,end).
void scalar_product_assign(Coefficient& result, const Linear_Expression& y,
dimension_type start, dimension_type end) const;
//! Computes the sign of the sum of (*this)[i]*y[i], for each i.
int scalar_product_sign(const Linear_Expression& y) const;
//! Computes the sign of the sum of (*this)[i]*y[i],
//! for each i in [start,end).
int scalar_product_sign(const Linear_Expression& y,
dimension_type start, dimension_type end) const;
//! Removes from the set x all the indexes of nonzero elements of *this.
void has_a_free_dimension_helper(std::set<dimension_type>& x) const;
//! Returns \p true if (*this)[i] is equal to x[i], for each i in [start,end).
bool is_equal_to(const Linear_Expression& x,
dimension_type start, dimension_type end) const;
//! Returns \p true if (*this)[i]*c1 is equal to x[i]*c2, for each i in
//! [start,end).
bool is_equal_to(const Linear_Expression& x,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end) const;
//! Sets `row' to a copy of the row that implements *this.
void get_row(Dense_Row& row) const;
//! Sets `row' to a copy of the row that implements *this.
void get_row(Sparse_Row& row) const;
//! Returns true if there is a variable in [first,last) whose coefficient
//! is nonzero in both *this and x.
bool have_a_common_variable(const Linear_Expression& x,
Variable first, Variable last) const;
/*! \brief
Negates the elements from index \p first (included)
to index \p last (excluded).
*/
void negate(dimension_type first, dimension_type last);
template <typename Row>
friend class Linear_Expression_Impl;
// NOTE: The following classes are friends of Linear_Expression in order
// to access its private methods.
// Since they are *not* friend of Linear_Expression_Impl, they can only
// access its public methods so they cannot break the class invariant of
// Linear_Expression_Impl.
friend class Grid;
friend class Congruence;
friend class Polyhedron;
friend class PIP_Tree_Node;
friend class Grid_Generator;
friend class Generator;
friend class Constraint;
friend class Constraint_System;
friend class PIP_Problem;
friend class BHRZ03_Certificate;
friend class Scalar_Products;
friend class MIP_Problem;
friend class Box_Helpers;
friend class Congruence_System;
friend class BD_Shape_Helpers;
friend class Octagonal_Shape_Helper;
friend class Termination_Helpers;
template <typename T>
friend class BD_Shape;
template <typename T>
friend class Octagonal_Shape;
template <typename T>
friend class Linear_System;
template <typename T>
friend class Box;
template <typename T>
friend class Expression_Adapter;
template <typename T>
friend class Expression_Hide_Inhomo;
template <typename T>
friend class Expression_Hide_Last;
friend Linear_Expression
operator+(const Linear_Expression& e1, const Linear_Expression& e2);
friend Linear_Expression
operator+(Coefficient_traits::const_reference n, const Linear_Expression& e);
friend Linear_Expression
operator+(const Linear_Expression& e, Coefficient_traits::const_reference n);
friend Linear_Expression
operator+(Variable v, const Linear_Expression& e);
friend Linear_Expression
operator+(Variable v, Variable w);
friend Linear_Expression
operator-(const Linear_Expression& e);
friend Linear_Expression
operator-(const Linear_Expression& e1, const Linear_Expression& e2);
friend Linear_Expression
operator-(Variable v, Variable w);
friend Linear_Expression
operator-(Coefficient_traits::const_reference n, const Linear_Expression& e);
friend Linear_Expression
operator-(const Linear_Expression& e, Coefficient_traits::const_reference n);
friend Linear_Expression
operator-(Variable v, const Linear_Expression& e);
friend Linear_Expression
operator-(const Linear_Expression& e, Variable v);
friend Linear_Expression
operator*(Coefficient_traits::const_reference n, const Linear_Expression& e);
friend Linear_Expression
operator*(const Linear_Expression& e, Coefficient_traits::const_reference n);
friend Linear_Expression&
operator+=(Linear_Expression& e1, const Linear_Expression& e2);
friend Linear_Expression&
operator+=(Linear_Expression& e, Variable v);
friend Linear_Expression&
operator+=(Linear_Expression& e, Coefficient_traits::const_reference n);
friend Linear_Expression&
operator-=(Linear_Expression& e1, const Linear_Expression& e2);
friend Linear_Expression&
operator-=(Linear_Expression& e, Variable v);
friend Linear_Expression&
operator-=(Linear_Expression& e, Coefficient_traits::const_reference n);
friend Linear_Expression&
operator*=(Linear_Expression& e, Coefficient_traits::const_reference n);
friend Linear_Expression&
operator/=(Linear_Expression& e, Coefficient_traits::const_reference n);
friend void
neg_assign(Linear_Expression& e);
friend Linear_Expression&
add_mul_assign(Linear_Expression& e,
Coefficient_traits::const_reference n, Variable v);
friend Linear_Expression&
sub_mul_assign(Linear_Expression& e,
Coefficient_traits::const_reference n, Variable v);
friend void
add_mul_assign(Linear_Expression& e1,
Coefficient_traits::const_reference factor,
const Linear_Expression& e2);
friend void
sub_mul_assign(Linear_Expression& e1,
Coefficient_traits::const_reference factor,
const Linear_Expression& e2);
friend int
compare(const Linear_Expression& x, const Linear_Expression& y);
friend std::ostream&
Parma_Polyhedra_Library::IO_Operators
::operator<<(std::ostream& s, const Linear_Expression& e);
};
namespace Parma_Polyhedra_Library {
//! Swaps \p x with \p y.
/*! \relates Linear_Expression */
void swap(Linear_Expression& x, Linear_Expression& y);
//! Swaps \p x with \p y.
/*! \relates Linear_Expression::const_iterator */
void swap(Linear_Expression::const_iterator& x,
Linear_Expression::const_iterator& y);
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Linear_Expression_inlines.hh line 1. */
/* Linear_Expression class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Linear_Expression_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
inline Linear_Expression&
Linear_Expression::operator=(const Linear_Expression& e) {
Linear_Expression tmp = e;
swap(*this, tmp);
return *this;
}
inline
Linear_Expression::~Linear_Expression() {
delete impl;
}
inline Representation
Linear_Expression::representation() const {
return impl->representation();
}
inline dimension_type
Linear_Expression::space_dimension() const {
return impl->space_dimension();
}
inline void
Linear_Expression::set_space_dimension(dimension_type n) {
impl->set_space_dimension(n);
}
inline Coefficient_traits::const_reference
Linear_Expression::coefficient(Variable v) const {
return impl->coefficient(v);
}
inline void
Linear_Expression
::set_coefficient(Variable v, Coefficient_traits::const_reference n) {
impl->set_coefficient(v, n);
}
inline Coefficient_traits::const_reference
Linear_Expression::inhomogeneous_term() const {
return impl->inhomogeneous_term();
}
inline void
Linear_Expression
::set_inhomogeneous_term(Coefficient_traits::const_reference n) {
impl->set_inhomogeneous_term(n);
}
inline void
Linear_Expression::swap_space_dimensions(Variable v1, Variable v2) {
impl->swap_space_dimensions(v1, v2);
}
inline void
Linear_Expression::shift_space_dimensions(Variable v, dimension_type n) {
impl->shift_space_dimensions(v, n);
}
inline bool
Linear_Expression::is_zero() const {
return impl->is_zero();
}
inline bool
Linear_Expression::all_homogeneous_terms_are_zero() const {
return impl->all_homogeneous_terms_are_zero();
}
inline const Linear_Expression&
Linear_Expression::zero() {
PPL_ASSERT(zero_p != 0);
return *zero_p;
}
inline memory_size_type
Linear_Expression::external_memory_in_bytes() const {
return impl->total_memory_in_bytes();
}
inline memory_size_type
Linear_Expression::total_memory_in_bytes() const {
return external_memory_in_bytes() + sizeof(*this);
}
/*! \relates Linear_Expression */
inline Linear_Expression
operator+(const Linear_Expression& e) {
return e;
}
/*! \relates Linear_Expression */
inline Linear_Expression
operator+(const Linear_Expression& e, Coefficient_traits::const_reference n) {
Linear_Expression x = e;
x += n;
return x;
}
/*! \relates Linear_Expression */
inline Linear_Expression
operator+(const Linear_Expression& e, const Variable v) {
Linear_Expression x = e;
x += v;
return x;
}
/*! \relates Linear_Expression */
inline Linear_Expression
operator-(const Linear_Expression& e, Coefficient_traits::const_reference n) {
Linear_Expression x = e;
x -= n;
return x;
}
/*! \relates Linear_Expression */
inline Linear_Expression
operator-(const Variable v, const Variable w) {
const dimension_type v_space_dim = v.space_dimension();
const dimension_type w_space_dim = w.space_dimension();
const dimension_type space_dim = std::max(v_space_dim, w_space_dim);
if (space_dim > Linear_Expression::max_space_dimension())
throw std::length_error("Linear_Expression "
"PPL::operator+(v, w):\n"
"v or w exceed the maximum allowed "
"space dimension.");
if (v_space_dim >= w_space_dim) {
Linear_Expression e(v);
e -= w;
return e;
}
else {
Linear_Expression e(w.space_dimension(), true);
e -= w;
e += v;
return e;
}
}
/*! \relates Linear_Expression */
inline Linear_Expression
operator*(const Linear_Expression& e, Coefficient_traits::const_reference n) {
Linear_Expression x = e;
x *= n;
return x;
}
/*! \relates Linear_Expression */
inline Linear_Expression&
operator+=(Linear_Expression& e, Coefficient_traits::const_reference n) {
*e.impl += n;
return e;
}
/*! \relates Linear_Expression */
inline Linear_Expression&
operator-=(Linear_Expression& e, Coefficient_traits::const_reference n) {
*e.impl -= n;
return e;
}
inline void
Linear_Expression::m_swap(Linear_Expression& y) {
using std::swap;
swap(impl, y.impl);
}
inline void
Linear_Expression::normalize() {
impl->normalize();
}
inline void
Linear_Expression::ascii_dump(std::ostream& s) const {
impl->ascii_dump(s);
}
inline bool
Linear_Expression::ascii_load(std::istream& s) {
return impl->ascii_load(s);
}
inline void
Linear_Expression::remove_space_dimensions(const Variables_Set& vars) {
impl->remove_space_dimensions(vars);
}
inline void
Linear_Expression::permute_space_dimensions(const std::vector<Variable>& cycle) {
impl->permute_space_dimensions(cycle);
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression */
inline Linear_Expression
operator+(const Linear_Expression& e1, const Linear_Expression& e2) {
if (e1.space_dimension() >= e2.space_dimension()) {
Linear_Expression e = e1;
e += e2;
return e;
}
else {
Linear_Expression e = e2;
e += e1;
return e;
}
}
/*! \relates Linear_Expression */
inline Linear_Expression
operator+(const Variable v, const Linear_Expression& e) {
return e + v;
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression */
inline Linear_Expression
operator+(Coefficient_traits::const_reference n,
const Linear_Expression& e) {
return e + n;
}
/*! \relates Linear_Expression */
inline Linear_Expression
operator+(const Variable v, const Variable w) {
const dimension_type v_space_dim = v.space_dimension();
const dimension_type w_space_dim = w.space_dimension();
const dimension_type space_dim = std::max(v_space_dim, w_space_dim);
if (space_dim > Linear_Expression::max_space_dimension())
throw std::length_error("Linear_Expression "
"PPL::operator+(v, w):\n"
"v or w exceed the maximum allowed "
"space dimension.");
if (v_space_dim >= w_space_dim) {
Linear_Expression e(v);
e += w;
return e;
}
else {
Linear_Expression e(w);
e += v;
return e;
}
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression */
inline Linear_Expression
operator-(const Linear_Expression& e) {
Linear_Expression r(e);
neg_assign(r);
return r;
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression */
inline Linear_Expression
operator-(const Linear_Expression& e1, const Linear_Expression& e2) {
if (e1.space_dimension() >= e2.space_dimension()) {
Linear_Expression e = e1;
e -= e2;
return e;
}
else {
Linear_Expression e = e2;
neg_assign(e);
e += e1;
return e;
}
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression */
inline Linear_Expression
operator-(const Variable v, const Linear_Expression& e) {
Linear_Expression result(e, std::max(v.space_dimension(), e.space_dimension()));
result.negate(0, e.space_dimension() + 1);
result += v;
return result;
}
/*! \relates Linear_Expression */
inline Linear_Expression
operator-(const Linear_Expression& e, const Variable v) {
Linear_Expression result(e, std::max(v.space_dimension(), e.space_dimension()));
result -= v;
return result;
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression */
inline Linear_Expression
operator-(Coefficient_traits::const_reference n,
const Linear_Expression& e) {
Linear_Expression result(e);
neg_assign(result);
result += n;
return result;
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression */
inline Linear_Expression
operator*(Coefficient_traits::const_reference n,
const Linear_Expression& e) {
return e * n;
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression */
inline Linear_Expression&
operator+=(Linear_Expression& e1, const Linear_Expression& e2) {
*e1.impl += *e2.impl;
return e1;
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression */
inline Linear_Expression&
operator+=(Linear_Expression& e, const Variable v) {
*e.impl += v;
return e;
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression */
inline Linear_Expression&
operator-=(Linear_Expression& e1, const Linear_Expression& e2) {
*e1.impl -= *e2.impl;
return e1;
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression */
inline Linear_Expression&
operator-=(Linear_Expression& e, const Variable v) {
*e.impl -= v;
return e;
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression */
inline Linear_Expression&
operator*=(Linear_Expression& e, Coefficient_traits::const_reference n) {
*e.impl *= n;
return e;
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression */
inline Linear_Expression&
operator/=(Linear_Expression& e, Coefficient_traits::const_reference n) {
*e.impl /= n;
return e;
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression */
inline void
neg_assign(Linear_Expression& e) {
e.impl->negate();
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression */
inline Linear_Expression&
add_mul_assign(Linear_Expression& e,
Coefficient_traits::const_reference n,
const Variable v) {
e.impl->add_mul_assign(n, v);
return e;
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression */
inline Linear_Expression&
sub_mul_assign(Linear_Expression& e,
Coefficient_traits::const_reference n,
const Variable v) {
e.impl->sub_mul_assign(n, v);
return e;
}
inline void
add_mul_assign(Linear_Expression& e1,
Coefficient_traits::const_reference factor,
const Linear_Expression& e2) {
e1.impl->add_mul_assign(factor, *e2.impl);
}
inline void
sub_mul_assign(Linear_Expression& e1,
Coefficient_traits::const_reference factor,
const Linear_Expression& e2) {
e1.impl->sub_mul_assign(factor, *e2.impl);
}
inline Coefficient_traits::const_reference
Linear_Expression::get(dimension_type i) const {
return impl->get(i);
}
inline void
Linear_Expression::set(dimension_type i,
Coefficient_traits::const_reference n) {
impl->set(i, n);
}
inline Coefficient_traits::const_reference
Linear_Expression::get(Variable v) const {
return impl->get(v.space_dimension());
}
inline void
Linear_Expression::set(Variable v,
Coefficient_traits::const_reference n) {
impl->set(v.space_dimension(), n);
}
inline bool
Linear_Expression::all_zeroes(dimension_type start, dimension_type end) const {
return impl->all_zeroes(start, end);
}
inline dimension_type
Linear_Expression::num_zeroes(dimension_type start, dimension_type end) const {
return impl->num_zeroes(start, end);
}
inline Coefficient
Linear_Expression::gcd(dimension_type start, dimension_type end) const {
return impl->gcd(start, end);
}
inline void
Linear_Expression
::exact_div_assign(Coefficient_traits::const_reference c,
dimension_type start, dimension_type end) {
impl->exact_div_assign(c, start, end);
}
inline void
Linear_Expression
::mul_assign(Coefficient_traits::const_reference c,
dimension_type start, dimension_type end) {
impl->mul_assign(c, start, end);
}
inline void
Linear_Expression::sign_normalize() {
impl->sign_normalize();
}
inline void
Linear_Expression::negate(dimension_type first, dimension_type last) {
impl->negate(first, last);
}
inline bool
Linear_Expression::all_zeroes(const Variables_Set& vars) const {
return impl->all_zeroes(vars);
}
inline bool
Linear_Expression::all_zeroes_except(const Variables_Set& vars,
dimension_type start,
dimension_type end) const {
return impl->all_zeroes_except(vars, start, end);
}
inline dimension_type
Linear_Expression::last_nonzero() const {
return impl->last_nonzero();
}
inline void
Linear_Expression
::scalar_product_assign(Coefficient& result, const Linear_Expression& y) const {
scalar_product_assign(result, y, 0, space_dimension() + 1);
}
inline void
Linear_Expression
::scalar_product_assign(Coefficient& result, const Linear_Expression& y,
dimension_type start, dimension_type end) const {
impl->scalar_product_assign(result, *(y.impl), start, end);
}
inline int
Linear_Expression
::scalar_product_sign(const Linear_Expression& y) const {
return scalar_product_sign(y, 0, space_dimension() + 1);
}
inline int
Linear_Expression
::scalar_product_sign(const Linear_Expression& y,
dimension_type start, dimension_type end) const {
return impl->scalar_product_sign(*(y.impl), start, end);
}
inline dimension_type
Linear_Expression
::first_nonzero(dimension_type first, dimension_type last) const {
return impl->first_nonzero(first, last);
}
inline dimension_type
Linear_Expression
::last_nonzero(dimension_type first, dimension_type last) const {
return impl->last_nonzero(first, last);
}
inline void
Linear_Expression
::has_a_free_dimension_helper(std::set<dimension_type>& x) const {
return impl->has_a_free_dimension_helper(x);
}
inline bool
Linear_Expression
::is_equal_to(const Linear_Expression& x,
dimension_type start, dimension_type end) const {
return impl->is_equal_to(*(x.impl), start, end);
}
inline bool
Linear_Expression
::is_equal_to(const Linear_Expression& x,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end) const {
return impl->is_equal_to(*(x.impl), c1, c2, start, end);
}
inline void
Linear_Expression
::get_row(Dense_Row& row) const {
return impl->get_row(row);
}
inline void
Linear_Expression
::get_row(Sparse_Row& row) const {
return impl->get_row(row);
}
inline void
Linear_Expression
::linear_combine(const Linear_Expression& y, dimension_type i) {
impl->linear_combine(*y.impl, i);
}
inline void
Linear_Expression
::linear_combine(const Linear_Expression& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2) {
impl->linear_combine(*y.impl, c1, c2);
}
inline void
Linear_Expression
::linear_combine_lax(const Linear_Expression& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2) {
impl->linear_combine_lax(*y.impl, c1, c2);
}
inline int
compare(const Linear_Expression& x, const Linear_Expression& y) {
return x.impl->compare(*y.impl);
}
inline bool
Linear_Expression::is_equal_to(const Linear_Expression& x) const {
return impl->is_equal_to(*x.impl);
}
inline void
Linear_Expression::linear_combine(const Linear_Expression& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start,
dimension_type end) {
impl->linear_combine(*y.impl, c1, c2, start, end);
}
inline void
Linear_Expression::linear_combine_lax(const Linear_Expression& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start,
dimension_type end) {
impl->linear_combine_lax(*y.impl, c1, c2, start, end);
}
inline bool
Linear_Expression
::have_a_common_variable(const Linear_Expression& x,
Variable first, Variable last) const {
return impl->have_a_common_variable(*(x.impl), first, last);
}
inline
Linear_Expression::const_iterator
::const_iterator()
: itr(NULL) {
}
inline
Linear_Expression::const_iterator
::const_iterator(const const_iterator& x)
: itr(x.itr->clone()) {
}
inline
Linear_Expression::const_iterator
::~const_iterator() {
// Note that this does nothing if itr==NULL.
delete itr;
}
inline void
Linear_Expression::const_iterator::m_swap(const_iterator& x) {
using std::swap;
swap(itr, x.itr);
}
inline Linear_Expression::const_iterator&
Linear_Expression::const_iterator
::operator=(const const_iterator& itr) {
const_iterator tmp = itr;
using std::swap;
swap(*this, tmp);
return *this;
}
inline Linear_Expression::const_iterator&
Linear_Expression::const_iterator
::operator++() {
PPL_ASSERT(itr != NULL);
++(*itr);
return *this;
}
inline Linear_Expression::const_iterator&
Linear_Expression::const_iterator
::operator--() {
PPL_ASSERT(itr != NULL);
--(*itr);
return *this;
}
inline Linear_Expression::const_iterator::reference
Linear_Expression::const_iterator
::operator*() const {
PPL_ASSERT(itr != NULL);
return *(*itr);
}
inline Variable
Linear_Expression::const_iterator
::variable() const {
PPL_ASSERT(itr != NULL);
return itr->variable();
}
inline bool
Linear_Expression::const_iterator
::operator==(const const_iterator& x) const {
PPL_ASSERT(itr != NULL);
PPL_ASSERT(x.itr != NULL);
return *itr == *(x.itr);
}
inline bool
Linear_Expression::const_iterator
::operator!=(const const_iterator& x) const {
return !(*this == x);
}
inline
Linear_Expression::const_iterator
::const_iterator(Linear_Expression_Interface::const_iterator_interface* itr)
: itr(itr) {
PPL_ASSERT(itr != NULL);
}
inline Linear_Expression::const_iterator
Linear_Expression
::begin() const {
return const_iterator(impl->begin());
}
inline Linear_Expression::const_iterator
Linear_Expression
::end() const {
return const_iterator(impl->end());
}
inline Linear_Expression::const_iterator
Linear_Expression
::lower_bound(Variable v) const {
return const_iterator(impl->lower_bound(v));
}
template <typename LE_Adapter>
inline
Linear_Expression::Linear_Expression(const LE_Adapter& e,
typename Enable_If<Is_Same_Or_Derived<Expression_Adapter_Base, LE_Adapter>::value, void*>::type)
: impl(NULL) {
Linear_Expression tmp(e.representation());
tmp.set_space_dimension(e.space_dimension());
tmp.set_inhomogeneous_term(e.inhomogeneous_term());
for (typename LE_Adapter::const_iterator i = e.begin(),
i_end = e.end(); i != i_end; ++i)
add_mul_assign(tmp, *i, i.variable());
using std::swap;
swap(impl, tmp.impl);
}
template <typename LE_Adapter>
inline
Linear_Expression::Linear_Expression(const LE_Adapter& e,
Representation r,
typename Enable_If<Is_Same_Or_Derived<Expression_Adapter_Base, LE_Adapter>::value, void*>::type)
: impl(NULL) {
Linear_Expression tmp(r);
tmp.set_space_dimension(e.space_dimension());
tmp.set_inhomogeneous_term(e.inhomogeneous_term());
for (typename LE_Adapter::const_iterator i = e.begin(),
i_end = e.end(); i != i_end; ++i)
add_mul_assign(tmp, *i, i.variable());
using std::swap;
swap(impl, tmp.impl);
}
template <typename LE_Adapter>
inline
Linear_Expression::Linear_Expression(const LE_Adapter& e,
dimension_type space_dim,
typename Enable_If<Is_Same_Or_Derived<Expression_Adapter_Base, LE_Adapter>::value, void*>::type)
: impl(NULL) {
Linear_Expression tmp(e.representation());
tmp.set_space_dimension(space_dim);
tmp.set_inhomogeneous_term(e.inhomogeneous_term());
typedef typename LE_Adapter::const_iterator itr_t;
itr_t i_end;
if (space_dim <= e.space_dimension())
i_end = e.lower_bound(Variable(space_dim));
else
i_end = e.end();
for (itr_t i = e.begin(); i != i_end; ++i)
add_mul_assign(tmp, *i, i.variable());
using std::swap;
swap(impl, tmp.impl);
}
template <typename LE_Adapter>
inline
Linear_Expression::Linear_Expression(const LE_Adapter& e,
dimension_type space_dim,
Representation r,
typename Enable_If<Is_Same_Or_Derived<Expression_Adapter_Base, LE_Adapter>::value, void*>::type)
: impl(NULL) {
Linear_Expression tmp(r);
tmp.set_space_dimension(space_dim);
tmp.set_inhomogeneous_term(e.inhomogeneous_term());
typedef typename LE_Adapter::const_iterator itr_t;
itr_t i_end;
if (space_dim <= e.space_dimension())
i_end = e.lower_bound(Variable(space_dim));
else
i_end = e.end();
for (itr_t i = e.begin(); i != i_end; ++i)
add_mul_assign(tmp, *i, i.variable());
using std::swap;
swap(impl, tmp.impl);
}
namespace IO_Operators {
/*! \relates Parma_Polyhedra_Library::Linear_Expression */
inline std::ostream&
operator<<(std::ostream& s, const Linear_Expression& e) {
e.impl->print(s);
return s;
}
} // namespace IO_Operators
/*! \relates Parma_Polyhedra_Library::Linear_Expression */
inline void
swap(Linear_Expression& x, Linear_Expression& y) {
x.m_swap(y);
}
/*! \relates Linear_Expression::const_iterator */
inline void
swap(Linear_Expression::const_iterator& x,
Linear_Expression::const_iterator& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Linear_Expression_defs.hh line 927. */
/* Automatically generated from PPL source file ../src/Topology_types.hh line 1. */
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Kinds of polyhedra domains.
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
enum Topology {
NECESSARILY_CLOSED = 0,
NOT_NECESSARILY_CLOSED = 1
};
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Expression_Hide_Last_defs.hh line 1. */
/* Expression_Hide_Last class declaration.
*/
/* Automatically generated from PPL source file ../src/Expression_Hide_Last_defs.hh line 28. */
/* Automatically generated from PPL source file ../src/Expression_Hide_Last_defs.hh line 32. */
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! An adapter for Linear_Expression that maybe hides the last coefficient.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
class Parma_Polyhedra_Library::Expression_Hide_Last
: public Expression_Adapter<T> {
typedef Expression_Adapter<T> base_type;
public:
//! The type of this object.
typedef Expression_Hide_Last<T> const_reference;
//! The type obtained by one-level unwrapping.
typedef typename base_type::inner_type inner_type;
//! The raw, completely unwrapped type.
typedef typename base_type::raw_type raw_type;
//! The type of const iterators on coefficients.
typedef typename base_type::const_iterator const_iterator;
//! Constructor.
explicit Expression_Hide_Last(const raw_type& expr, bool hide_last);
//! Iterator pointing after the last nonzero variable coefficient.
const_iterator end() const;
//! Iterator pointing to the first nonzero variable coefficient
//! of a variable bigger than or equal to \p v.
const_iterator lower_bound(Variable v) const;
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
//! Returns the coefficient of \p v in \p *this.
Coefficient_traits::const_reference coefficient(Variable v) const;
//! Returns <CODE>true</CODE> if and only if \p *this is zero.
bool is_zero() const;
/*! \brief
Returns <CODE>true</CODE> if and only if all the homogeneous
terms of \p *this are zero.
*/
bool all_homogeneous_terms_are_zero() const;
/*! \brief Returns \p true if \p *this is equal to \p y.
Note that <CODE>(*this == y)</CODE> has a completely different meaning.
*/
template <typename Expression>
bool is_equal_to(const Expression& y) const;
/*! \brief
Returns <CODE>true</CODE> if the coefficient of each variable in
\p vars is zero.
*/
bool all_zeroes(const Variables_Set& vars) const;
//! Returns the \p i -th coefficient.
Coefficient_traits::const_reference get(dimension_type i) const;
//! Returns the coefficient of variable \p v.
Coefficient_traits::const_reference get(Variable v) const;
/*! \brief
Returns <CODE>true</CODE> if (*this)[i] is zero,
for each i in [start, end).
*/
bool all_zeroes(dimension_type start, dimension_type end) const;
//! Returns the number of zero coefficient in [start, end).
dimension_type num_zeroes(dimension_type start, dimension_type end) const;
/*! \brief
Returns the gcd of the nonzero coefficients in [start,end).
Returns zero if all the coefficients in the range are zero.
*/
Coefficient gcd(dimension_type start, dimension_type end) const;
//! Returns the index of the last nonzero element, or zero if there are no
//! nonzero elements.
dimension_type last_nonzero() const;
//! Returns the index of the last nonzero element in [first,last),
//! or \p last if there are no nonzero elements.
dimension_type last_nonzero(dimension_type first, dimension_type last) const;
//! Returns the index of the first nonzero element, or \p last if there are no
//! nonzero elements, considering only elements in [first,last).
dimension_type first_nonzero(dimension_type first, dimension_type last) const;
/*! \brief
Returns <CODE>true</CODE> if all coefficients in [start,end),
except those corresponding to variables in \p vars, are zero.
*/
bool all_zeroes_except(const Variables_Set& vars,
dimension_type start, dimension_type end) const;
//! Removes from set \p x all the indexes of nonzero elements in \p *this.
void has_a_free_dimension_helper(std::set<dimension_type>& x) const;
//! Returns \c true if <CODE>(*this)[i]</CODE> is equal to <CODE>y[i]</CODE>,
//! for each i in [start,end).
template <typename Expression>
bool is_equal_to(const Expression& y,
dimension_type start, dimension_type end) const;
//! Returns \c true if <CODE>(*this)[i]*c1</CODE> is equal to
//! <CODE>y[i]*c2</CODE>, for each i in [start,end).
template <typename Expression>
bool is_equal_to(const Expression& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end) const;
//! Sets \p row to a copy of the row as adapted by \p *this.
void get_row(Dense_Row& row) const;
//! Sets \p row to a copy of the row as adapted by \p *this.
void get_row(Sparse_Row& row) const;
//! Returns \c true if there is a variable in [first,last) whose coefficient
//! is nonzero in both \p *this and \p y.
template <typename Expression>
bool have_a_common_variable(const Expression& y,
Variable first, Variable last) const;
private:
//! Whether or not the last coefficient is hidden.
const bool hide_last_;
};
/* Automatically generated from PPL source file ../src/Expression_Hide_Last_inlines.hh line 1. */
/* Expression_Hide_Last class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Expression_Hide_Last_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
template <typename T>
inline
Expression_Hide_Last<T>::Expression_Hide_Last(const raw_type& expr,
const bool hide_last)
: base_type(expr), hide_last_(hide_last) {
}
template <typename T>
inline dimension_type
Expression_Hide_Last<T>::space_dimension() const {
dimension_type dim = this->inner().space_dimension();
if (hide_last_) {
PPL_ASSERT(dim > 0);
--dim;
}
return dim;
}
template <typename T>
inline typename Expression_Hide_Last<T>::const_iterator
Expression_Hide_Last<T>::end() const {
if (hide_last_) {
return this->inner().lower_bound(Variable(space_dimension()));
}
else {
return this->inner().end();
}
}
template <typename T>
inline typename Expression_Hide_Last<T>::const_iterator
Expression_Hide_Last<T>::lower_bound(Variable v) const {
PPL_ASSERT(v.space_dimension() <= space_dimension() + 1);
return this->inner().lower_bound(v);
}
template <typename T>
inline Coefficient_traits::const_reference
Expression_Hide_Last<T>::coefficient(Variable v) const {
PPL_ASSERT(v.space_dimension() <= space_dimension());
return this->inner().coefficient(v);
}
template <typename T>
inline bool
Expression_Hide_Last<T>::is_zero() const {
return this->inner().all_zeroes(0, space_dimension() + 1);
}
template <typename T>
inline bool
Expression_Hide_Last<T>::all_homogeneous_terms_are_zero() const {
return this->inner().all_zeroes(1, space_dimension() + 1);
}
template <typename T>
template <typename Expression>
inline bool
Expression_Hide_Last<T>
::is_equal_to(const Expression& y) const {
const dimension_type x_dim = space_dimension();
const dimension_type y_dim = y.space_dimension();
if (x_dim != y_dim)
return false;
return is_equal_to(y, 0, x_dim + 1);
}
template <typename T>
inline bool
Expression_Hide_Last<T>::all_zeroes(const Variables_Set& vars) const {
PPL_ASSERT(vars.space_dimension() <= space_dimension());
return this->inner().all_zeroes(vars);
}
template <typename T>
inline Coefficient_traits::const_reference
Expression_Hide_Last<T>::get(dimension_type i) const {
PPL_ASSERT(i <= space_dimension());
return this->inner().get(i);
}
template <typename T>
inline Coefficient_traits::const_reference
Expression_Hide_Last<T>::get(Variable v) const {
PPL_ASSERT(v.space_dimension() <= space_dimension());
return this->inner().get(v);
}
template <typename T>
inline bool
Expression_Hide_Last<T>::all_zeroes(dimension_type start,
dimension_type end) const {
PPL_ASSERT(end <= space_dimension() + 1);
return this->inner().all_zeroes(start, end);
}
template <typename T>
inline dimension_type
Expression_Hide_Last<T>::num_zeroes(dimension_type start,
dimension_type end) const {
PPL_ASSERT(end <= space_dimension() + 1);
return this->inner().num_zeroes(start, end);
}
template <typename T>
inline Coefficient
Expression_Hide_Last<T>::gcd(dimension_type start,
dimension_type end) const {
PPL_ASSERT(end <= space_dimension() + 1);
return this->inner().gcd(start, end);
}
template <typename T>
inline dimension_type
Expression_Hide_Last<T>::last_nonzero() const {
return this->inner().last_nonzero(0, space_dimension() + 1);
}
template <typename T>
inline dimension_type
Expression_Hide_Last<T>::last_nonzero(dimension_type first,
dimension_type last) const {
PPL_ASSERT(last <= space_dimension() + 1);
return this->inner().last_nonzero(first, last);
}
template <typename T>
inline dimension_type
Expression_Hide_Last<T>::first_nonzero(dimension_type first,
dimension_type last) const {
PPL_ASSERT(last <= space_dimension() + 1);
return this->inner().first_nonzero(first, last);
}
template <typename T>
inline bool
Expression_Hide_Last<T>
::all_zeroes_except(const Variables_Set& vars,
dimension_type start, dimension_type end) const {
PPL_ASSERT(end <= space_dimension() + 1);
return this->inner().all_zeroes_except(vars, start, end);
}
template <typename T>
inline void
Expression_Hide_Last<T>
::has_a_free_dimension_helper(std::set<dimension_type>& x) const {
if (x.empty())
return;
PPL_ASSERT(*(--x.end()) <= space_dimension());
this->inner().has_a_free_dimension_helper(x);
}
template <typename T>
template <typename Expression>
inline bool
Expression_Hide_Last<T>
::is_equal_to(const Expression& y,
dimension_type start, dimension_type end) const {
PPL_ASSERT(end <= space_dimension() + 1);
PPL_ASSERT(end <= y.space_dimension() + 1);
return this->inner().is_equal_to(y, start, end);
}
template <typename T>
template <typename Expression>
inline bool
Expression_Hide_Last<T>
::is_equal_to(const Expression& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end) const {
PPL_ASSERT(end <= space_dimension() + 1);
PPL_ASSERT(end <= y.space_dimension() + 1);
return this->inner().is_equal_to(y, c1, c2, start, end);
}
template <typename T>
inline void
Expression_Hide_Last<T>::get_row(Dense_Row& row) const {
this->inner().get_row(row);
if (hide_last_) {
PPL_ASSERT(row.size() != 0);
row.resize(row.size() - 1);
}
}
template <typename T>
inline void
Expression_Hide_Last<T>::get_row(Sparse_Row& row) const {
this->inner().get_row(row);
if (hide_last_) {
PPL_ASSERT(row.size() != 0);
row.resize(row.size() - 1);
}
}
template <typename T>
template <typename Expression>
inline bool
Expression_Hide_Last<T>
::have_a_common_variable(const Expression& y,
Variable first, Variable last) const {
PPL_ASSERT(last.space_dimension() <= space_dimension() + 1);
PPL_ASSERT(last.space_dimension() <= y.space_dimension() + 1);
return this->inner().have_a_common_variable(y, first, last);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Expression_Hide_Last_defs.hh line 164. */
/* Automatically generated from PPL source file ../src/Constraint_defs.hh line 40. */
#include <iosfwd>
namespace Parma_Polyhedra_Library {
//! Returns the constraint \p e1 \< \p e2.
/*! \relates Constraint */
Constraint
operator<(const Linear_Expression& e1, const Linear_Expression& e2);
//! Returns the constraint \p v1 \< \p v2.
/*! \relates Constraint */
Constraint
operator<(Variable v1, Variable v2);
//! Returns the constraint \p e \< \p n.
/*! \relates Constraint */
Constraint
operator<(const Linear_Expression& e, Coefficient_traits::const_reference n);
//! Returns the constraint \p n \< \p e.
/*! \relates Constraint */
Constraint
operator<(Coefficient_traits::const_reference n, const Linear_Expression& e);
//! Returns the constraint \p e1 \> \p e2.
/*! \relates Constraint */
Constraint
operator>(const Linear_Expression& e1, const Linear_Expression& e2);
//! Returns the constraint \p v1 \> \p v2.
/*! \relates Constraint */
Constraint
operator>(Variable v1, Variable v2);
//! Returns the constraint \p e \> \p n.
/*! \relates Constraint */
Constraint
operator>(const Linear_Expression& e, Coefficient_traits::const_reference n);
//! Returns the constraint \p n \> \p e.
/*! \relates Constraint */
Constraint
operator>(Coefficient_traits::const_reference n, const Linear_Expression& e);
//! Returns the constraint \p e1 = \p e2.
/*! \relates Constraint */
Constraint
operator==(const Linear_Expression& e1, const Linear_Expression& e2);
//! Returns the constraint \p v1 = \p v2.
/*! \relates Constraint */
Constraint
operator==(Variable v1, Variable v2);
//! Returns the constraint \p e = \p n.
/*! \relates Constraint */
Constraint
operator==(const Linear_Expression& e, Coefficient_traits::const_reference n);
//! Returns the constraint \p n = \p e.
/*! \relates Constraint */
Constraint
operator==(Coefficient_traits::const_reference n, const Linear_Expression& e);
//! Returns the constraint \p e1 \<= \p e2.
/*! \relates Constraint */
Constraint
operator<=(const Linear_Expression& e1, const Linear_Expression& e2);
//! Returns the constraint \p v1 \<= \p v2.
/*! \relates Constraint */
Constraint
operator<=(Variable v1, Variable v2);
//! Returns the constraint \p e \<= \p n.
/*! \relates Constraint */
Constraint
operator<=(const Linear_Expression& e, Coefficient_traits::const_reference n);
//! Returns the constraint \p n \<= \p e.
/*! \relates Constraint */
Constraint
operator<=(Coefficient_traits::const_reference n, const Linear_Expression& e);
//! Returns the constraint \p e1 \>= \p e2.
/*! \relates Constraint */
Constraint
operator>=(const Linear_Expression& e1, const Linear_Expression& e2);
//! Returns the constraint \p v1 \>= \p v2.
/*! \relates Constraint */
Constraint
operator>=(Variable v1, Variable v2);
//! Returns the constraint \p e \>= \p n.
/*! \relates Constraint */
Constraint
operator>=(const Linear_Expression& e, Coefficient_traits::const_reference n);
//! Returns the constraint \p n \>= \p e.
/*! \relates Constraint */
Constraint
operator>=(Coefficient_traits::const_reference n, const Linear_Expression& e);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! The basic comparison function.
/*! \relates Constraint
\return
The returned absolute value can be \f$0\f$, \f$1\f$ or \f$2\f$.
\param x
A row of coefficients;
\param y
Another row.
Compares \p x and \p y, where \p x and \p y may be of different size,
in which case the "missing" coefficients are assumed to be zero.
The comparison is such that:
-# equalities are smaller than inequalities;
-# lines are smaller than points and rays;
-# the ordering is lexicographic;
-# the positions compared are, in decreasing order of significance,
1, 2, ..., \p size(), 0;
-# the result is negative, zero, or positive if x is smaller than,
equal to, or greater than y, respectively;
-# when \p x and \p y are different, the absolute value of the
result is 1 if the difference is due to the coefficient in
position 0; it is 2 otherwise.
When \p x and \p y represent the hyper-planes associated
to two equality or inequality constraints, the coefficient
at 0 is the known term.
In this case, the return value can be characterized as follows:
- -2, if \p x is smaller than \p y and they are \e not parallel;
- -1, if \p x is smaller than \p y and they \e are parallel;
- 0, if \p x and y are equal;
- +1, if \p y is smaller than \p x and they \e are parallel;
- +2, if \p y is smaller than \p x and they are \e not parallel.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
int compare(const Constraint& x, const Constraint& y);
}
//! A linear equality or inequality.
/*! \ingroup PPL_CXX_interface
An object of the class Constraint is either:
- an equality: \f$\sum_{i=0}^{n-1} a_i x_i + b = 0\f$;
- a non-strict inequality: \f$\sum_{i=0}^{n-1} a_i x_i + b \geq 0\f$; or
- a strict inequality: \f$\sum_{i=0}^{n-1} a_i x_i + b > 0\f$;
where \f$n\f$ is the dimension of the space,
\f$a_i\f$ is the integer coefficient of variable \f$x_i\f$
and \f$b\f$ is the integer inhomogeneous term.
\par How to build a constraint
Constraints are typically built by applying a relation symbol
to a pair of linear expressions.
Available relation symbols are equality (<CODE>==</CODE>),
non-strict inequalities (<CODE>\>=</CODE> and <CODE>\<=</CODE>) and
strict inequalities (<CODE>\<</CODE> and <CODE>\></CODE>).
The space dimension of a constraint is defined as the maximum
space dimension of the arguments of its constructor.
\par
In the following examples it is assumed that variables
<CODE>x</CODE>, <CODE>y</CODE> and <CODE>z</CODE>
are defined as follows:
\code
Variable x(0);
Variable y(1);
Variable z(2);
\endcode
\par Example 1
The following code builds the equality constraint
\f$3x + 5y - z = 0\f$, having space dimension \f$3\f$:
\code
Constraint eq_c(3*x + 5*y - z == 0);
\endcode
The following code builds the (non-strict) inequality constraint
\f$4x \geq 2y - 13\f$, having space dimension \f$2\f$:
\code
Constraint ineq_c(4*x >= 2*y - 13);
\endcode
The corresponding strict inequality constraint
\f$4x > 2y - 13\f$ is obtained as follows:
\code
Constraint strict_ineq_c(4*x > 2*y - 13);
\endcode
An unsatisfiable constraint on the zero-dimension space \f$\Rset^0\f$
can be specified as follows:
\code
Constraint false_c = Constraint::zero_dim_false();
\endcode
Equivalent, but more involved ways are the following:
\code
Constraint false_c1(Linear_Expression::zero() == 1);
Constraint false_c2(Linear_Expression::zero() >= 1);
Constraint false_c3(Linear_Expression::zero() > 0);
\endcode
In contrast, the following code defines an unsatisfiable constraint
having space dimension \f$3\f$:
\code
Constraint false_c(0*z == 1);
\endcode
\par How to inspect a constraint
Several methods are provided to examine a constraint and extract
all the encoded information: its space dimension, its type
(equality, non-strict inequality, strict inequality) and
the value of its integer coefficients.
\par Example 2
The following code shows how it is possible to access each single
coefficient of a constraint. Given an inequality constraint
(in this case \f$x - 5y + 3z \leq 4\f$), we construct a new constraint
corresponding to its complement (thus, in this case we want to obtain
the strict inequality constraint \f$x - 5y + 3z > 4\f$).
\code
Constraint c1(x - 5*y + 3*z <= 4);
cout << "Constraint c1: " << c1 << endl;
if (c1.is_equality())
cout << "Constraint c1 is not an inequality." << endl;
else {
Linear_Expression e;
for (dimension_type i = c1.space_dimension(); i-- > 0; )
e += c1.coefficient(Variable(i)) * Variable(i);
e += c1.inhomogeneous_term();
Constraint c2 = c1.is_strict_inequality() ? (e <= 0) : (e < 0);
cout << "Complement c2: " << c2 << endl;
}
\endcode
The actual output is the following:
\code
Constraint c1: -A + 5*B - 3*C >= -4
Complement c2: A - 5*B + 3*C > 4
\endcode
Note that, in general, the particular output obtained can be
syntactically different from the (semantically equivalent)
constraint considered.
*/
class Parma_Polyhedra_Library::Constraint {
public:
//! The constraint type.
enum Type {
/*! The constraint is an equality. */
EQUALITY,
/*! The constraint is a non-strict inequality. */
NONSTRICT_INEQUALITY,
/*! The constraint is a strict inequality. */
STRICT_INEQUALITY
};
//! The representation used for new Constraints.
/*!
\note The copy constructor and the copy constructor with specified size
use the representation of the original object, so that it is
indistinguishable from the original object.
*/
static const Representation default_representation = SPARSE;
//! Constructs the \f$0<=0\f$ constraint.
explicit Constraint(Representation r = default_representation);
//! Ordinary copy constructor.
/*!
\note The new Constraint will have the same representation as `c',
not default_representation, so that they are indistinguishable.
*/
Constraint(const Constraint& c);
//! Copy constructor with given size.
/*!
\note The new Constraint will have the same representation as `c',
not default_representation, so that they are indistinguishable.
*/
Constraint(const Constraint& c, dimension_type space_dim);
//! Copy constructor with given representation.
Constraint(const Constraint& c, Representation r);
//! Copy constructor with given size and representation.
Constraint(const Constraint& c, dimension_type space_dim,
Representation r);
//! Copy-constructs from equality congruence \p cg.
/*!
\exception std::invalid_argument
Thrown if \p cg is a proper congruence.
*/
explicit Constraint(const Congruence& cg,
Representation r = default_representation);
//! Destructor.
~Constraint();
//! Returns the current representation of *this.
Representation representation() const;
//! Converts *this to the specified representation.
void set_representation(Representation r);
//! Assignment operator.
Constraint& operator=(const Constraint& c);
//! Returns the maximum space dimension a Constraint can handle.
static dimension_type max_space_dimension();
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
//! Sets the dimension of the vector space enclosing \p *this to
//! \p space_dim .
void set_space_dimension(dimension_type space_dim);
//! Swaps the coefficients of the variables \p v1 and \p v2 .
void swap_space_dimensions(Variable v1, Variable v2);
//! Removes all the specified dimensions from the constraint.
/*!
The space dimension of the variable with the highest space
dimension in \p vars must be at most the space dimension
of \p this.
Always returns \p true. The return value is needed for compatibility with
the Generator class.
*/
bool remove_space_dimensions(const Variables_Set& vars);
//! Permutes the space dimensions of the constraint.
/*
\param cycle
A vector representing a cycle of the permutation according to which the
space dimensions must be rearranged.
The \p cycle vector represents a cycle of a permutation of space
dimensions.
For example, the permutation
\f$ \{ x_1 \mapsto x_2, x_2 \mapsto x_3, x_3 \mapsto x_1 \}\f$ can be
represented by the vector containing \f$ x_1, x_2, x_3 \f$.
*/
void permute_space_dimensions(const std::vector<Variable>& cycle);
//! Shift by \p n positions the coefficients of variables, starting from
//! the coefficient of \p v. This increases the space dimension by \p n.
void shift_space_dimensions(Variable v, dimension_type n);
//! Returns the constraint type of \p *this.
Type type() const;
/*! \brief
Returns <CODE>true</CODE> if and only if
\p *this is an equality constraint.
*/
bool is_equality() const;
/*! \brief
Returns <CODE>true</CODE> if and only if
\p *this is an inequality constraint (either strict or non-strict).
*/
bool is_inequality() const;
/*! \brief
Returns <CODE>true</CODE> if and only if
\p *this is a non-strict inequality constraint.
*/
bool is_nonstrict_inequality() const;
/*! \brief
Returns <CODE>true</CODE> if and only if
\p *this is a strict inequality constraint.
*/
bool is_strict_inequality() const;
//! Returns the coefficient of \p v in \p *this.
/*!
\exception std::invalid_argument thrown if the index of \p v
is greater than or equal to the space dimension of \p *this.
*/
Coefficient_traits::const_reference coefficient(Variable v) const;
//! Returns the inhomogeneous term of \p *this.
Coefficient_traits::const_reference inhomogeneous_term() const;
//! Initializes the class.
static void initialize();
//! Finalizes the class.
static void finalize();
//! The unsatisfiable (zero-dimension space) constraint \f$0 = 1\f$.
static const Constraint& zero_dim_false();
/*! \brief
The true (zero-dimension space) constraint \f$0 \leq 1\f$,
also known as <EM>positivity constraint</EM>.
*/
static const Constraint& zero_dim_positivity();
/*! \brief
Returns a lower bound to the total size in bytes of the memory
occupied by \p *this.
*/
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
/*! \brief
Returns <CODE>true</CODE> if and only if
\p *this is a tautology (i.e., an always true constraint).
A tautology can have either one of the following forms:
- an equality: \f$\sum_{i=0}^{n-1} 0 x_i + 0 = 0\f$; or
- a non-strict inequality: \f$\sum_{i=0}^{n-1} 0 x_i + b \geq 0\f$,
where \f$b \geq 0\f$; or
- a strict inequality: \f$\sum_{i=0}^{n-1} 0 x_i + b > 0\f$,
where \f$b > 0\f$.
*/
bool is_tautological() const;
/*! \brief
Returns <CODE>true</CODE> if and only if
\p *this is inconsistent (i.e., an always false constraint).
An inconsistent constraint can have either one of the following forms:
- an equality: \f$\sum_{i=0}^{n-1} 0 x_i + b = 0\f$,
where \f$b \neq 0\f$; or
- a non-strict inequality: \f$\sum_{i=0}^{n-1} 0 x_i + b \geq 0\f$,
where \f$b < 0\f$; or
- a strict inequality: \f$\sum_{i=0}^{n-1} 0 x_i + b > 0\f$,
where \f$b \leq 0\f$.
*/
bool is_inconsistent() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this and \p y
are equivalent constraints.
Constraints having different space dimensions are not equivalent.
Note that constraints having different types may nonetheless be
equivalent, if they both are tautologies or inconsistent.
*/
bool is_equivalent_to(const Constraint& y) const;
//! Returns <CODE>true</CODE> if \p *this is identical to \p y.
/*!
This is faster than is_equivalent_to(), but it may return `false' even
for equivalent constraints.
*/
bool is_equal_to(const Constraint& y) const;
//! Checks if all the invariants are satisfied.
bool OK() const;
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Swaps \p *this with \p y.
void m_swap(Constraint& y);
//! Returns the zero-dimension space constraint \f$\epsilon \geq 0\f$.
static const Constraint& epsilon_geq_zero();
/*! \brief
The zero-dimension space constraint \f$\epsilon \leq 1\f$
(used to implement NNC polyhedra).
*/
static const Constraint& epsilon_leq_one();
//! The type of the (adapted) internal expression.
typedef Expression_Hide_Last<Linear_Expression> expr_type;
//! Partial read access to the (adapted) internal expression.
expr_type expression() const;
private:
//! The possible kinds of Constraint objects.
enum Kind {
LINE_OR_EQUALITY = 0,
RAY_OR_POINT_OR_INEQUALITY = 1
};
Linear_Expression expr;
Kind kind_;
Topology topology_;
/*! \brief
Holds (between class initialization and finalization) a pointer to
the unsatisfiable (zero-dimension space) constraint \f$0 = 1\f$.
*/
static const Constraint* zero_dim_false_p;
/*! \brief
Holds (between class initialization and finalization) a pointer to
the true (zero-dimension space) constraint \f$0 \leq 1\f$, also
known as <EM>positivity constraint</EM>.
*/
static const Constraint* zero_dim_positivity_p;
/*! \brief
Holds (between class initialization and finalization) a pointer to
the zero-dimension space constraint \f$\epsilon \geq 0\f$.
*/
static const Constraint* epsilon_geq_zero_p;
/*! \brief
Holds (between class initialization and finalization) a pointer to
the zero-dimension space constraint \f$\epsilon \leq 1\f$
(used to implement NNC polyhedra).
*/
static const Constraint* epsilon_leq_one_p;
//! Constructs the \f$0<0\f$ constraint.
Constraint(dimension_type space_dim, Kind kind, Topology topology,
Representation r = default_representation);
/*! \brief
Builds a constraint of kind \p kind and topology \p topology,
stealing the coefficients from \p e.
\note The new Constraint will have the same representation as `e'.
*/
Constraint(Linear_Expression& e, Kind kind, Topology topology);
/*! \brief
Builds a constraint of type \p type and topology \p topology,
stealing the coefficients from \p e.
\note The new Constraint will have the same representation as `e'.
*/
Constraint(Linear_Expression& e, Type type, Topology topology);
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this row
represents a line or an equality.
*/
bool is_line_or_equality() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this row
represents a ray, a point or an inequality.
*/
bool is_ray_or_point_or_inequality() const;
//! Sets to \p LINE_OR_EQUALITY the kind of \p *this row.
void set_is_line_or_equality();
//! Sets to \p RAY_OR_POINT_OR_INEQUALITY the kind of \p *this row.
void set_is_ray_or_point_or_inequality();
//! \name Flags inspection methods
//@{
//! Returns the topological kind of \p *this.
Topology topology() const;
/*! \brief
Returns <CODE>true</CODE> if and only if the topology
of \p *this row is not necessarily closed.
*/
bool is_not_necessarily_closed() const;
/*! \brief
Returns <CODE>true</CODE> if and only if the topology
of \p *this row is necessarily closed.
*/
bool is_necessarily_closed() const;
//@} // Flags inspection methods
//! \name Flags coercion methods
//@{
// TODO: Consider setting the epsilon dimension in this method.
//! Sets to \p x the topological kind of \p *this row.
void set_topology(Topology x);
//! Sets to \p NECESSARILY_CLOSED the topological kind of \p *this row.
void set_necessarily_closed();
//! Sets to \p NOT_NECESSARILY_CLOSED the topological kind of \p *this row.
void set_not_necessarily_closed();
//@} // Flags coercion methods
//! Sets the dimension of the vector space enclosing \p *this to
//! \p space_dim .
//! Sets the space dimension of the rows in the system to \p space_dim .
/*!
This method is for internal use, it does *not* assert OK() at the end,
so it can be used for invalid objects.
*/
void set_space_dimension_no_ok(dimension_type space_dim);
/*! \brief
Throws a <CODE>std::invalid_argument</CODE> exception containing
error message \p message.
*/
void
throw_invalid_argument(const char* method, const char* message) const;
/*! \brief
Throws a <CODE>std::invalid_argument</CODE> exception
containing the appropriate error message.
*/
void
throw_dimension_incompatible(const char* method,
const char* name_var,
Variable v) const;
//! Returns the epsilon coefficient. The constraint must be NNC.
Coefficient_traits::const_reference epsilon_coefficient() const;
//! Sets the epsilon coefficient to \p n. The constraint must be NNC.
void set_epsilon_coefficient(Coefficient_traits::const_reference n);
//! Marks the epsilon dimension as a standard dimension.
/*!
The row topology is changed to <CODE>NOT_NECESSARILY_CLOSED</CODE>, and
the number of space dimensions is increased by 1.
*/
void mark_as_necessarily_closed();
//! Marks the last dimension as the epsilon dimension.
/*!
The row topology is changed to <CODE>NECESSARILY_CLOSED</CODE>, and
the number of space dimensions is decreased by 1.
*/
void mark_as_not_necessarily_closed();
//! Sets the constraint type to <CODE>EQUALITY</CODE>.
void set_is_equality();
//! Sets the constraint to be an inequality.
/*!
Whether the constraint type will become <CODE>NONSTRICT_INEQUALITY</CODE>
or <CODE>STRICT_INEQUALITY</CODE> depends on the topology and the value
of the low-level coefficients of the constraint.
*/
void set_is_inequality();
//! Linearly combines \p *this with \p y so that i-th coefficient is 0.
/*!
\param y
The Constraint that will be combined with \p *this object;
\param i
The index of the coefficient that has to become \f$0\f$.
Computes a linear combination of \p *this and \p y having
the i-th coefficient equal to \f$0\f$. Then it assigns
the resulting Constraint to \p *this and normalizes it.
*/
void linear_combine(const Constraint& y, dimension_type i);
/*! \brief
Normalizes the sign of the coefficients so that the first non-zero
(homogeneous) coefficient of a line-or-equality is positive.
*/
void sign_normalize();
/*! \brief
Strong normalization: ensures that different Constraint objects
represent different hyperplanes or hyperspaces.
Applies both Constraint::normalize() and Constraint::sign_normalize().
*/
void strong_normalize();
/*! \brief
Returns <CODE>true</CODE> if and only if the coefficients are
strongly normalized.
*/
bool check_strong_normalized() const;
/*! \brief
Builds a new copy of the zero-dimension space constraint
\f$\epsilon \geq 0\f$ (used to implement NNC polyhedra).
*/
static Constraint construct_epsilon_geq_zero();
friend int
compare(const Constraint& x, const Constraint& y);
friend class Linear_System<Constraint>;
friend class Constraint_System;
friend class Polyhedron;
friend class Scalar_Products;
friend class Topology_Adjusted_Scalar_Product_Sign;
friend class Termination_Helpers;
friend class Grid;
template <typename T>
friend class Octagonal_Shape;
friend Constraint
operator<(const Linear_Expression& e1, const Linear_Expression& e2);
friend Constraint
operator<(Variable v1, Variable v2);
friend Constraint
operator<(const Linear_Expression& e, Coefficient_traits::const_reference n);
friend Constraint
operator<(Coefficient_traits::const_reference n, const Linear_Expression& e);
friend Constraint
operator>(const Linear_Expression& e1, const Linear_Expression& e2);
friend Constraint
operator>(Variable v1, Variable v2);
friend Constraint
operator>(const Linear_Expression& e, Coefficient_traits::const_reference n);
friend Constraint
operator>(Coefficient_traits::const_reference n, const Linear_Expression& e);
friend Constraint
operator==(const Linear_Expression& e1, const Linear_Expression& e2);
friend Constraint
operator==(Variable v1, Variable v2);
friend Constraint
operator==(const Linear_Expression& e, Coefficient_traits::const_reference n);
friend Constraint
operator==(Coefficient_traits::const_reference n, const Linear_Expression& e);
friend Constraint
operator<=(const Linear_Expression& e1, const Linear_Expression& e2);
friend Constraint
operator<=(Variable v1, Variable v2);
friend Constraint
operator<=(const Linear_Expression& e, Coefficient_traits::const_reference n);
friend Constraint
operator<=(Coefficient_traits::const_reference n, const Linear_Expression& e);
friend Constraint
operator>=(const Linear_Expression& e1, const Linear_Expression& e2);
friend Constraint
operator>=(Variable v1, Variable v2);
friend Constraint
operator>=(const Linear_Expression& e, Coefficient_traits::const_reference n);
friend Constraint
operator>=(Coefficient_traits::const_reference n, const Linear_Expression& e);
};
namespace Parma_Polyhedra_Library {
namespace IO_Operators {
//! Output operator.
/*! \relates Parma_Polyhedra_Library::Constraint */
std::ostream& operator<<(std::ostream& s, const Constraint& c);
//! Output operator.
/*! \relates Parma_Polyhedra_Library::Constraint */
std::ostream& operator<<(std::ostream& s, const Constraint::Type& t);
} // namespace IO_Operators
//! Returns <CODE>true</CODE> if and only if \p x is equivalent to \p y.
/*! \relates Constraint */
bool
operator==(const Constraint& x, const Constraint& y);
//! Returns <CODE>true</CODE> if and only if \p x is not equivalent to \p y.
/*! \relates Constraint */
bool
operator!=(const Constraint& x, const Constraint& y);
/*! \relates Constraint */
void swap(Constraint& x, Constraint& y);
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Constraint_inlines.hh line 1. */
/* Constraint class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Constraint_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
inline bool
Constraint::is_necessarily_closed() const {
return (topology_ == NECESSARILY_CLOSED);
}
inline bool
Constraint::is_not_necessarily_closed() const {
return !is_necessarily_closed();
}
inline Constraint::expr_type
Constraint::expression() const {
return expr_type(expr, is_not_necessarily_closed());
}
inline dimension_type
Constraint::space_dimension() const {
return expression().space_dimension();
}
inline void
Constraint::shift_space_dimensions(Variable v, dimension_type n) {
expr.shift_space_dimensions(v, n);
}
inline bool
Constraint::is_line_or_equality() const {
return (kind_ == LINE_OR_EQUALITY);
}
inline bool
Constraint::is_ray_or_point_or_inequality() const {
return (kind_ == RAY_OR_POINT_OR_INEQUALITY);
}
inline Topology
Constraint::topology() const {
return topology_;
}
inline void
Constraint::set_is_line_or_equality() {
kind_ = LINE_OR_EQUALITY;
}
inline void
Constraint::set_is_ray_or_point_or_inequality() {
kind_ = RAY_OR_POINT_OR_INEQUALITY;
}
inline void
Constraint::set_topology(Topology x) {
if (topology() == x)
return;
if (topology() == NECESSARILY_CLOSED) {
// Add a column for the epsilon dimension.
expr.set_space_dimension(expr.space_dimension() + 1);
}
else {
PPL_ASSERT(expr.space_dimension() != 0);
expr.set_space_dimension(expr.space_dimension() - 1);
}
topology_ = x;
}
inline void
Constraint::mark_as_necessarily_closed() {
PPL_ASSERT(is_not_necessarily_closed());
topology_ = NECESSARILY_CLOSED;
}
inline void
Constraint::mark_as_not_necessarily_closed() {
PPL_ASSERT(is_necessarily_closed());
topology_ = NOT_NECESSARILY_CLOSED;
}
inline void
Constraint::set_necessarily_closed() {
set_topology(NECESSARILY_CLOSED);
}
inline void
Constraint::set_not_necessarily_closed() {
set_topology(NOT_NECESSARILY_CLOSED);
}
inline
Constraint::Constraint(Representation r)
: expr(r),
kind_(RAY_OR_POINT_OR_INEQUALITY),
topology_(NECESSARILY_CLOSED) {
PPL_ASSERT(OK());
}
inline
Constraint::Constraint(dimension_type space_dim, Kind kind, Topology topology,
Representation r)
: expr(r),
kind_(kind),
topology_(topology) {
expr.set_space_dimension(space_dim + 1);
PPL_ASSERT(space_dimension() == space_dim);
PPL_ASSERT(OK());
}
inline
Constraint::Constraint(Linear_Expression& e, Kind kind, Topology topology)
: kind_(kind),
topology_(topology) {
PPL_ASSERT(kind != RAY_OR_POINT_OR_INEQUALITY || topology == NOT_NECESSARILY_CLOSED);
swap(expr, e);
if (topology == NOT_NECESSARILY_CLOSED)
// Add the epsilon dimension.
expr.set_space_dimension(expr.space_dimension() + 1);
strong_normalize();
PPL_ASSERT(OK());
}
inline
Constraint::Constraint(Linear_Expression& e, Type type, Topology topology)
: topology_(topology) {
PPL_ASSERT(type != STRICT_INEQUALITY || topology == NOT_NECESSARILY_CLOSED);
swap(expr, e);
if (topology == NOT_NECESSARILY_CLOSED)
expr.set_space_dimension(expr.space_dimension() + 1);
if (type == EQUALITY)
kind_ = LINE_OR_EQUALITY;
else
kind_ = RAY_OR_POINT_OR_INEQUALITY;
strong_normalize();
PPL_ASSERT(OK());
}
inline
Constraint::Constraint(const Constraint& c)
: expr(c.expr),
kind_(c.kind_),
topology_(c.topology_) {
// NOTE: This does not call PPL_ASSERT(OK()) because this is called by OK().
}
inline
Constraint::Constraint(const Constraint& c, Representation r)
: expr(c.expr, r),
kind_(c.kind_),
topology_(c.topology_) {
PPL_ASSERT(OK());
}
inline
Constraint::Constraint(const Constraint& c, const dimension_type space_dim)
: expr(c.expr, c.is_necessarily_closed() ? space_dim : (space_dim + 1)),
kind_(c.kind_), topology_(c.topology_) {
PPL_ASSERT(space_dimension() == space_dim);
PPL_ASSERT(OK());
}
inline
Constraint::Constraint(const Constraint& c, const dimension_type space_dim,
Representation r)
: expr(c.expr, c.is_necessarily_closed() ? space_dim : (space_dim + 1), r),
kind_(c.kind_), topology_(c.topology_) {
PPL_ASSERT(space_dimension() == space_dim);
PPL_ASSERT(OK());
}
inline
Constraint::~Constraint() {
}
inline Constraint&
Constraint::operator=(const Constraint& c) {
Constraint tmp = c;
swap(*this, tmp);
return *this;
}
inline Representation
Constraint::representation() const {
return expr.representation();
}
inline void
Constraint::set_representation(Representation r) {
expr.set_representation(r);
}
inline dimension_type
Constraint::max_space_dimension() {
return Linear_Expression::max_space_dimension();
}
inline void
Constraint::set_space_dimension_no_ok(dimension_type space_dim) {
const dimension_type old_expr_space_dim = expr.space_dimension();
if (topology() == NECESSARILY_CLOSED) {
expr.set_space_dimension(space_dim);
}
else {
const dimension_type old_space_dim = space_dimension();
if (space_dim > old_space_dim) {
expr.set_space_dimension(space_dim + 1);
expr.swap_space_dimensions(Variable(space_dim), Variable(old_space_dim));
}
else {
expr.swap_space_dimensions(Variable(space_dim), Variable(old_space_dim));
expr.set_space_dimension(space_dim + 1);
}
}
PPL_ASSERT(space_dimension() == space_dim);
if (expr.space_dimension() < old_expr_space_dim)
strong_normalize();
}
inline void
Constraint::set_space_dimension(dimension_type space_dim) {
set_space_dimension_no_ok(space_dim);
PPL_ASSERT(OK());
}
inline bool
Constraint::remove_space_dimensions(const Variables_Set& vars) {
expr.remove_space_dimensions(vars);
return true;
}
inline bool
Constraint::is_equality() const {
return is_line_or_equality();
}
inline bool
Constraint::is_inequality() const {
return is_ray_or_point_or_inequality();
}
inline Constraint::Type
Constraint::type() const {
if (is_equality())
return EQUALITY;
if (is_necessarily_closed())
return NONSTRICT_INEQUALITY;
if (epsilon_coefficient() < 0)
return STRICT_INEQUALITY;
else
return NONSTRICT_INEQUALITY;
}
inline bool
Constraint::is_nonstrict_inequality() const {
return type() == NONSTRICT_INEQUALITY;
}
inline bool
Constraint::is_strict_inequality() const {
return type() == STRICT_INEQUALITY;
}
inline void
Constraint::set_is_equality() {
set_is_line_or_equality();
}
inline void
Constraint::set_is_inequality() {
set_is_ray_or_point_or_inequality();
}
inline Coefficient_traits::const_reference
Constraint::coefficient(const Variable v) const {
if (v.space_dimension() > space_dimension())
throw_dimension_incompatible("coefficient(v)", "v", v);
return expr.coefficient(v);
}
inline Coefficient_traits::const_reference
Constraint::inhomogeneous_term() const {
return expr.inhomogeneous_term();
}
inline memory_size_type
Constraint::external_memory_in_bytes() const {
return expr.external_memory_in_bytes();
}
inline memory_size_type
Constraint::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
inline void
Constraint::strong_normalize() {
expr.normalize();
sign_normalize();
}
/*! \relates Constraint */
inline bool
operator==(const Constraint& x, const Constraint& y) {
return x.is_equivalent_to(y);
}
/*! \relates Constraint */
inline bool
operator!=(const Constraint& x, const Constraint& y) {
return !x.is_equivalent_to(y);
}
/*! \relates Constraint */
inline Constraint
operator==(const Linear_Expression& e1, const Linear_Expression& e2) {
Linear_Expression diff(e1,
std::max(e1.space_dimension(), e2.space_dimension()),
Constraint::default_representation);
diff -= e2;
return Constraint(diff, Constraint::EQUALITY, NECESSARILY_CLOSED);
}
/*! \relates Constraint */
inline Constraint
operator==(Variable v1, Variable v2) {
if (v1.space_dimension() > v2.space_dimension())
swap(v1, v2);
PPL_ASSERT(v1.space_dimension() <= v2.space_dimension());
Linear_Expression diff(v1, Constraint::default_representation);
diff -= v2;
return Constraint(diff, Constraint::EQUALITY, NECESSARILY_CLOSED);
}
/*! \relates Constraint */
inline Constraint
operator>=(const Linear_Expression& e1, const Linear_Expression& e2) {
Linear_Expression diff(e1,
std::max(e1.space_dimension(), e2.space_dimension()),
Constraint::default_representation);
diff -= e2;
return Constraint(diff, Constraint::NONSTRICT_INEQUALITY, NECESSARILY_CLOSED);
}
/*! \relates Constraint */
inline Constraint
operator>=(const Variable v1, const Variable v2) {
Linear_Expression diff(Constraint::default_representation);
diff.set_space_dimension(std::max(v1.space_dimension(),
v2.space_dimension()));
diff += v1;
diff -= v2;
return Constraint(diff, Constraint::NONSTRICT_INEQUALITY, NECESSARILY_CLOSED);
}
/*! \relates Constraint */
inline Constraint
operator>(const Linear_Expression& e1, const Linear_Expression& e2) {
Linear_Expression diff(e1, Constraint::default_representation);
diff -= e2;
Constraint c(diff, Constraint::STRICT_INEQUALITY, NOT_NECESSARILY_CLOSED);
// NOTE: this also enforces normalization.
c.set_epsilon_coefficient(-1);
PPL_ASSERT(c.OK());
return c;
}
/*! \relates Constraint */
inline Constraint
operator>(const Variable v1, const Variable v2) {
Linear_Expression diff(Constraint::default_representation);
diff.set_space_dimension(std::max(v1.space_dimension(),
v2.space_dimension()));
diff += v1;
diff -= v2;
Constraint c(diff, Constraint::STRICT_INEQUALITY, NOT_NECESSARILY_CLOSED);
c.set_epsilon_coefficient(-1);
PPL_ASSERT(c.OK());
return c;
}
/*! \relates Constraint */
inline Constraint
operator==(Coefficient_traits::const_reference n, const Linear_Expression& e) {
Linear_Expression diff(e, Constraint::default_representation);
neg_assign(diff);
diff += n;
return Constraint(diff, Constraint::EQUALITY, NECESSARILY_CLOSED);
}
/*! \relates Constraint */
inline Constraint
operator>=(Coefficient_traits::const_reference n, const Linear_Expression& e) {
Linear_Expression diff(e, Constraint::default_representation);
neg_assign(diff);
diff += n;
return Constraint(diff, Constraint::NONSTRICT_INEQUALITY, NECESSARILY_CLOSED);
}
/*! \relates Constraint */
inline Constraint
operator>(Coefficient_traits::const_reference n, const Linear_Expression& e) {
Linear_Expression diff(e, Constraint::default_representation);
neg_assign(diff);
diff += n;
Constraint c(diff, Constraint::STRICT_INEQUALITY, NOT_NECESSARILY_CLOSED);
// NOTE: this also enforces normalization.
c.set_epsilon_coefficient(-1);
PPL_ASSERT(c.OK());
return c;
}
/*! \relates Constraint */
inline Constraint
operator==(const Linear_Expression& e, Coefficient_traits::const_reference n) {
Linear_Expression diff(e, Constraint::default_representation);
diff -= n;
return Constraint(diff, Constraint::EQUALITY, NECESSARILY_CLOSED);
}
/*! \relates Constraint */
inline Constraint
operator>=(const Linear_Expression& e, Coefficient_traits::const_reference n) {
Linear_Expression diff(e, Constraint::default_representation);
diff -= n;
return Constraint(diff, Constraint::NONSTRICT_INEQUALITY, NECESSARILY_CLOSED);
}
/*! \relates Constraint */
inline Constraint
operator>(const Linear_Expression& e, Coefficient_traits::const_reference n) {
Linear_Expression diff(e, Constraint::default_representation);
diff -= n;
Constraint c(diff, Constraint::STRICT_INEQUALITY, NOT_NECESSARILY_CLOSED);
// NOTE: this also enforces normalization.
c.set_epsilon_coefficient(-1);
PPL_ASSERT(c.OK());
return c;
}
/*! \relates Constraint */
inline Constraint
operator<=(const Linear_Expression& e1, const Linear_Expression& e2) {
return e2 >= e1;
}
/*! \relates Constraint */
inline Constraint
operator<=(const Variable v1, const Variable v2) {
return v2 >= v1;
}
/*! \relates Constraint */
inline Constraint
operator<=(Coefficient_traits::const_reference n, const Linear_Expression& e) {
return e >= n;
}
/*! \relates Constraint */
inline Constraint
operator<=(const Linear_Expression& e, Coefficient_traits::const_reference n) {
return n >= e;
}
/*! \relates Constraint */
inline Constraint
operator<(const Linear_Expression& e1, const Linear_Expression& e2) {
return e2 > e1;
}
/*! \relates Constraint */
inline Constraint
operator<(const Variable v1, const Variable v2) {
return v2 > v1;
}
/*! \relates Constraint */
inline Constraint
operator<(Coefficient_traits::const_reference n, const Linear_Expression& e) {
return e > n;
}
/*! \relates Constraint */
inline Constraint
operator<(const Linear_Expression& e, Coefficient_traits::const_reference n) {
return n > e;
}
inline const Constraint&
Constraint::zero_dim_false() {
PPL_ASSERT(zero_dim_false_p != 0);
return *zero_dim_false_p;
}
inline const Constraint&
Constraint::zero_dim_positivity() {
PPL_ASSERT(zero_dim_positivity_p != 0);
return *zero_dim_positivity_p;
}
inline const Constraint&
Constraint::epsilon_geq_zero() {
PPL_ASSERT(epsilon_geq_zero_p != 0);
return *epsilon_geq_zero_p;
}
inline const Constraint&
Constraint::epsilon_leq_one() {
PPL_ASSERT(epsilon_leq_one_p != 0);
return *epsilon_leq_one_p;
}
inline void
Constraint::m_swap(Constraint& y) {
using std::swap;
swap(expr, y.expr);
swap(kind_, y.kind_);
swap(topology_, y.topology_);
}
inline Coefficient_traits::const_reference
Constraint::epsilon_coefficient() const {
PPL_ASSERT(is_not_necessarily_closed());
return expr.coefficient(Variable(expr.space_dimension() - 1));
}
inline void
Constraint::set_epsilon_coefficient(Coefficient_traits::const_reference n) {
PPL_ASSERT(is_not_necessarily_closed());
expr.set_coefficient(Variable(expr.space_dimension() - 1), n);
}
/*! \relates Constraint */
inline void
swap(Constraint& x, Constraint& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Constraint_defs.hh line 835. */
/* Automatically generated from PPL source file ../src/Generator_defs.hh line 1. */
/* Generator class declaration.
*/
/* Automatically generated from PPL source file ../src/Generator_System_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Generator_System;
class Generator_System_const_iterator;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Grid_Generator_System_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Grid_Generator_System;
}
/* Automatically generated from PPL source file ../src/Generator_defs.hh line 38. */
/* Automatically generated from PPL source file ../src/distances_defs.hh line 1. */
/* Class declarations for several distances.
*/
/* Automatically generated from PPL source file ../src/distances_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename Temp>
struct Rectilinear_Distance_Specialization;
template <typename Temp>
struct Euclidean_Distance_Specialization;
template <typename Temp>
struct L_Infinity_Distance_Specialization;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/distances_defs.hh line 29. */
template <typename Temp>
struct Parma_Polyhedra_Library::Rectilinear_Distance_Specialization {
static void combine(Temp& running, const Temp& current, Rounding_Dir dir);
static void finalize(Temp&, Rounding_Dir);
};
template <typename Temp>
struct Parma_Polyhedra_Library::Euclidean_Distance_Specialization {
static void combine(Temp& running, Temp& current, Rounding_Dir dir);
static void finalize(Temp& running, Rounding_Dir dir);
};
template <typename Temp>
struct Parma_Polyhedra_Library::L_Infinity_Distance_Specialization {
static void combine(Temp& running, const Temp& current, Rounding_Dir);
static void finalize(Temp&, Rounding_Dir);
};
/* Automatically generated from PPL source file ../src/distances_inlines.hh line 1. */
/* Inline functions implementing distances.
*/
/* Automatically generated from PPL source file ../src/distances_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
// A struct to work around the lack of partial specialization
// of function templates in C++.
template <typename To, typename From>
struct maybe_assign_struct {
static inline Result
function(const To*& top, To& tmp, const From& from, Rounding_Dir dir) {
// When `To' and `From' are different types, we make the conversion
// and use `tmp'.
top = &tmp;
return assign_r(tmp, from, dir);
}
};
template <typename Type>
struct maybe_assign_struct<Type, Type> {
static inline Result
function(const Type*& top, Type&, const Type& from, Rounding_Dir) {
// When the types are the same, conversion is unnecessary.
top = &from;
return V_EQ;
}
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Assigns to \p top a pointer to a location that holds the
conversion, according to \p dir, of \p from to type \p To. When
necessary, and only when necessary, the variable \p tmp is used to
hold the result of conversion.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename To, typename From>
inline Result
maybe_assign(const To*& top, To& tmp, const From& from, Rounding_Dir dir) {
return maybe_assign_struct<To, From>::function(top, tmp, from, dir);
}
template <typename Temp>
inline void
Rectilinear_Distance_Specialization<Temp>::combine(Temp& running,
const Temp& current,
Rounding_Dir dir) {
add_assign_r(running, running, current, dir);
}
template <typename Temp>
inline void
Rectilinear_Distance_Specialization<Temp>::finalize(Temp&, Rounding_Dir) {
}
template <typename Temp>
inline void
Euclidean_Distance_Specialization<Temp>::combine(Temp& running,
Temp& current,
Rounding_Dir dir) {
mul_assign_r(current, current, current, dir);
add_assign_r(running, running, current, dir);
}
template <typename Temp>
inline void
Euclidean_Distance_Specialization<Temp>::finalize(Temp& running,
Rounding_Dir dir) {
sqrt_assign_r(running, running, dir);
}
template <typename Temp>
inline void
L_Infinity_Distance_Specialization<Temp>::combine(Temp& running,
const Temp& current,
Rounding_Dir) {
if (current > running)
running = current;
}
template <typename Temp>
inline void
L_Infinity_Distance_Specialization<Temp>::finalize(Temp&, Rounding_Dir) {
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/distances_defs.hh line 53. */
/* Automatically generated from PPL source file ../src/Expression_Hide_Inhomo_defs.hh line 1. */
/* Expression_Hide_Inhomo class declaration.
*/
/* Automatically generated from PPL source file ../src/Expression_Hide_Inhomo_defs.hh line 28. */
/* Automatically generated from PPL source file ../src/Expression_Hide_Inhomo_defs.hh line 32. */
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
An adapter for Linear_Expression that hides the inhomogeneous term.
The methods of this class always pretend that the value of the
inhomogeneous term is zero.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
class Parma_Polyhedra_Library::Expression_Hide_Inhomo
: public Expression_Adapter<T> {
typedef Expression_Adapter<T> base_type;
public:
//! The type of this object.
typedef Expression_Hide_Inhomo<T> const_reference;
//! The type obtained by one-level unwrapping.
typedef typename base_type::inner_type inner_type;
//! The raw, completely unwrapped type.
typedef typename base_type::raw_type raw_type;
//! Constructor.
explicit Expression_Hide_Inhomo(const raw_type& expr);
public:
//! The type of const iterators on coefficients.
typedef typename base_type::const_iterator const_iterator;
//! Returns the constant zero.
Coefficient_traits::const_reference inhomogeneous_term() const;
//! Returns <CODE>true</CODE> if and only if \p *this is zero.
bool is_zero() const;
/*! \brief Returns \p true if \p *this is equal to \p y.
Note that <CODE>(*this == y)</CODE> has a completely different meaning.
*/
template <typename Expression>
bool is_equal_to(const Expression& y) const;
//! Returns the i-th coefficient.
Coefficient_traits::const_reference get(dimension_type i) const;
//! Returns the coefficient of v.
Coefficient_traits::const_reference get(Variable v) const;
/*! \brief
Returns <CODE>true</CODE> if the coefficient of each variable in
\p vars is zero.
*/
bool all_zeroes(const Variables_Set& vars) const;
/*! \brief
Returns <CODE>true</CODE> if (*this)[i] is zero,
for each i in [start, end).
*/
bool all_zeroes(dimension_type start, dimension_type end) const;
/*! \brief
Returns the number of zero coefficient in [start, end).
*/
dimension_type num_zeroes(dimension_type start, dimension_type end) const;
/*! \brief
Returns the gcd of the nonzero coefficients in [start,end). If all the
coefficients in this range are zero, returns zero.
*/
Coefficient gcd(dimension_type start, dimension_type end) const;
//! Returns the index of the last nonzero element, or zero if there are no
//! nonzero elements.
dimension_type last_nonzero() const;
//! Returns the index of the last nonzero element in [first,last), or last
//! if there are no nonzero elements.
dimension_type last_nonzero(dimension_type first, dimension_type last) const;
//! Returns the index of the first nonzero element, or \p last if there
//! are no nonzero elements, considering only elements in [first,last).
dimension_type first_nonzero(dimension_type first, dimension_type last) const;
/*! \brief
Returns <CODE>true</CODE> if all coefficients in [start,end),
except those corresponding to variables in \p vars, are zero.
*/
bool all_zeroes_except(const Variables_Set& vars,
dimension_type start, dimension_type end) const;
//! Removes from set \p x all the indexes of nonzero elements in \p *this.
void has_a_free_dimension_helper(std::set<dimension_type>& x) const;
//! Returns \c true if <CODE>(*this)[i]</CODE> is equal to <CODE>y[i]</CODE>,
//! for each i in [start,end).
template <typename Expression>
bool is_equal_to(const Expression& y,
dimension_type start, dimension_type end) const;
//! Returns \c true if <CODE>(*this)[i]*c1</CODE> is equal to
//! <CODE>y[i]*c2</CODE>, for each i in [start,end).
template <typename Expression>
bool is_equal_to(const Expression& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end) const;
//! Sets \p row to a copy of the row as adapted by \p *this.
void get_row(Dense_Row& row) const;
//! Sets \p row to a copy of the row as adapted by \p *this.
void get_row(Sparse_Row& row) const;
};
/* Automatically generated from PPL source file ../src/Expression_Hide_Inhomo_inlines.hh line 1. */
/* Expression_Hide_Inhomo class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Expression_Hide_Inhomo_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
template <typename T>
Expression_Hide_Inhomo<T>::Expression_Hide_Inhomo(const raw_type& expr)
: base_type(expr) {
}
template <typename T>
inline Coefficient_traits::const_reference
Expression_Hide_Inhomo<T>::inhomogeneous_term() const {
// Pretend it is zero.
return Coefficient_zero();
}
template <typename T>
inline bool
Expression_Hide_Inhomo<T>::is_zero() const {
// Don't check the inhomogeneous_term (i.e., pretend it is zero).
return this->inner().all_homogeneous_terms_are_zero();
}
template <typename T>
template <typename Expression>
inline bool
Expression_Hide_Inhomo<T>
::is_equal_to(const Expression& y) const {
const dimension_type x_dim = this->space_dimension();
const dimension_type y_dim = y.space_dimension();
if (x_dim != y_dim)
return false;
if (y.inhomogeneous_term() != 0)
return false;
// Note that the inhomogeneous term is not compared.
return this->inner().is_equal_to(y, 1, x_dim + 1);
}
template <typename T>
inline Coefficient_traits::const_reference
Expression_Hide_Inhomo<T>::get(dimension_type i) const {
if (i == 0)
return Coefficient_zero();
else
return this->inner().get(i);
}
template <typename T>
inline Coefficient_traits::const_reference
Expression_Hide_Inhomo<T>::get(Variable v) const {
return this->inner().get(v);
}
template <typename T>
inline bool
Expression_Hide_Inhomo<T>
::all_zeroes(const Variables_Set& vars) const {
return this->inner().all_zeroes(vars);
}
template <typename T>
inline bool
Expression_Hide_Inhomo<T>::all_zeroes(dimension_type start,
dimension_type end) const {
if (start == end)
return true;
if (start == 0)
++start;
return this->inner().all_zeroes(start, end);
}
template <typename T>
inline dimension_type
Expression_Hide_Inhomo<T>::num_zeroes(dimension_type start,
dimension_type end) const {
if (start == end)
return 0;
dimension_type nz = 0;
if (start == 0) {
++start;
++nz;
}
nz += this->inner().num_zeroes(start, end);
return nz;
}
template <typename T>
inline Coefficient
Expression_Hide_Inhomo<T>::gcd(dimension_type start,
dimension_type end) const {
if (start == end)
return Coefficient_zero();
if (start == 0)
++start;
return this->inner().gcd(start, end);
}
template <typename T>
inline dimension_type
Expression_Hide_Inhomo<T>::last_nonzero() const {
return this->inner().last_nonzero();
}
template <typename T>
inline dimension_type
Expression_Hide_Inhomo<T>::last_nonzero(dimension_type first,
dimension_type last) const {
if (first == last)
return last;
if (first == 0)
++first;
return this->inner().last_nonzero(first, last);
}
template <typename T>
inline dimension_type
Expression_Hide_Inhomo<T>::first_nonzero(dimension_type first,
dimension_type last) const {
if (first == last)
return last;
if (first == 0)
++first;
return this->inner().first_nonzero(first, last);
}
template <typename T>
inline bool
Expression_Hide_Inhomo<T>
::all_zeroes_except(const Variables_Set& vars,
dimension_type start, dimension_type end) const {
if (start == end)
return true;
if (start == 0)
++start;
return this->inner().all_zeroes_except(vars, start, end);
}
template <typename T>
inline void
Expression_Hide_Inhomo<T>
::has_a_free_dimension_helper(std::set<dimension_type>& y) const {
bool had_0 = (y.count(0) == 1);
this->inner().has_a_free_dimension_helper(y);
if (had_0)
y.insert(0);
}
template <typename T>
template <typename Expression>
inline bool
Expression_Hide_Inhomo<T>
::is_equal_to(const Expression& y,
dimension_type start, dimension_type end) const {
if (start == end)
return true;
if (start == 0)
++start;
return this->inner().is_equal_to(y, start, end);
}
template <typename T>
template <typename Expression>
inline bool
Expression_Hide_Inhomo<T>
::is_equal_to(const Expression& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end) const {
if (start == end)
return true;
if (start == 0)
++start;
return this->inner().is_equal_to(y, c1, c2, start, end);
}
template <typename T>
inline void
Expression_Hide_Inhomo<T>::get_row(Dense_Row& row) const {
this->inner().get_row(row);
row.reset(0);
}
template <typename T>
inline void
Expression_Hide_Inhomo<T>::get_row(Sparse_Row& row) const {
this->inner().get_row(row);
row.reset(0);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Expression_Hide_Inhomo_defs.hh line 146. */
/* Automatically generated from PPL source file ../src/Generator_defs.hh line 46. */
#include <iosfwd>
namespace Parma_Polyhedra_Library {
// Put them in the namespace here to declare them friend later.
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! The basic comparison function.
/*! \relates Generator
\return
The returned absolute value can be \f$0\f$, \f$1\f$ or \f$2\f$.
\param x
A row of coefficients;
\param y
Another row.
Compares \p x and \p y, where \p x and \p y may be of different size,
in which case the "missing" coefficients are assumed to be zero.
The comparison is such that:
-# equalities are smaller than inequalities;
-# lines are smaller than points and rays;
-# the ordering is lexicographic;
-# the positions compared are, in decreasing order of significance,
1, 2, ..., \p size(), 0;
-# the result is negative, zero, or positive if x is smaller than,
equal to, or greater than y, respectively;
-# when \p x and \p y are different, the absolute value of the
result is 1 if the difference is due to the coefficient in
position 0; it is 2 otherwise.
When \p x and \p y represent the hyper-planes associated
to two equality or inequality constraints, the coefficient
at 0 is the known term.
In this case, the return value can be characterized as follows:
- -2, if \p x is smaller than \p y and they are \e not parallel;
- -1, if \p x is smaller than \p y and they \e are parallel;
- 0, if \p x and y are equal;
- +1, if \p y is smaller than \p x and they \e are parallel;
- +2, if \p y is smaller than \p x and they are \e not parallel.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
int compare(const Generator& x, const Generator& y);
namespace IO_Operators {
//! Output operator.
/*! \relates Parma_Polyhedra_Library::Generator */
std::ostream& operator<<(std::ostream& s, const Generator& g);
} // namespace IO_Operators
//! Swaps \p x with \p y.
/*! \relates Generator */
void swap(Generator& x, Generator& y);
} // namespace Parma_Polyhedra_Library
//! A line, ray, point or closure point.
/*! \ingroup PPL_CXX_interface
An object of the class Generator is one of the following:
- a line \f$\vect{l} = (a_0, \ldots, a_{n-1})^\transpose\f$;
- a ray \f$\vect{r} = (a_0, \ldots, a_{n-1})^\transpose\f$;
- a point
\f$\vect{p} = (\frac{a_0}{d}, \ldots, \frac{a_{n-1}}{d})^\transpose\f$;
- a closure point
\f$\vect{c} = (\frac{a_0}{d}, \ldots, \frac{a_{n-1}}{d})^\transpose\f$;
where \f$n\f$ is the dimension of the space
and, for points and closure points, \f$d > 0\f$ is the divisor.
\par A note on terminology.
As observed in Section \ref representation, there are cases when,
in order to represent a polyhedron \f$\cP\f$ using the generator system
\f$\cG = (L, R, P, C)\f$, we need to include in the finite set
\f$P\f$ even points of \f$\cP\f$ that are <EM>not</EM> vertices
of \f$\cP\f$.
This situation is even more frequent when working with NNC polyhedra
and it is the reason why we prefer to use the word `point'
where other libraries use the word `vertex'.
\par How to build a generator.
Each type of generator is built by applying the corresponding
function (<CODE>line</CODE>, <CODE>ray</CODE>, <CODE>point</CODE>
or <CODE>closure_point</CODE>) to a linear expression,
representing a direction in the space;
the space dimension of the generator is defined as the space dimension
of the corresponding linear expression.
Linear expressions used to define a generator should be homogeneous
(any constant term will be simply ignored).
When defining points and closure points, an optional Coefficient argument
can be used as a common <EM>divisor</EM> for all the coefficients
occurring in the provided linear expression;
the default value for this argument is 1.
\par
In all the following examples it is assumed that variables
<CODE>x</CODE>, <CODE>y</CODE> and <CODE>z</CODE>
are defined as follows:
\code
Variable x(0);
Variable y(1);
Variable z(2);
\endcode
\par Example 1
The following code builds a line with direction \f$x-y-z\f$
and having space dimension \f$3\f$:
\code
Generator l = line(x - y - z);
\endcode
As mentioned above, the constant term of the linear expression
is not relevant. Thus, the following code has the same effect:
\code
Generator l = line(x - y - z + 15);
\endcode
By definition, the origin of the space is not a line, so that
the following code throws an exception:
\code
Generator l = line(0*x);
\endcode
\par Example 2
The following code builds a ray with the same direction as the
line in Example 1:
\code
Generator r = ray(x - y - z);
\endcode
As is the case for lines, when specifying a ray the constant term
of the linear expression is not relevant; also, an exception is thrown
when trying to build a ray from the origin of the space.
\par Example 3
The following code builds the point
\f$\vect{p} = (1, 0, 2)^\transpose \in \Rset^3\f$:
\code
Generator p = point(1*x + 0*y + 2*z);
\endcode
The same effect can be obtained by using the following code:
\code
Generator p = point(x + 2*z);
\endcode
Similarly, the origin \f$\vect{0} \in \Rset^3\f$ can be defined
using either one of the following lines of code:
\code
Generator origin3 = point(0*x + 0*y + 0*z);
Generator origin3_alt = point(0*z);
\endcode
Note however that the following code would have defined
a different point, namely \f$\vect{0} \in \Rset^2\f$:
\code
Generator origin2 = point(0*y);
\endcode
The following two lines of code both define the only point
having space dimension zero, namely \f$\vect{0} \in \Rset^0\f$.
In the second case we exploit the fact that the first argument
of the function <CODE>point</CODE> is optional.
\code
Generator origin0 = Generator::zero_dim_point();
Generator origin0_alt = point();
\endcode
\par Example 4
The point \f$\vect{p}\f$ specified in Example 3 above
can also be obtained with the following code,
where we provide a non-default value for the second argument
of the function <CODE>point</CODE> (the divisor):
\code
Generator p = point(2*x + 0*y + 4*z, 2);
\endcode
Obviously, the divisor can be usefully exploited to specify
points having some non-integer (but rational) coordinates.
For instance, the point
\f$\vect{q} = (-1.5, 3.2, 2.1)^\transpose \in \Rset^3\f$
can be specified by the following code:
\code
Generator q = point(-15*x + 32*y + 21*z, 10);
\endcode
If a zero divisor is provided, an exception is thrown.
\par Example 5
Closure points are specified in the same way we defined points,
but invoking their specific constructor function.
For instance, the closure point
\f$\vect{c} = (1, 0, 2)^\transpose \in \Rset^3\f$ is defined by
\code
Generator c = closure_point(1*x + 0*y + 2*z);
\endcode
For the particular case of the (only) closure point
having space dimension zero, we can use any of the following:
\code
Generator closure_origin0 = Generator::zero_dim_closure_point();
Generator closure_origin0_alt = closure_point();
\endcode
\par How to inspect a generator
Several methods are provided to examine a generator and extract
all the encoded information: its space dimension, its type and
the value of its integer coefficients.
\par Example 6
The following code shows how it is possible to access each single
coefficient of a generator.
If <CODE>g1</CODE> is a point having coordinates
\f$(a_0, \ldots, a_{n-1})^\transpose\f$,
we construct the closure point <CODE>g2</CODE> having coordinates
\f$(a_0, 2 a_1, \ldots, (i+1)a_i, \ldots, n a_{n-1})^\transpose\f$.
\code
if (g1.is_point()) {
cout << "Point g1: " << g1 << endl;
Linear_Expression e;
for (dimension_type i = g1.space_dimension(); i-- > 0; )
e += (i + 1) * g1.coefficient(Variable(i)) * Variable(i);
Generator g2 = closure_point(e, g1.divisor());
cout << "Closure point g2: " << g2 << endl;
}
else
cout << "Generator g1 is not a point." << endl;
\endcode
Therefore, for the point
\code
Generator g1 = point(2*x - y + 3*z, 2);
\endcode
we would obtain the following output:
\code
Point g1: p((2*A - B + 3*C)/2)
Closure point g2: cp((2*A - 2*B + 9*C)/2)
\endcode
When working with (closure) points, be careful not to confuse
the notion of <EM>coefficient</EM> with the notion of <EM>coordinate</EM>:
these are equivalent only when the divisor of the (closure) point is 1.
*/
class Parma_Polyhedra_Library::Generator {
public:
//! The representation used for new Generators.
/*!
\note The copy constructor and the copy constructor with specified size
use the representation of the original object, so that it is
indistinguishable from the original object.
*/
static const Representation default_representation = SPARSE;
//! Returns the line of direction \p e.
/*!
\exception std::invalid_argument
Thrown if the homogeneous part of \p e represents the origin of
the vector space.
*/
static Generator line(const Linear_Expression& e,
Representation r = default_representation);
//! Returns the ray of direction \p e.
/*!
\exception std::invalid_argument
Thrown if the homogeneous part of \p e represents the origin of
the vector space.
*/
static Generator ray(const Linear_Expression& e,
Representation r = default_representation);
//! Returns the point at \p e / \p d.
/*!
Both \p e and \p d are optional arguments, with default values
Linear_Expression::zero() and Coefficient_one(), respectively.
\exception std::invalid_argument
Thrown if \p d is zero.
*/
static Generator point(const Linear_Expression& e
= Linear_Expression::zero(),
Coefficient_traits::const_reference d
= Coefficient_one(),
Representation r = default_representation);
//! Returns the origin.
static Generator point(Representation r);
//! Returns the point at \p e.
static Generator point(const Linear_Expression& e,
Representation r);
//! Constructs the point at the origin.
explicit Generator(Representation r = default_representation);
//! Returns the closure point at \p e / \p d.
/*!
Both \p e and \p d are optional arguments, with default values
Linear_Expression::zero() and Coefficient_one(), respectively.
\exception std::invalid_argument
Thrown if \p d is zero.
*/
static Generator
closure_point(const Linear_Expression& e = Linear_Expression::zero(),
Coefficient_traits::const_reference d = Coefficient_one(),
Representation r = default_representation);
//! Returns the closure point at the origin.
static Generator
closure_point(Representation r);
//! Returns the closure point at \p e.
static Generator
closure_point(const Linear_Expression& e, Representation r);
//! Ordinary copy constructor.
//! The representation of the new Generator will be the same as g.
Generator(const Generator& g);
//! Copy constructor with given representation.
Generator(const Generator& g, Representation r);
//! Copy constructor with given space dimension.
//! The representation of the new Generator will be the same as g.
Generator(const Generator& g, dimension_type space_dim);
//! Copy constructor with given representation and space dimension.
Generator(const Generator& g, dimension_type space_dim, Representation r);
//! Destructor.
~Generator();
//! Assignment operator.
Generator& operator=(const Generator& g);
//! Returns the current representation of *this.
Representation representation() const;
//! Converts *this to the specified representation.
void set_representation(Representation r);
//! Returns the maximum space dimension a Generator can handle.
static dimension_type max_space_dimension();
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
//! Sets the dimension of the vector space enclosing \p *this to
//! \p space_dim .
void set_space_dimension(dimension_type space_dim);
//! Swaps the coefficients of the variables \p v1 and \p v2 .
void swap_space_dimensions(Variable v1, Variable v2);
//! Removes all the specified dimensions from the generator.
/*!
The space dimension of the variable with the highest space
dimension in \p vars must be at most the space dimension
of \p this.
If all dimensions with nonzero coefficients are removed from a ray or a
line, it is changed into a point and this method returns \p false .
Otherwise, it returns \p true .
*/
bool remove_space_dimensions(const Variables_Set& vars);
//! Permutes the space dimensions of the generator.
/*!
\param cycle
A vector representing a cycle of the permutation according to which the
space dimensions must be rearranged.
The \p cycle vector represents a cycle of a permutation of space
dimensions.
For example, the permutation
\f$ \{ x_1 \mapsto x_2, x_2 \mapsto x_3, x_3 \mapsto x_1 \}\f$ can be
represented by the vector containing \f$ x_1, x_2, x_3 \f$.
*/
void permute_space_dimensions(const std::vector<Variable>& cycle);
//! Shift by \p n positions the coefficients of variables, starting from
//! the coefficient of \p v. This increases the space dimension by \p n.
void shift_space_dimensions(Variable v, dimension_type n);
//! The generator type.
enum Type {
/*! The generator is a line. */
LINE,
/*! The generator is a ray. */
RAY,
/*! The generator is a point. */
POINT,
/*! The generator is a closure point. */
CLOSURE_POINT
};
//! Returns the generator type of \p *this.
Type type() const;
//! Returns <CODE>true</CODE> if and only if \p *this is a line.
bool is_line() const;
//! Returns <CODE>true</CODE> if and only if \p *this is a ray.
bool is_ray() const;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p *this is a line or a ray.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool is_line_or_ray() const;
//! Returns <CODE>true</CODE> if and only if \p *this is a point.
bool is_point() const;
//! Returns <CODE>true</CODE> if and only if \p *this is a closure point.
bool is_closure_point() const;
//! Returns the coefficient of \p v in \p *this.
/*!
\exception std::invalid_argument
Thrown if the index of \p v is greater than or equal to the
space dimension of \p *this.
*/
Coefficient_traits::const_reference coefficient(Variable v) const;
//! If \p *this is either a point or a closure point, returns its divisor.
/*!
\exception std::invalid_argument
Thrown if \p *this is neither a point nor a closure point.
*/
Coefficient_traits::const_reference divisor() const;
//! Initializes the class.
static void initialize();
//! Finalizes the class.
static void finalize();
//! Returns the origin of the zero-dimensional space \f$\Rset^0\f$.
static const Generator& zero_dim_point();
/*! \brief
Returns, as a closure point,
the origin of the zero-dimensional space \f$\Rset^0\f$.
*/
static const Generator& zero_dim_closure_point();
/*! \brief
Returns a lower bound to the total size in bytes of the memory
occupied by \p *this.
*/
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this and \p y
are equivalent generators.
Generators having different space dimensions are not equivalent.
*/
bool is_equivalent_to(const Generator& y) const;
//! Returns <CODE>true</CODE> if \p *this is identical to \p y.
/*!
This is faster than is_equivalent_to(), but it may return `false' even
for equivalent generators.
*/
bool is_equal_to(const Generator& y) const;
//! Checks if all the invariants are satisfied.
bool OK() const;
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Swaps \p *this with \p y.
void m_swap(Generator& y);
//! The type of the (adapted) internal expression.
typedef Expression_Hide_Last<Expression_Hide_Inhomo<Linear_Expression> >
expr_type;
//! Partial read access to the (adapted) internal expression.
expr_type expression() const;
private:
//! The possible kinds of Generator objects.
enum Kind {
LINE_OR_EQUALITY = 0,
RAY_OR_POINT_OR_INEQUALITY = 1
};
//! The linear expression encoding \p *this.
Linear_Expression expr;
//! The kind of \p *this.
Kind kind_;
//! The topology of \p *this.
Topology topology_;
/*! \brief
Holds (between class initialization and finalization) a pointer to
the origin of the zero-dimensional space \f$\Rset^0\f$.
*/
static const Generator* zero_dim_point_p;
/*! \brief
Holds (between class initialization and finalization) a pointer to
the origin of the zero-dimensional space \f$\Rset^0\f$, as a closure point.
*/
static const Generator* zero_dim_closure_point_p;
/*! \brief
Builds a generator of type \p type and topology \p topology,
stealing the coefficients from \p e.
If the topology is NNC, the last dimension of \p e is used as the epsilon
coefficient.
*/
Generator(Linear_Expression& e, Type type, Topology topology);
Generator(Linear_Expression& e, Kind kind, Topology topology);
Generator(dimension_type space_dim, Kind kind, Topology topology,
Representation r = default_representation);
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this row
represents a line or an equality.
*/
bool is_line_or_equality() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this row
represents a ray, a point or an inequality.
*/
bool is_ray_or_point_or_inequality() const;
//! Sets to \p LINE_OR_EQUALITY the kind of \p *this row.
void set_is_line_or_equality();
//! Sets to \p RAY_OR_POINT_OR_INEQUALITY the kind of \p *this row.
void set_is_ray_or_point_or_inequality();
//! \name Flags inspection methods
//@{
//! Returns the topological kind of \p *this.
Topology topology() const;
/*! \brief
Returns <CODE>true</CODE> if and only if the topology
of \p *this row is not necessarily closed.
*/
bool is_not_necessarily_closed() const;
/*! \brief
Returns <CODE>true</CODE> if and only if the topology
of \p *this row is necessarily closed.
*/
bool is_necessarily_closed() const;
//@} // Flags inspection methods
//! \name Flags coercion methods
//@{
//! Sets to \p x the topological kind of \p *this row.
void set_topology(Topology x);
//! Sets to \p NECESSARILY_CLOSED the topological kind of \p *this row.
void set_necessarily_closed();
//! Sets to \p NOT_NECESSARILY_CLOSED the topological kind of \p *this row.
void set_not_necessarily_closed();
//@} // Flags coercion methods
//! Marks the epsilon dimension as a standard dimension.
/*!
The row topology is changed to <CODE>NECESSARILY_CLOSED</CODE>, and
the number of space dimensions is increased by 1.
*/
void mark_as_necessarily_closed();
//! Marks the last dimension as the epsilon dimension.
/*!
The row topology is changed to <CODE>NOT_NECESSARILY_CLOSED</CODE>, and
the number of space dimensions is decreased by 1.
*/
void mark_as_not_necessarily_closed();
//! Linearly combines \p *this with \p y so that i-th coefficient is 0.
/*!
\param y
The Generator that will be combined with \p *this object;
\param i
The index of the coefficient that has to become \f$0\f$.
Computes a linear combination of \p *this and \p y having
the i-th coefficient equal to \f$0\f$. Then it assigns
the resulting Generator to \p *this and normalizes it.
*/
void linear_combine(const Generator& y, dimension_type i);
//! Sets the dimension of the vector space enclosing \p *this to
//! \p space_dim .
//! Sets the space dimension of the rows in the system to \p space_dim .
/*!
This method is for internal use, it does *not* assert OK() at the end,
so it can be used for invalid objects.
*/
void set_space_dimension_no_ok(dimension_type space_dim);
/*! \brief
Throw a <CODE>std::invalid_argument</CODE> exception
containing the appropriate error message.
*/
void
throw_dimension_incompatible(const char* method,
const char* v_name,
Variable v) const;
/*! \brief
Throw a <CODE>std::invalid_argument</CODE> exception
containing the appropriate error message.
*/
void
throw_invalid_argument(const char* method, const char* reason) const;
//! Returns <CODE>true</CODE> if and only if \p *this is not a line.
bool is_ray_or_point() const;
//! Sets the Generator kind to <CODE>LINE_OR_EQUALITY</CODE>.
void set_is_line();
//! Sets the Generator kind to <CODE>RAY_OR_POINT_OR_INEQUALITY</CODE>.
void set_is_ray_or_point();
/*! \brief
Returns <CODE>true</CODE> if and only if the closure point
\p *this has the same \e coordinates of the point \p p.
It is \e assumed that \p *this is a closure point, \p p is a point
and both topologies and space dimensions agree.
*/
bool is_matching_closure_point(const Generator& p) const;
//! Returns the epsilon coefficient. The generator must be NNC.
Coefficient_traits::const_reference epsilon_coefficient() const;
//! Sets the epsilon coefficient to \p n. The generator must be NNC.
void set_epsilon_coefficient(Coefficient_traits::const_reference n);
/*! \brief
Normalizes the sign of the coefficients so that the first non-zero
(homogeneous) coefficient of a line-or-equality is positive.
*/
void sign_normalize();
/*! \brief
Strong normalization: ensures that different Generator objects
represent different hyperplanes or hyperspaces.
Applies both Generator::normalize() and Generator::sign_normalize().
*/
void strong_normalize();
/*! \brief
Returns <CODE>true</CODE> if and only if the coefficients are
strongly normalized.
*/
bool check_strong_normalized() const;
/*! \brief
A print function, with fancy, more human-friendly output.
This is used by operator<<().
*/
void fancy_print(std::ostream& s) const;
friend class Expression_Adapter<Generator>;
friend class Linear_System<Generator>;
friend class Parma_Polyhedra_Library::Scalar_Products;
friend class Parma_Polyhedra_Library::Topology_Adjusted_Scalar_Product_Sign;
friend class Parma_Polyhedra_Library::Topology_Adjusted_Scalar_Product_Assign;
friend class Parma_Polyhedra_Library::Generator_System;
friend class Parma_Polyhedra_Library::Generator_System_const_iterator;
// FIXME: the following friend declaration should be avoided.
friend class Parma_Polyhedra_Library::Polyhedron;
// This is for access to Linear_Expression in `insert'.
friend class Parma_Polyhedra_Library::Grid_Generator_System;
friend class Parma_Polyhedra_Library::MIP_Problem;
friend class Parma_Polyhedra_Library::Grid;
friend std::ostream&
Parma_Polyhedra_Library::IO_Operators::operator<<(std::ostream& s,
const Generator& g);
friend int
compare(const Generator& x, const Generator& y);
};
namespace Parma_Polyhedra_Library {
//! Shorthand for Generator::line(const Linear_Expression& e, Representation r).
/*! \relates Generator */
Generator line(const Linear_Expression& e,
Representation r = Generator::default_representation);
//! Shorthand for Generator::ray(const Linear_Expression& e, Representation r).
/*! \relates Generator */
Generator ray(const Linear_Expression& e,
Representation r = Generator::default_representation);
/*! \brief
Shorthand for
Generator::point(const Linear_Expression& e, Coefficient_traits::const_reference d, Representation r).
\relates Generator
*/
Generator
point(const Linear_Expression& e = Linear_Expression::zero(),
Coefficient_traits::const_reference d = Coefficient_one(),
Representation r = Generator::default_representation);
//! Shorthand for Generator::point(Representation r).
/*! \relates Generator */
Generator
point(Representation r);
/*! \brief
Shorthand for
Generator::point(const Linear_Expression& e, Representation r).
\relates Generator
*/
Generator
point(const Linear_Expression& e, Representation r);
/*! \brief
Shorthand for
Generator::closure_point(const Linear_Expression& e, Coefficient_traits::const_reference d, Representation r).
\relates Generator
*/
Generator
closure_point(const Linear_Expression& e = Linear_Expression::zero(),
Coefficient_traits::const_reference d = Coefficient_one(),
Representation r = Generator::default_representation);
//! Shorthand for Generator::closure_point(Representation r).
/*! \relates Generator */
Generator
closure_point(Representation r);
/*! \brief
Shorthand for
Generator::closure_point(const Linear_Expression& e, Representation r).
\relates Generator
*/
Generator
closure_point(const Linear_Expression& e, Representation r);
//! Returns <CODE>true</CODE> if and only if \p x is equivalent to \p y.
/*! \relates Generator */
bool operator==(const Generator& x, const Generator& y);
//! Returns <CODE>true</CODE> if and only if \p x is not equivalent to \p y.
/*! \relates Generator */
bool operator!=(const Generator& x, const Generator& y);
//! Computes the rectilinear (or Manhattan) distance between \p x and \p y.
/*! \relates Generator
If the rectilinear distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<To, Extended_Number_Policy\></CODE>.
\note
Distances are \e only defined between generators that are points and/or
closure points; for rays or lines, \c false is returned.
*/
template <typename To>
bool rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
Rounding_Dir dir);
//! Computes the rectilinear (or Manhattan) distance between \p x and \p y.
/*! \relates Generator
If the rectilinear distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<Temp, Extended_Number_Policy\></CODE>.
\note
Distances are \e only defined between generators that are points and/or
closure points; for rays or lines, \c false is returned.
*/
template <typename Temp, typename To>
bool rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
Rounding_Dir dir);
//! Computes the rectilinear (or Manhattan) distance between \p x and \p y.
/*! \relates Generator
If the rectilinear distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
\note
Distances are \e only defined between generators that are points and/or
closure points; for rays or lines, \c false is returned.
*/
template <typename Temp, typename To>
bool rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
//! Computes the euclidean distance between \p x and \p y.
/*! \relates Generator
If the euclidean distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<To, Extended_Number_Policy\></CODE>.
\note
Distances are \e only defined between generators that are points and/or
closure points; for rays or lines, \c false is returned.
*/
template <typename To>
bool euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
Rounding_Dir dir);
//! Computes the euclidean distance between \p x and \p y.
/*! \relates Generator
If the euclidean distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<Temp, Extended_Number_Policy\></CODE>.
\note
Distances are \e only defined between generators that are points and/or
closure points; for rays or lines, \c false is returned.
*/
template <typename Temp, typename To>
bool rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
Rounding_Dir dir);
//! Computes the euclidean distance between \p x and \p y.
/*! \relates Generator
If the euclidean distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
\note
Distances are \e only defined between generators that are points and/or
closure points; for rays or lines, \c false is returned.
*/
template <typename Temp, typename To>
bool euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
//! Computes the \f$L_\infty\f$ distance between \p x and \p y.
/*! \relates Generator
If the \f$L_\infty\f$ distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<To, Extended_Number_Policy\></CODE>.
\note
Distances are \e only defined between generators that are points and/or
closure points; for rays or lines, \c false is returned.
*/
template <typename To>
bool l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
Rounding_Dir dir);
//! Computes the \f$L_\infty\f$ distance between \p x and \p y.
/*! \relates Generator
If the \f$L_\infty\f$ distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<Temp, Extended_Number_Policy\></CODE>.
\note
Distances are \e only defined between generators that are points and/or
closure points; for rays or lines, \c false is returned.
*/
template <typename Temp, typename To>
bool l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
Rounding_Dir dir);
//! Computes the \f$L_\infty\f$ distance between \p x and \p y.
/*! \relates Generator
If the \f$L_\infty\f$ distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
\note
Distances are \e only defined between generators that are points and/or
closure points; for rays or lines, \c false is returned.
*/
template <typename Temp, typename To>
bool l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
namespace IO_Operators {
//! Output operator.
/*! \relates Parma_Polyhedra_Library::Generator */
std::ostream& operator<<(std::ostream& s, const Generator::Type& t);
} // namespace IO_Operators
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Generator_inlines.hh line 1. */
/* Generator class implementation: inline functions.
*/
namespace Parma_Polyhedra_Library {
inline bool
Generator::is_necessarily_closed() const {
return (topology() == NECESSARILY_CLOSED);
}
inline bool
Generator::is_not_necessarily_closed() const {
return (topology() == NOT_NECESSARILY_CLOSED);
}
inline Generator::expr_type
Generator::expression() const {
return expr_type(expr, is_not_necessarily_closed());
}
inline dimension_type
Generator::space_dimension() const {
return expression().space_dimension();
}
inline bool
Generator::is_line_or_equality() const {
return (kind_ == LINE_OR_EQUALITY);
}
inline bool
Generator::is_ray_or_point_or_inequality() const {
return (kind_ == RAY_OR_POINT_OR_INEQUALITY);
}
inline Topology
Generator::topology() const {
return topology_;
}
inline void
Generator::set_is_line_or_equality() {
kind_ = LINE_OR_EQUALITY;
}
inline void
Generator::set_is_ray_or_point_or_inequality() {
kind_ = RAY_OR_POINT_OR_INEQUALITY;
}
inline void
Generator::set_topology(Topology x) {
if (topology() == x)
return;
if (topology() == NECESSARILY_CLOSED) {
// Add a column for the epsilon dimension.
expr.set_space_dimension(expr.space_dimension() + 1);
}
else {
PPL_ASSERT(expr.space_dimension() > 0);
expr.set_space_dimension(expr.space_dimension() - 1);
}
topology_ = x;
}
inline void
Generator::mark_as_necessarily_closed() {
PPL_ASSERT(is_not_necessarily_closed());
topology_ = NECESSARILY_CLOSED;
}
inline void
Generator::mark_as_not_necessarily_closed() {
PPL_ASSERT(is_necessarily_closed());
topology_ = NOT_NECESSARILY_CLOSED;
}
inline void
Generator::set_necessarily_closed() {
set_topology(NECESSARILY_CLOSED);
}
inline void
Generator::set_not_necessarily_closed() {
set_topology(NOT_NECESSARILY_CLOSED);
}
inline
Generator::Generator(Representation r)
: expr(r),
kind_(RAY_OR_POINT_OR_INEQUALITY),
topology_(NECESSARILY_CLOSED) {
expr.set_inhomogeneous_term(Coefficient_one());
PPL_ASSERT(space_dimension() == 0);
PPL_ASSERT(OK());
}
inline
Generator::Generator(dimension_type space_dim, Kind kind, Topology topology,
Representation r)
: expr(r),
kind_(kind),
topology_(topology) {
if (is_necessarily_closed())
expr.set_space_dimension(space_dim);
else
expr.set_space_dimension(space_dim + 1);
PPL_ASSERT(space_dimension() == space_dim);
PPL_ASSERT(OK());
}
inline
Generator::Generator(Linear_Expression& e, Type type, Topology topology)
: topology_(topology) {
PPL_ASSERT(type != CLOSURE_POINT || topology == NOT_NECESSARILY_CLOSED);
swap(expr, e);
if (topology == NOT_NECESSARILY_CLOSED)
expr.set_space_dimension(expr.space_dimension() + 1);
if (type == LINE)
kind_ = LINE_OR_EQUALITY;
else
kind_ = RAY_OR_POINT_OR_INEQUALITY;
strong_normalize();
}
inline
Generator::Generator(Linear_Expression& e, Kind kind, Topology topology)
: kind_(kind),
topology_(topology) {
swap(expr, e);
if (topology == NOT_NECESSARILY_CLOSED)
expr.set_space_dimension(expr.space_dimension() + 1);
strong_normalize();
}
inline
Generator::Generator(const Generator& g)
: expr(g.expr),
kind_(g.kind_),
topology_(g.topology_) {
}
inline
Generator::Generator(const Generator& g, Representation r)
: expr(g.expr, r),
kind_(g.kind_),
topology_(g.topology_) {
// This does not assert OK() because it's called by OK().
PPL_ASSERT(OK());
}
inline
Generator::Generator(const Generator& g, dimension_type space_dim)
: expr(g.expr, g.is_necessarily_closed() ? space_dim : (space_dim + 1)),
kind_(g.kind_),
topology_(g.topology_) {
PPL_ASSERT(OK());
PPL_ASSERT(space_dimension() == space_dim);
}
inline
Generator::Generator(const Generator& g, dimension_type space_dim,
Representation r)
: expr(g.expr, g.is_necessarily_closed() ? space_dim : (space_dim + 1), r),
kind_(g.kind_),
topology_(g.topology_) {
PPL_ASSERT(OK());
PPL_ASSERT(space_dimension() == space_dim);
}
inline
Generator::~Generator() {
}
inline Generator&
Generator::operator=(const Generator& g) {
Generator tmp = g;
swap(*this, tmp);
return *this;
}
inline Representation
Generator::representation() const {
return expr.representation();
}
inline void
Generator::set_representation(Representation r) {
expr.set_representation(r);
}
inline dimension_type
Generator::max_space_dimension() {
return Linear_Expression::max_space_dimension();
}
inline void
Generator::set_space_dimension_no_ok(dimension_type space_dim) {
const dimension_type old_expr_space_dim = expr.space_dimension();
if (topology() == NECESSARILY_CLOSED) {
expr.set_space_dimension(space_dim);
}
else {
const dimension_type old_space_dim = space_dimension();
if (space_dim > old_space_dim) {
expr.set_space_dimension(space_dim + 1);
expr.swap_space_dimensions(Variable(space_dim), Variable(old_space_dim));
}
else {
expr.swap_space_dimensions(Variable(space_dim), Variable(old_space_dim));
expr.set_space_dimension(space_dim + 1);
}
}
PPL_ASSERT(space_dimension() == space_dim);
if (expr.space_dimension() < old_expr_space_dim)
strong_normalize();
}
inline void
Generator::set_space_dimension(dimension_type space_dim) {
set_space_dimension_no_ok(space_dim);
PPL_ASSERT(OK());
}
inline void
Generator::shift_space_dimensions(Variable v, dimension_type n) {
expr.shift_space_dimensions(v, n);
}
inline bool
Generator::is_line() const {
return is_line_or_equality();
}
inline bool
Generator::is_ray_or_point() const {
return is_ray_or_point_or_inequality();
}
inline bool
Generator::is_line_or_ray() const {
return expr.inhomogeneous_term() == 0;
}
inline bool
Generator::is_ray() const {
return is_ray_or_point() && is_line_or_ray();
}
inline Generator::Type
Generator::type() const {
if (is_line())
return LINE;
if (is_line_or_ray())
return RAY;
if (is_necessarily_closed())
return POINT;
else {
// Checking the value of the epsilon coefficient.
if (epsilon_coefficient() == 0)
return CLOSURE_POINT;
else
return POINT;
}
}
inline bool
Generator::is_point() const {
return type() == POINT;
}
inline bool
Generator::is_closure_point() const {
return type() == CLOSURE_POINT;
}
inline void
Generator::set_is_line() {
set_is_line_or_equality();
}
inline void
Generator::set_is_ray_or_point() {
set_is_ray_or_point_or_inequality();
}
inline Coefficient_traits::const_reference
Generator::coefficient(const Variable v) const {
if (v.space_dimension() > space_dimension())
throw_dimension_incompatible("coefficient(v)", "v", v);
return expr.coefficient(v);
}
inline Coefficient_traits::const_reference
Generator::divisor() const {
Coefficient_traits::const_reference d = expr.inhomogeneous_term();
if (!is_ray_or_point() || d == 0)
throw_invalid_argument("divisor()",
"*this is neither a point nor a closure point");
return d;
}
inline Coefficient_traits::const_reference
Generator::epsilon_coefficient() const {
PPL_ASSERT(is_not_necessarily_closed());
return expr.coefficient(Variable(expr.space_dimension() - 1));
}
inline void
Generator::set_epsilon_coefficient(Coefficient_traits::const_reference n) {
PPL_ASSERT(is_not_necessarily_closed());
expr.set_coefficient(Variable(expr.space_dimension() - 1), n);
}
inline memory_size_type
Generator::external_memory_in_bytes() const {
return expr.external_memory_in_bytes();
}
inline memory_size_type
Generator::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
inline void
Generator::strong_normalize() {
expr.normalize();
sign_normalize();
}
inline const Generator&
Generator::zero_dim_point() {
PPL_ASSERT(zero_dim_point_p != 0);
return *zero_dim_point_p;
}
inline const Generator&
Generator::zero_dim_closure_point() {
PPL_ASSERT(zero_dim_closure_point_p != 0);
return *zero_dim_closure_point_p;
}
/*! \relates Generator */
inline Generator
line(const Linear_Expression& e, Representation r) {
return Generator::line(e, r);
}
/*! \relates Generator */
inline Generator
ray(const Linear_Expression& e, Representation r) {
return Generator::ray(e, r);
}
/*! \relates Generator */
inline Generator
point(const Linear_Expression& e, Coefficient_traits::const_reference d,
Representation r) {
return Generator::point(e, d, r);
}
/*! \relates Generator */
inline Generator
point(Representation r) {
return Generator::point(r);
}
/*! \relates Generator */
inline Generator
point(const Linear_Expression& e, Representation r) {
return Generator::point(e, r);
}
/*! \relates Generator */
inline Generator
closure_point(const Linear_Expression& e,
Coefficient_traits::const_reference d,
Representation r) {
return Generator::closure_point(e, d, r);
}
/*! \relates Generator */
inline Generator
closure_point(Representation r) {
return Generator::closure_point(r);
}
/*! \relates Generator */
inline Generator
closure_point(const Linear_Expression& e,
Representation r) {
return Generator::closure_point(e, r);
}
/*! \relates Generator */
inline bool
operator==(const Generator& x, const Generator& y) {
return x.is_equivalent_to(y);
}
/*! \relates Generator */
inline bool
operator!=(const Generator& x, const Generator& y) {
return !x.is_equivalent_to(y);
}
inline void
Generator::ascii_dump(std::ostream& s) const {
expr.ascii_dump(s);
s << " ";
switch (type()) {
case Generator::LINE:
s << "L ";
break;
case Generator::RAY:
s << "R ";
break;
case Generator::POINT:
s << "P ";
break;
case Generator::CLOSURE_POINT:
s << "C ";
break;
}
if (is_necessarily_closed())
s << "(C)";
else
s << "(NNC)";
s << "\n";
}
inline bool
Generator::ascii_load(std::istream& s) {
std::string str;
expr.ascii_load(s);
if (!(s >> str))
return false;
if (str == "L")
set_is_line();
else if (str == "R" || str == "P" || str == "C")
set_is_ray_or_point();
else
return false;
std::string str2;
if (!(s >> str2))
return false;
if (str2 == "(C)") {
if (is_not_necessarily_closed())
// TODO: Avoid using the mark_as_*() methods if possible.
mark_as_necessarily_closed();
}
else {
if (str2 == "(NNC)") {
if (is_necessarily_closed())
// TODO: Avoid using the mark_as_*() methods if possible.
mark_as_not_necessarily_closed();
}
else
return false;
}
// Checking for equality of actual and declared types.
switch (type()) {
case Generator::LINE:
if (str != "L")
return false;
break;
case Generator::RAY:
if (str != "R")
return false;
break;
case Generator::POINT:
if (str != "P")
return false;
break;
case Generator::CLOSURE_POINT:
if (str != "C")
return false;
break;
}
return true;
}
inline void
Generator::m_swap(Generator& y) {
using std::swap;
swap(expr, y.expr);
swap(kind_, y.kind_);
swap(topology_, y.topology_);
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates Generator */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Specialization, typename Temp, typename To>
inline bool
l_m_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
// Generator kind compatibility check: we only compute distances
// between (closure) points.
if (x.is_line_or_ray() || y.is_line_or_ray())
return false;
const dimension_type x_space_dim = x.space_dimension();
// Dimension-compatibility check.
if (x_space_dim != y.space_dimension())
return false;
// All zero-dim generators have distance zero.
if (x_space_dim == 0) {
assign_r(r, 0, ROUND_NOT_NEEDED);
return true;
}
PPL_DIRTY_TEMP(mpq_class, x_coord);
PPL_DIRTY_TEMP(mpq_class, y_coord);
PPL_DIRTY_TEMP(mpq_class, x_div);
PPL_DIRTY_TEMP(mpq_class, y_div);
assign_r(x_div, x.divisor(), ROUND_NOT_NEEDED);
assign_r(y_div, y.divisor(), ROUND_NOT_NEEDED);
assign_r(tmp0, 0, ROUND_NOT_NEEDED);
// TODO: This loop can be optimized more, if needed.
for (dimension_type i = x_space_dim; i-- > 0; ) {
assign_r(x_coord, x.coefficient(Variable(i)), ROUND_NOT_NEEDED);
div_assign_r(x_coord, x_coord, x_div, ROUND_NOT_NEEDED);
assign_r(y_coord, y.coefficient(Variable(i)), ROUND_NOT_NEEDED);
div_assign_r(y_coord, y_coord, y_div, ROUND_NOT_NEEDED);
const Temp* tmp1p;
const Temp* tmp2p;
if (x_coord > y_coord) {
maybe_assign(tmp1p, tmp1, x_coord, dir);
maybe_assign(tmp2p, tmp2, y_coord, inverse(dir));
}
else {
maybe_assign(tmp1p, tmp1, y_coord, dir);
maybe_assign(tmp2p, tmp2, x_coord, inverse(dir));
}
sub_assign_r(tmp1, *tmp1p, *tmp2p, dir);
PPL_ASSERT(sgn(tmp1) >= 0);
Specialization::combine(tmp0, tmp1, dir);
}
Specialization::finalize(tmp0, dir);
assign_r(r, tmp0, dir);
return true;
}
/*! \relates Generator */
template <typename Temp, typename To>
inline bool
rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
return l_m_distance_assign<Rectilinear_Distance_Specialization<Temp> >
(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates Generator */
template <typename Temp, typename To>
inline bool
rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
const Rounding_Dir dir) {
typedef Checked_Number<Temp, Extended_Number_Policy> Checked_Temp;
PPL_DIRTY_TEMP(Checked_Temp, tmp0);
PPL_DIRTY_TEMP(Checked_Temp, tmp1);
PPL_DIRTY_TEMP(Checked_Temp, tmp2);
return rectilinear_distance_assign(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates Generator */
template <typename To>
inline bool
rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
const Rounding_Dir dir) {
return rectilinear_distance_assign<To, To>(r, x, y, dir);
}
/*! \relates Generator */
template <typename Temp, typename To>
inline bool
euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
return l_m_distance_assign<Euclidean_Distance_Specialization<Temp> >
(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates Generator */
template <typename Temp, typename To>
inline bool
euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
const Rounding_Dir dir) {
typedef Checked_Number<Temp, Extended_Number_Policy> Checked_Temp;
PPL_DIRTY_TEMP(Checked_Temp, tmp0);
PPL_DIRTY_TEMP(Checked_Temp, tmp1);
PPL_DIRTY_TEMP(Checked_Temp, tmp2);
return euclidean_distance_assign(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates Generator */
template <typename To>
inline bool
euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
const Rounding_Dir dir) {
return euclidean_distance_assign<To, To>(r, x, y, dir);
}
/*! \relates Generator */
template <typename Temp, typename To>
inline bool
l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
return l_m_distance_assign<L_Infinity_Distance_Specialization<Temp> >
(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates Generator */
template <typename Temp, typename To>
inline bool
l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
const Rounding_Dir dir) {
typedef Checked_Number<Temp, Extended_Number_Policy> Checked_Temp;
PPL_DIRTY_TEMP(Checked_Temp, tmp0);
PPL_DIRTY_TEMP(Checked_Temp, tmp1);
PPL_DIRTY_TEMP(Checked_Temp, tmp2);
return l_infinity_distance_assign(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates Generator */
template <typename To>
inline bool
l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
const Rounding_Dir dir) {
return l_infinity_distance_assign<To, To>(r, x, y, dir);
}
/*! \relates Generator */
inline void
swap(Generator& x, Generator& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Generator_defs.hh line 1032. */
/* Automatically generated from PPL source file ../src/Grid_Generator_defs.hh line 1. */
/* Grid_Generator class declaration.
*/
/* Automatically generated from PPL source file ../src/Grid_Generator_defs.hh line 29. */
/* Automatically generated from PPL source file ../src/Grid_Generator_defs.hh line 33. */
/* Automatically generated from PPL source file ../src/Grid_Generator_defs.hh line 39. */
/* Automatically generated from PPL source file ../src/Grid_Generator_defs.hh line 41. */
#include <iosfwd>
namespace Parma_Polyhedra_Library {
// Put these in the namespace here to declare them friend later.
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! The basic comparison function.
/*! \relates Grid_Generator
\return
The returned absolute value can be \f$0\f$, \f$1\f$ or \f$2\f$.
\param x
A row of coefficients;
\param y
Another row.
Compares \p x and \p y, where \p x and \p y may be of different size,
in which case the "missing" coefficients are assumed to be zero.
The comparison is such that:
-# equalities are smaller than inequalities;
-# lines are smaller than points and rays;
-# the ordering is lexicographic;
-# the positions compared are, in decreasing order of significance,
1, 2, ..., \p size(), 0;
-# the result is negative, zero, or positive if x is smaller than,
equal to, or greater than y, respectively;
-# when \p x and \p y are different, the absolute value of the
result is 1 if the difference is due to the coefficient in
position 0; it is 2 otherwise.
When \p x and \p y represent the hyper-planes associated
to two equality or inequality constraints, the coefficient
at 0 is the known term.
In this case, the return value can be characterized as follows:
- -2, if \p x is smaller than \p y and they are \e not parallel;
- -1, if \p x is smaller than \p y and they \e are parallel;
- 0, if \p x and y are equal;
- +1, if \p y is smaller than \p x and they \e are parallel;
- +2, if \p y is smaller than \p x and they are \e not parallel.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
int compare(const Grid_Generator& x, const Grid_Generator& y);
namespace IO_Operators {
//! Output operator.
/*! \relates Parma_Polyhedra_Library::Grid_Generator */
std::ostream& operator<<(std::ostream& s, const Grid_Generator& g);
} // namespace IO_Operators
//! Swaps \p x with \p y.
/*! \relates Grid_Generator */
void swap(Grid_Generator& x, Grid_Generator& y);
} // namespace Parma_Polyhedra_Library
//! A grid line, parameter or grid point.
/*! \ingroup PPL_CXX_interface
An object of the class Grid_Generator is one of the following:
- a grid_line \f$\vect{l} = (a_0, \ldots, a_{n-1})^\transpose\f$;
- a parameter
\f$\vect{q} = (\frac{a_0}{d}, \ldots, \frac{a_{n-1}}{d})^\transpose\f$;
- a grid_point
\f$\vect{p} = (\frac{a_0}{d}, \ldots, \frac{a_{n-1}}{d})^\transpose\f$;
where \f$n\f$ is the dimension of the space
and, for grid_points and parameters, \f$d > 0\f$ is the divisor.
\par How to build a grid generator.
Each type of generator is built by applying the corresponding
function (<CODE>grid_line</CODE>, <CODE>parameter</CODE>
or <CODE>grid_point</CODE>) to a linear expression;
the space dimension of the generator is defined as the space dimension
of the corresponding linear expression.
Linear expressions used to define a generator should be homogeneous
(any constant term will be simply ignored).
When defining grid points and parameters, an optional Coefficient argument
can be used as a common <EM>divisor</EM> for all the coefficients
occurring in the provided linear expression;
the default value for this argument is 1.
\par
In all the following examples it is assumed that variables
<CODE>x</CODE>, <CODE>y</CODE> and <CODE>z</CODE>
are defined as follows:
\code
Variable x(0);
Variable y(1);
Variable z(2);
\endcode
\par Example 1
The following code builds a grid line with direction \f$x-y-z\f$
and having space dimension \f$3\f$:
\code
Grid_Generator l = grid_line(x - y - z);
\endcode
By definition, the origin of the space is not a line, so that
the following code throws an exception:
\code
Grid_Generator l = grid_line(0*x);
\endcode
\par Example 2
The following code builds the parameter as the vector
\f$\vect{p} = (1, -1, -1)^\transpose \in \Rset^3\f$
which has the same direction as the line in Example 1:
\code
Grid_Generator q = parameter(x - y - z);
\endcode
Note that, unlike lines, for parameters, the length as well
as the direction of the vector represented by the code is significant.
Thus \p q is \e not the same as the parameter \p q1 defined by
\code
Grid_Generator q1 = parameter(2x - 2y - 2z);
\endcode
By definition, the origin of the space is not a parameter, so that
the following code throws an exception:
\code
Grid_Generator q = parameter(0*x);
\endcode
\par Example 3
The following code builds the grid point
\f$\vect{p} = (1, 0, 2)^\transpose \in \Rset^3\f$:
\code
Grid_Generator p = grid_point(1*x + 0*y + 2*z);
\endcode
The same effect can be obtained by using the following code:
\code
Grid_Generator p = grid_point(x + 2*z);
\endcode
Similarly, the origin \f$\vect{0} \in \Rset^3\f$ can be defined
using either one of the following lines of code:
\code
Grid_Generator origin3 = grid_point(0*x + 0*y + 0*z);
Grid_Generator origin3_alt = grid_point(0*z);
\endcode
Note however that the following code would have defined
a different point, namely \f$\vect{0} \in \Rset^2\f$:
\code
Grid_Generator origin2 = grid_point(0*y);
\endcode
The following two lines of code both define the only grid point
having space dimension zero, namely \f$\vect{0} \in \Rset^0\f$.
In the second case we exploit the fact that the first argument
of the function <CODE>point</CODE> is optional.
\code
Grid_Generator origin0 = Generator::zero_dim_point();
Grid_Generator origin0_alt = grid_point();
\endcode
\par Example 4
The grid point \f$\vect{p}\f$ specified in Example 3 above
can also be obtained with the following code,
where we provide a non-default value for the second argument
of the function <CODE>grid_point</CODE> (the divisor):
\code
Grid_Generator p = grid_point(2*x + 0*y + 4*z, 2);
\endcode
Obviously, the divisor can be used to specify
points having some non-integer (but rational) coordinates.
For instance, the grid point
\f$\vect{p1} = (-1.5, 3.2, 2.1)^\transpose \in \Rset^3\f$
can be specified by the following code:
\code
Grid_Generator p1 = grid_point(-15*x + 32*y + 21*z, 10);
\endcode
If a zero divisor is provided, an exception is thrown.
\par Example 5
Parameters, like grid points can have a divisor.
For instance, the parameter
\f$\vect{q} = (1, 0, 2)^\transpose \in \Rset^3\f$ can be defined:
\code
Grid_Generator q = parameter(2*x + 0*y + 4*z, 2);
\endcode
Also, the divisor can be used to specify
parameters having some non-integer (but rational) coordinates.
For instance, the parameter
\f$\vect{q} = (-1.5, 3.2, 2.1)^\transpose \in \Rset^3\f$
can be defined:
\code
Grid_Generator q = parameter(-15*x + 32*y + 21*z, 10);
\endcode
If a zero divisor is provided, an exception is thrown.
\par How to inspect a grid generator
Several methods are provided to examine a grid generator and extract
all the encoded information: its space dimension, its type and
the value of its integer coefficients and the value of the denominator.
\par Example 6
The following code shows how it is possible to access each single
coefficient of a grid generator.
If <CODE>g1</CODE> is a grid point having coordinates
\f$(a_0, \ldots, a_{n-1})^\transpose\f$,
we construct the parameter <CODE>g2</CODE> having coordinates
\f$(a_0, 2 a_1, \ldots, (i+1)a_i, \ldots, n a_{n-1})^\transpose\f$.
\code
if (g1.is_point()) {
cout << "Grid point g1: " << g1 << endl;
Linear_Expression e;
for (dimension_type i = g1.space_dimension(); i-- > 0; )
e += (i + 1) * g1.coefficient(Variable(i)) * Variable(i);
Grid_Generator g2 = parameter(e, g1.divisor());
cout << "Parameter g2: " << g2 << endl;
}
else
cout << "Grid generator g1 is not a grid point." << endl;
\endcode
Therefore, for the grid point
\code
Grid_Generator g1 = grid_point(2*x - y + 3*z, 2);
\endcode
we would obtain the following output:
\code
Grid point g1: p((2*A - B + 3*C)/2)
Parameter g2: parameter((2*A - 2*B + 9*C)/2)
\endcode
When working with grid points and parameters, be careful not to confuse
the notion of <EM>coefficient</EM> with the notion of <EM>coordinate</EM>:
these are equivalent only when the divisor is 1.
*/
class Parma_Polyhedra_Library::Grid_Generator {
public:
//! The possible kinds of Grid_Generator objects.
enum Kind {
LINE_OR_EQUALITY = 0,
RAY_OR_POINT_OR_INEQUALITY = 1
};
//! The representation used for new Grid_Generators.
/*!
\note The copy constructor and the copy constructor with specified size
use the representation of the original object, so that it is
indistinguishable from the original object.
*/
static const Representation default_representation = SPARSE;
//! Returns the line of direction \p e.
/*!
\exception std::invalid_argument
Thrown if the homogeneous part of \p e represents the origin of
the vector space.
*/
static Grid_Generator grid_line(const Linear_Expression& e,
Representation r = default_representation);
//! Returns the parameter of direction \p e and size \p e/d, with the same
//! representation as e.
/*!
Both \p e and \p d are optional arguments, with default values
Linear_Expression::zero() and Coefficient_one(), respectively.
\exception std::invalid_argument
Thrown if \p d is zero.
*/
static Grid_Generator parameter(const Linear_Expression& e
= Linear_Expression::zero(),
Coefficient_traits::const_reference d
= Coefficient_one(),
Representation r = default_representation);
// TODO: Improve the documentation of this method.
//! Returns the parameter of direction and size \p Linear_Expression::zero() .
static Grid_Generator parameter(Representation r);
//! Returns the parameter of direction and size \p e .
static Grid_Generator parameter(const Linear_Expression& e,
Representation r);
//! Returns the point at \p e / \p d.
/*!
Both \p e and \p d are optional arguments, with default values
Linear_Expression::zero() and Coefficient_one(), respectively.
\exception std::invalid_argument
Thrown if \p d is zero.
*/
static Grid_Generator grid_point(const Linear_Expression& e
= Linear_Expression::zero(),
Coefficient_traits::const_reference d
= Coefficient_one(),
Representation r = default_representation);
//! Returns the point at \p e .
static Grid_Generator grid_point(Representation r);
//! Returns the point at \p e .
static Grid_Generator grid_point(const Linear_Expression& e,
Representation r);
//! Returns the origin of the zero-dimensional space \f$\Rset^0\f$.
explicit Grid_Generator(Representation r = default_representation);
//! Ordinary copy constructor.
//! The new Grid_Generator will have the same representation as g.
Grid_Generator(const Grid_Generator& g);
//! Copy constructor with specified representation.
Grid_Generator(const Grid_Generator& g, Representation r);
//! Copy constructor with specified space dimension.
//! The new Grid_Generator will have the same representation as g.
Grid_Generator(const Grid_Generator& g, dimension_type space_dim);
//! Copy constructor with specified space dimension and representation.
Grid_Generator(const Grid_Generator& g, dimension_type space_dim,
Representation r);
//! Destructor.
~Grid_Generator();
//! Assignment operator.
Grid_Generator& operator=(const Grid_Generator& g);
//! Returns the current representation of *this.
Representation representation() const;
//! Converts *this to the specified representation.
void set_representation(Representation r);
//! Returns the maximum space dimension a Grid_Generator can handle.
static dimension_type max_space_dimension();
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
//! Sets the dimension of the vector space enclosing \p *this to
//! \p space_dim .
void set_space_dimension(dimension_type space_dim);
//! Swaps the coefficients of the variables \p v1 and \p v2 .
void swap_space_dimensions(Variable v1, Variable v2);
//! Removes all the specified dimensions from the grid generator.
/*!
The space dimension of the variable with the highest space
dimension in \p vars must be at most the space dimension
of \p this.
Always returns \p true. The return value is needed for compatibility with
the Generator class.
*/
bool remove_space_dimensions(const Variables_Set& vars);
//! Permutes the space dimensions of the grid generator.
/*
\param cycle
A vector representing a cycle of the permutation according to which the
space dimensions must be rearranged.
The \p cycle vector represents a cycle of a permutation of space
dimensions.
For example, the permutation
\f$ \{ x_1 \mapsto x_2, x_2 \mapsto x_3, x_3 \mapsto x_1 \}\f$ can be
represented by the vector containing \f$ x_1, x_2, x_3 \f$.
*/
void permute_space_dimensions(const std::vector<Variable>& cycle);
//! Shift by \p n positions the coefficients of variables, starting from
//! the coefficient of \p v. This increases the space dimension by \p n.
void shift_space_dimensions(Variable v, dimension_type n);
//! The generator type.
enum Type {
/*! The generator is a grid line. */
LINE,
/*! The generator is a parameter. */
PARAMETER,
/*! The generator is a grid point. */
POINT
};
//! Returns the generator type of \p *this.
Type type() const;
//! Returns <CODE>true</CODE> if and only if \p *this is a line.
bool is_line() const;
//! Returns <CODE>true</CODE> if and only if \p *this is a parameter.
bool is_parameter() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is a line or
a parameter.
*/
bool is_line_or_parameter() const;
//! Returns <CODE>true</CODE> if and only if \p *this is a point.
bool is_point() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this row represents a
parameter or a point.
*/
bool is_parameter_or_point() const;
//! Returns the coefficient of \p v in \p *this.
/*!
\exception std::invalid_argument
Thrown if the index of \p v is greater than or equal to the
space dimension of \p *this.
*/
Coefficient_traits::const_reference coefficient(Variable v) const;
//! Returns the divisor of \p *this.
/*!
\exception std::invalid_argument
Thrown if \p *this is a line.
*/
Coefficient_traits::const_reference divisor() const;
//! Initializes the class.
static void initialize();
//! Finalizes the class.
static void finalize();
//! Returns the origin of the zero-dimensional space \f$\Rset^0\f$.
static const Grid_Generator& zero_dim_point();
/*! \brief
Returns a lower bound to the total size in bytes of the memory
occupied by \p *this.
*/
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this and \p y are
equivalent generators.
Generators having different space dimensions are not equivalent.
*/
bool is_equivalent_to(const Grid_Generator& y) const;
//! Returns <CODE>true</CODE> if \p *this is identical to \p y.
/*!
This is faster than is_equivalent_to(), but it may return `false' even
for equivalent generators.
*/
bool is_equal_to(const Grid_Generator& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if all the homogeneous terms
of \p *this are \f$0\f$.
*/
bool all_homogeneous_terms_are_zero() const;
//! Checks if all the invariants are satisfied.
bool OK() const;
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Swaps \p *this with \p y.
void m_swap(Grid_Generator& y);
/*! \brief
Scales \p *this to be represented with a divisor of \p d (if
\*this is a parameter or point). Does nothing at all on lines.
It is assumed that \p d is a multiple of the current divisor
and different from zero. The behavior is undefined if the assumption
does not hold.
*/
void scale_to_divisor(Coefficient_traits::const_reference d);
//! Sets the divisor of \p *this to \p d.
/*!
\exception std::invalid_argument
Thrown if \p *this is a line.
*/
void set_divisor(Coefficient_traits::const_reference d);
//! The type of the (adapted) internal expression.
typedef Expression_Hide_Last<Expression_Hide_Inhomo<Linear_Expression> >
expr_type;
//! Partial read access to the (adapted) internal expression.
expr_type expression() const;
private:
Linear_Expression expr;
Kind kind_;
/*! \brief
Holds (between class initialization and finalization) a pointer to
the origin of the zero-dimensional space \f$\Rset^0\f$.
*/
static const Grid_Generator* zero_dim_point_p;
//! Constructs a Grid_Generator with the specified space dimension, kind
//! and topology.
Grid_Generator(dimension_type space_dim, Kind kind, Topology topology,
Representation r = default_representation);
// TODO: Avoid reducing the space dimension.
/*! \brief
Constructs a grid generator of type \p t from linear expression \p e,
stealing the underlying data structures from \p e.
The last column in \p e becomes the parameter divisor column of
the new Grid_Generator.
\note The new Grid_Generator will have the same representation as `e'.
*/
Grid_Generator(Linear_Expression& e, Type t);
//! Sets the dimension of the vector space enclosing \p *this to
//! \p space_dim .
//! Sets the space dimension of the rows in the system to \p space_dim .
/*!
This method is for internal use, it does *not* assert OK() at the end,
so it can be used for invalid objects.
*/
void set_space_dimension_no_ok(dimension_type space_dim);
/*! \brief
Returns <CODE>true</CODE> if \p *this is equal to \p gg in
dimension \p dim.
*/
bool is_equal_at_dimension(dimension_type dim,
const Grid_Generator& gg) const;
/*! \brief
A print function, with fancy, more human-friendly output.
This is used by operator<<().
*/
void fancy_print(std::ostream& s) const;
//! Converts the Grid_Generator into a parameter.
void set_is_parameter();
//! Sets the Grid_Generator kind to <CODE>LINE_OR_EQUALITY</CODE>.
void set_is_line();
//! Sets the Grid_Generator kind to <CODE>RAY_OR_POINT_OR_INEQUALITY</CODE>.
void set_is_parameter_or_point();
//! \name Flags inspection methods
//@{
//! Returns the topological kind of \p *this.
Topology topology() const;
/*! \brief
Returns <CODE>true</CODE> if and only if the topology
of \p *this row is not necessarily closed.
*/
bool is_not_necessarily_closed() const;
/*! \brief
Returns <CODE>true</CODE> if and only if the topology
of \p *this row is necessarily closed.
*/
bool is_necessarily_closed() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this row
represents a line or an equality.
*/
bool is_line_or_equality() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this row
represents a ray, a point or an inequality.
*/
bool is_ray_or_point_or_inequality() const;
//@} // Flags inspection methods
//! \name Flags coercion methods
//@{
//! Sets to \p x the topological kind of \p *this row.
void set_topology(Topology x);
//! Sets to \p NECESSARILY_CLOSED the topological kind of \p *this row.
void set_necessarily_closed();
//! Sets to \p NOT_NECESSARILY_CLOSED the topological kind of \p *this row.
void set_not_necessarily_closed();
//! Sets to \p LINE_OR_EQUALITY the kind of \p *this row.
void set_is_line_or_equality();
//! Sets to \p RAY_OR_POINT_OR_INEQUALITY the kind of \p *this row.
void set_is_ray_or_point_or_inequality();
//@} // Flags coercion methods
/*! \brief
Normalizes the sign of the coefficients so that the first non-zero
(homogeneous) coefficient of a line-or-equality is positive.
*/
void sign_normalize();
/*! \brief
Strong normalization: ensures that different Grid_Generator objects
represent different hyperplanes or hyperspaces.
Applies both Grid_Generator::normalize() and Grid_Generator::sign_normalize().
*/
void strong_normalize();
/*! \brief
Returns <CODE>true</CODE> if and only if the coefficients are
strongly normalized.
*/
bool check_strong_normalized() const;
//! Linearly combines \p *this with \p y so that i-th coefficient is 0.
/*!
\param y
The Grid_Generator that will be combined with \p *this object;
\param i
The index of the coefficient that has to become \f$0\f$.
Computes a linear combination of \p *this and \p y having
the i-th coefficient equal to \f$0\f$. Then it assigns
the resulting Grid_Generator to \p *this and normalizes it.
*/
void linear_combine(const Grid_Generator& y, dimension_type i);
/*! \brief
Throw a <CODE>std::invalid_argument</CODE> exception containing
the appropriate error message.
*/
void
throw_dimension_incompatible(const char* method,
const char* name_var,
const Variable v) const;
/*! \brief
Throw a <CODE>std::invalid_argument</CODE> exception containing
the appropriate error message.
*/
void
throw_invalid_argument(const char* method, const char* reason) const;
friend std::ostream&
IO_Operators::operator<<(std::ostream& s, const Grid_Generator& g);
friend int
compare(const Grid_Generator& x, const Grid_Generator& y);
friend class Expression_Adapter<Grid_Generator>;
friend class Grid_Generator_System;
friend class Grid;
friend class Linear_System<Grid_Generator>;
friend class Scalar_Products;
friend class Topology_Adjusted_Scalar_Product_Sign;
};
namespace Parma_Polyhedra_Library {
/*! \brief
Shorthand for
Grid_Generator::grid_line(const Linear_Expression& e, Representation r).
\relates Grid_Generator
*/
Grid_Generator
grid_line(const Linear_Expression& e,
Representation r = Grid_Generator::default_representation);
/*! \brief
Shorthand for
Grid_Generator::parameter(const Linear_Expression& e, Coefficient_traits::const_reference d, Representation r).
\relates Grid_Generator
*/
Grid_Generator
parameter(const Linear_Expression& e = Linear_Expression::zero(),
Coefficient_traits::const_reference d = Coefficient_one(),
Representation r = Grid_Generator::default_representation);
//! Shorthand for Grid_Generator::parameter(Representation r).
/*! \relates Grid_Generator */
Grid_Generator
parameter(Representation r);
/*! \brief
Shorthand for
Grid_Generator::parameter(const Linear_Expression& e, Representation r).
\relates Grid_Generator
*/
Grid_Generator
parameter(const Linear_Expression& e, Representation r);
/*! \brief
Shorthand for
Grid_Generator::grid_point(const Linear_Expression& e, Coefficient_traits::const_reference d, Representation r).
\relates Grid_Generator
*/
Grid_Generator
grid_point(const Linear_Expression& e = Linear_Expression::zero(),
Coefficient_traits::const_reference d = Coefficient_one(),
Representation r = Grid_Generator::default_representation);
//! Shorthand for Grid_Generator::grid_point(Representation r).
/*! \relates Grid_Generator */
Grid_Generator
grid_point(Representation r);
/*! \brief
Shorthand for
Grid_Generator::grid_point(const Linear_Expression& e, Representation r).
\relates Grid_Generator
*/
Grid_Generator
grid_point(const Linear_Expression& e, Representation r);
//! Returns <CODE>true</CODE> if and only if \p x is equivalent to \p y.
/*! \relates Grid_Generator */
bool operator==(const Grid_Generator& x, const Grid_Generator& y);
//! Returns <CODE>true</CODE> if and only if \p x is not equivalent to \p y.
/*! \relates Grid_Generator */
bool operator!=(const Grid_Generator& x, const Grid_Generator& y);
namespace IO_Operators {
//! Output operator.
/*! \relates Parma_Polyhedra_Library::Grid_Generator */
std::ostream& operator<<(std::ostream& s, const Grid_Generator::Type& t);
} // namespace IO_Operators
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Grid_Generator_inlines.hh line 1. */
/* Grid Generator class implementation: inline functions.
*/
namespace Parma_Polyhedra_Library {
inline bool
Grid_Generator::is_necessarily_closed() const {
return true;
}
inline bool
Grid_Generator::is_not_necessarily_closed() const {
return false;
}
inline bool
Grid_Generator::is_line_or_equality() const {
return (kind_ == LINE_OR_EQUALITY);
}
inline bool
Grid_Generator::is_ray_or_point_or_inequality() const {
return (kind_ == RAY_OR_POINT_OR_INEQUALITY);
}
inline Topology
Grid_Generator::topology() const {
return NECESSARILY_CLOSED;
}
inline void
Grid_Generator::set_is_line_or_equality() {
kind_ = LINE_OR_EQUALITY;
}
inline void
Grid_Generator::set_is_ray_or_point_or_inequality() {
kind_ = RAY_OR_POINT_OR_INEQUALITY;
}
inline void
Grid_Generator::set_topology(Topology x) {
PPL_USED(x);
PPL_ASSERT(x == NECESSARILY_CLOSED);
}
inline void
Grid_Generator::set_necessarily_closed() {
set_topology(NECESSARILY_CLOSED);
}
inline void
Grid_Generator::set_not_necessarily_closed() {
set_topology(NOT_NECESSARILY_CLOSED);
}
inline
Grid_Generator::Grid_Generator(Linear_Expression& e, Type type) {
swap(expr, e);
if (type == LINE)
kind_ = LINE_OR_EQUALITY;
else
kind_ = RAY_OR_POINT_OR_INEQUALITY;
PPL_ASSERT(OK());
}
inline
Grid_Generator::Grid_Generator(Representation r)
: expr(Coefficient_one(), r),
kind_(RAY_OR_POINT_OR_INEQUALITY) {
expr.set_space_dimension(1);
PPL_ASSERT(OK());
}
inline
Grid_Generator::Grid_Generator(const Grid_Generator& g)
: expr(g.expr),
kind_(g.kind_) {
}
inline
Grid_Generator::Grid_Generator(const Grid_Generator& g, Representation r)
: expr(g.expr, r),
kind_(g.kind_) {
}
inline
Grid_Generator::Grid_Generator(dimension_type space_dim, Kind kind,
Topology topology, Representation r)
: expr(r),
kind_(kind) {
PPL_USED(topology);
PPL_ASSERT(topology == NECESSARILY_CLOSED);
expr.set_space_dimension(space_dim + 1);
PPL_ASSERT(space_dimension() == space_dim);
}
inline
Grid_Generator::Grid_Generator(const Grid_Generator& g,
dimension_type space_dim)
: expr(g.expr, space_dim + 1),
kind_(g.kind_) {
PPL_ASSERT(OK());
PPL_ASSERT(space_dimension() == space_dim);
}
inline
Grid_Generator::Grid_Generator(const Grid_Generator& g,
dimension_type space_dim, Representation r)
: expr(g.expr, space_dim + 1, r),
kind_(g.kind_) {
PPL_ASSERT(OK());
PPL_ASSERT(space_dimension() == space_dim);
}
inline
Grid_Generator::~Grid_Generator() {
}
inline Grid_Generator::expr_type
Grid_Generator::expression() const {
return expr_type(expr, true);
}
inline Representation
Grid_Generator::representation() const {
return expr.representation();
}
inline void
Grid_Generator::set_representation(Representation r) {
expr.set_representation(r);
}
inline dimension_type
Grid_Generator::max_space_dimension() {
return Linear_Expression::max_space_dimension() - 1;
}
inline dimension_type
Grid_Generator::space_dimension() const {
return expression().space_dimension();
}
inline void
Grid_Generator::set_space_dimension(dimension_type space_dim) {
const dimension_type old_space_dim = space_dimension();
if (space_dim > old_space_dim) {
expr.set_space_dimension(space_dim + 1);
expr.swap_space_dimensions(Variable(space_dim), Variable(old_space_dim));
}
else {
expr.swap_space_dimensions(Variable(space_dim), Variable(old_space_dim));
expr.set_space_dimension(space_dim + 1);
}
PPL_ASSERT(space_dimension() == space_dim);
}
inline void
Grid_Generator::set_space_dimension_no_ok(dimension_type space_dim) {
set_space_dimension(space_dim);
}
inline void
Grid_Generator::shift_space_dimensions(Variable v, dimension_type n) {
expr.shift_space_dimensions(v, n);
}
inline Grid_Generator::Type
Grid_Generator::type() const {
if (is_line())
return LINE;
return is_point() ? POINT : PARAMETER;
}
inline bool
Grid_Generator::is_line() const {
return is_line_or_equality();
}
inline bool
Grid_Generator::is_parameter() const {
return is_parameter_or_point() && is_line_or_parameter();
}
inline bool
Grid_Generator::is_line_or_parameter() const {
return expr.inhomogeneous_term() == 0;
}
inline bool
Grid_Generator::is_point() const {
return !is_line_or_parameter();
}
inline bool
Grid_Generator::is_parameter_or_point() const {
return is_ray_or_point_or_inequality();
}
inline void
Grid_Generator::set_divisor(Coefficient_traits::const_reference d) {
PPL_ASSERT(!is_line());
if (is_line_or_parameter())
expr.set_coefficient(Variable(space_dimension()), d);
else
expr.set_inhomogeneous_term(d);
}
inline Coefficient_traits::const_reference
Grid_Generator::divisor() const {
if (is_line())
throw_invalid_argument("divisor()", "*this is a line");
if (is_line_or_parameter())
return expr.coefficient(Variable(space_dimension()));
else
return expr.inhomogeneous_term();
}
inline bool
Grid_Generator::is_equal_at_dimension(dimension_type dim,
const Grid_Generator& y) const {
const Grid_Generator& x = *this;
return x.expr.get(dim) * y.divisor() == y.expr.get(dim) * x.divisor();
}
inline void
Grid_Generator::set_is_line() {
set_is_line_or_equality();
}
inline void
Grid_Generator::set_is_parameter_or_point() {
set_is_ray_or_point_or_inequality();
}
inline Grid_Generator&
Grid_Generator::operator=(const Grid_Generator& g) {
Grid_Generator tmp = g;
swap(*this, tmp);
return *this;
}
inline Coefficient_traits::const_reference
Grid_Generator::coefficient(const Variable v) const {
if (v.space_dimension() > space_dimension())
throw_dimension_incompatible("coefficient(v)", "v", v);
return expr.coefficient(v);
}
inline memory_size_type
Grid_Generator::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
inline memory_size_type
Grid_Generator::external_memory_in_bytes() const {
return expr.external_memory_in_bytes();
}
inline const Grid_Generator&
Grid_Generator::zero_dim_point() {
PPL_ASSERT(zero_dim_point_p != 0);
return *zero_dim_point_p;
}
inline void
Grid_Generator::strong_normalize() {
PPL_ASSERT(!is_parameter());
expr.normalize();
sign_normalize();
}
inline void
Grid_Generator::m_swap(Grid_Generator& y) {
using std::swap;
swap(expr, y.expr);
swap(kind_, y.kind_);
}
/*! \relates Grid_Generator */
inline bool
operator==(const Grid_Generator& x, const Grid_Generator& y) {
return x.is_equivalent_to(y);
}
/*! \relates Grid_Generator */
inline bool
operator!=(const Grid_Generator& x, const Grid_Generator& y) {
return !(x == y);
}
/*! \relates Grid_Generator */
inline Grid_Generator
grid_line(const Linear_Expression& e, Representation r) {
return Grid_Generator::grid_line(e, r);
}
/*! \relates Grid_Generator */
inline Grid_Generator
parameter(const Linear_Expression& e,
Coefficient_traits::const_reference d, Representation r) {
return Grid_Generator::parameter(e, d, r);
}
/*! \relates Grid_Generator */
inline Grid_Generator
parameter(Representation r) {
return Grid_Generator::parameter(r);
}
/*! \relates Grid_Generator */
inline Grid_Generator
parameter(const Linear_Expression& e, Representation r) {
return Grid_Generator::parameter(e, r);
}
/*! \relates Grid_Generator */
inline Grid_Generator
grid_point(const Linear_Expression& e,
Coefficient_traits::const_reference d, Representation r) {
return Grid_Generator::grid_point(e, d, r);
}
/*! \relates Grid_Generator */
inline Grid_Generator
grid_point(Representation r) {
return Grid_Generator::grid_point(r);
}
/*! \relates Grid_Generator */
inline Grid_Generator
grid_point(const Linear_Expression& e, Representation r) {
return Grid_Generator::grid_point(e, r);
}
/*! \relates Grid_Generator */
inline void
swap(Grid_Generator& x, Grid_Generator& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Grid_Generator_defs.hh line 795. */
/* Automatically generated from PPL source file ../src/Congruence_defs.hh line 1. */
/* Congruence class declaration.
*/
/* Automatically generated from PPL source file ../src/Congruence_defs.hh line 28. */
/* Automatically generated from PPL source file ../src/Congruence_defs.hh line 31. */
/* Automatically generated from PPL source file ../src/Congruence_defs.hh line 37. */
#include <iosfwd>
#include <vector>
// These are declared here because they are friend of Congruence.
namespace Parma_Polyhedra_Library {
//! Returns <CODE>true</CODE> if and only if \p x and \p y are equivalent.
/*! \relates Congruence */
bool
operator==(const Congruence& x, const Congruence& y);
//! Returns <CODE>false</CODE> if and only if \p x and \p y are equivalent.
/*! \relates Congruence */
bool
operator!=(const Congruence& x, const Congruence& y);
} // namespace Parma_Polyhedra_Library
//! A linear congruence.
/*! \ingroup PPL_CXX_interface
An object of the class Congruence is a congruence:
- \f$\cg = \sum_{i=0}^{n-1} a_i x_i + b = 0 \pmod m\f$
where \f$n\f$ is the dimension of the space,
\f$a_i\f$ is the integer coefficient of variable \f$x_i\f$,
\f$b\f$ is the integer inhomogeneous term and \f$m\f$ is the integer modulus;
if \f$m = 0\f$, then \f$\cg\f$ represents the equality congruence
\f$\sum_{i=0}^{n-1} a_i x_i + b = 0\f$
and, if \f$m \neq 0\f$, then the congruence \f$\cg\f$ is
said to be a proper congruence.
\par How to build a congruence
Congruences \f$\pmod{1}\f$ are typically built by
applying the congruence symbol `<CODE>\%=</CODE>'
to a pair of linear expressions.
Congruences with modulus \p m
are typically constructed by building a congruence \f$\pmod{1}\f$
using the given pair of linear expressions
and then adding the modulus \p m
using the modulus symbol is `<CODE>/</CODE>'.
The space dimension of a congruence is defined as the maximum
space dimension of the arguments of its constructor.
\par
In the following examples it is assumed that variables
<CODE>x</CODE>, <CODE>y</CODE> and <CODE>z</CODE>
are defined as follows:
\code
Variable x(0);
Variable y(1);
Variable z(2);
\endcode
\par Example 1
The following code builds the equality congruence
\f$3x + 5y - z = 0\f$, having space dimension \f$3\f$:
\code
Congruence eq_cg((3*x + 5*y - z %= 0) / 0);
\endcode
The following code builds the congruence
\f$4x = 2y - 13 \pmod{1}\f$, having space dimension \f$2\f$:
\code
Congruence mod1_cg(4*x %= 2*y - 13);
\endcode
The following code builds the congruence
\f$4x = 2y - 13 \pmod{2}\f$, having space dimension \f$2\f$:
\code
Congruence mod2_cg((4*x %= 2*y - 13) / 2);
\endcode
An unsatisfiable congruence on the zero-dimension space \f$\Rset^0\f$
can be specified as follows:
\code
Congruence false_cg = Congruence::zero_dim_false();
\endcode
Equivalent, but more involved ways are the following:
\code
Congruence false_cg1((Linear_Expression::zero() %= 1) / 0);
Congruence false_cg2((Linear_Expression::zero() %= 1) / 2);
\endcode
In contrast, the following code defines an unsatisfiable congruence
having space dimension \f$3\f$:
\code
Congruence false_cg3((0*z %= 1) / 0);
\endcode
\par How to inspect a congruence
Several methods are provided to examine a congruence and extract
all the encoded information: its space dimension, its modulus
and the value of its integer coefficients.
\par Example 2
The following code shows how it is possible to access the modulus
as well as each of the coefficients.
Given a congruence with linear expression \p e and modulus \p m
(in this case \f$x - 5y + 3z = 4 \pmod{5}\f$), we construct a new
congruence with the same modulus \p m but where the linear
expression is \f$2 e\f$ (\f$2x - 10y + 6z = 8 \pmod{5}\f$).
\code
Congruence cg1((x - 5*y + 3*z %= 4) / 5);
cout << "Congruence cg1: " << cg1 << endl;
const Coefficient& m = cg1.modulus();
if (m == 0)
cout << "Congruence cg1 is an equality." << endl;
else {
Linear_Expression e;
for (dimension_type i = cg1.space_dimension(); i-- > 0; )
e += 2 * cg1.coefficient(Variable(i)) * Variable(i);
e += 2 * cg1.inhomogeneous_term();
Congruence cg2((e %= 0) / m);
cout << "Congruence cg2: " << cg2 << endl;
}
\endcode
The actual output could be the following:
\code
Congruence cg1: A - 5*B + 3*C %= 4 / 5
Congruence cg2: 2*A - 10*B + 6*C %= 8 / 5
\endcode
Note that, in general, the particular output obtained can be
syntactically different from the (semantically equivalent)
congruence considered.
*/
class Parma_Polyhedra_Library::Congruence {
public:
//! The representation used for new Congruences.
/*!
\note The copy constructor and the copy constructor with specified size
use the representation of the original object, so that it is
indistinguishable from the original object.
*/
static const Representation default_representation = SPARSE;
//! Constructs the 0 = 0 congruence with space dimension \p 0 .
explicit Congruence(Representation r = default_representation);
//! Ordinary copy constructor.
/*!
\note The new Congruence will have the same representation as `cg',
not default_representation, so that they are indistinguishable.
*/
Congruence(const Congruence& cg);
//! Copy constructor with specified representation.
Congruence(const Congruence& cg, Representation r);
//! Copy-constructs (modulo 0) from equality constraint \p c.
/*!
\exception std::invalid_argument
Thrown if \p c is an inequality.
*/
explicit Congruence(const Constraint& c,
Representation r = default_representation);
//! Destructor.
~Congruence();
//! Assignment operator.
Congruence& operator=(const Congruence& y);
//! Returns the current representation of *this.
Representation representation() const;
//! Converts *this to the specified representation.
void set_representation(Representation r);
//! Returns the maximum space dimension a Congruence can handle.
static dimension_type max_space_dimension();
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
void permute_space_dimensions(const std::vector<Variable>& cycles);
//! The type of the (adapted) internal expression.
typedef Expression_Adapter_Transparent<Linear_Expression> expr_type;
//! Partial read access to the (adapted) internal expression.
expr_type expression() const;
//! Returns the coefficient of \p v in \p *this.
/*!
\exception std::invalid_argument thrown if the index of \p v
is greater than or equal to the space dimension of \p *this.
*/
Coefficient_traits::const_reference coefficient(Variable v) const;
//! Returns the inhomogeneous term of \p *this.
Coefficient_traits::const_reference inhomogeneous_term() const;
//! Returns a const reference to the modulus of \p *this.
Coefficient_traits::const_reference modulus() const;
//! Sets the modulus of \p *this to \p m .
//! If \p m is 0, the congruence becomes an equality.
void set_modulus(Coefficient_traits::const_reference m);
//! Multiplies all the coefficients, including the modulus, by \p factor .
void scale(Coefficient_traits::const_reference factor);
// TODO: Document this.
void affine_preimage(Variable v,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator);
//! Multiplies \p k into the modulus of \p *this.
/*!
If called with \p *this representing the congruence \f$ e_1 = e_2
\pmod{m}\f$, then it returns with *this representing
the congruence \f$ e_1 = e_2 \pmod{mk}\f$.
*/
Congruence&
operator/=(Coefficient_traits::const_reference k);
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is a tautology
(i.e., an always true congruence).
A tautological congruence has one the following two forms:
- an equality: \f$\sum_{i=0}^{n-1} 0 x_i + 0 == 0\f$; or
- a proper congruence: \f$\sum_{i=0}^{n-1} 0 x_i + b \%= 0 / m\f$,
where \f$b = 0 \pmod{m}\f$.
*/
bool is_tautological() const;
/*! \brief
Returns <CODE>true</CODE> if and only if
\p *this is inconsistent (i.e., an always false congruence).
An inconsistent congruence has one of the following two forms:
- an equality: \f$\sum_{i=0}^{n-1} 0 x_i + b == 0\f$
where \f$b \neq 0\f$; or
- a proper congruence: \f$\sum_{i=0}^{n-1} 0 x_i + b \%= 0 / m\f$,
where \f$b \neq 0 \pmod{m}\f$.
*/
bool is_inconsistent() const;
//! Returns <CODE>true</CODE> if the modulus is greater than zero.
/*!
A congruence with a modulus of 0 is a linear equality.
*/
bool is_proper_congruence() const;
//! Returns <CODE>true</CODE> if \p *this is an equality.
/*!
A modulus of zero denotes a linear equality.
*/
bool is_equality() const;
//! Initializes the class.
static void initialize();
//! Finalizes the class.
static void finalize();
/*! \brief
Returns a reference to the true (zero-dimension space) congruence
\f$0 = 1 \pmod{1}\f$, also known as the <EM>integrality
congruence</EM>.
*/
static const Congruence& zero_dim_integrality();
/*! \brief
Returns a reference to the false (zero-dimension space) congruence
\f$0 = 1 \pmod{0}\f$.
*/
static const Congruence& zero_dim_false();
//! Returns the congruence \f$e1 = e2 \pmod{1}\f$.
static Congruence
create(const Linear_Expression& e1, const Linear_Expression& e2,
Representation r = default_representation);
//! Returns the congruence \f$e = n \pmod{1}\f$.
static Congruence
create(const Linear_Expression& e, Coefficient_traits::const_reference n,
Representation r = default_representation);
//! Returns the congruence \f$n = e \pmod{1}\f$.
static Congruence
create(Coefficient_traits::const_reference n, const Linear_Expression& e,
Representation r = default_representation);
/*! \brief
Returns a lower bound to the total size in bytes of the memory
occupied by \p *this.
*/
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
//! Checks if all the invariants are satisfied.
bool OK() const;
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation of the internal
representation of \p *this.
*/
bool ascii_load(std::istream& s);
//! Swaps \p *this with \p y.
void m_swap(Congruence& y);
//! Copy-constructs with the specified space dimension.
/*!
\note The new Congruence will have the same representation as `cg',
not default_representation, for consistency with the copy
constructor.
*/
Congruence(const Congruence& cg, dimension_type new_space_dimension);
//! Copy-constructs with the specified space dimension and representation.
Congruence(const Congruence& cg, dimension_type new_space_dimension,
Representation r);
//! Copy-constructs from a constraint, with the specified space dimension
//! and (optional) representation.
Congruence(const Constraint& cg, dimension_type new_space_dimension,
Representation r = default_representation);
//! Constructs from Linear_Expression \p le, using modulus \p m.
/*!
Builds a congruence with modulus \p m, stealing the coefficients
from \p le.
\note The new Congruence will have the same representation as `le'.
\param le
The Linear_Expression holding the coefficients.
\param m
The modulus for the congruence, which must be zero or greater.
*/
Congruence(Linear_Expression& le,
Coefficient_traits::const_reference m, Recycle_Input);
//! Swaps the coefficients of the variables \p v1 and \p v2 .
void swap_space_dimensions(Variable v1, Variable v2);
//! Sets the space dimension by \p n , adding or removing coefficients as
//! needed.
void set_space_dimension(dimension_type n);
//! Shift by \p n positions the coefficients of variables, starting from
//! the coefficient of \p v. This increases the space dimension by \p n.
void shift_space_dimensions(Variable v, dimension_type n);
//! Normalizes the signs.
/*!
The signs of the coefficients and the inhomogeneous term are
normalized, leaving the first non-zero homogeneous coefficient
positive.
*/
void sign_normalize();
//! Normalizes signs and the inhomogeneous term.
/*!
Applies sign_normalize, then reduces the inhomogeneous term to the
smallest possible positive number.
*/
void normalize();
//! Calls normalize, then divides out common factors.
/*!
Strongly normalized Congruences have equivalent semantics if and
only if they have the same syntax (as output by operator<<).
*/
void strong_normalize();
private:
/*! \brief
Holds (between class initialization and finalization) a pointer to
the false (zero-dimension space) congruence \f$0 = 1 \pmod{0}\f$.
*/
static const Congruence* zero_dim_false_p;
/*! \brief
Holds (between class initialization and finalization) a pointer to
the true (zero-dimension space) congruence \f$0 = 1 \pmod{1}\f$,
also known as the <EM>integrality congruence</EM>.
*/
static const Congruence* zero_dim_integrality_p;
Linear_Expression expr;
Coefficient modulus_;
/*! \brief
Returns <CODE>true</CODE> if \p *this is equal to \p cg in
dimension \p v.
*/
bool is_equal_at_dimension(Variable v,
const Congruence& cg) const;
/*! \brief
Throws a <CODE>std::invalid_argument</CODE> exception containing
error message \p message.
*/
void
throw_invalid_argument(const char* method, const char* message) const;
/*! \brief
Throws a <CODE>std::invalid_argument</CODE> exception containing
the appropriate error message.
*/
void
throw_dimension_incompatible(const char* method,
const char* v_name,
Variable v) const;
friend bool
operator==(const Congruence& x, const Congruence& y);
friend bool
operator!=(const Congruence& x, const Congruence& y);
friend class Scalar_Products;
friend class Grid;
};
namespace Parma_Polyhedra_Library {
namespace IO_Operators {
//! Output operators.
/*! \relates Parma_Polyhedra_Library::Congruence */
std::ostream&
operator<<(std::ostream& s, const Congruence& c);
} // namespace IO_Operators
//! Returns the congruence \f$e1 = e2 \pmod{1}\f$.
/*! \relates Congruence */
Congruence
operator%=(const Linear_Expression& e1, const Linear_Expression& e2);
//! Returns the congruence \f$e = n \pmod{1}\f$.
/*! \relates Congruence */
Congruence
operator%=(const Linear_Expression& e, Coefficient_traits::const_reference n);
//! Returns a copy of \p cg, multiplying \p k into the copy's modulus.
/*!
If \p cg represents the congruence \f$ e_1 = e_2
\pmod{m}\f$, then the result represents the
congruence \f$ e_1 = e_2 \pmod{mk}\f$.
\relates Congruence
*/
Congruence
operator/(const Congruence& cg, Coefficient_traits::const_reference k);
//! Creates a congruence from \p c, with \p m as the modulus.
/*! \relates Congruence */
Congruence
operator/(const Constraint& c, Coefficient_traits::const_reference m);
/*! \relates Congruence */
void
swap(Congruence& x, Congruence& y);
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Congruence_inlines.hh line 1. */
/* Congruence class implementation: inline functions.
*/
#include <sstream>
namespace Parma_Polyhedra_Library {
inline
Congruence::Congruence(Representation r)
: expr(r) {
PPL_ASSERT(OK());
}
inline
Congruence::Congruence(const Congruence& cg)
: expr(cg.expr), modulus_(cg.modulus_) {
}
inline
Congruence::Congruence(const Congruence& cg, Representation r)
: expr(cg.expr, r), modulus_(cg.modulus_) {
}
inline
Congruence::Congruence(const Congruence& cg,
dimension_type new_space_dimension)
: expr(cg.expr, new_space_dimension), modulus_(cg.modulus_) {
PPL_ASSERT(OK());
}
inline
Congruence::Congruence(const Congruence& cg,
dimension_type new_space_dimension,
Representation r)
: expr(cg.expr, new_space_dimension, r), modulus_(cg.modulus_) {
PPL_ASSERT(OK());
}
inline Representation
Congruence::representation() const {
return expr.representation();
}
inline void
Congruence::set_representation(Representation r) {
expr.set_representation(r);
}
inline Congruence::expr_type
Congruence::expression() const {
return expr_type(expr);
}
inline void
Congruence::set_space_dimension(dimension_type n) {
expr.set_space_dimension(n);
PPL_ASSERT(OK());
}
inline void
Congruence::shift_space_dimensions(Variable v, dimension_type n) {
expr.shift_space_dimensions(v, n);
}
inline
Congruence::~Congruence() {
}
inline
Congruence::Congruence(Linear_Expression& le,
Coefficient_traits::const_reference m,
Recycle_Input)
: modulus_(m) {
PPL_ASSERT(m >= 0);
swap(expr, le);
PPL_ASSERT(OK());
}
inline Congruence
Congruence::create(const Linear_Expression& e,
Coefficient_traits::const_reference n,
Representation r) {
Linear_Expression diff(e, r);
diff -= n;
const Congruence cg(diff, 1, Recycle_Input());
return cg;
}
inline Congruence
Congruence::create(Coefficient_traits::const_reference n,
const Linear_Expression& e,
Representation r) {
Linear_Expression diff(e, r);
diff -= n;
const Congruence cg(diff, 1, Recycle_Input());
return cg;
}
/*! \relates Parma_Polyhedra_Library::Congruence */
inline Congruence
operator%=(const Linear_Expression& e1, const Linear_Expression& e2) {
return Congruence::create(e1, e2);
}
/*! \relates Parma_Polyhedra_Library::Congruence */
inline Congruence
operator%=(const Linear_Expression& e, Coefficient_traits::const_reference n) {
return Congruence::create(e, n);
}
/*! \relates Parma_Polyhedra_Library::Congruence */
inline Congruence
operator/(const Congruence& cg, Coefficient_traits::const_reference k) {
Congruence ret = cg;
ret /= k;
return ret;
}
inline const Congruence&
Congruence::zero_dim_integrality() {
return *zero_dim_integrality_p;
}
inline const Congruence&
Congruence::zero_dim_false() {
return *zero_dim_false_p;
}
inline Congruence&
Congruence::operator=(const Congruence& y) {
Congruence tmp = y;
swap(*this, tmp);
return *this;
}
/*! \relates Congruence */
inline Congruence
operator/(const Constraint& c, Coefficient_traits::const_reference m) {
Congruence ret(c);
ret /= m;
return ret;
}
inline Congruence&
Congruence::operator/=(Coefficient_traits::const_reference k) {
if (k >= 0)
modulus_ *= k;
else
modulus_ *= -k;
return *this;
}
/*! \relates Congruence */
inline bool
operator==(const Congruence& x, const Congruence& y) {
if (x.space_dimension() != y.space_dimension())
return false;
Congruence x_temp(x);
Congruence y_temp(y);
x_temp.strong_normalize();
y_temp.strong_normalize();
return x_temp.expr.is_equal_to(y_temp.expr)
&& x_temp.modulus() == y_temp.modulus();
}
/*! \relates Congruence */
inline bool
operator!=(const Congruence& x, const Congruence& y) {
return !(x == y);
}
inline dimension_type
Congruence::max_space_dimension() {
return Linear_Expression::max_space_dimension();
}
inline dimension_type
Congruence::space_dimension() const {
return expr.space_dimension();
}
inline Coefficient_traits::const_reference
Congruence::coefficient(const Variable v) const {
if (v.space_dimension() > space_dimension())
throw_dimension_incompatible("coefficient(v)", "v", v);
return expr.coefficient(v);
}
inline void
Congruence::permute_space_dimensions(const std::vector<Variable>& cycles) {
expr.permute_space_dimensions(cycles);
}
inline Coefficient_traits::const_reference
Congruence::inhomogeneous_term() const {
return expr.inhomogeneous_term();
}
inline Coefficient_traits::const_reference
Congruence::modulus() const {
return modulus_;
}
inline void
Congruence::set_modulus(Coefficient_traits::const_reference m) {
modulus_ = m;
PPL_ASSERT(OK());
}
inline bool
Congruence::is_proper_congruence() const {
return modulus() > 0;
}
inline bool
Congruence::is_equality() const {
return modulus() == 0;
}
inline bool
Congruence::is_equal_at_dimension(Variable v,
const Congruence& cg) const {
return coefficient(v) * cg.modulus() == cg.coefficient(v) * modulus();
}
inline memory_size_type
Congruence::external_memory_in_bytes() const {
return expr.external_memory_in_bytes()
+ Parma_Polyhedra_Library::external_memory_in_bytes(modulus_);
}
inline memory_size_type
Congruence::total_memory_in_bytes() const {
return external_memory_in_bytes() + sizeof(*this);
}
inline void
Congruence::m_swap(Congruence& y) {
using std::swap;
swap(expr, y.expr);
swap(modulus_, y.modulus_);
}
inline void
Congruence::swap_space_dimensions(Variable v1, Variable v2) {
expr.swap_space_dimensions(v1, v2);
}
/*! \relates Congruence */
inline void
swap(Congruence& x, Congruence& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Congruence_defs.hh line 505. */
/* Automatically generated from PPL source file ../src/Linear_Expression_Impl_templates.hh line 34. */
#include <stdexcept>
#include <iostream>
namespace Parma_Polyhedra_Library {
template <typename Row>
Linear_Expression_Impl<Row>
::Linear_Expression_Impl(const Linear_Expression_Impl& e) {
construct(e);
}
template <typename Row>
template <typename Row2>
Linear_Expression_Impl<Row>
::Linear_Expression_Impl(const Linear_Expression_Impl<Row2>& e) {
construct(e);
}
template <typename Row>
Linear_Expression_Impl<Row>
::Linear_Expression_Impl(const Linear_Expression_Interface& e) {
typedef const Linear_Expression_Impl<Dense_Row>* Dense_Ptr;
typedef const Linear_Expression_Impl<Sparse_Row>* Sparse_Ptr;
if (const Dense_Ptr p = dynamic_cast<Dense_Ptr>(&e)) {
construct(*p);
}
else if (const Sparse_Ptr p = dynamic_cast<Sparse_Ptr>(&e)) {
construct(*p);
}
else {
// Add implementations for other derived classes here.
PPL_UNREACHABLE;
}
}
template <typename Row>
Linear_Expression_Impl<Row>
::Linear_Expression_Impl(const Linear_Expression_Interface& e,
dimension_type space_dim) {
typedef const Linear_Expression_Impl<Dense_Row>* Dense_Ptr;
typedef const Linear_Expression_Impl<Sparse_Row>* Sparse_Ptr;
if (const Dense_Ptr p = dynamic_cast<Dense_Ptr>(&e)) {
construct(*p, space_dim);
}
else if (const Sparse_Ptr p = dynamic_cast<Sparse_Ptr>(&e)) {
construct(*p, space_dim);
}
else {
// Add implementations for other derived classes here.
PPL_UNREACHABLE;
}
}
template <typename Row>
template <typename Row2>
void
Linear_Expression_Impl<Row>
::linear_combine(const Linear_Expression_Impl<Row2>& y, Variable i) {
PPL_ASSERT(space_dimension() == y.space_dimension());
PPL_ASSERT(i.space_dimension() <= space_dimension());
linear_combine(y, i.space_dimension());
}
template <typename Row>
template <typename Row2>
void
Linear_Expression_Impl<Row>
::linear_combine(const Linear_Expression_Impl<Row2>& y, dimension_type i) {
const Linear_Expression_Impl& x = *this;
PPL_ASSERT(i < x.space_dimension() + 1);
PPL_ASSERT(x.space_dimension() == y.space_dimension());
Coefficient_traits::const_reference x_i = x.row.get(i);
Coefficient_traits::const_reference y_i = y.row.get(i);
PPL_ASSERT(x_i != 0);
PPL_ASSERT(y_i != 0);
PPL_DIRTY_TEMP_COEFFICIENT(normalized_x_v);
PPL_DIRTY_TEMP_COEFFICIENT(normalized_y_v);
normalize2(x_i, y_i, normalized_x_v, normalized_y_v);
neg_assign(normalized_x_v);
linear_combine(y, normalized_y_v, normalized_x_v);
// We cannot use x_i here because it may have been invalidated by
// linear_combine().
assert(x.row.get(i) == 0);
PPL_ASSERT(OK());
}
template <typename Row>
template <typename Row2>
void
Linear_Expression_Impl<Row>
::linear_combine(const Linear_Expression_Impl<Row2>& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2) {
PPL_ASSERT(c1 != 0);
PPL_ASSERT(c2 != 0);
if (space_dimension() < y.space_dimension())
set_space_dimension(y.space_dimension());
linear_combine(y, c1, c2, 0, y.space_dimension() + 1);
PPL_ASSERT(OK());
}
template <typename Row>
template <typename Row2>
void
Linear_Expression_Impl<Row>
::linear_combine_lax(const Linear_Expression_Impl<Row2>& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2) {
if (space_dimension() < y.space_dimension())
set_space_dimension(y.space_dimension());
linear_combine_lax(y, c1, c2, 0, y.space_dimension() + 1);
PPL_ASSERT(OK());
}
template <typename Row>
template <typename Row2>
int
Linear_Expression_Impl<Row>
::compare(const Linear_Expression_Impl<Row2>& y) const {
const Linear_Expression_Impl& x = *this;
// Compare all the coefficients of the row starting from position 1.
// NOTE: x and y may be of different size.
typename Row::const_iterator i = x.row.lower_bound(1);
typename Row::const_iterator i_end = x.row.end();
typename Row2::const_iterator j = y.row.lower_bound(1);
typename Row2::const_iterator j_end = y.row.end();
while (i != i_end && j != j_end) {
if (i.index() < j.index()) {
const int s = sgn(*i);
if (s != 0)
return 2*s;
++i;
continue;
}
if (i.index() > j.index()) {
const int s = sgn(*j);
if (s != 0)
return -2*s;
++j;
continue;
}
PPL_ASSERT(i.index() == j.index());
const int s = cmp(*i, *j);
if (s < 0)
return -2;
if (s > 0)
return 2;
PPL_ASSERT(s == 0);
++i;
++j;
}
for ( ; i != i_end; ++i) {
const int s = sgn(*i);
if (s != 0)
return 2*s;
}
for ( ; j != j_end; ++j) {
const int s = sgn(*j);
if (s != 0)
return -2*s;
}
// If all the coefficients in `x' equal all the coefficients in `y'
// (starting from position 1) we compare coefficients in position 0,
// i.e., inhomogeneous terms.
const int comp = cmp(x.row.get(0), y.row.get(0));
if (comp > 0)
return 1;
if (comp < 0)
return -1;
PPL_ASSERT(comp == 0);
// `x' and `y' are equal.
return 0;
}
template <typename Row>
Linear_Expression_Impl<Row>::Linear_Expression_Impl(const Variable v) {
if (v.space_dimension() > max_space_dimension())
throw std::length_error("Linear_Expression_Impl::"
"Linear_Expression_Impl(v):\n"
"v exceeds the maximum allowed "
"space dimension.");
set_space_dimension(v.space_dimension());
(*this) += v;
PPL_ASSERT(OK());
}
template <typename Row>
template <typename Row2>
bool
Linear_Expression_Impl<Row>
::is_equal_to(const Linear_Expression_Impl<Row2>& x) const {
return row == x.row;
}
template <typename Row>
void
Linear_Expression_Impl<Row>::get_row(Dense_Row& row) const {
row = this->row;
}
template <typename Row>
void
Linear_Expression_Impl<Row>::get_row(Sparse_Row& row) const {
row = this->row;
}
template <typename Row>
void
Linear_Expression_Impl<Row>
::permute_space_dimensions(const std::vector<Variable>& cycle) {
const dimension_type n = cycle.size();
if (n < 2)
return;
if (n == 2) {
row.swap_coefficients(cycle[0].space_dimension(),
cycle[1].space_dimension());
}
else {
PPL_DIRTY_TEMP_COEFFICIENT(tmp);
tmp = row.get(cycle.back().space_dimension());
for (dimension_type i = n - 1; i-- > 0; )
row.swap_coefficients(cycle[i + 1].space_dimension(),
cycle[i].space_dimension());
if (tmp == 0)
row.reset(cycle[0].space_dimension());
else {
using std::swap;
swap(tmp, row[cycle[0].space_dimension()]);
}
}
PPL_ASSERT(OK());
}
template <typename Row>
template <typename Row2>
Linear_Expression_Impl<Row>&
Linear_Expression_Impl<Row>::operator+=(const Linear_Expression_Impl<Row2>& e) {
linear_combine(e, Coefficient_one(), Coefficient_one());
return *this;
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression_Impl */
template <typename Row>
Linear_Expression_Impl<Row>&
Linear_Expression_Impl<Row>::operator+=(const Variable v) {
const dimension_type v_space_dim = v.space_dimension();
if (v_space_dim > Linear_Expression_Impl<Row>::max_space_dimension())
throw std::length_error("Linear_Expression_Impl& "
"operator+=(e, v):\n"
"v exceeds the maximum allowed space dimension.");
if (space_dimension() < v_space_dim)
set_space_dimension(v_space_dim);
typename Row::iterator itr = row.insert(v_space_dim);
++(*itr);
if (*itr == 0)
row.reset(itr);
PPL_ASSERT(OK());
return *this;
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression_Impl */
template <typename Row>
template <typename Row2>
Linear_Expression_Impl<Row>&
Linear_Expression_Impl<Row>::operator-=(const Linear_Expression_Impl<Row2>& e2) {
linear_combine(e2, Coefficient_one(), -1);
return *this;
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression_Impl */
template <typename Row>
Linear_Expression_Impl<Row>&
Linear_Expression_Impl<Row>::operator-=(const Variable v) {
const dimension_type v_space_dim = v.space_dimension();
if (v_space_dim > Linear_Expression_Impl<Row>::max_space_dimension())
throw std::length_error("Linear_Expression_Impl& "
"operator-=(e, v):\n"
"v exceeds the maximum allowed space dimension.");
if (space_dimension() < v_space_dim)
set_space_dimension(v_space_dim);
typename Row::iterator itr = row.insert(v_space_dim);
--(*itr);
if (*itr == 0)
row.reset(itr);
PPL_ASSERT(OK());
return *this;
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression_Impl */
template <typename Row>
Linear_Expression_Impl<Row>&
Linear_Expression_Impl<Row>::operator*=(Coefficient_traits::const_reference n) {
if (n == 0) {
row.clear();
PPL_ASSERT(OK());
return *this;
}
for (typename Row::iterator i = row.begin(),
i_end = row.end(); i != i_end; ++i)
(*i) *= n;
PPL_ASSERT(OK());
return *this;
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression_Impl */
template <typename Row>
Linear_Expression_Impl<Row>&
Linear_Expression_Impl<Row>::operator/=(Coefficient_traits::const_reference n) {
typename Row::iterator i = row.begin();
const typename Row::iterator& i_end = row.end();
while (i != i_end) {
(*i) /= n;
if (*i == 0)
i = row.reset(i);
else
++i;
}
PPL_ASSERT(OK());
return *this;
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression_Impl */
template <typename Row>
void
Linear_Expression_Impl<Row>::negate() {
for (typename Row::iterator i = row.begin(),
i_end = row.end(); i != i_end; ++i)
neg_assign(*i);
PPL_ASSERT(OK());
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression_Impl */
template <typename Row>
Linear_Expression_Impl<Row>&
Linear_Expression_Impl<Row>::add_mul_assign(Coefficient_traits::const_reference n,
const Variable v) {
const dimension_type v_space_dim = v.space_dimension();
if (v_space_dim > Linear_Expression_Impl<Row>::max_space_dimension())
throw std::length_error("Linear_Expression_Impl& "
"add_mul_assign(e, n, v):\n"
"v exceeds the maximum allowed space dimension.");
if (space_dimension() < v_space_dim)
set_space_dimension(v_space_dim);
if (n == 0)
return *this;
typename Row::iterator itr = row.insert(v_space_dim);
(*itr) += n;
if (*itr == 0)
row.reset(itr);
PPL_ASSERT(OK());
return *this;
}
/*! \relates Parma_Polyhedra_Library::Linear_Expression_Impl */
template <typename Row>
Linear_Expression_Impl<Row>&
Linear_Expression_Impl<Row>
::sub_mul_assign(Coefficient_traits::const_reference n,
const Variable v) {
const dimension_type v_space_dim = v.space_dimension();
if (v_space_dim > Linear_Expression_Impl<Row>::max_space_dimension())
throw std::length_error("Linear_Expression_Impl& "
"sub_mul_assign(e, n, v):\n"
"v exceeds the maximum allowed space dimension.");
if (space_dimension() < v_space_dim)
set_space_dimension(v_space_dim);
if (n == 0)
return *this;
typename Row::iterator itr = row.insert(v_space_dim);
(*itr) -= n;
if (*itr == 0)
row.reset(itr);
PPL_ASSERT(OK());
return *this;
}
template <typename Row>
template <typename Row2>
void
Linear_Expression_Impl<Row>
::add_mul_assign(Coefficient_traits::const_reference factor,
const Linear_Expression_Impl<Row2>& y) {
if (factor != 0)
linear_combine(y, Coefficient_one(), factor);
}
template <typename Row>
template <typename Row2>
void
Linear_Expression_Impl<Row>
::sub_mul_assign(Coefficient_traits::const_reference factor,
const Linear_Expression_Impl<Row2>& y) {
if (factor != 0)
linear_combine(y, Coefficient_one(), -factor);
}
template <typename Row>
void
Linear_Expression_Impl<Row>::print(std::ostream& s) const {
PPL_DIRTY_TEMP_COEFFICIENT(ev);
bool first = true;
for (typename Row::const_iterator i = row.lower_bound(1), i_end = row.end();
i != i_end; ++i) {
ev = *i;
if (ev == 0)
continue;
if (!first) {
if (ev > 0)
s << " + ";
else {
s << " - ";
neg_assign(ev);
}
}
else
first = false;
if (ev == -1)
s << "-";
else if (ev != 1)
s << ev << "*";
IO_Operators::operator<<(s, Variable(i.index() - 1));
}
// Inhomogeneous term.
PPL_DIRTY_TEMP_COEFFICIENT(it);
it = row[0];
if (it != 0) {
if (!first) {
if (it > 0)
s << " + ";
else {
s << " - ";
neg_assign(it);
}
}
else
first = false;
s << it;
}
if (first)
// The null linear expression.
s << Coefficient_zero();
}
template <typename Row>
Coefficient_traits::const_reference
Linear_Expression_Impl<Row>::get(dimension_type i) const {
return row.get(i);
}
template <typename Row>
void
Linear_Expression_Impl<Row>
::set(dimension_type i, Coefficient_traits::const_reference n) {
if (n == 0)
row.reset(i);
else
row.insert(i, n);
PPL_ASSERT(OK());
}
template <typename Row>
void
Linear_Expression_Impl<Row>
::exact_div_assign(Coefficient_traits::const_reference c,
dimension_type start, dimension_type end) {
// NOTE: Since all coefficients in [start,end) are multiple of c,
// each of the resulting coefficients will be nonzero iff the initial
// coefficient was.
for (typename Row::iterator i = row.lower_bound(start),
i_end = row.lower_bound(end); i != i_end; ++i)
Parma_Polyhedra_Library::exact_div_assign(*i, *i, c);
PPL_ASSERT(OK());
}
template <typename Row>
void
Linear_Expression_Impl<Row>
::mul_assign(Coefficient_traits::const_reference c,
dimension_type start, dimension_type end) {
if (c == 0) {
typename Row::iterator i = row.lower_bound(start);
const typename Row::iterator& i_end = row.end();
while (i != i_end && i.index() < end)
i = row.reset(i);
}
else {
for (typename Row::iterator
i = row.lower_bound(start), i_end = row.lower_bound(end); i != i_end; ++i)
(*i) *= c;
}
PPL_ASSERT(OK());
}
template <typename Row>
template <typename Row2>
void
Linear_Expression_Impl<Row>
::linear_combine(const Linear_Expression_Impl<Row2>& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end) {
Parma_Polyhedra_Library::linear_combine(row, y.row, c1, c2, start, end);
PPL_ASSERT(OK());
}
template <typename Row>
template <typename Row2>
void
Linear_Expression_Impl<Row>
::linear_combine_lax(const Linear_Expression_Impl<Row2>& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end) {
PPL_ASSERT(start <= end);
PPL_ASSERT(end <= row.size());
PPL_ASSERT(end <= y.row.size());
if (c1 == 0) {
if (c2 == 0) {
PPL_ASSERT(c1 == 0);
PPL_ASSERT(c2 == 0);
typename Row::iterator i = row.lower_bound(start);
const typename Row::iterator& i_end = row.end();
while (i != i_end && i.index() < end)
i = row.reset(i);
}
else {
PPL_ASSERT(c1 == 0);
PPL_ASSERT(c2 != 0);
typename Row::iterator i = row.lower_bound(start);
const typename Row::iterator& i_end = row.end();
typename Row2::const_iterator j = y.row.lower_bound(start);
typename Row2::const_iterator j_last = y.row.lower_bound(end);
while (i != i_end && i.index() < end && j != j_last) {
if (i.index() < j.index()) {
i = row.reset(i);
continue;
}
if (i.index() > j.index()) {
i = row.insert(i, j.index(), *j);
(*i) *= c2;
++i;
++j;
continue;
}
PPL_ASSERT(i.index() == j.index());
(*i) = (*j);
(*i) *= c2;
++i;
++j;
}
while (i != i_end && i.index() < end)
i = row.reset(i);
while (j != j_last) {
i = row.insert(i, j.index(), *j);
(*i) *= c2;
// No need to increment i here.
++j;
}
}
}
else {
if (c2 == 0) {
PPL_ASSERT(c1 != 0);
PPL_ASSERT(c2 == 0);
for (typename Row::iterator i = row.lower_bound(start),
i_end = row.lower_bound(end); i != i_end; ++i)
(*i) *= c1;
}
else {
PPL_ASSERT(c1 != 0);
PPL_ASSERT(c2 != 0);
Parma_Polyhedra_Library::linear_combine(row, y.row, c1, c2, start, end);
}
}
PPL_ASSERT(OK());
}
template <typename Row>
void
Linear_Expression_Impl<Row>::sign_normalize() {
typename Row::iterator i = row.lower_bound(1);
typename Row::iterator i_end = row.end();
for ( ; i != i_end; ++i)
if (*i != 0)
break;
if (i != i_end && *i < 0) {
for ( ; i != i_end; ++i)
neg_assign(*i);
// Negate the first coefficient, too.
typename Row::iterator first = row.begin();
if (first != row.end() && first.index() == 0)
neg_assign(*first);
}
PPL_ASSERT(OK());
}
template <typename Row>
void
Linear_Expression_Impl<Row>::negate(dimension_type first, dimension_type last) {
PPL_ASSERT(first <= last);
PPL_ASSERT(last <= row.size());
typename Row::iterator i = row.lower_bound(first);
typename Row::iterator i_end = row.lower_bound(last);
for ( ; i != i_end; ++i)
neg_assign(*i);
PPL_ASSERT(OK());
}
template <typename Row>
template <typename Row2>
void
Linear_Expression_Impl<Row>::construct(const Linear_Expression_Impl<Row2>& e) {
row = e.row;
PPL_ASSERT(OK());
}
template <typename Row>
template <typename Row2>
void
Linear_Expression_Impl<Row>::construct(const Linear_Expression_Impl<Row2>& e,
dimension_type space_dim) {
Row x(e.row, space_dim + 1, space_dim + 1);
swap(row, x);
PPL_ASSERT(OK());
}
template <typename Row>
template <typename Row2>
void
Linear_Expression_Impl<Row>
::scalar_product_assign(Coefficient& result,
const Linear_Expression_Impl<Row2>& y,
dimension_type start, dimension_type end) const {
const Linear_Expression_Impl<Row>& x = *this;
PPL_ASSERT(start <= end);
PPL_ASSERT(end <= x.row.size());
PPL_ASSERT(end <= y.row.size());
result = 0;
typename Row ::const_iterator x_i = x.row.lower_bound(start);
typename Row ::const_iterator x_end = x.row.lower_bound(end);
typename Row2::const_iterator y_i = y.row.lower_bound(start);
typename Row2::const_iterator y_end = y.row.lower_bound(end);
while (x_i != x_end && y_i != y_end) {
if (x_i.index() == y_i.index()) {
Parma_Polyhedra_Library::add_mul_assign(result, *x_i, *y_i);
++x_i;
++y_i;
}
else {
if (x_i.index() < y_i.index()) {
PPL_ASSERT(y.row.get(x_i.index()) == 0);
// (*x_i) * 0 == 0, nothing to do.
++x_i;
}
else {
PPL_ASSERT(x.row.get(y_i.index()) == 0);
// 0 * (*y_i) == 0, nothing to do.
++y_i;
}
}
}
// In the remaining positions (if any) at most one row is nonzero, so
// there's nothing left to do.
}
template <typename Row>
template <typename Row2>
int
Linear_Expression_Impl<Row>
::scalar_product_sign(const Linear_Expression_Impl<Row2>& y,
dimension_type start, dimension_type end) const {
PPL_DIRTY_TEMP_COEFFICIENT(result);
scalar_product_assign(result, y, start, end);
return sgn(result);
}
template <typename Row>
template <typename Row2>
bool
Linear_Expression_Impl<Row>
::is_equal_to(const Linear_Expression_Impl<Row2>& y,
dimension_type start, dimension_type end) const {
const Linear_Expression_Impl<Row>& x = *this;
PPL_ASSERT(start <= end);
PPL_ASSERT(end <= x.row.size());
PPL_ASSERT(end <= y.row.size());
typename Row::const_iterator i = x.row.lower_bound(start);
typename Row::const_iterator i_end = x.row.lower_bound(end);
typename Row2::const_iterator j = y.row.lower_bound(start);
typename Row2::const_iterator j_end = y.row.lower_bound(end);
while (i != i_end && j != j_end) {
if (i.index() == j.index()) {
if (*i != *j)
return false;
++i;
++j;
}
else {
if (i.index() < j.index()) {
if (*i != 0)
return false;
++i;
}
else {
PPL_ASSERT(i.index() > j.index());
if (*j != 0)
return false;
++j;
}
}
}
for ( ; i != i_end; ++i)
if (*i != 0)
return false;
for ( ; j != j_end; ++j)
if (*j != 0)
return false;
return true;
}
template <typename Row>
template <typename Row2>
bool
Linear_Expression_Impl<Row>
::is_equal_to(const Linear_Expression_Impl<Row2>& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end) const {
const Linear_Expression_Impl<Row>& x = *this;
PPL_ASSERT(start <= end);
PPL_ASSERT(end <= x.row.size());
PPL_ASSERT(end <= y.row.size());
// Deal with trivial cases.
if (c1 == 0) {
if (c2 == 0)
return true;
else
return y.all_zeroes(start, end);
}
if (c2 == 0)
return x.all_zeroes(start, end);
PPL_ASSERT(c1 != 0);
PPL_ASSERT(c2 != 0);
typename Row::const_iterator i = x.row.lower_bound(start);
typename Row::const_iterator i_end = x.row.lower_bound(end);
typename Row2::const_iterator j = y.row.lower_bound(start);
typename Row2::const_iterator j_end = y.row.lower_bound(end);
while (i != i_end && j != j_end) {
if (i.index() == j.index()) {
if ((*i) * c1 != (*j) * c2)
return false;
++i;
++j;
}
else {
if (i.index() < j.index()) {
if (*i != 0)
return false;
++i;
}
else {
PPL_ASSERT(i.index() > j.index());
if (*j != 0)
return false;
++j;
}
}
}
for ( ; i != i_end; ++i)
if (*i != 0)
return false;
for ( ; j != j_end; ++j)
if (*j != 0)
return false;
return true;
}
template <typename Row>
void
Linear_Expression_Impl<Row>
::linear_combine(const Linear_Expression_Interface& y, Variable v) {
typedef const Linear_Expression_Impl<Dense_Row>* Dense_Ptr;
typedef const Linear_Expression_Impl<Sparse_Row>* Sparse_Ptr;
if (const Dense_Ptr p = dynamic_cast<Dense_Ptr>(&y)) {
linear_combine(*p, v);
}
else if (const Sparse_Ptr p = dynamic_cast<Sparse_Ptr>(&y)) {
linear_combine(*p, v);
}
else {
// Add implementations for new derived classes here.
PPL_UNREACHABLE;
}
}
template <typename Row>
void
Linear_Expression_Impl<Row>
::linear_combine(const Linear_Expression_Interface& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2) {
typedef const Linear_Expression_Impl<Dense_Row>* Dense_Ptr;
typedef const Linear_Expression_Impl<Sparse_Row>* Sparse_Ptr;
if (const Dense_Ptr p = dynamic_cast<Dense_Ptr>(&y)) {
linear_combine(*p, c1, c2);
}
else if (const Sparse_Ptr p = dynamic_cast<Sparse_Ptr>(&y)) {
linear_combine(*p, c1, c2);
}
else {
// Add implementations for new derived classes here.
PPL_UNREACHABLE;
}
}
template <typename Row>
void
Linear_Expression_Impl<Row>
::linear_combine_lax(const Linear_Expression_Interface& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2) {
typedef const Linear_Expression_Impl<Dense_Row>* Dense_Ptr;
typedef const Linear_Expression_Impl<Sparse_Row>* Sparse_Ptr;
if (const Dense_Ptr p = dynamic_cast<Dense_Ptr>(&y)) {
linear_combine_lax(*p, c1, c2);
}
else if (const Sparse_Ptr p = dynamic_cast<Sparse_Ptr>(&y)) {
linear_combine_lax(*p, c1, c2);
}
else {
// Add implementations for new derived classes here.
PPL_UNREACHABLE;
}
}
template <typename Row>
bool
Linear_Expression_Impl<Row>
::is_equal_to(const Linear_Expression_Interface& y) const {
typedef const Linear_Expression_Impl<Dense_Row>* Dense_Ptr;
typedef const Linear_Expression_Impl<Sparse_Row>* Sparse_Ptr;
if (const Dense_Ptr p = dynamic_cast<Dense_Ptr>(&y)) {
return is_equal_to(*p);
}
else if (const Sparse_Ptr p = dynamic_cast<Sparse_Ptr>(&y)) {
return is_equal_to(*p);
}
else {
// Add implementations for new derived classes here.
PPL_UNREACHABLE;
return false;
}
}
template <typename Row>
Linear_Expression_Impl<Row>&
Linear_Expression_Impl<Row>
::operator+=(const Linear_Expression_Interface& y) {
typedef const Linear_Expression_Impl<Dense_Row>* Dense_Ptr;
typedef const Linear_Expression_Impl<Sparse_Row>* Sparse_Ptr;
if (const Dense_Ptr p = dynamic_cast<Dense_Ptr>(&y)) {
return operator+=(*p);
}
else if (const Sparse_Ptr p = dynamic_cast<Sparse_Ptr>(&y)) {
return operator+=(*p);
}
else {
// Add implementations for new derived classes here.
PPL_UNREACHABLE;
return *this;
}
}
template <typename Row>
Linear_Expression_Impl<Row>&
Linear_Expression_Impl<Row>
::operator-=(const Linear_Expression_Interface& y) {
typedef const Linear_Expression_Impl<Dense_Row>* Dense_Ptr;
typedef const Linear_Expression_Impl<Sparse_Row>* Sparse_Ptr;
if (const Dense_Ptr p = dynamic_cast<Dense_Ptr>(&y)) {
return operator-=(*p);
}
else if (const Sparse_Ptr p = dynamic_cast<Sparse_Ptr>(&y)) {
return operator-=(*p);
}
else {
// Add implementations for new derived classes here.
PPL_UNREACHABLE;
return *this;
}
}
template <typename Row>
void
Linear_Expression_Impl<Row>
::add_mul_assign(Coefficient_traits::const_reference factor,
const Linear_Expression_Interface& y) {
typedef const Linear_Expression_Impl<Dense_Row>* Dense_Ptr;
typedef const Linear_Expression_Impl<Sparse_Row>* Sparse_Ptr;
if (const Dense_Ptr p = dynamic_cast<Dense_Ptr>(&y)) {
add_mul_assign(factor, *p);
}
else if (const Sparse_Ptr p = dynamic_cast<Sparse_Ptr>(&y)) {
add_mul_assign(factor, *p);
}
else {
// Add implementations for new derived classes here.
PPL_UNREACHABLE;
}
}
template <typename Row>
void
Linear_Expression_Impl<Row>
::sub_mul_assign(Coefficient_traits::const_reference factor,
const Linear_Expression_Interface& y) {
typedef const Linear_Expression_Impl<Dense_Row>* Dense_Ptr;
typedef const Linear_Expression_Impl<Sparse_Row>* Sparse_Ptr;
if (const Dense_Ptr p = dynamic_cast<Dense_Ptr>(&y)) {
sub_mul_assign(factor, *p);
}
else if (const Sparse_Ptr p = dynamic_cast<Sparse_Ptr>(&y)) {
sub_mul_assign(factor, *p);
}
else {
// Add implementations for new derived classes here.
PPL_UNREACHABLE;
}
}
template <typename Row>
void
Linear_Expression_Impl<Row>
::linear_combine(const Linear_Expression_Interface& y, dimension_type i) {
typedef const Linear_Expression_Impl<Dense_Row>* Dense_Ptr;
typedef const Linear_Expression_Impl<Sparse_Row>* Sparse_Ptr;
if (const Dense_Ptr p = dynamic_cast<Dense_Ptr>(&y)) {
linear_combine(*p, i);
}
else if (const Sparse_Ptr p = dynamic_cast<Sparse_Ptr>(&y)) {
linear_combine(*p, i);
}
else {
// Add implementations for new derived classes here.
PPL_UNREACHABLE;
}
}
template <typename Row>
void
Linear_Expression_Impl<Row>
::linear_combine(const Linear_Expression_Interface& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end) {
typedef const Linear_Expression_Impl<Dense_Row>* Dense_Ptr;
typedef const Linear_Expression_Impl<Sparse_Row>* Sparse_Ptr;
if (const Dense_Ptr p = dynamic_cast<Dense_Ptr>(&y)) {
linear_combine(*p, c1, c2, start, end);
}
else if (const Sparse_Ptr p = dynamic_cast<Sparse_Ptr>(&y)) {
linear_combine(*p, c1, c2, start, end);
}
else {
// Add implementations for new derived classes here.
PPL_UNREACHABLE;
}
}
template <typename Row>
void
Linear_Expression_Impl<Row>
::linear_combine_lax(const Linear_Expression_Interface& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end) {
typedef const Linear_Expression_Impl<Dense_Row>* Dense_Ptr;
typedef const Linear_Expression_Impl<Sparse_Row>* Sparse_Ptr;
if (const Dense_Ptr p = dynamic_cast<Dense_Ptr>(&y)) {
linear_combine_lax(*p, c1, c2, start, end);
}
else if (const Sparse_Ptr p = dynamic_cast<Sparse_Ptr>(&y)) {
linear_combine_lax(*p, c1, c2, start, end);
}
else {
// Add implementations for new derived classes here.
PPL_UNREACHABLE;
}
}
template <typename Row>
int
Linear_Expression_Impl<Row>
::compare(const Linear_Expression_Interface& y) const {
typedef const Linear_Expression_Impl<Dense_Row>* Dense_Ptr;
typedef const Linear_Expression_Impl<Sparse_Row>* Sparse_Ptr;
if (const Dense_Ptr p = dynamic_cast<Dense_Ptr>(&y)) {
return compare(*p);
}
else if (const Sparse_Ptr p = dynamic_cast<Sparse_Ptr>(&y)) {
return compare(*p);
}
else {
// Add implementations for new derived classes here.
PPL_UNREACHABLE;
return 0;
}
}
template <typename Row>
void
Linear_Expression_Impl<Row>::construct(const Linear_Expression_Interface& y) {
typedef const Linear_Expression_Impl<Dense_Row>* Dense_Ptr;
typedef const Linear_Expression_Impl<Sparse_Row>* Sparse_Ptr;
if (const Dense_Ptr p = dynamic_cast<Dense_Ptr>(&y)) {
return construct(*p);
}
else if (const Sparse_Ptr p = dynamic_cast<Sparse_Ptr>(&y)) {
return construct(*p);
}
else {
// Add implementations for new derived classes here.
PPL_UNREACHABLE;
}
}
template <typename Row>
void
Linear_Expression_Impl<Row>::construct(const Linear_Expression_Interface& y,
dimension_type space_dim) {
typedef const Linear_Expression_Impl<Dense_Row>* Dense_Ptr;
typedef const Linear_Expression_Impl<Sparse_Row>* Sparse_Ptr;
if (const Dense_Ptr p = dynamic_cast<Dense_Ptr>(&y)) {
return construct(*p, space_dim);
}
else if (const Sparse_Ptr p = dynamic_cast<Sparse_Ptr>(&y)) {
return construct(*p, space_dim);
}
else {
// Add implementations for new derived classes here.
PPL_UNREACHABLE;
}
}
template <typename Row>
void
Linear_Expression_Impl<Row>
::scalar_product_assign(Coefficient& result,
const Linear_Expression_Interface& y,
dimension_type start, dimension_type end) const {
typedef const Linear_Expression_Impl<Dense_Row>* Dense_Ptr;
typedef const Linear_Expression_Impl<Sparse_Row>* Sparse_Ptr;
if (const Dense_Ptr p = dynamic_cast<Dense_Ptr>(&y)) {
scalar_product_assign(result, *p, start, end);
}
else if (const Sparse_Ptr p = dynamic_cast<Sparse_Ptr>(&y)) {
scalar_product_assign(result, *p, start, end);
}
else {
// Add implementations for new derived classes here.
PPL_UNREACHABLE;
}
}
template <typename Row>
int
Linear_Expression_Impl<Row>
::scalar_product_sign(const Linear_Expression_Interface& y,
dimension_type start, dimension_type end) const {
typedef const Linear_Expression_Impl<Dense_Row>* Dense_Ptr;
typedef const Linear_Expression_Impl<Sparse_Row>* Sparse_Ptr;
if (const Dense_Ptr p = dynamic_cast<Dense_Ptr>(&y)) {
return scalar_product_sign(*p, start, end);
}
else if (const Sparse_Ptr p = dynamic_cast<Sparse_Ptr>(&y)) {
return scalar_product_sign(*p, start, end);
}
else {
// Add implementations for new derived classes here.
PPL_UNREACHABLE;
return 0;
}
}
template <typename Row>
bool
Linear_Expression_Impl<Row>
::is_equal_to(const Linear_Expression_Interface& y,
dimension_type start, dimension_type end) const {
typedef const Linear_Expression_Impl<Dense_Row>* Dense_Ptr;
typedef const Linear_Expression_Impl<Sparse_Row>* Sparse_Ptr;
if (const Dense_Ptr p = dynamic_cast<Dense_Ptr>(&y)) {
return is_equal_to(*p, start, end);
}
else if (const Sparse_Ptr p = dynamic_cast<Sparse_Ptr>(&y)) {
return is_equal_to(*p, start, end);
}
else {
// Add implementations for new derived classes here.
PPL_UNREACHABLE;
return false;
}
}
template <typename Row>
bool
Linear_Expression_Impl<Row>
::is_equal_to(const Linear_Expression_Interface& y,
Coefficient_traits::const_reference c1,
Coefficient_traits::const_reference c2,
dimension_type start, dimension_type end) const {
typedef const Linear_Expression_Impl<Dense_Row>* Dense_Ptr;
typedef const Linear_Expression_Impl<Sparse_Row>* Sparse_Ptr;
if (const Dense_Ptr p = dynamic_cast<Dense_Ptr>(&y)) {
return is_equal_to(*p, c1, c2, start, end);
}
else if (const Sparse_Ptr p = dynamic_cast<Sparse_Ptr>(&y)) {
return is_equal_to(*p, c1, c2, start, end);
}
else {
// Add implementations for new derived classes here.
PPL_UNREACHABLE;
return false;
}
}
template <typename Row>
bool
Linear_Expression_Impl<Row>
::have_a_common_variable(const Linear_Expression_Interface& y,
Variable first, Variable last) const {
typedef const Linear_Expression_Impl<Dense_Row>* Dense_Ptr;
typedef const Linear_Expression_Impl<Sparse_Row>* Sparse_Ptr;
if (const Dense_Ptr p = dynamic_cast<Dense_Ptr>(&y)) {
return have_a_common_variable(*p, first, last);
}
else if (const Sparse_Ptr p = dynamic_cast<Sparse_Ptr>(&y)) {
return have_a_common_variable(*p, first, last);
}
else {
// Add implementations for new derived classes here.
PPL_UNREACHABLE;
return false;
}
}
template <typename Row>
Linear_Expression_Interface::const_iterator_interface*
Linear_Expression_Impl<Row>::begin() const {
return new const_iterator(row, 1);
}
template <typename Row>
Linear_Expression_Interface::const_iterator_interface*
Linear_Expression_Impl<Row>::end() const {
return new const_iterator(row, row.size());
}
template <typename Row>
Linear_Expression_Interface::const_iterator_interface*
Linear_Expression_Impl<Row>::lower_bound(Variable v) const {
return new const_iterator(row, v.space_dimension());
}
template <typename Row>
Linear_Expression_Impl<Row>::const_iterator
::const_iterator(const Row& row1, dimension_type i)
: row(&row1), itr(row1.lower_bound(i)) {
skip_zeroes_forward();
}
template <typename Row>
Linear_Expression_Interface::const_iterator_interface*
Linear_Expression_Impl<Row>::const_iterator
::clone() const {
return new const_iterator(*this);
}
template <typename Row>
void
Linear_Expression_Impl<Row>::const_iterator
::operator++() {
++itr;
skip_zeroes_forward();
}
template <typename Row>
void
Linear_Expression_Impl<Row>::const_iterator
::operator--() {
--itr;
skip_zeroes_backward();
}
template <typename Row>
typename Linear_Expression_Impl<Row>::const_iterator::reference
Linear_Expression_Impl<Row>::const_iterator
::operator*() const {
return *itr;
}
template <typename Row>
Variable
Linear_Expression_Impl<Row>::const_iterator
::variable() const {
const dimension_type i = itr.index();
PPL_ASSERT(i != 0);
return Variable(i - 1);
}
template <typename Row>
bool
Linear_Expression_Impl<Row>::const_iterator
::operator==(const const_iterator_interface& x) const {
const const_iterator* const p = dynamic_cast<const const_iterator*>(&x);
// Comparing iterators belonging to different rows is forbidden.
PPL_ASSERT(p != 0);
PPL_ASSERT(row == p->row);
return itr == p->itr;
}
template <typename Row>
void
Linear_Expression_Impl<Row>::ascii_dump(std::ostream& s) const {
s << "size " << (space_dimension() + 1) << " ";
for (dimension_type i = 0; i < row.size(); ++i) {
s << row.get(i);
if (i != row.size() - 1)
s << ' ';
}
}
template <typename Row>
bool
Linear_Expression_Impl<Row>::ascii_load(std::istream& s) {
std::string str;
if (!(s >> str))
return false;
if (str != "size")
return false;
dimension_type new_size;
if (!(s >> new_size))
return false;
row.resize(0);
row.resize(new_size);
PPL_DIRTY_TEMP_COEFFICIENT(c);
for (dimension_type j = 0; j < new_size; ++j) {
if (!(s >> c))
return false;
if (c != 0)
row.insert(j, c);
}
PPL_ASSERT(OK());
return true;
}
template <typename Row>
bool
Linear_Expression_Impl<Row>::OK() const {
return row.OK();
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Linear_Expression_Impl_defs.hh line 905. */
/* Automatically generated from PPL source file ../src/Linear_Form_templates.hh line 1. */
/* Linear_Form class implementation: non-inline template functions.
*/
/* Automatically generated from PPL source file ../src/Box_defs.hh line 1. */
/* Box class declaration.
*/
/* Automatically generated from PPL source file ../src/Poly_Con_Relation_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Poly_Con_Relation;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Poly_Gen_Relation_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Poly_Gen_Relation;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Partially_Reduced_Product_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename D1, typename D2>
class Smash_Reduction;
template <typename D1, typename D2>
class Constraints_Reduction;
template <typename D1, typename D2>
class Congruences_Reduction;
template <typename D1, typename D2>
class Shape_Preserving_Reduction;
template <typename D1, typename D2>
class No_Reduction;
template <typename D1, typename D2, typename R>
class Partially_Reduced_Product;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Box_defs.hh line 50. */
#include <vector>
#include <iosfwd>
namespace Parma_Polyhedra_Library {
struct Interval_Base;
//! Swaps \p x with \p y.
/*! \relates Box */
template <typename ITV>
void swap(Box<ITV>& x, Box<ITV>& y);
//! Returns <CODE>true</CODE> if and only if \p x and \p y are the same box.
/*! \relates Box
Note that \p x and \p y may be dimension-incompatible boxes:
in this case, the value <CODE>false</CODE> is returned.
*/
template <typename ITV>
bool operator==(const Box<ITV>& x, const Box<ITV>& y);
//! Returns <CODE>true</CODE> if and only if \p x and \p y are not the same box.
/*! \relates Box
Note that \p x and \p y may be dimension-incompatible boxes:
in this case, the value <CODE>true</CODE> is returned.
*/
template <typename ITV>
bool operator!=(const Box<ITV>& x, const Box<ITV>& y);
namespace IO_Operators {
//! Output operator.
/*! \relates Parma_Polyhedra_Library::Box */
template <typename ITV>
std::ostream& operator<<(std::ostream& s, const Box<ITV>& box);
} // namespace IO_Operators
//! Computes the rectilinear (or Manhattan) distance between \p x and \p y.
/*! \relates Box
If the rectilinear distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<To, Extended_Number_Policy\></CODE>.
*/
template <typename To, typename ITV>
bool
rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
Rounding_Dir dir);
//! Computes the rectilinear (or Manhattan) distance between \p x and \p y.
/*! \relates Box
If the rectilinear distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<Temp, Extended_Number_Policy\></CODE>.
*/
template <typename Temp, typename To, typename ITV>
bool
rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
Rounding_Dir dir);
//! Computes the rectilinear (or Manhattan) distance between \p x and \p y.
/*! \relates Box
If the rectilinear distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
*/
template <typename Temp, typename To, typename ITV>
bool
rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
//! Computes the euclidean distance between \p x and \p y.
/*! \relates Box
If the euclidean distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<To, Extended_Number_Policy\></CODE>.
*/
template <typename To, typename ITV>
bool
euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
Rounding_Dir dir);
//! Computes the euclidean distance between \p x and \p y.
/*! \relates Box
If the euclidean distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<Temp, Extended_Number_Policy\></CODE>.
*/
template <typename Temp, typename To, typename ITV>
bool
euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
Rounding_Dir dir);
//! Computes the euclidean distance between \p x and \p y.
/*! \relates Box
If the euclidean distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
*/
template <typename Temp, typename To, typename ITV>
bool
euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
//! Computes the \f$L_\infty\f$ distance between \p x and \p y.
/*! \relates Box
If the \f$L_\infty\f$ distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<To, Extended_Number_Policy\></CODE>.
*/
template <typename To, typename ITV>
bool
l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
Rounding_Dir dir);
//! Computes the \f$L_\infty\f$ distance between \p x and \p y.
/*! \relates Box
If the \f$L_\infty\f$ distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<Temp, Extended_Number_Policy\></CODE>.
*/
template <typename Temp, typename To, typename ITV>
bool
l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
Rounding_Dir dir);
//! Computes the \f$L_\infty\f$ distance between \p x and \p y.
/*! \relates Box
If the \f$L_\infty\f$ distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
*/
template <typename Temp, typename To, typename ITV>
bool
l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates Box
Helper function for computing distances.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Specialization,
typename Temp, typename To, typename ITV>
bool
l_m_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x, const Box<ITV>& y,
Rounding_Dir dir,
Temp& tmp0, Temp& tmp1, Temp& tmp2);
} // namespace Parma_Polyhedra_Library
//! A not necessarily closed, iso-oriented hyperrectangle.
/*! \ingroup PPL_CXX_interface
A Box object represents the smash product of \f$n\f$
not necessarily closed and possibly unbounded intervals
represented by objects of class \p ITV,
where \f$n\f$ is the space dimension of the box.
An <EM>interval constraint</EM> (resp., <EM>interval congruence</EM>)
is a syntactic constraint (resp., congruence) that only mentions
a single space dimension.
The Box domain <EM>optimally supports</EM>:
- tautological and inconsistent constraints and congruences;
- the interval constraints that are optimally supported by
the template argument class \c ITV;
- the interval congruences that are optimally supported by
the template argument class \c ITV.
Depending on the method, using a constraint or congruence that is not
optimally supported by the domain will either raise an exception or
result in a (possibly non-optimal) upward approximation.
The user interface for the Box domain is meant to be as similar
as possible to the one developed for the polyhedron class C_Polyhedron.
*/
template <typename ITV>
class Parma_Polyhedra_Library::Box {
public:
//! The type of intervals used to implement the box.
typedef ITV interval_type;
//! Returns the maximum space dimension that a Box can handle.
static dimension_type max_space_dimension();
/*! \brief
Returns false indicating that this domain does not recycle constraints
*/
static bool can_recycle_constraint_systems();
/*! \brief
Returns false indicating that this domain does not recycle congruences
*/
static bool can_recycle_congruence_systems();
//! \name Constructors, Assignment, Swap and Destructor
//@{
//! Builds a universe or empty box of the specified space dimension.
/*!
\param num_dimensions
The number of dimensions of the vector space enclosing the box;
\param kind
Specifies whether the universe or the empty box has to be built.
*/
explicit Box(dimension_type num_dimensions = 0,
Degenerate_Element kind = UNIVERSE);
//! Ordinary copy constructor.
/*!
The complexity argument is ignored.
*/
Box(const Box& y,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a conservative, upward approximation of \p y.
/*!
The complexity argument is ignored.
*/
template <typename Other_ITV>
explicit Box(const Box<Other_ITV>& y,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a box from the system of constraints \p cs.
/*!
The box inherits the space dimension of \p cs.
\param cs
A system of constraints: constraints that are not
\ref intervals "interval constraints"
are ignored (even though they may have contributed
to the space dimension).
*/
explicit Box(const Constraint_System& cs);
//! Builds a box recycling a system of constraints \p cs.
/*!
The box inherits the space dimension of \p cs.
\param cs
A system of constraints: constraints that are not
\ref intervals "interval constraints"
are ignored (even though they may have contributed
to the space dimension).
\param dummy
A dummy tag to syntactically differentiate this one
from the other constructors.
*/
Box(const Constraint_System& cs, Recycle_Input dummy);
//! Builds a box from the system of generators \p gs.
/*!
Builds the smallest box containing the polyhedron defined by \p gs.
The box inherits the space dimension of \p gs.
\exception std::invalid_argument
Thrown if the system of generators is not empty but has no points.
*/
explicit Box(const Generator_System& gs);
//! Builds a box recycling the system of generators \p gs.
/*!
Builds the smallest box containing the polyhedron defined by \p gs.
The box inherits the space dimension of \p gs.
\param gs
The generator system describing the polyhedron to be approximated.
\param dummy
A dummy tag to syntactically differentiate this one
from the other constructors.
\exception std::invalid_argument
Thrown if the system of generators is not empty but has no points.
*/
Box(const Generator_System& gs, Recycle_Input dummy);
/*!
Builds the smallest box containing the grid defined by a
system of congruences \p cgs.
The box inherits the space dimension of \p cgs.
\param cgs
A system of congruences: congruences that are not
non-relational equality constraints are ignored
(though they may have contributed to the space dimension).
*/
explicit Box(const Congruence_System& cgs);
/*!
Builds the smallest box containing the grid defined by a
system of congruences \p cgs, recycling \p cgs.
The box inherits the space dimension of \p cgs.
\param cgs
A system of congruences: congruences that are not
non-relational equality constraints are ignored
(though they will contribute to the space dimension).
\param dummy
A dummy tag to syntactically differentiate this one
from the other constructors.
*/
Box(const Congruence_System& cgs, Recycle_Input dummy);
//! Builds a box containing the BDS \p bds.
/*!
Builds the smallest box containing \p bds using a polynomial algorithm.
The \p complexity argument is ignored.
*/
template <typename T>
explicit Box(const BD_Shape<T>& bds,
Complexity_Class complexity = POLYNOMIAL_COMPLEXITY);
//! Builds a box containing the octagonal shape \p oct.
/*!
Builds the smallest box containing \p oct using a polynomial algorithm.
The \p complexity argument is ignored.
*/
template <typename T>
explicit Box(const Octagonal_Shape<T>& oct,
Complexity_Class complexity = POLYNOMIAL_COMPLEXITY);
//! Builds a box containing the polyhedron \p ph.
/*!
Builds a box containing \p ph using algorithms whose complexity
does not exceed the one specified by \p complexity. If
\p complexity is \p ANY_COMPLEXITY, then the built box is the
smallest one containing \p ph.
*/
explicit Box(const Polyhedron& ph,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a box containing the grid \p gr.
/*!
Builds the smallest box containing \p gr using a polynomial algorithm.
The \p complexity argument is ignored.
*/
explicit Box(const Grid& gr,
Complexity_Class complexity = POLYNOMIAL_COMPLEXITY);
//! Builds a box containing the partially reduced product \p dp.
/*!
Builds a box containing \p ph using algorithms whose complexity
does not exceed the one specified by \p complexity.
*/
template <typename D1, typename D2, typename R>
explicit Box(const Partially_Reduced_Product<D1, D2, R>& dp,
Complexity_Class complexity = ANY_COMPLEXITY);
/*! \brief
The assignment operator
(\p *this and \p y can be dimension-incompatible).
*/
Box& operator=(const Box& y);
/*! \brief
Swaps \p *this with \p y
(\p *this and \p y can be dimension-incompatible).
*/
void m_swap(Box& y);
//@} Constructors, Assignment, Swap and Destructor
//! \name Member Functions that Do Not Modify the Box
//@{
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
/*! \brief
Returns \f$0\f$, if \p *this is empty; otherwise, returns the
\ref Affine_Independence_and_Affine_Dimension "affine dimension"
of \p *this.
*/
dimension_type affine_dimension() const;
//! Returns <CODE>true</CODE> if and only if \p *this is an empty box.
bool is_empty() const;
//! Returns <CODE>true</CODE> if and only if \p *this is a universe box.
bool is_universe() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
is a topologically closed subset of the vector space.
*/
bool is_topologically_closed() const;
//! Returns <CODE>true</CODE> if and only if \p *this is discrete.
bool is_discrete() const;
//! Returns <CODE>true</CODE> if and only if \p *this is a bounded box.
bool is_bounded() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
contains at least one integer point.
*/
bool contains_integer_point() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p var is constrained in
\p *this.
\exception std::invalid_argument
Thrown if \p var is not a space dimension of \p *this.
*/
bool constrains(Variable var) const;
//! Returns the relations holding between \p *this and the constraint \p c.
/*!
\exception std::invalid_argument
Thrown if \p *this and constraint \p c are dimension-incompatible.
*/
Poly_Con_Relation relation_with(const Constraint& c) const;
//! Returns the relations holding between \p *this and the congruence \p cg.
/*!
\exception std::invalid_argument
Thrown if \p *this and constraint \p cg are dimension-incompatible.
*/
Poly_Con_Relation relation_with(const Congruence& cg) const;
//! Returns the relations holding between \p *this and the generator \p g.
/*!
\exception std::invalid_argument
Thrown if \p *this and generator \p g are dimension-incompatible.
*/
Poly_Gen_Relation relation_with(const Generator& g) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p expr is
bounded from above in \p *this.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds_from_above(const Linear_Expression& expr) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p expr is
bounded from below in \p *this.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds_from_below(const Linear_Expression& expr) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from above in \p *this, in which case
the supremum value is computed.
\param expr
The linear expression to be maximized subject to \p *this;
\param sup_n
The numerator of the supremum value;
\param sup_d
The denominator of the supremum value;
\param maximum
<CODE>true</CODE> if and only if the supremum is also the maximum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from above,
<CODE>false</CODE> is returned and \p sup_n, \p sup_d
and \p maximum are left untouched.
*/
bool maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from above in \p *this, in which case
the supremum value and a point where \p expr reaches it are computed.
\param expr
The linear expression to be maximized subject to \p *this;
\param sup_n
The numerator of the supremum value;
\param sup_d
The denominator of the supremum value;
\param maximum
<CODE>true</CODE> if and only if the supremum is also the maximum value;
\param g
When maximization succeeds, will be assigned the point or
closure point where \p expr reaches its supremum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from above,
<CODE>false</CODE> is returned and \p sup_n, \p sup_d, \p maximum
and \p g are left untouched.
*/
bool maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum,
Generator& g) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from below in \p *this, in which case
the infimum value is computed.
\param expr
The linear expression to be minimized subject to \p *this;
\param inf_n
The numerator of the infimum value;
\param inf_d
The denominator of the infimum value;
\param minimum
<CODE>true</CODE> if and only if the infimum is also the minimum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from below,
<CODE>false</CODE> is returned and \p inf_n, \p inf_d
and \p minimum are left untouched.
*/
bool minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from below in \p *this, in which case
the infimum value and a point where \p expr reaches it are computed.
\param expr
The linear expression to be minimized subject to \p *this;
\param inf_n
The numerator of the infimum value;
\param inf_d
The denominator of the infimum value;
\param minimum
<CODE>true</CODE> if and only if the infimum is also the minimum value;
\param g
When minimization succeeds, will be assigned a point or
closure point where \p expr reaches its infimum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from below,
<CODE>false</CODE> is returned and \p inf_n, \p inf_d, \p minimum
and \p g are left untouched.
*/
bool minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum,
Generator& g) const;
/*! \brief
Returns <CODE>true</CODE> if and only if there exist a
unique value \p val such that \p *this
saturates the equality <CODE>expr = val</CODE>.
\param expr
The linear expression for which the frequency is needed;
\param freq_n
If <CODE>true</CODE> is returned, the value is set to \f$0\f$;
Present for interface compatibility with class Grid, where
the \ref Grid_Frequency "frequency" can have a non-zero value;
\param freq_d
If <CODE>true</CODE> is returned, the value is set to \f$1\f$;
\param val_n
The numerator of \p val;
\param val_d
The denominator of \p val;
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If <CODE>false</CODE> is returned, then \p freq_n, \p freq_d,
\p val_n and \p val_d are left untouched.
*/
bool frequency(const Linear_Expression& expr,
Coefficient& freq_n, Coefficient& freq_d,
Coefficient& val_n, Coefficient& val_d) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this contains \p y.
\exception std::invalid_argument
Thrown if \p x and \p y are dimension-incompatible.
*/
bool contains(const Box& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this strictly contains \p y.
\exception std::invalid_argument
Thrown if \p x and \p y are dimension-incompatible.
*/
bool strictly_contains(const Box& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this and \p y are disjoint.
\exception std::invalid_argument
Thrown if \p x and \p y are dimension-incompatible.
*/
bool is_disjoint_from(const Box& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this satisfies
all its invariants.
*/
bool OK() const;
//@} Member Functions that Do Not Modify the Box
//! \name Space-Dimension Preserving Member Functions that May Modify the Box
//@{
/*! \brief
Adds a copy of constraint \p c to the system of constraints
defining \p *this.
\param c
The constraint to be added.
\exception std::invalid_argument
Thrown if \p *this and constraint \p c are dimension-incompatible,
or \p c is not optimally supported by the Box domain.
*/
void add_constraint(const Constraint& c);
/*! \brief
Adds the constraints in \p cs to the system of constraints
defining \p *this.
\param cs
The constraints to be added.
\exception std::invalid_argument
Thrown if \p *this and \p cs are dimension-incompatible,
or \p cs contains a constraint which is not optimally supported
by the box domain.
*/
void add_constraints(const Constraint_System& cs);
/*! \brief
Adds the constraints in \p cs to the system of constraints
defining \p *this.
\param cs
The constraints to be added. They may be recycled.
\exception std::invalid_argument
Thrown if \p *this and \p cs are dimension-incompatible,
or \p cs contains a constraint which is not optimally supported
by the box domain.
\warning
The only assumption that can be made on \p cs upon successful or
exceptional return is that it can be safely destroyed.
*/
void add_recycled_constraints(Constraint_System& cs);
/*! \brief
Adds to \p *this a constraint equivalent to the congruence \p cg.
\param cg
The congruence to be added.
\exception std::invalid_argument
Thrown if \p *this and congruence \p cg are dimension-incompatible,
or \p cg is not optimally supported by the box domain.
*/
void add_congruence(const Congruence& cg);
/*! \brief
Adds to \p *this constraints equivalent to the congruences in \p cgs.
\param cgs
The congruences to be added.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible,
or \p cgs contains a congruence which is not optimally supported
by the box domain.
*/
void add_congruences(const Congruence_System& cgs);
/*! \brief
Adds to \p *this constraints equivalent to the congruences in \p cgs.
\param cgs
The congruence system to be added to \p *this. The congruences in
\p cgs may be recycled.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible,
or \p cgs contains a congruence which is not optimally supported
by the box domain.
\warning
The only assumption that can be made on \p cgs upon successful or
exceptional return is that it can be safely destroyed.
*/
void add_recycled_congruences(Congruence_System& cgs);
/*! \brief
Use the constraint \p c to refine \p *this.
\param c
The constraint to be used for refinement.
\exception std::invalid_argument
Thrown if \p *this and \p c are dimension-incompatible.
*/
void refine_with_constraint(const Constraint& c);
/*! \brief
Use the constraints in \p cs to refine \p *this.
\param cs
The constraints to be used for refinement.
To avoid termination problems, each constraint in \p cs
will be used for a single refinement step.
\exception std::invalid_argument
Thrown if \p *this and \p cs are dimension-incompatible.
\note
The user is warned that the accuracy of this refinement operator
depends on the order of evaluation of the constraints in \p cs,
which is in general unpredictable. If a fine control on such an
order is needed, the user should consider calling the method
<code>refine_with_constraint(const Constraint& c)</code> inside
an appropriate looping construct.
*/
void refine_with_constraints(const Constraint_System& cs);
/*! \brief
Use the congruence \p cg to refine \p *this.
\param cg
The congruence to be used for refinement.
\exception std::invalid_argument
Thrown if \p *this and \p cg are dimension-incompatible.
*/
void refine_with_congruence(const Congruence& cg);
/*! \brief
Use the congruences in \p cgs to refine \p *this.
\param cgs
The congruences to be used for refinement.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible.
*/
void refine_with_congruences(const Congruence_System& cgs);
/*! \brief
Use the constraint \p c for constraint propagation on \p *this.
\param c
The constraint to be used for constraint propagation.
\exception std::invalid_argument
Thrown if \p *this and \p c are dimension-incompatible.
*/
void propagate_constraint(const Constraint& c);
/*! \brief
Use the constraints in \p cs for constraint propagation on \p *this.
\param cs
The constraints to be used for constraint propagation.
\param max_iterations
The maximum number of propagation steps for each constraint in
\p cs. If zero (the default), the number of propagation steps
will be unbounded, possibly resulting in an infinite loop.
\exception std::invalid_argument
Thrown if \p *this and \p cs are dimension-incompatible.
\warning
This method may lead to non-termination if \p max_iterations is 0.
*/
void propagate_constraints(const Constraint_System& cs,
dimension_type max_iterations = 0);
/*! \brief
Computes the \ref Cylindrification "cylindrification" of \p *this with
respect to space dimension \p var, assigning the result to \p *this.
\param var
The space dimension that will be unconstrained.
\exception std::invalid_argument
Thrown if \p var is not a space dimension of \p *this.
*/
void unconstrain(Variable var);
/*! \brief
Computes the \ref Cylindrification "cylindrification" of \p *this with
respect to the set of space dimensions \p vars,
assigning the result to \p *this.
\param vars
The set of space dimension that will be unconstrained.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with one of the
Variable objects contained in \p vars.
*/
void unconstrain(const Variables_Set& vars);
//! Assigns to \p *this the intersection of \p *this and \p y.
/*!
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void intersection_assign(const Box& y);
/*! \brief
Assigns to \p *this the smallest box containing the union
of \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void upper_bound_assign(const Box& y);
/*! \brief
If the upper bound of \p *this and \p y is exact, it is assigned
to \p *this and <CODE>true</CODE> is returned,
otherwise <CODE>false</CODE> is returned.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
bool upper_bound_assign_if_exact(const Box& y);
/*! \brief
Assigns to \p *this the difference of \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void difference_assign(const Box& y);
/*! \brief
Assigns to \p *this a \ref Meet_Preserving_Simplification
"meet-preserving simplification" of \p *this with respect to \p y.
If \c false is returned, then the intersection is empty.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
bool simplify_using_context_assign(const Box& y);
/*! \brief
Assigns to \p *this the
\ref Single_Update_Affine_Functions "affine image"
of \p *this under the function mapping variable \p var to the
affine expression specified by \p expr and \p denominator.
\param var
The variable to which the affine expression is assigned;
\param expr
The numerator of the affine expression;
\param denominator
The denominator of the affine expression (optional argument with
default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of
\p *this.
*/
void affine_image(Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
// FIXME: To be completed.
/*! \brief
Assigns to \p *this the \ref affine_form_relation "affine form image"
of \p *this under the function mapping variable \p var into the
affine expression(s) specified by \p lf.
\param var
The variable to which the affine expression is assigned.
\param lf
The linear form on intervals with floating point boundaries that
defines the affine expression(s). ALL of its coefficients MUST be bounded.
\exception std::invalid_argument
Thrown if \p lf and \p *this are dimension-incompatible or if \p var
is not a dimension of \p *this.
This function is used in abstract interpretation to model an assignment
of a value that is correctly overapproximated by \p lf to the
floating point variable represented by \p var.
*/
void affine_form_image(Variable var,
const Linear_Form<ITV>& lf);
/*! \brief
Assigns to \p *this the
\ref Single_Update_Affine_Functions "affine preimage"
of \p *this under the function mapping variable \p var to the
affine expression specified by \p expr and \p denominator.
\param var
The variable to which the affine expression is substituted;
\param expr
The numerator of the affine expression;
\param denominator
The denominator of the affine expression (optional argument with
default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of \p *this.
*/
void affine_preimage(Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the image of \p *this with respect to the
\ref Generalized_Affine_Relations "generalized affine relation"
\f$\mathrm{var}' \relsym \frac{\mathrm{expr}}{\mathrm{denominator}}\f$,
where \f$\mathord{\relsym}\f$ is the relation symbol encoded
by \p relsym.
\param var
The left hand side variable of the generalized affine relation;
\param relsym
The relation symbol;
\param expr
The numerator of the right hand side affine expression;
\param denominator
The denominator of the right hand side affine expression (optional
argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of \p *this.
*/
void generalized_affine_image(Variable var,
Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Generalized_Affine_Relations "generalized affine relation"
\f$\mathrm{var}' \relsym \frac{\mathrm{expr}}{\mathrm{denominator}}\f$,
where \f$\mathord{\relsym}\f$ is the relation symbol encoded
by \p relsym.
\param var
The left hand side variable of the generalized affine relation;
\param relsym
The relation symbol;
\param expr
The numerator of the right hand side affine expression;
\param denominator
The denominator of the right hand side affine expression (optional
argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of \p *this.
*/
void
generalized_affine_preimage(Variable var,
Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the image of \p *this with respect to the
\ref Generalized_Affine_Relations "generalized affine relation"
\f$\mathrm{lhs}' \relsym \mathrm{rhs}\f$, where
\f$\mathord{\relsym}\f$ is the relation symbol encoded by \p relsym.
\param lhs
The left hand side affine expression;
\param relsym
The relation symbol;
\param rhs
The right hand side affine expression.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p lhs or \p rhs.
*/
void generalized_affine_image(const Linear_Expression& lhs,
Relation_Symbol relsym,
const Linear_Expression& rhs);
/*! \brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Generalized_Affine_Relations "generalized affine relation"
\f$\mathrm{lhs}' \relsym \mathrm{rhs}\f$, where
\f$\mathord{\relsym}\f$ is the relation symbol encoded by \p relsym.
\param lhs
The left hand side affine expression;
\param relsym
The relation symbol;
\param rhs
The right hand side affine expression.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p lhs or \p rhs.
*/
void generalized_affine_preimage(const Linear_Expression& lhs,
Relation_Symbol relsym,
const Linear_Expression& rhs);
/*! \brief
Assigns to \p *this the image of \p *this with respect to the
\ref Single_Update_Bounded_Affine_Relations "bounded affine relation"
\f$\frac{\mathrm{lb\_expr}}{\mathrm{denominator}}
\leq \mathrm{var}'
\leq \frac{\mathrm{ub\_expr}}{\mathrm{denominator}}\f$.
\param var
The variable updated by the affine relation;
\param lb_expr
The numerator of the lower bounding affine expression;
\param ub_expr
The numerator of the upper bounding affine expression;
\param denominator
The (common) denominator for the lower and upper bounding
affine expressions (optional argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p lb_expr (resp., \p ub_expr)
and \p *this are dimension-incompatible or if \p var is not a space
dimension of \p *this.
*/
void bounded_affine_image(Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Single_Update_Bounded_Affine_Relations "bounded affine relation"
\f$\frac{\mathrm{lb\_expr}}{\mathrm{denominator}}
\leq \mathrm{var}'
\leq \frac{\mathrm{ub\_expr}}{\mathrm{denominator}}\f$.
\param var
The variable updated by the affine relation;
\param lb_expr
The numerator of the lower bounding affine expression;
\param ub_expr
The numerator of the upper bounding affine expression;
\param denominator
The (common) denominator for the lower and upper bounding
affine expressions (optional argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p lb_expr (resp., \p ub_expr)
and \p *this are dimension-incompatible or if \p var is not a space
dimension of \p *this.
*/
void bounded_affine_preimage(Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the result of computing the
\ref Time_Elapse_Operator "time-elapse" between \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void time_elapse_assign(const Box& y);
//! Assigns to \p *this its topological closure.
void topological_closure_assign();
/*! \brief
\ref Wrapping_Operator "Wraps" the specified dimensions of the
vector space.
\param vars
The set of Variable objects corresponding to the space dimensions
to be wrapped.
\param w
The width of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param r
The representation of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param o
The overflow behavior of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param cs_p
Possibly null pointer to a constraint system. When non-null,
the pointed-to constraint system is assumed to represent the
conditional or looping construct guard with respect to which
wrapping is performed. Since wrapping requires the computation
of upper bounds and due to non-distributivity of constraint
refinement over upper bounds, passing a constraint system in this
way can be more precise than refining the result of the wrapping
operation with the constraints in <CODE>*cs_p</CODE>.
\param complexity_threshold
A precision parameter which is ignored for the Box domain.
\param wrap_individually
A precision parameter which is ignored for the Box domain.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with one of the
Variable objects contained in \p vars or with <CODE>*cs_p</CODE>.
*/
void wrap_assign(const Variables_Set& vars,
Bounded_Integer_Type_Width w,
Bounded_Integer_Type_Representation r,
Bounded_Integer_Type_Overflow o,
const Constraint_System* cs_p = 0,
unsigned complexity_threshold = 16,
bool wrap_individually = true);
/*! \brief
Possibly tightens \p *this by dropping some points with non-integer
coordinates.
\param complexity
The maximal complexity of any algorithms used.
\note
Currently there is no optimality guarantee, not even if
\p complexity is <CODE>ANY_COMPLEXITY</CODE>.
*/
void drop_some_non_integer_points(Complexity_Class complexity
= ANY_COMPLEXITY);
/*! \brief
Possibly tightens \p *this by dropping some points with non-integer
coordinates for the space dimensions corresponding to \p vars.
\param vars
Points with non-integer coordinates for these variables/space-dimensions
can be discarded.
\param complexity
The maximal complexity of any algorithms used.
\note
Currently there is no optimality guarantee, not even if
\p complexity is <CODE>ANY_COMPLEXITY</CODE>.
*/
void drop_some_non_integer_points(const Variables_Set& vars,
Complexity_Class complexity
= ANY_COMPLEXITY);
/*! \brief
Assigns to \p *this the result of computing the
\ref CC76_extrapolation "CC76-widening" between \p *this and \p y.
\param y
A box that <EM>must</EM> be contained in \p *this.
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
template <typename T>
typename Enable_If<Is_Same<T, Box>::value
&& Is_Same_Or_Derived<Interval_Base, ITV>::value,
void>::type
CC76_widening_assign(const T& y, unsigned* tp = 0);
/*! \brief
Assigns to \p *this the result of computing the
\ref CC76_extrapolation "CC76-widening" between \p *this and \p y.
\param y
A box that <EM>must</EM> be contained in \p *this.
\param first
An iterator that points to the first stop-point.
\param last
An iterator that points one past the last stop-point.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
template <typename T, typename Iterator>
typename Enable_If<Is_Same<T, Box>::value
&& Is_Same_Or_Derived<Interval_Base, ITV>::value,
void>::type
CC76_widening_assign(const T& y,
Iterator first, Iterator last);
//! Same as CC76_widening_assign(y, tp).
void widening_assign(const Box& y, unsigned* tp = 0);
/*! \brief
Improves the result of the \ref CC76_extrapolation "CC76-extrapolation"
computation by also enforcing those constraints in \p cs that are
satisfied by all the points of \p *this.
\param y
A box that <EM>must</EM> be contained in \p *this.
\param cs
The system of constraints used to improve the widened box.
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this, \p y and \p cs are dimension-incompatible or
if \p cs contains a strict inequality.
*/
void limited_CC76_extrapolation_assign(const Box& y,
const Constraint_System& cs,
unsigned* tp = 0);
/*! \brief
Assigns to \p *this the result of restoring in \p y the constraints
of \p *this that were lost by
\ref CC76_extrapolation "CC76-extrapolation" applications.
\param y
A Box that <EM>must</EM> contain \p *this.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
\note
As was the case for widening operators, the argument \p y is meant to
denote the value computed in the previous iteration step, whereas
\p *this denotes the value computed in the current iteration step
(in the <EM>decreasing</EM> iteration sequence). Hence, the call
<CODE>x.CC76_narrowing_assign(y)</CODE> will assign to \p x
the result of the computation \f$\mathtt{y} \Delta \mathtt{x}\f$.
*/
template <typename T>
typename Enable_If<Is_Same<T, Box>::value
&& Is_Same_Or_Derived<Interval_Base, ITV>::value,
void>::type
CC76_narrowing_assign(const T& y);
//@} Space-Dimension Preserving Member Functions that May Modify [...]
//! \name Member Functions that May Modify the Dimension of the Vector Space
//@{
//! Adds \p m new dimensions and embeds the old box into the new space.
/*!
\param m
The number of dimensions to add.
The new dimensions will be those having the highest indexes in the new
box, which is defined by a system of interval constraints in which the
variables running through the new dimensions are unconstrained.
For instance, when starting from the box \f$\cB \sseq \Rset^2\f$
and adding a third dimension, the result will be the box
\f[
\bigl\{\,
(x, y, z)^\transpose \in \Rset^3
\bigm|
(x, y)^\transpose \in \cB
\,\bigr\}.
\f]
*/
void add_space_dimensions_and_embed(dimension_type m);
/*! \brief
Adds \p m new dimensions to the box and does not embed it in
the new vector space.
\param m
The number of dimensions to add.
The new dimensions will be those having the highest indexes in the
new box, which is defined by a system of bounded differences in
which the variables running through the new dimensions are all
constrained to be equal to 0.
For instance, when starting from the box \f$\cB \sseq \Rset^2\f$
and adding a third dimension, the result will be the box
\f[
\bigl\{\,
(x, y, 0)^\transpose \in \Rset^3
\bigm|
(x, y)^\transpose \in \cB
\,\bigr\}.
\f]
*/
void add_space_dimensions_and_project(dimension_type m);
/*! \brief
Seeing a box as a set of tuples (its points),
assigns to \p *this all the tuples that can be obtained by concatenating,
in the order given, a tuple of \p *this with a tuple of \p y.
Let \f$B \sseq \Rset^n\f$ and \f$D \sseq \Rset^m\f$ be the boxes
corresponding, on entry, to \p *this and \p y, respectively.
Upon successful completion, \p *this will represent the box
\f$R \sseq \Rset^{n+m}\f$ such that
\f[
R \defeq
\Bigl\{\,
(x_1, \ldots, x_n, y_1, \ldots, y_m)^\transpose
\Bigm|
(x_1, \ldots, x_n)^\transpose \in B,
(y_1, \ldots, y_m)^\transpose \in D
\,\Bigl\}.
\f]
Another way of seeing it is as follows: first increases the space
dimension of \p *this by adding \p y.space_dimension() new
dimensions; then adds to the system of constraints of \p *this a
renamed-apart version of the constraints of \p y.
*/
void concatenate_assign(const Box& y);
//! Removes all the specified dimensions.
/*!
\param vars
The set of Variable objects corresponding to the dimensions to be removed.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with one of the Variable
objects contained in \p vars.
*/
void remove_space_dimensions(const Variables_Set& vars);
/*! \brief
Removes the higher dimensions so that the resulting space
will have dimension \p new_dimension.
\exception std::invalid_argument
Thrown if \p new_dimension is greater than the space dimension
of \p *this.
*/
void remove_higher_space_dimensions(dimension_type new_dimension);
/*! \brief
Remaps the dimensions of the vector space according to
a \ref Mapping_the_Dimensions_of_the_Vector_Space "partial function".
\param pfunc
The partial function specifying the destiny of each dimension.
The template type parameter Partial_Function must provide
the following methods.
\code
bool has_empty_codomain() const
\endcode
returns <CODE>true</CODE> if and only if the represented partial
function has an empty co-domain (i.e., it is always undefined).
The <CODE>has_empty_codomain()</CODE> method will always be called
before the methods below. However, if
<CODE>has_empty_codomain()</CODE> returns <CODE>true</CODE>, none
of the functions below will be called.
\code
dimension_type max_in_codomain() const
\endcode
returns the maximum value that belongs to the co-domain
of the partial function.
\code
bool maps(dimension_type i, dimension_type& j) const
\endcode
Let \f$f\f$ be the represented function and \f$k\f$ be the value
of \p i. If \f$f\f$ is defined in \f$k\f$, then \f$f(k)\f$ is
assigned to \p j and <CODE>true</CODE> is returned.
If \f$f\f$ is undefined in \f$k\f$, then <CODE>false</CODE> is
returned.
The result is undefined if \p pfunc does not encode a partial
function with the properties described in the
\ref Mapping_the_Dimensions_of_the_Vector_Space
"specification of the mapping operator".
*/
template <typename Partial_Function>
void map_space_dimensions(const Partial_Function& pfunc);
//! Creates \p m copies of the space dimension corresponding to \p var.
/*!
\param var
The variable corresponding to the space dimension to be replicated;
\param m
The number of replicas to be created.
\exception std::invalid_argument
Thrown if \p var does not correspond to a dimension of the vector space.
\exception std::length_error
Thrown if adding \p m new space dimensions would cause the
vector space to exceed dimension <CODE>max_space_dimension()</CODE>.
If \p *this has space dimension \f$n\f$, with \f$n > 0\f$,
and <CODE>var</CODE> has space dimension \f$k \leq n\f$,
then the \f$k\f$-th space dimension is
\ref expand_space_dimension "expanded" to \p m new space dimensions
\f$n\f$, \f$n+1\f$, \f$\dots\f$, \f$n+m-1\f$.
*/
void expand_space_dimension(Variable var, dimension_type m);
//! Folds the space dimensions in \p vars into \p dest.
/*!
\param vars
The set of Variable objects corresponding to the space dimensions
to be folded;
\param dest
The variable corresponding to the space dimension that is the
destination of the folding operation.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p dest or with
one of the Variable objects contained in \p vars.
Also thrown if \p dest is contained in \p vars.
If \p *this has space dimension \f$n\f$, with \f$n > 0\f$,
<CODE>dest</CODE> has space dimension \f$k \leq n\f$,
\p vars is a set of variables whose maximum space dimension
is also less than or equal to \f$n\f$, and \p dest is not a member
of \p vars, then the space dimensions corresponding to
variables in \p vars are \ref fold_space_dimensions "folded"
into the \f$k\f$-th space dimension.
*/
void fold_space_dimensions(const Variables_Set& vars, Variable dest);
//@} // Member Functions that May Modify the Dimension of the Vector Space
/*! \brief
Returns a reference the interval that bounds \p var.
\exception std::invalid_argument
Thrown if \p var is not a space dimension of \p *this.
*/
const ITV& get_interval(Variable var) const;
/*! \brief
Sets to \p i the interval that bounds \p var.
\exception std::invalid_argument
Thrown if \p var is not a space dimension of \p *this.
*/
void set_interval(Variable var, const ITV& i);
/*! \brief
If the space dimension of \p var is unbounded below, return
<CODE>false</CODE>. Otherwise return <CODE>true</CODE> and set
\p n, \p d and \p closed accordingly.
\note
It is assumed that <CODE>*this</CODE> is a non-empty box
having space dimension greater than or equal to that of \p var.
An undefined behavior is obtained if this assumption is not met.
\if Include_Implementation_Details
To be more precise, if <CODE>*this</CODE> is an <EM>empty</EM> box
(having space dimension greater than or equal to that of \p var)
such that <CODE>!marked_empty()</CODE> holds, then the method can be
called without incurring in undefined behavior: it will return
<EM>unspecified</EM> boundary values that, if queried systematically
on all space dimensions, will encode the box emptiness.
\endif
Let \f$I\f$ be the interval corresponding to variable \p var
in the non-empty box <CODE>*this</CODE>.
If \f$I\f$ is not bounded from below, simply return <CODE>false</CODE>
(leaving all other parameters unchanged).
Otherwise, set \p n, \p d and \p closed as follows:
- \p n and \p d are assigned the integers \f$n\f$ and \f$d\f$ such
that the fraction \f$n/d\f$ corresponds to the greatest lower bound
of \f$I\f$. The fraction \f$n/d\f$ is in canonical form, meaning
that \f$n\f$ and \f$d\f$ have no common factors, \f$d\f$ is positive,
and if \f$n\f$ is zero then \f$d\f$ is one;
- \p closed is set to <CODE>true</CODE> if and only if the lower
boundary of \f$I\f$ is closed (i.e., it is included in the interval).
*/
bool has_lower_bound(Variable var,
Coefficient& n, Coefficient& d, bool& closed) const;
/*! \brief
If the space dimension of \p var is unbounded above, return
<CODE>false</CODE>. Otherwise return <CODE>true</CODE> and set
\p n, \p d and \p closed accordingly.
\note
It is assumed that <CODE>*this</CODE> is a non-empty box
having space dimension greater than or equal to that of \p var.
An undefined behavior is obtained if this assumption is not met.
\if Include_Implementation_Details
To be more precise, if <CODE>*this</CODE> is an <EM>empty</EM> box
(having space dimension greater than or equal to that of \p var)
such that <CODE>!marked_empty()</CODE> holds, then the method can be
called without incurring in undefined behavior: it will return
<EM>unspecified</EM> boundary values that, if queried systematically
on all space dimensions, will encode the box emptiness.
\endif
Let \f$I\f$ be the interval corresponding to variable \p var
in the non-empty box <CODE>*this</CODE>.
If \f$I\f$ is not bounded from above, simply return <CODE>false</CODE>
(leaving all other parameters unchanged).
Otherwise, set \p n, \p d and \p closed as follows:
- \p n and \p d are assigned the integers \f$n\f$ and \f$d\f$ such
that the fraction \f$n/d\f$ corresponds to the least upper bound
of \f$I\f$. The fraction \f$n/d\f$ is in canonical form, meaning
that \f$n\f$ and \f$d\f$ have no common factors, \f$d\f$ is positive,
and if \f$n\f$ is zero then \f$d\f$ is one;
- \p closed is set to <CODE>true</CODE> if and only if the upper
boundary of \f$I\f$ is closed (i.e., it is included in the interval).
*/
bool has_upper_bound(Variable var,
Coefficient& n, Coefficient& d, bool& closed) const;
//! Returns a system of constraints defining \p *this.
Constraint_System constraints() const;
//! Returns a minimized system of constraints defining \p *this.
Constraint_System minimized_constraints() const;
//! Returns a system of congruences approximating \p *this.
Congruence_System congruences() const;
//! Returns a minimized system of congruences approximating \p *this.
Congruence_System minimized_congruences() const;
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
/*! \brief
Returns a 32-bit hash code for \p *this.
If <CODE>x</CODE> and <CODE>y</CODE> are such that <CODE>x == y</CODE>,
then <CODE>x.hash_code() == y.hash_code()</CODE>.
*/
int32_t hash_code() const;
PPL_OUTPUT_DECLARATIONS
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool ascii_load(std::istream& s);
private:
template <typename Other_ITV>
friend class Parma_Polyhedra_Library::Box;
friend bool
operator==<ITV>(const Box<ITV>& x, const Box<ITV>& y);
friend std::ostream&
Parma_Polyhedra_Library
::IO_Operators::operator<<<>(std::ostream& s, const Box<ITV>& box);
template <typename Specialization, typename Temp, typename To, typename I>
friend bool Parma_Polyhedra_Library::l_m_distance_assign
(Checked_Number<To, Extended_Number_Policy>& r,
const Box<I>& x, const Box<I>& y, const Rounding_Dir dir,
Temp& tmp0, Temp& tmp1, Temp& tmp2);
//! The type of sequence used to implement the box.
typedef std::vector<ITV> Sequence;
/*! \brief
The type of intervals used by inner computations when trying to limit
the cumulative effect of approximation errors.
*/
typedef ITV Tmp_Interval_Type;
//! A sequence of intervals, one for each dimension of the vector space.
Sequence seq;
#define PPL_IN_Box_CLASS
/* Automatically generated from PPL source file ../src/Box_Status_idefs.hh line 1. */
/* Box<ITV>::Status class declaration.
*/
#ifndef PPL_IN_Box_CLASS
#error "Do not include Box_Status_idefs.hh directly; use Box_defs.hh instead"
#endif
//! A conjunctive assertion about a Box<ITV> object.
/*! \ingroup PPL_CXX_interface
The assertions supported are:
- <EM>empty up-to-date</EM>: the empty flag is meaningful;
- <EM>empty</EM>: the box is the empty set.
- <EM>universe</EM>: the box is universe \f$n\f$-dimensional vector space
\f$\Rset^n\f$.
Not all the conjunctions of these elementary assertions constitute
a legal Status. In fact:
- <EM>empty up-to-date</EM> and <EM>empty</EM> excludes <EM>universe</EM>.
*/
class Status;
class Status {
public:
//! By default Status is the empty set of assertion.
Status();
//! Ordinary copy constructor.
Status(const Status& y);
//! Copy constructor from a box of different type.
template <typename Other_ITV>
Status(const typename Box<Other_ITV>::Status& y);
//! \name Test, remove or add an individual assertion from the conjunction.
//@{
bool test_empty_up_to_date() const;
void reset_empty_up_to_date();
void set_empty_up_to_date();
bool test_empty() const;
void reset_empty();
void set_empty();
bool test_universe() const;
void reset_universe();
void set_universe();
//@}
//! Checks if all the invariants are satisfied.
bool OK() const;
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
private:
//! Status is implemented by means of a finite bitset.
typedef unsigned int flags_t;
//! \name Bit-masks for the individual assertions.
//@{
static const flags_t NONE = 0U;
static const flags_t EMPTY_UP_TO_DATE = 1U << 0;
static const flags_t EMPTY = 1U << 1;
static const flags_t UNIVERSE = 1U << 2;
//@}
//! This holds the current bitset.
flags_t flags;
//! Construct from a bit-mask.
Status(flags_t mask);
//! Check whether <EM>all</EM> bits in \p mask are set.
bool test_all(flags_t mask) const;
//! Check whether <EM>at least one</EM> bit in \p mask is set.
bool test_any(flags_t mask) const;
//! Set the bits in \p mask.
void set(flags_t mask);
//! Reset the bits in \p mask.
void reset(flags_t mask);
};
/* Automatically generated from PPL source file ../src/Box_defs.hh line 1768. */
#undef PPL_IN_Box_CLASS
//! The status flags to keep track of the internal state.
Status status;
/*! \brief
Returns <CODE>true</CODE> if and only if the box is known to be empty.
The return value <CODE>false</CODE> does not necessarily
implies that \p *this is non-empty.
*/
bool marked_empty() const;
public:
//! Causes the box to become empty, i.e., to represent the empty set.
void set_empty();
private:
//! Marks \p *this as definitely not empty.
void set_nonempty();
//! Asserts the validity of the empty flag of \p *this.
void set_empty_up_to_date();
//! Invalidates empty flag of \p *this.
void reset_empty_up_to_date();
/*! \brief
Checks the hard way whether \p *this is an empty box:
returns <CODE>true</CODE> if and only if it is so.
*/
bool check_empty() const;
/*! \brief
Returns a reference the interval that bounds
the box on the <CODE>k</CODE>-th space dimension.
*/
const ITV& operator[](dimension_type k) const;
/*! \brief
WRITE ME.
*/
static I_Result
refine_interval_no_check(ITV& itv,
Constraint::Type type,
Coefficient_traits::const_reference numer,
Coefficient_traits::const_reference denom);
/*! \brief
WRITE ME.
*/
void
add_interval_constraint_no_check(dimension_type var_id,
Constraint::Type type,
Coefficient_traits::const_reference numer,
Coefficient_traits::const_reference denom);
/*! \brief
WRITE ME.
*/
void add_constraint_no_check(const Constraint& c);
/*! \brief
WRITE ME.
*/
void add_constraints_no_check(const Constraint_System& cs);
/*! \brief
WRITE ME.
*/
void add_congruence_no_check(const Congruence& cg);
/*! \brief
WRITE ME.
*/
void add_congruences_no_check(const Congruence_System& cgs);
/*! \brief
Uses the constraint \p c to refine \p *this.
\param c
The constraint to be used for the refinement.
\warning
If \p c and \p *this are dimension-incompatible,
the behavior is undefined.
*/
void refine_no_check(const Constraint& c);
/*! \brief
Uses the constraints in \p cs to refine \p *this.
\param cs
The constraints to be used for the refinement.
To avoid termination problems, each constraint in \p cs
will be used for a single refinement step.
\warning
If \p cs and \p *this are dimension-incompatible,
the behavior is undefined.
*/
void refine_no_check(const Constraint_System& cs);
/*! \brief
Uses the congruence \p cg to refine \p *this.
\param cg
The congruence to be added.
Nontrivial proper congruences are ignored.
\warning
If \p cg and \p *this are dimension-incompatible,
the behavior is undefined.
*/
void refine_no_check(const Congruence& cg);
/*! \brief
Uses the congruences in \p cgs to refine \p *this.
\param cgs
The congruences to be added.
Nontrivial proper congruences are ignored.
\warning
If \p cgs and \p *this are dimension-incompatible,
the behavior is undefined.
*/
void refine_no_check(const Congruence_System& cgs);
/*! \brief
Propagates the constraint \p c to refine \p *this.
\param c
The constraint to be propagated.
\warning
If \p c and \p *this are dimension-incompatible,
the behavior is undefined.
\warning
This method may lead to non-termination.
\if Include_Implementation_Details
For any expression \f$e\f$, we denote by
\f$\left\uparrow e \right\uparrow\f$ (resp., \f$\left\downarrow e
\right\downarrow\f$) the result of any computation that is
guaranteed to yield an upper (resp., lower) approximation of
\f$e\f$. So there exists \f$\epsilon \in \Rset\f$ with
\f$\epsilon \geq 0\f$ such that
\f$\left\uparrow e \right\uparrow = e + \epsilon\f$.
If \f$\epsilon = 0\f$ we say that the computation of
\f$\left\uparrow e \right\uparrow\f$ is <EM>exact</EM>;
we say it is <EM>inexact</EM> otherwise.
Similarly for \f$\left\downarrow e \right\downarrow\f$.
Consider a constraint of the general form
\f[
z + \sum_{i \in I}{a_ix_i} \relsym 0,
\f]
where \f$z \in \Zset\f$, \f$I\f$ is a set of indices,
\f$a_i \in \Zset\f$ with \f$a_i \neq 0\f$ for each \f$i \in I\f$, and
\f$\mathord{\relsym} \in \{ \mathord{\geq}, \mathord{>}, \mathord{=} \}\f$.
The set \f$I\f$ is subdivided into the disjoint sets \f$P\f$ and \f$N\f$
such that, for each \f$i \in I\f$, \f$a_i > 0\f$ if \f$i \in P\f$ and
\f$a_i < 0\f$ if \f$i \in N\f$.
Suppose that, for each \f$i \in P \union N\f$ a variation interval
\f$\chi_i \sseq \Rset\f$ is known for \f$x_i\f$ and that the infimum
and the supremum of \f$\chi_i\f$ are denoted, respectively,
by \f$\chi_i^\mathrm{l}\f$ and \f$\chi_i^\mathrm{u}\f$, where
\f$\chi_i^\mathrm{l}, \chi_i^\mathrm{u} \in \Rset \union \{ -\infty, +\infty \}\f$.
For each \f$k \in P\f$, we have
\f[
x_k
\relsym
\frac{1}{a_k}
\Biggl(
- z
- \sum_{i \in N}{a_ix_i}
- \sum_{\genfrac{}{}{0pt}{}
{\scriptstyle i \in P}
{\scriptstyle i \neq k}}{a_ix_i}
\Biggr).
\f]
Thus, if \f$\chi_i^\mathrm{l} \in \Rset\f$ for each \f$i \in N\f$ and
\f$\chi_i^\mathrm{u} \in \Rset\f$ for each \f$i \in P \setdiff \{ k \}\f$,
we have
\f[
x_k
\geq
\Biggl\downarrow
\frac{1}{a_k}
\Biggl(
- z
- \sum_{i \in N}{a_i\chi_i^\mathrm{l}}
- \sum_{\genfrac{}{}{0pt}{}
{\scriptstyle i \in P}
{\scriptstyle i \neq k}}{a_i\chi_i^\mathrm{u}}
\Biggr)
\Biggr\downarrow
\f]
and, if \f$\mathord{\relsym} \in \{ \mathord{=} \}\f$,
\f$\chi_i^\mathrm{u} \in \Rset\f$ for each \f$i \in N\f$ and
\f$\chi_i^\mathrm{l} \in \Rset\f$ for each \f$P \setdiff \{ k \}\f$,
\f[
x_k
\leq
\Biggl\uparrow
\frac{1}{a_k}
\Biggl(
- z
- \sum_{i \in N}{a_i\chi_i^\mathrm{u}}
- \sum_{\genfrac{}{}{0pt}{}
{\scriptstyle i \in P}
{\scriptstyle i \neq k}}{a_i\chi_i^\mathrm{l}}
\Biggr)
\Biggl\uparrow.
\f]
In the first inequality, the relation is strict if
\f$\mathord{\relsym} \in \{ \mathord{>} \}\f$, or if
\f$\chi_i^\mathrm{l} \notin \chi_i\f$ for some \f$i \in N\f$, or if
\f$\chi_i^\mathrm{u} \notin \chi_i\f$ for some
\f$i \in P \setdiff \{ k \}\f$, or if the computation is inexact.
In the second inequality, the relation is strict if
\f$\chi_i^\mathrm{u} \notin \chi_i\f$ for some \f$i \in N\f$, or if
\f$\chi_i^\mathrm{l} \notin \chi_i\f$ for some
\f$i \in P \setdiff \{ k \}\f$, or if the computation is inexact.
For each \f$k \in N\f$, we have
\f[
\frac{1}{a_k}
\Biggl(
- z
- \sum_{\genfrac{}{}{0pt}{}
{\scriptstyle i \in N}
{\scriptstyle i \neq k}}{a_ix_i}
- \sum_{i \in P}{a_ix_i}
\Biggr)
\relsym
x_k.
\f]
Thus, if
\f$\chi_i^\mathrm{l} \in \Rset\f$
for each \f$i \in N \setdiff \{ k \}\f$ and
\f$\chi_i^\mathrm{u} \in \Rset\f$ for each \f$i \in P\f$,
we have
\f[
\Biggl\uparrow
\frac{1}{a_k}
\Biggl(
- z
- \sum_{\genfrac{}{}{0pt}{}
{\scriptstyle i \in N}
{\scriptstyle i \neq k}}{a_i\chi_i^\mathrm{l}}
- \sum_{i \in P}{a_i\chi_i^\mathrm{u}}
\Biggr)
\Biggl\uparrow
\geq
x_k
\f]
and, if \f$\mathord{\relsym} \in \{ \mathord{=} \}\f$,
\f$\chi_i^\mathrm{u} \in \Rset\f$ for each \f$i \in N \setdiff \{ k \}\f$
and \f$\chi_i^\mathrm{l} \in \Rset\f$ for each \f$i \in P\f$,
\f[
\Biggl\downarrow
\frac{1}{a_k}
\Biggl(
- z
- \sum_{\genfrac{}{}{0pt}{}
{\scriptstyle i \in N}
{\scriptstyle i \neq k}}{a_i\chi_i^\mathrm{u}}
- \sum_{i \in P}{a_i\chi_i^\mathrm{l}}
\Biggr)
\Biggl\downarrow
\leq
x_k.
\f]
In the first inequality, the relation is strict if
\f$\mathord{\relsym} \in \{ \mathord{>} \}\f$, or if
\f$\chi_i^\mathrm{u} \notin \chi_i\f$ for some \f$i \in P\f$, or if
\f$\chi_i^\mathrm{l} \notin \chi_i\f$ for some
\f$i \in N \setdiff \{ k \}\f$, or if the computation is inexact.
In the second inequality, the relation is strict if
\f$\chi_i^\mathrm{l} \notin \chi_i\f$ for some \f$i \in P\f$, or if
\f$\chi_i^\mathrm{u} \notin \chi_i\f$ for some
\f$i \in N \setdiff \{ k \}\f$, or if the computation is inexact.
\endif
*/
void propagate_constraint_no_check(const Constraint& c);
/*! \brief
Propagates the constraints in \p cs to refine \p *this.
\param cs
The constraints to be propagated.
\param max_iterations
The maximum number of propagation steps for each constraint in \p cs.
If zero, the number of propagation steps will be unbounded, possibly
resulting in an infinite loop.
\warning
If \p cs and \p *this are dimension-incompatible,
the behavior is undefined.
\warning
This method may lead to non-termination if \p max_iterations is 0.
*/
void propagate_constraints_no_check(const Constraint_System& cs,
dimension_type max_iterations);
//! Checks if and how \p expr is bounded in \p *this.
/*!
Returns <CODE>true</CODE> if and only if \p from_above is
<CODE>true</CODE> and \p expr is bounded from above in \p *this,
or \p from_above is <CODE>false</CODE> and \p expr is bounded
from below in \p *this.
\param expr
The linear expression to test;
\param from_above
<CODE>true</CODE> if and only if the boundedness of interest is
"from above".
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds(const Linear_Expression& expr, bool from_above) const;
//! Maximizes or minimizes \p expr subject to \p *this.
/*!
\param expr
The linear expression to be maximized or minimized subject to \p *this;
\param maximize
<CODE>true</CODE> if maximization is what is wanted;
\param ext_n
The numerator of the extremum value;
\param ext_d
The denominator of the extremum value;
\param included
<CODE>true</CODE> if and only if the extremum of \p expr can
actually be reached in \p *this;
\param g
When maximization or minimization succeeds, will be assigned
a point or closure point where \p expr reaches the
corresponding extremum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded in the appropriate
direction, <CODE>false</CODE> is returned and \p ext_n, \p ext_d,
\p included and \p g are left untouched.
*/
bool max_min(const Linear_Expression& expr,
bool maximize,
Coefficient& ext_n, Coefficient& ext_d, bool& included,
Generator& g) const;
//! Maximizes or minimizes \p expr subject to \p *this.
/*!
\param expr
The linear expression to be maximized or minimized subject to \p *this;
\param maximize
<CODE>true</CODE> if maximization is what is wanted;
\param ext_n
The numerator of the extremum value;
\param ext_d
The denominator of the extremum value;
\param included
<CODE>true</CODE> if and only if the extremum of \p expr can
actually be reached in \p * this;
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded in the appropriate
direction, <CODE>false</CODE> is returned and \p ext_n, \p ext_d,
\p included and \p point are left untouched.
*/
bool max_min(const Linear_Expression& expr,
bool maximize,
Coefficient& ext_n, Coefficient& ext_d, bool& included) const;
/*! \brief
Adds to \p limiting_box the interval constraints in \p cs
that are satisfied by \p *this.
*/
void get_limiting_box(const Constraint_System& cs,
Box& limiting_box) const;
//! \name Exception Throwers
//@{
void throw_dimension_incompatible(const char* method,
const Box& y) const;
void throw_dimension_incompatible(const char* method,
dimension_type required_dim) const;
void throw_dimension_incompatible(const char* method,
const Constraint& c) const;
void throw_dimension_incompatible(const char* method,
const Congruence& cg) const;
void throw_dimension_incompatible(const char* method,
const Constraint_System& cs) const;
void throw_dimension_incompatible(const char* method,
const Congruence_System& cgs) const;
void throw_dimension_incompatible(const char* method,
const Generator& g) const;
void throw_dimension_incompatible(const char* method,
const char* le_name,
const Linear_Expression& le) const;
template <typename C>
void throw_dimension_incompatible(const char* method,
const char* lf_name,
const Linear_Form<C>& lf) const;
static void throw_constraint_incompatible(const char* method);
static void throw_expression_too_complex(const char* method,
const Linear_Expression& le);
static void throw_invalid_argument(const char* method, const char* reason);
//@} // Exception Throwers
};
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Returns the relations holding between an interval and
an interval constraint.
\param i
The interval;
\param constraint_type
The constraint type;
\param numer
The numerator of the constraint bound;
\param denom
The denominator of the constraint bound
The interval constraint has the form
<CODE>denom * Variable(0) relsym numer</CODE>
where relsym is <CODE>==</CODE>, <CODE>></CODE> or <CODE>>=</CODE>
depending on the <CODE>constraint_type</CODE>.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename ITV>
Poly_Con_Relation
interval_relation(const ITV& i,
const Constraint::Type constraint_type,
Coefficient_traits::const_reference numer,
Coefficient_traits::const_reference denom = 1);
class Box_Helpers {
public:
// This is declared here so that Linear_Expression needs to be friend of
// Box_Helpers only, and doesn't need to be friend of this, too.
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Decodes the constraint \p c as an interval constraint.
/*! \relates Box
\return
<CODE>true</CODE> if the constraint \p c is an
\ref intervals "interval constraint";
<CODE>false</CODE> otherwise.
\param c
The constraint to be decoded.
\param c_num_vars
If <CODE>true</CODE> is returned, then it will be set to the number
of variables having a non-zero coefficient. The only legal values
will therefore be 0 and 1.
\param c_only_var
If <CODE>true</CODE> is returned and if \p c_num_vars is not set to 0,
then it will be set to the index of the only variable having
a non-zero coefficient in \p c.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
static bool extract_interval_constraint(const Constraint& c,
dimension_type& c_num_vars,
dimension_type& c_only_var);
// This is declared here so that Linear_Expression needs to be friend of
// Box_Helpers only, and doesn't need to be friend of this, too.
static bool extract_interval_congruence(const Congruence& cg,
dimension_type& cg_num_vars,
dimension_type& cg_only_var);
};
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Box_Status_inlines.hh line 1. */
/* Box<ITV>::Status class implementation: inline functions.
*/
#include <string>
namespace Parma_Polyhedra_Library {
template <typename ITV>
inline
Box<ITV>::Status::Status(flags_t mask)
: flags(mask) {
}
template <typename ITV>
inline
Box<ITV>::Status::Status(const Status& y)
: flags(y.flags) {
}
template <typename ITV>
template <typename Other_ITV>
inline
Box<ITV>::Status::Status(const typename Box<Other_ITV>::Status& y)
: flags(y.flags) {
}
template <typename ITV>
inline
Box<ITV>::Status::Status()
: flags(NONE) {
}
template <typename ITV>
inline bool
Box<ITV>::Status::test_all(flags_t mask) const {
return (flags & mask) == mask;
}
template <typename ITV>
inline bool
Box<ITV>::Status::test_any(flags_t mask) const {
return (flags & mask) != 0;
}
template <typename ITV>
inline void
Box<ITV>::Status::set(flags_t mask) {
flags |= mask;
}
template <typename ITV>
inline void
Box<ITV>::Status::reset(flags_t mask) {
flags &= ~mask;
}
template <typename ITV>
inline bool
Box<ITV>::Status::test_empty_up_to_date() const {
return test_any(EMPTY_UP_TO_DATE);
}
template <typename ITV>
inline void
Box<ITV>::Status::reset_empty_up_to_date() {
reset(EMPTY_UP_TO_DATE);
}
template <typename ITV>
inline void
Box<ITV>::Status::set_empty_up_to_date() {
set(EMPTY_UP_TO_DATE);
}
template <typename ITV>
inline bool
Box<ITV>::Status::test_empty() const {
return test_any(EMPTY);
}
template <typename ITV>
inline void
Box<ITV>::Status::reset_empty() {
reset(EMPTY);
}
template <typename ITV>
inline void
Box<ITV>::Status::set_empty() {
set(EMPTY);
}
template <typename ITV>
inline bool
Box<ITV>::Status::test_universe() const {
return test_any(UNIVERSE);
}
template <typename ITV>
inline void
Box<ITV>::Status::reset_universe() {
reset(UNIVERSE);
}
template <typename ITV>
inline void
Box<ITV>::Status::set_universe() {
set(UNIVERSE);
}
template <typename ITV>
bool
Box<ITV>::Status::OK() const {
if (test_empty_up_to_date()
&& test_empty()
&& test_universe()) {
#ifndef NDEBUG
std::cerr
<< "The status asserts emptiness and universality at the same time."
<< std::endl;
#endif
return false;
}
// Any other case is OK.
return true;
}
namespace Implementation {
namespace Boxes {
// These are the keywords that indicate the individual assertions.
const std::string empty_up_to_date = "EUP";
const std::string empty = "EM";
const std::string universe = "UN";
const char yes = '+';
const char no = '-';
const char separator = ' ';
/*! \relates Parma_Polyhedra_Library::Box::Status
Reads a keyword and its associated on/off flag from \p s.
Returns <CODE>true</CODE> if the operation is successful,
returns <CODE>false</CODE> otherwise.
When successful, \p positive is set to <CODE>true</CODE> if the flag
is on; it is set to <CODE>false</CODE> otherwise.
*/
inline bool
get_field(std::istream& s, const std::string& keyword, bool& positive) {
std::string str;
if (!(s >> str)
|| (str[0] != yes && str[0] != no)
|| str.substr(1) != keyword)
return false;
positive = (str[0] == yes);
return true;
}
} // namespace Boxes
} // namespace Implementation
template <typename ITV>
void
Box<ITV>::Status::ascii_dump(std::ostream& s) const {
using namespace Implementation::Boxes;
s << (test_empty_up_to_date() ? yes : no) << empty_up_to_date << separator
<< (test_empty() ? yes : no) << empty << separator
<< (test_universe() ? yes : no) << universe << separator;
}
PPL_OUTPUT_TEMPLATE_DEFINITIONS_ASCII_ONLY(ITV, Box<ITV>::Status)
template <typename ITV>
bool
Box<ITV>::Status::ascii_load(std::istream& s) {
using namespace Implementation::Boxes;
PPL_UNINITIALIZED(bool, positive);
if (!get_field(s, Implementation::Boxes::empty_up_to_date, positive))
return false;
if (positive)
set_empty_up_to_date();
if (!get_field(s, Implementation::Boxes::empty, positive))
return false;
if (positive)
set_empty();
if (!get_field(s, universe, positive))
return false;
if (positive)
set_universe();
else
reset_universe();
// Check invariants.
PPL_ASSERT(OK());
return true;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Box_inlines.hh line 1. */
/* Box class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Constraint_System_defs.hh line 1. */
/* Constraint_System class declaration.
*/
/* Automatically generated from PPL source file ../src/Constraint_System_defs.hh line 28. */
/* Automatically generated from PPL source file ../src/Linear_System_defs.hh line 1. */
/* Linear_System class declaration.
*/
/* Automatically generated from PPL source file ../src/Linear_System_defs.hh line 28. */
/* Automatically generated from PPL source file ../src/Swapping_Vector_defs.hh line 1. */
/* Swapping_Vector class declaration.
*/
/* Automatically generated from PPL source file ../src/Swapping_Vector_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename T>
class Swapping_Vector;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Swapping_Vector_defs.hh line 29. */
#include <vector>
/* Automatically generated from PPL source file ../src/Swapping_Vector_defs.hh line 32. */
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! A wrapper for std::vector that calls a swap() method instead of copying
//! elements, when possible.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
class Swapping_Vector {
public:
typedef typename std::vector<T>::const_iterator const_iterator;
typedef typename std::vector<T>::iterator iterator;
typedef typename std::vector<T>::size_type size_type;
Swapping_Vector();
explicit Swapping_Vector(dimension_type new_size);
Swapping_Vector(dimension_type new_size, const T& x);
void clear();
void reserve(dimension_type new_capacity);
void resize(dimension_type new_size);
void resize(dimension_type new_size, const T& x);
dimension_type size() const;
dimension_type capacity() const;
bool empty() const;
void m_swap(Swapping_Vector& v);
T& operator[](dimension_type i);
const T& operator[](dimension_type i) const;
T& back();
const T& back() const;
void push_back(const T& x);
void pop_back();
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
iterator erase(iterator itr);
iterator erase(iterator first, iterator last);
// This is defined only if T has an external_memory_in_bytes() method.
memory_size_type external_memory_in_bytes() const;
dimension_type max_num_rows();
private:
std::vector<T> impl;
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates Swapping_Vector */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
void swap(Swapping_Vector<T>& x, Swapping_Vector<T>& y);
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Swapping_Vector_inlines.hh line 1. */
/* Swapping_Vector class implementation: inline functions.
*/
namespace Parma_Polyhedra_Library {
template <typename T>
inline
Swapping_Vector<T>::Swapping_Vector()
: impl() {
}
template <typename T>
inline
Swapping_Vector<T>::Swapping_Vector(dimension_type i)
: impl() {
// NOTE: This is not the same as constructing impl as `impl(i)', because
// this implementation calls compute_capacity().
resize(i);
}
template <typename T>
inline
Swapping_Vector<T>::Swapping_Vector(dimension_type new_size, const T& x)
: impl() {
resize(new_size, x);
}
template <typename T>
inline void
Swapping_Vector<T>::clear() {
impl.clear();
}
template <typename T>
inline void
Swapping_Vector<T>::reserve(dimension_type new_capacity) {
if (impl.capacity() < new_capacity) {
// Reallocation will take place.
std::vector<T> new_impl;
new_impl.reserve(compute_capacity(new_capacity, max_num_rows()));
new_impl.resize(impl.size());
using std::swap;
// Steal the old elements.
for (dimension_type i = impl.size(); i-- > 0; )
swap(new_impl[i], impl[i]);
// Put the new vector into place.
swap(impl, new_impl);
}
}
template <typename T>
inline void
Swapping_Vector<T>::resize(dimension_type new_size) {
reserve(new_size);
impl.resize(new_size);
}
template <typename T>
inline void
Swapping_Vector<T>::resize(dimension_type new_size, const T& x) {
reserve(new_size);
impl.resize(new_size, x);
}
template <typename T>
inline dimension_type
Swapping_Vector<T>::size() const {
return impl.size();
}
template <typename T>
inline dimension_type
Swapping_Vector<T>::capacity() const {
return impl.capacity();
}
template <typename T>
inline bool
Swapping_Vector<T>::empty() const {
return impl.empty();
}
template <typename T>
inline void
Swapping_Vector<T>::m_swap(Swapping_Vector& v) {
using std::swap;
swap(impl, v.impl);
}
template <typename T>
inline T&
Swapping_Vector<T>::operator[](dimension_type i) {
return impl[i];
}
template <typename T>
inline const T&
Swapping_Vector<T>::operator[](dimension_type i) const {
return impl[i];
}
template <typename T>
inline T&
Swapping_Vector<T>::back() {
return impl.back();
}
template <typename T>
inline const T&
Swapping_Vector<T>::back() const {
return impl.back();
}
template <typename T>
inline void
Swapping_Vector<T>::push_back(const T& x) {
reserve(size() + 1);
impl.push_back(x);
}
template <typename T>
inline void
Swapping_Vector<T>::pop_back() {
impl.pop_back();
}
template <typename T>
inline memory_size_type
Swapping_Vector<T>::external_memory_in_bytes() const {
// Estimate the size of vector.
memory_size_type n = impl.capacity() * sizeof(T);
for (const_iterator i = begin(), i_end = end(); i != i_end; ++i)
n += i->external_memory_in_bytes();
return n;
}
template <typename T>
inline typename Swapping_Vector<T>::iterator
Swapping_Vector<T>::begin() {
return impl.begin();
}
template <typename T>
inline typename Swapping_Vector<T>::iterator
Swapping_Vector<T>::end() {
return impl.end();
}
template <typename T>
inline typename Swapping_Vector<T>::const_iterator
Swapping_Vector<T>::begin() const {
return impl.begin();
}
template <typename T>
inline typename Swapping_Vector<T>::const_iterator
Swapping_Vector<T>::end() const {
return impl.end();
}
template <typename T>
inline typename Swapping_Vector<T>::iterator
Swapping_Vector<T>::erase(iterator itr) {
PPL_ASSERT(itr >= begin());
PPL_ASSERT(itr < end());
const dimension_type old_i = itr - begin();
dimension_type i = old_i;
++i;
while (i != size())
swap(impl[i-1], impl[i]);
impl.pop_back();
return begin() + old_i;
}
template <typename T>
inline typename Swapping_Vector<T>::iterator
Swapping_Vector<T>::erase(iterator first, iterator last) {
PPL_ASSERT(begin() <= first);
PPL_ASSERT(first <= last);
PPL_ASSERT(last <= end());
const iterator old_first = first;
typedef typename std::iterator_traits<iterator>::difference_type diff_t;
const diff_t k = last - first;
const dimension_type n = static_cast<dimension_type>(end() - last);
using std::swap;
for (dimension_type i = 0; i < n; ++i, ++first)
swap(*first, *(first + k));
impl.erase(end() - k, end());
return old_first;
}
template <typename T>
inline dimension_type
Swapping_Vector<T>::max_num_rows() {
return impl.max_size();
}
template <typename T>
inline void
swap(Swapping_Vector<T>& vec1, Swapping_Vector<T>& vec2) {
vec1.m_swap(vec2);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Swapping_Vector_defs.hh line 97. */
/* Automatically generated from PPL source file ../src/Linear_System_defs.hh line 33. */
/* Automatically generated from PPL source file ../src/Bit_Row_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Bit_Row;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Bit_Matrix_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Bit_Matrix;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Linear_System_defs.hh line 39. */
// TODO: Check how much of this description is still true.
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! The base class for systems of constraints and generators.
/*! \ingroup PPL_CXX_interface
An object of this class represents either a constraint system
or a generator system. Each Linear_System object can be viewed
as a finite sequence of strong-normalized Row objects,
where each Row implements a constraint or a generator.
Linear systems are characterized by the matrix of coefficients,
also encoding the number, size and capacity of Row objects,
as well as a few additional information, including:
- the topological kind of (all) the rows;
- an indication of whether or not some of the rows in the Linear_System
are <EM>pending</EM>, meaning that they still have to undergo
an (unspecified) elaboration; if there are pending rows, then these
form a proper suffix of the overall sequence of rows;
- a Boolean flag that, when <CODE>true</CODE>, ensures that the
non-pending prefix of the sequence of rows is sorted.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Row>
class Parma_Polyhedra_Library::Linear_System {
public:
// NOTE: `iterator' is actually a const_iterator.
typedef typename Swapping_Vector<Row>::const_iterator iterator;
typedef typename Swapping_Vector<Row>::const_iterator const_iterator;
//! Builds an empty linear system with specified topology.
/*!
Rows size and capacity are initialized to \f$0\f$.
*/
Linear_System(Topology topol, Representation r);
//! Builds a system with specified topology and dimensions.
/*!
\param topol
The topology of the system that will be created;
\param space_dim
The number of space dimensions of the system that will be created.
\param r
The representation for system's rows.
Creates a \p n_rows \f$\times\f$ \p space_dim system whose
coefficients are all zero and with the given topology.
*/
Linear_System(Topology topol, dimension_type space_dim, Representation r);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! A tag class.
/*! \ingroup PPL_CXX_interface
Tag class to differentiate the Linear_System copy constructor that
copies pending rows as pending from the one that transforms
pending rows into non-pending ones.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
struct With_Pending {
};
//! Copy constructor: pending rows are transformed into non-pending ones.
Linear_System(const Linear_System& y);
//! Copy constructor with specified representation. Pending rows are
//! transformed into non-pending ones.
Linear_System(const Linear_System& y, Representation r);
//! Full copy constructor: pending rows are copied as pending.
Linear_System(const Linear_System& y, With_Pending);
//! Full copy constructor: pending rows are copied as pending.
Linear_System(const Linear_System& y, Representation r, With_Pending);
//! Assignment operator: pending rows are transformed into non-pending ones.
Linear_System& operator=(const Linear_System& y);
//! Full assignment operator: pending rows are copied as pending.
void assign_with_pending(const Linear_System& y);
//! Swaps \p *this with \p y.
void m_swap(Linear_System& y);
//! Returns the current representation of *this.
Representation representation() const;
//! Converts *this to the specified representation.
void set_representation(Representation r);
//! Returns the maximum space dimension a Linear_System can handle.
static dimension_type max_space_dimension();
//! Returns the space dimension of the rows in the system.
/*!
The computation of the space dimension correctly ignores
the column encoding the inhomogeneous terms of constraint
(resp., the divisors of generators);
if the system topology is <CODE>NOT_NECESSARILY_CLOSED</CODE>,
also the column of the \f$\epsilon\f$-dimension coefficients
will be ignored.
*/
dimension_type space_dimension() const;
//! Sets the space dimension of the rows in the system to \p space_dim .
void set_space_dimension(dimension_type space_dim);
//! Makes the system shrink by removing its \p n trailing rows.
void remove_trailing_rows(dimension_type n);
//! Makes the system shrink by removing its i-th row.
/*!
When \p keep_sorted is \p true and the system is sorted, sortedness will
be preserved, but this method costs O(n).
Otherwise, this method just swaps the i-th row with the last and then
removes it, so it costs O(1).
*/
void remove_row(dimension_type i, bool keep_sorted = false);
//! Makes the system shrink by removing the rows in [first,last).
/*!
When \p keep_sorted is \p true and the system is sorted, sortedness will
be preserved, but this method costs O(num_rows()).
Otherwise, this method just swaps the rows with the last ones and then
removes them, so it costs O(last - first).
*/
void remove_rows(dimension_type first, dimension_type last,
bool keep_sorted = false);
// TODO: Consider removing this.
//! Removes the specified rows. The row ordering of remaining rows is
//! preserved.
/*!
\param indexes specifies a list of row indexes.
It must be sorted.
*/
void remove_rows(const std::vector<dimension_type>& indexes);
// TODO: Consider making this private.
//! Removes all the specified dimensions from the system.
/*!
The space dimension of the variable with the highest space
dimension in \p vars must be at most the space dimension
of \p this.
*/
void remove_space_dimensions(const Variables_Set& vars);
//! Shift by \p n positions the coefficients of variables, starting from
//! the coefficient of \p v. This increases the space dimension by \p n.
void shift_space_dimensions(Variable v, dimension_type n);
// TODO: Consider making this private.
//! Permutes the space dimensions of the matrix.
/*
\param cycle
A vector representing a cycle of the permutation according to which the
space dimensions must be rearranged.
The \p cycle vector represents a cycle of a permutation of space
dimensions.
For example, the permutation
\f$ \{ x_1 \mapsto x_2, x_2 \mapsto x_3, x_3 \mapsto x_1 \}\f$ can be
represented by the vector containing \f$ x_1, x_2, x_3 \f$.
*/
void permute_space_dimensions(const std::vector<Variable>& cycle);
//! Swaps the coefficients of the variables \p v1 and \p v2 .
void swap_space_dimensions(Variable v1, Variable v2);
//! \name Subscript operators
//@{
//! Returns a const reference to the \p k-th row of the system.
const Row& operator[](dimension_type k) const;
//@} // Subscript operators
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
bool has_no_rows() const;
dimension_type num_rows() const;
//! Strongly normalizes the system.
void strong_normalize();
//! Sign-normalizes the system.
void sign_normalize();
//! \name Accessors
//@{
//! Returns the system topology.
Topology topology() const;
//! Returns the value of the sortedness flag.
bool is_sorted() const;
/*! \brief
Returns <CODE>true</CODE> if and only if
the system topology is <CODE>NECESSARILY_CLOSED</CODE>.
*/
bool is_necessarily_closed() const;
/*! \brief
Returns the number of rows in the system
that represent either lines or equalities.
*/
dimension_type num_lines_or_equalities() const;
//! Returns the index of the first pending row.
dimension_type first_pending_row() const;
//! Returns the number of rows that are in the pending part of the system.
dimension_type num_pending_rows() const;
//@} // Accessors
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is sorted,
without checking for duplicates.
*/
bool check_sorted() const;
//! Sets the system topology to \p t .
void set_topology(Topology t);
//! Sets the system topology to <CODE>NECESSARILY_CLOSED</CODE>.
void set_necessarily_closed();
//! Sets the system topology to <CODE>NOT_NECESSARILY_CLOSED</CODE>.
void set_not_necessarily_closed();
// TODO: Consider removing this, or making it private.
//! Marks the epsilon dimension as a standard dimension.
/*!
The system topology is changed to <CODE>NOT_NECESSARILY_CLOSED</CODE>, and
the number of space dimensions is increased by 1.
*/
void mark_as_necessarily_closed();
// TODO: Consider removing this, or making it private.
//! Marks the last dimension as the epsilon dimension.
/*!
The system topology is changed to <CODE>NECESSARILY_CLOSED</CODE>, and
the number of space dimensions is decreased by 1.
*/
void mark_as_not_necessarily_closed();
//! Sets the index to indicate that the system has no pending rows.
void unset_pending_rows();
//! Sets the index of the first pending row to \p i.
void set_index_first_pending_row(dimension_type i);
//! Sets the sortedness flag of the system to \p b.
void set_sorted(bool b);
//! Adds \p n rows and space dimensions to the system.
/*!
\param n
The number of rows and space dimensions to be added: must be strictly
positive.
Turns the system \f$M \in \Rset^r \times \Rset^c\f$ into
the system \f$N \in \Rset^{r+n} \times \Rset^{c+n}\f$
such that
\f$N = \bigl(\genfrac{}{}{0pt}{}{0}{M}\genfrac{}{}{0pt}{}{J}{o}\bigr)\f$,
where \f$J\f$ is the specular image
of the \f$n \times n\f$ identity matrix.
*/
void add_universe_rows_and_space_dimensions(dimension_type n);
/*! \brief
Adds a copy of \p r to the system,
automatically resizing the system or the row's copy, if needed.
*/
void insert(const Row& r);
/*! \brief
Adds a copy of the given row to the pending part of the system,
automatically resizing the system or the row, if needed.
*/
void insert_pending(const Row& r);
/*! \brief
Adds \p r to the system, stealing its contents and
automatically resizing the system or the row, if needed.
*/
void insert(Row& r, Recycle_Input);
/*! \brief
Adds the given row to the pending part of the system, stealing its
contents and automatically resizing the system or the row, if needed.
*/
void insert_pending(Row& r, Recycle_Input);
//! Adds to \p *this a copy of the rows of \p y.
/*!
It is assumed that \p *this has no pending rows.
*/
void insert(const Linear_System& y);
//! Adds a copy of the rows of `y' to the pending part of `*this'.
void insert_pending(const Linear_System& r);
//! Adds to \p *this a the rows of `y', stealing them from `y'.
/*!
It is assumed that \p *this has no pending rows.
*/
void insert(Linear_System& r, Recycle_Input);
//! Adds the rows of `y' to the pending part of `*this', stealing them from
//! `y'.
void insert_pending(Linear_System& r, Recycle_Input);
/*! \brief
Sorts the non-pending rows (in growing order) and eliminates
duplicated ones.
*/
void sort_rows();
/*! \brief
Sorts the rows (in growing order) form \p first_row to
\p last_row and eliminates duplicated ones.
*/
void sort_rows(dimension_type first_row, dimension_type last_row);
/*! \brief
Assigns to \p *this the result of merging its rows with
those of \p y, obtaining a sorted system.
Duplicated rows will occur only once in the result.
On entry, both systems are assumed to be sorted and have
no pending rows.
*/
void merge_rows_assign(const Linear_System& y);
/*! \brief
Sorts the pending rows and eliminates those that also occur
in the non-pending part of the system.
*/
void sort_pending_and_remove_duplicates();
/*! \brief
Sorts the system, removing duplicates, keeping the saturation
matrix consistent.
\param sat
Bit matrix with rows corresponding to the rows of \p *this.
*/
void sort_and_remove_with_sat(Bit_Matrix& sat);
//! Minimizes the subsystem of equations contained in \p *this.
/*!
This method works only on the equalities of the system:
the system is required to be partially sorted, so that
all the equalities are grouped at its top; it is assumed that
the number of equalities is exactly \p n_lines_or_equalities.
The method finds a minimal system for the equalities and
returns its rank, i.e., the number of linearly independent equalities.
The result is an upper triangular subsystem of equalities:
for each equality, the pivot is chosen starting from
the right-most space dimensions.
*/
dimension_type gauss(dimension_type n_lines_or_equalities);
/*! \brief
Back-substitutes the coefficients to reduce
the complexity of the system.
Takes an upper triangular system having \p n_lines_or_equalities rows.
For each row, starting from the one having the minimum number of
coefficients different from zero, computes the expression of an element
as a function of the remaining ones and then substitutes this expression
in all the other rows.
*/
void back_substitute(dimension_type n_lines_or_equalities);
/*! \brief
Applies Gaussian elimination and back-substitution so as to
simplify the linear system.
*/
void simplify();
//! Clears the system deallocating all its rows.
void clear();
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
Reads into a Linear_System object the information produced by the
output of ascii_dump(std::ostream&) const. The specialized methods
provided by Constraint_System and Generator_System take care of
properly reading the contents of the system.
*/
bool ascii_load(std::istream& s);
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
//! The vector that contains the rows.
/*!
\note This is public for convenience. Clients that modify if must preserve
the class invariant.
*/
Swapping_Vector<Row> rows;
//! Checks if all the invariants are satisfied.
bool OK() const;
private:
//! Makes the system shrink by removing its i-th row.
/*!
When \p keep_sorted is \p true and the system is sorted, sortedness will
be preserved, but this method costs O(n).
Otherwise, this method just swaps the i-th row with the last and then
removes it, so it costs O(1).
This method is for internal use, it does *not* assert OK() at the end,
so it can be used for invalid systems.
*/
void remove_row_no_ok(dimension_type i, bool keep_sorted = false);
/*! \brief
Adds \p r to the pending part of the system, stealing its contents and
automatically resizing the system or the row, if needed.
This method is for internal use, it does *not* assert OK() at the end,
so it can be used for invalid systems.
*/
void insert_pending_no_ok(Row& r, Recycle_Input);
/*! \brief
Adds \p r to the system, stealing its contents and
automatically resizing the system or the row, if needed.
This method is for internal use, it does *not* assert OK() at the end,
so it can be used for invalid systems.
*/
void insert_no_ok(Row& r, Recycle_Input);
//! Sets the space dimension of the rows in the system to \p space_dim .
/*!
This method is for internal use, it does *not* assert OK() at the end,
so it can be used for invalid systems.
*/
void set_space_dimension_no_ok(dimension_type space_dim);
//! Swaps the [first,last) row interval with the
//! [first + offset, last + offset) interval.
/*!
These intervals may not be disjunct.
Sorting of these intervals is *not* preserved.
Either both intervals contain only not-pending rows, or they both
contain pending rows.
*/
void swap_row_intervals(dimension_type first, dimension_type last,
dimension_type offset);
//! The space dimension of each row. All rows must have this number of
//! space dimensions.
dimension_type space_dimension_;
//! The topological kind of the rows in the system. All rows must have this
//! topology.
Topology row_topology;
//! The index of the first pending row.
dimension_type index_first_pending;
/*! \brief
<CODE>true</CODE> if rows are sorted in the ascending order as defined by
<CODE>bool compare(const Row&, const Row&)</CODE>.
If <CODE>false</CODE> may not be sorted.
*/
bool sorted;
Representation representation_;
//! Ordering predicate (used when implementing the sort algorithm).
struct Row_Less_Than {
bool operator()(const Row& x, const Row& y) const;
};
//! Comparison predicate (used when implementing the unique algorithm).
struct Unique_Compare {
Unique_Compare(const Swapping_Vector<Row>& cont,
dimension_type base = 0);
bool operator()(dimension_type i, dimension_type j) const;
const Swapping_Vector<Row>& container;
const dimension_type base_index;
};
friend class Polyhedron;
friend class Generator_System;
};
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Swaps \p x with \p y.
/*! \relates Linear_System */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Row>
void swap(Parma_Polyhedra_Library::Linear_System<Row>& x,
Parma_Polyhedra_Library::Linear_System<Row>& y);
} // namespace std
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x and \p y are identical.
/*! \relates Linear_System */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Row>
bool operator==(const Linear_System<Row>& x, const Linear_System<Row>& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x and \p y are different.
/*! \relates Linear_System */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Row>
bool operator!=(const Linear_System<Row>& x, const Linear_System<Row>& y);
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Linear_System_inlines.hh line 1. */
/* Linear_System class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Bit_Row_defs.hh line 1. */
/* Bit_Row class declaration.
*/
/* Automatically generated from PPL source file ../src/Bit_Row_defs.hh line 29. */
#include <iosfwd>
#include <gmpxx.h>
#include <vector>
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Swaps \p x with \p y.
/*! \relates Bit_Row */
void swap(Bit_Row& x, Bit_Row& y);
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Swaps objects referred by \p x and \p y.
/*! \relates Bit_Row */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
void
iter_swap(std::vector<Bit_Row>::iterator x,
std::vector<Bit_Row>::iterator y);
// Put them in the namespace here to declare them friends later.
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x and \p y are equal.
/*! \relates Bit_Row */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool operator==(const Bit_Row& x, const Bit_Row& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x and \p y are not equal.
/*! \relates Bit_Row */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool operator!=(const Bit_Row& x, const Bit_Row& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! The basic comparison function.
/*! \relates Bit_Row
Compares \p x with \p y starting from the least significant bits.
The ordering is total and has the following property: if \p x and \p y
are two rows seen as sets of naturals, if \p x is a strict subset
of \p y, then \p x comes before \p y.
Returns
- -1 if \p x comes before \p y in the ordering;
- 0 if \p x and \p y are equal;
- 1 if \p x comes after \p y in the ordering.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
int compare(const Bit_Row& x, const Bit_Row& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Set-theoretic inclusion test.
/*! \relates Bit_Row */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool subset_or_equal(const Bit_Row& x, const Bit_Row& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Set-theoretic inclusion test: sets \p strict_subset to a Boolean
indicating whether the inclusion is strict or not.
\relates Bit_Row
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool subset_or_equal(const Bit_Row& x, const Bit_Row& y,
bool& strict_subset);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Set-theoretic strict inclusion test.
/*! \relates Bit_Row */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool strict_subset(const Bit_Row& x, const Bit_Row& y);
} // namespace Parma_Polyhedra_Library
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! A row in a matrix of bits.
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
class Parma_Polyhedra_Library::Bit_Row {
public:
//! Default constructor.
Bit_Row();
//! Copy constructor.
Bit_Row(const Bit_Row& y);
//! Set-union constructor.
/*!
Constructs an object containing the set-union of \p y and \p z.
*/
Bit_Row(const Bit_Row& y, const Bit_Row& z);
//! Destructor.
~Bit_Row();
//! Assignment operator.
Bit_Row& operator=(const Bit_Row& y);
//! Swaps \p *this with \p y.
void m_swap(Bit_Row& y);
//! Returns the truth value corresponding to the bit in position \p k.
bool operator[](unsigned long k) const;
//! Sets the bit in position \p k.
void set(unsigned long k);
//! Sets bits up to position \p k (excluded).
void set_until(unsigned long k);
//! Clears the bit in position \p k.
void clear(unsigned long k);
//! Clears bits from position \p k (included) onward.
void clear_from(unsigned long k);
//! Clears all the bits of the row.
void clear();
//! Assigns to \p *this the set-theoretic union of \p x and \p y.
void union_assign(const Bit_Row& x, const Bit_Row& y);
//! Assigns to \p *this the set-theoretic intersection of \p x and \p y.
void intersection_assign(const Bit_Row& x, const Bit_Row& y);
//! Assigns to \p *this the set-theoretic difference of \p x and \p y.
void difference_assign(const Bit_Row& x, const Bit_Row& y);
friend int compare(const Bit_Row& x, const Bit_Row& y);
friend bool operator==(const Bit_Row& x, const Bit_Row& y);
friend bool operator!=(const Bit_Row& x, const Bit_Row& y);
friend bool subset_or_equal(const Bit_Row& x, const Bit_Row& y);
friend bool subset_or_equal(const Bit_Row& x, const Bit_Row& y,
bool& strict_subset);
friend bool strict_subset(const Bit_Row& x, const Bit_Row& y);
//! Returns the index of the first set bit or ULONG_MAX if no bit is set.
unsigned long first() const;
/*! \brief
Returns the index of the first set bit after \p position
or ULONG_MAX if no bit after \p position is set.
*/
unsigned long next(unsigned long position) const;
//! Returns the index of the last set bit or ULONG_MAX if no bit is set.
unsigned long last() const;
/*! \brief
Returns the index of the first set bit before \p position
or ULONG_MAX if no bits before \p position is set.
*/
unsigned long prev(unsigned long position) const;
//! Returns the number of set bits in the row.
unsigned long count_ones() const;
//! Returns <CODE>true</CODE> if no bit is set in the row.
bool empty() const;
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
//! Checks if all the invariants are satisfied
bool OK() const;
private:
//! Bit-vector representing the row.
mpz_t vec;
//! Assigns to \p *this the union of \p y and \p z.
/*!
The size of \p y must be be less than or equal to the size of \p z.
Upon entry, \p vec must have allocated enough space to contain the result.
*/
void union_helper(const Bit_Row& y, const Bit_Row& z);
};
/* Automatically generated from PPL source file ../src/Bit_Row_inlines.hh line 1. */
/* Bit_Row class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Bit_Row_inlines.hh line 30. */
// For the declaration of ffs(3).
#if defined(PPL_HAVE_STRINGS_H)
# include <strings.h>
#elif defined(PPL_HAVE_STRING_H)
# include <string.h>
#endif
#define PPL_BITS_PER_GMP_LIMB sizeof_to_bits(PPL_SIZEOF_MP_LIMB_T)
namespace Parma_Polyhedra_Library {
inline
Bit_Row::Bit_Row() {
mpz_init(vec);
}
inline
Bit_Row::Bit_Row(const Bit_Row& y) {
mpz_init_set(vec, y.vec);
}
inline
Bit_Row::Bit_Row(const Bit_Row& y, const Bit_Row& z) {
const mp_size_t y_size = y.vec->_mp_size;
PPL_ASSERT(y_size >= 0);
const mp_size_t z_size = z.vec->_mp_size;
PPL_ASSERT(z_size >= 0);
if (y_size < z_size) {
PPL_ASSERT(static_cast<unsigned long>(z_size)
<= C_Integer<unsigned long>::max / PPL_BITS_PER_GMP_LIMB);
mpz_init2(vec, static_cast<unsigned long>(z_size) * PPL_BITS_PER_GMP_LIMB);
union_helper(y, z);
}
else {
PPL_ASSERT(static_cast<unsigned long>(y_size)
<= C_Integer<unsigned long>::max / PPL_BITS_PER_GMP_LIMB);
mpz_init2(vec, static_cast<unsigned long>(y_size) * PPL_BITS_PER_GMP_LIMB);
union_helper(z, y);
}
}
inline
Bit_Row::~Bit_Row() {
mpz_clear(vec);
}
inline Bit_Row&
Bit_Row::operator=(const Bit_Row& y) {
mpz_set(vec, y.vec);
return *this;
}
inline void
Bit_Row::set(const unsigned long k) {
mpz_setbit(vec, k);
}
inline void
Bit_Row::clear(const unsigned long k) {
mpz_clrbit(vec, k);
}
inline void
Bit_Row::clear_from(const unsigned long k) {
mpz_tdiv_r_2exp(vec, vec, k);
}
inline unsigned long
Bit_Row::count_ones() const {
const mp_size_t x_size = vec->_mp_size;
PPL_ASSERT(x_size >= 0);
return (x_size == 0) ? 0 : mpn_popcount(vec->_mp_d, x_size);
}
inline bool
Bit_Row::empty() const {
return mpz_sgn(vec) == 0;
}
inline void
Bit_Row::m_swap(Bit_Row& y) {
mpz_swap(vec, y.vec);
}
inline void
Bit_Row::clear() {
mpz_set_ui(vec, 0UL);
}
inline memory_size_type
Bit_Row::external_memory_in_bytes() const {
return static_cast<memory_size_type>(vec[0]._mp_alloc) * PPL_SIZEOF_MP_LIMB_T;
}
inline memory_size_type
Bit_Row::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
inline void
Bit_Row::union_assign(const Bit_Row& x, const Bit_Row& y) {
const mp_size_t x_size = x.vec->_mp_size;
PPL_ASSERT(x_size >= 0);
const mp_size_t y_size = y.vec->_mp_size;
PPL_ASSERT(y_size >= 0);
if (x_size < y_size) {
PPL_ASSERT(static_cast<unsigned long>(y_size)
<= C_Integer<unsigned long>::max / PPL_BITS_PER_GMP_LIMB);
mpz_realloc2(vec, static_cast<unsigned long>(y_size) * PPL_BITS_PER_GMP_LIMB);
union_helper(x, y);
}
else {
PPL_ASSERT(static_cast<unsigned long>(x_size)
<= C_Integer<unsigned long>::max / PPL_BITS_PER_GMP_LIMB);
mpz_realloc2(vec, static_cast<unsigned long>(x_size) * PPL_BITS_PER_GMP_LIMB);
union_helper(y, x);
}
}
inline void
Bit_Row::intersection_assign(const Bit_Row& x, const Bit_Row& y) {
mpz_and(vec, x.vec, y.vec);
}
inline void
Bit_Row::difference_assign(const Bit_Row& x, const Bit_Row& y) {
PPL_DIRTY_TEMP(mpz_class, complement_y);
mpz_com(complement_y.get_mpz_t(), y.vec);
mpz_and(vec, x.vec, complement_y.get_mpz_t());
}
namespace Implementation {
/*! \brief
Assuming \p u is nonzero, returns the index of the first set bit in \p u.
*/
inline unsigned int
first_one(unsigned int u) {
return ctz(u);
}
/*! \brief
Assuming \p ul is nonzero, returns the index of the first set bit in
\p ul.
*/
inline unsigned int
first_one(unsigned long ul) {
return ctz(ul);
}
/*! \brief
Assuming \p ull is nonzero, returns the index of the first set bit in
\p ull.
*/
inline unsigned int
first_one(unsigned long long ull) {
return ctz(ull);
}
/*! \brief
Assuming \p u is nonzero, returns the index of the last set bit in \p u.
*/
inline unsigned int
last_one(unsigned int u) {
return static_cast<unsigned int>(sizeof_to_bits(sizeof(u)))
- 1U - clz(u);
}
/*! \brief
Assuming \p ul is nonzero, returns the index of the last set bit in
\p ul.
*/
inline unsigned int
last_one(unsigned long ul) {
return static_cast<unsigned int>(sizeof_to_bits(sizeof(ul)))
- 1U - clz(ul);
}
/*! \brief
Assuming \p ull is nonzero, returns the index of the last set bit in
\p ull.
*/
inline unsigned int
last_one(unsigned long long ull) {
return static_cast<unsigned int>(sizeof_to_bits(sizeof(ull)))
- 1U - clz(ull);
}
} // namespace Implementation
/*! \relates Bit_Row */
inline void
swap(Bit_Row& x, Bit_Row& y) {
x.m_swap(y);
}
/*! \relates Bit_Row */
inline void
iter_swap(std::vector<Bit_Row>::iterator x,
std::vector<Bit_Row>::iterator y) {
swap(*x, *y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Bit_Row_defs.hh line 213. */
/* Automatically generated from PPL source file ../src/Linear_System_inlines.hh line 29. */
#include <algorithm>
namespace Parma_Polyhedra_Library {
template <typename Row>
inline memory_size_type
Linear_System<Row>::external_memory_in_bytes() const {
return rows.external_memory_in_bytes();
}
template <typename Row>
inline memory_size_type
Linear_System<Row>::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
template <typename Row>
inline bool
Linear_System<Row>::is_sorted() const {
// The flag `sorted' does not really reflect the sortedness status
// of a system (if `sorted' evaluates to `false' nothing is known).
// This assertion is used to ensure that the system
// is actually sorted when `sorted' value is 'true'.
PPL_ASSERT(!sorted || check_sorted());
return sorted;
}
template <typename Row>
inline void
Linear_System<Row>::set_sorted(const bool b) {
sorted = b;
PPL_ASSERT(OK());
}
template <typename Row>
inline
Linear_System<Row>::Linear_System(Topology topol, Representation r)
: rows(),
space_dimension_(0),
row_topology(topol),
index_first_pending(0),
sorted(true),
representation_(r) {
PPL_ASSERT(OK());
}
template <typename Row>
inline
Linear_System<Row>::Linear_System(Topology topol,
dimension_type space_dim,
Representation r)
: rows(),
space_dimension_(0),
row_topology(topol),
index_first_pending(0),
sorted(true),
representation_(r) {
set_space_dimension(space_dim);
PPL_ASSERT(OK());
}
template <typename Row>
inline dimension_type
Linear_System<Row>::first_pending_row() const {
return index_first_pending;
}
template <typename Row>
inline dimension_type
Linear_System<Row>::num_pending_rows() const {
PPL_ASSERT(num_rows() >= first_pending_row());
return num_rows() - first_pending_row();
}
template <typename Row>
inline void
Linear_System<Row>::unset_pending_rows() {
index_first_pending = num_rows();
PPL_ASSERT(OK());
}
template <typename Row>
inline void
Linear_System<Row>::set_index_first_pending_row(const dimension_type i) {
index_first_pending = i;
PPL_ASSERT(OK());
}
template <typename Row>
inline
Linear_System<Row>::Linear_System(const Linear_System& y)
: rows(y.rows),
space_dimension_(y.space_dimension_),
row_topology(y.row_topology),
representation_(y.representation_) {
// Previously pending rows may violate sortedness.
sorted = (y.num_pending_rows() > 0) ? false : y.sorted;
unset_pending_rows();
PPL_ASSERT(OK());
}
template <typename Row>
inline
Linear_System<Row>::Linear_System(const Linear_System& y, Representation r)
: rows(),
space_dimension_(y.space_dimension_),
row_topology(y.row_topology),
representation_(r) {
rows.resize(y.num_rows());
for (dimension_type i = 0; i < y.num_rows(); ++i) {
// Create the copies with the right representation.
Row row(y.rows[i], r);
swap(rows[i], row);
}
// Previously pending rows may violate sortedness.
sorted = (y.num_pending_rows() > 0) ? false : y.sorted;
unset_pending_rows();
PPL_ASSERT(OK());
}
template <typename Row>
inline
Linear_System<Row>::Linear_System(const Linear_System& y, With_Pending)
: rows(y.rows),
space_dimension_(y.space_dimension_),
row_topology(y.row_topology),
index_first_pending(y.index_first_pending),
sorted(y.sorted),
representation_(y.representation_) {
PPL_ASSERT(OK());
}
template <typename Row>
inline
Linear_System<Row>::Linear_System(const Linear_System& y, Representation r,
With_Pending)
: rows(),
space_dimension_(y.space_dimension_),
row_topology(y.row_topology),
index_first_pending(y.index_first_pending),
sorted(y.sorted),
representation_(r) {
rows.resize(y.num_rows());
for (dimension_type i = 0; i < y.num_rows(); ++i) {
// Create the copies with the right representation.
Row row(y.rows[i], r);
swap(rows[i], row);
}
PPL_ASSERT(OK());
}
template <typename Row>
inline Linear_System<Row>&
Linear_System<Row>::operator=(const Linear_System& y) {
// NOTE: Pending rows are transformed into non-pending ones.
Linear_System<Row> tmp = y;
swap(*this, tmp);
return *this;
}
template <typename Row>
inline void
Linear_System<Row>::assign_with_pending(const Linear_System& y) {
Linear_System<Row> tmp(y, With_Pending());
swap(*this, tmp);
}
template <typename Row>
inline void
Linear_System<Row>::m_swap(Linear_System& y) {
using std::swap;
swap(rows, y.rows);
swap(space_dimension_, y.space_dimension_);
swap(row_topology, y.row_topology);
swap(index_first_pending, y.index_first_pending);
swap(sorted, y.sorted);
swap(representation_, y.representation_);
PPL_ASSERT(OK());
PPL_ASSERT(y.OK());
}
template <typename Row>
inline void
Linear_System<Row>::clear() {
// Note: do NOT modify the value of `row_topology' and `representation'.
rows.clear();
index_first_pending = 0;
sorted = true;
space_dimension_ = 0;
PPL_ASSERT(OK());
}
template <typename Row>
inline void
Linear_System<Row>::mark_as_necessarily_closed() {
PPL_ASSERT(topology() == NOT_NECESSARILY_CLOSED);
row_topology = NECESSARILY_CLOSED;
++space_dimension_;
for (dimension_type i = num_rows(); i-- > 0; )
rows[i].mark_as_necessarily_closed();
}
template <typename Row>
inline void
Linear_System<Row>::mark_as_not_necessarily_closed() {
PPL_ASSERT(topology() == NECESSARILY_CLOSED);
PPL_ASSERT(space_dimension() > 0);
row_topology = NOT_NECESSARILY_CLOSED;
--space_dimension_;
for (dimension_type i = num_rows(); i-- > 0; )
rows[i].mark_as_not_necessarily_closed();
}
template <typename Row>
inline void
Linear_System<Row>::set_topology(Topology t) {
if (topology() == t)
return;
for (dimension_type i = num_rows(); i-- > 0; )
rows[i].set_topology(t);
row_topology = t;
PPL_ASSERT(OK());
}
template <typename Row>
inline void
Linear_System<Row>::set_necessarily_closed() {
set_topology(NECESSARILY_CLOSED);
}
template <typename Row>
inline void
Linear_System<Row>::set_not_necessarily_closed() {
set_topology(NOT_NECESSARILY_CLOSED);
}
template <typename Row>
inline bool
Linear_System<Row>::is_necessarily_closed() const {
return row_topology == NECESSARILY_CLOSED;
}
template <typename Row>
inline const Row&
Linear_System<Row>::operator[](const dimension_type k) const {
return rows[k];
}
template <typename Row>
inline typename Linear_System<Row>::iterator
Linear_System<Row>::begin() {
return rows.begin();
}
template <typename Row>
inline typename Linear_System<Row>::iterator
Linear_System<Row>::end() {
return rows.end();
}
template <typename Row>
inline typename Linear_System<Row>::const_iterator
Linear_System<Row>::begin() const {
return rows.begin();
}
template <typename Row>
inline typename Linear_System<Row>::const_iterator
Linear_System<Row>::end() const {
return rows.end();
}
template <typename Row>
inline bool
Linear_System<Row>::has_no_rows() const {
return rows.empty();
}
template <typename Row>
inline dimension_type
Linear_System<Row>::num_rows() const {
return rows.size();
}
template <typename Row>
inline Topology
Linear_System<Row>::topology() const {
return row_topology;
}
template <typename Row>
inline Representation
Linear_System<Row>::representation() const {
return representation_;
}
template <typename Row>
inline void
Linear_System<Row>::set_representation(Representation r) {
representation_ = r;
for (dimension_type i = 0; i < rows.size(); ++i)
rows[i].set_representation(r);
PPL_ASSERT(OK());
}
template <typename Row>
inline dimension_type
Linear_System<Row>::max_space_dimension() {
return Row::max_space_dimension();
}
template <typename Row>
inline dimension_type
Linear_System<Row>::space_dimension() const {
return space_dimension_;
}
template <typename Row>
inline void
Linear_System<Row>::set_space_dimension_no_ok(dimension_type space_dim) {
for (dimension_type i = rows.size(); i-- > 0; )
rows[i].set_space_dimension_no_ok(space_dim);
space_dimension_ = space_dim;
}
template <typename Row>
inline void
Linear_System<Row>::set_space_dimension(dimension_type space_dim) {
set_space_dimension_no_ok(space_dim);
PPL_ASSERT(OK());
}
template <typename Row>
inline void
Linear_System<Row>::remove_row_no_ok(const dimension_type i,
const bool keep_sorted) {
PPL_ASSERT(i < num_rows());
const bool was_pending = (i >= index_first_pending);
if (sorted && keep_sorted && !was_pending) {
for (dimension_type j = i + 1; j < rows.size(); ++j)
swap(rows[j], rows[j-1]);
rows.pop_back();
}
else {
if (!was_pending)
sorted = false;
const bool last_row_is_pending = (num_rows() - 1 >= index_first_pending);
if (was_pending == last_row_is_pending)
// Either both rows are pending or both rows are not pending.
swap(rows[i], rows.back());
else {
// Pending rows are stored after the non-pending ones.
PPL_ASSERT(!was_pending);
PPL_ASSERT(last_row_is_pending);
// Swap the row with the last non-pending row.
swap(rows[i], rows[index_first_pending - 1]);
// Now the (non-pending) row that has to be deleted is between the
// non-pending and the pending rows.
swap(rows[i], rows.back());
}
rows.pop_back();
}
if (!was_pending)
// A non-pending row has been removed.
--index_first_pending;
}
template <typename Row>
inline void
Linear_System<Row>::remove_row(const dimension_type i, bool keep_sorted) {
remove_row_no_ok(i, keep_sorted);
PPL_ASSERT(OK());
}
template <typename Row>
inline void
Linear_System<Row>::remove_rows(dimension_type first,
dimension_type last,
bool keep_sorted) {
PPL_ASSERT(first <= last);
PPL_ASSERT(last <= num_rows());
const dimension_type n = last - first;
if (n == 0)
return;
// All the rows that have to be removed must have the same (pending or
// non-pending) status.
PPL_ASSERT(first >= index_first_pending || last <= index_first_pending);
const bool were_pending = (first >= index_first_pending);
// Move the rows in [first,last) at the end of the system.
if (sorted && keep_sorted && !were_pending) {
// Preserve the row ordering.
for (dimension_type i = last; i < rows.size(); ++i)
swap(rows[i], rows[i - n]);
rows.resize(rows.size() - n);
// `n' non-pending rows have been removed.
index_first_pending -= n;
PPL_ASSERT(OK());
return;
}
// We can ignore the row ordering, but we must not mix pending and
// non-pending rows.
const dimension_type offset = rows.size() - n - first;
// We want to swap the rows in [first, last) and
// [first + offset, last + offset) (note that these intervals may not be
// disjunct).
if (index_first_pending == num_rows()) {
// There are no pending rows.
PPL_ASSERT(!were_pending);
swap_row_intervals(first, last, offset);
rows.resize(rows.size() - n);
// `n' non-pending rows have been removed.
index_first_pending -= n;
}
else {
// There are some pending rows in [first + offset, last + offset).
if (were_pending) {
// Both intervals contain only pending rows, because the second
// interval is after the first.
swap_row_intervals(first, last, offset);
rows.resize(rows.size() - n);
// `n' non-pending rows have been removed.
index_first_pending -= n;
}
else {
PPL_ASSERT(rows.size() - n < index_first_pending);
PPL_ASSERT(rows.size() > index_first_pending);
PPL_ASSERT(!were_pending);
// In the [size() - n, size()) interval there are some non-pending
// rows and some pending ones. Be careful not to mix them.
PPL_ASSERT(index_first_pending >= last);
swap_row_intervals(first, last, index_first_pending - last);
// Mark the rows that must be deleted as pending.
index_first_pending -= n;
first = index_first_pending;
last = first + n;
// Move them at the end of the system.
swap_row_intervals(first, last, num_rows() - last);
// Actually remove the rows.
rows.resize(rows.size() - n);
}
}
PPL_ASSERT(OK());
}
template <typename Row>
inline void
Linear_System<Row>::swap_row_intervals(dimension_type first,
dimension_type last,
dimension_type offset) {
PPL_ASSERT(first <= last);
PPL_ASSERT(last + offset <= num_rows());
#ifndef NDEBUG
if (first < last) {
bool first_interval_has_pending_rows = (last > index_first_pending);
bool second_interval_has_pending_rows = (last + offset > index_first_pending);
bool first_interval_has_not_pending_rows = (first < index_first_pending);
bool second_interval_has_not_pending_rows = (first + offset < index_first_pending);
PPL_ASSERT(first_interval_has_not_pending_rows
== !first_interval_has_pending_rows);
PPL_ASSERT(second_interval_has_not_pending_rows
== !second_interval_has_pending_rows);
PPL_ASSERT(first_interval_has_pending_rows
== second_interval_has_pending_rows);
}
#endif
if (first + offset < last) {
// The intervals are not disjunct, make them so.
const dimension_type k = last - first - offset;
last -= k;
offset += k;
}
if (first == last)
// Nothing to do.
return;
for (dimension_type i = first; i < last; ++i)
swap(rows[i], rows[i + offset]);
if (first < index_first_pending)
// The swaps involved not pending rows, so they may not be sorted anymore.
set_sorted(false);
PPL_ASSERT(OK());
}
template <typename Row>
inline void
Linear_System<Row>::remove_rows(const std::vector<dimension_type>& indexes) {
#ifndef NDEBUG
{
// Check that `indexes' is sorted.
std::vector<dimension_type> sorted_indexes = indexes;
std::sort(sorted_indexes.begin(), sorted_indexes.end());
PPL_ASSERT(indexes == sorted_indexes);
// Check that the last index (if any) is lower than num_rows().
// This guarantees that all indexes are in [0, num_rows()).
if (!indexes.empty())
PPL_ASSERT(indexes.back() < num_rows());
}
#endif
if (indexes.empty())
return;
const dimension_type rows_size = rows.size();
typedef std::vector<dimension_type>::const_iterator itr_t;
// `i' and last_unused_row' start with the value `indexes[0]' instead
// of `0', because the loop would just increment `last_unused_row' in the
// preceding iterations.
dimension_type last_unused_row = indexes[0];
dimension_type i = indexes[0];
itr_t itr = indexes.begin();
itr_t itr_end = indexes.end();
while (itr != itr_end) {
// i <= *itr < rows_size
PPL_ASSERT(i < rows_size);
if (*itr == i) {
// The current row has to be removed, don't increment last_unused_row.
++itr;
}
else {
// The current row must not be removed, swap it after the last used row.
swap(rows[last_unused_row], rows[i]);
++last_unused_row;
}
++i;
}
// Move up the remaining rows, if any.
for ( ; i < rows_size; ++i) {
swap(rows[last_unused_row], rows[i]);
++last_unused_row;
}
PPL_ASSERT(last_unused_row == num_rows() - indexes.size());
// The rows that have to be removed are now at the end of the system, just
// remove them.
rows.resize(last_unused_row);
// Adjust index_first_pending.
if (indexes[0] >= index_first_pending) {
// Removing pending rows only.
}
else {
if (indexes.back() < index_first_pending) {
// Removing non-pending rows only.
index_first_pending -= indexes.size();
}
else {
// Removing some pending and some non-pending rows, count the
// non-pending rows that must be removed.
// This exploits the fact that `indexes' is sorted by using binary
// search.
itr_t j = std::lower_bound(indexes.begin(), indexes.end(),
index_first_pending);
std::iterator_traits<itr_t>::difference_type
non_pending = j - indexes.begin();
index_first_pending -= static_cast<dimension_type>(non_pending);
}
}
// NOTE: This method does *not* call set_sorted(false), because it preserves
// the relative row ordering.
PPL_ASSERT(OK());
}
template <typename Row>
inline void
Linear_System<Row>::remove_trailing_rows(const dimension_type n) {
PPL_ASSERT(rows.size() >= n);
rows.resize(rows.size() - n);
if (first_pending_row() > rows.size())
index_first_pending = rows.size();
PPL_ASSERT(OK());
}
template <typename Row>
inline void
Linear_System<Row>
::permute_space_dimensions(const std::vector<Variable>& cycle) {
for (dimension_type i = num_rows(); i-- > 0; )
rows[i].permute_space_dimensions(cycle);
sorted = false;
PPL_ASSERT(OK());
}
template <typename Row>
inline void
Linear_System<Row>
::swap_space_dimensions(Variable v1, Variable v2) {
PPL_ASSERT(v1.space_dimension() <= space_dimension());
PPL_ASSERT(v2.space_dimension() <= space_dimension());
for (dimension_type k = num_rows(); k-- > 0; )
rows[k].swap_space_dimensions(v1, v2);
sorted = false;
PPL_ASSERT(OK());
}
/*! \relates Linear_System */
template <typename Row>
inline bool
operator!=(const Linear_System<Row>& x, const Linear_System<Row>& y) {
return !(x == y);
}
template <typename Row>
inline bool
Linear_System<Row>::Row_Less_Than::operator()(const Row& x,
const Row& y) const {
return compare(x, y) < 0;
}
template <typename Row>
inline
Linear_System<Row>::Unique_Compare
::Unique_Compare(const Swapping_Vector<Row>& cont,
dimension_type base)
: container(cont), base_index(base) {
}
template <typename Row>
inline bool
Linear_System<Row>::Unique_Compare
::operator()(dimension_type i, dimension_type j) const {
return container[base_index + i].is_equal_to(container[base_index + j]);
}
/*! \relates Linear_System */
template <typename Row>
inline void
swap(Linear_System<Row>& x, Linear_System<Row>& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Linear_System_templates.hh line 1. */
/* Linear_System class implementation: non-inline template functions.
*/
/* Automatically generated from PPL source file ../src/Bit_Matrix_defs.hh line 1. */
/* Bit_Matrix class declaration.
*/
/* Automatically generated from PPL source file ../src/Bit_Matrix_defs.hh line 30. */
#include <vector>
#include <iosfwd>
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Swaps \p x with \p y.
/*! \relates Bit_Matrix */
void swap(Bit_Matrix& x, Bit_Matrix& y);
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
} // namespace Parma_Polyhedra_Library
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! A matrix of bits.
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
class Parma_Polyhedra_Library::Bit_Matrix {
public:
//! Default constructor.
Bit_Matrix();
//! Construct a bit matrix with \p n_rows rows and \p n_columns columns.
Bit_Matrix(dimension_type n_rows, dimension_type n_columns);
//! Copy constructor.
Bit_Matrix(const Bit_Matrix& y);
//! Destructor.
~Bit_Matrix();
//! Assignment operator.
Bit_Matrix& operator=(const Bit_Matrix& y);
//! Swaps \p *this with \p y.
void m_swap(Bit_Matrix& y);
//! Subscript operator.
Bit_Row& operator[](dimension_type k);
//! Constant subscript operator.
const Bit_Row& operator[](dimension_type k) const;
//! Clears the matrix deallocating all its rows.
void clear();
//! Transposes the matrix.
void transpose();
//! Makes \p *this a transposed copy of \p y.
void transpose_assign(const Bit_Matrix& y);
//! Returns the maximum number of rows of a Bit_Matrix.
static dimension_type max_num_rows();
//! Returns the number of columns of \p *this.
dimension_type num_columns() const;
//! Returns the number of rows of \p *this.
dimension_type num_rows() const;
//! Sorts the rows and removes duplicates.
void sort_rows();
//! Looks for \p row in \p *this, which is assumed to be sorted.
/*!
\return
<CODE>true</CODE> if \p row belongs to \p *this, false otherwise.
\param row
The row that will be searched for in the matrix.
Given a sorted bit matrix (this ensures better efficiency),
tells whether it contains the given row.
*/
bool sorted_contains(const Bit_Row& row) const;
//! Adds \p row to \p *this.
/*!
\param row
The row whose implementation will be recycled.
The only thing that can be done with \p row upon return is destruction.
*/
void add_recycled_row(Bit_Row& row);
//! Removes the last \p n rows.
void remove_trailing_rows(dimension_type n);
//! Removes the last \p n columns.
/*!
The last \p n columns of the matrix are all made of zeros.
If such an assumption is not met, the behavior is undefined.
*/
void remove_trailing_columns(dimension_type n);
//! Resizes the matrix copying the old contents.
void resize(dimension_type new_n_rows, dimension_type new_n_columns);
//! Checks if all the invariants are satisfied.
bool OK() const;
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
#ifndef NDEBUG
//! Checks whether \p *this is sorted. It does NOT check for duplicates.
bool check_sorted() const;
#endif
private:
//! Contains the rows of the matrix.
std::vector<Bit_Row> rows;
//! Size of the initialized part of each row.
dimension_type row_size;
//! Ordering predicate (used when implementing the sort algorithm).
/*! \ingroup PPL_CXX_interface */
struct Bit_Row_Less_Than {
bool operator()(const Bit_Row& x, const Bit_Row& y) const;
};
template <typename Row>
friend class Parma_Polyhedra_Library::Linear_System;
};
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x and \p y are equal.
/*! \relates Bit_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool operator==(const Bit_Matrix& x, const Bit_Matrix& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x and \p y are not equal.
/*! \relates Bit_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool operator!=(const Bit_Matrix& x, const Bit_Matrix& y);
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Bit_Matrix_inlines.hh line 1. */
/* Bit_Matrix class implementation: inline functions.
*/
#include <algorithm>
/* Automatically generated from PPL source file ../src/Bit_Matrix_inlines.hh line 29. */
namespace Parma_Polyhedra_Library {
inline
Bit_Matrix::Bit_Matrix()
: rows(),
row_size(0) {
}
inline dimension_type
Bit_Matrix::max_num_rows() {
return std::vector<Bit_Row>().max_size();
}
inline
Bit_Matrix::Bit_Matrix(const dimension_type n_rows,
const dimension_type n_columns)
: rows(n_rows),
row_size(n_columns) {
}
inline
Bit_Matrix::Bit_Matrix(const Bit_Matrix& y)
: rows(y.rows),
row_size(y.row_size) {
}
inline
Bit_Matrix::~Bit_Matrix() {
}
inline void
Bit_Matrix::remove_trailing_rows(const dimension_type n) {
// The number of rows to be erased cannot be greater
// than the actual number of the rows of the matrix.
PPL_ASSERT(n <= rows.size());
if (n != 0)
rows.resize(rows.size() - n);
PPL_ASSERT(OK());
}
inline void
Bit_Matrix::remove_trailing_columns(const dimension_type n) {
// The number of columns to be erased cannot be greater
// than the actual number of the columns of the matrix.
PPL_ASSERT(n <= row_size);
row_size -= n;
PPL_ASSERT(OK());
}
inline void
Bit_Matrix::m_swap(Bit_Matrix& y) {
using std::swap;
swap(row_size, y.row_size);
swap(rows, y.rows);
}
inline Bit_Row&
Bit_Matrix::operator[](const dimension_type k) {
PPL_ASSERT(k < rows.size());
return rows[k];
}
inline const Bit_Row&
Bit_Matrix::operator[](const dimension_type k) const {
PPL_ASSERT(k < rows.size());
return rows[k];
}
inline dimension_type
Bit_Matrix::num_columns() const {
return row_size;
}
inline dimension_type
Bit_Matrix::num_rows() const {
return rows.size();
}
inline void
Bit_Matrix::clear() {
// Clear `rows' and minimize its capacity.
std::vector<Bit_Row> tmp;
using std::swap;
swap(tmp, rows);
row_size = 0;
}
inline memory_size_type
Bit_Matrix::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
inline bool
Bit_Matrix::Bit_Row_Less_Than::
operator()(const Bit_Row& x, const Bit_Row& y) const {
return compare(x, y) < 0;
}
inline bool
Bit_Matrix::sorted_contains(const Bit_Row& row) const {
PPL_ASSERT(check_sorted());
return std::binary_search(rows.begin(), rows.end(), row,
Bit_Row_Less_Than());
}
/*! \relates Bit_Matrix */
inline bool
operator!=(const Bit_Matrix& x, const Bit_Matrix& y) {
return !(x == y);
}
/*! \relates Bit_Matrix */
inline void
swap(Bit_Matrix& x, Bit_Matrix& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Bit_Matrix_defs.hh line 186. */
/* Automatically generated from PPL source file ../src/Scalar_Products_defs.hh line 1. */
/* Scalar_Products class definition.
*/
/* Automatically generated from PPL source file ../src/Scalar_Products_defs.hh line 34. */
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! A class implementing various scalar product functions.
/*! \ingroup PPL_CXX_interface
When computing the scalar product of (Linear_Expression or Constraint or
Generator) objects <CODE>x</CODE> and <CODE>y</CODE>, it is assumed
that the space dimension of the first object <CODE>x</CODE> is less
than or equal to the space dimension of the second object <CODE>y</CODE>.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
class Parma_Polyhedra_Library::Scalar_Products {
public:
//! Computes the scalar product of \p x and \p y and assigns it to \p z.
static void assign(Coefficient& z,
const Linear_Expression& x, const Linear_Expression& y);
//! Computes the scalar product of \p c and \p g and assigns it to \p z.
static void assign(Coefficient& z, const Constraint& c, const Generator& g);
//! Computes the scalar product of \p g and \p c and assigns it to \p z.
static void assign(Coefficient& z, const Generator& g, const Constraint& c);
//! Computes the scalar product of \p c and \p g and assigns it to \p z.
static void assign(Coefficient& z,
const Constraint& c, const Grid_Generator& gg);
//! Computes the scalar product of \p g and \p cg and assigns it to \p z.
static void assign(Coefficient& z,
const Grid_Generator& gg, const Congruence& cg);
//! Computes the scalar product of \p cg and \p g and assigns it to \p z.
static void assign(Coefficient& z,
const Congruence& cg, const Grid_Generator& gg);
//! Returns the sign of the scalar product between \p x and \p y.
static int sign(const Linear_Expression& x, const Linear_Expression& y);
//! Returns the sign of the scalar product between \p c and \p g.
static int sign(const Constraint& c, const Generator& g);
//! Returns the sign of the scalar product between \p g and \p c.
static int sign(const Generator& g, const Constraint& c);
//! Returns the sign of the scalar product between \p c and \p g.
static int sign(const Constraint& c, const Grid_Generator& g);
/*! \brief
Computes the \e reduced scalar product of \p x and \p y,
where the \f$\epsilon\f$ coefficient of \p x is ignored,
and assigns the result to \p z.
*/
static void reduced_assign(Coefficient& z,
const Linear_Expression& x,
const Linear_Expression& y);
/*! \brief
Computes the \e reduced scalar product of \p c and \p g,
where the \f$\epsilon\f$ coefficient of \p c is ignored,
and assigns the result to \p z.
*/
static void reduced_assign(Coefficient& z,
const Constraint& c, const Generator& g);
/*! \brief
Computes the \e reduced scalar product of \p g and \p c,
where the \f$\epsilon\f$ coefficient of \p g is ignored,
and assigns the result to \p z.
*/
static void reduced_assign(Coefficient& z,
const Generator& g, const Constraint& c);
//! \brief
//! Computes the \e reduced scalar product of \p g and \p cg,
//! where the \f$\epsilon\f$ coefficient of \p g is ignored,
//! and assigns the result to \p z.
static void reduced_assign(Coefficient& z,
const Grid_Generator& gg, const Congruence& cg);
/*! \brief
Returns the sign of the \e reduced scalar product of \p x and \p y,
where the \f$\epsilon\f$ coefficient of \p x is ignored.
*/
static int reduced_sign(const Linear_Expression& x,
const Linear_Expression& y);
/*! \brief
Returns the sign of the \e reduced scalar product of \p c and \p g,
where the \f$\epsilon\f$ coefficient of \p c is ignored.
*/
static int reduced_sign(const Constraint& c, const Generator& g);
/*! \brief
Returns the sign of the \e reduced scalar product of \p g and \p c,
where the \f$\epsilon\f$ coefficient of \p g is ignored.
*/
static int reduced_sign(const Generator& g, const Constraint& c);
/*! \brief
Computes the \e homogeneous scalar product of \p x and \p y,
where the inhomogeneous terms are ignored,
and assigns the result to \p z.
*/
static void homogeneous_assign(Coefficient& z,
const Linear_Expression& x,
const Linear_Expression& y);
/*! \brief
Computes the \e homogeneous scalar product of \p e and \p g,
where the inhomogeneous terms are ignored,
and assigns the result to \p z.
*/
static void homogeneous_assign(Coefficient& z,
const Linear_Expression& e,
const Generator& g);
//! \brief
//! Computes the \e homogeneous scalar product of \p gg and \p c,
//! where the inhomogeneous terms are ignored,
//! and assigns the result to \p z.
static void homogeneous_assign(Coefficient& z,
const Grid_Generator& gg,
const Constraint& c);
//! \brief
//! Computes the \e homogeneous scalar product of \p g and \p cg,
//! where the inhomogeneous terms are ignored,
//! and assigns the result to \p z.
static void homogeneous_assign(Coefficient& z,
const Grid_Generator& gg,
const Congruence& cg);
//! \brief
//! Computes the \e homogeneous scalar product of \p e and \p g,
//! where the inhomogeneous terms are ignored,
//! and assigns the result to \p z.
static void homogeneous_assign(Coefficient& z,
const Linear_Expression& e,
const Grid_Generator& g);
/*! \brief
Returns the sign of the \e homogeneous scalar product of \p x and \p y,
where the inhomogeneous terms are ignored.
*/
static int homogeneous_sign(const Linear_Expression& x,
const Linear_Expression& y);
/*! \brief
Returns the sign of the \e homogeneous scalar product of \p e and \p g,
where the inhomogeneous terms are ignored.
*/
static int homogeneous_sign(const Linear_Expression& e, const Generator& g);
//! \brief
//! Returns the sign of the \e homogeneous scalar product of \p e and \p g,
//! where the inhomogeneous terms are ignored,
static int homogeneous_sign(const Linear_Expression& e,
const Grid_Generator& g);
//! \brief
//! Returns the sign of the \e homogeneous scalar product of \p g and \p c,
//! where the inhomogeneous terms are ignored,
static int homogeneous_sign(const Grid_Generator& g, const Constraint& c);
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Scalar product sign function object depending on topology.
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
class Parma_Polyhedra_Library::Topology_Adjusted_Scalar_Product_Sign {
public:
//! Constructs the function object according to the topology of \p c.
Topology_Adjusted_Scalar_Product_Sign(const Constraint& c);
//! Constructs the function object according to the topology of \p g.
Topology_Adjusted_Scalar_Product_Sign(const Generator& g);
//! Computes the (topology adjusted) scalar product sign of \p c and \p g.
int operator()(const Constraint&, const Generator&) const;
//! Computes the (topology adjusted) scalar product sign of \p g and \p c.
int operator()(const Generator&, const Constraint&) const;
private:
//! The type of the scalar product sign function pointer.
typedef int (* const SPS_type)(const Linear_Expression&,
const Linear_Expression&);
//! The scalar product sign function pointer.
SPS_type sps_fp;
};
// NOTE: Scalar_Products_inlines.hh is NOT included here, to avoid cyclic
// include dependencies.
/* Automatically generated from PPL source file ../src/Scalar_Products_inlines.hh line 1. */
/* Scalar_Products class implementation (inline functions).
*/
/* Automatically generated from PPL source file ../src/Scalar_Products_inlines.hh line 32. */
namespace Parma_Polyhedra_Library {
inline int
Scalar_Products::sign(const Linear_Expression& x, const Linear_Expression& y) {
PPL_DIRTY_TEMP_COEFFICIENT(z);
assign(z, x, y);
return sgn(z);
}
inline int
Scalar_Products::reduced_sign(const Linear_Expression& x,
const Linear_Expression& y) {
PPL_DIRTY_TEMP_COEFFICIENT(z);
reduced_assign(z, x, y);
return sgn(z);
}
inline int
Scalar_Products::homogeneous_sign(const Linear_Expression& x,
const Linear_Expression& y) {
PPL_DIRTY_TEMP_COEFFICIENT(z);
homogeneous_assign(z, x, y);
return sgn(z);
}
inline int
Scalar_Products::sign(const Constraint& c, const Generator& g) {
return sign(c.expr, g.expr);
}
inline int
Scalar_Products::sign(const Generator& g, const Constraint& c) {
return sign(g.expr, c.expr);
}
inline int
Scalar_Products::sign(const Constraint& c, const Grid_Generator& g) {
PPL_DIRTY_TEMP_COEFFICIENT(z);
assign(z, c, g);
return sgn(z);
}
inline int
Scalar_Products::reduced_sign(const Constraint& c, const Generator& g) {
// The reduced scalar product is only defined if the topology of `c' is
// NNC.
PPL_ASSERT(!c.is_necessarily_closed());
return reduced_sign(c.expr, g.expr);
}
inline int
Scalar_Products::reduced_sign(const Generator& g, const Constraint& c) {
// The reduced scalar product is only defined if the topology of `g' is
// NNC.
PPL_ASSERT(!c.is_necessarily_closed());
return reduced_sign(g.expr, c.expr);
}
inline void
Scalar_Products::homogeneous_assign(Coefficient& z,
const Linear_Expression& e,
const Generator& g) {
homogeneous_assign(z, e, g.expr);
}
inline void
Scalar_Products::homogeneous_assign(Coefficient& z,
const Linear_Expression& e,
const Grid_Generator& g) {
homogeneous_assign(z, e, g.expr);
}
inline int
Scalar_Products::homogeneous_sign(const Linear_Expression& e,
const Generator& g) {
return homogeneous_sign(e, g.expr);
}
inline int
Scalar_Products::homogeneous_sign(const Linear_Expression& e,
const Grid_Generator& g) {
return homogeneous_sign(e, g.expr);
}
inline int
Scalar_Products::homogeneous_sign(const Grid_Generator& g,
const Constraint& c) {
PPL_DIRTY_TEMP_COEFFICIENT(z);
homogeneous_assign(z, g, c);
return sgn(z);
}
inline
Topology_Adjusted_Scalar_Product_Sign
::Topology_Adjusted_Scalar_Product_Sign(const Constraint& c)
: sps_fp(c.is_necessarily_closed()
? static_cast<SPS_type>(&Scalar_Products::sign)
: static_cast<SPS_type>(&Scalar_Products::reduced_sign)) {
}
inline
Topology_Adjusted_Scalar_Product_Sign
::Topology_Adjusted_Scalar_Product_Sign(const Generator& g)
: sps_fp(g.is_necessarily_closed()
? static_cast<SPS_type>(&Scalar_Products::sign)
: static_cast<SPS_type>(&Scalar_Products::reduced_sign)) {
}
inline int
Topology_Adjusted_Scalar_Product_Sign::operator()(const Constraint& c,
const Generator& g) const {
PPL_ASSERT(c.space_dimension() <= g.space_dimension());
PPL_ASSERT(sps_fp == (c.is_necessarily_closed()
? static_cast<SPS_type>(&Scalar_Products::sign)
: static_cast<SPS_type>(&Scalar_Products::reduced_sign)));
return sps_fp(c.expr, g.expr);
}
inline int
Topology_Adjusted_Scalar_Product_Sign::operator()(const Generator& g,
const Constraint& c) const {
PPL_ASSERT(g.space_dimension() <= c.space_dimension());
PPL_ASSERT(sps_fp == (g.is_necessarily_closed()
? static_cast<SPS_type>(&Scalar_Products::sign)
: static_cast<SPS_type>(&Scalar_Products::reduced_sign)));
return sps_fp(g.expr, c.expr);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Linear_System_templates.hh line 31. */
#include <algorithm>
#include <iostream>
#include <string>
#include <deque>
/* Automatically generated from PPL source file ../src/swapping_sort_templates.hh line 1. */
/* Sorting objects for which copies cost more than swaps.
*/
#include <vector>
#include <algorithm>
namespace Parma_Polyhedra_Library {
namespace Implementation {
template <typename RA_Container, typename Compare>
struct Indirect_Sort_Compare {
typedef typename RA_Container::size_type size_type;
Indirect_Sort_Compare(const RA_Container& cont,
size_type base = 0,
Compare comp = Compare())
: container(cont), base_index(base), compare(comp) {
}
bool operator()(size_type i, size_type j) const {
return compare(container[base_index + i], container[base_index + j]);
}
const RA_Container& container;
const size_type base_index;
const Compare compare;
}; // struct Indirect_Sort_Compare
template <typename RA_Container>
struct Indirect_Unique_Compare {
typedef typename RA_Container::size_type size_type;
Indirect_Unique_Compare(const RA_Container& cont, size_type base = 0)
: container(cont), base_index(base) {
}
bool operator()(size_type i, size_type j) const {
return container[base_index + i] == container[base_index + j];
}
const RA_Container& container;
const size_type base_index;
}; // struct Indirect_Unique_Compare
template <typename RA_Container>
struct Indirect_Swapper {
typedef typename RA_Container::size_type size_type;
Indirect_Swapper(RA_Container& cont, size_type base = 0)
: container(cont), base_index(base) {
}
void operator()(size_type i, size_type j) const {
using std::swap;
swap(container[base_index + i], container[base_index + j]);
}
RA_Container& container;
const size_type base_index;
}; // struct Indirect_Swapper
template <typename RA_Container1, typename RA_Container2>
struct Indirect_Swapper2 {
typedef typename RA_Container1::size_type size_type;
Indirect_Swapper2(RA_Container1& cont1, RA_Container2& cont2)
: container1(cont1), container2(cont2) {
}
void operator()(size_type i, size_type j) const {
using std::swap;
swap(container1[i], container1[j]);
swap(container2[i], container2[j]);
}
RA_Container1& container1;
RA_Container2& container2;
}; // struct Indirect_Swapper2
template <typename Sort_Comparer, typename Unique_Comparer, typename Swapper>
typename Sort_Comparer::size_type
indirect_sort_and_unique(typename Sort_Comparer::size_type num_elems,
Sort_Comparer sort_cmp,
Unique_Comparer unique_cmp,
Swapper indirect_swap) {
typedef typename Sort_Comparer::size_type index_type;
// `iv' is a vector of indices for the portion of rows to be sorted.
PPL_ASSERT(num_elems >= 2);
std::vector<index_type> iv;
iv.reserve(num_elems);
for (index_type i = 0, i_end = num_elems; i != i_end; ++i)
iv.push_back(i);
typedef typename std::vector<index_type>::iterator Iter;
const Iter iv_begin = iv.begin();
Iter iv_end = iv.end();
// Sort `iv' by comparing the rows indexed by its elements.
std::sort(iv_begin, iv_end, sort_cmp);
// Swap the indexed rows according to `iv':
// for each index `i', the element that should be placed in
// position dst = i is the one placed in position src = iv[i].
for (index_type i = num_elems; i-- > 0; ) {
if (i != iv[i]) {
index_type dst = i;
index_type src = iv[i];
do {
indirect_swap(src, dst);
iv[dst] = dst;
dst = src;
src = iv[dst];
} while (i != src);
iv[dst] = dst;
}
}
// Restore `iv' indices to 0 .. num_elems-1 for the call to unique.
for (index_type i = num_elems; i-- > 0; )
iv[i] = i;
// Unique `iv' by comparing the rows indexed by its elements.
iv_end = std::unique(iv_begin, iv_end, unique_cmp);
const index_type num_sorted = static_cast<index_type>(iv_end - iv_begin);
const index_type num_duplicates = num_elems - num_sorted;
if (num_duplicates == 0)
return 0;
// There were duplicates: swap the rows according to `iv'.
index_type dst = 0;
while (dst < num_sorted && dst == iv[dst])
++dst;
if (dst == num_sorted)
return num_duplicates;
do {
const index_type src = iv[dst];
indirect_swap(src, dst);
++dst;
}
while (dst < num_sorted);
return num_duplicates;
}
template <typename Iter>
Iter
swapping_unique(Iter first, Iter last) {
return swapping_unique(first, last, std::iter_swap<Iter, Iter>);
}
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Linear_System_templates.hh line 37. */
namespace Parma_Polyhedra_Library {
template <typename Row>
dimension_type
Linear_System<Row>::num_lines_or_equalities() const {
PPL_ASSERT(num_pending_rows() == 0);
const Linear_System& x = *this;
dimension_type n = 0;
for (dimension_type i = num_rows(); i-- > 0; )
if (x[i].is_line_or_equality())
++n;
return n;
}
template <typename Row>
void
Linear_System<Row>::merge_rows_assign(const Linear_System& y) {
PPL_ASSERT(space_dimension() >= y.space_dimension());
// Both systems have to be sorted and have no pending rows.
PPL_ASSERT(check_sorted() && y.check_sorted());
PPL_ASSERT(num_pending_rows() == 0 && y.num_pending_rows() == 0);
Linear_System& x = *this;
// A temporary vector...
Swapping_Vector<Row> tmp;
// ... with enough capacity not to require any reallocations.
tmp.reserve(compute_capacity(x.rows.size() + y.rows.size(),
tmp.max_num_rows()));
dimension_type xi = 0;
const dimension_type x_num_rows = x.num_rows();
dimension_type yi = 0;
const dimension_type y_num_rows = y.num_rows();
while (xi < x_num_rows && yi < y_num_rows) {
const int comp = compare(x[xi], y[yi]);
if (comp <= 0) {
// Elements that can be taken from `x' are actually _stolen_ from `x'
tmp.resize(tmp.size() + 1);
swap(tmp.back(), x.rows[xi++]);
tmp.back().set_representation(representation());
if (comp == 0)
// A duplicate element.
++yi;
}
else {
// (comp > 0)
tmp.resize(tmp.size() + 1);
Row copy(y[yi++], space_dimension(), representation());
swap(tmp.back(), copy);
}
}
// Insert what is left.
if (xi < x_num_rows)
while (xi < x_num_rows) {
tmp.resize(tmp.size() + 1);
swap(tmp.back(), x.rows[xi++]);
tmp.back().set_representation(representation());
}
else
while (yi < y_num_rows) {
tmp.resize(tmp.size() + 1);
Row copy(y[yi++], space_dimension(), representation());
swap(tmp.back(), copy);
}
// We get the result matrix and let the old one be destroyed.
swap(tmp, rows);
// There are no pending rows.
unset_pending_rows();
PPL_ASSERT(check_sorted());
PPL_ASSERT(OK());
}
template <typename Row>
void
Linear_System<Row>::ascii_dump(std::ostream& s) const {
// Prints the topology, the number of rows, the number of columns
// and the sorted flag. The specialized methods provided by
// Constraint_System and Generator_System take care of properly
// printing the contents of the system.
s << "topology " << (is_necessarily_closed()
? "NECESSARILY_CLOSED"
: "NOT_NECESSARILY_CLOSED")
<< "\n"
<< num_rows() << " x " << space_dimension() << " ";
Parma_Polyhedra_Library::ascii_dump(s, representation());
s << " " << (sorted ? "(sorted)" : "(not_sorted)")
<< "\n"
<< "index_first_pending " << first_pending_row()
<< "\n";
for (dimension_type i = 0; i < rows.size(); ++i)
rows[i].ascii_dump(s);
}
PPL_OUTPUT_TEMPLATE_DEFINITIONS_ASCII_ONLY(Row, Linear_System<Row>)
template <typename Row>
bool
Linear_System<Row>::ascii_load(std::istream& s) {
std::string str;
if (!(s >> str) || str != "topology")
return false;
if (!(s >> str))
return false;
clear();
Topology t;
if (str == "NECESSARILY_CLOSED")
t = NECESSARILY_CLOSED;
else {
if (str != "NOT_NECESSARILY_CLOSED")
return false;
t = NOT_NECESSARILY_CLOSED;
}
set_topology(t);
dimension_type nrows;
dimension_type space_dims;
if (!(s >> nrows))
return false;
if (!(s >> str) || str != "x")
return false;
if (!(s >> space_dims))
return false;
space_dimension_ = space_dims;
if (!Parma_Polyhedra_Library::ascii_load(s, representation_))
return false;
if (!(s >> str) || (str != "(sorted)" && str != "(not_sorted)"))
return false;
const bool sortedness = (str == "(sorted)");
dimension_type index;
if (!(s >> str) || str != "index_first_pending")
return false;
if (!(s >> index))
return false;
Row row;
for (dimension_type i = 0; i < nrows; ++i) {
if (!row.ascii_load(s))
return false;
insert(row, Recycle_Input());
}
index_first_pending = index;
sorted = sortedness;
// Check invariants.
PPL_ASSERT(OK());
return true;
}
template <typename Row>
void
Linear_System<Row>::insert(const Row& r) {
Row tmp(r, representation());
insert(tmp, Recycle_Input());
}
template <typename Row>
void
Linear_System<Row>::insert(Row& r, Recycle_Input) {
insert_no_ok(r, Recycle_Input());
PPL_ASSERT(OK());
}
template <typename Row>
void
Linear_System<Row>::insert_no_ok(Row& r, Recycle_Input) {
PPL_ASSERT(topology() == r.topology());
// This method is only used when the system has no pending rows.
PPL_ASSERT(num_pending_rows() == 0);
const bool was_sorted = is_sorted();
insert_pending_no_ok(r, Recycle_Input());
if (was_sorted) {
const dimension_type nrows = num_rows();
// The added row may have caused the system to be not sorted anymore.
if (nrows > 1) {
// If the system is not empty and the inserted row is the
// greatest one, the system is set to be sorted.
// If it is not the greatest one then the system is no longer sorted.
sorted = (compare(rows[nrows-2], rows[nrows-1]) <= 0);
}
else
// A system having only one row is sorted.
sorted = true;
}
unset_pending_rows();
}
template <typename Row>
void
Linear_System<Row>::insert_pending_no_ok(Row& r, Recycle_Input) {
// TODO: A Grid_Generator_System may contain non-normalized lines that
// represent parameters, so this check is disabled. Consider re-enabling it
// when it's possibile.
#if 0
// The added row must be strongly normalized and have the same
// number of elements as the existing rows of the system.
PPL_ASSERT(r.check_strong_normalized());
#endif
PPL_ASSERT(r.topology() == topology());
r.set_representation(representation());
if (space_dimension() < r.space_dimension())
set_space_dimension_no_ok(r.space_dimension());
else
r.set_space_dimension_no_ok(space_dimension());
rows.resize(rows.size() + 1);
swap(rows.back(), r);
}
template <typename Row>
void
Linear_System<Row>::insert_pending(const Row& r) {
Row tmp(r, representation());
insert_pending(tmp, Recycle_Input());
}
template <typename Row>
void
Linear_System<Row>::insert_pending(Row& r, Recycle_Input) {
insert_pending_no_ok(r, Recycle_Input());
PPL_ASSERT(OK());
}
template <typename Row>
void
Linear_System<Row>::insert_pending(const Linear_System& y) {
Linear_System tmp(y, representation(), With_Pending());
insert_pending(tmp, Recycle_Input());
}
template <typename Row>
void
Linear_System<Row>::insert_pending(Linear_System& y, Recycle_Input) {
Linear_System& x = *this;
PPL_ASSERT(x.space_dimension() == y.space_dimension());
// Steal the rows of `y'.
// This loop must use an increasing index (instead of a decreasing one) to
// preserve the row ordering.
for (dimension_type i = 0; i < y.num_rows(); ++i)
x.insert_pending(y.rows[i], Recycle_Input());
y.clear();
PPL_ASSERT(x.OK());
}
template <typename Row>
void
Linear_System<Row>::insert(const Linear_System& y) {
Linear_System tmp(y, representation(), With_Pending());
insert(tmp, Recycle_Input());
}
template <typename Row>
void
Linear_System<Row>::insert(Linear_System& y, Recycle_Input) {
PPL_ASSERT(num_pending_rows() == 0);
// Adding no rows is a no-op.
if (y.has_no_rows())
return;
// Check if sortedness is preserved.
if (is_sorted()) {
if (!y.is_sorted() || y.num_pending_rows() > 0)
sorted = false;
else {
// `y' is sorted and has no pending rows.
const dimension_type n_rows = num_rows();
if (n_rows > 0)
sorted = (compare(rows[n_rows-1], y[0]) <= 0);
}
}
// Add the rows of `y' as if they were pending.
insert_pending(y, Recycle_Input());
// TODO: May y have pending rows? Should they remain pending?
// There are no pending_rows.
unset_pending_rows();
PPL_ASSERT(OK());
}
template <typename Row>
void
Linear_System<Row>::remove_space_dimensions(const Variables_Set& vars) {
// Dimension-compatibility assertion.
PPL_ASSERT(space_dimension() >= vars.space_dimension());
// The removal of no dimensions from any system is a no-op. This
// case also captures the only legal removal of dimensions from a
// 0-dim system.
if (vars.empty())
return;
// NOTE: num_rows() is *not* constant, because it may be decreased by
// remove_row_no_ok().
for (dimension_type i = 0; i < num_rows(); ) {
const bool valid = rows[i].remove_space_dimensions(vars);
if (!valid) {
// Remove the current row.
// We can't call remove_row(i) here, because the system is not OK as
// some rows already have the new space dimension and others still have
// the old one.
remove_row_no_ok(i, false);
}
else
++i;
}
space_dimension_ -= vars.size();
PPL_ASSERT(OK());
}
template <typename Row>
void
Linear_System<Row>::shift_space_dimensions(Variable v, dimension_type n) {
// NOTE: v.id() may be equal to the space dimension of the system
// (when no space dimension need to be shifted).
PPL_ASSERT(v.id() <= space_dimension());
for (dimension_type i = rows.size(); i-- > 0; )
rows[i].shift_space_dimensions(v, n);
space_dimension_ += n;
PPL_ASSERT(OK());
}
template <typename Row>
void
Linear_System<Row>::sort_rows() {
// We sort the non-pending rows only.
sort_rows(0, first_pending_row());
sorted = true;
PPL_ASSERT(OK());
}
template <typename Row>
void
Linear_System<Row>::sort_rows(const dimension_type first_row,
const dimension_type last_row) {
PPL_ASSERT(first_row <= last_row && last_row <= num_rows());
// We cannot mix pending and non-pending rows.
PPL_ASSERT(first_row >= first_pending_row()
|| last_row <= first_pending_row());
const bool sorting_pending = (first_row >= first_pending_row());
const dimension_type old_num_pending = num_pending_rows();
const dimension_type num_elems = last_row - first_row;
if (num_elems < 2)
return;
// Build the function objects implementing indirect sort comparison,
// indirect unique comparison and indirect swap operation.
using namespace Implementation;
typedef Swapping_Vector<Row> Cont;
typedef Indirect_Sort_Compare<Cont, Row_Less_Than> Sort_Compare;
typedef Indirect_Swapper<Cont> Swapper;
const dimension_type num_duplicates
= indirect_sort_and_unique(num_elems,
Sort_Compare(rows, first_row),
Unique_Compare(rows, first_row),
Swapper(rows, first_row));
if (num_duplicates > 0) {
typedef typename Cont::iterator Iter;
typedef typename std::iterator_traits<Iter>::difference_type diff_t;
Iter last = rows.begin() + static_cast<diff_t>(last_row);
Iter first = last - + static_cast<diff_t>(num_duplicates);
rows.erase(first, last);
}
if (sorting_pending) {
PPL_ASSERT(old_num_pending >= num_duplicates);
index_first_pending = num_rows() - (old_num_pending - num_duplicates);
}
else {
index_first_pending = num_rows() - old_num_pending;
}
PPL_ASSERT(OK());
}
template <typename Row>
void
Linear_System<Row>::strong_normalize() {
const dimension_type nrows = rows.size();
// We strongly normalize also the pending rows.
for (dimension_type i = nrows; i-- > 0; )
rows[i].strong_normalize();
sorted = (nrows <= 1);
PPL_ASSERT(OK());
}
template <typename Row>
void
Linear_System<Row>::sign_normalize() {
const dimension_type nrows = rows.size();
// We sign-normalize also the pending rows.
for (dimension_type i = nrows; i-- > 0; )
rows[i].sign_normalize();
sorted = (nrows <= 1);
PPL_ASSERT(OK());
}
/*! \relates Parma_Polyhedra_Library::Linear_System */
template <typename Row>
bool
operator==(const Linear_System<Row>& x, const Linear_System<Row>& y) {
if (x.space_dimension() != y.space_dimension())
return false;
const dimension_type x_num_rows = x.num_rows();
const dimension_type y_num_rows = y.num_rows();
if (x_num_rows != y_num_rows)
return false;
if (x.first_pending_row() != y.first_pending_row())
return false;
// TODO: Check if the following comment is up to date.
// Notice that calling operator==(const Swapping_Vector<Row>&,
// const Swapping_Vector<Row>&)
// would be wrong here, as equality of the type fields would
// not be checked.
for (dimension_type i = x_num_rows; i-- > 0; )
if (x[i] != y[i])
return false;
return true;
}
template <typename Row>
void
Linear_System<Row>::sort_and_remove_with_sat(Bit_Matrix& sat) {
// We can only sort the non-pending part of the system.
PPL_ASSERT(first_pending_row() == sat.num_rows());
if (first_pending_row() <= 1) {
set_sorted(true);
return;
}
const dimension_type num_elems = sat.num_rows();
// Build the function objects implementing indirect sort comparison,
// indirect unique comparison and indirect swap operation.
typedef Swapping_Vector<Row> Cont;
const Implementation::Indirect_Sort_Compare<Cont, Row_Less_Than>
sort_cmp(rows);
const Unique_Compare unique_cmp(rows);
const Implementation::Indirect_Swapper2<Cont, Bit_Matrix> swapper(rows, sat);
const dimension_type num_duplicates
= Implementation::indirect_sort_and_unique(num_elems, sort_cmp,
unique_cmp, swapper);
const dimension_type new_first_pending_row
= first_pending_row() - num_duplicates;
if (num_pending_rows() > 0) {
// In this case, we must put the duplicates after the pending rows.
const dimension_type n_rows = num_rows() - 1;
for (dimension_type i = 0; i < num_duplicates; ++i)
swap(rows[new_first_pending_row + i], rows[n_rows - i]);
}
// Erasing the duplicated rows...
rows.resize(rows.size() - num_duplicates);
index_first_pending = new_first_pending_row;
// ... and the corresponding rows of the saturation matrix.
sat.remove_trailing_rows(num_duplicates);
// Now the system is sorted.
sorted = true;
PPL_ASSERT(OK());
}
template <typename Row>
dimension_type
Linear_System<Row>::gauss(const dimension_type n_lines_or_equalities) {
// This method is only applied to a linear system having no pending rows and
// exactly `n_lines_or_equalities' lines or equalities, all of which occur
// before the rays or points or inequalities.
PPL_ASSERT(num_pending_rows() == 0);
PPL_ASSERT(n_lines_or_equalities == num_lines_or_equalities());
#ifndef NDEBUG
for (dimension_type i = n_lines_or_equalities; i-- > 0; )
PPL_ASSERT((*this)[i].is_line_or_equality());
#endif
dimension_type rank = 0;
// Will keep track of the variations on the system of equalities.
bool changed = false;
// TODO: Don't use the number of columns.
const dimension_type num_cols
= is_necessarily_closed() ? space_dimension() + 1 : space_dimension() + 2;
// TODO: Consider exploiting the row (possible) sparseness of rows in the
// following loop, if needed. It would probably make it more cache-efficient
// for dense rows, too.
for (dimension_type j = num_cols; j-- > 0; )
for (dimension_type i = rank; i < n_lines_or_equalities; ++i) {
// Search for the first row having a non-zero coefficient
// (the pivot) in the j-th column.
if ((*this)[i].expr.get(j) == 0)
continue;
// Pivot found: if needed, swap rows so that this one becomes
// the rank-th row in the linear system.
if (i > rank) {
swap(rows[i], rows[rank]);
// After swapping the system is no longer sorted.
changed = true;
}
// Combine the row containing the pivot with all the lines or
// equalities following it, so that all the elements on the j-th
// column in these rows become 0.
for (dimension_type k = i + 1; k < n_lines_or_equalities; ++k) {
if (rows[k].expr.get(Variable(j - 1)) != 0) {
rows[k].linear_combine(rows[rank], j);
changed = true;
}
}
// Already dealt with the rank-th row.
++rank;
// Consider another column index `j'.
break;
}
if (changed)
sorted = false;
PPL_ASSERT(OK());
return rank;
}
template <typename Row>
void
Linear_System<Row>
::back_substitute(const dimension_type n_lines_or_equalities) {
// This method is only applied to a system having no pending rows and
// exactly `n_lines_or_equalities' lines or equalities, all of which occur
// before the first ray or point or inequality.
PPL_ASSERT(num_pending_rows() == 0);
PPL_ASSERT(n_lines_or_equalities <= num_lines_or_equalities());
#ifndef NDEBUG
for (dimension_type i = n_lines_or_equalities; i-- > 0; )
PPL_ASSERT((*this)[i].is_line_or_equality());
#endif
const dimension_type nrows = num_rows();
// Trying to keep sortedness.
bool still_sorted = is_sorted();
// This deque of Booleans will be used to flag those rows that,
// before exiting, need to be re-checked for sortedness.
std::deque<bool> check_for_sortedness;
if (still_sorted)
check_for_sortedness.insert(check_for_sortedness.end(), nrows, false);
for (dimension_type k = n_lines_or_equalities; k-- > 0; ) {
// For each line or equality, starting from the last one,
// looks for the last non-zero element.
// `j' will be the index of such a element.
Row& row_k = rows[k];
const dimension_type j = row_k.expr.last_nonzero();
// TODO: Check this.
PPL_ASSERT(j != 0);
// Go through the equalities above `row_k'.
for (dimension_type i = k; i-- > 0; ) {
Row& row_i = rows[i];
if (row_i.expr.get(Variable(j - 1)) != 0) {
// Combine linearly `row_i' with `row_k'
// so that `row_i[j]' becomes zero.
row_i.linear_combine(row_k, j);
if (still_sorted) {
// Trying to keep sortedness: remember which rows
// have to be re-checked for sortedness at the end.
if (i > 0)
check_for_sortedness[i-1] = true;
check_for_sortedness[i] = true;
}
}
}
// Due to strong normalization during previous iterations,
// the pivot coefficient `row_k[j]' may now be negative.
// Since an inequality (or ray or point) cannot be multiplied
// by a negative factor, the coefficient of the pivot must be
// forced to be positive.
const bool have_to_negate = (row_k.expr.get(Variable(j - 1)) < 0);
if (have_to_negate)
neg_assign(row_k.expr);
// NOTE: Here row_k will *not* be ok if we have negated it.
// Note: we do not mark index `k' in `check_for_sortedness',
// because we will later negate back the row.
// Go through all the other rows of the system.
for (dimension_type i = n_lines_or_equalities; i < nrows; ++i) {
Row& row_i = rows[i];
if (row_i.expr.get(Variable(j - 1)) != 0) {
// Combine linearly the `row_i' with `row_k'
// so that `row_i[j]' becomes zero.
row_i.linear_combine(row_k, j);
if (still_sorted) {
// Trying to keep sortedness: remember which rows
// have to be re-checked for sortedness at the end.
if (i > n_lines_or_equalities)
check_for_sortedness[i-1] = true;
check_for_sortedness[i] = true;
}
}
}
if (have_to_negate)
// Negate `row_k' to restore strong-normalization.
neg_assign(row_k.expr);
PPL_ASSERT(row_k.OK());
}
// Trying to keep sortedness.
for (dimension_type i = 0; still_sorted && i+1 < nrows; ++i)
if (check_for_sortedness[i])
// Have to check sortedness of `(*this)[i]' with respect to `(*this)[i+1]'.
still_sorted = (compare((*this)[i], (*this)[i+1]) <= 0);
// Set the sortedness flag.
sorted = still_sorted;
PPL_ASSERT(OK());
}
template <typename Row>
void
Linear_System<Row>::simplify() {
// This method is only applied to a system having no pending rows.
PPL_ASSERT(num_pending_rows() == 0);
// Partially sort the linear system so that all lines/equalities come first.
const dimension_type old_nrows = num_rows();
dimension_type nrows = old_nrows;
dimension_type n_lines_or_equalities = 0;
for (dimension_type i = 0; i < nrows; ++i)
if ((*this)[i].is_line_or_equality()) {
if (n_lines_or_equalities < i) {
swap(rows[i], rows[n_lines_or_equalities]);
// The system was not sorted.
PPL_ASSERT(!sorted);
}
++n_lines_or_equalities;
}
// Apply Gaussian elimination to the subsystem of lines/equalities.
const dimension_type rank = gauss(n_lines_or_equalities);
// Eliminate any redundant line/equality that has been detected.
if (rank < n_lines_or_equalities) {
const dimension_type
n_rays_or_points_or_inequalities = nrows - n_lines_or_equalities;
const dimension_type
num_swaps = std::min(n_lines_or_equalities - rank,
n_rays_or_points_or_inequalities);
for (dimension_type i = num_swaps; i-- > 0; )
swap(rows[--nrows], rows[rank + i]);
remove_trailing_rows(old_nrows - nrows);
if (n_rays_or_points_or_inequalities > num_swaps)
set_sorted(false);
unset_pending_rows();
n_lines_or_equalities = rank;
}
// Apply back-substitution to the system of rays/points/inequalities.
back_substitute(n_lines_or_equalities);
PPL_ASSERT(OK());
}
template <typename Row>
void
Linear_System<Row>
::add_universe_rows_and_space_dimensions(const dimension_type n) {
PPL_ASSERT(n > 0);
const bool was_sorted = is_sorted();
const dimension_type old_n_rows = num_rows();
const dimension_type old_space_dim
= is_necessarily_closed() ? space_dimension() : space_dimension() + 1;
set_space_dimension(space_dimension() + n);
rows.resize(rows.size() + n);
// The old system is moved to the bottom.
for (dimension_type i = old_n_rows; i-- > 0; )
swap(rows[i], rows[i + n]);
for (dimension_type i = n, c = old_space_dim; i-- > 0; ) {
// The top right-hand sub-system (i.e., the system made of new
// rows and columns) is set to the specular image of the identity
// matrix.
if (Variable(c).space_dimension() <= space_dimension()) {
// Variable(c) is a user variable.
Linear_Expression le(representation());
le.set_space_dimension(space_dimension());
le += Variable(c);
Row r(le, Row::LINE_OR_EQUALITY, row_topology);
swap(r, rows[i]);
}
else {
// Variable(c) is the epsilon dimension.
PPL_ASSERT(row_topology == NOT_NECESSARILY_CLOSED);
Linear_Expression le(Variable(c), representation());
Row r(le, Row::LINE_OR_EQUALITY, NECESSARILY_CLOSED);
r.mark_as_not_necessarily_closed();
swap(r, rows[i]);
// Note: `r' is strongly normalized.
}
++c;
}
// If the old system was empty, the last row added is either
// a positivity constraint or a point.
if (was_sorted)
sorted = (compare(rows[n-1], rows[n]) <= 0);
// If the system is not necessarily closed, move the epsilon coefficients to
// the last column.
if (!is_necessarily_closed()) {
// Try to preserve sortedness of `gen_sys'.
PPL_ASSERT(old_space_dim != 0);
if (!is_sorted()) {
for (dimension_type i = n; i-- > 0; ) {
rows[i].expr.swap_space_dimensions(Variable(old_space_dim - 1),
Variable(old_space_dim - 1 + n));
PPL_ASSERT(rows[i].OK());
}
}
else {
dimension_type old_eps_index = old_space_dim - 1;
// The upper-right corner of `rows' contains the J matrix:
// swap coefficients to preserve sortedness.
for (dimension_type i = n; i-- > 0; ++old_eps_index) {
rows[i].expr.swap_space_dimensions(Variable(old_eps_index),
Variable(old_eps_index + 1));
PPL_ASSERT(rows[i].OK());
}
sorted = true;
}
}
// NOTE: this already checks for OK().
set_index_first_pending_row(index_first_pending + n);
}
template <typename Row>
void
Linear_System<Row>::sort_pending_and_remove_duplicates() {
PPL_ASSERT(num_pending_rows() > 0);
PPL_ASSERT(is_sorted());
// The non-pending part of the system is already sorted.
// Now sorting the pending part..
const dimension_type first_pending = first_pending_row();
sort_rows(first_pending, num_rows());
// Recompute the number of rows, because we may have removed
// some rows occurring more than once in the pending part.
const dimension_type old_num_rows = num_rows();
dimension_type num_rows = old_num_rows;
dimension_type k1 = 0;
dimension_type k2 = first_pending;
dimension_type num_duplicates = 0;
// In order to erase them, put at the end of the system
// those pending rows that also occur in the non-pending part.
while (k1 < first_pending && k2 < num_rows) {
const int cmp = compare(rows[k1], rows[k2]);
if (cmp == 0) {
// We found the same row.
++num_duplicates;
--num_rows;
// By initial sortedness, we can increment index `k1'.
++k1;
// Do not increment `k2'; instead, swap there the next pending row.
if (k2 < num_rows)
swap(rows[k2], rows[k2 + num_duplicates]);
}
else if (cmp < 0)
// By initial sortedness, we can increment `k1'.
++k1;
else {
// Here `cmp > 0'.
// Increment `k2' and, if we already found any duplicate,
// swap the next pending row in position `k2'.
++k2;
if (num_duplicates > 0 && k2 < num_rows)
swap(rows[k2], rows[k2 + num_duplicates]);
}
}
// If needed, swap any duplicates found past the pending rows
// that has not been considered yet; then erase the duplicates.
if (num_duplicates > 0) {
if (k2 < num_rows)
for (++k2; k2 < num_rows; ++k2)
swap(rows[k2], rows[k2 + num_duplicates]);
rows.resize(num_rows);
}
sorted = true;
PPL_ASSERT(OK());
}
template <typename Row>
bool
Linear_System<Row>::check_sorted() const {
for (dimension_type i = first_pending_row(); i-- > 1; )
if (compare(rows[i], rows[i-1]) < 0)
return false;
return true;
}
template <typename Row>
bool
Linear_System<Row>::OK() const {
#ifndef NDEBUG
using std::endl;
using std::cerr;
#endif
for (dimension_type i = rows.size(); i-- > 0; ) {
if (rows[i].representation() != representation()) {
#ifndef NDEBUG
cerr << "Linear_System has a row with the wrong representation!"
<< endl;
#endif
return false;
}
if (rows[i].space_dimension() != space_dimension()) {
#ifndef NDEBUG
cerr << "Linear_System has a row with the wrong number of space dimensions!"
<< endl;
#endif
return false;
}
}
for (dimension_type i = rows.size(); i-- > 0; )
if (rows[i].topology() != topology()) {
#ifndef NDEBUG
cerr << "Linear_System has a row with the wrong topology!"
<< endl;
#endif
return false;
}
// `index_first_pending' must be less than or equal to `num_rows()'.
if (first_pending_row() > num_rows()) {
#ifndef NDEBUG
cerr << "Linear_System has a negative number of pending rows!"
<< endl;
#endif
return false;
}
// Check for topology mismatches.
const dimension_type n_rows = num_rows();
for (dimension_type i = 0; i < n_rows; ++i)
if (topology() != rows[i].topology()) {
#ifndef NDEBUG
cerr << "Topology mismatch between the system "
<< "and one of its rows!"
<< endl;
#endif
return false;
}
if (sorted && !check_sorted()) {
#ifndef NDEBUG
cerr << "The system declares itself to be sorted but it is not!"
<< endl;
#endif
return false;
}
// All checks passed.
return true;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Linear_System_defs.hh line 581. */
/* Automatically generated from PPL source file ../src/Constraint_System_defs.hh line 31. */
/* Automatically generated from PPL source file ../src/Constraint_System_defs.hh line 38. */
#include <iterator>
#include <iosfwd>
namespace Parma_Polyhedra_Library {
namespace IO_Operators {
//! Output operator.
/*!
\relates Parma_Polyhedra_Library::Constraint_System
Writes <CODE>true</CODE> if \p cs is empty. Otherwise, writes on
\p s the constraints of \p cs, all in one row and separated by ", ".
*/
std::ostream& operator<<(std::ostream& s, const Constraint_System& cs);
} // namespace IO_Operators
// TODO: Consider removing this.
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x and \p y are identical.
/*! \relates Constraint_System */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool operator==(const Constraint_System& x, const Constraint_System& y);
// TODO: Consider removing this.
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x and \p y are different.
/*! \relates Constraint_System */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool operator!=(const Constraint_System& x, const Constraint_System& y);
/*! \relates Constraint_System */
void
swap(Constraint_System& x, Constraint_System& y);
} // namespace Parma_Polyhedra_Library
//! A system of constraints.
/*! \ingroup PPL_CXX_interface
An object of the class Constraint_System is a system of constraints,
i.e., a multiset of objects of the class Constraint.
When inserting constraints in a system, space dimensions are
automatically adjusted so that all the constraints in the system
are defined on the same vector space.
\par
In all the examples it is assumed that variables
<CODE>x</CODE> and <CODE>y</CODE> are defined as follows:
\code
Variable x(0);
Variable y(1);
\endcode
\par Example 1
The following code builds a system of constraints corresponding to
a square in \f$\Rset^2\f$:
\code
Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 3);
cs.insert(y >= 0);
cs.insert(y <= 3);
\endcode
Note that:
the constraint system is created with space dimension zero;
the first and third constraint insertions increase the space
dimension to \f$1\f$ and \f$2\f$, respectively.
\par Example 2
By adding four strict inequalities to the constraint system
of the previous example, we can remove just the four
vertices from the square defined above.
\code
cs.insert(x + y > 0);
cs.insert(x + y < 6);
cs.insert(x - y < 3);
cs.insert(y - x < 3);
\endcode
\par Example 3
The following code builds a system of constraints corresponding to
a half-strip in \f$\Rset^2\f$:
\code
Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x - y <= 0);
cs.insert(x - y + 1 >= 0);
\endcode
\note
After inserting a multiset of constraints in a constraint system,
there are no guarantees that an <EM>exact</EM> copy of them
can be retrieved:
in general, only an <EM>equivalent</EM> constraint system
will be available, where original constraints may have been
reordered, removed (if they are trivial, duplicate or
implied by other constraints), linearly combined, etc.
*/
class Parma_Polyhedra_Library::Constraint_System {
public:
typedef Constraint row_type;
static const Representation default_representation = SPARSE;
//! Default constructor: builds an empty system of constraints.
explicit Constraint_System(Representation r = default_representation);
//! Builds the singleton system containing only constraint \p c.
explicit Constraint_System(const Constraint& c,
Representation r = default_representation);
//! Builds a system containing copies of any equalities in \p cgs.
explicit Constraint_System(const Congruence_System& cgs,
Representation r = default_representation);
//! Ordinary copy constructor.
/*!
\note The copy will have the same representation as `cs', to make it
indistinguishable from `cs'.
*/
Constraint_System(const Constraint_System& cs);
//! Copy constructor with specified representation.
Constraint_System(const Constraint_System& cs, Representation r);
//! Destructor.
~Constraint_System();
//! Assignment operator.
Constraint_System& operator=(const Constraint_System& y);
//! Returns the current representation of *this.
Representation representation() const;
//! Converts *this to the specified representation.
void set_representation(Representation r);
//! Returns the maximum space dimension a Constraint_System can handle.
static dimension_type max_space_dimension();
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
//! Sets the space dimension of the rows in the system to \p space_dim .
void set_space_dimension(dimension_type space_dim);
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
contains one or more equality constraints.
*/
bool has_equalities() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
contains one or more strict inequality constraints.
*/
bool has_strict_inequalities() const;
/*! \brief
Inserts in \p *this a copy of the constraint \p c,
increasing the number of space dimensions if needed.
*/
void insert(const Constraint& c);
//! Initializes the class.
static void initialize();
//! Finalizes the class.
static void finalize();
/*! \brief
Returns the singleton system containing only Constraint::zero_dim_false().
*/
static const Constraint_System& zero_dim_empty();
typedef Constraint_System_const_iterator const_iterator;
//! Returns <CODE>true</CODE> if and only if \p *this has no constraints.
bool empty() const;
/*! \brief
Removes all the constraints from the constraint system
and sets its space dimension to 0.
*/
void clear();
/*! \brief
Returns the const_iterator pointing to the first constraint,
if \p *this is not empty;
otherwise, returns the past-the-end const_iterator.
*/
const_iterator begin() const;
//! Returns the past-the-end const_iterator.
const_iterator end() const;
//! Checks if all the invariants are satisfied.
bool OK() const;
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
//! Swaps \p *this with \p y.
void m_swap(Constraint_System& y);
private:
Linear_System<Constraint> sys;
/*! \brief
Holds (between class initialization and finalization) a pointer to
the singleton system containing only Constraint::zero_dim_false().
*/
static const Constraint_System* zero_dim_empty_p;
friend class Constraint_System_const_iterator;
friend bool operator==(const Constraint_System& x,
const Constraint_System& y);
//! Builds an empty system of constraints having the specified topology.
explicit Constraint_System(Topology topol,
Representation r = default_representation);
/*! \brief
Builds a system of constraints on a \p space_dim dimensional space. If
\p topol is <CODE>NOT_NECESSARILY_CLOSED</CODE> the \f$\epsilon\f$
dimension is added.
*/
Constraint_System(Topology topol, dimension_type space_dim,
Representation r = default_representation);
//! Returns the number of equality constraints.
dimension_type num_equalities() const;
//! Returns the number of inequality constraints.
dimension_type num_inequalities() const;
/*! \brief
Applies Gaussian elimination and back-substitution so as
to provide a partial simplification of the system of constraints.
It is assumed that the system has no pending constraints.
*/
void simplify();
/*! \brief
Adjusts \p *this so that it matches \p new_topology and
\p new_space_dim (adding or removing columns if needed).
Returns <CODE>false</CODE> if and only if \p topol is
equal to <CODE>NECESSARILY_CLOSED</CODE> and \p *this
contains strict inequalities.
*/
bool adjust_topology_and_space_dimension(Topology new_topology,
dimension_type new_space_dim);
//! Returns a constant reference to the \p k- th constraint of the system.
const Constraint& operator[](dimension_type k) const;
//! Returns <CODE>true</CODE> if \p g satisfies all the constraints.
bool satisfies_all_constraints(const Generator& g) const;
//! Substitutes a given column of coefficients by a given affine expression.
/*!
\param v
The variable to which the affine transformation is substituted.
\param expr
The numerator of the affine transformation:
\f$\sum_{i = 0}^{n - 1} a_i x_i + b\f$;
\param denominator
The denominator of the affine transformation.
We want to allow affine transformations
(see Section \ref Images_and_Preimages_of_Affine_Transfer_Relations)
having any rational coefficients. Since the coefficients of the
constraints are integers we must also provide an integer \p
denominator that will be used as denominator of the affine
transformation.
The denominator is required to be a positive integer.
The affine transformation substitutes the matrix of constraints
by a new matrix whose elements \f${a'}_{ij}\f$ are built from
the old one \f$a_{ij}\f$ as follows:
\f[
{a'}_{ij} =
\begin{cases}
a_{ij} * \mathrm{denominator} + a_{iv} * \mathrm{expr}[j]
\quad \text{for } j \neq v; \\
\mathrm{expr}[v] * a_{iv}
\quad \text{for } j = v.
\end{cases}
\f]
\p expr is a constant parameter and unaltered by this computation.
*/
void affine_preimage(Variable v,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator);
/*! \brief
Inserts in \p *this a copy of the constraint \p c,
increasing the number of space dimensions if needed.
It is a pending constraint.
*/
void insert_pending(const Constraint& c);
//! Adds low-level constraints to the constraint system.
void add_low_level_constraints();
//! Returns the system topology.
Topology topology() const;
dimension_type num_rows() const;
/*! \brief
Returns <CODE>true</CODE> if and only if
the system topology is <CODE>NECESSARILY_CLOSED</CODE>.
*/
bool is_necessarily_closed() const;
//! Returns the number of rows that are in the pending part of the system.
dimension_type num_pending_rows() const;
//! Returns the index of the first pending row.
dimension_type first_pending_row() const;
//! Returns the value of the sortedness flag.
bool is_sorted() const;
//! Sets the index to indicate that the system has no pending rows.
void unset_pending_rows();
//! Sets the index of the first pending row to \p i.
void set_index_first_pending_row(dimension_type i);
//! Sets the sortedness flag of the system to \p b.
void set_sorted(bool b);
//! Makes the system shrink by removing its i-th row.
/*!
When \p keep_sorted is \p true and the system is sorted, sortedness will
be preserved, but this method costs O(n).
Otherwise, this method just swaps the i-th row with the last and then
removes it, so it costs O(1).
*/
void remove_row(dimension_type i, bool keep_sorted = false);
//! Removes the specified rows. The row ordering of remaining rows is
//! preserved.
/*!
\param indexes specifies a list of row indexes.
It must be sorted.
*/
void remove_rows(const std::vector<dimension_type>& indexes);
//! Makes the system shrink by removing the rows in [first,last).
/*!
When \p keep_sorted is \p true and the system is sorted, sortedness will
be preserved, but this method costs O(num_rows()).
Otherwise, this method just swaps the rows with the last ones and then
removes them, so it costs O(last - first).
*/
void remove_rows(dimension_type first, dimension_type last,
bool keep_sorted = false);
//! Makes the system shrink by removing its \p n trailing rows.
void remove_trailing_rows(dimension_type n);
//! Removes all the specified dimensions from the constraint system.
/*!
The space dimension of the variable with the highest space
dimension in \p vars must be at most the space dimension
of \p this.
*/
void remove_space_dimensions(const Variables_Set& vars);
//! Shift by \p n positions the coefficients of variables, starting from
//! the coefficient of \p v. This increases the space dimension by \p n.
void shift_space_dimensions(Variable v, dimension_type n);
//! Permutes the space dimensions of the matrix.
/*
\param cycle
A vector representing a cycle of the permutation according to which the
columns must be rearranged.
The \p cycle vector represents a cycle of a permutation of space
dimensions.
For example, the permutation
\f$ \{ x_1 \mapsto x_2, x_2 \mapsto x_3, x_3 \mapsto x_1 \}\f$ can be
represented by the vector containing \f$ x_1, x_2, x_3 \f$.
*/
void permute_space_dimensions(const std::vector<Variable>& cycle);
//! Swaps the coefficients of the variables \p v1 and \p v2 .
void swap_space_dimensions(Variable v1, Variable v2);
bool has_no_rows() const;
//! Strongly normalizes the system.
void strong_normalize();
/*! \brief
Sorts the non-pending rows (in growing order) and eliminates
duplicated ones.
*/
void sort_rows();
/*! \brief
Adds the given row to the pending part of the system, stealing its
contents and automatically resizing the system or the row, if needed.
*/
void insert_pending(Constraint& r, Recycle_Input);
//! Adds the rows of `y' to the pending part of `*this', stealing them from
//! `y'.
void insert_pending(Constraint_System& r, Recycle_Input);
/*! \brief
Adds \p r to the system, stealing its contents and
automatically resizing the system or the row, if needed.
*/
void insert(Constraint& r, Recycle_Input);
//! Adds to \p *this a the rows of `y', stealing them from `y'.
/*!
It is assumed that \p *this has no pending rows.
*/
void insert(Constraint_System& r, Recycle_Input);
//! Adds a copy of the rows of `y' to the pending part of `*this'.
void insert_pending(const Constraint_System& r);
/*! \brief
Assigns to \p *this the result of merging its rows with
those of \p y, obtaining a sorted system.
Duplicated rows will occur only once in the result.
On entry, both systems are assumed to be sorted and have
no pending rows.
*/
void merge_rows_assign(const Constraint_System& y);
//! Adds to \p *this a copy of the rows of \p y.
/*!
It is assumed that \p *this has no pending rows.
*/
void insert(const Constraint_System& y);
//! Marks the epsilon dimension as a standard dimension.
/*!
The system topology is changed to <CODE>NOT_NECESSARILY_CLOSED</CODE>, and
the number of space dimensions is increased by 1.
*/
void mark_as_necessarily_closed();
//! Marks the last dimension as the epsilon dimension.
/*!
The system topology is changed to <CODE>NECESSARILY_CLOSED</CODE>, and
the number of space dimensions is decreased by 1.
*/
void mark_as_not_necessarily_closed();
//! Minimizes the subsystem of equations contained in \p *this.
/*!
This method works only on the equalities of the system:
the system is required to be partially sorted, so that
all the equalities are grouped at its top; it is assumed that
the number of equalities is exactly \p n_lines_or_equalities.
The method finds a minimal system for the equalities and
returns its rank, i.e., the number of linearly independent equalities.
The result is an upper triangular subsystem of equalities:
for each equality, the pivot is chosen starting from
the right-most columns.
*/
dimension_type gauss(dimension_type n_lines_or_equalities);
/*! \brief
Back-substitutes the coefficients to reduce
the complexity of the system.
Takes an upper triangular system having \p n_lines_or_equalities rows.
For each row, starting from the one having the minimum number of
coefficients different from zero, computes the expression of an element
as a function of the remaining ones and then substitutes this expression
in all the other rows.
*/
void back_substitute(dimension_type n_lines_or_equalities);
//! Full assignment operator: pending rows are copied as pending.
void assign_with_pending(const Constraint_System& y);
/*! \brief
Sorts the pending rows and eliminates those that also occur
in the non-pending part of the system.
*/
void sort_pending_and_remove_duplicates();
/*! \brief
Sorts the system, removing duplicates, keeping the saturation
matrix consistent.
\param sat
Bit matrix with rows corresponding to the rows of \p *this.
*/
void sort_and_remove_with_sat(Bit_Matrix& sat);
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is sorted,
without checking for duplicates.
*/
bool check_sorted() const;
/*! \brief
Returns the number of rows in the system
that represent either lines or equalities.
*/
dimension_type num_lines_or_equalities() const;
//! Adds \p n rows and space dimensions to the system.
/*!
\param n
The number of rows and space dimensions to be added: must be strictly
positive.
Turns the system \f$M \in \Rset^r \times \Rset^c\f$ into
the system \f$N \in \Rset^{r+n} \times \Rset^{c+n}\f$
such that
\f$N = \bigl(\genfrac{}{}{0pt}{}{0}{M}\genfrac{}{}{0pt}{}{J}{o}\bigr)\f$,
where \f$J\f$ is the specular image
of the \f$n \times n\f$ identity matrix.
*/
void add_universe_rows_and_space_dimensions(dimension_type n);
friend class Polyhedron;
friend class Termination_Helpers;
};
//! An iterator over a system of constraints.
/*! \ingroup PPL_CXX_interface
A const_iterator is used to provide read-only access
to each constraint contained in a Constraint_System object.
\par Example
The following code prints the system of constraints
defining the polyhedron <CODE>ph</CODE>:
\code
const Constraint_System& cs = ph.constraints();
for (Constraint_System::const_iterator i = cs.begin(),
cs_end = cs.end(); i != cs_end; ++i)
cout << *i << endl;
\endcode
*/
// NOTE: This is not an inner class of Constraint_System, so Constraint can
// declare that this class is his friend without including this file
// (the .types.hh file suffices).
class Parma_Polyhedra_Library::Constraint_System_const_iterator
: public std::iterator<std::forward_iterator_tag,
Constraint,
ptrdiff_t,
const Constraint*,
const Constraint&> {
public:
//! Default constructor.
Constraint_System_const_iterator();
//! Ordinary copy constructor.
Constraint_System_const_iterator(const Constraint_System_const_iterator& y);
//! Destructor.
~Constraint_System_const_iterator();
//! Assignment operator.
Constraint_System_const_iterator&
operator=(const Constraint_System_const_iterator& y);
//! Dereference operator.
const Constraint& operator*() const;
//! Indirect member selector.
const Constraint* operator->() const;
//! Prefix increment operator.
Constraint_System_const_iterator& operator++();
//! Postfix increment operator.
Constraint_System_const_iterator operator++(int);
/*! \brief
Returns <CODE>true</CODE> if and only if
\p *this and \p y are identical.
*/
bool operator==(const Constraint_System_const_iterator& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if
\p *this and \p y are different.
*/
bool operator!=(const Constraint_System_const_iterator& y) const;
private:
friend class Constraint_System;
//! The const iterator over the matrix of constraints.
Linear_System<Constraint>::const_iterator i;
//! A const pointer to the matrix of constraints.
const Linear_System<Constraint>* csp;
//! Constructor.
Constraint_System_const_iterator(const Linear_System<Constraint>
::const_iterator& iter,
const Constraint_System& cs);
//! \p *this skips to the next non-trivial constraint.
void skip_forward();
};
namespace Parma_Polyhedra_Library {
namespace Implementation {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Helper returning number of constraints in system.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
dimension_type
num_constraints(const Constraint_System& cs);
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
// Constraint_System_inlines.hh is not included here on purpose.
/* Automatically generated from PPL source file ../src/Constraint_System_inlines.hh line 1. */
/* Constraint_System class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Constraint_System_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
inline
Constraint_System::Constraint_System(Representation r)
: sys(NECESSARILY_CLOSED, r) {
}
inline
Constraint_System::Constraint_System(const Constraint& c, Representation r)
: sys(c.topology(), r) {
sys.insert(c);
}
inline
Constraint_System::Constraint_System(const Constraint_System& cs)
: sys(cs.sys) {
}
inline
Constraint_System::Constraint_System(const Constraint_System& cs,
Representation r)
: sys(cs.sys, r) {
}
inline
Constraint_System::Constraint_System(const Topology topol, Representation r)
: sys(topol, r) {
}
inline
Constraint_System::Constraint_System(const Topology topol,
const dimension_type space_dim,
Representation r)
: sys(topol, space_dim, r) {
}
inline
Constraint_System::~Constraint_System() {
}
inline Constraint_System&
Constraint_System::operator=(const Constraint_System& y) {
Constraint_System tmp = y;
swap(*this, tmp);
return *this;
}
inline const Constraint&
Constraint_System::operator[](const dimension_type k) const {
return sys[k];
}
inline Representation
Constraint_System::representation() const {
return sys.representation();
}
inline void
Constraint_System::set_representation(Representation r) {
sys.set_representation(r);
}
inline dimension_type
Constraint_System::max_space_dimension() {
return Linear_System<Constraint>::max_space_dimension();
}
inline dimension_type
Constraint_System::space_dimension() const {
return sys.space_dimension();
}
inline void
Constraint_System::set_space_dimension(dimension_type space_dim) {
return sys.set_space_dimension(space_dim);
}
inline void
Constraint_System::clear() {
sys.clear();
}
inline const Constraint_System&
Constraint_System::zero_dim_empty() {
PPL_ASSERT(zero_dim_empty_p != 0);
return *zero_dim_empty_p;
}
inline
Constraint_System_const_iterator::Constraint_System_const_iterator()
: i(), csp(0) {
}
inline
Constraint_System_const_iterator::Constraint_System_const_iterator(const Constraint_System_const_iterator& y)
: i(y.i), csp(y.csp) {
}
inline
Constraint_System_const_iterator::~Constraint_System_const_iterator() {
}
inline Constraint_System_const_iterator&
Constraint_System_const_iterator::operator=(const Constraint_System_const_iterator& y) {
i = y.i;
csp = y.csp;
return *this;
}
inline const Constraint&
Constraint_System_const_iterator::operator*() const {
return *i;
}
inline const Constraint*
Constraint_System_const_iterator::operator->() const {
return i.operator->();
}
inline Constraint_System_const_iterator&
Constraint_System_const_iterator::operator++() {
++i;
skip_forward();
return *this;
}
inline Constraint_System_const_iterator
Constraint_System_const_iterator::operator++(int) {
const Constraint_System_const_iterator tmp = *this;
operator++();
return tmp;
}
inline bool
Constraint_System_const_iterator::operator==(const Constraint_System_const_iterator& y) const {
return i == y.i;
}
inline bool
Constraint_System_const_iterator::operator!=(const Constraint_System_const_iterator& y) const {
return i != y.i;
}
inline
Constraint_System_const_iterator::
Constraint_System_const_iterator(const Linear_System<Constraint>::const_iterator& iter,
const Constraint_System& cs)
: i(iter), csp(&cs.sys) {
}
inline Constraint_System_const_iterator
Constraint_System::begin() const {
const_iterator i(sys.begin(), *this);
i.skip_forward();
return i;
}
inline Constraint_System_const_iterator
Constraint_System::end() const {
const Constraint_System_const_iterator i(sys.end(), *this);
return i;
}
inline bool
Constraint_System::empty() const {
return begin() == end();
}
inline void
Constraint_System::add_low_level_constraints() {
if (sys.is_necessarily_closed())
// The positivity constraint.
insert(Constraint::zero_dim_positivity());
else {
// Add the epsilon constraints.
insert(Constraint::epsilon_leq_one());
insert(Constraint::epsilon_geq_zero());
}
}
inline void
Constraint_System::m_swap(Constraint_System& y) {
swap(sys, y.sys);
}
inline memory_size_type
Constraint_System::external_memory_in_bytes() const {
return sys.external_memory_in_bytes();
}
inline memory_size_type
Constraint_System::total_memory_in_bytes() const {
return external_memory_in_bytes() + sizeof(*this);
}
inline void
Constraint_System::simplify() {
sys.simplify();
}
inline Topology
Constraint_System::topology() const {
return sys.topology();
}
inline dimension_type
Constraint_System::num_rows() const {
return sys.num_rows();
}
inline bool
Constraint_System::is_necessarily_closed() const {
return sys.is_necessarily_closed();
}
inline dimension_type
Constraint_System::num_pending_rows() const {
return sys.num_pending_rows();
}
inline dimension_type
Constraint_System::first_pending_row() const {
return sys.first_pending_row();
}
inline bool
Constraint_System::is_sorted() const {
return sys.is_sorted();
}
inline void
Constraint_System::unset_pending_rows() {
sys.unset_pending_rows();
}
inline void
Constraint_System::set_index_first_pending_row(dimension_type i) {
sys.set_index_first_pending_row(i);
}
inline void
Constraint_System::set_sorted(bool b) {
sys.set_sorted(b);
}
inline void
Constraint_System::remove_row(dimension_type i, bool keep_sorted) {
sys.remove_row(i, keep_sorted);
}
inline void
Constraint_System::remove_rows(dimension_type first, dimension_type last,
bool keep_sorted) {
sys.remove_rows(first, last, keep_sorted);
}
inline void
Constraint_System::remove_rows(const std::vector<dimension_type>& indexes) {
sys.remove_rows(indexes);
}
inline void
Constraint_System::remove_trailing_rows(dimension_type n) {
sys.remove_trailing_rows(n);
}
inline void
Constraint_System
::remove_space_dimensions(const Variables_Set& vars) {
sys.remove_space_dimensions(vars);
}
inline void
Constraint_System
::shift_space_dimensions(Variable v, dimension_type n) {
sys.shift_space_dimensions(v, n);
}
inline void
Constraint_System
::permute_space_dimensions(const std::vector<Variable>& cycle) {
sys.permute_space_dimensions(cycle);
}
inline void
Constraint_System
::swap_space_dimensions(Variable v1, Variable v2) {
sys.swap_space_dimensions(v1, v2);
}
inline bool
Constraint_System::has_no_rows() const {
return sys.has_no_rows();
}
inline void
Constraint_System::strong_normalize() {
sys.strong_normalize();
}
inline void
Constraint_System::sort_rows() {
sys.sort_rows();
}
inline void
Constraint_System::insert_pending(Constraint_System& r, Recycle_Input) {
sys.insert_pending(r.sys, Recycle_Input());
}
inline void
Constraint_System::insert(Constraint_System& r, Recycle_Input) {
sys.insert(r.sys, Recycle_Input());
}
inline void
Constraint_System::insert_pending(const Constraint_System& r) {
sys.insert_pending(r.sys);
}
inline void
Constraint_System::merge_rows_assign(const Constraint_System& y) {
sys.merge_rows_assign(y.sys);
}
inline void
Constraint_System::insert(const Constraint_System& y) {
sys.insert(y.sys);
}
inline void
Constraint_System::mark_as_necessarily_closed() {
sys.mark_as_necessarily_closed();
}
inline void
Constraint_System::mark_as_not_necessarily_closed() {
sys.mark_as_not_necessarily_closed();
}
inline dimension_type
Constraint_System::gauss(dimension_type n_lines_or_equalities) {
return sys.gauss(n_lines_or_equalities);
}
inline void
Constraint_System::back_substitute(dimension_type n_lines_or_equalities) {
sys.back_substitute(n_lines_or_equalities);
}
inline void
Constraint_System::assign_with_pending(const Constraint_System& y) {
sys.assign_with_pending(y.sys);
}
inline void
Constraint_System::sort_pending_and_remove_duplicates() {
sys.sort_pending_and_remove_duplicates();
}
inline void
Constraint_System::sort_and_remove_with_sat(Bit_Matrix& sat) {
sys.sort_and_remove_with_sat(sat);
}
inline bool
Constraint_System::check_sorted() const {
return sys.check_sorted();
}
inline dimension_type
Constraint_System::num_lines_or_equalities() const {
return sys.num_lines_or_equalities();
}
inline void
Constraint_System::add_universe_rows_and_space_dimensions(dimension_type n) {
sys.add_universe_rows_and_space_dimensions(n);
}
inline bool
operator==(const Constraint_System& x, const Constraint_System& y) {
return x.sys == y.sys;
}
inline bool
operator!=(const Constraint_System& x, const Constraint_System& y) {
return !(x == y);
}
/*! \relates Constraint_System */
inline void
swap(Constraint_System& x, Constraint_System& y) {
x.m_swap(y);
}
namespace Implementation {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates Parma_Polyhedra_Library::Constraint_System */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
inline dimension_type
num_constraints(const Constraint_System& cs) {
return static_cast<dimension_type>(std::distance(cs.begin(), cs.end()));
}
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Congruence_System_defs.hh line 1. */
/* Congruence_System class declaration.
*/
/* Automatically generated from PPL source file ../src/Congruence_System_defs.hh line 35. */
#include <iosfwd>
namespace Parma_Polyhedra_Library {
/*! \relates Congruence_System */
bool
operator==(const Congruence_System& x, const Congruence_System& y);
}
//! A system of congruences.
/*! \ingroup PPL_CXX_interface
An object of the class Congruence_System is a system of congruences,
i.e., a multiset of objects of the class Congruence.
When inserting congruences in a system, space dimensions are
automatically adjusted so that all the congruences in the system
are defined on the same vector space.
\par
In all the examples it is assumed that variables
<CODE>x</CODE> and <CODE>y</CODE> are defined as follows:
\code
Variable x(0);
Variable y(1);
\endcode
\par Example 1
The following code builds a system of congruences corresponding to
an integer grid in \f$\Rset^2\f$:
\code
Congruence_System cgs;
cgs.insert(x %= 0);
cgs.insert(y %= 0);
\endcode
Note that:
the congruence system is created with space dimension zero;
the first and second congruence insertions increase the space
dimension to \f$1\f$ and \f$2\f$, respectively.
\par Example 2
By adding to the congruence system of the previous example,
the congruence \f$x + y = 1 \pmod{2}\f$:
\code
cgs.insert((x + y %= 1) / 2);
\endcode
we obtain the grid containing just those integral
points where the sum of the \p x and \p y values is odd.
\par Example 3
The following code builds a system of congruences corresponding to
the grid in \f$\Zset^2\f$ containing just the integral points on
the \p x axis:
\code
Congruence_System cgs;
cgs.insert(x %= 0);
cgs.insert((y %= 0) / 0);
\endcode
\note
After inserting a multiset of congruences in a congruence system,
there are no guarantees that an <EM>exact</EM> copy of them
can be retrieved:
in general, only an <EM>equivalent</EM> congruence system
will be available, where original congruences may have been
reordered, removed (if they are trivial, duplicate or
implied by other congruences), linearly combined, etc.
*/
class Parma_Polyhedra_Library::Congruence_System {
public:
typedef Congruence row_type;
static const Representation default_representation = SPARSE;
//! Default constructor: builds an empty system of congruences.
explicit Congruence_System(Representation r = default_representation);
//! Builds an empty (i.e. zero rows) system of dimension \p d.
explicit Congruence_System(dimension_type d,
Representation r = default_representation);
//! Builds the singleton system containing only congruence \p cg.
explicit Congruence_System(const Congruence& cg,
Representation r = default_representation);
/*! \brief
If \p c represents the constraint \f$ e_1 = e_2 \f$, builds the
singleton system containing only constraint \f$ e_1 = e_2
\pmod{0}\f$.
\exception std::invalid_argument
Thrown if \p c is not an equality constraint.
*/
explicit Congruence_System(const Constraint& c,
Representation r = default_representation);
//! Builds a system containing copies of any equalities in \p cs.
explicit Congruence_System(const Constraint_System& cs,
Representation r = default_representation);
//! Ordinary copy constructor.
/*!
\note
The new Congruence_System will have the same Representation as `cgs'
so that it's indistinguishable from `cgs'.
*/
Congruence_System(const Congruence_System& cgs);
//! Copy constructor with specified representation.
Congruence_System(const Congruence_System& cgs, Representation r);
//! Destructor.
~Congruence_System();
//! Assignment operator.
Congruence_System& operator=(const Congruence_System& y);
//! Returns the current representation of *this.
Representation representation() const;
//! Converts *this to the specified representation.
void set_representation(Representation r);
//! Returns the maximum space dimension a Congruence_System can handle.
static dimension_type max_space_dimension();
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is exactly equal
to \p y.
*/
bool is_equal_to(const Congruence_System& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this contains one or
more linear equalities.
*/
bool has_linear_equalities() const;
//! Removes all the congruences and sets the space dimension to 0.
void clear();
/*! \brief
Inserts in \p *this a copy of the congruence \p cg, increasing the
number of space dimensions if needed.
The copy of \p cg will be strongly normalized after being
inserted.
*/
void insert(const Congruence& cg);
/*! \brief
Inserts in \p *this the congruence \p cg, stealing its contents and
increasing the number of space dimensions if needed.
\p cg will be strongly normalized.
*/
void insert(Congruence& cg, Recycle_Input);
/*! \brief
Inserts in \p *this a copy of the equality constraint \p c, seen
as a modulo 0 congruence, increasing the number of space
dimensions if needed.
The modulo 0 congruence will be strongly normalized after being
inserted.
\exception std::invalid_argument
Thrown if \p c is a relational constraint.
*/
void insert(const Constraint& c);
// TODO: Consider adding a insert(cg, Recycle_Input).
/*! \brief
Inserts in \p *this a copy of the congruences in \p y,
increasing the number of space dimensions if needed.
The inserted copies will be strongly normalized.
*/
void insert(const Congruence_System& y);
/*! \brief
Inserts into \p *this the congruences in \p cgs, increasing the
number of space dimensions if needed.
*/
void insert(Congruence_System& cgs, Recycle_Input);
//! Initializes the class.
static void initialize();
//! Finalizes the class.
static void finalize();
//! Returns the system containing only Congruence::zero_dim_false().
static const Congruence_System& zero_dim_empty();
//! An iterator over a system of congruences.
/*! \ingroup PPL_CXX_interface
A const_iterator is used to provide read-only access
to each congruence contained in an object of Congruence_System.
\par Example
The following code prints the system of congruences
defining the grid <CODE>gr</CODE>:
\code
const Congruence_System& cgs = gr.congruences();
for (Congruence_System::const_iterator i = cgs.begin(),
cgs_end = cgs.end(); i != cgs_end; ++i)
cout << *i << endl;
\endcode
*/
class const_iterator
: public std::iterator<std::forward_iterator_tag,
Congruence,
ptrdiff_t,
const Congruence*,
const Congruence&> {
public:
//! Default constructor.
const_iterator();
//! Ordinary copy constructor.
const_iterator(const const_iterator& y);
//! Destructor.
~const_iterator();
//! Assignment operator.
const_iterator& operator=(const const_iterator& y);
//! Dereference operator.
const Congruence& operator*() const;
//! Indirect member selector.
const Congruence* operator->() const;
//! Prefix increment operator.
const_iterator& operator++();
//! Postfix increment operator.
const_iterator operator++(int);
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this and \p y are
identical.
*/
bool operator==(const const_iterator& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this and \p y are
different.
*/
bool operator!=(const const_iterator& y) const;
private:
friend class Congruence_System;
//! The const iterator over the vector of congruences.
Swapping_Vector<Congruence>::const_iterator i;
//! A const pointer to the vector of congruences.
const Swapping_Vector<Congruence>* csp;
//! Constructor.
const_iterator(const Swapping_Vector<Congruence>::const_iterator& iter,
const Congruence_System& cgs);
//! \p *this skips to the next non-trivial congruence.
void skip_forward();
};
//! Returns <CODE>true</CODE> if and only if \p *this has no congruences.
bool empty() const;
/*! \brief
Returns the const_iterator pointing to the first congruence, if \p
*this is not empty; otherwise, returns the past-the-end
const_iterator.
*/
const_iterator begin() const;
//! Returns the past-the-end const_iterator.
const_iterator end() const;
//! Checks if all the invariants are satisfied.
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*!
Returns <CODE>true</CODE> if and only if all rows have space dimension
space_dimension_, each row in the system is a valid Congruence and the
space dimension is consistent with the number of congruences.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool OK() const;
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
//! Returns the number of equalities.
dimension_type num_equalities() const;
//! Returns the number of proper congruences.
dimension_type num_proper_congruences() const;
//! Swaps \p *this with \p y.
void m_swap(Congruence_System& y);
/*! \brief
Adds \p dims rows and \p dims space dimensions to the matrix,
initializing the added rows as in the unit congruence system.
\param dims
The number of rows and space dimensions to be added: must be strictly
positive.
Turns the \f$r \times c\f$ matrix \f$A\f$ into the \f$(r+dims) \times
(c+dims)\f$ matrix
\f$\bigl(\genfrac{}{}{0pt}{}{0}{A} \genfrac{}{}{0pt}{}{B}{A}\bigr)\f$
where \f$B\f$ is the \f$dims \times dims\f$ unit matrix of the form
\f$\bigl(\genfrac{}{}{0pt}{}{0}{1} \genfrac{}{}{0pt}{}{1}{0}\bigr)\f$.
The matrix is expanded avoiding reallocation whenever possible.
*/
void add_unit_rows_and_space_dimensions(dimension_type dims);
//! Permutes the space dimensions of the system.
/*!
\param cycle
A vector representing a cycle of the permutation according to which the
columns must be rearranged.
The \p cycle vector represents a cycle of a permutation of space
dimensions.
For example, the permutation
\f$ \{ x_1 \mapsto x_2, x_2 \mapsto x_3, x_3 \mapsto x_1 \}\f$ can be
represented by the vector containing \f$ x_1, x_2, x_3 \f$.
*/
void permute_space_dimensions(const std::vector<Variable>& cycle);
//! Swaps the columns having indexes \p i and \p j.
void swap_space_dimensions(Variable v1, Variable v2);
//! Sets the number of space dimensions to \p new_space_dim.
/*!
If \p new_space_dim is lower than the current space dimension, the
coefficients referring to the removed space dimensions are lost.
*/
bool set_space_dimension(dimension_type new_space_dim);
// Note: the following method is protected to allow tests/Grid/congruences2
// to call it using a derived class.
protected:
//! Returns <CODE>true</CODE> if \p g satisfies all the congruences.
bool satisfies_all_congruences(const Grid_Generator& g) const;
private:
//! Returns the number of rows in the system.
dimension_type num_rows() const;
//! Returns \c true if num_rows()==0.
bool has_no_rows() const;
//! Returns a constant reference to the \p k- th congruence of the system.
const Congruence& operator[](dimension_type k) const;
//! Adjusts all expressions to have the same moduli.
void normalize_moduli();
/*! \brief
Substitutes a given column of coefficients by a given affine
expression.
\param v
Index of the column to which the affine transformation is
substituted;
\param expr
The numerator of the affine transformation:
\f$\sum_{i = 0}^{n - 1} a_i x_i + b\f$;
\param denominator
The denominator of the affine transformation.
We allow affine transformations (see the Section \ref
rational_grid_operations) to have rational
coefficients. Since the coefficients of linear expressions are
integers we also provide an integer \p denominator that will
be used as denominator of the affine transformation. The
denominator is required to be a positive integer and its default value
is 1.
The affine transformation substitutes the matrix of congruences
by a new matrix whose elements \f${a'}_{ij}\f$ are built from
the old one \f$a_{ij}\f$ as follows:
\f[
{a'}_{ij} =
\begin{cases}
a_{ij} * \mathrm{denominator} + a_{iv} * \mathrm{expr}[j]
\quad \text{for } j \neq v; \\
\mathrm{expr}[v] * a_{iv}
\quad \text{for } j = v.
\end{cases}
\f]
\p expr is a constant parameter and unaltered by this computation.
*/
void affine_preimage(Variable v,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator);
// TODO: Consider making this private.
/*! \brief
Concatenates copies of the congruences from \p y onto \p *this.
\param y
The congruence system to append to \p this. The number of rows in
\p y must be strictly positive.
The matrix for the new system of congruences is obtained by
leaving the old system in the upper left-hand side and placing the
congruences of \p y in the lower right-hand side, and padding
with zeroes.
*/
void concatenate(const Congruence_System& y);
/*! \brief
Inserts in \p *this the congruence \p cg, stealing its contents and
increasing the number of space dimensions if needed.
This method inserts \p cg in the given form, instead of first strong
normalizing \p cg as \ref insert would do.
*/
void insert_verbatim(Congruence& cg, Recycle_Input);
//! Makes the system shrink by removing the rows in [first,last).
/*!
If \p keep_sorted is <CODE>true</CODE>, the ordering of the remaining rows
will be preserved.
*/
void remove_rows(dimension_type first, dimension_type last,
bool keep_sorted);
void remove_trailing_rows(dimension_type n);
/*! \brief
Holds (between class initialization and finalization) a pointer to
the singleton system containing only Congruence::zero_dim_false().
*/
static const Congruence_System* zero_dim_empty_p;
Swapping_Vector<Congruence> rows;
dimension_type space_dimension_;
Representation representation_;
/*! \brief
Returns <CODE>true</CODE> if and only if any of the dimensions in
\p *this is free of constraint.
Any equality or proper congruence affecting a dimension constrains
that dimension.
This method assumes the system is in minimal form.
*/
bool has_a_free_dimension() const;
friend class Grid;
friend bool
operator==(const Congruence_System& x, const Congruence_System& y);
};
namespace Parma_Polyhedra_Library {
namespace IO_Operators {
//! Output operator.
/*!
\relates Parma_Polyhedra_Library::Congruence_System
Writes <CODE>true</CODE> if \p cgs is empty. Otherwise, writes on
\p s the congruences of \p cgs, all in one row and separated by ", ".
*/
std::ostream&
operator<<(std::ostream& s, const Congruence_System& cgs);
} // namespace IO_Operators
/*! \relates Congruence_System */
void
swap(Congruence_System& x, Congruence_System& y);
} // namespace Parma_Polyhedra_Library
// Congruence_System_inlines.hh is not included here on purpose.
/* Automatically generated from PPL source file ../src/Congruence_System_inlines.hh line 1. */
/* Congruence_System class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Congruence_System_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
inline const Congruence&
Congruence_System::operator[](const dimension_type k) const {
return rows[k];
}
inline dimension_type
Congruence_System::num_rows() const {
return rows.size();
}
inline bool
Congruence_System::has_no_rows() const {
return num_rows() == 0;
}
inline void
Congruence_System::remove_trailing_rows(dimension_type n) {
PPL_ASSERT(num_rows() >= n);
rows.resize(num_rows() - n);
}
inline void
Congruence_System::insert(const Congruence& cg) {
Congruence tmp = cg;
insert(tmp, Recycle_Input());
}
inline void
Congruence_System::insert(Congruence& cg, Recycle_Input) {
PPL_ASSERT(cg.OK());
cg.strong_normalize();
PPL_ASSERT(cg.OK());
insert_verbatim(cg, Recycle_Input());
PPL_ASSERT(OK());
}
inline
Congruence_System::Congruence_System(Representation r)
: rows(),
space_dimension_(0),
representation_(r) {
}
inline
Congruence_System::Congruence_System(const Congruence& cg, Representation r)
: rows(),
space_dimension_(0),
representation_(r) {
insert(cg);
}
inline
Congruence_System::Congruence_System(const Constraint& c, Representation r)
: rows(),
space_dimension_(0),
representation_(r) {
insert(c);
}
inline
Congruence_System::Congruence_System(const Congruence_System& cgs)
: rows(cgs.rows),
space_dimension_(cgs.space_dimension_),
representation_(cgs.representation_) {
}
inline
Congruence_System::Congruence_System(const Congruence_System& cgs,
Representation r)
: rows(cgs.rows),
space_dimension_(cgs.space_dimension_),
representation_(r) {
if (cgs.representation() != r) {
for (dimension_type i = 0; i < num_rows(); ++i)
rows[i].set_representation(representation());
}
}
inline
Congruence_System::Congruence_System(const dimension_type d, Representation r)
: rows(),
space_dimension_(d),
representation_(r) {
}
inline
Congruence_System::~Congruence_System() {
}
inline Congruence_System&
Congruence_System::operator=(const Congruence_System& y) {
Congruence_System tmp = y;
swap(*this, tmp);
return *this;
}
inline Representation
Congruence_System::representation() const {
return representation_;
}
inline void
Congruence_System::set_representation(Representation r) {
if (representation_ == r)
return;
representation_ = r;
for (dimension_type i = 0; i < num_rows(); ++i)
rows[i].set_representation(r);
PPL_ASSERT(OK());
}
inline dimension_type
Congruence_System::max_space_dimension() {
return Congruence::max_space_dimension();
}
inline dimension_type
Congruence_System::space_dimension() const {
return space_dimension_;
}
inline void
Congruence_System::clear() {
rows.clear();
space_dimension_ = 0;
}
inline const Congruence_System&
Congruence_System::zero_dim_empty() {
PPL_ASSERT(zero_dim_empty_p != 0);
return *zero_dim_empty_p;
}
inline
Congruence_System::const_iterator::const_iterator()
: i(), csp(0) {
}
inline
Congruence_System::const_iterator::const_iterator(const const_iterator& y)
: i(y.i), csp(y.csp) {
}
inline
Congruence_System::const_iterator::~const_iterator() {
}
inline Congruence_System::const_iterator&
Congruence_System::const_iterator::operator=(const const_iterator& y) {
i = y.i;
csp = y.csp;
return *this;
}
inline const Congruence&
Congruence_System::const_iterator::operator*() const {
return *i;
}
inline const Congruence*
Congruence_System::const_iterator::operator->() const {
return i.operator->();
}
inline Congruence_System::const_iterator&
Congruence_System::const_iterator::operator++() {
++i;
skip_forward();
return *this;
}
inline Congruence_System::const_iterator
Congruence_System::const_iterator::operator++(int) {
const const_iterator tmp = *this;
operator++();
return tmp;
}
inline bool
Congruence_System::const_iterator::operator==(const const_iterator& y) const {
return i == y.i;
}
inline bool
Congruence_System::const_iterator::operator!=(const const_iterator& y) const {
return i != y.i;
}
inline
Congruence_System::const_iterator::
const_iterator(const Swapping_Vector<Congruence>::const_iterator& iter,
const Congruence_System& cgs)
: i(iter), csp(&cgs.rows) {
}
inline Congruence_System::const_iterator
Congruence_System::begin() const {
const_iterator i(rows.begin(), *this);
i.skip_forward();
return i;
}
inline Congruence_System::const_iterator
Congruence_System::end() const {
const const_iterator i(rows.end(), *this);
return i;
}
inline bool
Congruence_System::empty() const {
return begin() == end();
}
inline void
Congruence_System::m_swap(Congruence_System& y) {
using std::swap;
swap(rows, y.rows);
swap(space_dimension_, y.space_dimension_);
swap(representation_, y.representation_);
PPL_ASSERT(OK());
PPL_ASSERT(y.OK());
}
inline memory_size_type
Congruence_System::external_memory_in_bytes() const {
return rows.external_memory_in_bytes();
}
inline memory_size_type
Congruence_System::total_memory_in_bytes() const {
return rows.external_memory_in_bytes() + sizeof(*this);
}
/*! \relates Congruence_System */
inline void
swap(Congruence_System& x, Congruence_System& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Box_inlines.hh line 33. */
namespace Parma_Polyhedra_Library {
template <typename ITV>
inline bool
Box<ITV>::marked_empty() const {
return status.test_empty_up_to_date() && status.test_empty();
}
template <typename ITV>
inline void
Box<ITV>::set_empty() {
status.set_empty();
status.set_empty_up_to_date();
}
template <typename ITV>
inline void
Box<ITV>::set_nonempty() {
status.reset_empty();
status.set_empty_up_to_date();
}
template <typename ITV>
inline void
Box<ITV>::set_empty_up_to_date() {
status.set_empty_up_to_date();
}
template <typename ITV>
inline void
Box<ITV>::reset_empty_up_to_date() {
return status.reset_empty_up_to_date();
}
template <typename ITV>
inline
Box<ITV>::Box(const Box& y, Complexity_Class)
: seq(y.seq), status(y.status) {
}
template <typename ITV>
inline Box<ITV>&
Box<ITV>::operator=(const Box& y) {
seq = y.seq;
status = y.status;
return *this;
}
template <typename ITV>
inline void
Box<ITV>::m_swap(Box& y) {
Box& x = *this;
using std::swap;
swap(x.seq, y.seq);
swap(x.status, y.status);
}
template <typename ITV>
inline
Box<ITV>::Box(const Constraint_System& cs, Recycle_Input) {
// Recycling is useless: just delegate.
Box<ITV> tmp(cs);
this->m_swap(tmp);
}
template <typename ITV>
inline
Box<ITV>::Box(const Generator_System& gs, Recycle_Input) {
// Recycling is useless: just delegate.
Box<ITV> tmp(gs);
this->m_swap(tmp);
}
template <typename ITV>
inline
Box<ITV>::Box(const Congruence_System& cgs, Recycle_Input) {
// Recycling is useless: just delegate.
Box<ITV> tmp(cgs);
this->m_swap(tmp);
}
template <typename ITV>
inline memory_size_type
Box<ITV>::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
template <typename ITV>
inline dimension_type
Box<ITV>::space_dimension() const {
return seq.size();
}
template <typename ITV>
inline dimension_type
Box<ITV>::max_space_dimension() {
// One dimension is reserved to have a value of type dimension_type
// that does not represent a legal dimension.
return Sequence().max_size() - 1;
}
template <typename ITV>
inline int32_t
Box<ITV>::hash_code() const {
return hash_code_from_dimension(space_dimension());
}
template <typename ITV>
inline const ITV&
Box<ITV>::operator[](const dimension_type k) const {
PPL_ASSERT(k < seq.size());
return seq[k];
}
template <typename ITV>
inline const ITV&
Box<ITV>::get_interval(const Variable var) const {
if (space_dimension() < var.space_dimension())
throw_dimension_incompatible("get_interval(v)", "v", var);
if (is_empty()) {
static ITV empty_interval(EMPTY);
return empty_interval;
}
return seq[var.id()];
}
template <typename ITV>
inline void
Box<ITV>::set_interval(const Variable var, const ITV& i) {
const dimension_type space_dim = space_dimension();
if (space_dim < var.space_dimension())
throw_dimension_incompatible("set_interval(v, i)", "v", var);
if (is_empty() && space_dim >= 2)
// If the box is empty, and has dimension >= 2, setting only one
// interval will not make it non-empty.
return;
seq[var.id()] = i;
reset_empty_up_to_date();
PPL_ASSERT(OK());
}
template <typename ITV>
inline bool
Box<ITV>::is_empty() const {
return marked_empty() || check_empty();
}
template <typename ITV>
inline bool
Box<ITV>::bounds_from_above(const Linear_Expression& expr) const {
return bounds(expr, true);
}
template <typename ITV>
inline bool
Box<ITV>::bounds_from_below(const Linear_Expression& expr) const {
return bounds(expr, false);
}
template <typename ITV>
inline bool
Box<ITV>::maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d,
bool& maximum) const {
return max_min(expr, true, sup_n, sup_d, maximum);
}
template <typename ITV>
inline bool
Box<ITV>::maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum,
Generator& g) const {
return max_min(expr, true, sup_n, sup_d, maximum, g);
}
template <typename ITV>
inline bool
Box<ITV>::minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d,
bool& minimum) const {
return max_min(expr, false, inf_n, inf_d, minimum);
}
template <typename ITV>
inline bool
Box<ITV>::minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum,
Generator& g) const {
return max_min(expr, false, inf_n, inf_d, minimum, g);
}
template <typename ITV>
inline bool
Box<ITV>::strictly_contains(const Box& y) const {
const Box& x = *this;
return x.contains(y) && !y.contains(x);
}
template <typename ITV>
inline void
Box<ITV>::expand_space_dimension(const Variable var,
const dimension_type m) {
const dimension_type space_dim = space_dimension();
// `var' should be one of the dimensions of the vector space.
if (var.space_dimension() > space_dim)
throw_dimension_incompatible("expand_space_dimension(v, m)", "v", var);
// The space dimension of the resulting Box should not
// overflow the maximum allowed space dimension.
if (m > max_space_dimension() - space_dim)
throw_invalid_argument("expand_dimension(v, m)",
"adding m new space dimensions exceeds "
"the maximum allowed space dimension");
// To expand the space dimension corresponding to variable `var',
// we append to the box `m' copies of the corresponding interval.
seq.insert(seq.end(), m, seq[var.id()]);
PPL_ASSERT(OK());
}
template <typename ITV>
inline bool
operator!=(const Box<ITV>& x, const Box<ITV>& y) {
return !(x == y);
}
template <typename ITV>
inline bool
Box<ITV>::has_lower_bound(const Variable var,
Coefficient& n, Coefficient& d, bool& closed) const {
// NOTE: assertion !is_empty() would be wrong;
// see the calls in method Box<ITV>::constraints().
PPL_ASSERT(!marked_empty());
const dimension_type k = var.id();
PPL_ASSERT(k < seq.size());
const ITV& seq_k = seq[k];
if (seq_k.lower_is_boundary_infinity())
return false;
closed = !seq_k.lower_is_open();
PPL_DIRTY_TEMP(mpq_class, lr);
assign_r(lr, seq_k.lower(), ROUND_NOT_NEEDED);
n = lr.get_num();
d = lr.get_den();
return true;
}
template <typename ITV>
inline bool
Box<ITV>::has_upper_bound(const Variable var,
Coefficient& n, Coefficient& d, bool& closed) const {
// NOTE: assertion !is_empty() would be wrong;
// see the calls in method Box<ITV>::constraints().
PPL_ASSERT(!marked_empty());
const dimension_type k = var.id();
PPL_ASSERT(k < seq.size());
const ITV& seq_k = seq[k];
if (seq_k.upper_is_boundary_infinity())
return false;
closed = !seq_k.upper_is_open();
PPL_DIRTY_TEMP(mpq_class, ur);
assign_r(ur, seq_k.upper(), ROUND_NOT_NEEDED);
n = ur.get_num();
d = ur.get_den();
return true;
}
template <typename ITV>
inline void
Box<ITV>::add_constraint(const Constraint& c) {
const dimension_type c_space_dim = c.space_dimension();
// Dimension-compatibility check.
if (c_space_dim > space_dimension())
throw_dimension_incompatible("add_constraint(c)", c);
add_constraint_no_check(c);
}
template <typename ITV>
inline void
Box<ITV>::add_constraints(const Constraint_System& cs) {
// Dimension-compatibility check.
if (cs.space_dimension() > space_dimension())
throw_dimension_incompatible("add_constraints(cs)", cs);
add_constraints_no_check(cs);
}
template <typename T>
inline void
Box<T>::add_recycled_constraints(Constraint_System& cs) {
add_constraints(cs);
}
template <typename ITV>
inline void
Box<ITV>::add_congruence(const Congruence& cg) {
const dimension_type cg_space_dim = cg.space_dimension();
// Dimension-compatibility check.
if (cg_space_dim > space_dimension())
throw_dimension_incompatible("add_congruence(cg)", cg);
add_congruence_no_check(cg);
}
template <typename ITV>
inline void
Box<ITV>::add_congruences(const Congruence_System& cgs) {
if (cgs.space_dimension() > space_dimension())
throw_dimension_incompatible("add_congruences(cgs)", cgs);
add_congruences_no_check(cgs);
}
template <typename T>
inline void
Box<T>::add_recycled_congruences(Congruence_System& cgs) {
add_congruences(cgs);
}
template <typename T>
inline bool
Box<T>::can_recycle_constraint_systems() {
return false;
}
template <typename T>
inline bool
Box<T>::can_recycle_congruence_systems() {
return false;
}
template <typename T>
inline void
Box<T>::widening_assign(const Box& y, unsigned* tp) {
CC76_widening_assign(y, tp);
}
template <typename ITV>
inline Congruence_System
Box<ITV>::minimized_congruences() const {
// Only equalities can be congruences and these are already minimized.
return congruences();
}
template <typename ITV>
inline I_Result
Box<ITV>
::refine_interval_no_check(ITV& itv,
const Constraint::Type type,
Coefficient_traits::const_reference numer,
Coefficient_traits::const_reference denom) {
PPL_ASSERT(denom != 0);
// The interval constraint is of the form
// `var + numer / denom rel 0',
// where `rel' is either the relation `==', `>=', or `>'.
// For the purpose of refining the interval, this is
// (morally) turned into `var rel -numer/denom'.
PPL_DIRTY_TEMP(mpq_class, q);
assign_r(q.get_num(), numer, ROUND_NOT_NEEDED);
assign_r(q.get_den(), denom, ROUND_NOT_NEEDED);
q.canonicalize();
// Turn `numer/denom' into `-numer/denom'.
q = -q;
Relation_Symbol rel_sym;
switch (type) {
case Constraint::EQUALITY:
rel_sym = EQUAL;
break;
case Constraint::NONSTRICT_INEQUALITY:
rel_sym = (denom > 0) ? GREATER_OR_EQUAL : LESS_OR_EQUAL;
break;
case Constraint::STRICT_INEQUALITY:
rel_sym = (denom > 0) ? GREATER_THAN : LESS_THAN;
break;
default:
// Silence compiler warning.
PPL_UNREACHABLE;
return I_ANY;
}
I_Result res = itv.add_constraint(i_constraint(rel_sym, q));
PPL_ASSERT(itv.OK());
return res;
}
template <typename ITV>
inline void
Box<ITV>
::add_interval_constraint_no_check(const dimension_type var_id,
const Constraint::Type type,
Coefficient_traits::const_reference numer,
Coefficient_traits::const_reference denom) {
PPL_ASSERT(!marked_empty());
PPL_ASSERT(var_id < space_dimension());
PPL_ASSERT(denom != 0);
refine_interval_no_check(seq[var_id], type, numer, denom);
// FIXME: do check the value returned and set `empty' and
// `empty_up_to_date' as appropriate.
// This has to be done after reimplementation of intervals.
reset_empty_up_to_date();
PPL_ASSERT(OK());
}
template <typename ITV>
inline void
Box<ITV>::refine_with_constraint(const Constraint& c) {
const dimension_type c_space_dim = c.space_dimension();
// Dimension-compatibility check.
if (c_space_dim > space_dimension())
throw_dimension_incompatible("refine_with_constraint(c)", c);
// If the box is already empty, there is nothing left to do.
if (marked_empty())
return;
refine_no_check(c);
}
template <typename ITV>
inline void
Box<ITV>::refine_with_constraints(const Constraint_System& cs) {
// Dimension-compatibility check.
if (cs.space_dimension() > space_dimension())
throw_dimension_incompatible("refine_with_constraints(cs)", cs);
// If the box is already empty, there is nothing left to do.
if (marked_empty())
return;
refine_no_check(cs);
}
template <typename ITV>
inline void
Box<ITV>::refine_with_congruence(const Congruence& cg) {
const dimension_type cg_space_dim = cg.space_dimension();
// Dimension-compatibility check.
if (cg_space_dim > space_dimension())
throw_dimension_incompatible("refine_with_congruence(cg)", cg);
// If the box is already empty, there is nothing left to do.
if (marked_empty())
return;
refine_no_check(cg);
}
template <typename ITV>
inline void
Box<ITV>::refine_with_congruences(const Congruence_System& cgs) {
// Dimension-compatibility check.
if (cgs.space_dimension() > space_dimension())
throw_dimension_incompatible("refine_with_congruences(cgs)", cgs);
// If the box is already empty, there is nothing left to do.
if (marked_empty())
return;
refine_no_check(cgs);
}
template <typename ITV>
inline void
Box<ITV>::propagate_constraint(const Constraint& c) {
const dimension_type c_space_dim = c.space_dimension();
// Dimension-compatibility check.
if (c_space_dim > space_dimension())
throw_dimension_incompatible("propagate_constraint(c)", c);
// If the box is already empty, there is nothing left to do.
if (marked_empty())
return;
propagate_constraint_no_check(c);
}
template <typename ITV>
inline void
Box<ITV>::propagate_constraints(const Constraint_System& cs,
const dimension_type max_iterations) {
// Dimension-compatibility check.
if (cs.space_dimension() > space_dimension())
throw_dimension_incompatible("propagate_constraints(cs)", cs);
// If the box is already empty, there is nothing left to do.
if (marked_empty())
return;
propagate_constraints_no_check(cs, max_iterations);
}
template <typename ITV>
inline void
Box<ITV>::unconstrain(const Variable var) {
const dimension_type var_id = var.id();
// Dimension-compatibility check.
if (space_dimension() < var_id + 1)
throw_dimension_incompatible("unconstrain(var)", var_id + 1);
// If the box is already empty, there is nothing left to do.
if (marked_empty())
return;
// Here the box might still be empty (but we haven't detected it yet):
// check emptiness of the interval for `var' before cylindrification.
ITV& seq_var = seq[var_id];
if (seq_var.is_empty())
set_empty();
else
seq_var.assign(UNIVERSE);
PPL_ASSERT(OK());
}
/*! \relates Box */
template <typename Temp, typename To, typename ITV>
inline bool
rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
return l_m_distance_assign<Rectilinear_Distance_Specialization<Temp> >
(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates Box */
template <typename Temp, typename To, typename ITV>
inline bool
rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
const Rounding_Dir dir) {
typedef Checked_Number<Temp, Extended_Number_Policy> Checked_Temp;
PPL_DIRTY_TEMP(Checked_Temp, tmp0);
PPL_DIRTY_TEMP(Checked_Temp, tmp1);
PPL_DIRTY_TEMP(Checked_Temp, tmp2);
return rectilinear_distance_assign(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates Box */
template <typename To, typename ITV>
inline bool
rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
const Rounding_Dir dir) {
// FIXME: the following qualification is only to work around a bug
// in the Intel C/C++ compiler version 10.1.x.
return Parma_Polyhedra_Library
::rectilinear_distance_assign<To, To, ITV>(r, x, y, dir);
}
/*! \relates Box */
template <typename Temp, typename To, typename ITV>
inline bool
euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
return l_m_distance_assign<Euclidean_Distance_Specialization<Temp> >
(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates Box */
template <typename Temp, typename To, typename ITV>
inline bool
euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
const Rounding_Dir dir) {
typedef Checked_Number<Temp, Extended_Number_Policy> Checked_Temp;
PPL_DIRTY_TEMP(Checked_Temp, tmp0);
PPL_DIRTY_TEMP(Checked_Temp, tmp1);
PPL_DIRTY_TEMP(Checked_Temp, tmp2);
return euclidean_distance_assign(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates Box */
template <typename To, typename ITV>
inline bool
euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
const Rounding_Dir dir) {
// FIXME: the following qualification is only to work around a bug
// in the Intel C/C++ compiler version 10.1.x.
return Parma_Polyhedra_Library
::euclidean_distance_assign<To, To, ITV>(r, x, y, dir);
}
/*! \relates Box */
template <typename Temp, typename To, typename ITV>
inline bool
l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
return l_m_distance_assign<L_Infinity_Distance_Specialization<Temp> >
(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates Box */
template <typename Temp, typename To, typename ITV>
inline bool
l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
const Rounding_Dir dir) {
typedef Checked_Number<Temp, Extended_Number_Policy> Checked_Temp;
PPL_DIRTY_TEMP(Checked_Temp, tmp0);
PPL_DIRTY_TEMP(Checked_Temp, tmp1);
PPL_DIRTY_TEMP(Checked_Temp, tmp2);
return l_infinity_distance_assign(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates Box */
template <typename To, typename ITV>
inline bool
l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
const Rounding_Dir dir) {
// FIXME: the following qualification is only to work around a bug
// in the Intel C/C++ compiler version 10.1.x.
return Parma_Polyhedra_Library
::l_infinity_distance_assign<To, To, ITV>(r, x, y, dir);
}
/*! \relates Box */
template <typename ITV>
inline void
swap(Box<ITV>& x, Box<ITV>& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Box_templates.hh line 1. */
/* Box class implementation: non-inline template functions.
*/
/* Automatically generated from PPL source file ../src/Generator_System_defs.hh line 1. */
/* Generator_System class declaration.
*/
/* Automatically generated from PPL source file ../src/Generator_System_defs.hh line 28. */
/* Automatically generated from PPL source file ../src/Poly_Con_Relation_defs.hh line 1. */
/* Poly_Con_Relation class declaration.
*/
/* Automatically generated from PPL source file ../src/Poly_Con_Relation_defs.hh line 29. */
#include <iosfwd>
namespace Parma_Polyhedra_Library {
// Put them in the namespace here to declare them friend later.
//! True if and only if \p x and \p y are logically equivalent.
/*! \relates Poly_Con_Relation */
bool operator==(const Poly_Con_Relation& x, const Poly_Con_Relation& y);
//! True if and only if \p x and \p y are not logically equivalent.
/*! \relates Poly_Con_Relation */
bool operator!=(const Poly_Con_Relation& x, const Poly_Con_Relation& y);
//! Yields the logical conjunction of \p x and \p y.
/*! \relates Poly_Con_Relation */
Poly_Con_Relation operator&&(const Poly_Con_Relation& x,
const Poly_Con_Relation& y);
/*! \brief
Yields the assertion with all the conjuncts of \p x
that are not in \p y.
\relates Poly_Con_Relation
*/
Poly_Con_Relation operator-(const Poly_Con_Relation& x,
const Poly_Con_Relation& y);
namespace IO_Operators {
//! Output operator.
/*! \relates Parma_Polyhedra_Library::Poly_Con_Relation */
std::ostream& operator<<(std::ostream& s, const Poly_Con_Relation& r);
} // namespace IO_Operators
} // namespace Parma_Polyhedra_Library
//! The relation between a polyhedron and a constraint.
/*! \ingroup PPL_CXX_interface
This class implements conjunctions of assertions on the relation
between a polyhedron and a constraint.
*/
class Parma_Polyhedra_Library::Poly_Con_Relation {
private:
//! Poly_Con_Relation is implemented by means of a finite bitset.
typedef unsigned int flags_t;
//! \name Bit-masks for the individual assertions
//@{
static const flags_t NOTHING = 0U;
static const flags_t IS_DISJOINT = 1U << 0;
static const flags_t STRICTLY_INTERSECTS = 1U << 1;
static const flags_t IS_INCLUDED = 1U << 2;
static const flags_t SATURATES = 1U << 3;
//@} // Bit-masks for the individual assertions
//! All assertions together.
static const flags_t EVERYTHING
= IS_DISJOINT
| STRICTLY_INTERSECTS
| IS_INCLUDED
| SATURATES;
//! This holds the current bitset.
flags_t flags;
//! True if and only if the conjunction \p x implies the conjunction \p y.
static bool implies(flags_t x, flags_t y);
//! Construct from a bit-mask.
Poly_Con_Relation(flags_t mask);
friend bool
operator==(const Poly_Con_Relation& x, const Poly_Con_Relation& y);
friend bool
operator!=(const Poly_Con_Relation& x, const Poly_Con_Relation& y);
friend Poly_Con_Relation
operator&&(const Poly_Con_Relation& x, const Poly_Con_Relation& y);
friend Poly_Con_Relation
operator-(const Poly_Con_Relation& x, const Poly_Con_Relation& y);
friend std::ostream&
Parma_Polyhedra_Library::
IO_Operators::operator<<(std::ostream& s, const Poly_Con_Relation& r);
public:
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Access the internal flags: this is needed for some language
interfaces.
*/
#endif
flags_t get_flags() const;
public:
//! The assertion that says nothing.
static Poly_Con_Relation nothing();
/*! \brief
The polyhedron and the set of points satisfying
the constraint are disjoint.
*/
static Poly_Con_Relation is_disjoint();
/*! \brief
The polyhedron intersects the set of points satisfying
the constraint, but it is not included in it.
*/
static Poly_Con_Relation strictly_intersects();
/*! \brief
The polyhedron is included in the set of points satisfying
the constraint.
*/
static Poly_Con_Relation is_included();
/*! \brief
The polyhedron is included in the set of points saturating
the constraint.
*/
static Poly_Con_Relation saturates();
PPL_OUTPUT_DECLARATIONS
//! True if and only if \p *this implies \p y.
bool implies(const Poly_Con_Relation& y) const;
//! Checks if all the invariants are satisfied.
bool OK() const;
};
/* Automatically generated from PPL source file ../src/Poly_Con_Relation_inlines.hh line 1. */
/* Poly_Con_Relation class implementation: inline functions.
*/
namespace Parma_Polyhedra_Library {
inline
Poly_Con_Relation::Poly_Con_Relation(flags_t mask)
: flags(mask) {
}
inline Poly_Con_Relation::flags_t
Poly_Con_Relation::get_flags() const {
return flags;
}
inline Poly_Con_Relation
Poly_Con_Relation::nothing() {
return Poly_Con_Relation(NOTHING);
}
inline Poly_Con_Relation
Poly_Con_Relation::is_disjoint() {
return Poly_Con_Relation(IS_DISJOINT);
}
inline Poly_Con_Relation
Poly_Con_Relation::strictly_intersects() {
return Poly_Con_Relation(STRICTLY_INTERSECTS);
}
inline Poly_Con_Relation
Poly_Con_Relation::is_included() {
return Poly_Con_Relation(IS_INCLUDED);
}
inline Poly_Con_Relation
Poly_Con_Relation::saturates() {
return Poly_Con_Relation(SATURATES);
}
inline bool
Poly_Con_Relation::implies(flags_t x, flags_t y) {
return (x & y) == y;
}
inline bool
Poly_Con_Relation::implies(const Poly_Con_Relation& y) const {
return implies(flags, y.flags);
}
/*! \relates Poly_Con_Relation */
inline bool
operator==(const Poly_Con_Relation& x, const Poly_Con_Relation& y) {
return x.flags == y.flags;
}
/*! \relates Poly_Con_Relation */
inline bool
operator!=(const Poly_Con_Relation& x, const Poly_Con_Relation& y) {
return x.flags != y.flags;
}
/*! \relates Poly_Con_Relation */
inline Poly_Con_Relation
operator&&(const Poly_Con_Relation& x, const Poly_Con_Relation& y) {
return Poly_Con_Relation(x.flags | y.flags);
}
/*! \relates Poly_Con_Relation */
inline Poly_Con_Relation
operator-(const Poly_Con_Relation& x, const Poly_Con_Relation& y) {
return Poly_Con_Relation(x.flags & ~y.flags);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Poly_Con_Relation_defs.hh line 165. */
/* Automatically generated from PPL source file ../src/Generator_System_defs.hh line 35. */
#include <iosfwd>
namespace Parma_Polyhedra_Library {
namespace IO_Operators {
//! Output operator.
/*!
\relates Parma_Polyhedra_Library::Generator_System
Writes <CODE>false</CODE> if \p gs is empty. Otherwise, writes on
\p s the generators of \p gs, all in one row and separated by ", ".
*/
std::ostream& operator<<(std::ostream& s, const Generator_System& gs);
} // namespace IO_Operators
// TODO: Consider removing this.
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x and \p y are identical.
/*! \relates Generator_System */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool operator==(const Generator_System& x, const Generator_System& y);
// TODO: Consider removing this.
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x and \p y are different.
/*! \relates Generator_System */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool operator!=(const Generator_System& x, const Generator_System& y);
/*! \relates Generator_System */
void
swap(Generator_System& x, Generator_System& y);
} // namespace Parma_Polyhedra_Library
//! A system of generators.
/*! \ingroup PPL_CXX_interface
An object of the class Generator_System is a system of generators,
i.e., a multiset of objects of the class Generator
(lines, rays, points and closure points).
When inserting generators in a system, space dimensions are automatically
adjusted so that all the generators in the system are defined
on the same vector space.
A system of generators which is meant to define a non-empty
polyhedron must include at least one point: the reason is that
lines, rays and closure points need a supporting point
(lines and rays only specify directions while closure points only
specify points in the topological closure of the NNC polyhedron).
\par
In all the examples it is assumed that variables
<CODE>x</CODE> and <CODE>y</CODE> are defined as follows:
\code
Variable x(0);
Variable y(1);
\endcode
\par Example 1
The following code defines the line having the same direction
as the \f$x\f$ axis (i.e., the first Cartesian axis)
in \f$\Rset^2\f$:
\code
Generator_System gs;
gs.insert(line(x + 0*y));
\endcode
As said above, this system of generators corresponds to
an empty polyhedron, because the line has no supporting point.
To define a system of generators that does correspond to
the \f$x\f$ axis, we can add the following code which
inserts the origin of the space as a point:
\code
gs.insert(point(0*x + 0*y));
\endcode
Since space dimensions are automatically adjusted, the following
code obtains the same effect:
\code
gs.insert(point(0*x));
\endcode
In contrast, if we had added the following code, we would have
defined a line parallel to the \f$x\f$ axis through
the point \f$(0, 1)^\transpose \in \Rset^2\f$.
\code
gs.insert(point(0*x + 1*y));
\endcode
\par Example 2
The following code builds a ray having the same direction as
the positive part of the \f$x\f$ axis in \f$\Rset^2\f$:
\code
Generator_System gs;
gs.insert(ray(x + 0*y));
\endcode
To define a system of generators indeed corresponding to the set
\f[
\bigl\{\,
(x, 0)^\transpose \in \Rset^2
\bigm|
x \geq 0
\,\bigr\},
\f]
one just has to add the origin:
\code
gs.insert(point(0*x + 0*y));
\endcode
\par Example 3
The following code builds a system of generators having four points
and corresponding to a square in \f$\Rset^2\f$
(the same as Example 1 for the system of constraints):
\code
Generator_System gs;
gs.insert(point(0*x + 0*y));
gs.insert(point(0*x + 3*y));
gs.insert(point(3*x + 0*y));
gs.insert(point(3*x + 3*y));
\endcode
\par Example 4
By using closure points, we can define the \e kernel
(i.e., the largest open set included in a given set)
of the square defined in the previous example.
Note that a supporting point is needed and, for that purpose,
any inner point could be considered.
\code
Generator_System gs;
gs.insert(point(x + y));
gs.insert(closure_point(0*x + 0*y));
gs.insert(closure_point(0*x + 3*y));
gs.insert(closure_point(3*x + 0*y));
gs.insert(closure_point(3*x + 3*y));
\endcode
\par Example 5
The following code builds a system of generators having two points
and a ray, corresponding to a half-strip in \f$\Rset^2\f$
(the same as Example 2 for the system of constraints):
\code
Generator_System gs;
gs.insert(point(0*x + 0*y));
gs.insert(point(0*x + 1*y));
gs.insert(ray(x - y));
\endcode
\note
After inserting a multiset of generators in a generator system,
there are no guarantees that an <EM>exact</EM> copy of them
can be retrieved:
in general, only an <EM>equivalent</EM> generator system
will be available, where original generators may have been
reordered, removed (if they are duplicate or redundant), etc.
*/
class Parma_Polyhedra_Library::Generator_System {
public:
typedef Generator row_type;
static const Representation default_representation = SPARSE;
//! Default constructor: builds an empty system of generators.
Generator_System(Representation r = default_representation);
//! Builds the singleton system containing only generator \p g.
explicit Generator_System(const Generator& g,
Representation r = default_representation);
//! Ordinary copy constructor.
//! The new Generator_System will have the same representation as `gs'.
Generator_System(const Generator_System& gs);
//! Copy constructor with specified representation.
Generator_System(const Generator_System& gs, Representation r);
//! Destructor.
~Generator_System();
//! Assignment operator.
Generator_System& operator=(const Generator_System& y);
//! Returns the current representation of *this.
Representation representation() const;
//! Converts *this to the specified representation.
void set_representation(Representation r);
//! Returns the maximum space dimension a Generator_System can handle.
static dimension_type max_space_dimension();
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
//! Sets the space dimension of the rows in the system to \p space_dim .
void set_space_dimension(dimension_type space_dim);
/*! \brief
Removes all the generators from the generator system
and sets its space dimension to 0.
*/
void clear();
/*! \brief
Inserts in \p *this a copy of the generator \p g,
increasing the number of space dimensions if needed.
*/
void insert(const Generator& g);
/*! \brief
Inserts in \p *this the generator \p g, stealing its contents and
increasing the number of space dimensions if needed.
*/
void insert(Generator& g, Recycle_Input);
//! Initializes the class.
static void initialize();
//! Finalizes the class.
static void finalize();
/*! \brief
Returns the singleton system containing only Generator::zero_dim_point().
*/
static const Generator_System& zero_dim_univ();
typedef Generator_System_const_iterator const_iterator;
//! Returns <CODE>true</CODE> if and only if \p *this has no generators.
bool empty() const;
/*! \brief
Returns the const_iterator pointing to the first generator,
if \p *this is not empty;
otherwise, returns the past-the-end const_iterator.
*/
const_iterator begin() const;
//! Returns the past-the-end const_iterator.
const_iterator end() const;
//! Checks if all the invariants are satisfied.
bool OK() const;
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
Resizes the matrix of generators using the numbers of rows and columns
read from \p s, then initializes the coordinates of each generator
and its type reading the contents from \p s.
*/
bool ascii_load(std::istream& s);
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
//! Swaps \p *this with \p y.
void m_swap(Generator_System& y);
private:
bool has_no_rows() const;
//! Removes all the specified dimensions from the generator system.
/*!
The space dimension of the variable with the highest space
dimension in \p vars must be at most the space dimension
of \p this.
*/
void remove_space_dimensions(const Variables_Set& vars);
//! Shift by \p n positions the coefficients of variables, starting from
//! the coefficient of \p v. This increases the space dimension by \p n.
void shift_space_dimensions(Variable v, dimension_type n);
//! Permutes the space dimensions of the matrix.
/*
\param cycle
A vector representing a cycle of the permutation according to which the
columns must be rearranged.
The \p cycle vector represents a cycle of a permutation of space
dimensions.
For example, the permutation
\f$ \{ x_1 \mapsto x_2, x_2 \mapsto x_3, x_3 \mapsto x_1 \}\f$ can be
represented by the vector containing \f$ x_1, x_2, x_3 \f$.
*/
void permute_space_dimensions(const std::vector<Variable>& cycle);
//! Swaps the coefficients of the variables \p v1 and \p v2 .
void swap_space_dimensions(Variable v1, Variable v2);
dimension_type num_rows() const;
//! Adds \p n rows and space dimensions to the system.
/*!
\param n
The number of rows and space dimensions to be added: must be strictly
positive.
Turns the system \f$M \in \Rset^r \times \Rset^c\f$ into
the system \f$N \in \Rset^{r+n} \times \Rset^{c+n}\f$
such that
\f$N = \bigl(\genfrac{}{}{0pt}{}{0}{M}\genfrac{}{}{0pt}{}{J}{o}\bigr)\f$,
where \f$J\f$ is the specular image
of the \f$n \times n\f$ identity matrix.
*/
void add_universe_rows_and_space_dimensions(dimension_type n);
Topology topology() const;
//! Returns the index of the first pending row.
dimension_type first_pending_row() const;
//! Sets the index to indicate that the system has no pending rows.
void unset_pending_rows();
//! Sets the sortedness flag of the system to \p b.
void set_sorted(bool b);
//! Returns the value of the sortedness flag.
bool is_sorted() const;
//! Sets the index of the first pending row to \p i.
void set_index_first_pending_row(dimension_type i);
/*! \brief
Returns <CODE>true</CODE> if and only if
the system topology is <CODE>NECESSARILY_CLOSED</CODE>.
*/
bool is_necessarily_closed() const;
//! Full assignment operator: pending rows are copied as pending.
void assign_with_pending(const Generator_System& y);
//! Returns the number of rows that are in the pending part of the system.
dimension_type num_pending_rows() const;
/*! \brief
Sorts the pending rows and eliminates those that also occur
in the non-pending part of the system.
*/
void sort_pending_and_remove_duplicates();
/*! \brief
Sorts the system, removing duplicates, keeping the saturation
matrix consistent.
\param sat
Bit matrix with rows corresponding to the rows of \p *this.
*/
void sort_and_remove_with_sat(Bit_Matrix& sat);
/*! \brief
Sorts the non-pending rows (in growing order) and eliminates
duplicated ones.
*/
void sort_rows();
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is sorted,
without checking for duplicates.
*/
bool check_sorted() const;
/*! \brief
Returns the number of rows in the system
that represent either lines or equalities.
*/
dimension_type num_lines_or_equalities() const;
//! Makes the system shrink by removing its i-th row.
/*!
When \p keep_sorted is \p true and the system is sorted, sortedness will
be preserved, but this method costs O(n).
Otherwise, this method just swaps the i-th row with the last and then
removes it, so it costs O(1).
*/
void remove_row(dimension_type i, bool keep_sorted = false);
//! Makes the system shrink by removing the rows in [first,last).
/*!
When \p keep_sorted is \p true and the system is sorted, sortedness will
be preserved, but this method costs O(num_rows()).
Otherwise, this method just swaps the rows with the last ones and then
removes them, so it costs O(last - first).
*/
void remove_rows(dimension_type first, dimension_type last,
bool keep_sorted = false);
//! Removes the specified rows. The row ordering of remaining rows is
//! preserved.
/*!
\param indexes specifies a list of row indexes.
It must be sorted.
*/
void remove_rows(const std::vector<dimension_type>& indexes);
//! Makes the system shrink by removing its \p n trailing rows.
void remove_trailing_rows(dimension_type n);
//! Minimizes the subsystem of equations contained in \p *this.
/*!
This method works only on the equalities of the system:
the system is required to be partially sorted, so that
all the equalities are grouped at its top; it is assumed that
the number of equalities is exactly \p n_lines_or_equalities.
The method finds a minimal system for the equalities and
returns its rank, i.e., the number of linearly independent equalities.
The result is an upper triangular subsystem of equalities:
for each equality, the pivot is chosen starting from
the right-most columns.
*/
dimension_type gauss(dimension_type n_lines_or_equalities);
/*! \brief
Back-substitutes the coefficients to reduce
the complexity of the system.
Takes an upper triangular system having \p n_lines_or_equalities rows.
For each row, starting from the one having the minimum number of
coefficients different from zero, computes the expression of an element
as a function of the remaining ones and then substitutes this expression
in all the other rows.
*/
void back_substitute(dimension_type n_lines_or_equalities);
//! Strongly normalizes the system.
void strong_normalize();
/*! \brief
Assigns to \p *this the result of merging its rows with
those of \p y, obtaining a sorted system.
Duplicated rows will occur only once in the result.
On entry, both systems are assumed to be sorted and have
no pending rows.
*/
void merge_rows_assign(const Generator_System& y);
//! Adds to \p *this a copy of the rows of \p y.
/*!
It is assumed that \p *this has no pending rows.
*/
void insert(const Generator_System& y);
//! Adds a copy of the rows of `y' to the pending part of `*this'.
void insert_pending(const Generator_System& r);
/*! \brief
Holds (between class initialization and finalization) a pointer to
the singleton system containing only Generator::zero_dim_point().
*/
static const Generator_System* zero_dim_univ_p;
friend class Generator_System_const_iterator;
//! Builds an empty system of generators having the specified topology.
explicit Generator_System(Topology topol,
Representation r = default_representation);
/*! \brief
Builds a system of rays/points on a \p space_dim dimensional space. If
\p topol is <CODE>NOT_NECESSARILY_CLOSED</CODE> the \f$\epsilon\f$
dimension is added.
*/
Generator_System(Topology topol, dimension_type space_dim,
Representation r = default_representation);
/*! \brief
Adjusts \p *this so that it matches the \p new_topology and
\p new_space_dim (adding or removing columns if needed).
Returns <CODE>false</CODE> if and only if \p topol is
equal to <CODE>NECESSARILY_CLOSED</CODE> and \p *this
contains closure points.
*/
bool adjust_topology_and_space_dimension(Topology new_topology,
dimension_type new_space_dim);
/*! \brief
For each unmatched closure point in \p *this, adds the
corresponding point.
It is assumed that the topology of \p *this
is <CODE>NOT_NECESSARILY_CLOSED</CODE>.
*/
void add_corresponding_points();
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
contains one or more points.
*/
bool has_points() const;
/*! \brief
For each unmatched point in \p *this, adds the corresponding
closure point.
It is assumed that the topology of \p *this
is <CODE>NOT_NECESSARILY_CLOSED</CODE>.
*/
void add_corresponding_closure_points();
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
contains one or more closure points.
Note: the check for the presence of closure points is
done under the point of view of the user. Namely, we scan
the generator system using high-level iterators, so that
closure points that are matching the corresponding points
will be disregarded.
*/
bool has_closure_points() const;
//! Converts this generator system into a non-necessarily closed generator
//! system.
void convert_into_non_necessarily_closed();
//! Returns a constant reference to the \p k- th generator of the system.
const Generator& operator[](dimension_type k) const;
/*! \brief
Returns the relations holding between the generator system
and the constraint \p c.
*/
Parma_Polyhedra_Library::Poly_Con_Relation
relation_with(const Constraint& c) const;
//! Returns <CODE>true</CODE> if all the generators satisfy \p c.
bool satisfied_by_all_generators(const Constraint& c) const;
//! Returns <CODE>true</CODE> if all the generators satisfy \p c.
/*!
It is assumed that <CODE>c.is_necessarily_closed()</CODE> holds.
*/
bool satisfied_by_all_generators_C(const Constraint& c) const;
//! Returns <CODE>true</CODE> if all the generators satisfy \p c.
/*!
It is assumed that <CODE>c.is_necessarily_closed()</CODE> does not hold.
*/
bool satisfied_by_all_generators_NNC(const Constraint& c) const;
//! Assigns to a given variable an affine expression.
/*!
\param v
The variable to which the affine transformation is assigned;
\param expr
The numerator of the affine transformation:
\f$\sum_{i = 0}^{n - 1} a_i x_i + b\f$;
\param denominator
The denominator of the affine transformation.
We want to allow affine transformations (see the Introduction) having
any rational coefficients. Since the coefficients of the
constraints are integers we must also provide an integer \p denominator
that will be used as denominator of the affine transformation.
The denominator is required to be a positive integer.
The affine transformation assigns to each element of the column containing
the coefficients of v the follow expression:
\f[
\frac{\sum_{i = 0}^{n - 1} a_i x_i + b}
{\mathrm{denominator}}.
\f]
\p expr is a constant parameter and unaltered by this computation.
*/
void affine_image(Variable v,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator);
//! Returns the number of lines of the system.
dimension_type num_lines() const;
//! Returns the number of rays of the system.
dimension_type num_rays() const;
//! Removes all the invalid lines and rays.
/*!
The invalid lines and rays are those with all
the homogeneous terms set to zero.
*/
void remove_invalid_lines_and_rays();
/*! \brief
Applies Gaussian elimination and back-substitution so as
to provide a partial simplification of the system of generators.
It is assumed that the system has no pending generators.
*/
void simplify();
/*! \brief
Inserts in \p *this a copy of the generator \p g,
increasing the number of space dimensions if needed.
It is a pending generator.
*/
void insert_pending(const Generator& g);
/*! \brief
Inserts in \p *this the generator \p g, stealing its contents and
increasing the number of space dimensions if needed.
It is a pending generator.
*/
void insert_pending(Generator& g, Recycle_Input);
Linear_System<Generator> sys;
friend bool
operator==(const Generator_System& x, const Generator_System& y);
friend class Polyhedron;
};
//! An iterator over a system of generators
/*! \ingroup PPL_CXX_interface
A const_iterator is used to provide read-only access
to each generator contained in an object of Generator_System.
\par Example
The following code prints the system of generators
of the polyhedron <CODE>ph</CODE>:
\code
const Generator_System& gs = ph.generators();
for (Generator_System::const_iterator i = gs.begin(),
gs_end = gs.end(); i != gs_end; ++i)
cout << *i << endl;
\endcode
The same effect can be obtained more concisely by using
more features of the STL:
\code
const Generator_System& gs = ph.generators();
copy(gs.begin(), gs.end(), ostream_iterator<Generator>(cout, "\n"));
\endcode
*/
class Parma_Polyhedra_Library::Generator_System_const_iterator
: public std::iterator<std::forward_iterator_tag,
Generator,
ptrdiff_t,
const Generator*,
const Generator&> {
public:
//! Default constructor.
Generator_System_const_iterator();
//! Ordinary copy constructor.
Generator_System_const_iterator(const Generator_System_const_iterator& y);
//! Destructor.
~Generator_System_const_iterator();
//! Assignment operator.
Generator_System_const_iterator& operator=(const Generator_System_const_iterator& y);
//! Dereference operator.
const Generator& operator*() const;
//! Indirect member selector.
const Generator* operator->() const;
//! Prefix increment operator.
Generator_System_const_iterator& operator++();
//! Postfix increment operator.
Generator_System_const_iterator operator++(int);
/*! \brief
Returns <CODE>true</CODE> if and only if
\p *this and \p y are identical.
*/
bool operator==(const Generator_System_const_iterator& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if
\p *this and \p y are different.
*/
bool operator!=(const Generator_System_const_iterator& y) const;
private:
friend class Generator_System;
//! The const iterator over the Linear_System.
Linear_System<Generator>::const_iterator i;
//! A const pointer to the Linear_System.
const Linear_System<Generator>* gsp;
//! Constructor.
Generator_System_const_iterator(const Linear_System<Generator>::const_iterator& iter,
const Generator_System& gsys);
/*! \brief
\p *this skips to the next generator, skipping those
closure points that are immediately followed by a matching point.
*/
void skip_forward();
};
// Generator_System_inlines.hh is not included here on purpose.
/* Automatically generated from PPL source file ../src/Generator_System_inlines.hh line 1. */
/* Generator_System class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Generator_System_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
inline
Generator_System::Generator_System(Representation r)
: sys(NECESSARILY_CLOSED, r) {
}
inline
Generator_System::Generator_System(const Generator& g, Representation r)
: sys(g.topology(), r) {
sys.insert(g);
}
inline
Generator_System::Generator_System(const Generator_System& gs)
: sys(gs.sys) {
}
inline
Generator_System::Generator_System(const Generator_System& gs,
Representation r)
: sys(gs.sys, r) {
}
inline
Generator_System::Generator_System(const Topology topol, Representation r)
: sys(topol, r) {
}
inline
Generator_System::Generator_System(const Topology topol,
const dimension_type space_dim,
Representation r)
: sys(topol, space_dim, r) {
}
inline
Generator_System::~Generator_System() {
}
inline Generator_System&
Generator_System::operator=(const Generator_System& y) {
Generator_System tmp = y;
swap(*this, tmp);
return *this;
}
inline Representation
Generator_System::representation() const {
return sys.representation();
}
inline void
Generator_System::set_representation(Representation r) {
sys.set_representation(r);
}
inline dimension_type
Generator_System::max_space_dimension() {
return Linear_System<Generator>::max_space_dimension();
}
inline dimension_type
Generator_System::space_dimension() const {
return sys.space_dimension();
}
inline void
Generator_System::set_space_dimension(dimension_type space_dim) {
const dimension_type old_space_dim = space_dimension();
sys.set_space_dimension_no_ok(space_dim);
if (space_dim < old_space_dim)
// We may have invalid lines and rays now.
remove_invalid_lines_and_rays();
#ifndef NDEBUG
for (dimension_type i = 0; i < sys.num_rows(); ++i)
PPL_ASSERT(sys[i].OK());
#endif
PPL_ASSERT(sys.OK());
PPL_ASSERT(OK());
}
inline void
Generator_System::clear() {
sys.clear();
}
inline const Generator&
Generator_System::operator[](const dimension_type k) const {
return sys[k];
}
inline void
Generator_System
::remove_space_dimensions(const Variables_Set& vars) {
sys.remove_space_dimensions(vars);
}
inline void
Generator_System
::shift_space_dimensions(Variable v, dimension_type n) {
sys.shift_space_dimensions(v, n);
}
inline void
Generator_System
::permute_space_dimensions(const std::vector<Variable>& cycle) {
sys.permute_space_dimensions(cycle);
}
inline void
Generator_System
::swap_space_dimensions(Variable v1, Variable v2) {
sys.swap_space_dimensions(v1, v2);
}
inline dimension_type
Generator_System::num_rows() const {
return sys.num_rows();
}
inline void
Generator_System::add_universe_rows_and_space_dimensions(dimension_type n) {
sys.add_universe_rows_and_space_dimensions(n);
}
inline Topology
Generator_System::topology() const {
return sys.topology();
}
inline dimension_type
Generator_System::first_pending_row() const {
return sys.first_pending_row();
}
inline void
Generator_System::unset_pending_rows() {
sys.unset_pending_rows();
}
inline void
Generator_System::set_sorted(bool b) {
sys.set_sorted(b);
}
inline bool
Generator_System::is_sorted() const {
return sys.is_sorted();
}
inline void
Generator_System::set_index_first_pending_row(dimension_type i) {
sys.set_index_first_pending_row(i);
}
inline bool
Generator_System::is_necessarily_closed() const {
return sys.is_necessarily_closed();
}
inline void
Generator_System::assign_with_pending(const Generator_System& y) {
sys.assign_with_pending(y.sys);
}
inline dimension_type
Generator_System::num_pending_rows() const {
return sys.num_pending_rows();
}
inline void
Generator_System::sort_pending_and_remove_duplicates() {
return sys.sort_pending_and_remove_duplicates();
}
inline void
Generator_System::sort_and_remove_with_sat(Bit_Matrix& sat) {
sys.sort_and_remove_with_sat(sat);
}
inline void
Generator_System::sort_rows() {
sys.sort_rows();
}
inline bool
Generator_System::check_sorted() const {
return sys.check_sorted();
}
inline dimension_type
Generator_System::num_lines_or_equalities() const {
return sys.num_lines_or_equalities();
}
inline void
Generator_System::remove_row(dimension_type i, bool keep_sorted) {
sys.remove_row(i, keep_sorted);
}
inline void
Generator_System::remove_rows(dimension_type first, dimension_type last,
bool keep_sorted) {
sys.remove_rows(first, last, keep_sorted);
}
inline void
Generator_System::remove_rows(const std::vector<dimension_type>& indexes) {
sys.remove_rows(indexes);
}
inline void
Generator_System::remove_trailing_rows(dimension_type n) {
sys.remove_trailing_rows(n);
}
inline dimension_type
Generator_System::gauss(dimension_type n_lines_or_equalities) {
return sys.gauss(n_lines_or_equalities);
}
inline void
Generator_System::back_substitute(dimension_type n_lines_or_equalities) {
sys.back_substitute(n_lines_or_equalities);
}
inline void
Generator_System::strong_normalize() {
sys.strong_normalize();
}
inline void
Generator_System::merge_rows_assign(const Generator_System& y) {
sys.merge_rows_assign(y.sys);
}
inline void
Generator_System::insert(const Generator_System& y) {
sys.insert(y.sys);
}
inline void
Generator_System::insert_pending(const Generator_System& r) {
sys.insert_pending(r.sys);
}
inline bool
operator==(const Generator_System& x, const Generator_System& y) {
return x.sys == y.sys;
}
inline bool
operator!=(const Generator_System& x, const Generator_System& y) {
return !(x == y);
}
inline
Generator_System_const_iterator::Generator_System_const_iterator()
: i(), gsp(0) {
}
inline
Generator_System_const_iterator::Generator_System_const_iterator(const Generator_System_const_iterator& y)
: i(y.i), gsp(y.gsp) {
}
inline
Generator_System_const_iterator::~Generator_System_const_iterator() {
}
inline
Generator_System_const_iterator&
Generator_System_const_iterator::operator=(const Generator_System_const_iterator& y) {
i = y.i;
gsp = y.gsp;
return *this;
}
inline const Generator&
Generator_System_const_iterator::operator*() const {
return *i;
}
inline const Generator*
Generator_System_const_iterator::operator->() const {
return i.operator->();
}
inline Generator_System_const_iterator&
Generator_System_const_iterator::operator++() {
++i;
if (!gsp->is_necessarily_closed())
skip_forward();
return *this;
}
inline Generator_System_const_iterator
Generator_System_const_iterator::operator++(int) {
const Generator_System_const_iterator tmp = *this;
operator++();
return tmp;
}
inline bool
Generator_System_const_iterator::operator==(const Generator_System_const_iterator& y) const {
return i == y.i;
}
inline bool
Generator_System_const_iterator::operator!=(const Generator_System_const_iterator& y) const {
return i != y.i;
}
inline
Generator_System_const_iterator::
Generator_System_const_iterator(const Linear_System<Generator>::const_iterator& iter,
const Generator_System& gs)
: i(iter), gsp(&gs.sys) {
}
inline bool
Generator_System::empty() const {
return sys.has_no_rows();
}
inline bool
Generator_System::has_no_rows() const {
return sys.has_no_rows();
}
inline Generator_System::const_iterator
Generator_System::begin() const {
const_iterator i(sys.begin(), *this);
if (!sys.is_necessarily_closed())
i.skip_forward();
return i;
}
inline Generator_System::const_iterator
Generator_System::end() const {
const const_iterator i(sys.end(), *this);
return i;
}
inline const Generator_System&
Generator_System::zero_dim_univ() {
PPL_ASSERT(zero_dim_univ_p != 0);
return *zero_dim_univ_p;
}
inline void
Generator_System::m_swap(Generator_System& y) {
swap(sys, y.sys);
}
inline memory_size_type
Generator_System::external_memory_in_bytes() const {
return sys.external_memory_in_bytes();
}
inline memory_size_type
Generator_System::total_memory_in_bytes() const {
return external_memory_in_bytes() + sizeof(*this);
}
inline void
Generator_System::simplify() {
sys.simplify();
remove_invalid_lines_and_rays();
}
/*! \relates Generator_System */
inline void
swap(Generator_System& x, Generator_System& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Poly_Gen_Relation_defs.hh line 1. */
/* Poly_Gen_Relation class declaration.
*/
/* Automatically generated from PPL source file ../src/Poly_Gen_Relation_defs.hh line 29. */
#include <iosfwd>
namespace Parma_Polyhedra_Library {
// Put them in the namespace here to declare them friend later.
//! True if and only if \p x and \p y are logically equivalent.
/*! \relates Poly_Gen_Relation */
bool operator==(const Poly_Gen_Relation& x, const Poly_Gen_Relation& y);
//! True if and only if \p x and \p y are not logically equivalent.
/*! \relates Poly_Gen_Relation */
bool operator!=(const Poly_Gen_Relation& x, const Poly_Gen_Relation& y);
//! Yields the logical conjunction of \p x and \p y.
/*! \relates Poly_Gen_Relation */
Poly_Gen_Relation operator&&(const Poly_Gen_Relation& x,
const Poly_Gen_Relation& y);
/*! \brief
Yields the assertion with all the conjuncts of \p x
that are not in \p y.
\relates Poly_Gen_Relation
*/
Poly_Gen_Relation operator-(const Poly_Gen_Relation& x,
const Poly_Gen_Relation& y);
namespace IO_Operators {
//! Output operator.
/*! \relates Parma_Polyhedra_Library::Poly_Gen_Relation */
std::ostream& operator<<(std::ostream& s, const Poly_Gen_Relation& r);
} // namespace IO_Operators
} // namespace Parma_Polyhedra_Library
//! The relation between a polyhedron and a generator
/*! \ingroup PPL_CXX_interface
This class implements conjunctions of assertions on the relation
between a polyhedron and a generator.
*/
class Parma_Polyhedra_Library::Poly_Gen_Relation {
private:
//! Poly_Gen_Relation is implemented by means of a finite bitset.
typedef unsigned int flags_t;
//! \name Bit-masks for the individual assertions
//@{
static const flags_t NOTHING = 0U;
static const flags_t SUBSUMES = 1U << 0;
//@} // Bit-masks for the individual assertions
//! All assertions together.
static const flags_t EVERYTHING
= SUBSUMES;
//! This holds the current bitset.
flags_t flags;
//! True if and only if the conjunction \p x implies the conjunction \p y.
static bool implies(flags_t x, flags_t y);
//! Construct from a bit-mask.
Poly_Gen_Relation(flags_t mask);
friend bool
operator==(const Poly_Gen_Relation& x, const Poly_Gen_Relation& y);
friend bool
operator!=(const Poly_Gen_Relation& x, const Poly_Gen_Relation& y);
friend Poly_Gen_Relation
operator&&(const Poly_Gen_Relation& x, const Poly_Gen_Relation& y);
friend Poly_Gen_Relation
operator-(const Poly_Gen_Relation& x, const Poly_Gen_Relation& y);
friend std::ostream&
Parma_Polyhedra_Library::
IO_Operators::operator<<(std::ostream& s, const Poly_Gen_Relation& r);
public:
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Access the internal flags: this is needed for some language
interfaces.
*/
#endif
flags_t get_flags() const;
public:
//! The assertion that says nothing.
static Poly_Gen_Relation nothing();
//! Adding the generator would not change the polyhedron.
static Poly_Gen_Relation subsumes();
PPL_OUTPUT_DECLARATIONS
//! True if and only if \p *this implies \p y.
bool implies(const Poly_Gen_Relation& y) const;
//! Checks if all the invariants are satisfied.
bool OK() const;
};
/* Automatically generated from PPL source file ../src/Poly_Gen_Relation_inlines.hh line 1. */
/* Poly_Gen_Relation class implementation: inline functions.
*/
namespace Parma_Polyhedra_Library {
inline
Poly_Gen_Relation::Poly_Gen_Relation(flags_t mask)
: flags(mask) {
}
inline Poly_Gen_Relation::flags_t
Poly_Gen_Relation::get_flags() const {
return flags;
}
inline Poly_Gen_Relation
Poly_Gen_Relation::nothing() {
return Poly_Gen_Relation(NOTHING);
}
inline Poly_Gen_Relation
Poly_Gen_Relation::subsumes() {
return Poly_Gen_Relation(SUBSUMES);
}
inline bool
Poly_Gen_Relation::implies(flags_t x, flags_t y) {
return (x & y) == y;
}
inline bool
Poly_Gen_Relation::implies(const Poly_Gen_Relation& y) const {
return implies(flags, y.flags);
}
/*! \relates Poly_Gen_Relation */
inline bool
operator==(const Poly_Gen_Relation& x, const Poly_Gen_Relation& y) {
return x.flags == y.flags;
}
/*! \relates Poly_Gen_Relation */
inline bool
operator!=(const Poly_Gen_Relation& x, const Poly_Gen_Relation& y) {
return x.flags != y.flags;
}
/*! \relates Poly_Gen_Relation */
inline Poly_Gen_Relation
operator&&(const Poly_Gen_Relation& x, const Poly_Gen_Relation& y) {
return Poly_Gen_Relation(x.flags | y.flags);
}
/*! \relates Poly_Gen_Relation */
inline Poly_Gen_Relation
operator-(const Poly_Gen_Relation& x, const Poly_Gen_Relation& y) {
return Poly_Gen_Relation(x.flags & ~y.flags);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Poly_Gen_Relation_defs.hh line 138. */
/* Automatically generated from PPL source file ../src/Polyhedron_defs.hh line 1. */
/* Polyhedron class declaration.
*/
/* Automatically generated from PPL source file ../src/H79_Certificate_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class H79_Certificate;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Polyhedron_defs.hh line 51. */
#include <vector>
#include <iosfwd>
namespace Parma_Polyhedra_Library {
namespace IO_Operators {
//! Output operator.
/*!
\relates Parma_Polyhedra_Library::Polyhedron
Writes a textual representation of \p ph on \p s:
<CODE>false</CODE> is written if \p ph is an empty polyhedron;
<CODE>true</CODE> is written if \p ph is a universe polyhedron;
a minimized system of constraints defining \p ph is written otherwise,
all constraints in one row separated by ", ".
*/
std::ostream&
operator<<(std::ostream& s, const Polyhedron& ph);
} // namespace IO_Operators
//! Swaps \p x with \p y.
/*! \relates Polyhedron */
void swap(Polyhedron& x, Polyhedron& y);
/*! \brief
Returns <CODE>true</CODE> if and only if
\p x and \p y are the same polyhedron.
\relates Polyhedron
Note that \p x and \p y may be topology- and/or dimension-incompatible
polyhedra: in those cases, the value <CODE>false</CODE> is returned.
*/
bool operator==(const Polyhedron& x, const Polyhedron& y);
/*! \brief
Returns <CODE>true</CODE> if and only if
\p x and \p y are different polyhedra.
\relates Polyhedron
Note that \p x and \p y may be topology- and/or dimension-incompatible
polyhedra: in those cases, the value <CODE>true</CODE> is returned.
*/
bool operator!=(const Polyhedron& x, const Polyhedron& y);
namespace Interfaces {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Returns \c true if and only if
<code>ph.topology() == NECESSARILY_CLOSED</code>.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool is_necessarily_closed_for_interfaces(const Polyhedron& ph);
} // namespace Interfaces
} // namespace Parma_Polyhedra_Library
//! The base class for convex polyhedra.
/*! \ingroup PPL_CXX_interface
An object of the class Polyhedron represents a convex polyhedron
in the vector space \f$\Rset^n\f$.
A polyhedron can be specified as either a finite system of constraints
or a finite system of generators (see Section \ref representation)
and it is always possible to obtain either representation.
That is, if we know the system of constraints, we can obtain
from this the system of generators that define the same polyhedron
and vice versa.
These systems can contain redundant members: in this case we say
that they are not in the minimal form.
Two key attributes of any polyhedron are its topological kind
(recording whether it is a C_Polyhedron or an NNC_Polyhedron object)
and its space dimension (the dimension \f$n \in \Nset\f$ of
the enclosing vector space):
- all polyhedra, the empty ones included, are endowed with
a specific topology and space dimension;
- most operations working on a polyhedron and another object
(i.e., another polyhedron, a constraint or generator,
a set of variables, etc.) will throw an exception if
the polyhedron and the object are not both topology-compatible
and dimension-compatible (see Section \ref representation);
- the topology of a polyhedron cannot be changed;
rather, there are constructors for each of the two derived classes
that will build a new polyhedron with the topology of that class
from another polyhedron from either class and any topology;
- the only ways in which the space dimension of a polyhedron can
be changed are:
- <EM>explicit</EM> calls to operators provided for that purpose;
- standard copy, assignment and swap operators.
Note that four different polyhedra can be defined on
the zero-dimension space:
the empty polyhedron, either closed or NNC,
and the universe polyhedron \f$R^0\f$, again either closed or NNC.
\par
In all the examples it is assumed that variables
<CODE>x</CODE> and <CODE>y</CODE> are defined (where they are
used) as follows:
\code
Variable x(0);
Variable y(1);
\endcode
\par Example 1
The following code builds a polyhedron corresponding to
a square in \f$\Rset^2\f$, given as a system of constraints:
\code
Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 3);
cs.insert(y >= 0);
cs.insert(y <= 3);
C_Polyhedron ph(cs);
\endcode
The following code builds the same polyhedron as above,
but starting from a system of generators specifying
the four vertices of the square:
\code
Generator_System gs;
gs.insert(point(0*x + 0*y));
gs.insert(point(0*x + 3*y));
gs.insert(point(3*x + 0*y));
gs.insert(point(3*x + 3*y));
C_Polyhedron ph(gs);
\endcode
\par Example 2
The following code builds an unbounded polyhedron
corresponding to a half-strip in \f$\Rset^2\f$,
given as a system of constraints:
\code
Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x - y <= 0);
cs.insert(x - y + 1 >= 0);
C_Polyhedron ph(cs);
\endcode
The following code builds the same polyhedron as above,
but starting from the system of generators specifying
the two vertices of the polyhedron and one ray:
\code
Generator_System gs;
gs.insert(point(0*x + 0*y));
gs.insert(point(0*x + y));
gs.insert(ray(x - y));
C_Polyhedron ph(gs);
\endcode
\par Example 3
The following code builds the polyhedron corresponding to
a half-plane by adding a single constraint
to the universe polyhedron in \f$\Rset^2\f$:
\code
C_Polyhedron ph(2);
ph.add_constraint(y >= 0);
\endcode
The following code builds the same polyhedron as above,
but starting from the empty polyhedron in the space \f$\Rset^2\f$
and inserting the appropriate generators
(a point, a ray and a line).
\code
C_Polyhedron ph(2, EMPTY);
ph.add_generator(point(0*x + 0*y));
ph.add_generator(ray(y));
ph.add_generator(line(x));
\endcode
Note that, although the above polyhedron has no vertices, we must add
one point, because otherwise the result of the Minkowski's sum
would be an empty polyhedron.
To avoid subtle errors related to the minimization process,
it is required that the first generator inserted in an empty
polyhedron is a point (otherwise, an exception is thrown).
\par Example 4
The following code shows the use of the function
<CODE>add_space_dimensions_and_embed</CODE>:
\code
C_Polyhedron ph(1);
ph.add_constraint(x == 2);
ph.add_space_dimensions_and_embed(1);
\endcode
We build the universe polyhedron in the 1-dimension space \f$\Rset\f$.
Then we add a single equality constraint,
thus obtaining the polyhedron corresponding to the singleton set
\f$\{ 2 \} \sseq \Rset\f$.
After the last line of code, the resulting polyhedron is
\f[
\bigl\{\,
(2, y)^\transpose \in \Rset^2
\bigm|
y \in \Rset
\,\bigr\}.
\f]
\par Example 5
The following code shows the use of the function
<CODE>add_space_dimensions_and_project</CODE>:
\code
C_Polyhedron ph(1);
ph.add_constraint(x == 2);
ph.add_space_dimensions_and_project(1);
\endcode
The first two lines of code are the same as in Example 4 for
<CODE>add_space_dimensions_and_embed</CODE>.
After the last line of code, the resulting polyhedron is
the singleton set
\f$\bigl\{ (2, 0)^\transpose \bigr\} \sseq \Rset^2\f$.
\par Example 6
The following code shows the use of the function
<CODE>affine_image</CODE>:
\code
C_Polyhedron ph(2, EMPTY);
ph.add_generator(point(0*x + 0*y));
ph.add_generator(point(0*x + 3*y));
ph.add_generator(point(3*x + 0*y));
ph.add_generator(point(3*x + 3*y));
Linear_Expression expr = x + 4;
ph.affine_image(x, expr);
\endcode
In this example the starting polyhedron is a square in
\f$\Rset^2\f$, the considered variable is \f$x\f$ and the affine
expression is \f$x+4\f$. The resulting polyhedron is the same
square translated to the right. Moreover, if the affine
transformation for the same variable \p x is \f$x+y\f$:
\code
Linear_Expression expr = x + y;
\endcode
the resulting polyhedron is a parallelogram with the height equal to
the side of the square and the oblique sides parallel to the line
\f$x-y\f$.
Instead, if we do not use an invertible transformation for the same
variable; for example, the affine expression \f$y\f$:
\code
Linear_Expression expr = y;
\endcode
the resulting polyhedron is a diagonal of the square.
\par Example 7
The following code shows the use of the function
<CODE>affine_preimage</CODE>:
\code
C_Polyhedron ph(2);
ph.add_constraint(x >= 0);
ph.add_constraint(x <= 3);
ph.add_constraint(y >= 0);
ph.add_constraint(y <= 3);
Linear_Expression expr = x + 4;
ph.affine_preimage(x, expr);
\endcode
In this example the starting polyhedron, \p var and the affine
expression and the denominator are the same as in Example 6,
while the resulting polyhedron is again the same square,
but translated to the left.
Moreover, if the affine transformation for \p x is \f$x+y\f$
\code
Linear_Expression expr = x + y;
\endcode
the resulting polyhedron is a parallelogram with the height equal to
the side of the square and the oblique sides parallel to the line
\f$x+y\f$.
Instead, if we do not use an invertible transformation for the same
variable \p x, for example, the affine expression \f$y\f$:
\code
Linear_Expression expr = y;
\endcode
the resulting polyhedron is a line that corresponds to the \f$y\f$ axis.
\par Example 8
For this example we use also the variables:
\code
Variable z(2);
Variable w(3);
\endcode
The following code shows the use of the function
<CODE>remove_space_dimensions</CODE>:
\code
Generator_System gs;
gs.insert(point(3*x + y + 0*z + 2*w));
C_Polyhedron ph(gs);
Variables_Set vars;
vars.insert(y);
vars.insert(z);
ph.remove_space_dimensions(vars);
\endcode
The starting polyhedron is the singleton set
\f$\bigl\{ (3, 1, 0, 2)^\transpose \bigr\} \sseq \Rset^4\f$, while
the resulting polyhedron is
\f$\bigl\{ (3, 2)^\transpose \bigr\} \sseq \Rset^2\f$.
Be careful when removing space dimensions <EM>incrementally</EM>:
since dimensions are automatically renamed after each application
of the <CODE>remove_space_dimensions</CODE> operator, unexpected
results can be obtained.
For instance, by using the following code we would obtain
a different result:
\code
set<Variable> vars1;
vars1.insert(y);
ph.remove_space_dimensions(vars1);
set<Variable> vars2;
vars2.insert(z);
ph.remove_space_dimensions(vars2);
\endcode
In this case, the result is the polyhedron
\f$\bigl\{(3, 0)^\transpose \bigr\} \sseq \Rset^2\f$:
when removing the set of dimensions \p vars2
we are actually removing variable \f$w\f$ of the original polyhedron.
For the same reason, the operator \p remove_space_dimensions
is not idempotent: removing twice the same non-empty set of dimensions
is never the same as removing them just once.
*/
class Parma_Polyhedra_Library::Polyhedron {
public:
//! The numeric type of coefficients.
typedef Coefficient coefficient_type;
//! Returns the maximum space dimension all kinds of Polyhedron can handle.
static dimension_type max_space_dimension();
/*! \brief
Returns \c true indicating that this domain has methods that
can recycle constraints.
*/
static bool can_recycle_constraint_systems();
//! Initializes the class.
static void initialize();
//! Finalizes the class.
static void finalize();
/*! \brief
Returns \c false indicating that this domain cannot recycle congruences.
*/
static bool can_recycle_congruence_systems();
protected:
//! Builds a polyhedron having the specified properties.
/*!
\param topol
The topology of the polyhedron;
\param num_dimensions
The number of dimensions of the vector space enclosing the polyhedron;
\param kind
Specifies whether the universe or the empty polyhedron has to be built.
*/
Polyhedron(Topology topol,
dimension_type num_dimensions,
Degenerate_Element kind);
//! Ordinary copy constructor.
/*!
The complexity argument is ignored.
*/
Polyhedron(const Polyhedron& y,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a polyhedron from a system of constraints.
/*!
The polyhedron inherits the space dimension of the constraint system.
\param topol
The topology of the polyhedron;
\param cs
The system of constraints defining the polyhedron.
\exception std::invalid_argument
Thrown if the topology of \p cs is incompatible with \p topol.
*/
Polyhedron(Topology topol, const Constraint_System& cs);
//! Builds a polyhedron recycling a system of constraints.
/*!
The polyhedron inherits the space dimension of the constraint system.
\param topol
The topology of the polyhedron;
\param cs
The system of constraints defining the polyhedron. It is not
declared <CODE>const</CODE> because its data-structures may be
recycled to build the polyhedron.
\param dummy
A dummy tag to syntactically differentiate this one
from the other constructors.
\exception std::invalid_argument
Thrown if the topology of \p cs is incompatible with \p topol.
*/
Polyhedron(Topology topol, Constraint_System& cs, Recycle_Input dummy);
//! Builds a polyhedron from a system of generators.
/*!
The polyhedron inherits the space dimension of the generator system.
\param topol
The topology of the polyhedron;
\param gs
The system of generators defining the polyhedron.
\exception std::invalid_argument
Thrown if the topology of \p gs is incompatible with \p topol,
or if the system of generators is not empty but has no points.
*/
Polyhedron(Topology topol, const Generator_System& gs);
//! Builds a polyhedron recycling a system of generators.
/*!
The polyhedron inherits the space dimension of the generator system.
\param topol
The topology of the polyhedron;
\param gs
The system of generators defining the polyhedron. It is not
declared <CODE>const</CODE> because its data-structures may be
recycled to build the polyhedron.
\param dummy
A dummy tag to syntactically differentiate this one
from the other constructors.
\exception std::invalid_argument
Thrown if the topology of \p gs is incompatible with \p topol,
or if the system of generators is not empty but has no points.
*/
Polyhedron(Topology topol, Generator_System& gs, Recycle_Input dummy);
//! Builds a polyhedron from a box.
/*!
This will use an algorithm whose complexity is polynomial and build
the smallest polyhedron with topology \p topol containing \p box.
\param topol
The topology of the polyhedron;
\param box
The box representing the polyhedron to be built;
\param complexity
This argument is ignored.
*/
template <typename Interval>
Polyhedron(Topology topol, const Box<Interval>& box,
Complexity_Class complexity = ANY_COMPLEXITY);
/*! \brief
The assignment operator.
(\p *this and \p y can be dimension-incompatible.)
*/
Polyhedron& operator=(const Polyhedron& y);
public:
//! \name Member Functions that Do Not Modify the Polyhedron
//@{
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
/*! \brief
Returns \f$0\f$, if \p *this is empty; otherwise, returns the
\ref Affine_Independence_and_Affine_Dimension "affine dimension"
of \p *this.
*/
dimension_type affine_dimension() const;
//! Returns the system of constraints.
const Constraint_System& constraints() const;
//! Returns the system of constraints, with no redundant constraint.
const Constraint_System& minimized_constraints() const;
//! Returns the system of generators.
const Generator_System& generators() const;
//! Returns the system of generators, with no redundant generator.
const Generator_System& minimized_generators() const;
//! Returns a system of (equality) congruences satisfied by \p *this.
Congruence_System congruences() const;
/*! \brief
Returns a system of (equality) congruences satisfied by \p *this,
with no redundant congruences and having the same affine dimension
as \p *this.
*/
Congruence_System minimized_congruences() const;
/*! \brief
Returns the relations holding between the polyhedron \p *this
and the constraint \p c.
\exception std::invalid_argument
Thrown if \p *this and constraint \p c are dimension-incompatible.
*/
Poly_Con_Relation relation_with(const Constraint& c) const;
/*! \brief
Returns the relations holding between the polyhedron \p *this
and the generator \p g.
\exception std::invalid_argument
Thrown if \p *this and generator \p g are dimension-incompatible.
*/
Poly_Gen_Relation relation_with(const Generator& g) const;
/*! \brief
Returns the relations holding between the polyhedron \p *this
and the congruence \p c.
\exception std::invalid_argument
Thrown if \p *this and congruence \p c are dimension-incompatible.
*/
Poly_Con_Relation relation_with(const Congruence& cg) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is
an empty polyhedron.
*/
bool is_empty() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
is a universe polyhedron.
*/
bool is_universe() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
is a topologically closed subset of the vector space.
*/
bool is_topologically_closed() const;
//! Returns <CODE>true</CODE> if and only if \p *this and \p y are disjoint.
/*!
\exception std::invalid_argument
Thrown if \p x and \p y are topology-incompatible or
dimension-incompatible.
*/
bool is_disjoint_from(const Polyhedron& y) const;
//! Returns <CODE>true</CODE> if and only if \p *this is discrete.
bool is_discrete() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
is a bounded polyhedron.
*/
bool is_bounded() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
contains at least one integer point.
*/
bool contains_integer_point() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p var is constrained in
\p *this.
\exception std::invalid_argument
Thrown if \p var is not a space dimension of \p *this.
*/
bool constrains(Variable var) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p expr is
bounded from above in \p *this.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds_from_above(const Linear_Expression& expr) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p expr is
bounded from below in \p *this.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds_from_below(const Linear_Expression& expr) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from above in \p *this, in which case
the supremum value is computed.
\param expr
The linear expression to be maximized subject to \p *this;
\param sup_n
The numerator of the supremum value;
\param sup_d
The denominator of the supremum value;
\param maximum
<CODE>true</CODE> if and only if the supremum is also the maximum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from above,
<CODE>false</CODE> is returned and \p sup_n, \p sup_d
and \p maximum are left untouched.
*/
bool maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from above in \p *this, in which case
the supremum value and a point where \p expr reaches it are computed.
\param expr
The linear expression to be maximized subject to \p *this;
\param sup_n
The numerator of the supremum value;
\param sup_d
The denominator of the supremum value;
\param maximum
<CODE>true</CODE> if and only if the supremum is also the maximum value;
\param g
When maximization succeeds, will be assigned the point or
closure point where \p expr reaches its supremum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from above,
<CODE>false</CODE> is returned and \p sup_n, \p sup_d, \p maximum
and \p g are left untouched.
*/
bool maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum,
Generator& g) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from below in \p *this, in which case
the infimum value is computed.
\param expr
The linear expression to be minimized subject to \p *this;
\param inf_n
The numerator of the infimum value;
\param inf_d
The denominator of the infimum value;
\param minimum
<CODE>true</CODE> if and only if the infimum is also the minimum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from below,
<CODE>false</CODE> is returned and \p inf_n, \p inf_d
and \p minimum are left untouched.
*/
bool minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from below in \p *this, in which case
the infimum value and a point where \p expr reaches it are computed.
\param expr
The linear expression to be minimized subject to \p *this;
\param inf_n
The numerator of the infimum value;
\param inf_d
The denominator of the infimum value;
\param minimum
<CODE>true</CODE> if and only if the infimum is also the minimum value;
\param g
When minimization succeeds, will be assigned a point or
closure point where \p expr reaches its infimum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from below,
<CODE>false</CODE> is returned and \p inf_n, \p inf_d, \p minimum
and \p g are left untouched.
*/
bool minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum,
Generator& g) const;
/*! \brief
Returns <CODE>true</CODE> if and only if there exist a
unique value \p val such that \p *this
saturates the equality <CODE>expr = val</CODE>.
\param expr
The linear expression for which the frequency is needed;
\param freq_n
If <CODE>true</CODE> is returned, the value is set to \f$0\f$;
Present for interface compatibility with class Grid, where
the \ref Grid_Frequency "frequency" can have a non-zero value;
\param freq_d
If <CODE>true</CODE> is returned, the value is set to \f$1\f$;
\param val_n
The numerator of \p val;
\param val_d
The denominator of \p val;
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If <CODE>false</CODE> is returned, then \p freq_n, \p freq_d,
\p val_n and \p val_d are left untouched.
*/
bool frequency(const Linear_Expression& expr,
Coefficient& freq_n, Coefficient& freq_d,
Coefficient& val_n, Coefficient& val_d) const;
//! Returns <CODE>true</CODE> if and only if \p *this contains \p y.
/*!
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
bool contains(const Polyhedron& y) const;
//! Returns <CODE>true</CODE> if and only if \p *this strictly contains \p y.
/*!
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
bool strictly_contains(const Polyhedron& y) const;
//! Checks if all the invariants are satisfied.
/*!
\return
<CODE>true</CODE> if and only if \p *this satisfies all the
invariants and either \p check_not_empty is <CODE>false</CODE> or
\p *this is not empty.
\param check_not_empty
<CODE>true</CODE> if and only if, in addition to checking the
invariants, \p *this must be checked to be not empty.
The check is performed so as to intrude as little as possible. If
the library has been compiled with run-time assertions enabled,
error messages are written on <CODE>std::cerr</CODE> in case
invariants are violated. This is useful for the purpose of
debugging the library.
*/
bool OK(bool check_not_empty = false) const;
//@} // Member Functions that Do Not Modify the Polyhedron
//! \name Space Dimension Preserving Member Functions that May Modify the Polyhedron
//@{
/*! \brief
Adds a copy of constraint \p c to the system of constraints
of \p *this (without minimizing the result).
\param c
The constraint that will be added to the system of
constraints of \p *this.
\exception std::invalid_argument
Thrown if \p *this and constraint \p c are topology-incompatible
or dimension-incompatible.
*/
void add_constraint(const Constraint& c);
/*! \brief
Adds a copy of generator \p g to the system of generators
of \p *this (without minimizing the result).
\exception std::invalid_argument
Thrown if \p *this and generator \p g are topology-incompatible or
dimension-incompatible, or if \p *this is an empty polyhedron and
\p g is not a point.
*/
void add_generator(const Generator& g);
/*! \brief
Adds a copy of congruence \p cg to \p *this,
if \p cg can be exactly represented by a polyhedron.
\exception std::invalid_argument
Thrown if \p *this and congruence \p cg are dimension-incompatible,
of if \p cg is a proper congruence which is neither a tautology,
nor a contradiction.
*/
void add_congruence(const Congruence& cg);
/*! \brief
Adds a copy of the constraints in \p cs to the system
of constraints of \p *this (without minimizing the result).
\param cs
Contains the constraints that will be added to the system of
constraints of \p *this.
\exception std::invalid_argument
Thrown if \p *this and \p cs are topology-incompatible or
dimension-incompatible.
*/
void add_constraints(const Constraint_System& cs);
/*! \brief
Adds the constraints in \p cs to the system of constraints
of \p *this (without minimizing the result).
\param cs
The constraint system to be added to \p *this. The constraints in
\p cs may be recycled.
\exception std::invalid_argument
Thrown if \p *this and \p cs are topology-incompatible or
dimension-incompatible.
\warning
The only assumption that can be made on \p cs upon successful or
exceptional return is that it can be safely destroyed.
*/
void add_recycled_constraints(Constraint_System& cs);
/*! \brief
Adds a copy of the generators in \p gs to the system
of generators of \p *this (without minimizing the result).
\param gs
Contains the generators that will be added to the system of
generators of \p *this.
\exception std::invalid_argument
Thrown if \p *this and \p gs are topology-incompatible or
dimension-incompatible, or if \p *this is empty and the system of
generators \p gs is not empty, but has no points.
*/
void add_generators(const Generator_System& gs);
/*! \brief
Adds the generators in \p gs to the system of generators
of \p *this (without minimizing the result).
\param gs
The generator system to be added to \p *this. The generators in
\p gs may be recycled.
\exception std::invalid_argument
Thrown if \p *this and \p gs are topology-incompatible or
dimension-incompatible, or if \p *this is empty and the system of
generators \p gs is not empty, but has no points.
\warning
The only assumption that can be made on \p gs upon successful or
exceptional return is that it can be safely destroyed.
*/
void add_recycled_generators(Generator_System& gs);
/*! \brief
Adds a copy of the congruences in \p cgs to \p *this,
if all the congruences can be exactly represented by a polyhedron.
\param cgs
The congruences to be added.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible,
of if there exists in \p cgs a proper congruence which is
neither a tautology, nor a contradiction.
*/
void add_congruences(const Congruence_System& cgs);
/*! \brief
Adds the congruences in \p cgs to \p *this,
if all the congruences can be exactly represented by a polyhedron.
\param cgs
The congruences to be added. Its elements may be recycled.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible,
of if there exists in \p cgs a proper congruence which is
neither a tautology, nor a contradiction
\warning
The only assumption that can be made on \p cgs upon successful or
exceptional return is that it can be safely destroyed.
*/
void add_recycled_congruences(Congruence_System& cgs);
/*! \brief
Uses a copy of constraint \p c to refine \p *this.
\exception std::invalid_argument
Thrown if \p *this and constraint \p c are dimension-incompatible.
*/
void refine_with_constraint(const Constraint& c);
/*! \brief
Uses a copy of congruence \p cg to refine \p *this.
\exception std::invalid_argument
Thrown if \p *this and congruence \p cg are dimension-incompatible.
*/
void refine_with_congruence(const Congruence& cg);
/*! \brief
Uses a copy of the constraints in \p cs to refine \p *this.
\param cs
Contains the constraints used to refine the system of
constraints of \p *this.
\exception std::invalid_argument
Thrown if \p *this and \p cs are dimension-incompatible.
*/
void refine_with_constraints(const Constraint_System& cs);
/*! \brief
Uses a copy of the congruences in \p cgs to refine \p *this.
\param cgs
Contains the congruences used to refine the system of
constraints of \p *this.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible.
*/
void refine_with_congruences(const Congruence_System& cgs);
/*! \brief
Refines \p *this with the constraint expressed by \p left \f$<\f$
\p right if \p is_strict is set, with the constraint \p left \f$\leq\f$
\p right otherwise.
\param left
The linear form on intervals with floating point boundaries that
is on the left of the comparison operator. All of its coefficients
MUST be bounded.
\param right
The linear form on intervals with floating point boundaries that
is on the right of the comparison operator. All of its coefficients
MUST be bounded.
\param is_strict
True if the comparison is strict.
\exception std::invalid_argument
Thrown if \p left (or \p right) is dimension-incompatible with \p *this.
This function is used in abstract interpretation to model a filter
that is generated by a comparison of two expressions that are correctly
approximated by \p left and \p right respectively.
*/
template <typename FP_Format, typename Interval_Info>
void refine_with_linear_form_inequality(
const Linear_Form< Interval<FP_Format, Interval_Info> >& left,
const Linear_Form< Interval<FP_Format, Interval_Info> >& right,
bool is_strict = false);
/*! \brief
Refines \p *this with the constraint expressed by \p left \f$\relsym\f$
\p right, where \f$\relsym\f$ is the relation symbol specified by
\p relsym..
\param left
The linear form on intervals with floating point boundaries that
is on the left of the comparison operator. All of its coefficients
MUST be bounded.
\param right
The linear form on intervals with floating point boundaries that
is on the right of the comparison operator. All of its coefficients
MUST be bounded.
\param relsym
The relation symbol.
\exception std::invalid_argument
Thrown if \p left (or \p right) is dimension-incompatible with \p *this.
\exception std::runtime_error
Thrown if \p relsym is not a valid relation symbol.
This function is used in abstract interpretation to model a filter
that is generated by a comparison of two expressions that are correctly
approximated by \p left and \p right respectively.
*/
template <typename FP_Format, typename Interval_Info>
void generalized_refine_with_linear_form_inequality(
const Linear_Form< Interval<FP_Format, Interval_Info> >& left,
const Linear_Form< Interval<FP_Format, Interval_Info> >& right,
Relation_Symbol relsym);
//! Refines \p store with the constraints defining \p *this.
/*!
\param store
The interval floating point abstract store to refine.
*/
template <typename FP_Format, typename Interval_Info>
void refine_fp_interval_abstract_store(
Box< Interval<FP_Format, Interval_Info> >& store)
const;
/*! \brief
Computes the \ref Cylindrification "cylindrification" of \p *this with
respect to space dimension \p var, assigning the result to \p *this.
\param var
The space dimension that will be unconstrained.
\exception std::invalid_argument
Thrown if \p var is not a space dimension of \p *this.
*/
void unconstrain(Variable var);
/*! \brief
Computes the \ref Cylindrification "cylindrification" of \p *this with
respect to the set of space dimensions \p vars,
assigning the result to \p *this.
\param vars
The set of space dimension that will be unconstrained.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with one of the
Variable objects contained in \p vars.
*/
void unconstrain(const Variables_Set& vars);
/*! \brief
Assigns to \p *this the intersection of \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
void intersection_assign(const Polyhedron& y);
/*! \brief
Assigns to \p *this the poly-hull of \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
void poly_hull_assign(const Polyhedron& y);
//! Same as poly_hull_assign(y).
void upper_bound_assign(const Polyhedron& y);
/*! \brief
Assigns to \p *this
the \ref Convex_Polyhedral_Difference "poly-difference"
of \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
void poly_difference_assign(const Polyhedron& y);
//! Same as poly_difference_assign(y).
void difference_assign(const Polyhedron& y);
/*! \brief
Assigns to \p *this a \ref Meet_Preserving_Simplification
"meet-preserving simplification" of \p *this with respect to \p y.
If \c false is returned, then the intersection is empty.
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
bool simplify_using_context_assign(const Polyhedron& y);
/*! \brief
Assigns to \p *this the
\ref Single_Update_Affine_Functions "affine image"
of \p *this under the function mapping variable \p var to the
affine expression specified by \p expr and \p denominator.
\param var
The variable to which the affine expression is assigned;
\param expr
The numerator of the affine expression;
\param denominator
The denominator of the affine expression (optional argument with
default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of
\p *this.
\if Include_Implementation_Details
When considering the generators of a polyhedron, the
affine transformation
\f[
\frac{\sum_{i=0}^{n-1} a_i x_i + b}{\mathrm{denominator}}
\f]
is assigned to \p var where \p expr is
\f$\sum_{i=0}^{n-1} a_i x_i + b\f$
(\f$b\f$ is the inhomogeneous term).
If constraints are up-to-date, it uses the specialized function
affine_preimage() (for the system of constraints)
and inverse transformation to reach the same result.
To obtain the inverse transformation we use the following observation.
Observation:
-# The affine transformation is invertible if the coefficient
of \p var in this transformation (i.e., \f$a_\mathrm{var}\f$)
is different from zero.
-# If the transformation is invertible, then we can write
\f[
\mathrm{denominator} * {x'}_\mathrm{var}
= \sum_{i = 0}^{n - 1} a_i x_i + b
= a_\mathrm{var} x_\mathrm{var}
+ \sum_{i \neq var} a_i x_i + b,
\f]
so that the inverse transformation is
\f[
a_\mathrm{var} x_\mathrm{var}
= \mathrm{denominator} * {x'}_\mathrm{var}
- \sum_{i \neq j} a_i x_i - b.
\f]
Then, if the transformation is invertible, all the entities that
were up-to-date remain up-to-date. Otherwise only generators remain
up-to-date.
In other words, if \f$R\f$ is a \f$m_1 \times n\f$ matrix representing
the rays of the polyhedron, \f$V\f$ is a \f$m_2 \times n\f$
matrix representing the points of the polyhedron and
\f[
P = \bigl\{\,
\vect{x} = (x_0, \ldots, x_{n-1})^\mathrm{T}
\bigm|
\vect{x} = \vect{\lambda} R + \vect{\mu} V,
\vect{\lambda} \in \Rset^{m_1}_+,
\vect{\mu} \in \Rset^{m_2}_+,
\sum_{i = 0}^{m_2 - 1} \mu_i = 1
\,\bigr\}
\f]
and \f$T\f$ is the affine transformation to apply to \f$P\f$, then
the resulting polyhedron is
\f[
P' = \bigl\{\,
(x_0, \ldots, T(x_0, \ldots, x_{n-1}),
\ldots, x_{n-1})^\mathrm{T}
\bigm|
(x_0, \ldots, x_{n-1})^\mathrm{T} \in P
\,\bigr\}.
\f]
Affine transformations are, for example:
- translations
- rotations
- symmetries.
\endif
*/
void affine_image(Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
// FIXME: To be completed.
/*!
Assigns to \p *this the
\ref affine_form_relation "affine form image"
of \p *this under the function mapping variable \p var into the
affine expression(s) specified by \p lf.
\param var
The variable to which the affine expression is assigned.
\param lf
The linear form on intervals with floating point boundaries that
defines the affine expression(s). ALL of its coefficients MUST be bounded.
\exception std::invalid_argument
Thrown if \p lf and \p *this are dimension-incompatible or if \p var is
not a space dimension of \p *this.
This function is used in abstract interpretation to model an assignment
of a value that is correctly overapproximated by \p lf to the
floating point variable represented by \p var.
*/
template <typename FP_Format, typename Interval_Info>
void affine_form_image(Variable var,
const Linear_Form<Interval <FP_Format, Interval_Info> >& lf);
/*! \brief
Assigns to \p *this the
\ref Single_Update_Affine_Functions "affine preimage"
of \p *this under the function mapping variable \p var to the
affine expression specified by \p expr and \p denominator.
\param var
The variable to which the affine expression is substituted;
\param expr
The numerator of the affine expression;
\param denominator
The denominator of the affine expression (optional argument with
default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of \p *this.
\if Include_Implementation_Details
When considering constraints of a polyhedron, the affine transformation
\f[
\frac{\sum_{i=0}^{n-1} a_i x_i + b}{denominator},
\f]
is assigned to \p var where \p expr is
\f$\sum_{i=0}^{n-1} a_i x_i + b\f$
(\f$b\f$ is the inhomogeneous term).
If generators are up-to-date, then the specialized function
affine_image() is used (for the system of generators)
and inverse transformation to reach the same result.
To obtain the inverse transformation, we use the following observation.
Observation:
-# The affine transformation is invertible if the coefficient
of \p var in this transformation (i.e. \f$a_\mathrm{var}\f$)
is different from zero.
-# If the transformation is invertible, then we can write
\f[
\mathrm{denominator} * {x'}_\mathrm{var}
= \sum_{i = 0}^{n - 1} a_i x_i + b
= a_\mathrm{var} x_\mathrm{var}
+ \sum_{i \neq \mathrm{var}} a_i x_i + b,
\f],
the inverse transformation is
\f[
a_\mathrm{var} x_\mathrm{var}
= \mathrm{denominator} * {x'}_\mathrm{var}
- \sum_{i \neq j} a_i x_i - b.
\f].
Then, if the transformation is invertible, all the entities that
were up-to-date remain up-to-date. Otherwise only constraints remain
up-to-date.
In other words, if \f$A\f$ is a \f$m \times n\f$ matrix representing
the constraints of the polyhedron, \f$T\f$ is the affine transformation
to apply to \f$P\f$ and
\f[
P = \bigl\{\,
\vect{x} = (x_0, \ldots, x_{n-1})^\mathrm{T}
\bigm|
A\vect{x} \geq \vect{0}
\,\bigr\}.
\f]
The resulting polyhedron is
\f[
P' = \bigl\{\,
\vect{x} = (x_0, \ldots, x_{n-1}))^\mathrm{T}
\bigm|
A'\vect{x} \geq \vect{0}
\,\bigr\},
\f]
where \f$A'\f$ is defined as follows:
\f[
{a'}_{ij}
= \begin{cases}
a_{ij} * \mathrm{denominator} + a_{i\mathrm{var}}*\mathrm{expr}[j]
\quad \mathrm{for } j \neq \mathrm{var}; \\
\mathrm{expr}[\mathrm{var}] * a_{i\mathrm{var}},
\quad \text{for } j = \mathrm{var}.
\end{cases}
\f]
\endif
*/
void affine_preimage(Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the image of \p *this with respect to the
\ref Generalized_Affine_Relations "generalized affine relation"
\f$\mathrm{var}' \relsym \frac{\mathrm{expr}}{\mathrm{denominator}}\f$,
where \f$\mathord{\relsym}\f$ is the relation symbol encoded
by \p relsym.
\param var
The left hand side variable of the generalized affine relation;
\param relsym
The relation symbol;
\param expr
The numerator of the right hand side affine expression;
\param denominator
The denominator of the right hand side affine expression (optional
argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of \p *this
or if \p *this is a C_Polyhedron and \p relsym is a strict
relation symbol.
*/
void generalized_affine_image(Variable var,
Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Generalized_Affine_Relations "generalized affine relation"
\f$\mathrm{var}' \relsym \frac{\mathrm{expr}}{\mathrm{denominator}}\f$,
where \f$\mathord{\relsym}\f$ is the relation symbol encoded
by \p relsym.
\param var
The left hand side variable of the generalized affine relation;
\param relsym
The relation symbol;
\param expr
The numerator of the right hand side affine expression;
\param denominator
The denominator of the right hand side affine expression (optional
argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of \p *this
or if \p *this is a C_Polyhedron and \p relsym is a strict
relation symbol.
*/
void
generalized_affine_preimage(Variable var,
Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the image of \p *this with respect to the
\ref Generalized_Affine_Relations "generalized affine relation"
\f$\mathrm{lhs}' \relsym \mathrm{rhs}\f$, where
\f$\mathord{\relsym}\f$ is the relation symbol encoded by \p relsym.
\param lhs
The left hand side affine expression;
\param relsym
The relation symbol;
\param rhs
The right hand side affine expression.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p lhs or \p rhs
or if \p *this is a C_Polyhedron and \p relsym is a strict
relation symbol.
*/
void generalized_affine_image(const Linear_Expression& lhs,
Relation_Symbol relsym,
const Linear_Expression& rhs);
/*! \brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Generalized_Affine_Relations "generalized affine relation"
\f$\mathrm{lhs}' \relsym \mathrm{rhs}\f$, where
\f$\mathord{\relsym}\f$ is the relation symbol encoded by \p relsym.
\param lhs
The left hand side affine expression;
\param relsym
The relation symbol;
\param rhs
The right hand side affine expression.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p lhs or \p rhs
or if \p *this is a C_Polyhedron and \p relsym is a strict
relation symbol.
*/
void generalized_affine_preimage(const Linear_Expression& lhs,
Relation_Symbol relsym,
const Linear_Expression& rhs);
/*!
\brief
Assigns to \p *this the image of \p *this with respect to the
\ref Single_Update_Bounded_Affine_Relations "bounded affine relation"
\f$\frac{\mathrm{lb\_expr}}{\mathrm{denominator}}
\leq \mathrm{var}'
\leq \frac{\mathrm{ub\_expr}}{\mathrm{denominator}}\f$.
\param var
The variable updated by the affine relation;
\param lb_expr
The numerator of the lower bounding affine expression;
\param ub_expr
The numerator of the upper bounding affine expression;
\param denominator
The (common) denominator for the lower and upper bounding
affine expressions (optional argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p lb_expr (resp., \p ub_expr)
and \p *this are dimension-incompatible or if \p var is not a space
dimension of \p *this.
*/
void bounded_affine_image(Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*!
\brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Single_Update_Bounded_Affine_Relations "bounded affine relation"
\f$\frac{\mathrm{lb\_expr}}{\mathrm{denominator}}
\leq \mathrm{var}'
\leq \frac{\mathrm{ub\_expr}}{\mathrm{denominator}}\f$.
\param var
The variable updated by the affine relation;
\param lb_expr
The numerator of the lower bounding affine expression;
\param ub_expr
The numerator of the upper bounding affine expression;
\param denominator
The (common) denominator for the lower and upper bounding
affine expressions (optional argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p lb_expr (resp., \p ub_expr)
and \p *this are dimension-incompatible or if \p var is not a space
dimension of \p *this.
*/
void bounded_affine_preimage(Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the result of computing the
\ref Time_Elapse_Operator "time-elapse" between \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
void time_elapse_assign(const Polyhedron& y);
/*! \brief
Assigns to \p *this (the best approximation of) the result of
computing the
\ref Positive_Time_Elapse_Operator "positive time-elapse"
between \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void positive_time_elapse_assign(const Polyhedron& y);
/*! \brief
\ref Wrapping_Operator "Wraps" the specified dimensions of the
vector space.
\param vars
The set of Variable objects corresponding to the space dimensions
to be wrapped.
\param w
The width of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param r
The representation of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param o
The overflow behavior of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param cs_p
Possibly null pointer to a constraint system whose variables
are contained in \p vars. If <CODE>*cs_p</CODE> depends on
variables not in \p vars, the behavior is undefined.
When non-null, the pointed-to constraint system is assumed to
represent the conditional or looping construct guard with respect
to which wrapping is performed. Since wrapping requires the
computation of upper bounds and due to non-distributivity of
constraint refinement over upper bounds, passing a constraint
system in this way can be more precise than refining the result of
the wrapping operation with the constraints in <CODE>*cs_p</CODE>.
\param complexity_threshold
A precision parameter of the \ref Wrapping_Operator "wrapping operator":
higher values result in possibly improved precision.
\param wrap_individually
<CODE>true</CODE> if the dimensions should be wrapped individually
(something that results in much greater efficiency to the detriment of
precision).
\exception std::invalid_argument
Thrown if <CODE>*cs_p</CODE> is dimension-incompatible with
\p vars, or if \p *this is dimension-incompatible \p vars or with
<CODE>*cs_p</CODE>.
*/
void wrap_assign(const Variables_Set& vars,
Bounded_Integer_Type_Width w,
Bounded_Integer_Type_Representation r,
Bounded_Integer_Type_Overflow o,
const Constraint_System* cs_p = 0,
unsigned complexity_threshold = 16,
bool wrap_individually = true);
/*! \brief
Possibly tightens \p *this by dropping some points with non-integer
coordinates.
\param complexity
The maximal complexity of any algorithms used.
\note
Currently there is no optimality guarantee, not even if
\p complexity is <CODE>ANY_COMPLEXITY</CODE>.
*/
void drop_some_non_integer_points(Complexity_Class complexity
= ANY_COMPLEXITY);
/*! \brief
Possibly tightens \p *this by dropping some points with non-integer
coordinates for the space dimensions corresponding to \p vars.
\param vars
Points with non-integer coordinates for these variables/space-dimensions
can be discarded.
\param complexity
The maximal complexity of any algorithms used.
\note
Currently there is no optimality guarantee, not even if
\p complexity is <CODE>ANY_COMPLEXITY</CODE>.
*/
void drop_some_non_integer_points(const Variables_Set& vars,
Complexity_Class complexity
= ANY_COMPLEXITY);
//! Assigns to \p *this its topological closure.
void topological_closure_assign();
/*! \brief
Assigns to \p *this the result of computing the
\ref BHRZ03_widening "BHRZ03-widening" between \p *this and \p y.
\param y
A polyhedron that <EM>must</EM> be contained in \p *this;
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
void BHRZ03_widening_assign(const Polyhedron& y, unsigned* tp = 0);
/*! \brief
Assigns to \p *this the result of computing the
\ref limited_extrapolation "limited extrapolation"
between \p *this and \p y using the \ref BHRZ03_widening
"BHRZ03-widening" operator.
\param y
A polyhedron that <EM>must</EM> be contained in \p *this;
\param cs
The system of constraints used to improve the widened polyhedron;
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this, \p y and \p cs are topology-incompatible or
dimension-incompatible.
*/
void limited_BHRZ03_extrapolation_assign(const Polyhedron& y,
const Constraint_System& cs,
unsigned* tp = 0);
/*! \brief
Assigns to \p *this the result of computing the
\ref bounded_extrapolation "bounded extrapolation"
between \p *this and \p y using the \ref BHRZ03_widening
"BHRZ03-widening" operator.
\param y
A polyhedron that <EM>must</EM> be contained in \p *this;
\param cs
The system of constraints used to improve the widened polyhedron;
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this, \p y and \p cs are topology-incompatible or
dimension-incompatible.
*/
void bounded_BHRZ03_extrapolation_assign(const Polyhedron& y,
const Constraint_System& cs,
unsigned* tp = 0);
/*! \brief
Assigns to \p *this the result of computing the
\ref H79_widening "H79_widening" between \p *this and \p y.
\param y
A polyhedron that <EM>must</EM> be contained in \p *this;
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
void H79_widening_assign(const Polyhedron& y, unsigned* tp = 0);
//! Same as H79_widening_assign(y, tp).
void widening_assign(const Polyhedron& y, unsigned* tp = 0);
/*! \brief
Assigns to \p *this the result of computing the
\ref limited_extrapolation "limited extrapolation"
between \p *this and \p y using the \ref H79_widening
"H79-widening" operator.
\param y
A polyhedron that <EM>must</EM> be contained in \p *this;
\param cs
The system of constraints used to improve the widened polyhedron;
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this, \p y and \p cs are topology-incompatible or
dimension-incompatible.
*/
void limited_H79_extrapolation_assign(const Polyhedron& y,
const Constraint_System& cs,
unsigned* tp = 0);
/*! \brief
Assigns to \p *this the result of computing the
\ref bounded_extrapolation "bounded extrapolation"
between \p *this and \p y using the \ref H79_widening
"H79-widening" operator.
\param y
A polyhedron that <EM>must</EM> be contained in \p *this;
\param cs
The system of constraints used to improve the widened polyhedron;
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this, \p y and \p cs are topology-incompatible or
dimension-incompatible.
*/
void bounded_H79_extrapolation_assign(const Polyhedron& y,
const Constraint_System& cs,
unsigned* tp = 0);
//@} // Space Dimension Preserving Member Functions that May Modify [...]
//! \name Member Functions that May Modify the Dimension of the Vector Space
//@{
/*! \brief
Adds \p m new space dimensions and embeds the old polyhedron
in the new vector space.
\param m
The number of dimensions to add.
\exception std::length_error
Thrown if adding \p m new space dimensions would cause the
vector space to exceed dimension <CODE>max_space_dimension()</CODE>.
The new space dimensions will be those having the highest indexes
in the new polyhedron, which is characterized by a system
of constraints in which the variables running through
the new dimensions are not constrained.
For instance, when starting from the polyhedron \f$\cP \sseq \Rset^2\f$
and adding a third space dimension, the result will be the polyhedron
\f[
\bigl\{\,
(x, y, z)^\transpose \in \Rset^3
\bigm|
(x, y)^\transpose \in \cP
\,\bigr\}.
\f]
*/
void add_space_dimensions_and_embed(dimension_type m);
/*! \brief
Adds \p m new space dimensions to the polyhedron
and does not embed it in the new vector space.
\param m
The number of space dimensions to add.
\exception std::length_error
Thrown if adding \p m new space dimensions would cause the
vector space to exceed dimension <CODE>max_space_dimension()</CODE>.
The new space dimensions will be those having the highest indexes
in the new polyhedron, which is characterized by a system
of constraints in which the variables running through
the new dimensions are all constrained to be equal to 0.
For instance, when starting from the polyhedron \f$\cP \sseq \Rset^2\f$
and adding a third space dimension, the result will be the polyhedron
\f[
\bigl\{\,
(x, y, 0)^\transpose \in \Rset^3
\bigm|
(x, y)^\transpose \in \cP
\,\bigr\}.
\f]
*/
void add_space_dimensions_and_project(dimension_type m);
/*! \brief
Assigns to \p *this the \ref Concatenating_Polyhedra "concatenation"
of \p *this and \p y, taken in this order.
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible.
\exception std::length_error
Thrown if the concatenation would cause the vector space
to exceed dimension <CODE>max_space_dimension()</CODE>.
*/
void concatenate_assign(const Polyhedron& y);
//! Removes all the specified dimensions from the vector space.
/*!
\param vars
The set of Variable objects corresponding to the space dimensions
to be removed.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with one of the
Variable objects contained in \p vars.
*/
void remove_space_dimensions(const Variables_Set& vars);
/*! \brief
Removes the higher dimensions of the vector space so that
the resulting space will have dimension \p new_dimension.
\exception std::invalid_argument
Thrown if \p new_dimensions is greater than the space dimension of
\p *this.
*/
void remove_higher_space_dimensions(dimension_type new_dimension);
/*! \brief
Remaps the dimensions of the vector space according to
a \ref Mapping_the_Dimensions_of_the_Vector_Space "partial function".
\param pfunc
The partial function specifying the destiny of each space dimension.
The template type parameter Partial_Function must provide
the following methods.
\code
bool has_empty_codomain() const
\endcode
returns <CODE>true</CODE> if and only if the represented partial
function has an empty codomain (i.e., it is always undefined).
The <CODE>has_empty_codomain()</CODE> method will always be called
before the methods below. However, if
<CODE>has_empty_codomain()</CODE> returns <CODE>true</CODE>, none
of the functions below will be called.
\code
dimension_type max_in_codomain() const
\endcode
returns the maximum value that belongs to the codomain
of the partial function.
The <CODE>max_in_codomain()</CODE> method is called at most once.
\code
bool maps(dimension_type i, dimension_type& j) const
\endcode
Let \f$f\f$ be the represented function and \f$k\f$ be the value
of \p i. If \f$f\f$ is defined in \f$k\f$, then \f$f(k)\f$ is
assigned to \p j and <CODE>true</CODE> is returned.
If \f$f\f$ is undefined in \f$k\f$, then <CODE>false</CODE> is
returned.
This method is called at most \f$n\f$ times, where \f$n\f$ is the
dimension of the vector space enclosing the polyhedron.
The result is undefined if \p pfunc does not encode a partial
function with the properties described in the
\ref Mapping_the_Dimensions_of_the_Vector_Space
"specification of the mapping operator".
*/
template <typename Partial_Function>
void map_space_dimensions(const Partial_Function& pfunc);
//! Creates \p m copies of the space dimension corresponding to \p var.
/*!
\param var
The variable corresponding to the space dimension to be replicated;
\param m
The number of replicas to be created.
\exception std::invalid_argument
Thrown if \p var does not correspond to a dimension of the vector space.
\exception std::length_error
Thrown if adding \p m new space dimensions would cause the
vector space to exceed dimension <CODE>max_space_dimension()</CODE>.
If \p *this has space dimension \f$n\f$, with \f$n > 0\f$,
and <CODE>var</CODE> has space dimension \f$k \leq n\f$,
then the \f$k\f$-th space dimension is
\ref expand_space_dimension "expanded" to \p m new space dimensions
\f$n\f$, \f$n+1\f$, \f$\dots\f$, \f$n+m-1\f$.
*/
void expand_space_dimension(Variable var, dimension_type m);
//! Folds the space dimensions in \p vars into \p dest.
/*!
\param vars
The set of Variable objects corresponding to the space dimensions
to be folded;
\param dest
The variable corresponding to the space dimension that is the
destination of the folding operation.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p dest or with
one of the Variable objects contained in \p vars.
Also thrown if \p dest is contained in \p vars.
If \p *this has space dimension \f$n\f$, with \f$n > 0\f$,
<CODE>dest</CODE> has space dimension \f$k \leq n\f$,
\p vars is a set of variables whose maximum space dimension
is also less than or equal to \f$n\f$, and \p dest is not a member
of \p vars, then the space dimensions corresponding to
variables in \p vars are \ref fold_space_dimensions "folded"
into the \f$k\f$-th space dimension.
*/
void fold_space_dimensions(const Variables_Set& vars, Variable dest);
//@} // Member Functions that May Modify the Dimension of the Vector Space
friend bool operator==(const Polyhedron& x, const Polyhedron& y);
//! \name Miscellaneous Member Functions
//@{
//! Destructor.
~Polyhedron();
/*! \brief
Swaps \p *this with polyhedron \p y.
(\p *this and \p y can be dimension-incompatible.)
\exception std::invalid_argument
Thrown if \p x and \p y are topology-incompatible.
*/
void m_swap(Polyhedron& y);
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
/*! \brief
Returns a 32-bit hash code for \p *this.
If \p x and \p y are such that <CODE>x == y</CODE>,
then <CODE>x.hash_code() == y.hash_code()</CODE>.
*/
int32_t hash_code() const;
//@} // Miscellaneous Member Functions
private:
static const Representation default_con_sys_repr = DENSE;
static const Representation default_gen_sys_repr = DENSE;
//! The system of constraints.
Constraint_System con_sys;
//! The system of generators.
Generator_System gen_sys;
//! The saturation matrix having constraints on its columns.
Bit_Matrix sat_c;
//! The saturation matrix having generators on its columns.
Bit_Matrix sat_g;
#define PPL_IN_Polyhedron_CLASS
/* Automatically generated from PPL source file ../src/Ph_Status_idefs.hh line 1. */
/* Polyhedron::Status class declaration.
*/
#ifndef PPL_IN_Polyhedron_CLASS
#error "Do not include Ph_Status_idefs.hh directly; use Polyhedron_defs.hh instead"
#endif
//! A conjunctive assertion about a polyhedron.
/*! \ingroup PPL_CXX_interface
The assertions supported are:
- <EM>zero-dim universe</EM>: the polyhedron is the zero-dimension
vector space \f$\Rset^0 = \{\cdot\}\f$;
- <EM>empty</EM>: the polyhedron is the empty set;
- <EM>constraints pending</EM>: the polyhedron is correctly
characterized by the attached system of constraints, which is
split in two non-empty subsets: the already processed constraints,
which are in minimal form, and the pending constraints, which
still have to be processed and may thus be inconsistent or
contain redundancies;
- <EM>generators pending</EM>: the polyhedron is correctly
characterized by the attached system of generators, which is
split in two non-empty subsets: the already processed generators,
which are in minimal form, and the pending generators, which still
have to be processed and may thus contain redundancies;
- <EM>constraints up-to-date</EM>: the polyhedron is correctly
characterized by the attached system of constraints, modulo the
processing of pending generators;
- <EM>generators up-to-date</EM>: the polyhedron is correctly
characterized by the attached system of generators, modulo the
processing of pending constraints;
- <EM>constraints minimized</EM>: the non-pending part of the system
of constraints attached to the polyhedron is in minimal form;
- <EM>generators minimized</EM>: the non-pending part of the system
of generators attached to the polyhedron is in minimal form;
- <EM>constraints' saturation matrix up-to-date</EM>: the attached
saturation matrix having rows indexed by non-pending generators and
columns indexed by non-pending constraints correctly expresses
the saturation relation between the attached non-pending constraints
and generators;
- <EM>generators' saturation matrix up-to-date</EM>: the attached
saturation matrix having rows indexed by non-pending constraints and
columns indexed by non-pending generators correctly expresses
the saturation relation between the attached non-pending constraints
and generators;
Not all the conjunctions of these elementary assertions constitute
a legal Status. In fact:
- <EM>zero-dim universe</EM> excludes any other assertion;
- <EM>empty</EM>: excludes any other assertion;
- <EM>constraints pending</EM> and <EM>generators pending</EM>
are mutually exclusive;
- <EM>constraints pending</EM> implies both <EM>constraints minimized</EM>
and <EM>generators minimized</EM>;
- <EM>generators pending</EM> implies both <EM>constraints minimized</EM>
and <EM>generators minimized</EM>;
- <EM>constraints minimized</EM> implies <EM>constraints up-to-date</EM>;
- <EM>generators minimized</EM> implies <EM>generators up-to-date</EM>;
- <EM>constraints' saturation matrix up-to-date</EM> implies both
<EM>constraints up-to-date</EM> and <EM>generators up-to-date</EM>;
- <EM>generators' saturation matrix up-to-date</EM> implies both
<EM>constraints up-to-date</EM> and <EM>generators up-to-date</EM>.
*/
class Status {
public:
//! By default Status is the <EM>zero-dim universe</EM> assertion.
Status();
//! \name Test, remove or add an individual assertion from the conjunction
//@{
bool test_zero_dim_univ() const;
void reset_zero_dim_univ();
void set_zero_dim_univ();
bool test_empty() const;
void reset_empty();
void set_empty();
bool test_c_up_to_date() const;
void reset_c_up_to_date();
void set_c_up_to_date();
bool test_g_up_to_date() const;
void reset_g_up_to_date();
void set_g_up_to_date();
bool test_c_minimized() const;
void reset_c_minimized();
void set_c_minimized();
bool test_g_minimized() const;
void reset_g_minimized();
void set_g_minimized();
bool test_sat_c_up_to_date() const;
void reset_sat_c_up_to_date();
void set_sat_c_up_to_date();
bool test_sat_g_up_to_date() const;
void reset_sat_g_up_to_date();
void set_sat_g_up_to_date();
bool test_c_pending() const;
void reset_c_pending();
void set_c_pending();
bool test_g_pending() const;
void reset_g_pending();
void set_g_pending();
//@} // Test, remove or add an individual assertion from the conjunction
//! Checks if all the invariants are satisfied.
bool OK() const;
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
private:
//! Status is implemented by means of a finite bitset.
typedef unsigned int flags_t;
//! \name Bit-masks for the individual assertions
//@{
static const flags_t ZERO_DIM_UNIV = 0U;
static const flags_t EMPTY = 1U << 0;
static const flags_t C_UP_TO_DATE = 1U << 1;
static const flags_t G_UP_TO_DATE = 1U << 2;
static const flags_t C_MINIMIZED = 1U << 3;
static const flags_t G_MINIMIZED = 1U << 4;
static const flags_t SAT_C_UP_TO_DATE = 1U << 5;
static const flags_t SAT_G_UP_TO_DATE = 1U << 6;
static const flags_t CS_PENDING = 1U << 7;
static const flags_t GS_PENDING = 1U << 8;
//@} // Bit-masks for the individual assertions
//! This holds the current bitset.
flags_t flags;
//! Construct from a bit-mask.
Status(flags_t mask);
//! Check whether <EM>all</EM> bits in \p mask are set.
bool test_all(flags_t mask) const;
//! Check whether <EM>at least one</EM> bit in \p mask is set.
bool test_any(flags_t mask) const;
//! Set the bits in \p mask.
void set(flags_t mask);
//! Reset the bits in \p mask.
void reset(flags_t mask);
};
/* Automatically generated from PPL source file ../src/Polyhedron_defs.hh line 2043. */
#undef PPL_IN_Polyhedron_CLASS
//! The status flags to keep track of the polyhedron's internal state.
Status status;
//! The number of dimensions of the enclosing vector space.
dimension_type space_dim;
//! Returns the topological kind of the polyhedron.
Topology topology() const;
/*! \brief
Returns <CODE>true</CODE> if and only if the polyhedron
is necessarily closed.
*/
bool is_necessarily_closed() const;
friend bool
Parma_Polyhedra_Library::Interfaces
::is_necessarily_closed_for_interfaces(const Polyhedron&);
/*! \brief
Uses a copy of constraint \p c to refine the system of constraints
of \p *this.
\param c The constraint to be added. If it is dimension-incompatible
with \p *this, the behavior is undefined.
*/
void refine_no_check(const Constraint& c);
//! \name Private Verifiers: Verify if Individual Flags are Set
//@{
//! Returns <CODE>true</CODE> if the polyhedron is known to be empty.
/*!
The return value <CODE>false</CODE> does not necessarily
implies that \p *this is non-empty.
*/
bool marked_empty() const;
//! Returns <CODE>true</CODE> if the system of constraints is up-to-date.
bool constraints_are_up_to_date() const;
//! Returns <CODE>true</CODE> if the system of generators is up-to-date.
bool generators_are_up_to_date() const;
//! Returns <CODE>true</CODE> if the system of constraints is minimized.
/*!
Note that only \em weak minimization is entailed, so that
an NNC polyhedron may still have \f$\epsilon\f$-redundant constraints.
*/
bool constraints_are_minimized() const;
//! Returns <CODE>true</CODE> if the system of generators is minimized.
/*!
Note that only \em weak minimization is entailed, so that
an NNC polyhedron may still have \f$\epsilon\f$-redundant generators.
*/
bool generators_are_minimized() const;
//! Returns <CODE>true</CODE> if there are pending constraints.
bool has_pending_constraints() const;
//! Returns <CODE>true</CODE> if there are pending generators.
bool has_pending_generators() const;
/*! \brief
Returns <CODE>true</CODE> if there are
either pending constraints or pending generators.
*/
bool has_something_pending() const;
//! Returns <CODE>true</CODE> if the polyhedron can have something pending.
bool can_have_something_pending() const;
/*! \brief
Returns <CODE>true</CODE> if the saturation matrix \p sat_c
is up-to-date.
*/
bool sat_c_is_up_to_date() const;
/*! \brief
Returns <CODE>true</CODE> if the saturation matrix \p sat_g
is up-to-date.
*/
bool sat_g_is_up_to_date() const;
//@} // Private Verifiers: Verify if Individual Flags are Set
//! \name State Flag Setters: Set Only the Specified Flags
//@{
/*! \brief
Sets \p status to express that the polyhedron is the universe
0-dimension vector space, clearing all corresponding matrices.
*/
void set_zero_dim_univ();
/*! \brief
Sets \p status to express that the polyhedron is empty,
clearing all corresponding matrices.
*/
void set_empty();
//! Sets \p status to express that constraints are up-to-date.
void set_constraints_up_to_date();
//! Sets \p status to express that generators are up-to-date.
void set_generators_up_to_date();
//! Sets \p status to express that constraints are minimized.
void set_constraints_minimized();
//! Sets \p status to express that generators are minimized.
void set_generators_minimized();
//! Sets \p status to express that constraints are pending.
void set_constraints_pending();
//! Sets \p status to express that generators are pending.
void set_generators_pending();
//! Sets \p status to express that \p sat_c is up-to-date.
void set_sat_c_up_to_date();
//! Sets \p status to express that \p sat_g is up-to-date.
void set_sat_g_up_to_date();
//@} // State Flag Setters: Set Only the Specified Flags
//! \name State Flag Cleaners: Clear Only the Specified Flag
//@{
//! Clears the \p status flag indicating that the polyhedron is empty.
void clear_empty();
//! Sets \p status to express that constraints are no longer up-to-date.
/*!
This also implies that they are neither minimized
and both saturation matrices are no longer meaningful.
*/
void clear_constraints_up_to_date();
//! Sets \p status to express that generators are no longer up-to-date.
/*!
This also implies that they are neither minimized
and both saturation matrices are no longer meaningful.
*/
void clear_generators_up_to_date();
//! Sets \p status to express that constraints are no longer minimized.
void clear_constraints_minimized();
//! Sets \p status to express that generators are no longer minimized.
void clear_generators_minimized();
//! Sets \p status to express that there are no longer pending constraints.
void clear_pending_constraints();
//! Sets \p status to express that there are no longer pending generators.
void clear_pending_generators();
//! Sets \p status to express that \p sat_c is no longer up-to-date.
void clear_sat_c_up_to_date();
//! Sets \p status to express that \p sat_g is no longer up-to-date.
void clear_sat_g_up_to_date();
//@} // State Flag Cleaners: Clear Only the Specified Flag
//! \name The Handling of Pending Rows
//@{
/*! \brief
Processes the pending rows of either description of the polyhedron
and obtains a minimized polyhedron.
\return
<CODE>false</CODE> if and only if \p *this turns out to be an
empty polyhedron.
It is assumed that the polyhedron does have some constraints or
generators pending.
*/
bool process_pending() const;
//! Processes the pending constraints and obtains a minimized polyhedron.
/*!
\return
<CODE>false</CODE> if and only if \p *this turns out to be an
empty polyhedron.
It is assumed that the polyhedron does have some pending constraints.
*/
bool process_pending_constraints() const;
//! Processes the pending generators and obtains a minimized polyhedron.
/*!
It is assumed that the polyhedron does have some pending generators.
*/
void process_pending_generators() const;
/*! \brief
Lazily integrates the pending descriptions of the polyhedron
to obtain a constraint system without pending rows.
It is assumed that the polyhedron does have some constraints or
generators pending.
*/
void remove_pending_to_obtain_constraints() const;
/*! \brief
Lazily integrates the pending descriptions of the polyhedron
to obtain a generator system without pending rows.
\return
<CODE>false</CODE> if and only if \p *this turns out to be an
empty polyhedron.
It is assumed that the polyhedron does have some constraints or
generators pending.
*/
bool remove_pending_to_obtain_generators() const;
//@} // The Handling of Pending Rows
//! \name Updating and Sorting Matrices
//@{
//! Updates constraints starting from generators and minimizes them.
/*!
The resulting system of constraints is only partially sorted:
the equalities are in the upper part of the matrix,
while the inequalities in the lower part.
*/
void update_constraints() const;
//! Updates generators starting from constraints and minimizes them.
/*!
\return
<CODE>false</CODE> if and only if \p *this turns out to be an
empty polyhedron.
The resulting system of generators is only partially sorted:
the lines are in the upper part of the matrix,
while rays and points are in the lower part.
It is illegal to call this method when the Status field
already declares the polyhedron to be empty.
*/
bool update_generators() const;
//! Updates \p sat_c using the updated constraints and generators.
/*!
It is assumed that constraints and generators are up-to-date
and minimized and that the Status field does not already flag
\p sat_c to be up-to-date.
The values of the saturation matrix are computed as follows:
\f[
\begin{cases}
sat\_c[i][j] = 0,
\quad \text{if } G[i] \cdot C^\mathrm{T}[j] = 0; \\
sat\_c[i][j] = 1,
\quad \text{if } G[i] \cdot C^\mathrm{T}[j] > 0.
\end{cases}
\f]
*/
void update_sat_c() const;
//! Updates \p sat_g using the updated constraints and generators.
/*!
It is assumed that constraints and generators are up-to-date
and minimized and that the Status field does not already flag
\p sat_g to be up-to-date.
The values of the saturation matrix are computed as follows:
\f[
\begin{cases}
sat\_g[i][j] = 0,
\quad \text{if } C[i] \cdot G^\mathrm{T}[j] = 0; \\
sat\_g[i][j] = 1,
\quad \text{if } C[i] \cdot G^\mathrm{T}[j] > 0.
\end{cases}
\f]
*/
void update_sat_g() const;
//! Sorts the matrix of constraints keeping status consistency.
/*!
It is assumed that constraints are up-to-date.
If at least one of the saturation matrices is up-to-date,
then \p sat_g is kept consistent with the sorted matrix
of constraints.
The method is declared \p const because reordering
the constraints does not modify the polyhedron
from a \e logical point of view.
*/
void obtain_sorted_constraints() const;
//! Sorts the matrix of generators keeping status consistency.
/*!
It is assumed that generators are up-to-date.
If at least one of the saturation matrices is up-to-date,
then \p sat_c is kept consistent with the sorted matrix
of generators.
The method is declared \p const because reordering
the generators does not modify the polyhedron
from a \e logical point of view.
*/
void obtain_sorted_generators() const;
//! Sorts the matrix of constraints and updates \p sat_c.
/*!
It is assumed that both constraints and generators
are up-to-date and minimized.
The method is declared \p const because reordering
the constraints does not modify the polyhedron
from a \e logical point of view.
*/
void obtain_sorted_constraints_with_sat_c() const;
//! Sorts the matrix of generators and updates \p sat_g.
/*!
It is assumed that both constraints and generators
are up-to-date and minimized.
The method is declared \p const because reordering
the generators does not modify the polyhedron
from a \e logical point of view.
*/
void obtain_sorted_generators_with_sat_g() const;
//@} // Updating and Sorting Matrices
//! \name Weak and Strong Minimization of Descriptions
//@{
//! Applies (weak) minimization to both the constraints and generators.
/*!
\return
<CODE>false</CODE> if and only if \p *this turns out to be an
empty polyhedron.
Minimization is not attempted if the Status field already declares
both systems to be minimized.
*/
bool minimize() const;
//! Applies strong minimization to the constraints of an NNC polyhedron.
/*!
\return
<CODE>false</CODE> if and only if \p *this turns out to be an
empty polyhedron.
*/
bool strongly_minimize_constraints() const;
//! Applies strong minimization to the generators of an NNC polyhedron.
/*!
\return
<CODE>false</CODE> if and only if \p *this turns out to be an
empty polyhedron.
*/
bool strongly_minimize_generators() const;
//! If constraints are up-to-date, obtain a simplified copy of them.
Constraint_System simplified_constraints() const;
//@} // Weak and Strong Minimization of Descriptions
enum Three_Valued_Boolean {
TVB_TRUE,
TVB_FALSE,
TVB_DONT_KNOW
};
//! Polynomial but incomplete equivalence test between polyhedra.
Three_Valued_Boolean quick_equivalence_test(const Polyhedron& y) const;
//! Returns <CODE>true</CODE> if and only if \p *this is included in \p y.
bool is_included_in(const Polyhedron& y) const;
//! Checks if and how \p expr is bounded in \p *this.
/*!
Returns <CODE>true</CODE> if and only if \p from_above is
<CODE>true</CODE> and \p expr is bounded from above in \p *this,
or \p from_above is <CODE>false</CODE> and \p expr is bounded
from below in \p *this.
\param expr
The linear expression to test;
\param from_above
<CODE>true</CODE> if and only if the boundedness of interest is
"from above".
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds(const Linear_Expression& expr, bool from_above) const;
//! Maximizes or minimizes \p expr subject to \p *this.
/*!
\param expr
The linear expression to be maximized or minimized subject to \p
*this;
\param maximize
<CODE>true</CODE> if maximization is what is wanted;
\param ext_n
The numerator of the extremum value;
\param ext_d
The denominator of the extremum value;
\param included
<CODE>true</CODE> if and only if the extremum of \p expr can
actually be reached in \p * this;
\param g
When maximization or minimization succeeds, will be assigned
a point or closure point where \p expr reaches the
corresponding extremum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded in the appropriate
direction, <CODE>false</CODE> is returned and \p ext_n, \p ext_d,
\p included and \p g are left untouched.
*/
bool max_min(const Linear_Expression& expr,
bool maximize,
Coefficient& ext_n, Coefficient& ext_d, bool& included,
Generator& g) const;
//! \name Widening- and Extrapolation-Related Functions
//@{
/*! \brief
Copies to \p cs_selection the constraints of \p y corresponding
to the definition of the CH78-widening of \p *this and \p y.
*/
void select_CH78_constraints(const Polyhedron& y,
Constraint_System& cs_selection) const;
/*! \brief
Splits the constraints of `x' into two subsets, depending on whether
or not they are selected to compute the \ref H79_widening "H79-widening"
of \p *this and \p y.
*/
void select_H79_constraints(const Polyhedron& y,
Constraint_System& cs_selected,
Constraint_System& cs_not_selected) const;
bool BHRZ03_combining_constraints(const Polyhedron& y,
const BHRZ03_Certificate& y_cert,
const Polyhedron& H79,
const Constraint_System& x_minus_H79_cs);
bool BHRZ03_evolving_points(const Polyhedron& y,
const BHRZ03_Certificate& y_cert,
const Polyhedron& H79);
bool BHRZ03_evolving_rays(const Polyhedron& y,
const BHRZ03_Certificate& y_cert,
const Polyhedron& H79);
static void modify_according_to_evolution(Linear_Expression& ray,
const Linear_Expression& x,
const Linear_Expression& y);
//@} // Widening- and Extrapolation-Related Functions
//! Adds new space dimensions to the given linear systems.
/*!
\param sys1
The linear system to which columns are added;
\param sys2
The linear system to which rows and columns are added;
\param sat1
The saturation matrix whose columns are indexed by the rows of
\p sys1. On entry it is up-to-date;
\param sat2
The saturation matrix whose columns are indexed by the rows of \p
sys2;
\param add_dim
The number of space dimensions to add.
Adds new space dimensions to the vector space modifying the linear
systems and saturation matrices.
This function is invoked only by
<CODE>add_space_dimensions_and_embed()</CODE> and
<CODE>add_space_dimensions_and_project()</CODE>, passing the
linear system of constraints and that of generators (and the
corresponding saturation matrices) in different order (see those
methods for details).
*/
template <typename Linear_System1, typename Linear_System2>
static void add_space_dimensions(Linear_System1& sys1,
Linear_System2& sys2,
Bit_Matrix& sat1,
Bit_Matrix& sat2,
dimension_type add_dim);
//! \name Minimization-Related Static Member Functions
//@{
//! Builds and simplifies constraints from generators (or vice versa).
// Detailed Doxygen comment to be found in file minimize.cc.
template <typename Source_Linear_System, typename Dest_Linear_System>
static bool minimize(bool con_to_gen,
Source_Linear_System& source,
Dest_Linear_System& dest,
Bit_Matrix& sat);
/*! \brief
Adds given constraints and builds minimized corresponding generators
or vice versa.
*/
// Detailed Doxygen comment to be found in file minimize.cc.
template <typename Source_Linear_System1, typename Source_Linear_System2,
typename Dest_Linear_System>
static bool add_and_minimize(bool con_to_gen,
Source_Linear_System1& source1,
Dest_Linear_System& dest,
Bit_Matrix& sat,
const Source_Linear_System2& source2);
/*! \brief
Adds given constraints and builds minimized corresponding generators
or vice versa. The given constraints are in \p source.
*/
// Detailed Doxygen comment to be found in file minimize.cc.
template <typename Source_Linear_System, typename Dest_Linear_System>
static bool add_and_minimize(bool con_to_gen,
Source_Linear_System& source,
Dest_Linear_System& dest,
Bit_Matrix& sat);
//! Performs the conversion from constraints to generators and vice versa.
// Detailed Doxygen comment to be found in file conversion.cc.
template <typename Source_Linear_System, typename Dest_Linear_System>
static dimension_type conversion(Source_Linear_System& source,
dimension_type start,
Dest_Linear_System& dest,
Bit_Matrix& sat,
dimension_type num_lines_or_equalities);
/*! \brief
Uses Gauss' elimination method to simplify the result of
<CODE>conversion()</CODE>.
*/
// Detailed Doxygen comment to be found in file simplify.cc.
template <typename Linear_System1>
static dimension_type simplify(Linear_System1& sys, Bit_Matrix& sat);
//@} // Minimization-Related Static Member Functions
/*! \brief
Pointer to an array used by simplify().
Holds (between class initialization and finalization) a pointer to
an array, allocated with operator new[](), of
simplify_num_saturators_size elements.
*/
static dimension_type* simplify_num_saturators_p;
/*! \brief
Dimension of an array used by simplify().
Holds (between class initialization and finalization) the size of the
array pointed to by simplify_num_saturators_p.
*/
static size_t simplify_num_saturators_size;
template <typename Interval> friend class Parma_Polyhedra_Library::Box;
template <typename T> friend class Parma_Polyhedra_Library::BD_Shape;
template <typename T> friend class Parma_Polyhedra_Library::Octagonal_Shape;
friend class Parma_Polyhedra_Library::Grid;
friend class Parma_Polyhedra_Library::BHRZ03_Certificate;
friend class Parma_Polyhedra_Library::H79_Certificate;
protected:
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
If the poly-hull of \p *this and \p y is exact it is assigned
to \p *this and \c true is returned, otherwise \c false is returned.
Current implementation is based on (a variant of) Algorithm 8.1 in
A. Bemporad, K. Fukuda, and F. D. Torrisi
<em>Convexity Recognition of the Union of Polyhedra</em>
Technical Report AUT00-13, ETH Zurich, 2000
\note
It is assumed that \p *this and \p y are topologically closed
and dimension-compatible;
if the assumption does not hold, the behavior is undefined.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool BFT00_poly_hull_assign_if_exact(const Polyhedron& y);
bool BHZ09_poly_hull_assign_if_exact(const Polyhedron& y);
bool BHZ09_C_poly_hull_assign_if_exact(const Polyhedron& y);
bool BHZ09_NNC_poly_hull_assign_if_exact(const Polyhedron& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! \name Exception Throwers
//@{
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
protected:
void throw_invalid_argument(const char* method, const char* reason) const;
void throw_topology_incompatible(const char* method,
const char* ph_name,
const Polyhedron& ph) const;
void throw_topology_incompatible(const char* method,
const char* c_name,
const Constraint& c) const;
void throw_topology_incompatible(const char* method,
const char* g_name,
const Generator& g) const;
void throw_topology_incompatible(const char* method,
const char* cs_name,
const Constraint_System& cs) const;
void throw_topology_incompatible(const char* method,
const char* gs_name,
const Generator_System& gs) const;
void throw_dimension_incompatible(const char* method,
const char* other_name,
dimension_type other_dim) const;
void throw_dimension_incompatible(const char* method,
const char* ph_name,
const Polyhedron& ph) const;
void throw_dimension_incompatible(const char* method,
const char* le_name,
const Linear_Expression& le) const;
void throw_dimension_incompatible(const char* method,
const char* c_name,
const Constraint& c) const;
void throw_dimension_incompatible(const char* method,
const char* g_name,
const Generator& g) const;
void throw_dimension_incompatible(const char* method,
const char* cg_name,
const Congruence& cg) const;
void throw_dimension_incompatible(const char* method,
const char* cs_name,
const Constraint_System& cs) const;
void throw_dimension_incompatible(const char* method,
const char* gs_name,
const Generator_System& gs) const;
void throw_dimension_incompatible(const char* method,
const char* cgs_name,
const Congruence_System& cgs) const;
template <typename C>
void throw_dimension_incompatible(const char* method,
const char* lf_name,
const Linear_Form<C>& lf) const;
void throw_dimension_incompatible(const char* method,
const char* var_name,
Variable var) const;
void throw_dimension_incompatible(const char* method,
dimension_type required_space_dim) const;
// Note: the following three methods need to be static, because they
// can be called inside constructors (before actually constructing the
// polyhedron object).
static dimension_type
check_space_dimension_overflow(dimension_type dim, dimension_type max,
const Topology topol,
const char* method, const char* reason);
static dimension_type
check_space_dimension_overflow(dimension_type dim, const Topology topol,
const char* method, const char* reason);
template <typename Object>
static Object&
check_obj_space_dimension_overflow(Object& input, Topology topol,
const char* method, const char* reason);
void throw_invalid_generator(const char* method,
const char* g_name) const;
void throw_invalid_generators(const char* method,
const char* gs_name) const;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//@} // Exception Throwers
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
/*! \brief
Possibly tightens \p *this by dropping some points with non-integer
coordinates for the space dimensions corresponding to \p *vars_p.
\param vars_p
When nonzero, points with non-integer coordinates for the
variables/space-dimensions contained in \p *vars_p can be discarded.
\param complexity
The maximal complexity of any algorithms used.
\note
Currently there is no optimality guarantee, not even if
\p complexity is <CODE>ANY_COMPLEXITY</CODE>.
*/
void drop_some_non_integer_points(const Variables_Set* vars_p,
Complexity_Class complexity);
//! Helper function that overapproximates an interval linear form.
/*!
\param lf
The linear form on intervals with floating point boundaries to approximate.
ALL of its coefficients MUST be bounded.
\param lf_dimension
Must be the space dimension of \p lf.
\param result
Used to store the result.
This function makes \p result become a linear form that is a correct
approximation of \p lf under the constraints specified by \p *this.
The resulting linear form has the property that all of its variable
coefficients have a non-significant upper bound and can thus be
considered as singletons.
*/
template <typename FP_Format, typename Interval_Info>
void overapproximate_linear_form(
const Linear_Form<Interval <FP_Format, Interval_Info> >& lf,
const dimension_type lf_dimension,
Linear_Form<Interval <FP_Format, Interval_Info> >& result);
/*! \brief
Helper function that makes \p result become a Linear_Expression obtained
by normalizing the denominators in \p lf.
\param lf
The linear form on intervals with floating point boundaries to normalize.
It should be the result of an application of static method
<CODE>overapproximate_linear_form</CODE>.
\param lf_dimension
Must be the space dimension of \p lf.
\param result
Used to store the result.
This function ignores the upper bound of intervals in \p lf,
so that in fact \p result can be seen as \p lf multiplied by a proper
normalization constant.
*/
template <typename FP_Format, typename Interval_Info>
static void convert_to_integer_expression(
const Linear_Form<Interval <FP_Format, Interval_Info> >& lf,
const dimension_type lf_dimension,
Linear_Expression& result);
//! Normalization helper function.
/*!
\param lf
The linear form on intervals with floating point boundaries to normalize.
It should be the result of an application of static method
<CODE>overapproximate_linear_form</CODE>.
\param lf_dimension
Must be the space dimension of \p lf.
\param res
Stores the normalized linear form, except its inhomogeneous term.
\param res_low_coeff
Stores the lower boundary of the inhomogeneous term of the result.
\param res_hi_coeff
Stores the higher boundary of the inhomogeneous term of the result.
\param denominator
Becomes the common denominator of \p res_low_coeff, \p res_hi_coeff
and all coefficients in \p res.
Results are obtained by normalizing denominators in \p lf, ignoring
the upper bounds of variable coefficients in \p lf.
*/
template <typename FP_Format, typename Interval_Info>
static void
convert_to_integer_expressions(const Linear_Form<Interval<FP_Format,
Interval_Info> >&
lf,
const dimension_type lf_dimension,
Linear_Expression& res,
Coefficient& res_low_coeff,
Coefficient& res_hi_coeff,
Coefficient& denominator);
template <typename Linear_System1, typename Row2>
static bool
add_to_system_and_check_independence(Linear_System1& eq_sys,
const Row2& eq);
/*! \brief
Assuming \p *this is NNC, assigns to \p *this the result of the
"positive time-elapse" between \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void positive_time_elapse_assign_impl(const Polyhedron& y);
};
/* Automatically generated from PPL source file ../src/Ph_Status_inlines.hh line 1. */
/* Polyhedron::Status class implementation: inline functions.
*/
namespace Parma_Polyhedra_Library {
inline
Polyhedron::Status::Status(flags_t mask)
: flags(mask) {
}
inline
Polyhedron::Status::Status()
: flags(ZERO_DIM_UNIV) {
}
inline bool
Polyhedron::Status::test_all(flags_t mask) const {
return (flags & mask) == mask;
}
inline bool
Polyhedron::Status::test_any(flags_t mask) const {
return (flags & mask) != 0;
}
inline void
Polyhedron::Status::set(flags_t mask) {
flags |= mask;
}
inline void
Polyhedron::Status::reset(flags_t mask) {
flags &= ~mask;
}
inline bool
Polyhedron::Status::test_zero_dim_univ() const {
return flags == ZERO_DIM_UNIV;
}
inline void
Polyhedron::Status::reset_zero_dim_univ() {
// This is a no-op if the current status is not zero-dim.
if (flags == ZERO_DIM_UNIV)
// In the zero-dim space, if it is not the universe it is empty.
flags = EMPTY;
}
inline void
Polyhedron::Status::set_zero_dim_univ() {
// Zero-dim universe is incompatible with anything else.
flags = ZERO_DIM_UNIV;
}
inline bool
Polyhedron::Status::test_empty() const {
return test_any(EMPTY);
}
inline void
Polyhedron::Status::reset_empty() {
reset(EMPTY);
}
inline void
Polyhedron::Status::set_empty() {
flags = EMPTY;
}
inline bool
Polyhedron::Status::test_c_up_to_date() const {
return test_any(C_UP_TO_DATE);
}
inline void
Polyhedron::Status::reset_c_up_to_date() {
reset(C_UP_TO_DATE);
}
inline void
Polyhedron::Status::set_c_up_to_date() {
set(C_UP_TO_DATE);
}
inline bool
Polyhedron::Status::test_g_up_to_date() const {
return test_any(G_UP_TO_DATE);
}
inline void
Polyhedron::Status::reset_g_up_to_date() {
reset(G_UP_TO_DATE);
}
inline void
Polyhedron::Status::set_g_up_to_date() {
set(G_UP_TO_DATE);
}
inline bool
Polyhedron::Status::test_c_minimized() const {
return test_any(C_MINIMIZED);
}
inline void
Polyhedron::Status::reset_c_minimized() {
reset(C_MINIMIZED);
}
inline void
Polyhedron::Status::set_c_minimized() {
set(C_MINIMIZED);
}
inline bool
Polyhedron::Status::test_g_minimized() const {
return test_any(G_MINIMIZED);
}
inline void
Polyhedron::Status::reset_g_minimized() {
reset(G_MINIMIZED);
}
inline void
Polyhedron::Status::set_g_minimized() {
set(G_MINIMIZED);
}
inline bool
Polyhedron::Status::test_c_pending() const {
return test_any(CS_PENDING);
}
inline void
Polyhedron::Status::reset_c_pending() {
reset(CS_PENDING);
}
inline void
Polyhedron::Status::set_c_pending() {
set(CS_PENDING);
}
inline bool
Polyhedron::Status::test_g_pending() const {
return test_any(GS_PENDING);
}
inline void
Polyhedron::Status::reset_g_pending() {
reset(GS_PENDING);
}
inline void
Polyhedron::Status::set_g_pending() {
set(GS_PENDING);
}
inline bool
Polyhedron::Status::test_sat_c_up_to_date() const {
return test_any(SAT_C_UP_TO_DATE);
}
inline void
Polyhedron::Status::reset_sat_c_up_to_date() {
reset(SAT_C_UP_TO_DATE);
}
inline void
Polyhedron::Status::set_sat_c_up_to_date() {
set(SAT_C_UP_TO_DATE);
}
inline bool
Polyhedron::Status::test_sat_g_up_to_date() const {
return test_any(SAT_G_UP_TO_DATE);
}
inline void
Polyhedron::Status::reset_sat_g_up_to_date() {
reset(SAT_G_UP_TO_DATE);
}
inline void
Polyhedron::Status::set_sat_g_up_to_date() {
set(SAT_G_UP_TO_DATE);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Polyhedron_inlines.hh line 1. */
/* Polyhedron class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Polyhedron_inlines.hh line 29. */
#include <algorithm>
#include <deque>
namespace Parma_Polyhedra_Library {
inline memory_size_type
Polyhedron::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
inline dimension_type
Polyhedron::space_dimension() const {
return space_dim;
}
inline int32_t
Polyhedron::hash_code() const {
return hash_code_from_dimension(space_dimension());
}
inline dimension_type
Polyhedron::max_space_dimension() {
using std::min;
// One dimension is reserved to have a value of type dimension_type
// that does not represent a legal dimension.
return min(std::numeric_limits<dimension_type>::max() - 1,
min(Constraint_System::max_space_dimension(),
Generator_System::max_space_dimension()
)
);
}
inline Topology
Polyhedron::topology() const {
// We can check either one of the two matrices.
// (`con_sys' is slightly better, since it is placed at offset 0.)
return con_sys.topology();
}
inline bool
Polyhedron::is_discrete() const {
return affine_dimension() == 0;
}
inline bool
Polyhedron::is_necessarily_closed() const {
// We can check either one of the two matrices.
// (`con_sys' is slightly better, since it is placed at offset 0.)
return con_sys.is_necessarily_closed();
}
inline void
Polyhedron::upper_bound_assign(const Polyhedron& y) {
poly_hull_assign(y);
}
inline void
Polyhedron::difference_assign(const Polyhedron& y) {
poly_difference_assign(y);
}
inline void
Polyhedron::widening_assign(const Polyhedron& y, unsigned* tp) {
H79_widening_assign(y, tp);
}
inline
Polyhedron::~Polyhedron() {
}
inline void
Polyhedron::m_swap(Polyhedron& y) {
if (topology() != y.topology())
throw_topology_incompatible("swap(y)", "y", y);
using std::swap;
swap(con_sys, y.con_sys);
swap(gen_sys, y.gen_sys);
swap(sat_c, y.sat_c);
swap(sat_g, y.sat_g);
swap(status, y.status);
swap(space_dim, y.space_dim);
}
/*! \relates Polyhedron */
inline void
swap(Polyhedron& x, Polyhedron& y) {
x.m_swap(y);
}
inline bool
Polyhedron::can_recycle_constraint_systems() {
return true;
}
inline bool
Polyhedron::can_recycle_congruence_systems() {
return false;
}
inline bool
Polyhedron::marked_empty() const {
return status.test_empty();
}
inline bool
Polyhedron::constraints_are_up_to_date() const {
return status.test_c_up_to_date();
}
inline bool
Polyhedron::generators_are_up_to_date() const {
return status.test_g_up_to_date();
}
inline bool
Polyhedron::constraints_are_minimized() const {
return status.test_c_minimized();
}
inline bool
Polyhedron::generators_are_minimized() const {
return status.test_g_minimized();
}
inline bool
Polyhedron::sat_c_is_up_to_date() const {
return status.test_sat_c_up_to_date();
}
inline bool
Polyhedron::sat_g_is_up_to_date() const {
return status.test_sat_g_up_to_date();
}
inline bool
Polyhedron::has_pending_constraints() const {
return status.test_c_pending();
}
inline bool
Polyhedron::has_pending_generators() const {
return status.test_g_pending();
}
inline bool
Polyhedron::has_something_pending() const {
return status.test_c_pending() || status.test_g_pending();
}
inline bool
Polyhedron::can_have_something_pending() const {
return constraints_are_minimized()
&& generators_are_minimized()
&& (sat_c_is_up_to_date() || sat_g_is_up_to_date());
}
inline bool
Polyhedron::is_empty() const {
if (marked_empty())
return true;
// Try a fast-fail test: if generators are up-to-date and
// there are no pending constraints, then the generator system
// (since it is well formed) contains a point.
if (generators_are_up_to_date() && !has_pending_constraints())
return false;
return !minimize();
}
inline void
Polyhedron::set_constraints_up_to_date() {
status.set_c_up_to_date();
}
inline void
Polyhedron::set_generators_up_to_date() {
status.set_g_up_to_date();
}
inline void
Polyhedron::set_constraints_minimized() {
set_constraints_up_to_date();
status.set_c_minimized();
}
inline void
Polyhedron::set_generators_minimized() {
set_generators_up_to_date();
status.set_g_minimized();
}
inline void
Polyhedron::set_constraints_pending() {
status.set_c_pending();
}
inline void
Polyhedron::set_generators_pending() {
status.set_g_pending();
}
inline void
Polyhedron::set_sat_c_up_to_date() {
status.set_sat_c_up_to_date();
}
inline void
Polyhedron::set_sat_g_up_to_date() {
status.set_sat_g_up_to_date();
}
inline void
Polyhedron::clear_empty() {
status.reset_empty();
}
inline void
Polyhedron::clear_constraints_minimized() {
status.reset_c_minimized();
}
inline void
Polyhedron::clear_generators_minimized() {
status.reset_g_minimized();
}
inline void
Polyhedron::clear_pending_constraints() {
status.reset_c_pending();
}
inline void
Polyhedron::clear_pending_generators() {
status.reset_g_pending();
}
inline void
Polyhedron::clear_sat_c_up_to_date() {
status.reset_sat_c_up_to_date();
// Can get rid of sat_c here.
}
inline void
Polyhedron::clear_sat_g_up_to_date() {
status.reset_sat_g_up_to_date();
// Can get rid of sat_g here.
}
inline void
Polyhedron::clear_constraints_up_to_date() {
clear_pending_constraints();
clear_constraints_minimized();
clear_sat_c_up_to_date();
clear_sat_g_up_to_date();
status.reset_c_up_to_date();
// Can get rid of con_sys here.
}
inline void
Polyhedron::clear_generators_up_to_date() {
clear_pending_generators();
clear_generators_minimized();
clear_sat_c_up_to_date();
clear_sat_g_up_to_date();
status.reset_g_up_to_date();
// Can get rid of gen_sys here.
}
inline bool
Polyhedron::process_pending() const {
PPL_ASSERT(space_dim > 0 && !marked_empty());
PPL_ASSERT(has_something_pending());
if (has_pending_constraints())
return process_pending_constraints();
PPL_ASSERT(has_pending_generators());
process_pending_generators();
return true;
}
inline bool
Polyhedron::bounds_from_above(const Linear_Expression& expr) const {
return bounds(expr, true);
}
inline bool
Polyhedron::bounds_from_below(const Linear_Expression& expr) const {
return bounds(expr, false);
}
inline bool
Polyhedron::maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d,
bool& maximum) const {
Generator g(point());
return max_min(expr, true, sup_n, sup_d, maximum, g);
}
inline bool
Polyhedron::maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum,
Generator& g) const {
return max_min(expr, true, sup_n, sup_d, maximum, g);
}
inline bool
Polyhedron::minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d,
bool& minimum) const {
Generator g(point());
return max_min(expr, false, inf_n, inf_d, minimum, g);
}
inline bool
Polyhedron::minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum,
Generator& g) const {
return max_min(expr, false, inf_n, inf_d, minimum, g);
}
inline Constraint_System
Polyhedron::simplified_constraints() const {
PPL_ASSERT(constraints_are_up_to_date());
Constraint_System cs(con_sys);
if (cs.num_pending_rows() > 0)
cs.unset_pending_rows();
if (has_pending_constraints() || !constraints_are_minimized())
cs.simplify();
return cs;
}
inline Congruence_System
Polyhedron::congruences() const {
return Congruence_System(minimized_constraints());
}
inline Congruence_System
Polyhedron::minimized_congruences() const {
return Congruence_System(minimized_constraints());
}
inline void
Polyhedron::add_recycled_congruences(Congruence_System& cgs) {
add_congruences(cgs);
}
template <typename FP_Format, typename Interval_Info>
inline void
Polyhedron::generalized_refine_with_linear_form_inequality(
const Linear_Form< Interval<FP_Format, Interval_Info> >& left,
const Linear_Form< Interval<FP_Format, Interval_Info> >& right,
const Relation_Symbol relsym) {
switch (relsym) {
case EQUAL:
// TODO: see if we can handle this case more efficiently.
refine_with_linear_form_inequality(left, right, false);
refine_with_linear_form_inequality(right, left, false);
break;
case LESS_THAN:
refine_with_linear_form_inequality(left, right, true);
break;
case LESS_OR_EQUAL:
refine_with_linear_form_inequality(left, right, false);
break;
case GREATER_THAN:
refine_with_linear_form_inequality(right, left, true);
break;
case GREATER_OR_EQUAL:
refine_with_linear_form_inequality(right, left, false);
break;
case NOT_EQUAL:
break;
default:
PPL_UNREACHABLE;
break;
}
}
template <typename FP_Format, typename Interval_Info>
inline void
Polyhedron::
refine_fp_interval_abstract_store(
Box< Interval<FP_Format, Interval_Info> >& store) const {
// Check that FP_Format is indeed a floating point type.
PPL_COMPILE_TIME_CHECK(!std::numeric_limits<FP_Format>::is_exact,
"Polyhedron::refine_fp_interval_abstract_store:"
" T not a floating point type.");
typedef Interval<FP_Format, Interval_Info> FP_Interval_Type;
store.intersection_assign(Box<FP_Interval_Type>(*this));
}
/*! \relates Polyhedron */
inline bool
operator!=(const Polyhedron& x, const Polyhedron& y) {
return !(x == y);
}
inline bool
Polyhedron::strictly_contains(const Polyhedron& y) const {
const Polyhedron& x = *this;
return x.contains(y) && !y.contains(x);
}
inline void
Polyhedron::drop_some_non_integer_points(Complexity_Class complexity) {
const Variables_Set* const p_vs = 0;
drop_some_non_integer_points(p_vs, complexity);
}
inline void
Polyhedron::drop_some_non_integer_points(const Variables_Set& vars,
Complexity_Class complexity) {
drop_some_non_integer_points(&vars, complexity);
}
namespace Interfaces {
inline bool
is_necessarily_closed_for_interfaces(const Polyhedron& ph) {
return ph.is_necessarily_closed();
}
} // namespace Interfaces
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Polyhedron_templates.hh line 1. */
/* Polyhedron class implementation: non-inline template functions.
*/
/* Automatically generated from PPL source file ../src/MIP_Problem_defs.hh line 1. */
/* MIP_Problem class declaration.
*/
/* Automatically generated from PPL source file ../src/Matrix_defs.hh line 1. */
/* Matrix class declaration.
*/
/* Automatically generated from PPL source file ../src/Matrix_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename Row>
class Matrix;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Matrix_defs.hh line 31. */
#include <ostream>
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! A sparse matrix of Coefficient.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Row>
class Parma_Polyhedra_Library::Matrix {
public:
typedef typename Swapping_Vector<Row>::iterator iterator;
typedef typename Swapping_Vector<Row>::const_iterator const_iterator;
//! Returns the maximum number of rows of a Sparse_Matrix.
static dimension_type max_num_rows();
//! Returns the maximum number of columns of a Sparse_Matrix.
static dimension_type max_num_columns();
/*!
\brief Constructs a square matrix with the given size, filled with
unstored zeroes.
\param n
The size of the new square matrix.
This method takes \f$O(n)\f$ time.
*/
explicit Matrix(dimension_type n = 0);
/*!
\brief Constructs a matrix with the given dimensions, filled with unstored
zeroes.
\param num_rows
The number of rows in the new matrix.
\param num_columns
The number of columns in the new matrix.
This method takes \f$O(n)\f$ time, where n is \p num_rows.
*/
Matrix(dimension_type num_rows, dimension_type num_columns);
//! Swaps (*this) with x.
/*!
\param x
The matrix that will be swapped with *this.
This method takes \f$O(1)\f$ time.
*/
void m_swap(Matrix& x);
//! Returns the number of rows in the matrix.
/*!
This method takes \f$O(1)\f$ time.
*/
dimension_type num_rows() const;
//! Returns the number of columns in the matrix.
/*!
This method takes \f$O(1)\f$ time.
*/
dimension_type num_columns() const;
// TODO: Check if this can be removed.
//! Returns the capacity of the row vector.
dimension_type capacity() const;
//! Returns <CODE>true</CODE> if and only if \p *this has no rows.
/*!
\note
The unusual naming for this method is \em intentional:
we do not want it to be named \c empty because this would cause
an error prone name clash with the corresponding methods in derived
classes Constraint_System and Congruence_System (which have a
different semantics).
*/
bool has_no_rows() const;
//! Equivalent to resize(n, n).
void resize(dimension_type n);
// TODO: Check if this can become private.
//! Reserves space for at least \p n rows.
void reserve_rows(dimension_type n);
//! Resizes this matrix to the specified dimensions.
/*!
\param num_rows
The desired numer of rows.
\param num_columns
The desired numer of columns.
New rows and columns will contain non-stored zeroes.
This operation invalidates existing iterators.
Adding n rows takes \f$O(n)\f$ amortized time.
Adding n columns takes \f$O(r)\f$ time, where r is \p num_rows.
Removing n rows takes \f$O(n+k)\f$ amortized time, where k is the total
number of elements stored in the removed rows.
Removing n columns takes \f$O(\sum_{j=1}^{r} (k_j*\log^2 n_j))\f$ time,
where r is the number of rows, \f$k_j\f$ is the number of elements stored
in the columns of the j-th row that must be removed and \f$n_j\f$ is the
total number of elements stored in the j-th row.
A weaker (but simpler) bound is \f$O(r+k*\log^2 c)\f$, where r is the
number of rows, k is the number of elements that have to be removed and c
is the number of columns.
*/
void resize(dimension_type num_rows, dimension_type num_columns);
//! Adds \p n rows and \p m columns of zeroes to the matrix.
/*!
\param n
The number of rows to be added: must be strictly positive.
\param m
The number of columns to be added: must be strictly positive.
Turns the \f$r \times c\f$ matrix \f$M\f$ into
the \f$(r+n) \times (c+m)\f$ matrix
\f$\bigl(\genfrac{}{}{0pt}{}{M}{0} \genfrac{}{}{0pt}{}{0}{0}\bigr)\f$.
The matrix is expanded avoiding reallocation whenever possible.
This method takes \f$O(r)\f$ time, where r is the number of the matrix's
rows after the operation.
*/
void add_zero_rows_and_columns(dimension_type n, dimension_type m);
//! Adds to the matrix \p n rows of zeroes.
/*!
\param n
The number of rows to be added: must be strictly positive.
Turns the \f$r \times c\f$ matrix \f$M\f$ into
the \f$(r+n) \times c\f$ matrix \f$\genfrac{(}{)}{0pt}{}{M}{0}\f$.
The matrix is expanded avoiding reallocation whenever possible.
This method takes \f$O(k)\f$ amortized time, where k is the number of the
new rows.
*/
void add_zero_rows(dimension_type n);
//! Adds a copy of the row \p x at the end of the matrix.
/*!
\param x
The row that will be appended to the matrix.
This operation invalidates existing iterators.
This method takes \f$O(n)\f$ amortized time, where n is the numer of
elements stored in \p x.
*/
void add_row(const Row& x);
//! Adds the row \p y to the matrix.
/*!
\param y
The row to be added: it must have the same size and capacity as
\p *this. It is not declared <CODE>const</CODE> because its
data-structures will recycled to build the new matrix row.
Turns the \f$r \times c\f$ matrix \f$M\f$ into
the \f$(r+1) \times c\f$ matrix
\f$\genfrac{(}{)}{0pt}{}{M}{y}\f$.
The matrix is expanded avoiding reallocation whenever possible.
*/
void add_recycled_row(Row& y);
/*! \brief
Removes from the matrix the last \p n rows.
\param n
The number of row that will be removed.
It is equivalent to num_rows() - n, num_columns()).
This method takes \f$O(n+k)\f$ amortized time, where k is the total number
of elements stored in the removed rows and n is the number of removed
rows.
*/
void remove_trailing_rows(dimension_type n);
void remove_rows(iterator first, iterator last);
//! Permutes the columns of the matrix.
/*!
This method may be slow for some Row types, and should be avoided if
possible.
\param cycles
A vector representing the non-trivial cycles of the permutation
according to which the columns must be rearranged.
The \p cycles vector contains, one after the other, the
non-trivial cycles (i.e., the cycles of length greater than one)
of a permutation of \e non-zero column indexes. Each cycle is
terminated by zero. For example, assuming the matrix has 7
columns, the permutation \f$ \{ 1 \mapsto 3, 2 \mapsto 4,
3 \mapsto 6, 4 \mapsto 2, 5 \mapsto 5, 6 \mapsto 1 \}\f$ can be
represented by the non-trivial cycles \f$(1 3 6)(2 4)\f$ that, in
turn can be represented by a vector of 6 elements containing 1, 3,
6, 0, 2, 4, 0.
This method takes \f$O(k*\sum_{j=1}^{r} \log^2 n_j)\f$ expected time,
where k is the size of the \p cycles vector, r the number of rows and
\f$n_j\f$ the number of elements stored in row j.
A weaker (but simpler) bound is \f$O(k*r*\log^2 c)\f$, where k is the size
of the \p cycles vector, r is the number of rows and c is the number of
columns.
\note
The first column of the matrix, having index zero, is never involved
in a permutation.
*/
void permute_columns(const std::vector<dimension_type>& cycles);
//! Swaps the columns having indexes \p i and \p j.
void swap_columns(dimension_type i, dimension_type j);
//! Adds \p n columns of zeroes to the matrix.
/*!
\param n
The number of columns to be added: must be strictly positive.
Turns the \f$r \times c\f$ matrix \f$M\f$ into
the \f$r \times (c+n)\f$ matrix \f$(M \, 0)\f$.
This method takes \f$O(r)\f$ amortized time, where r is the numer of the
matrix's rows.
*/
void add_zero_columns(dimension_type n);
//! Adds \p n columns of non-stored zeroes to the matrix before column i.
/*!
\param n
The numer of columns that will be added.
\param i
The index of the column before which the new columns will be added.
This operation invalidates existing iterators.
This method takes \f$O(\sum_{j=1}^{r} (k_j+\log n_j))\f$ time, where r is
the number of rows, \f$k_j\f$ is the number of elements stored in the
columns of the j-th row that must be shifted and \f$n_j\f$ is the number
of elements stored in the j-th row.
A weaker (but simpler) bound is \f$O(k+r*\log c)\f$ time, where k is the
number of elements that must be shifted, r is the number of the rows and c
is the number of the columns.
*/
void add_zero_columns(dimension_type n, dimension_type i);
//! Removes the i-th from the matrix, shifting other columns to the left.
/*!
\param i
The index of the column that will be removed.
This operation invalidates existing iterators on rows' elements.
This method takes \f$O(k + \sum_{j=1}^{r} (\log^2 n_j))\f$ amortized time,
where k is the number of elements stored with column index greater than i,
r the number of rows in this matrix and \f$n_j\f$ the number of elements
stored in row j.
A weaker (but simpler) bound is \f$O(r*(c-i+\log^2 c))\f$, where r is the
number of rows, c is the number of columns and i is the parameter passed
to this method.
*/
void remove_column(dimension_type i);
//! Shrinks the matrix by removing its \p n trailing columns.
/*!
\param n
The number of trailing columns that will be removed.
This operation invalidates existing iterators.
This method takes \f$O(\sum_{j=1}^r (k_j*\log n_j))\f$ amortized time,
where r is the number of rows, \f$k_j\f$ is the number of elements that
have to be removed from row j and \f$n_j\f$ is the total number of
elements stored in row j.
A weaker (but simpler) bound is \f$O(r*n*\log c)\f$, where r is the number
of rows, c the number of columns and n the parameter passed to this
method.
*/
void remove_trailing_columns(dimension_type n);
//! Equivalent to resize(0,0).
void clear();
//! Returns an %iterator pointing to the first row.
/*!
This method takes \f$O(1)\f$ time.
*/
iterator begin();
//! Returns an %iterator pointing after the last row.
/*!
This method takes \f$O(1)\f$ time.
*/
iterator end();
//! Returns an %iterator pointing to the first row.
/*!
This method takes \f$O(1)\f$ time.
*/
const_iterator begin() const;
//! Returns an %iterator pointing after the last row.
/*!
This method takes \f$O(1)\f$ time.
*/
const_iterator end() const;
//! Returns a reference to the i-th row.
/*!
\param i
The index of the desired row.
This method takes \f$O(1)\f$ time.
*/
Row& operator[](dimension_type i);
//! Returns a const reference to the i-th row.
/*!
\param i
The index of the desired row.
This method takes \f$O(1)\f$ time.
*/
const Row& operator[](dimension_type i) const;
//! Loads the row from an ASCII representation generated using ascii_dump().
/*!
\param s
The stream from which read the ASCII representation.
This method takes \f$O(n*\log n)\f$ time.
*/
bool ascii_load(std::istream& s);
PPL_OUTPUT_DECLARATIONS
//! Returns the total size in bytes of the memory occupied by \p *this.
/*!
This method is \f$O(r+k)\f$, where r is the number of rows and k is the
number of elements stored in the matrix.
*/
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
/*!
This method is \f$O(r+k)\f$, where r is the number of rows and k is the
number of elements stored in the matrix.
*/
memory_size_type external_memory_in_bytes() const;
//! Checks if all the invariants are satisfied.
bool OK() const;
private:
//! The vector that stores the matrix's elements.
Swapping_Vector<Row> rows;
//! The number of columns in this matrix.
dimension_type num_columns_;
};
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Row>
void swap(Matrix<Row>& x, Matrix<Row>& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x and \p y are identical.
/*! \relates Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Row>
bool operator==(const Matrix<Row>& x, const Matrix<Row>& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x and \p y are different.
/*! \relates Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Row>
bool operator!=(const Matrix<Row>& x, const Matrix<Row>& y);
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Matrix_inlines.hh line 1. */
/* Matrix class implementation: inline functions.
*/
namespace Parma_Polyhedra_Library {
template <typename Row>
inline dimension_type
Matrix<Row>::max_num_rows() {
return std::vector<Row>().max_size();
}
template <typename Row>
inline dimension_type
Matrix<Row>::max_num_columns() {
return Row::max_size();
}
template <typename Row>
inline void
Matrix<Row>::m_swap(Matrix& x) {
using std::swap;
swap(rows, x.rows);
swap(num_columns_, x.num_columns_);
}
template <typename Row>
inline dimension_type
Matrix<Row>::num_rows() const {
return rows.size();
}
template <typename Row>
inline dimension_type
Matrix<Row>::num_columns() const {
return num_columns_;
}
template <typename Row>
inline dimension_type
Matrix<Row>::capacity() const {
return rows.capacity();
}
template <typename Row>
inline bool
Matrix<Row>::has_no_rows() const {
return num_rows() == 0;
}
template <typename Row>
inline void
Matrix<Row>::resize(dimension_type n) {
resize(n, n);
}
template <typename Row>
inline void
Matrix<Row>::reserve_rows(dimension_type requested_capacity) {
rows.reserve(requested_capacity);
}
template <typename Row>
inline void
Matrix<Row>::add_zero_rows_and_columns(dimension_type n, dimension_type m) {
resize(num_rows() + n, num_columns() + m);
}
template <typename Row>
inline void
Matrix<Row>::add_zero_rows(dimension_type n) {
resize(num_rows() + n, num_columns());
}
template <typename Row>
inline void
Matrix<Row>::add_row(const Row& x) {
// TODO: Optimize this.
Row row(x);
add_zero_rows(1);
// Now x may have been invalidated, if it was a row of this matrix.
swap(rows.back(), row);
PPL_ASSERT(OK());
}
template <typename Row>
inline void
Matrix<Row>::add_recycled_row(Row& x) {
add_zero_rows(1);
swap(rows.back(), x);
PPL_ASSERT(OK());
}
template <typename Row>
inline void
Matrix<Row>::remove_trailing_rows(dimension_type n) {
resize(num_rows() - n, num_columns());
}
template <typename Row>
inline void
Matrix<Row>::remove_rows(iterator first, iterator last) {
rows.erase(first, last);
}
template <typename Row>
inline void
Matrix<Row>::add_zero_columns(dimension_type n) {
resize(num_rows(), num_columns() + n);
}
template <typename Row>
inline void
Matrix<Row>::remove_trailing_columns(dimension_type n) {
PPL_ASSERT(n <= num_columns());
resize(num_rows(), num_columns() - n);
}
template <typename Row>
inline void
Matrix<Row>::clear() {
resize(0, 0);
}
template <typename Row>
inline typename Matrix<Row>::iterator
Matrix<Row>::begin() {
return rows.begin();
}
template <typename Row>
inline typename Matrix<Row>::iterator
Matrix<Row>::end() {
return rows.end();
}
template <typename Row>
inline typename Matrix<Row>::const_iterator
Matrix<Row>::begin() const {
return rows.begin();
}
template <typename Row>
inline typename Matrix<Row>::const_iterator
Matrix<Row>::end() const {
return rows.end();
}
template <typename Row>
inline Row&
Matrix<Row>::operator[](dimension_type i) {
PPL_ASSERT(i < rows.size());
return rows[i];
}
template <typename Row>
inline const Row&
Matrix<Row>::operator[](dimension_type i) const {
PPL_ASSERT(i < rows.size());
return rows[i];
}
template <typename Row>
inline memory_size_type
Matrix<Row>::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
template <typename Row>
inline void
swap(Matrix<Row>& x, Matrix<Row>& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Matrix_templates.hh line 1. */
/* Matrix class implementation: non-inline template functions.
*/
namespace Parma_Polyhedra_Library {
template <typename Row>
Matrix<Row>::Matrix(dimension_type n)
: rows(n), num_columns_(n) {
for (dimension_type i = 0; i < rows.size(); ++i)
rows[i].resize(num_columns_);
PPL_ASSERT(OK());
}
template <typename Row>
Matrix<Row>::Matrix(dimension_type num_rows, dimension_type num_columns)
: rows(num_rows), num_columns_(num_columns) {
for (dimension_type i = 0; i < rows.size(); ++i)
rows[i].resize(num_columns_);
PPL_ASSERT(OK());
}
template <typename Row>
void
Matrix<Row>::resize(dimension_type num_rows, dimension_type num_columns) {
const dimension_type old_num_rows = rows.size();
rows.resize(num_rows);
if (old_num_rows < num_rows) {
for (dimension_type i = old_num_rows; i < num_rows; ++i)
rows[i].resize(num_columns);
if (num_columns_ != num_columns) {
num_columns_ = num_columns;
for (dimension_type i = 0; i < old_num_rows; ++i)
rows[i].resize(num_columns);
}
}
else
if (num_columns_ != num_columns) {
num_columns_ = num_columns;
for (dimension_type i = 0; i < num_rows; ++i)
rows[i].resize(num_columns);
}
PPL_ASSERT(OK());
}
template <typename Row>
void
Matrix<Row>::permute_columns(const std::vector<dimension_type>& cycles) {
PPL_DIRTY_TEMP_COEFFICIENT(tmp);
const dimension_type n = cycles.size();
PPL_ASSERT(cycles[n - 1] == 0);
for (dimension_type k = num_rows(); k-- > 0; ) {
Row& rows_k = (*this)[k];
for (dimension_type i = 0, j = 0; i < n; i = ++j) {
// Make `j' be the index of the next cycle terminator.
while (cycles[j] != 0)
++j;
// Cycles of length less than 2 are not allowed.
PPL_ASSERT(j - i >= 2);
if (j - i == 2)
// For cycles of length 2 no temporary is needed, just a swap.
rows_k.swap_coefficients(cycles[i], cycles[i + 1]);
else {
// Longer cycles need a temporary.
tmp = rows_k.get(cycles[j - 1]);
for (dimension_type l = (j - 1); l > i; --l)
rows_k.swap_coefficients(cycles[l-1], cycles[l]);
if (tmp == 0)
rows_k.reset(cycles[i]);
else {
using std::swap;
swap(tmp, rows_k[cycles[i]]);
}
}
}
}
}
template <typename Row>
void
Matrix<Row>::swap_columns(dimension_type i, dimension_type j) {
for (dimension_type k = num_rows(); k-- > 0; )
(*this)[k].swap_coefficients(i, j);
}
template <typename Row>
void
Matrix<Row>::add_zero_columns(dimension_type n, dimension_type i) {
for (dimension_type j = rows.size(); j-- > 0; )
rows[j].add_zeroes_and_shift(n, i);
num_columns_ += n;
PPL_ASSERT(OK());
}
template <typename Row>
void
Matrix<Row>::remove_column(dimension_type i) {
for (dimension_type j = rows.size(); j-- > 0; )
rows[j].delete_element_and_shift(i);
--num_columns_;
PPL_ASSERT(OK());
}
template <typename Row>
void
Matrix<Row>::ascii_dump(std::ostream& s) const {
s << num_rows() << " x ";
s << num_columns() << "\n";
for (const_iterator i = begin(), i_end = end(); i !=i_end; ++i)
i->ascii_dump(s);
}
PPL_OUTPUT_TEMPLATE_DEFINITIONS_ASCII_ONLY(Row, Matrix<Row>)
template <typename Row>
bool
Matrix<Row>::ascii_load(std::istream& s) {
std::string str;
dimension_type new_num_rows;
dimension_type new_num_cols;
if (!(s >> new_num_rows))
return false;
if (!(s >> str) || str != "x")
return false;
if (!(s >> new_num_cols))
return false;
for (iterator i = rows.begin(), i_end = rows.end(); i != i_end; ++i)
i->clear();
resize(new_num_rows, new_num_cols);
for (dimension_type row = 0; row < new_num_rows; ++row)
if (!rows[row].ascii_load(s))
return false;
// Check invariants.
PPL_ASSERT(OK());
return true;
}
template <typename Row>
memory_size_type
Matrix<Row>::external_memory_in_bytes() const {
return rows.external_memory_in_bytes();
}
template <typename Row>
bool
Matrix<Row>::OK() const {
for (const_iterator i = begin(), i_end = end(); i != i_end; ++i)
if (i->size() != num_columns_)
return false;
return true;
}
/*! \relates Parma_Polyhedra_Library::Matrix */
template <typename Row>
bool
operator==(const Matrix<Row>& x, const Matrix<Row>& y) {
if (x.num_rows() != y.num_rows())
return false;
if (x.num_columns() != y.num_columns())
return false;
for (dimension_type i = x.num_rows(); i-- > 0; )
if (x[i] != y[i])
return false;
return true;
}
/*! \relates Parma_Polyhedra_Library::Matrix */
template <typename Row>
bool
operator!=(const Matrix<Row>& x, const Matrix<Row>& y) {
return !(x == y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Matrix_defs.hh line 436. */
/* Automatically generated from PPL source file ../src/MIP_Problem_defs.hh line 37. */
#include <vector>
#include <deque>
#include <iterator>
#include <iosfwd>
namespace Parma_Polyhedra_Library {
namespace IO_Operators {
//! Output operator.
/*! \relates Parma_Polyhedra_Library::MIP_Problem */
std::ostream&
operator<<(std::ostream& s, const MIP_Problem& mip);
} // namespace IO_Operators
//! Swaps \p x with \p y.
/*! \relates MIP_Problem */
void swap(MIP_Problem& x, MIP_Problem& y);
} // namespace Parma_Polyhedra_Library
//! A Mixed Integer (linear) Programming problem.
/*! \ingroup PPL_CXX_interface
An object of this class encodes a mixed integer (linear) programming
problem.
The MIP problem is specified by providing:
- the dimension of the vector space;
- the feasible region, by means of a finite set of linear equality
and non-strict inequality constraints;
- the subset of the unknown variables that range over the integers
(the other variables implicitly ranging over the reals);
- the objective function, described by a Linear_Expression;
- the optimization mode (either maximization or minimization).
The class provides support for the (incremental) solution of the
MIP problem based on variations of the revised simplex method and
on branch-and-bound techniques. The result of the resolution
process is expressed in terms of an enumeration, encoding the
feasibility and the unboundedness of the optimization problem.
The class supports simple feasibility tests (i.e., no optimization),
as well as the extraction of an optimal (resp., feasible) point,
provided the MIP_Problem is optimizable (resp., feasible).
By exploiting the incremental nature of the solver, it is possible
to reuse part of the computational work already done when solving
variants of a given MIP_Problem: currently, incremental resolution
supports the addition of space dimensions, the addition of constraints,
the change of objective function and the change of optimization mode.
*/
class Parma_Polyhedra_Library::MIP_Problem {
public:
//! Builds a trivial MIP problem.
/*!
A trivial MIP problem requires to maximize the objective function
\f$0\f$ on a vector space under no constraints at all:
the origin of the vector space is an optimal solution.
\param dim
The dimension of the vector space enclosing \p *this
(optional argument with default value \f$0\f$).
\exception std::length_error
Thrown if \p dim exceeds <CODE>max_space_dimension()</CODE>.
*/
explicit MIP_Problem(dimension_type dim = 0);
/*! \brief
Builds an MIP problem having space dimension \p dim
from the sequence of constraints in the range
\f$[\mathrm{first}, \mathrm{last})\f$,
the objective function \p obj and optimization mode \p mode;
those dimensions whose indices occur in \p int_vars are
constrained to take an integer value.
\param dim
The dimension of the vector space enclosing \p *this.
\param first
An input iterator to the start of the sequence of constraints.
\param last
A past-the-end input iterator to the sequence of constraints.
\param int_vars
The set of variables' indexes that are constrained to take integer values.
\param obj
The objective function (optional argument with default value \f$0\f$).
\param mode
The optimization mode (optional argument with default value
<CODE>MAXIMIZATION</CODE>).
\exception std::length_error
Thrown if \p dim exceeds <CODE>max_space_dimension()</CODE>.
\exception std::invalid_argument
Thrown if a constraint in the sequence is a strict inequality,
if the space dimension of a constraint (resp., of the
objective function or of the integer variables) or the space dimension
of the integer variable set is strictly greater than \p dim.
*/
template <typename In>
MIP_Problem(dimension_type dim,
In first, In last,
const Variables_Set& int_vars,
const Linear_Expression& obj = Linear_Expression::zero(),
Optimization_Mode mode = MAXIMIZATION);
/*! \brief
Builds an MIP problem having space dimension \p dim
from the sequence of constraints in the range
\f$[\mathrm{first}, \mathrm{last})\f$,
the objective function \p obj and optimization mode \p mode.
\param dim
The dimension of the vector space enclosing \p *this.
\param first
An input iterator to the start of the sequence of constraints.
\param last
A past-the-end input iterator to the sequence of constraints.
\param obj
The objective function (optional argument with default value \f$0\f$).
\param mode
The optimization mode (optional argument with default value
<CODE>MAXIMIZATION</CODE>).
\exception std::length_error
Thrown if \p dim exceeds <CODE>max_space_dimension()</CODE>.
\exception std::invalid_argument
Thrown if a constraint in the sequence is a strict inequality
or if the space dimension of a constraint (resp., of the
objective function or of the integer variables) is strictly
greater than \p dim.
*/
template <typename In>
MIP_Problem(dimension_type dim,
In first, In last,
const Linear_Expression& obj = Linear_Expression::zero(),
Optimization_Mode mode = MAXIMIZATION);
/*! \brief
Builds an MIP problem having space dimension \p dim from the constraint
system \p cs, the objective function \p obj and optimization mode \p mode.
\param dim
The dimension of the vector space enclosing \p *this.
\param cs
The constraint system defining the feasible region.
\param obj
The objective function (optional argument with default value \f$0\f$).
\param mode
The optimization mode (optional argument with default value
<CODE>MAXIMIZATION</CODE>).
\exception std::length_error
Thrown if \p dim exceeds <CODE>max_space_dimension()</CODE>.
\exception std::invalid_argument
Thrown if the constraint system contains any strict inequality
or if the space dimension of the constraint system (resp., the
objective function) is strictly greater than \p dim.
*/
MIP_Problem(dimension_type dim,
const Constraint_System& cs,
const Linear_Expression& obj = Linear_Expression::zero(),
Optimization_Mode mode = MAXIMIZATION);
//! Ordinary copy constructor.
MIP_Problem(const MIP_Problem& y);
//! Destructor.
~MIP_Problem();
//! Assignment operator.
MIP_Problem& operator=(const MIP_Problem& y);
//! Returns the maximum space dimension an MIP_Problem can handle.
static dimension_type max_space_dimension();
//! Returns the space dimension of the MIP problem.
dimension_type space_dimension() const;
/*! \brief
Returns a set containing all the variables' indexes constrained
to be integral.
*/
const Variables_Set& integer_space_dimensions() const;
private:
//! A type alias for a sequence of constraints.
typedef std::vector<Constraint*> Constraint_Sequence;
public:
//! A read-only iterator on the constraints defining the feasible region.
class const_iterator {
private:
typedef Constraint_Sequence::const_iterator Base;
typedef std::iterator_traits<Base> Base_Traits;
public:
typedef Base_Traits::iterator_category iterator_category;
typedef Base_Traits::difference_type difference_type;
typedef const Constraint value_type;
typedef const Constraint* pointer;
typedef const Constraint& reference;
//! Iterator difference: computes distances.
difference_type operator-(const const_iterator& y) const;
//! Prefix increment.
const_iterator& operator++();
//! Prefix decrement.
const_iterator& operator--();
//! Postfix increment.
const_iterator operator++(int);
//! Postfix decrement.
const_iterator operator--(int);
//! Moves iterator forward of \p n positions.
const_iterator& operator+=(difference_type n);
//! Moves iterator backward of \p n positions.
const_iterator& operator-=(difference_type n);
//! Returns an iterator \p n positions forward.
const_iterator operator+(difference_type n) const;
//! Returns an iterator \p n positions backward.
const_iterator operator-(difference_type n) const;
//! Returns a reference to the "pointed" object.
reference operator*() const;
//! Returns the address of the "pointed" object.
pointer operator->() const;
//! Compares \p *this with y.
/*!
\param y
The %iterator that will be compared with *this.
*/
bool operator==(const const_iterator& y) const;
//! Compares \p *this with y.
/*!
\param y
The %iterator that will be compared with *this.
*/
bool operator!=(const const_iterator& y) const;
private:
//! Constructor from a Base iterator.
explicit const_iterator(Base base);
//! The Base iterator on the Constraint_Sequence.
Base itr;
friend class MIP_Problem;
};
/*! \brief
Returns a read-only iterator to the first constraint defining
the feasible region.
*/
const_iterator constraints_begin() const;
/*! \brief
Returns a past-the-end read-only iterator to the sequence of
constraints defining the feasible region.
*/
const_iterator constraints_end() const;
//! Returns the objective function.
const Linear_Expression& objective_function() const;
//! Returns the optimization mode.
Optimization_Mode optimization_mode() const;
//! Resets \p *this to be equal to the trivial MIP problem.
/*!
The space dimension is reset to \f$0\f$.
*/
void clear();
/*! \brief
Adds \p m new space dimensions and embeds the old MIP problem
in the new vector space.
\param m
The number of dimensions to add.
\exception std::length_error
Thrown if adding \p m new space dimensions would cause the
vector space to exceed dimension <CODE>max_space_dimension()</CODE>.
The new space dimensions will be those having the highest indexes
in the new MIP problem; they are initially unconstrained.
*/
void add_space_dimensions_and_embed(dimension_type m);
/*! \brief
Sets the variables whose indexes are in set \p i_vars to be
integer space dimensions.
\exception std::invalid_argument
Thrown if some index in \p i_vars does not correspond to
a space dimension in \p *this.
*/
void add_to_integer_space_dimensions(const Variables_Set& i_vars);
/*! \brief
Adds a copy of constraint \p c to the MIP problem.
\exception std::invalid_argument
Thrown if the constraint \p c is a strict inequality or if its space
dimension is strictly greater than the space dimension of \p *this.
*/
void add_constraint(const Constraint& c);
/*! \brief
Adds a copy of the constraints in \p cs to the MIP problem.
\exception std::invalid_argument
Thrown if the constraint system \p cs contains any strict inequality
or if its space dimension is strictly greater than the space dimension
of \p *this.
*/
void add_constraints(const Constraint_System& cs);
//! Sets the objective function to \p obj.
/*!
\exception std::invalid_argument
Thrown if the space dimension of \p obj is strictly greater than
the space dimension of \p *this.
*/
void set_objective_function(const Linear_Expression& obj);
//! Sets the optimization mode to \p mode.
void set_optimization_mode(Optimization_Mode mode);
//! Checks satisfiability of \p *this.
/*!
\return
<CODE>true</CODE> if and only if the MIP problem is satisfiable.
*/
bool is_satisfiable() const;
//! Optimizes the MIP problem.
/*!
\return
An MIP_Problem_Status flag indicating the outcome of the optimization
attempt (unfeasible, unbounded or optimized problem).
*/
MIP_Problem_Status solve() const;
/*! \brief
Sets \p num and \p denom so that
\f$\frac{\mathtt{numer}}{\mathtt{denom}}\f$ is the result of
evaluating the objective function on \p evaluating_point.
\param evaluating_point
The point on which the objective function will be evaluated.
\param numer
On exit will contain the numerator of the evaluated value.
\param denom
On exit will contain the denominator of the evaluated value.
\exception std::invalid_argument
Thrown if \p *this and \p evaluating_point are dimension-incompatible
or if the generator \p evaluating_point is not a point.
*/
void evaluate_objective_function(const Generator& evaluating_point,
Coefficient& numer,
Coefficient& denom) const;
//! Returns a feasible point for \p *this, if it exists.
/*!
\exception std::domain_error
Thrown if the MIP problem is not satisfiable.
*/
const Generator& feasible_point() const;
//! Returns an optimal point for \p *this, if it exists.
/*!
\exception std::domain_error
Thrown if \p *this does not not have an optimizing point, i.e.,
if the MIP problem is unbounded or not satisfiable.
*/
const Generator& optimizing_point() const;
/*! \brief
Sets \p numer and \p denom so that
\f$\frac{\mathtt{numer}}{\mathtt{denom}}\f$ is the solution of the
optimization problem.
\exception std::domain_error
Thrown if \p *this does not not have an optimizing point, i.e.,
if the MIP problem is unbounded or not satisfiable.
*/
void optimal_value(Coefficient& numer, Coefficient& denom) const;
//! Checks if all the invariants are satisfied.
bool OK() const;
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
//! Swaps \p *this with \p y.
void m_swap(MIP_Problem& y);
//! Names of MIP problems' control parameters.
enum Control_Parameter_Name {
//! The pricing rule.
PRICING
};
//! Possible values for MIP problem's control parameters.
enum Control_Parameter_Value {
//! Steepest edge pricing method, using floating points (default).
PRICING_STEEPEST_EDGE_FLOAT,
//! Steepest edge pricing method, using Coefficient.
PRICING_STEEPEST_EDGE_EXACT,
//! Textbook pricing method.
PRICING_TEXTBOOK
};
//! Returns the value of the control parameter \p name.
Control_Parameter_Value
get_control_parameter(Control_Parameter_Name name) const;
//! Sets control parameter \p value.
void set_control_parameter(Control_Parameter_Value value);
private:
//! The dimension of the vector space.
dimension_type external_space_dim;
/*! \brief
The space dimension of the current (partial) solution of the
MIP problem; it may be smaller than \p external_space_dim.
*/
dimension_type internal_space_dim;
#if PPL_USE_SPARSE_MATRIX
typedef Sparse_Row Row;
#else
typedef Dense_Row Row;
#endif
//! The matrix encoding the current feasible region in tableau form.
Matrix<Row> tableau;
typedef Row working_cost_type;
//! The working cost function.
working_cost_type working_cost;
//! A map between the variables of `input_cs' and `tableau'.
/*!
Contains all the pairs (i, j) such that mapping[i].first encodes the index
of the column in the tableau where input_cs[i] is stored; if
mapping[i].second is not a zero, it encodes the split part of the tableau
of input_cs[i].
The "positive" one is represented by mapping[i].first and the "negative"
one is represented by mapping[i].second.
*/
std::vector<std::pair<dimension_type, dimension_type> > mapping;
//! The current basic solution.
std::vector<dimension_type> base;
//! An enumerated type describing the internal status of the MIP problem.
enum Status {
//! The MIP problem is unsatisfiable.
UNSATISFIABLE,
//! The MIP problem is satisfiable; a feasible solution has been computed.
SATISFIABLE,
//! The MIP problem is unbounded; a feasible solution has been computed.
UNBOUNDED,
//! The MIP problem is optimized; an optimal solution has been computed.
OPTIMIZED,
/*! \brief
The feasible region of the MIP problem has been changed by adding
new space dimensions or new constraints; a feasible solution for
the old feasible region is still available.
*/
PARTIALLY_SATISFIABLE
};
//! The internal state of the MIP problem.
Status status;
// TODO: merge `status', `initialized', `pricing' and (maybe) `opt_mode'
// into a single bitset status word, so as to save space and allow
// for other control parameters.
//! The pricing method in use.
Control_Parameter_Value pricing;
/*! \brief
A Boolean encoding whether or not internal data structures have
already been properly sized and populated: useful to allow for
deeper checks in method OK().
*/
bool initialized;
//! The sequence of constraints describing the feasible region.
std::vector<Constraint*> input_cs;
/*! \brief
The number of constraints that are inherited from our parent
in the recursion tree built when solving via branch-and-bound.
The first \c inherited_constraints elements in \c input_cs point to
the inherited constraints, whose resources are owned by our ancestors.
The resources of the other elements in \c input_cs are owned by \c *this
and should be appropriately released on destruction.
*/
dimension_type inherited_constraints;
//! The first index of `input_cs' containing a pending constraint.
dimension_type first_pending_constraint;
//! The objective function to be optimized.
Linear_Expression input_obj_function;
//! The optimization mode requested.
Optimization_Mode opt_mode;
//! The last successfully computed feasible or optimizing point.
Generator last_generator;
/*! \brief
A set containing all the indexes of variables that are constrained
to have an integer value.
*/
Variables_Set i_variables;
//! A helper class to temporarily relax a MIP problem using RAII.
struct RAII_Temporary_Real_Relaxation {
MIP_Problem& lp;
Variables_Set i_vars;
RAII_Temporary_Real_Relaxation(MIP_Problem& mip)
: lp(mip), i_vars() {
// Turn mip into an LP problem (saving i_variables in i_vars).
using std::swap;
swap(i_vars, lp.i_variables);
}
~RAII_Temporary_Real_Relaxation() {
// Restore the original set of integer variables.
using std::swap;
swap(i_vars, lp.i_variables);
}
};
friend struct RAII_Temporary_Real_Relaxation;
//! A tag type to distinguish normal vs. inheriting copy constructor.
struct Inherit_Constraints {};
//! Copy constructor inheriting constraints.
MIP_Problem(const MIP_Problem& y, Inherit_Constraints);
//! Helper method: implements exception safe addition.
void add_constraint_helper(const Constraint& c);
//! Processes the pending constraints of \p *this.
void process_pending_constraints();
/*! \brief
Optimizes the MIP problem using the second phase of the
primal simplex algorithm.
*/
void second_phase();
/*! \brief
Assigns to \p this->tableau a simplex tableau representing the
MIP problem, inserting into \p this->mapping the information
that is required to recover the original MIP problem.
\return
<CODE>UNFEASIBLE_MIP_PROBLEM</CODE> if the constraint system contains
any trivially unfeasible constraint (tableau was not computed);
<CODE>UNBOUNDED_MIP_PROBLEM</CODE> if the problem is trivially unbounded
(the computed tableau contains no constraints);
<CODE>OPTIMIZED_MIP_PROBLEM></CODE> if the problem is neither trivially
unfeasible nor trivially unbounded (the tableau was computed
successfully).
*/
MIP_Problem_Status
compute_tableau(std::vector<dimension_type>& worked_out_row);
/*! \brief
Parses the pending constraints to gather information on
how to resize the tableau.
\note
All of the method parameters are output parameters; their value
is only meaningful when the function exit returning value \c true.
\return
\c false if a trivially false constraint is detected, \c true otherwise.
\param additional_tableau_rows
On exit, this will store the number of rows that have to be added
to the original tableau.
\param additional_slack_variables
This will store the number of slack variables that have to be added
to the original tableau.
\param is_tableau_constraint
This container of Boolean flags is initially empty. On exit, it size
will be equal to the number of pending constraints in \c input_cs.
For each pending constraint index \c i, the corresponding element
of this container (having index <CODE>i - first_pending_constraint</CODE>)
will be set to \c true if and only if the constraint has to be included
in the tableau.
\param is_satisfied_inequality
This container of Boolean flags is initially empty. On exit, its size
will be equal to the number of pending constraints in \c input_cs.
For each pending constraint index \c i, the corresponding element
of this container (having index <CODE>i - first_pending_constraint</CODE>)
will be set to \c true if and only if it is an inequality and it
is already satisfied by \c last_generator (hence it does not require
the introduction of an artificial variable).
\param is_nonnegative_variable
This container of Boolean flags is initially empty.
On exit, it size is equal to \c external_space_dim.
For each variable (index), the corresponding element of this container
is \c true if the variable is known to be nonnegative (and hence should
not be split into a positive and a negative part).
\param is_remergeable_variable
This container of Boolean flags is initially empty.
On exit, it size is equal to \c internal_space_dim.
For each variable (index), the corresponding element of this container
is \c true if the variable was previously split into positive and
negative parts that can now be merged back, since it is known
that the variable is nonnegative.
*/
bool parse_constraints(dimension_type& additional_tableau_rows,
dimension_type& additional_slack_variables,
std::deque<bool>& is_tableau_constraint,
std::deque<bool>& is_satisfied_inequality,
std::deque<bool>& is_nonnegative_variable,
std::deque<bool>& is_remergeable_variable) const;
/*! \brief
Computes the row index of the variable exiting the base
of the MIP problem. Implemented with anti-cycling rule.
\return
The row index of the variable exiting the base.
\param entering_var_index
The column index of the variable entering the base.
*/
dimension_type
get_exiting_base_index(dimension_type entering_var_index) const;
//! Linearly combines \p x with \p y so that <CODE>*this[k]</CODE> is 0.
/*!
\param x
The row that will be combined with \p y object.
\param y
The row that will be combined with \p x object.
\param k
The position of \p *this that have to be \f$0\f$.
Computes a linear combination of \p x and \p y having
the element of index \p k equal to \f$0\f$. Then it assigns
the resulting Row to \p x and normalizes it.
*/
static void linear_combine(Row& x, const Row& y, const dimension_type k);
// TODO: Remove this when the sparse working cost has been tested enough.
#if PPL_USE_SPARSE_MATRIX
//! Linearly combines \p x with \p y so that <CODE>*this[k]</CODE> is 0.
/*!
\param x
The row that will be combined with \p y object.
\param y
The row that will be combined with \p x object.
\param k
The position of \p *this that have to be \f$0\f$.
Computes a linear combination of \p x and \p y having
the element of index \p k equal to \f$0\f$. Then it assigns
the resulting Dense_Row to \p x and normalizes it.
*/
static void linear_combine(Dense_Row& x, const Sparse_Row& y,
const dimension_type k);
#endif // defined(PPL_USE_SPARSE_MATRIX)
static bool is_unbounded_obj_function(
const Linear_Expression& obj_function,
const std::vector<std::pair<dimension_type, dimension_type> >& mapping,
Optimization_Mode optimization_mode);
/*! \brief
Performs the pivoting operation on the tableau.
\param entering_var_index
The index of the variable entering the base.
\param exiting_base_index
The index of the row exiting the base.
*/
void pivot(dimension_type entering_var_index,
dimension_type exiting_base_index);
/*! \brief
Computes the column index of the variable entering the base,
using the textbook algorithm with anti-cycling rule.
\return
The column index of the variable that enters the base.
If no such variable exists, optimality was achieved
and <CODE>0</CODE> is returned.
*/
dimension_type textbook_entering_index() const;
/*! \brief
Computes the column index of the variable entering the base,
using an exact steepest-edge algorithm with anti-cycling rule.
\return
The column index of the variable that enters the base.
If no such variable exists, optimality was achieved
and <CODE>0</CODE> is returned.
To compute the entering_index, the steepest edge algorithm chooses
the index `j' such that \f$\frac{d_{j}}{\|\Delta x^{j} \|}\f$ is the
largest in absolute value, where
\f[
\|\Delta x^{j} \|
= \left(
1+\sum_{i=1}^{m} \alpha_{ij}^2
\right)^{\frac{1}{2}}.
\f]
Recall that, due to the exact integer implementation of the algorithm,
our tableau does not contain the ``real'' \f$\alpha\f$ values, but these
can be computed dividing the value of the coefficient by the value of
the variable in base. Obviously the result may not be an integer, so
we will proceed in another way: we compute the lcm of all the variables
in base to get the good ``weight'' of each Coefficient of the tableau.
*/
dimension_type steepest_edge_exact_entering_index() const;
/*! \brief
Same as steepest_edge_exact_entering_index,
but using floating points.
\note
Due to rounding errors, the index of the variable entering the base
of the MIP problem is not predictable across different architectures.
Hence, the overall simplex computation may differ in the path taken
to reach the optimum. Anyway, the exact final result will be computed
for the MIP_Problem.
*/
dimension_type steepest_edge_float_entering_index() const;
/*! \brief
Returns <CODE>true</CODE> if and if only the algorithm successfully
computed a feasible solution.
\note
Uses an exact pricing method (either textbook or exact steepest edge),
so that the result is deterministic across different architectures.
*/
bool compute_simplex_using_exact_pricing();
/*! \brief
Returns <CODE>true</CODE> if and if only the algorithm successfully
computed a feasible solution.
\note
Uses a floating point implementation of the steepest edge pricing
method, so that the result is correct, but not deterministic across
different architectures.
*/
bool compute_simplex_using_steepest_edge_float();
/*! \brief
Drop unnecessary artificial variables from the tableau and get ready
for the second phase of the simplex algorithm.
\note
The two parameters denote a STL-like half-open range.
It is assumed that \p begin_artificials is strictly greater than 0
and smaller than \p end_artificials.
\param begin_artificials
The start of the tableau column index range for artificial variables.
\param end_artificials
The end of the tableau column index range for artificial variables.
Note that column index end_artificial is \e excluded from the range.
*/
void erase_artificials(dimension_type begin_artificials,
dimension_type end_artificials);
bool is_in_base(dimension_type var_index,
dimension_type& row_index) const;
/*! \brief
Computes a valid generator that satisfies all the constraints of the
Linear Programming problem associated to \p *this.
*/
void compute_generator() const;
/*! \brief
Merges back the positive and negative part of a (previously split)
variable after detecting a corresponding nonnegativity constraint.
\return
If the negative part of \p var_index was in base, the index of
the corresponding tableau row (which has become non-feasible);
otherwise \c not_a_dimension().
\param var_index
The index of the variable that has to be merged.
*/
dimension_type merge_split_variable(dimension_type var_index);
//! Returns <CODE>true</CODE> if and only if \p c is satisfied by \p g.
static bool is_satisfied(const Constraint& c, const Generator& g);
//! Returns <CODE>true</CODE> if and only if \p c is saturated by \p g.
static bool is_saturated(const Constraint& c, const Generator& g);
/*! \brief
Returns a status that encodes the solution of the MIP problem.
\param have_incumbent_solution
It is used to store if the solving process has found a provisional
optimum point.
\param incumbent_solution_value
Encodes the evaluated value of the provisional optimum point found.
\param incumbent_solution_point
If the method returns `OPTIMIZED', this will contain the optimality point.
\param mip
The problem that has to be solved.
\param i_vars
The variables that are constrained to take an integer value.
*/
static MIP_Problem_Status solve_mip(bool& have_incumbent_solution,
mpq_class& incumbent_solution_value,
Generator& incumbent_solution_point,
MIP_Problem& mip,
const Variables_Set& i_vars);
/*! \brief
Returns \c true if and if only the LP problem is satisfiable.
*/
bool is_lp_satisfiable() const;
/*! \brief
Returns \c true if and if only the MIP problem \p mip is satisfiable
when variables in \p i_vars can only take integral values.
\param mip
The MIP problem. This is assumed to have no integral space dimension
(so that it is a pure LP problem).
\param i_vars
The variables that are constrained to take integral values.
\param p
If \c true is returned, it will encode a feasible point.
*/
static bool is_mip_satisfiable(MIP_Problem& mip,
const Variables_Set& i_vars,
Generator& p);
/*! \brief
Returns \c true if and if only \c mip.last_generator satisfies all the
integrality conditions implicitly stated using by \p i_vars.
\param mip
The MIP problem. This is assumed to have no integral space dimension
(so that it is a pure LP problem).
\param i_vars
The variables that are constrained to take an integer value.
\param branching_index
If \c false is returned, this will encode the non-integral variable
index on which the `branch and bound' algorithm should be applied.
*/
static bool choose_branching_variable(const MIP_Problem& mip,
const Variables_Set& i_vars,
dimension_type& branching_index);
};
/* Automatically generated from PPL source file ../src/MIP_Problem_inlines.hh line 1. */
/* MIP_Problem class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/MIP_Problem_inlines.hh line 28. */
#include <stdexcept>
namespace Parma_Polyhedra_Library {
inline dimension_type
MIP_Problem::max_space_dimension() {
return Constraint::max_space_dimension();
}
inline dimension_type
MIP_Problem::space_dimension() const {
return external_space_dim;
}
inline
MIP_Problem::MIP_Problem(const MIP_Problem& y)
: external_space_dim(y.external_space_dim),
internal_space_dim(y.internal_space_dim),
tableau(y.tableau),
working_cost(y.working_cost),
mapping(y.mapping),
base(y.base),
status(y.status),
pricing(y.pricing),
initialized(y.initialized),
input_cs(),
inherited_constraints(0),
first_pending_constraint(),
input_obj_function(y.input_obj_function),
opt_mode(y.opt_mode),
last_generator(y.last_generator),
i_variables(y.i_variables) {
input_cs.reserve(y.input_cs.size());
for (Constraint_Sequence::const_iterator i = y.input_cs.begin(),
i_end = y.input_cs.end(); i != i_end; ++i)
add_constraint_helper(*(*i));
PPL_ASSERT(OK());
}
inline
MIP_Problem::MIP_Problem(const MIP_Problem& y, Inherit_Constraints)
: external_space_dim(y.external_space_dim),
internal_space_dim(y.internal_space_dim),
tableau(y.tableau),
working_cost(y.working_cost),
mapping(y.mapping),
base(y.base),
status(y.status),
pricing(y.pricing),
initialized(y.initialized),
input_cs(y.input_cs),
// NOTE: The constraints are inherited, NOT copied!
inherited_constraints(y.input_cs.size()),
first_pending_constraint(y.first_pending_constraint),
input_obj_function(y.input_obj_function),
opt_mode(y.opt_mode),
last_generator(y.last_generator),
i_variables(y.i_variables) {
PPL_ASSERT(OK());
}
inline void
MIP_Problem::add_constraint_helper(const Constraint& c) {
// For exception safety, reserve space for the new element.
const dimension_type size = input_cs.size();
if (size == input_cs.capacity()) {
const dimension_type max_size = input_cs.max_size();
if (size == max_size)
throw std::length_error("MIP_Problem::add_constraint(): "
"too many constraints");
// Use an exponential grow policy to avoid too many reallocations.
input_cs.reserve(compute_capacity(size + 1, max_size));
}
// This operation does not throw, because the space for the new element
// has already been reserved: hence the new-ed Constraint is safe.
input_cs.push_back(new Constraint(c));
}
inline
MIP_Problem::~MIP_Problem() {
// NOTE: do NOT delete inherited constraints; they are owned
// (and will eventually be deleted) by ancestors.
for (Constraint_Sequence::const_iterator
i = nth_iter(input_cs, inherited_constraints),
i_end = input_cs.end(); i != i_end; ++i)
delete *i;
}
inline void
MIP_Problem::set_optimization_mode(const Optimization_Mode mode) {
if (opt_mode != mode) {
opt_mode = mode;
if (status == UNBOUNDED || status == OPTIMIZED)
status = SATISFIABLE;
PPL_ASSERT(OK());
}
}
inline const Linear_Expression&
MIP_Problem::objective_function() const {
return input_obj_function;
}
inline Optimization_Mode
MIP_Problem::optimization_mode() const {
return opt_mode;
}
inline void
MIP_Problem::optimal_value(Coefficient& numer, Coefficient& denom) const {
const Generator& g = optimizing_point();
evaluate_objective_function(g, numer, denom);
}
inline MIP_Problem::const_iterator
MIP_Problem::constraints_begin() const {
return const_iterator(input_cs.begin());
}
inline MIP_Problem::const_iterator
MIP_Problem::constraints_end() const {
return const_iterator(input_cs.end());
}
inline const Variables_Set&
MIP_Problem::integer_space_dimensions() const {
return i_variables;
}
inline MIP_Problem::Control_Parameter_Value
MIP_Problem::get_control_parameter(Control_Parameter_Name name) const {
PPL_USED(name);
PPL_ASSERT(name == PRICING);
return pricing;
}
inline void
MIP_Problem::set_control_parameter(Control_Parameter_Value value) {
pricing = value;
}
inline void
MIP_Problem::m_swap(MIP_Problem& y) {
using std::swap;
swap(external_space_dim, y.external_space_dim);
swap(internal_space_dim, y.internal_space_dim);
swap(tableau, y.tableau);
swap(working_cost, y.working_cost);
swap(mapping, y.mapping);
swap(initialized, y.initialized);
swap(base, y.base);
swap(status, y.status);
swap(pricing, y.pricing);
swap(input_cs, y.input_cs);
swap(inherited_constraints, y.inherited_constraints);
swap(first_pending_constraint, y.first_pending_constraint);
swap(input_obj_function, y.input_obj_function);
swap(opt_mode, y.opt_mode);
swap(last_generator, y.last_generator);
swap(i_variables, y.i_variables);
}
inline MIP_Problem&
MIP_Problem::operator=(const MIP_Problem& y) {
MIP_Problem tmp(y);
m_swap(tmp);
return *this;
}
inline void
MIP_Problem::clear() {
MIP_Problem tmp;
m_swap(tmp);
}
inline memory_size_type
MIP_Problem::external_memory_in_bytes() const {
memory_size_type n
= working_cost.external_memory_in_bytes()
+ tableau.external_memory_in_bytes()
+ input_obj_function.external_memory_in_bytes()
+ last_generator.external_memory_in_bytes();
// Adding the external memory for `input_cs'.
// NOTE: disregard inherited constraints, as they are owned by ancestors.
n += input_cs.capacity() * sizeof(Constraint*);
for (Constraint_Sequence::const_iterator
i = nth_iter(input_cs, inherited_constraints),
i_end = input_cs.end(); i != i_end; ++i)
n += ((*i)->total_memory_in_bytes());
// Adding the external memory for `base'.
n += base.capacity() * sizeof(dimension_type);
// Adding the external memory for `mapping'.
n += mapping.capacity() * sizeof(std::pair<dimension_type, dimension_type>);
return n;
}
inline memory_size_type
MIP_Problem::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
inline
MIP_Problem::const_iterator::const_iterator(Base base)
: itr(base) {
}
inline MIP_Problem::const_iterator::difference_type
MIP_Problem::const_iterator::operator-(const const_iterator& y) const {
return itr - y.itr;
}
inline MIP_Problem::const_iterator&
MIP_Problem::const_iterator::operator++() {
++itr;
return *this;
}
inline MIP_Problem::const_iterator&
MIP_Problem::const_iterator::operator--() {
--itr;
return *this;
}
inline MIP_Problem::const_iterator
MIP_Problem::const_iterator::operator++(int) {
const_iterator x = *this;
operator++();
return x;
}
inline MIP_Problem::const_iterator
MIP_Problem::const_iterator::operator--(int) {
const_iterator x = *this;
operator--();
return x;
}
inline MIP_Problem::const_iterator
MIP_Problem::const_iterator::operator+(difference_type n) const {
return const_iterator(itr + n);
}
inline MIP_Problem::const_iterator
MIP_Problem::const_iterator::operator-(difference_type n) const {
return const_iterator(itr - n);
}
inline MIP_Problem::const_iterator&
MIP_Problem::const_iterator::operator+=(difference_type n) {
itr += n;
return *this;
}
inline MIP_Problem::const_iterator&
MIP_Problem::const_iterator::operator-=(difference_type n) {
itr -= n;
return *this;
}
inline MIP_Problem::const_iterator::reference
MIP_Problem::const_iterator::operator*() const {
return *(*itr);
}
inline MIP_Problem::const_iterator::pointer
MIP_Problem::const_iterator::operator->() const {
return *itr;
}
inline bool
MIP_Problem::const_iterator::operator==(const const_iterator& y) const {
return itr == y.itr;
}
inline bool
MIP_Problem::const_iterator::operator!=(const const_iterator& y) const {
return itr != y.itr;
}
/*! \relates MIP_Problem */
inline void
swap(MIP_Problem& x, MIP_Problem& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/MIP_Problem_templates.hh line 1. */
/* MIP_Problem class implementation: non-inline template functions.
*/
/* Automatically generated from PPL source file ../src/MIP_Problem_templates.hh line 28. */
namespace Parma_Polyhedra_Library {
template <typename In>
MIP_Problem::MIP_Problem(const dimension_type dim,
In first, In last,
const Variables_Set& int_vars,
const Linear_Expression& obj,
const Optimization_Mode mode)
: external_space_dim(dim),
internal_space_dim(0),
tableau(),
working_cost(0),
mapping(),
base(),
status(PARTIALLY_SATISFIABLE),
pricing(PRICING_STEEPEST_EDGE_FLOAT),
initialized(false),
input_cs(),
inherited_constraints(0),
first_pending_constraint(0),
input_obj_function(obj),
opt_mode(mode),
last_generator(point()),
i_variables(int_vars) {
// Check that integer Variables_Set does not exceed the space dimension
// of the problem.
if (i_variables.space_dimension() > external_space_dim) {
std::ostringstream s;
s << "PPL::MIP_Problem::MIP_Problem"
<< "(dim, first, last, int_vars, obj, mode):\n"
<< "dim == "<< external_space_dim << " and int_vars.space_dimension() =="
<< " " << i_variables.space_dimension() << " are dimension"
"incompatible.";
throw std::invalid_argument(s.str());
}
// Check for space dimension overflow.
if (dim > max_space_dimension())
throw std::length_error("PPL::MIP_Problem:: MIP_Problem(dim, first, "
"last, int_vars, obj, mode):\n"
"dim exceeds the maximum allowed"
"space dimension.");
// Check the objective function.
if (obj.space_dimension() > dim) {
std::ostringstream s;
s << "PPL::MIP_Problem::MIP_Problem(dim, first, last,"
<< "int_vars, obj, mode):\n"
<< "obj.space_dimension() == "<< obj.space_dimension()
<< " exceeds d == "<< dim << ".";
throw std::invalid_argument(s.str());
}
// Check the constraints.
try {
for (In i = first; i != last; ++i) {
if (i->is_strict_inequality())
throw std::invalid_argument("PPL::MIP_Problem::"
"MIP_Problem(dim, first, last, int_vars,"
"obj, mode):\nrange [first, last) contains"
"a strict inequality constraint.");
if (i->space_dimension() > dim) {
std::ostringstream s;
s << "PPL::MIP_Problem::"
<< "MIP_Problem(dim, first, last, int_vars, obj, mode):\n"
<< "range [first, last) contains a constraint having space"
<< "dimension == " << i->space_dimension() << " that exceeds"
"this->space_dimension == " << dim << ".";
throw std::invalid_argument(s.str());
}
add_constraint_helper(*i);
}
} catch (...) {
// Delete the allocated constraints, to avoid memory leaks.
for (Constraint_Sequence::const_iterator
i = input_cs.begin(), i_end = input_cs.end(); i != i_end; ++i)
delete *i;
throw;
}
PPL_ASSERT(OK());
}
template <typename In>
MIP_Problem::MIP_Problem(dimension_type dim,
In first, In last,
const Linear_Expression& obj,
Optimization_Mode mode)
: external_space_dim(dim),
internal_space_dim(0),
tableau(),
working_cost(0),
mapping(),
base(),
status(PARTIALLY_SATISFIABLE),
pricing(PRICING_STEEPEST_EDGE_FLOAT),
initialized(false),
input_cs(),
inherited_constraints(0),
first_pending_constraint(0),
input_obj_function(obj),
opt_mode(mode),
last_generator(point()),
i_variables() {
// Check for space dimension overflow.
if (dim > max_space_dimension())
throw std::length_error("PPL::MIP_Problem::"
"MIP_Problem(dim, first, last, obj, mode):\n"
"dim exceeds the maximum allowed space "
"dimension.");
// Check the objective function.
if (obj.space_dimension() > dim) {
std::ostringstream s;
s << "PPL::MIP_Problem::MIP_Problem(dim, first, last,"
<< " obj, mode):\n"
<< "obj.space_dimension() == "<< obj.space_dimension()
<< " exceeds d == "<< dim << ".";
throw std::invalid_argument(s.str());
}
// Check the constraints.
try {
for (In i = first; i != last; ++i) {
if (i->is_strict_inequality())
throw std::invalid_argument("PPL::MIP_Problem::"
"MIP_Problem(dim, first, last, obj, mode):"
"\n"
"range [first, last) contains a strict "
"inequality constraint.");
if (i->space_dimension() > dim) {
std::ostringstream s;
s << "PPL::MIP_Problem::"
<< "MIP_Problem(dim, first, last, obj, mode):\n"
<< "range [first, last) contains a constraint having space"
<< "dimension" << " == " << i->space_dimension() << " that exceeds"
"this->space_dimension == " << dim << ".";
throw std::invalid_argument(s.str());
}
add_constraint_helper(*i);
}
} catch (...) {
// Delete the allocated constraints, to avoid memory leaks.
for (Constraint_Sequence::const_iterator
i = input_cs.begin(), i_end = input_cs.end(); i != i_end; ++i)
delete *i;
throw;
}
PPL_ASSERT(OK());
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/MIP_Problem_defs.hh line 974. */
/* Automatically generated from PPL source file ../src/Polyhedron_templates.hh line 31. */
// For static method overflows.
/* Automatically generated from PPL source file ../src/Floating_Point_Expression_defs.hh line 1. */
/* Declarations for the Floating_Point_Expression class and its constituents.
*/
/* Automatically generated from PPL source file ../src/Floating_Point_Expression_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type, typename FP_Format>
class Floating_Point_Expression;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Floating_Point_Expression_defs.hh line 31. */
#include <cmath>
#include <map>
namespace Parma_Polyhedra_Library {
/*! \ingroup PPL_CXX_Interface \brief
A floating point expression on a given format.
This class represents a concrete <EM>floating point expression</EM>. This
includes constants, floating point variables, binary and unary
arithmetic operators.
\par Template type parameters
- The class template type parameter \p FP_Interval_Type represents the type
of the intervals used in the abstract domain. The interval bounds
should have a floating point type.
- The class template type parameter \p FP_Format represents the floating
point format used in the concrete domain.
This parameter must be a struct similar to the ones defined in file
Float_defs.hh, even though it is sufficient to define the three
fields BASE, MANTISSA_BITS and EXPONENT_BIAS.
*/
template <typename FP_Interval_Type, typename FP_Format>
class Floating_Point_Expression {
public:
//! Alias for a linear form with template argument \p FP_Interval_Type.
typedef Linear_Form<FP_Interval_Type> FP_Linear_Form;
//! Alias for a map that associates a variable index to an interval.
/*! \brief
Alias for a Box storing lower and upper bounds for floating point
variables.
The type a linear form abstract store associating each variable with an
interval that correctly approximates its value.
*/
typedef Box<FP_Interval_Type> FP_Interval_Abstract_Store;
//! Alias for a map that associates a variable index to a linear form.
/*!
The type a linear form abstract store associating each variable with a
linear form that correctly approximates its value.
*/
typedef std::map<dimension_type, FP_Linear_Form>
FP_Linear_Form_Abstract_Store;
//! The floating point format used by the analyzer.
typedef typename FP_Interval_Type::boundary_type boundary_type;
//! The interval policy used by \p FP_Interval_Type.
typedef typename FP_Interval_Type::info_type info_type;
//! Destructor.
virtual ~Floating_Point_Expression();
//! Linearizes a floating point expression.
/*! \brief
Makes \p result become a linear form that correctly approximates the
value of the floating point expression in the given composite
abstract store.
\param int_store The interval abstract store.
\param lf_store The linear form abstract store.
\param result Becomes the linearized expression.
\return <CODE>true</CODE> if the linearization succeeded,
<CODE>false</CODE> otherwise.
Formally, if \p *this represents the expression \f$e\f$,
\p int_store represents the interval abstract store \f$\rho^{\#}\f$ and
\p lf_store represents the linear form abstract store \f$\rho^{\#}_l\f$,
then \p result will become
\f$\linexprenv{e}{\rho^{\#}}{\rho^{\#}_l}\f$
if the linearization succeeds.
All variables occurring in the floating point expression MUST have
an associated interval in \p int_store.
If this precondition is not met, calling the method causes an
undefined behavior.
*/
virtual bool linearize(const FP_Interval_Abstract_Store& int_store,
const FP_Linear_Form_Abstract_Store& lf_store,
FP_Linear_Form& result) const = 0;
/*! \brief
Absolute error.
Represents the interval \f$[-\omega, \omega]\f$ where \f$\omega\f$ is the
smallest non-zero positive number in the less precise floating point
format between the analyzer format and the analyzed format.
*/
static FP_Interval_Type absolute_error;
// FIXME: this may not be the best place for them.
/*! \brief
Verifies if a given linear form overflows.
\param lf The linear form to verify.
\return
Returns <CODE>false</CODE> if all coefficients in \p lf are bounded,
<CODE>true</CODE> otherwise.
*/
static bool overflows(const FP_Linear_Form& lf);
/*! \brief
Computes the relative error of a given linear form.
Static helper method that is used by <CODE>linearize</CODE>
to account for the relative errors on \p lf.
\param lf The linear form used to compute the relative error.
\param result Becomes the linear form corresponding to a relative
error committed on \p lf.
This method makes <CODE>result</CODE> become a linear form
obtained by evaluating the function \f$\varepsilon_{\mathbf{f}}(l)\f$
on the linear form \p lf. This function is defined
such as:
\f[
\varepsilon_{\mathbf{f}}\left([a, b]+\sum_{v \in \cV}[a_{v}, b_{v}]v\right)
\defeq
(\textrm{max}(|a|, |b|) \amifp [-\beta^{-\textrm{p}}, \beta^{-\textrm{p}}])
+
\sum_{v \in \cV}(\textrm{max}(|a_{v}|,|b_{v}|)
\amifp
[-\beta^{-\textrm{p}}, \beta^{-\textrm{p}}])v
\f]
where p is the fraction size in bits for the format \f$\mathbf{f}\f$ and
\f$\beta\f$ the base.
*/
static void relative_error(const FP_Linear_Form& lf,
FP_Linear_Form& result);
/*! \brief
Makes \p result become an interval that overapproximates all the
possible values of \p lf in the interval abstract store \p store.
\param lf The linear form to aproximate.
\param store The abstract store.
\param result The linear form that will be modified.
This method makes <CODE>result</CODE> become
\f$\iota(lf)\rho^{\#}\f$, that is an interval defined as:
\f[
\iota\left(i + \sum_{v \in \cV}i_{v}v\right)\rho^{\#}
\defeq
i \asifp \left(\bigoplus_{v \in \cV}{}^{\#}i_{v} \amifp
\rho^{\#}(v)\right)
\f]
*/
static void intervalize(const FP_Linear_Form& lf,
const FP_Interval_Abstract_Store& store,
FP_Interval_Type& result);
private:
/*! \brief
Computes the absolute error.
Static helper method that is used to compute the value of the public
static field <CODE>absolute_error</CODE>.
\return The interval \f$[-\omega, \omega]\f$ corresponding to the value
of <CODE>absolute_error</CODE>
*/
static FP_Interval_Type compute_absolute_error();
}; // class Floating_Point_Expression
template <typename FP_Interval_Type, typename FP_Format>
FP_Interval_Type Floating_Point_Expression<FP_Interval_Type, FP_Format>
::absolute_error = compute_absolute_error();
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Floating_Point_Expression_inlines.hh line 1. */
/* Floating_Point_Expression class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Floating_Point_Expression_inlines.hh line 29. */
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type, typename FP_Format>
inline
Floating_Point_Expression<FP_Interval_Type, FP_Format>
::~Floating_Point_Expression() {}
template <typename FP_Interval_Type, typename FP_Format>
inline bool
Floating_Point_Expression<FP_Interval_Type, FP_Format>
::overflows(const FP_Linear_Form& lf) {
if (!lf.inhomogeneous_term().is_bounded())
return true;
dimension_type dimension = lf.space_dimension();
for (dimension_type i = 0; i < dimension; ++i) {
if (!lf.coefficient(Variable(i)).is_bounded())
return true;
}
return false;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Floating_Point_Expression_templates.hh line 1. */
/* Floating_Point_Expression class implementation:
non-inline template functions.
*/
/* Automatically generated from PPL source file ../src/Floating_Point_Expression_templates.hh line 29. */
#include <cmath>
namespace Parma_Polyhedra_Library {
template<typename FP_Interval_Type, typename FP_Format>
void
Floating_Point_Expression<FP_Interval_Type, FP_Format>
::relative_error(const FP_Linear_Form& lf, FP_Linear_Form& result) {
FP_Interval_Type error_propagator;
boundary_type lb = -pow(FP_Format::BASE,
-static_cast<typename Floating_Point_Expression<FP_Interval_Type, FP_Format>
::boundary_type>(FP_Format::MANTISSA_BITS));
error_propagator.build(i_constraint(GREATER_OR_EQUAL, lb),
i_constraint(LESS_OR_EQUAL, -lb));
// Handle the inhomogeneous term.
const FP_Interval_Type* current_term = &lf.inhomogeneous_term();
assert(current_term->is_bounded());
FP_Interval_Type
current_multiplier(std::max(std::abs(current_term->lower()),
std::abs(current_term->upper())));
FP_Linear_Form current_result_term(current_multiplier);
current_result_term *= error_propagator;
result = FP_Linear_Form(current_result_term);
// Handle the other terms.
dimension_type dimension = lf.space_dimension();
for (dimension_type i = 0; i < dimension; ++i) {
current_term = &lf.coefficient(Variable(i));
assert(current_term->is_bounded());
current_multiplier
= FP_Interval_Type(std::max(std::abs(current_term->lower()),
std::abs(current_term->upper())));
current_result_term = FP_Linear_Form(Variable(i));
current_result_term *= current_multiplier;
current_result_term *= error_propagator;
result += current_result_term;
}
return;
}
template<typename FP_Interval_Type, typename FP_Format>
void
Floating_Point_Expression<FP_Interval_Type, FP_Format>
::intervalize(const FP_Linear_Form& lf,
const FP_Interval_Abstract_Store& store,
FP_Interval_Type& result) {
result = FP_Interval_Type(lf.inhomogeneous_term());
dimension_type dimension = lf.space_dimension();
assert(dimension <= store.space_dimension());
for (dimension_type i = 0; i < dimension; ++i) {
FP_Interval_Type current_addend = lf.coefficient(Variable(i));
const FP_Interval_Type& curr_int = store.get_interval(Variable(i));
current_addend *= curr_int;
result += current_addend;
}
return;
}
template<typename FP_Interval_Type, typename FP_Format>
FP_Interval_Type
Floating_Point_Expression<FP_Interval_Type, FP_Format>
::compute_absolute_error() {
typedef typename Floating_Point_Expression<FP_Interval_Type, FP_Format>
::boundary_type Boundary;
boundary_type omega;
omega = std::max(pow(static_cast<Boundary>(FP_Format::BASE),
static_cast<Boundary>(1 - FP_Format::EXPONENT_BIAS
- FP_Format::MANTISSA_BITS)),
std::numeric_limits<Boundary>::denorm_min());
FP_Interval_Type result;
result.build(i_constraint(GREATER_OR_EQUAL, -omega),
i_constraint(LESS_OR_EQUAL, omega));
return result;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Floating_Point_Expression_defs.hh line 211. */
/* Automatically generated from PPL source file ../src/Polyhedron_templates.hh line 33. */
#include <algorithm>
#include <deque>
namespace Parma_Polyhedra_Library {
template <typename Interval>
Polyhedron::Polyhedron(Topology topol,
const Box<Interval>& box,
Complexity_Class)
: con_sys(topol, default_con_sys_repr),
gen_sys(topol, default_gen_sys_repr),
sat_c(),
sat_g() {
// Initialize the space dimension as indicated by the box.
space_dim = box.space_dimension();
// Check for emptiness.
if (box.is_empty()) {
set_empty();
return;
}
// Zero-dim universe polyhedron.
if (space_dim == 0) {
set_zero_dim_univ();
return;
}
// Properly set the space dimension of `con_sys'.
con_sys.set_space_dimension(space_dim);
PPL_DIRTY_TEMP_COEFFICIENT(l_n);
PPL_DIRTY_TEMP_COEFFICIENT(l_d);
PPL_DIRTY_TEMP_COEFFICIENT(u_n);
PPL_DIRTY_TEMP_COEFFICIENT(u_d);
if (topol == NECESSARILY_CLOSED) {
for (dimension_type k = space_dim; k-- > 0; ) {
const Variable v_k = Variable(k);
// See if we have a valid lower bound.
bool l_closed = false;
bool l_bounded = box.has_lower_bound(v_k, l_n, l_d, l_closed);
// See if we have a valid upper bound.
bool u_closed = false;
bool u_bounded = box.has_upper_bound(v_k, u_n, u_d, u_closed);
// See if we have an implicit equality constraint.
if (l_bounded && u_bounded
&& l_closed && u_closed
&& l_n == u_n && l_d == u_d) {
// Add the constraint `l_d*v_k == l_n'.
con_sys.insert(l_d * v_k == l_n);
}
else {
if (l_bounded)
// Add the constraint `l_d*v_k >= l_n'.
con_sys.insert(l_d * v_k >= l_n);
if (u_bounded)
// Add the constraint `u_d*v_k <= u_n'.
con_sys.insert(u_d * v_k <= u_n);
}
}
}
else {
// topol == NOT_NECESSARILY_CLOSED
for (dimension_type k = space_dim; k-- > 0; ) {
const Variable v_k = Variable(k);
// See if we have a valid lower bound.
bool l_closed = false;
bool l_bounded = box.has_lower_bound(v_k, l_n, l_d, l_closed);
// See if we have a valid upper bound.
bool u_closed = false;
bool u_bounded = box.has_upper_bound(v_k, u_n, u_d, u_closed);
// See if we have an implicit equality constraint.
if (l_bounded && u_bounded
&& l_closed && u_closed
&& l_n == u_n && l_d == u_d) {
// Add the constraint `l_d*v_k == l_n'.
con_sys.insert(l_d * v_k == l_n);
}
else {
// Check if a lower bound constraint is required.
if (l_bounded) {
if (l_closed)
// Add the constraint `l_d*v_k >= l_n'.
con_sys.insert(l_d * v_k >= l_n);
else
// Add the constraint `l_d*v_k > l_n'.
con_sys.insert(l_d * v_k > l_n);
}
// Check if an upper bound constraint is required.
if (u_bounded) {
if (u_closed)
// Add the constraint `u_d*v_k <= u_n'.
con_sys.insert(u_d * v_k <= u_n);
else
// Add the constraint `u_d*v_k < u_n'.
con_sys.insert(u_d * v_k < u_n);
}
}
}
}
// Adding the low-level constraints.
con_sys.add_low_level_constraints();
// Constraints are up-to-date.
set_constraints_up_to_date();
PPL_ASSERT_HEAVY(OK());
}
template <typename Partial_Function>
void
Polyhedron::map_space_dimensions(const Partial_Function& pfunc) {
if (space_dim == 0)
return;
if (pfunc.has_empty_codomain()) {
// All dimensions vanish: the polyhedron becomes zero_dimensional.
if (marked_empty()
|| (has_pending_constraints()
&& !remove_pending_to_obtain_generators())
|| (!generators_are_up_to_date() && !update_generators())) {
// Removing all dimensions from the empty polyhedron.
space_dim = 0;
con_sys.clear();
}
else
// Removing all dimensions from a non-empty polyhedron.
set_zero_dim_univ();
PPL_ASSERT_HEAVY(OK());
return;
}
const dimension_type new_space_dimension = pfunc.max_in_codomain() + 1;
if (new_space_dimension == space_dim) {
// The partial function `pfunc' is indeed total and thus specifies
// a permutation, that is, a renaming of the dimensions. For
// maximum efficiency, we will simply permute the columns of the
// constraint system and/or the generator system.
std::vector<Variable> cycle;
cycle.reserve(space_dim);
// Used to mark elements as soon as they are inserted in a cycle.
std::deque<bool> visited(space_dim);
for (dimension_type i = space_dim; i-- > 0; ) {
if (visited[i])
continue;
dimension_type j = i;
do {
visited[j] = true;
// The following initialization is only to make the compiler happy.
dimension_type k = 0;
if (!pfunc.maps(j, k))
throw_invalid_argument("map_space_dimensions(pfunc)",
" pfunc is inconsistent");
if (k == j)
break;
cycle.push_back(Variable(j));
// Go along the cycle.
j = k;
} while (!visited[j]);
// End of cycle.
// Permute all that is up-to-date. Notice that the contents of
// the saturation matrices is unaffected by the permutation of
// columns: they remain valid, if they were so.
if (constraints_are_up_to_date())
con_sys.permute_space_dimensions(cycle);
if (generators_are_up_to_date())
gen_sys.permute_space_dimensions(cycle);
cycle.clear();
}
PPL_ASSERT_HEAVY(OK());
return;
}
// If control gets here, then `pfunc' is not a permutation and some
// dimensions must be projected away.
// If there are pending constraints, using `generators()' we process them.
const Generator_System& old_gensys = generators();
if (old_gensys.has_no_rows()) {
// The polyhedron is empty.
Polyhedron new_polyhedron(topology(), new_space_dimension, EMPTY);
m_swap(new_polyhedron);
PPL_ASSERT_HEAVY(OK());
return;
}
// Make a local copy of the partial function.
std::vector<dimension_type> pfunc_maps(space_dim, not_a_dimension());
for (dimension_type j = space_dim; j-- > 0; ) {
dimension_type pfunc_j;
if (pfunc.maps(j, pfunc_j))
pfunc_maps[j] = pfunc_j;
}
Generator_System new_gensys;
for (Generator_System::const_iterator i = old_gensys.begin(),
old_gensys_end = old_gensys.end(); i != old_gensys_end; ++i) {
const Generator& old_g = *i;
const Generator::expr_type old_e = old_g.expression();
Linear_Expression expr;
expr.set_space_dimension(new_space_dimension);
bool all_zeroes = true;
for (Generator::expr_type::const_iterator j = old_e.begin(),
j_end = old_e.end(); j != j_end; ++j) {
const dimension_type mapped_id = pfunc_maps[j.variable().id()];
if (mapped_id != not_a_dimension()) {
add_mul_assign(expr, *j, Variable(mapped_id));
all_zeroes = false;
}
}
switch (old_g.type()) {
case Generator::LINE:
if (!all_zeroes)
new_gensys.insert(line(expr));
break;
case Generator::RAY:
if (!all_zeroes)
new_gensys.insert(ray(expr));
break;
case Generator::POINT:
// A point in the origin has all zero homogeneous coefficients.
new_gensys.insert(point(expr, old_g.divisor()));
break;
case Generator::CLOSURE_POINT:
// A closure point in the origin has all zero homogeneous coefficients.
new_gensys.insert(closure_point(expr, old_g.divisor()));
break;
}
}
Polyhedron new_polyhedron(topology(), new_gensys);
m_swap(new_polyhedron);
PPL_ASSERT_HEAVY(OK(true));
}
template <typename FP_Format, typename Interval_Info>
void
Polyhedron::refine_with_linear_form_inequality(
const Linear_Form< Interval<FP_Format, Interval_Info> >& left,
const Linear_Form< Interval<FP_Format, Interval_Info> >& right,
const bool is_strict) {
// Check that FP_Format is indeed a floating point type.
PPL_COMPILE_TIME_CHECK(!std::numeric_limits<FP_Format>::is_exact,
"Polyhedron::refine_with_linear_form_inequality:"
" FP_Format not a floating point type.");
// Dimension compatibility checks.
// The dimensions of left and right should not be greater than the
// dimension of *this.
const dimension_type left_space_dim = left.space_dimension();
if (space_dim < left_space_dim)
throw_dimension_incompatible(
"refine_with_linear_form_inequality(l1, l2, s)", "l1", left);
const dimension_type right_space_dim = right.space_dimension();
if (space_dim < right_space_dim)
throw_dimension_incompatible(
"refine_with_linear_form_inequality(l1, l2, s)", "l2", right);
// We assume that the analyzer will not refine an unreachable test.
PPL_ASSERT(!marked_empty());
typedef Interval<FP_Format, Interval_Info> FP_Interval_Type;
typedef Linear_Form<FP_Interval_Type> FP_Linear_Form;
if (Floating_Point_Expression<FP_Interval_Type, float_ieee754_single>::
overflows(left))
return;
if (Floating_Point_Expression<FP_Interval_Type, float_ieee754_single>::
overflows(right))
return;
// Overapproximate left - right.
FP_Linear_Form left_minus_right(left);
left_minus_right -= right;
if (Floating_Point_Expression<FP_Interval_Type, float_ieee754_single>::
overflows(left_minus_right))
return;
dimension_type lf_space_dim = left_minus_right.space_dimension();
FP_Linear_Form lf_approx;
overapproximate_linear_form(left_minus_right, lf_space_dim, lf_approx);
if (Floating_Point_Expression<FP_Interval_Type, float_ieee754_single>::
overflows(lf_approx))
return;
// Normalize left - right.
Linear_Expression lf_approx_le;
convert_to_integer_expression(lf_approx, lf_space_dim, lf_approx_le);
// Finally, do the refinement.
if (!is_strict || is_necessarily_closed())
refine_with_constraint(lf_approx_le <= 0);
else
refine_with_constraint(lf_approx_le < 0);
}
template <typename FP_Format, typename Interval_Info>
void
Polyhedron::affine_form_image(const Variable var,
const Linear_Form<Interval <FP_Format, Interval_Info> >& lf) {
// Check that FP_Format is indeed a floating point type.
PPL_COMPILE_TIME_CHECK(!std::numeric_limits<FP_Format>::is_exact,
"Polyhedron::affine_form_image:"
" FP_Format not a floating point type.");
// Dimension compatibility checks.
// The dimension of lf should not be greater than the dimension of *this.
const dimension_type lf_space_dim = lf.space_dimension();
if (space_dim < lf_space_dim)
throw_dimension_incompatible("affine_form_image(v, l, s)", "l", lf);
// `var' should be one of the dimensions of the polyhedron.
const dimension_type var_id = var.id();
if (space_dim < var_id + 1)
throw_dimension_incompatible("affine_form_image(v, l, s)", "v", var);
// We assume that the analyzer will not perform an unreachable assignment.
PPL_ASSERT(!marked_empty());
typedef Interval<FP_Format, Interval_Info> FP_Interval_Type;
typedef Linear_Form<FP_Interval_Type> FP_Linear_Form;
if (Floating_Point_Expression<FP_Interval_Type, float_ieee754_single>::
overflows(lf)) {
*this = Polyhedron(topology(), space_dim, UNIVERSE);
return;
}
// Overapproximate lf.
FP_Linear_Form lf_approx;
overapproximate_linear_form(lf, lf_space_dim, lf_approx);
if (Floating_Point_Expression<FP_Interval_Type, float_ieee754_single>::
overflows(lf_approx)) {
*this = Polyhedron(topology(), space_dim, UNIVERSE);
return;
}
// Normalize lf.
Linear_Expression lf_approx_le;
PPL_DIRTY_TEMP_COEFFICIENT(lo_coeff);
PPL_DIRTY_TEMP_COEFFICIENT(hi_coeff);
PPL_DIRTY_TEMP_COEFFICIENT(denominator);
convert_to_integer_expressions(lf_approx, lf_space_dim, lf_approx_le,
lo_coeff, hi_coeff, denominator);
// Finally, do the assignment.
bounded_affine_image(var, lf_approx_le + lo_coeff, lf_approx_le + hi_coeff,
denominator);
}
template <typename FP_Format, typename Interval_Info>
void
Polyhedron::overapproximate_linear_form
(const Linear_Form<Interval <FP_Format, Interval_Info> >& lf,
const dimension_type lf_dimension,
Linear_Form<Interval <FP_Format, Interval_Info> >& result) {
// Check that FP_Format is indeed a floating point type.
PPL_COMPILE_TIME_CHECK(!std::numeric_limits<FP_Format>::is_exact,
"Polyhedron::overapproximate_linear_form:"
" FP_Format not a floating point type.");
typedef Interval<FP_Format, Interval_Info> FP_Interval_Type;
typedef Linear_Form<FP_Interval_Type> FP_Linear_Form;
// Build a Box from the Polyhedron so that we can extract upper and
// lower bounds of variables easily.
Box<FP_Interval_Type> box(*this);
result = FP_Linear_Form(lf.inhomogeneous_term());
// FIXME: this may not be policy-neutral.
const FP_Interval_Type aux_divisor1(static_cast<FP_Format>(0.5));
FP_Interval_Type aux_divisor2(aux_divisor1);
aux_divisor2.lower() = static_cast<FP_Format>(-0.5);
for (dimension_type i = 0; i < lf_dimension; ++i) {
Variable curr_var(i);
const FP_Interval_Type& curr_coeff = lf.coefficient(curr_var);
PPL_ASSERT(curr_coeff.is_bounded());
FP_Format curr_lb = curr_coeff.lower();
FP_Format curr_ub = curr_coeff.upper();
if (curr_lb != 0 || curr_ub != 0) {
const FP_Interval_Type& curr_int = box.get_interval(curr_var);
FP_Interval_Type curr_addend(curr_ub - curr_lb);
curr_addend *= aux_divisor2;
curr_addend *= curr_int;
result += curr_addend;
curr_addend = FP_Interval_Type(curr_lb + curr_ub);
curr_addend *= aux_divisor1;
FP_Linear_Form curr_addend_lf(curr_var);
curr_addend_lf *= curr_addend;
result += curr_addend_lf;
}
}
}
template <typename FP_Format, typename Interval_Info>
void
Polyhedron::convert_to_integer_expression(
const Linear_Form<Interval <FP_Format, Interval_Info> >& lf,
const dimension_type lf_dimension,
Linear_Expression& result) {
result = Linear_Expression();
typedef Interval<FP_Format, Interval_Info> FP_Interval_Type;
std::vector<Coefficient> numerators(lf_dimension+1);
std::vector<Coefficient> denominators(lf_dimension+1);
// Convert each floating point number to a pair <numerator, denominator>
// and compute the lcm of all denominators.
PPL_DIRTY_TEMP_COEFFICIENT(lcm);
lcm = 1;
const FP_Interval_Type& b = lf.inhomogeneous_term();
// FIXME: are these checks numerator[i] != 0 really necessary?
numer_denom(b.lower(), numerators[lf_dimension],
denominators[lf_dimension]);
if (numerators[lf_dimension] != 0)
lcm_assign(lcm, lcm, denominators[lf_dimension]);
for (dimension_type i = 0; i < lf_dimension; ++i) {
const FP_Interval_Type& curr_int = lf.coefficient(Variable(i));
numer_denom(curr_int.lower(), numerators[i], denominators[i]);
if (numerators[i] != 0)
lcm_assign(lcm, lcm, denominators[i]);
}
for (dimension_type i = 0; i < lf_dimension; ++i) {
if (numerators[i] != 0) {
exact_div_assign(denominators[i], lcm, denominators[i]);
numerators[i] *= denominators[i];
result += numerators[i] * Variable(i);
}
}
if (numerators[lf_dimension] != 0) {
exact_div_assign(denominators[lf_dimension],
lcm, denominators[lf_dimension]);
numerators[lf_dimension] *= denominators[lf_dimension];
result += numerators[lf_dimension];
}
}
template <typename FP_Format, typename Interval_Info>
void
Polyhedron::convert_to_integer_expressions(
const Linear_Form<Interval <FP_Format, Interval_Info> >& lf,
const dimension_type lf_dimension, Linear_Expression& res,
Coefficient& res_low_coeff, Coefficient& res_hi_coeff,
Coefficient& denominator) {
res = Linear_Expression();
typedef Interval<FP_Format, Interval_Info> FP_Interval_Type;
std::vector<Coefficient> numerators(lf_dimension+2);
std::vector<Coefficient> denominators(lf_dimension+2);
// Convert each floating point number to a pair <numerator, denominator>
// and compute the lcm of all denominators.
Coefficient& lcm = denominator;
lcm = 1;
const FP_Interval_Type& b = lf.inhomogeneous_term();
numer_denom(b.lower(), numerators[lf_dimension], denominators[lf_dimension]);
// FIXME: are these checks numerator[i] != 0 really necessary?
if (numerators[lf_dimension] != 0)
lcm_assign(lcm, lcm, denominators[lf_dimension]);
numer_denom(b.upper(), numerators[lf_dimension+1],
denominators[lf_dimension+1]);
if (numerators[lf_dimension+1] != 0)
lcm_assign(lcm, lcm, denominators[lf_dimension+1]);
for (dimension_type i = 0; i < lf_dimension; ++i) {
const FP_Interval_Type& curr_int = lf.coefficient(Variable(i));
numer_denom(curr_int.lower(), numerators[i], denominators[i]);
if (numerators[i] != 0)
lcm_assign(lcm, lcm, denominators[i]);
}
for (dimension_type i = 0; i < lf_dimension; ++i) {
if (numerators[i] != 0) {
exact_div_assign(denominators[i], lcm, denominators[i]);
numerators[i] *= denominators[i];
res += numerators[i] * Variable(i);
}
}
if (numerators[lf_dimension] != 0) {
exact_div_assign(denominators[lf_dimension],
lcm, denominators[lf_dimension]);
numerators[lf_dimension] *= denominators[lf_dimension];
res_low_coeff = numerators[lf_dimension];
}
else
res_low_coeff = Coefficient(0);
if (numerators[lf_dimension+1] != 0) {
exact_div_assign(denominators[lf_dimension+1],
lcm, denominators[lf_dimension+1]);
numerators[lf_dimension+1] *= denominators[lf_dimension+1];
res_hi_coeff = numerators[lf_dimension+1];
}
else
res_hi_coeff = Coefficient(0);
}
template <typename C>
void
Polyhedron::throw_dimension_incompatible(const char* method,
const char* lf_name,
const Linear_Form<C>& lf) const {
throw_dimension_incompatible(method, lf_name, lf.space_dimension());
}
template <typename Input>
Input&
Polyhedron::check_obj_space_dimension_overflow(Input& input,
const Topology topol,
const char* method,
const char* reason) {
check_space_dimension_overflow(input.space_dimension(),
max_space_dimension(),
topol, method, reason);
return input;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Polyhedron_chdims_templates.hh line 1. */
/* Polyhedron class implementation (non-inline template operators that
may change the dimension of the vector space).
*/
namespace Parma_Polyhedra_Library {
template <typename Linear_System1, typename Linear_System2>
void
Polyhedron::add_space_dimensions(Linear_System1& sys1,
Linear_System2& sys2,
Bit_Matrix& sat1,
Bit_Matrix& sat2,
dimension_type add_dim) {
typedef typename Linear_System2::row_type sys2_row_type;
PPL_ASSERT(sys1.topology() == sys2.topology());
PPL_ASSERT(sys1.space_dimension() == sys2.space_dimension());
PPL_ASSERT(add_dim != 0);
sys1.set_space_dimension(sys1.space_dimension() + add_dim);
sys2.add_universe_rows_and_space_dimensions(add_dim);
// The resulting saturation matrix will be as follows:
// from row 0 to add_dim-1 : only zeroes
// add_dim add_dim+num_rows-1 : old saturation matrix
// In fact all the old generators saturate all the new constraints
// because the polyhedron has not been embedded in the new space.
sat1.resize(sat1.num_rows() + add_dim, sat1.num_columns());
// The old matrix is moved to the end of the new matrix.
for (dimension_type i = sat1.num_rows() - add_dim; i-- > 0; )
swap(sat1[i], sat1[i+add_dim]);
// Computes the "sat_c", too.
sat2.transpose_assign(sat1);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Polyhedron_conversion_templates.hh line 1. */
/* Polyhedron class implementation: conversion().
*/
/* Automatically generated from PPL source file ../src/Polyhedron_conversion_templates.hh line 34. */
#include <cstddef>
#include <climits>
namespace Parma_Polyhedra_Library {
/*!
\return
The number of lines of the polyhedron or the number of equality
constraints in the result of conversion.
\param source
The system to use to convert \p dest: it may be modified;
\param start
The index of \p source row from which conversion begin;
\param dest
The result of the conversion;
\param sat
The saturation matrix telling us, for each row in \p source, which
are the rows of \p dest that satisfy but do not saturate it;
\param num_lines_or_equalities
The number of rows in the system \p dest that are either lines of
the polyhedron (when \p dest is a system of generators) or equality
constraints (when \p dest is a system of constraints).
\if Include_Implementation_Details
For simplicity, all the following comments assume we are converting a
constraint system \p source to a generator system \p dest;
the comments for the symmetric case can be obtained by duality.
If some of the constraints in \p source are redundant, they will be removed.
This is why the \p source is not declared to be a constant parameter.
If \p start is 0, then \p source is a sorted system; also, \p dest is
a generator system corresponding to an empty constraint system.
If otherwise \p start is greater than 0, then the two sub-systems of
\p source made by the non-pending rows and the pending rows, respectively,
are both sorted; also, \p dest is the generator system corresponding to
the non-pending constraints of \p source.
Independently from the value of \p start, \p dest has lines from index 0
to index \p num_lines_or_equalities - 1 and rays/points from index
\p num_lines_or_equalities to the last of its rows.
Note that here the rows of \p sat are indexed by rows of \p dest
and its columns are indexed by rows of \p source.
We know that polyhedra can be represented by both a system of
constraints or a system of generators (points, rays and lines)
(see Section \ref representation).
When we have both descriptions for a polyhedron \f$P\f$
we have what is called a <EM>double description</EM>
(or <EM>DD pair</EM>) for \f$P\f$.
Here, the <EM>representation system</EM> refers to the system \f$C\f$
whose rows represent the constraints that characterize \f$P\f$
and the <EM>generating system</EM>, the system \f$G\f$ whose rows
represent the generators of \f$P\f$.
We say that a pair \f$(C, G)\f$ of (real) systems is
a <EM>double description pair</EM> if
\f[
C\vect{x} \geq \vect{0}
\quad\iff\quad
\exists \vect{\lambda} \geq \vect{0} \mathrel{.}
\vect{x} = G\vect{\lambda}.
\f]
The term "double description" is quite natural in the sense that
such a pair contains two different description of the same object.
In fact, if we refer to the cone representation of a polyhedron \f$P\f$
and we call \f$C\f$ and \f$G\f$ the systems of constraints and
rays respectively, we have
\f[
P = \{\, \vect{x} \in \Rset^n \mid C\vect{x} \geq \vect{0}\, \}
= \{\, \vect{x} \in \Rset^n \mid \vect{x} = G\vect{\lambda}
\text{ for some } \vect{\lambda} \geq \vect{0}\, \}.
\f]
Because of the theorem of Minkowski (see Section \ref prelims),
we can say that, given a \f$m \times n\f$ representation system
\f$C\f$ such that
\f$\mathop{\mathrm{rank}}(C) = n = \mathit{dimension of the whole space}\f$
for a non-empty polyhedron \f$P\f$,
it is always possible to find a generating system \f$G\f$ for \f$P\f$
such that \f$(C, G)\f$ is a DD pair.
Conversely, Weyl's theorem ensures that, for each generating system
\f$G\f$, it is possible to find a representation system \f$C\f$
such that \f$(C, G)\f$ is a DD pair.
For efficiency reasons, our representation of polyhedra makes use
of a double description.
We are thus left with two problems:
-# given \f$C\f$ find \f$G\f$ such that \f$(C, G)\f$ is a DD pair;
-# given \f$G\f$ find \f$C\f$ such that \f$(C, G)\f$ is a DD pair.
Using Farkas' Lemma we can prove that these two problems are
computationally equivalent (i.e., linear-time reducible to each other).
Farkas' Lemma establishes a fundamental property of vectors in
\f$\Rset^n\f$ that, in a sense, captures the essence of duality.
Consider a matrix \f$A \in \Rset^{m \times n}\f$ and let
\f$\{ \vect{a}_1, \ldots, \vect{a}_m \}\f$ be its set of row vectors.
Consider also another vector \f$\vect{c} \in \Rset^n\f$ such that,
whenever a vector \f$\vect{y} \in \Rset^n\f$ has a non-negative projection
on the \f$\vect{a}_i\f$'s, it also has a non-negative projection
on \f$\vect{c}\f$.
The lemma states that \f$\vect{c}\f$ has this property if and only if
it is in the cone generated by the \f$\vect{a}_i\f$'s.
Formally, the lemma states the equivalence of the two following
assertions:
-# \f$
\forall \vect{y}
\mathrel{:} (A\vect{y} \geq 0 \implies
\langle \vect{y},\vect{c} \rangle \geq 0)
\f$;
-# \f$
\exists \vect{\lambda} \geq \vect{0}
\mathrel{.} \vect{c}^\mathrm{T} = \vect{\lambda}^\mathrm{T}A
\f$.
With this result we can prove that \f$(C, G)\f$ is a DD pair
if and only if \f$(G^\mathrm{T}, C^\mathrm{T})\f$ is a DD pair.
Suppose \f$(C, G)\f$ is a DD pair.
Thus, for each \f$x\f$ of the appropriate dimension,
\f$C\vect{x} \geq \vect{0}\f$ if and only if
\f$\exists \lambda \geq 0 \mathrel{.} \vect{x} = G\vect{\lambda}\f$,
which is of course equivalent to
\f$
\exists \vect{\lambda} \geq \vect{0}
\mathrel{.} \vect{x}^\mathrm{T} = \vect{\lambda}^\mathrm{T}G^\mathrm{T}
\f$.
First, we assume that \f$\vect{z}\f$ is such that
\f$G^\mathrm{T}\vect{z} \geq \vect{0}\f$
and we will show that
\f$\exists \vect{\mu} \geq \vect{0} \mathrel{.}
\vect{z} = C^\mathrm{T}\vect{\mu}\f$.
Let \f$\vect{x}\f$ be such that \f$C\vect{x} \geq \vect{0}\f$.
Since \f$(C, G)\f$ is a DD pair, this is equivalent to
\f$
\exists \vect{\lambda} \geq \vect{0}
\mathrel{.} \vect{x}^\mathrm{T} = \vect{\lambda}^\mathrm{T}G^\mathrm{T}
\f$,
which, by Farkas' Lemma is equivalent to
\f$
\forall \vect{y} \mathrel{:} (G^\mathrm{T}\vect{y} \geq \vect{0} \implies
\langle \vect{y}, \vect{x} \rangle \geq 0)
\f$.
Taking \f$\vect{y} = \vect{z}\f$ and recalling our assumption that
\f$G^\mathrm{T}\vect{z} \geq \vect{0}\f$
we can conclude that \f$\langle \vect{z}, \vect{x} \rangle \geq 0\f$,
that is equivalent to \f$\langle \vect{x}, \vect{z} \rangle \geq 0\f$.
We have thus established that
\f$
\forall \vect{x} \mathrel{:} (C\vect{x} \geq \vect{0} \implies
\langle \vect{x}, \vect{z} \rangle \geq 0)
\f$.
By Farkas' Lemma, this is equivalent to
\f$\exists \vect{\mu} \geq \vect{0} \mathrel{.}
\vect{z}^\mathrm{T} = \vect{\mu}^\mathrm{T} C\f$,
which is equivalent to what we wanted to prove, that is,
\f$\exists \vect{\mu} \geq \vect{0} \mathrel{.}
\vect{z} = C^\mathrm{T}\vect{\mu}\f$.
In order to prove the reverse implication, the following observation
turns out to be useful:
when \f$(C, G)\f$ is a DD pair, \f$CG \geq 0\f$.
In fact,
let \f$\vect{e}_j\f$ be the vector whose components are all \f$0\f$
apart from the \f$j\f$-th one, which is \f$1\f$.
Clearly \f$\vect{e}_j \geq \vect{0}\f$ and, taking
\f$\vect{\lambda} = \vect{e}_j\f$ and
\f$\vect{x} = G\vect{\lambda} = G \vect{e}_j\f$, we have
\f$C\vect{x} = C(G \vect{e}_j) = (CG)\vect{e}_j \geq \vect{0}\f$,
since \f$(C, G)\f$ is a DD pair.
Thus, as \f$(CG)\vect{e}_j\f$ is the \f$j\f$-th column of \f$CG\f$
and since the choice of \f$j\f$ was arbitrary, \f$CG \geq \vect{0}\f$.
We now assume that \f$\vect{z}\f$ is such that
\f$\exists \vect{\mu} \geq \vect{0} \mathrel{.}
\vect{z} = C^\mathrm{T}\vect{\mu}\f$
and we will prove that \f$G^\mathrm{T}\vect{z} \geq \vect{0}\f$.
By Farkas' Lemma, the assumption
\f$\exists \vect{\mu} \geq \vect{0} \mathrel{.}
\vect{z}^\mathrm{T} = \vect{\mu}^\mathrm{T}C\f$,
is equivalent to
\f$\forall \vect{y} \mathrel{:} (C\vect{y} \geq \vect{0}
\implies \langle \vect{y}, \vect{z} \rangle \geq 0)\f$.
If we take \f$\vect{y} = G\vect{e}_j\f$ then \f$C\vect{y}
= CG\vect{e}_j \geq 0\f$,
since \f$CG \geq \vect{0}\f$.
So
\f$
\langle \vect{y}, \vect{z} \rangle
= (\vect{e}_j^\mathrm{T}G^\mathrm{T}) \vect{z}
= \vect{e}_j^\mathrm{T}(G^\mathrm{T} \vect{z})
\geq 0
\f$,
that is, the \f$j\f$-th component of \f$G^\mathrm{T}\vect{z}\f$
is non-negative. The arbitrary choice of \f$j\f$ allows us to conclude
that \f$G^\mathrm{T}\vect{z} \geq \vect{0}\f$, as required.
In view of this result, the following exposition assumes, for clarity,
that the conversion being performed is from constraints to generators.
Thus, even if the roles of \p source and \p dest can be interchanged,
in the sequel we assume the \p source system will contain the constraints
that represent the polyhedron and the \p dest system will contain
the generator that generates it.
There are some observations that are useful to understand this function:
Observation 1: Let \f$A\f$ be a system of constraints that generate
the polyhedron \f$P\f$ and \f$\vect{c}\f$ a new constraint that must
be added. Suppose that there is a line \f$\vect{z}\f$ that does not
saturate the constraint \f$\vect{c}\f$. If we combine the old lines
and rays that do not saturate \f$\vect{c}\f$ (except \f$\vect{z}\f$)
with \f$\vect{z}\f$ such that the new ones saturate \f$\vect{c}\f$,
the new lines and rays also saturate the constraints saturated by
the old lines and rays.
In fact, if \f$\vect{y}_1\f$ is the old generator that does not saturate
\f$\vect{c}\f$, \f$\vect{y}_2\f$ is the new one such that
\f[
\vect{y}_2 = \lambda \vect{y}_1 + \mu \vect{z}
\f]
and \f$\vect{c}_1\f$ is a previous constraint that \f$\vect{y}_1\f$
and \f$\vect{z}\f$ saturates, we can see
\f[
\langle \vect{c}_1, \vect{y}_2 \rangle
= \langle \vect{c}_1, (\lambda \vect{y}_1 + \mu \vect{z}) \rangle
= \lambda \langle \vect{c}_1, \vect{y}_1 \rangle
+ \mu \langle \vect{c}_1, \vect{z} \rangle
= 0 + \mu \langle \vect{c}_1, \vect{z} \rangle
= \mu \langle \vect{c}_1, \vect{z} \rangle
\f]
and
\f[
\mu \langle \vect{c}_1, \vect{z} \rangle = 0.
\f]
Proposition 1: Let \f$\vect{r}_1\f$ and \f$\vect{r}_2\f$ be distinct
rays of \f$P\f$.
Then the following statements are equivalent:
a) \f$\vect{r}_1\f$ and \f$\vect{r}_2\f$ are adjacent extreme rays
(see Section \ref prelims);
b) \f$\vect{r}_1\f$ and \f$\vect{r}_2\f$ are extreme rays and the
rank of the system composed by the constraints saturated by both
\f$\vect{r}_1\f$ and \f$\vect{r}_2\f$ is equal to
\f$d - 2\f$, where \f$d\f$ is the rank of the system of constraints.
In fact, let \f$F\f$ be the system of generators that saturate the
constraints saturated by both \f$\vect{r}_1\f$ and \f$\vect{r}_2\f$.
If b) holds, the set \f$F\f$ is 2-dimensional and \f$\vect{r}_1\f$ and
\f$\vect{r}_2\f$ generate this set. So, every generator
\f$\vect{x}\f$ of \f$F\f$ can be built as a combination of
\f$\vect{r}_1\f$ and \f$\vect{r}_2\f$, i.e.
\f[
\vect{x} = \lambda \vect{r}_1 + \mu \vect{r}_2.
\f]
This combination is non-negative because there exists at least a
constraint \f$c\f$ saturated by \f$\vect{r}_1\f$ and not
\f$\vect{r}_2\f$ (or vice versa) (because they are distinct) for which
\f[
\langle \vect{c}, \vect{x} \rangle \geq 0
\f]
and
\f[
\langle \vect{c}, \vect{x} \rangle
= \lambda \langle \vect{c}, \vect{r}_1 \rangle
(or = \mu \langle \vect{c}, \vect{r}_2 \rangle).
\f]
So, there is no other extreme ray in \f$F\f$ and a) holds.
Otherwise, if b) does not hold, the rank of the system generated by
the constraints saturated by both \f$\vect{r}_1\f$ and \f$\vect{r}_2\f$
is equal to \f$d - k\f$, with \p k \>= 3, the set \f$F\f$ is
\p k -dimensional and at least \p k extreme rays are necessary
to generate \f$F\f$.
So, \f$\vect{r}_1\f$ and \f$\vect{r}_2\f$ are not adjacent and
a) does not hold.
Proposition 2: When we build the new system of generators starting from
a system \f$A\f$ of constraints of \f$P\f$, if \f$\vect{c}\f$ is the
constraint to add to \f$A\f$ and all lines of \f$P\f$ saturate
\f$\vect{c}\f$, the new set of rays is the union of those rays that
saturate, of those that satisfy and of a set \f$\overline Q\f$ of
rays such that each of them
-# lies on the hyper-plane represented by the k-th constraint,
-# is a positive combination of two adjacent rays \f$\vect{r}_1\f$ and
\f$\vect{r}_2\f$ such that the first one satisfies the constraint and
the other does not satisfy it.
If the adjacency property is not taken in account, the new set of
rays is not irredundant, in general.
In fact, if \f$\vect{r}_1\f$ and \f$\vect{r}_2\f$ are not adjacent,
the rank of the system composed by the constraints saturated by both
\f$\vect{r}_1\f$ and \f$\vect{r}_2\f$ is different from \f$d - 2\f$
(see the previous proposition) or neither \f$\vect{r}_1\f$ nor
\f$\vect{r}_2\f$ are extreme rays. Since the new ray \f$\vect{r}\f$
is a combination of \f$\vect{r}_1\f$ and \f$\vect{r}_2\f$,
it saturates the same constraints saturated by both \f$\vect{r}_1\f$ and
\f$\vect{r}_2\f$.
If the rank is less than \f$d - 2\f$, the rank of
the system composed by \f$\vect{c}\f$ (that is saturated by \f$\vect{r}\f$)
and by the constraints of \f$A\f$ saturated by \f$\vect{r}\f$ is less
than \f$d - 1\f$. It means that \f$r\f$ is redundant (see
Section \ref prelims).
If neither \f$\vect{r}_1\f$ nor \f$\vect{r}_2\f$ are extreme rays,
they belong to a 2-dimensional face containing exactly two extreme rays
of \f$P\f$.
These two adjacent rays build a ray equal to \f$\vect{r}\f$ and so
\f$\vect{r}\f$ is redundant.
\endif
*/
template <typename Source_Linear_System, typename Dest_Linear_System>
dimension_type
Polyhedron::conversion(Source_Linear_System& source,
const dimension_type start,
Dest_Linear_System& dest,
Bit_Matrix& sat,
dimension_type num_lines_or_equalities) {
typedef typename Dest_Linear_System::row_type dest_row_type;
typedef typename Source_Linear_System::row_type source_row_type;
// Constraints and generators must have the same dimension,
// otherwise the scalar products below will bomb.
PPL_ASSERT(source.space_dimension() == dest.space_dimension());
const dimension_type source_space_dim = source.space_dimension();
const dimension_type source_num_rows = source.num_rows();
const dimension_type source_num_columns = source_space_dim
+ (source.is_necessarily_closed() ? 1U : 2U);
dimension_type dest_num_rows = dest.num_rows();
// The rows removed from `dest' will be placed in this vector, so they
// can be recycled if needed.
std::vector<dest_row_type> recyclable_dest_rows;
using std::swap;
// By construction, the number of columns of `sat' is the same as
// the number of rows of `source'; also, the number of rows of `sat'
// is the same as the number of rows of `dest'.
PPL_ASSERT(source_num_rows == sat.num_columns());
PPL_ASSERT(dest_num_rows == sat.num_rows());
// If `start > 0', then we are converting the pending constraints.
PPL_ASSERT(start == 0 || start == source.first_pending_row());
PPL_DIRTY_TEMP_COEFFICIENT(normalized_sp_i);
PPL_DIRTY_TEMP_COEFFICIENT(normalized_sp_o);
bool dest_sorted = dest.is_sorted();
const dimension_type dest_first_pending_row = dest.first_pending_row();
// This will contain the row indexes of the redundant rows of `source'.
std::vector<dimension_type> redundant_source_rows;
// Converting the sub-system of `source' having rows with indexes
// from `start' to the last one (i.e., `source_num_rows' - 1).
for (dimension_type k = start; k < source_num_rows; ++k) {
const source_row_type& source_k = source[k];
// `scalar_prod[i]' will contain the scalar product of the
// constraint `source_k' and the generator `dest_rows[i]'. This
// product is 0 if and only if the generator saturates the
// constraint.
PPL_DIRTY_TEMP(std::vector<Coefficient>, scalar_prod);
if (dest_num_rows > scalar_prod.size()) {
scalar_prod.insert(scalar_prod.end(),
dest_num_rows - scalar_prod.size(),
Coefficient_zero());
}
// `index_non_zero' will indicate the first generator in `dest_rows'
// that does not saturate the constraint `source_k'.
dimension_type index_non_zero = 0;
for ( ; index_non_zero < dest_num_rows; ++index_non_zero) {
WEIGHT_BEGIN();
Scalar_Products::assign(scalar_prod[index_non_zero],
source_k,
dest.sys.rows[index_non_zero]);
WEIGHT_ADD_MUL(17, source_space_dim);
if (scalar_prod[index_non_zero] != 0)
// The generator does not saturate the constraint.
break;
// Check if the client has requested abandoning all expensive
// computations. If so, the exception specified by the client
// is thrown now.
maybe_abandon();
}
for (dimension_type i = index_non_zero + 1; i < dest_num_rows; ++i) {
WEIGHT_BEGIN();
Scalar_Products::assign(scalar_prod[i], source_k, dest.sys.rows[i]);
WEIGHT_ADD_MUL(25, source_space_dim);
// Check if the client has requested abandoning all expensive
// computations. If so, the exception specified by the client
// is thrown now.
maybe_abandon();
}
// We first treat the case when `index_non_zero' is less than
// `num_lines_or_equalities', i.e., when the generator that
// does not saturate the constraint `source_k' is a line.
// The other case (described later) is when all the lines
// in `dest_rows' (i.e., all the rows having indexes less than
// `num_lines_or_equalities') do saturate the constraint.
if (index_non_zero < num_lines_or_equalities) {
// Since the generator `dest_rows[index_non_zero]' does not saturate
// the constraint `source_k', it can no longer be a line
// (see saturation rule in Section \ref prelims).
// Therefore, we first transform it to a ray.
dest.sys.rows[index_non_zero].set_is_ray_or_point_or_inequality();
// Of the two possible choices, we select the ray satisfying
// the constraint (namely, the ray whose scalar product
// with the constraint gives a positive result).
if (scalar_prod[index_non_zero] < 0) {
// The ray `dest_rows[index_non_zero]' lies on the wrong half-space:
// we change it to have the opposite direction.
neg_assign(scalar_prod[index_non_zero]);
neg_assign(dest.sys.rows[index_non_zero].expr);
// The modified row may still not be OK(), so don't assert OK here.
// They are all checked at the end of this function.
}
// Having changed a line to a ray, we set `dest_rows' to be a
// non-sorted system, we decrement the number of lines of `dest_rows'
// and, if necessary, we move the new ray below all the remaining lines.
dest_sorted = false;
--num_lines_or_equalities;
if (index_non_zero != num_lines_or_equalities) {
swap(dest.sys.rows[index_non_zero],
dest.sys.rows[num_lines_or_equalities]);
swap(scalar_prod[index_non_zero],
scalar_prod[num_lines_or_equalities]);
}
const dest_row_type& dest_nle = dest.sys.rows[num_lines_or_equalities];
// Computing the new lineality space.
// Since each line must lie on the hyper-plane corresponding to
// the constraint `source_k', the scalar product between
// the line and the constraint must be 0.
// This property already holds for the lines having indexes
// between 0 and `index_non_zero' - 1.
// We have to consider the remaining lines, having indexes
// between `index_non_zero' and `num_lines_or_equalities' - 1.
// Each line that does not saturate the constraint has to be
// linearly combined with generator `dest_nle' so that the
// resulting new line saturates the constraint.
// Note that, by Observation 1 above, the resulting new line
// will still saturate all the constraints that were saturated by
// the old line.
Coefficient& scalar_prod_nle = scalar_prod[num_lines_or_equalities];
PPL_ASSERT(scalar_prod_nle != 0);
for (dimension_type
i = index_non_zero; i < num_lines_or_equalities; ++i) {
if (scalar_prod[i] != 0) {
// The following fragment optimizes the computation of
//
// <CODE>
// Coefficient scale = scalar_prod[i];
// scale.gcd_assign(scalar_prod_nle);
// Coefficient normalized_sp_i = scalar_prod[i] / scale;
// Coefficient normalized_sp_n = scalar_prod_nle / scale;
// for (dimension_type c = dest_num_columns; c-- > 0; ) {
// dest[i][c] *= normalized_sp_n;
// dest[i][c] -= normalized_sp_i * dest_nle[c];
// }
// </CODE>
normalize2(scalar_prod[i],
scalar_prod_nle,
normalized_sp_i,
normalized_sp_o);
dest_row_type& dest_i = dest.sys.rows[i];
neg_assign(normalized_sp_i);
dest_i.expr.linear_combine(dest_nle.expr,
normalized_sp_o, normalized_sp_i);
dest_i.strong_normalize();
// The modified row may still not be OK(), so don't assert OK here.
// They are all checked at the end of this function.
scalar_prod[i] = 0;
// dest_sorted has already been set to false.
}
}
// Computing the new pointed cone.
// Similarly to what we have done during the computation of
// the lineality space, we consider all the remaining rays
// (having indexes strictly greater than `num_lines_or_equalities')
// that do not saturate the constraint `source_k'. These rays
// are positively combined with the ray `dest_nle' so that the
// resulting new rays saturate the constraint.
for (dimension_type
i = num_lines_or_equalities + 1; i < dest_num_rows; ++i) {
if (scalar_prod[i] != 0) {
// The following fragment optimizes the computation of
//
// <CODE>
// Coefficient scale = scalar_prod[i];
// scale.gcd_assign(scalar_prod_nle);
// Coefficient normalized_sp_i = scalar_prod[i] / scale;
// Coefficient normalized_sp_n = scalar_prod_nle / scale;
// for (dimension_type c = dest_num_columns; c-- > 0; ) {
// dest[i][c] *= normalized_sp_n;
// dest[i][c] -= normalized_sp_i * dest_nle[c];
// }
// </CODE>
normalize2(scalar_prod[i],
scalar_prod_nle,
normalized_sp_i,
normalized_sp_o);
dest_row_type& dest_i = dest.sys.rows[i];
WEIGHT_BEGIN();
neg_assign(normalized_sp_i);
dest_i.expr.linear_combine(dest_nle.expr,
normalized_sp_o, normalized_sp_i);
dest_i.strong_normalize();
// The modified row may still not be OK(), so don't assert OK here.
// They are all checked at the end of this function.
scalar_prod[i] = 0;
// `dest_sorted' has already been set to false.
WEIGHT_ADD_MUL(41, source_space_dim);
}
// Check if the client has requested abandoning all expensive
// computations. If so, the exception specified by the client
// is thrown now.
maybe_abandon();
}
// Since the `scalar_prod_nle' is positive (by construction), it
// does not saturate the constraint `source_k'. Therefore, if
// the constraint is an inequality, we set to 1 the
// corresponding element of `sat' ...
Bit_Row& sat_nle = sat[num_lines_or_equalities];
if (source_k.is_ray_or_point_or_inequality())
sat_nle.set(k - redundant_source_rows.size());
// ... otherwise, the constraint is an equality which is
// violated by the generator `dest_nle': the generator has to be
// removed from `dest_rows'.
else {
--dest_num_rows;
swap(dest.sys.rows[num_lines_or_equalities],
dest.sys.rows[dest_num_rows]);
recyclable_dest_rows.resize(recyclable_dest_rows.size() + 1);
swap(dest.sys.rows.back(), recyclable_dest_rows.back());
dest.sys.rows.pop_back();
PPL_ASSERT(dest_num_rows == dest.sys.rows.size());
swap(scalar_prod_nle, scalar_prod[dest_num_rows]);
swap(sat_nle, sat[dest_num_rows]);
// dest_sorted has already been set to false.
}
}
// Here we have `index_non_zero' >= `num_lines_or_equalities',
// so that all the lines in `dest_rows' saturate the constraint `source_k'.
else {
// First, we reorder the generators in `dest_rows' as follows:
// -# all the lines should have indexes between 0 and
// `num_lines_or_equalities' - 1 (this already holds);
// -# all the rays that saturate the constraint should have
// indexes between `num_lines_or_equalities' and
// `lines_or_equal_bound' - 1; these rays form the set Q=.
// -# all the rays that have a positive scalar product with the
// constraint should have indexes between `lines_or_equal_bound'
// and `sup_bound' - 1; these rays form the set Q+.
// -# all the rays that have a negative scalar product with the
// constraint should have indexes between `sup_bound' and
// `dest_num_rows' - 1; these rays form the set Q-.
dimension_type lines_or_equal_bound = num_lines_or_equalities;
dimension_type inf_bound = dest_num_rows;
// While we find saturating generators, we simply increment
// `lines_or_equal_bound'.
while (inf_bound > lines_or_equal_bound
&& scalar_prod[lines_or_equal_bound] == 0)
++lines_or_equal_bound;
dimension_type sup_bound = lines_or_equal_bound;
while (inf_bound > sup_bound) {
const int sp_sign = sgn(scalar_prod[sup_bound]);
if (sp_sign == 0) {
// This generator has to be moved in Q=.
swap(dest.sys.rows[sup_bound], dest.sys.rows[lines_or_equal_bound]);
swap(scalar_prod[sup_bound], scalar_prod[lines_or_equal_bound]);
swap(sat[sup_bound], sat[lines_or_equal_bound]);
++lines_or_equal_bound;
++sup_bound;
dest_sorted = false;
}
else if (sp_sign < 0) {
// This generator has to be moved in Q-.
--inf_bound;
swap(dest.sys.rows[sup_bound], dest.sys.rows[inf_bound]);
swap(sat[sup_bound], sat[inf_bound]);
swap(scalar_prod[sup_bound], scalar_prod[inf_bound]);
dest_sorted = false;
}
else
// sp_sign > 0: this generator has to be moved in Q+.
++sup_bound;
}
if (sup_bound == dest_num_rows) {
// Here the set Q- is empty.
// If the constraint is an inequality, then all the generators
// in Q= and Q+ satisfy the constraint. The constraint is redundant
// and it can be safely removed from the constraint system.
// This is why the `source' parameter is not declared `const'.
if (source_k.is_ray_or_point_or_inequality()) {
redundant_source_rows.push_back(k);
}
else {
// The constraint is an equality, so that all the generators
// in Q+ violate it. Since the set Q- is empty, we can simply
// remove from `dest_rows' all the generators of Q+.
PPL_ASSERT(dest_num_rows >= lines_or_equal_bound);
while (dest_num_rows != lines_or_equal_bound) {
recyclable_dest_rows.resize(recyclable_dest_rows.size() + 1);
swap(dest.sys.rows.back(), recyclable_dest_rows.back());
dest.sys.rows.pop_back();
--dest_num_rows;
}
PPL_ASSERT(dest_num_rows == dest.sys.rows.size());
}
}
else {
// The set Q- is not empty, i.e., at least one generator
// violates the constraint `source_k'.
// We have to further distinguish two cases:
if (sup_bound == num_lines_or_equalities) {
// The set Q+ is empty, so that all generators that satisfy
// the constraint also saturate it.
// We can simply remove from `dest_rows' all the generators in Q-.
PPL_ASSERT(dest_num_rows >= sup_bound);
while (dest_num_rows != sup_bound) {
recyclable_dest_rows.resize(recyclable_dest_rows.size() + 1);
swap(dest.sys.rows.back(), recyclable_dest_rows.back());
dest.sys.rows.pop_back();
--dest_num_rows;
}
PPL_ASSERT(dest_num_rows == dest.sys.rows.size());
}
else {
// The sets Q+ and Q- are both non-empty.
// The generators of the new pointed cone are all those satisfying
// the constraint `source_k' plus a set of new rays enjoying
// the following properties:
// -# they lie on the hyper-plane represented by the constraint
// -# they are obtained as a positive combination of two
// adjacent rays, the first taken from Q+ and the second
// taken from Q-.
// The adjacency property is necessary to have an irredundant
// set of new rays (see proposition 2).
const dimension_type bound = dest_num_rows;
// In the following loop,
// `i' runs through the generators in the set Q+ and
// `j' runs through the generators in the set Q-.
for (dimension_type i = lines_or_equal_bound; i < sup_bound; ++i) {
for(dimension_type j = sup_bound; j < bound; ++j) {
// Checking if generators `dest_rows[i]' and `dest_rows[j]' are
// adjacent.
// If there exist another generator that saturates
// all the constraints saturated by both `dest_rows[i]' and
// `dest_rows[j]', then they are NOT adjacent.
PPL_ASSERT(sat[i].last() == C_Integer<unsigned long>::max
|| sat[i].last() < k);
PPL_ASSERT(sat[j].last() == C_Integer<unsigned long>::max
|| sat[j].last() < k);
// Being the union of `sat[i]' and `sat[j]',
// `new_satrow' corresponds to a ray that saturates all the
// constraints saturated by both `dest_rows[i]' and
// `dest_rows[j]'.
Bit_Row new_satrow(sat[i], sat[j]);
// Compute the number of common saturators.
// NOTE: this number has to be less than `k' because
// we are treating the `k'-th constraint.
const dimension_type num_common_satur
= k - redundant_source_rows.size() - new_satrow.count_ones();
// Even before actually creating the new ray as a
// positive combination of `dest_rows[i]' and `dest_rows[j]',
// we exploit saturation information to check if
// it can be an extremal ray. To this end, we refer
// to the definition of a minimal proper face
// (see comments in Polyhedron_defs.hh):
// an extremal ray saturates at least `n' - `t' - 1
// constraints, where `n' is the dimension of the space
// and `t' is the dimension of the lineality space.
// Since `n == source_num_columns - 1' and
// `t == num_lines_or_equalities', we obtain that
// an extremal ray saturates at least
// `source_num_columns - num_lines_or_equalities - 2'
// constraints.
if (num_common_satur
>= source_num_columns - num_lines_or_equalities - 2) {
// The minimal proper face rule is satisfied.
// Now we actually check for redundancy by computing
// adjacency information.
bool redundant = false;
WEIGHT_BEGIN();
for (dimension_type
l = num_lines_or_equalities; l < bound; ++l)
if (l != i && l != j
&& subset_or_equal(sat[l], new_satrow)) {
// Found another generator saturating all the
// constraints saturated by both `dest_rows[i]' and
// `dest_rows[j]'.
redundant = true;
break;
}
PPL_ASSERT(bound >= num_lines_or_equalities);
WEIGHT_ADD_MUL(15, bound - num_lines_or_equalities);
if (!redundant) {
// Adding the new ray to `dest_rows' and the corresponding
// saturation row to `sat'.
dest_row_type new_row;
if (recyclable_dest_rows.empty()) {
sat.add_recycled_row(new_satrow);
}
else {
swap(new_row, recyclable_dest_rows.back());
recyclable_dest_rows.pop_back();
new_row.set_space_dimension_no_ok(source_space_dim);
swap(sat[dest_num_rows], new_satrow);
}
// The following fragment optimizes the computation of
//
// <CODE>
// Coefficient scale = scalar_prod[i];
// scale.gcd_assign(scalar_prod[j]);
// Coefficient normalized_sp_i = scalar_prod[i] / scale;
// Coefficient normalized_sp_j = scalar_prod[j] / scale;
// for (dimension_type c = dest_num_columns; c-- > 0; ) {
// new_row[c] = normalized_sp_i * dest[j][c];
// new_row[c] -= normalized_sp_j * dest[i][c];
// }
// </CODE>
normalize2(scalar_prod[i],
scalar_prod[j],
normalized_sp_i,
normalized_sp_o);
WEIGHT_BEGIN();
neg_assign(normalized_sp_o);
new_row = dest.sys.rows[j];
// TODO: Check if the following assertions hold.
PPL_ASSERT(normalized_sp_i != 0);
PPL_ASSERT(normalized_sp_o != 0);
new_row.expr.linear_combine(dest.sys.rows[i].expr,
normalized_sp_i, normalized_sp_o);
WEIGHT_ADD_MUL(86, source_space_dim);
new_row.strong_normalize();
// Don't assert new_row.OK() here, because it may fail if
// the parameter `dest' contained a row that wasn't ok.
// Since we added a new generator to `dest_rows',
// we also add a new element to `scalar_prod';
// by construction, the new ray lies on the hyper-plane
// represented by the constraint `source_k'.
// Thus, the added scalar product is 0.
PPL_ASSERT(scalar_prod.size() >= dest_num_rows);
if (scalar_prod.size() <= dest_num_rows)
scalar_prod.push_back(Coefficient_zero());
else
scalar_prod[dest_num_rows] = Coefficient_zero();
dest.sys.rows.resize(dest.sys.rows.size() + 1);
swap(dest.sys.rows.back(), new_row);
// Increment the number of generators.
++dest_num_rows;
} // if (!redundant)
}
}
// Check if the client has requested abandoning all expensive
// computations. If so, the exception specified by the client
// is thrown now.
maybe_abandon();
}
// Now we substitute the rays in Q- (i.e., the rays violating
// the constraint) with the newly added rays.
dimension_type j;
if (source_k.is_ray_or_point_or_inequality()) {
// The constraint is an inequality:
// the violating generators are those in Q-.
j = sup_bound;
// For all the generators in Q+, set to 1 the corresponding
// entry for the constraint `source_k' in the saturation matrix.
// After the removal of redundant rows in `source', the k-th
// row will have index `new_k'.
const dimension_type new_k = k - redundant_source_rows.size();
for (dimension_type l = lines_or_equal_bound; l < sup_bound; ++l)
sat[l].set(new_k);
}
else
// The constraint is an equality:
// the violating generators are those in the union of Q+ and Q-.
j = lines_or_equal_bound;
// Swapping the newly added rays
// (index `i' running through `dest_num_rows - 1' down-to `bound')
// with the generators violating the constraint
// (index `j' running through `j' up-to `bound - 1').
dimension_type i = dest_num_rows;
while (j < bound && i > bound) {
--i;
swap(dest.sys.rows[i], dest.sys.rows[j]);
swap(scalar_prod[i], scalar_prod[j]);
swap(sat[i], sat[j]);
++j;
dest_sorted = false;
}
// Setting the number of generators in `dest':
// - if the number of generators violating the constraint
// is less than or equal to the number of the newly added
// generators, we assign `i' to `dest_num_rows' because
// all generators above this index are significant;
// - otherwise, we assign `j' to `dest_num_rows' because
// all generators below index `j-1' violates the constraint.
const dimension_type new_num_rows = (j == bound) ? i : j;
PPL_ASSERT(dest_num_rows >= new_num_rows);
while (dest_num_rows != new_num_rows) {
recyclable_dest_rows.resize(recyclable_dest_rows.size() + 1);
swap(dest.sys.rows.back(), recyclable_dest_rows.back());
dest.sys.rows.pop_back();
--dest_num_rows;
}
PPL_ASSERT(dest_num_rows == dest.sys.rows.size());
}
}
}
}
// We may have identified some redundant constraints in `source',
// which have been swapped at the end of the system.
if (redundant_source_rows.size() > 0) {
source.remove_rows(redundant_source_rows);
sat.remove_trailing_columns(redundant_source_rows.size());
}
// If `start == 0', then `source' was sorted and remained so.
// If otherwise `start > 0', then the two sub-system made by the
// non-pending rows and the pending rows, respectively, were both sorted.
// Thus, the overall system is sorted if and only if either
// `start == source_num_rows' (i.e., the second sub-system is empty)
// or the row ordering holds for the two rows at the boundary between
// the two sub-systems.
if (start > 0 && start < source.num_rows())
source.set_sorted(compare(source[start - 1], source[start]) <= 0);
// There are no longer pending constraints in `source'.
source.unset_pending_rows();
// We may have identified some redundant rays in `dest_rows',
// which have been swapped into recyclable_dest_rows.
if (!recyclable_dest_rows.empty()) {
const dimension_type num_removed_rows = recyclable_dest_rows.size();
sat.remove_trailing_rows(num_removed_rows);
}
if (dest_sorted)
// If the non-pending generators in `dest' are still declared to be
// sorted, then we have to also check for the sortedness of the
// pending generators.
for (dimension_type i = dest_first_pending_row; i < dest_num_rows; ++i)
if (compare(dest.sys.rows[i - 1], dest.sys.rows[i]) > 0) {
dest_sorted = false;
break;
}
#ifndef NDEBUG
// The previous code can modify the rows' fields, exploiting the friendness.
// Check that all rows are OK now.
for (dimension_type i = dest.num_rows(); i-- > 0; )
PPL_ASSERT(dest.sys.rows[i].OK());
#endif
dest.sys.index_first_pending = dest.num_rows();
dest.set_sorted(dest_sorted);
PPL_ASSERT(dest.sys.OK());
return num_lines_or_equalities;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Polyhedron_minimize_templates.hh line 1. */
/* Polyhedron class implementation: minimize() and add_and_minimize().
*/
/* Automatically generated from PPL source file ../src/Polyhedron_minimize_templates.hh line 29. */
#include <stdexcept>
namespace Parma_Polyhedra_Library {
/*!
\return
<CODE>true</CODE> if the polyhedron is empty, <CODE>false</CODE>
otherwise.
\param con_to_gen
<CODE>true</CODE> if \p source represents the constraints,
<CODE>false</CODE> otherwise;
\param source
The given system, which is not empty;
\param dest
The system to build and minimize;
\param sat
The saturation matrix.
\p dest is not <CODE>const</CODE> because it will be built (and then
modified) during minimize(). Also, \p sat and \p source are
not <CODE>const</CODE> because the former will be built during
\p dest creation and the latter will maybe be sorted and modified by
<CODE>conversion()</CODE> and <CODE>simplify()</CODE>.
\p sat has the generators on its columns and the constraints on its rows
if \p con_to_gen is <CODE>true</CODE>, otherwise it has the generators on
its rows and the constraints on its columns.
Given \p source, this function builds (by means of
<CODE>conversion()</CODE>) \p dest and then simplifies (invoking
<CODE>simplify()</CODE>) \p source, erasing redundant rows.
For the sequel we assume that \p source is the system of constraints
and \p dest is the system of generators.
This will simplify the description of the function; the dual case is
similar.
*/
template <typename Source_Linear_System, typename Dest_Linear_System>
bool
Polyhedron::minimize(const bool con_to_gen,
Source_Linear_System& source,
Dest_Linear_System& dest,
Bit_Matrix& sat) {
typedef typename Dest_Linear_System::row_type dest_row_type;
// Topologies have to agree.
PPL_ASSERT(source.topology() == dest.topology());
// `source' cannot be empty: even if it is an empty constraint system,
// representing the universe polyhedron, homogenization has added
// the positive constraint. It also cannot be an empty generator system,
// since this function is always called starting from a non-empty
// polyhedron.
PPL_ASSERT(!source.has_no_rows());
// Sort the source system, if necessary.
if (!source.is_sorted())
source.sort_rows();
// Initialization of the system of generators `dest'.
// The algorithm works incrementally and we haven't seen any
// constraint yet: as a consequence, `dest' should describe
// the universe polyhedron of the appropriate dimension.
// To this end, we initialize it to the identity matrix of dimension
// `source.num_columns()': the rows represent the lines corresponding
// to the canonical basis of the vector space.
dimension_type dest_num_rows
= source.topology() == NECESSARILY_CLOSED ? source.space_dimension() + 1
: source.space_dimension() + 2;
dest.clear();
dest.set_space_dimension(source.space_dimension());
// Initialize `dest' to the identity matrix.
for (dimension_type i = 0; i < dest_num_rows; ++i) {
Linear_Expression expr;
expr.set_space_dimension(dest_num_rows - 1);
if (i == 0)
expr += 1;
else
expr += Variable(i - 1);
dest_row_type dest_i(expr, dest_row_type::LINE_OR_EQUALITY, NECESSARILY_CLOSED);
if (dest.topology() == NOT_NECESSARILY_CLOSED)
dest_i.mark_as_not_necessarily_closed();
dest.sys.insert_no_ok(dest_i, Recycle_Input());
}
// The identity matrix `dest' is not sorted (see the sorting rules
// in Constrant.cc and Generator.cc).
dest.set_sorted(false);
// NOTE: the system `dest', as it is now, is not a _legal_ system of
// generators, because in the first row we have a line with a
// non-zero divisor (which should only happen for
// points). However, this is NOT a problem, because `source'
// necessarily contains the positivity constraint (or a
// combination of it with another constraint) which will
// restore things as they should be.
// Building a saturation matrix and initializing it by setting
// all of its elements to zero. This matrix will be modified together
// with `dest' during the conversion.
// NOTE: since we haven't seen any constraint yet, the relevant
// portion of `tmp_sat' is the sub-matrix consisting of
// the first 0 columns: thus the relevant portion correctly
// characterizes the initial saturation information.
Bit_Matrix tmp_sat(dest_num_rows, source.num_rows());
// By invoking the function conversion(), we populate `dest' with
// the generators characterizing the polyhedron described by all
// the constraints in `source'.
// The `start' parameter is zero (we haven't seen any constraint yet)
// and the 5th parameter (representing the number of lines in `dest'),
// by construction, is equal to `dest_num_rows'.
const dimension_type num_lines_or_equalities
= conversion(source, 0U, dest, tmp_sat, dest_num_rows);
// conversion() may have modified the number of rows in `dest'.
dest_num_rows = dest.num_rows();
#ifndef NDEBUG
for (dimension_type i = dest.num_rows(); i-- > 0; )
PPL_ASSERT(dest[i].OK());
#endif
// Checking if the generators in `dest' represent an empty polyhedron:
// the polyhedron is empty if there are no points
// (because rays, lines and closure points need a supporting point).
// Points can be detected by looking at:
// - the divisor, for necessarily closed polyhedra;
// - the epsilon coordinate, for NNC polyhedra.
dimension_type first_point;
if (dest.is_necessarily_closed()) {
for (first_point = num_lines_or_equalities;
first_point < dest_num_rows;
++first_point)
if (dest[first_point].expr.inhomogeneous_term() > 0)
break;
}
else {
for (first_point = num_lines_or_equalities;
first_point < dest_num_rows;
++first_point)
if (dest[first_point].expr.get(Variable(dest.space_dimension())) > 0)
break;
}
if (first_point == dest_num_rows)
if (con_to_gen)
// No point has been found: the polyhedron is empty.
return true;
else {
// Here `con_to_gen' is false: `dest' is a system of constraints.
// In this case the condition `first_point == dest_num_rows'
// actually means that all the constraints in `dest' have their
// inhomogeneous term equal to 0.
// This is an ILLEGAL situation, because it implies that
// the constraint system `dest' lacks the positivity constraint
// and no linear combination of the constraints in `dest'
// can reintroduce the positivity constraint.
PPL_UNREACHABLE;
return false;
}
else {
// A point has been found: the polyhedron is not empty.
// Now invoking simplify() to remove all the redundant constraints
// from the system `source'.
// Since the saturation matrix `tmp_sat' returned by conversion()
// has rows indexed by generators (the rows of `dest') and columns
// indexed by constraints (the rows of `source'), we have to
// transpose it to obtain the saturation matrix needed by simplify().
sat.transpose_assign(tmp_sat);
simplify(source, sat);
return false;
}
}
/*!
\return
<CODE>true</CODE> if the obtained polyhedron is empty,
<CODE>false</CODE> otherwise.
\param con_to_gen
<CODE>true</CODE> if \p source1 and \p source2 are system of
constraints, <CODE>false</CODE> otherwise;
\param source1
The first element of the given DD pair;
\param dest
The second element of the given DD pair;
\param sat
The saturation matrix that bind \p source1 to \p dest;
\param source2
The new system of generators or constraints.
It is assumed that \p source1 and \p source2 are sorted and have
no pending rows. It is also assumed that \p dest has no pending rows.
On entry, the rows of \p sat are indexed by the rows of \p dest
and its columns are indexed by the rows of \p source1.
On exit, the rows of \p sat are indexed by the rows of \p dest
and its columns are indexed by the rows of the system obtained
by merging \p source1 and \p source2.
Let us suppose we want to add some constraints to a given system of
constraints \p source1. This method, given a minimized double description
pair (\p source1, \p dest) and a system of new constraints \p source2,
modifies \p source1 by adding to it the constraints of \p source2 that
are not in \p source1. Then, by invoking
<CODE>add_and_minimize(bool, Linear_System_Class&, Linear_System_Class&, Bit_Matrix&)</CODE>,
processes the added constraints obtaining a new DD pair.
This method treats also the dual case, i.e., adding new generators to
a previous system of generators. In this case \p source1 contains the
old generators, \p source2 the new ones and \p dest is the system
of constraints in the given minimized DD pair.
Since \p source2 contains the constraints (or the generators) that
will be added to \p source1, it is constant: it will not be modified.
*/
template <typename Source_Linear_System1, typename Source_Linear_System2,
typename Dest_Linear_System>
bool
Polyhedron::add_and_minimize(const bool con_to_gen,
Source_Linear_System1& source1,
Dest_Linear_System& dest,
Bit_Matrix& sat,
const Source_Linear_System2& source2) {
// `source1' and `source2' cannot be empty.
PPL_ASSERT(!source1.has_no_rows() && !source2.has_no_rows());
// `source1' and `source2' must have the same number of columns
// to be merged.
PPL_ASSERT(source1.num_columns() == source2.num_columns());
// `source1' and `source2' are fully sorted.
PPL_ASSERT(source1.is_sorted() && source1.num_pending_rows() == 0);
PPL_ASSERT(source2.is_sorted() && source2.num_pending_rows() == 0);
PPL_ASSERT(dest.num_pending_rows() == 0);
const dimension_type old_source1_num_rows = source1.num_rows();
// `k1' and `k2' run through the rows of `source1' and `source2', resp.
dimension_type k1 = 0;
dimension_type k2 = 0;
dimension_type source2_num_rows = source2.num_rows();
while (k1 < old_source1_num_rows && k2 < source2_num_rows) {
// Add to `source1' the constraints from `source2', as pending rows.
// We exploit the property that initially both `source1' and `source2'
// are sorted and index `k1' only scans the non-pending rows of `source1',
// so that it is not influenced by the pending rows appended to it.
// This way no duplicate (i.e., trivially redundant) constraint
// is introduced in `source1'.
const int cmp = compare(source1[k1], source2[k2]);
if (cmp == 0) {
// We found the same row: there is no need to add `source2[k2]'.
++k2;
// By sortedness, since `k1 < old_source1_num_rows',
// we can increment index `k1' too.
++k1;
}
else if (cmp < 0)
// By sortedness, we can increment `k1'.
++k1;
else {
// Here `cmp > 0'.
// By sortedness, `source2[k2]' cannot be in `source1'.
// We add it as a pending row of `source1' (sortedness unaffected).
source1.add_pending_row(source2[k2]);
// We can increment `k2'.
++k2;
}
}
// Have we scanned all the rows in `source2'?
if (k2 < source2_num_rows)
// By sortedness, all the rows in `source2' having indexes
// greater than or equal to `k2' were not in `source1'.
// We add them as pending rows of 'source1' (sortedness not affected).
for ( ; k2 < source2_num_rows; ++k2)
source1.add_pending_row(source2[k2]);
if (source1.num_pending_rows() == 0)
// No row was appended to `source1', because all the constraints
// in `source2' were already in `source1'.
// There is nothing left to do ...
return false;
return add_and_minimize(con_to_gen, source1, dest, sat);
}
/*!
\return
<CODE>true</CODE> if the obtained polyhedron is empty,
<CODE>false</CODE> otherwise.
\param con_to_gen
<CODE>true</CODE> if \p source is a system of constraints,
<CODE>false</CODE> otherwise;
\param source
The first element of the given DD pair. It also contains the pending
rows to be processed;
\param dest
The second element of the given DD pair. It cannot have pending rows;
\param sat
The saturation matrix that bind the upper part of \p source to \p dest.
On entry, the rows of \p sat are indexed by the rows of \p dest
and its columns are indexed by the non-pending rows of \p source.
On exit, the rows of \p sat are indexed by the rows of \p dest
and its columns are indexed by the rows of \p source.
Let us suppose that \p source is a system of constraints.
This method assumes that the non-pending part of \p source and
system \p dest form a double description pair in minimal form and
will build a new DD pair in minimal form by processing the pending
constraints in \p source. To this end, it will call
<CODE>conversion()</CODE>) and <CODE>simplify</CODE>.
This method treats also the dual case, i.e., processing pending
generators. In this case \p source contains generators and \p dest
is the system of constraints corresponding to the non-pending part
of \p source.
*/
template <typename Source_Linear_System, typename Dest_Linear_System>
bool
Polyhedron::add_and_minimize(const bool con_to_gen,
Source_Linear_System& source,
Dest_Linear_System& dest,
Bit_Matrix& sat) {
PPL_ASSERT(source.num_pending_rows() > 0);
PPL_ASSERT(source.space_dimension() == dest.space_dimension());
PPL_ASSERT(source.is_sorted());
// First, pad the saturation matrix with new columns (of zeroes)
// to accommodate for the pending rows of `source'.
sat.resize(dest.num_rows(), source.num_rows());
// Incrementally compute the new system of generators.
// Parameter `start' is set to the index of the first pending constraint.
const dimension_type num_lines_or_equalities
= conversion(source, source.first_pending_row(),
dest, sat,
dest.num_lines_or_equalities());
// conversion() may have modified the number of rows in `dest'.
const dimension_type dest_num_rows = dest.num_rows();
// Checking if the generators in `dest' represent an empty polyhedron:
// the polyhedron is empty if there are no points
// (because rays, lines and closure points need a supporting point).
// Points can be detected by looking at:
// - the divisor, for necessarily closed polyhedra;
// - the epsilon coordinate, for NNC polyhedra.
dimension_type first_point;
if (dest.is_necessarily_closed()) {
for (first_point = num_lines_or_equalities;
first_point < dest_num_rows;
++first_point)
if (dest[first_point].expr.inhomogeneous_term() > 0)
break;
}
else {
for (first_point = num_lines_or_equalities;
first_point < dest_num_rows;
++first_point)
if (dest[first_point].expr.get(Variable(dest.space_dimension())) > 0)
break;
}
if (first_point == dest_num_rows)
if (con_to_gen)
// No point has been found: the polyhedron is empty.
return true;
else {
// Here `con_to_gen' is false: `dest' is a system of constraints.
// In this case the condition `first_point == dest_num_rows'
// actually means that all the constraints in `dest' have their
// inhomogeneous term equal to 0.
// This is an ILLEGAL situation, because it implies that
// the constraint system `dest' lacks the positivity constraint
// and no linear combination of the constraints in `dest'
// can reintroduce the positivity constraint.
PPL_UNREACHABLE;
return false;
}
else {
// A point has been found: the polyhedron is not empty.
// Now invoking `simplify()' to remove all the redundant constraints
// from the system `source'.
// Since the saturation matrix `sat' returned by `conversion()'
// has rows indexed by generators (the rows of `dest') and columns
// indexed by constraints (the rows of `source'), we have to
// transpose it to obtain the saturation matrix needed by `simplify()'.
sat.transpose();
simplify(source, sat);
// Transposing back.
sat.transpose();
return false;
}
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Polyhedron_simplify_templates.hh line 1. */
/* Polyhedron class implementation: simplify().
*/
/* Automatically generated from PPL source file ../src/Polyhedron_simplify_templates.hh line 29. */
#include <cstddef>
#include <limits>
namespace Parma_Polyhedra_Library {
/*!
\return
The rank of \p sys.
\param sys
The system to simplify: it will be modified;
\param sat
The saturation matrix corresponding to \p sys.
\p sys may be modified by swapping some of its rows and by possibly
removing some of them, if they turn out to be redundant.
If \p sys is a system of constraints, then the rows of \p sat are
indexed by constraints and its columns are indexed by generators;
otherwise, if \p sys is a system of generators, then the rows of
\p sat are indexed by generators and its columns by constraints.
Given a system of constraints or a system of generators, this function
simplifies it using Gauss' elimination method (to remove redundant
equalities/lines), deleting redundant inequalities/rays/points and
making back-substitution.
The explanation that follows assumes that \p sys is a system of
constraints. For the case when \p sys is a system of generators,
a similar explanation can be obtain by applying duality.
The explanation relies on the notion of <EM>redundancy</EM>.
(See the Introduction.)
First we make some observations that can help the reader
in understanding the function:
Proposition: An inequality that is saturated by all the generators
can be transformed to an equality.
In fact, by combining any number of generators that saturate the
constraints, we obtain a generator that saturates the constraints too:
\f[
\langle \vect{c}, \vect{r}_1 \rangle = 0 \land
\langle \vect{c}, \vect{r}_2 \rangle = 0
\Rightarrow
\langle \vect{c}, (\lambda_1 \vect{r}_1 + \lambda_2 \vect{r}_2) \rangle =
\lambda_1 \langle \vect{c}, \vect{r}_1 \rangle
+ \lambda_2 \langle \vect{c}, \vect{r}_2 \rangle
= 0,
\f]
where \f$\lambda_1, \lambda_2\f$ can be any real number.
*/
template <typename Linear_System1>
dimension_type
Polyhedron::simplify(Linear_System1& sys, Bit_Matrix& sat) {
typedef typename Linear_System1::row_type sys_row_type;
dimension_type num_rows = sys.num_rows();
const dimension_type num_cols_sat = sat.num_columns();
using std::swap;
// Looking for the first inequality in `sys'.
dimension_type num_lines_or_equalities = 0;
while (num_lines_or_equalities < num_rows
&& sys[num_lines_or_equalities].is_line_or_equality())
++num_lines_or_equalities;
// `num_saturators[i]' will contain the number of generators
// that saturate the constraint `sys[i]'.
if (num_rows > simplify_num_saturators_size) {
delete [] simplify_num_saturators_p;
simplify_num_saturators_p = 0;
simplify_num_saturators_size = 0;
const size_t max_size
= std::numeric_limits<size_t>::max() / sizeof(dimension_type);
const size_t new_size = compute_capacity(num_rows, max_size);
simplify_num_saturators_p = new dimension_type[new_size];
simplify_num_saturators_size = new_size;
}
dimension_type* const num_saturators = simplify_num_saturators_p;
bool sys_sorted = sys.is_sorted();
// Computing the number of saturators for each inequality,
// possibly identifying and swapping those that happen to be
// equalities (see Proposition above).
for (dimension_type i = num_lines_or_equalities; i < num_rows; ++i) {
if (sat[i].empty()) {
// The constraint `sys_rows[i]' is saturated by all the generators.
// Thus, either it is already an equality or it can be transformed
// to an equality (see Proposition above).
sys.sys.rows[i].set_is_line_or_equality();
// Note: simple normalization already holds.
sys.sys.rows[i].sign_normalize();
// We also move it just after all the other equalities,
// so that system `sys_rows' keeps its partial sortedness.
if (i != num_lines_or_equalities) {
sys.sys.rows[i].m_swap(sys.sys.rows[num_lines_or_equalities]);
swap(sat[i], sat[num_lines_or_equalities]);
swap(num_saturators[i], num_saturators[num_lines_or_equalities]);
}
++num_lines_or_equalities;
// `sys' is no longer sorted.
sys_sorted = false;
}
else
// There exists a generator which does not saturate `sys[i]',
// so that `sys[i]' is indeed an inequality.
// We store the number of its saturators.
num_saturators[i] = num_cols_sat - sat[i].count_ones();
}
sys.set_sorted(sys_sorted);
PPL_ASSERT(sys.OK());
// At this point, all the equalities of `sys' (included those
// inequalities that we just transformed to equalities) have
// indexes between 0 and `num_lines_or_equalities' - 1,
// which is the property needed by method gauss().
// We can simplify the system of equalities, obtaining the rank
// of `sys' as result.
const dimension_type rank = sys.gauss(num_lines_or_equalities);
// Now the irredundant equalities of `sys' have indexes from 0
// to `rank' - 1, whereas the equalities having indexes from `rank'
// to `num_lines_or_equalities' - 1 are all redundant.
// (The inequalities in `sys' have been left untouched.)
// The rows containing equalities are not sorted.
if (rank < num_lines_or_equalities) {
// We identified some redundant equalities.
// Moving them at the bottom of `sys':
// - index `redundant' runs through the redundant equalities
// - index `erasing' identifies the first row that should
// be erased after this loop.
// Note that we exit the loop either because we have removed all
// redundant equalities or because we have moved all the
// inequalities.
for (dimension_type redundant = rank,
erasing = num_rows;
redundant < num_lines_or_equalities
&& erasing > num_lines_or_equalities;
) {
--erasing;
sys.remove_row(redundant);
swap(sat[redundant], sat[erasing]);
swap(num_saturators[redundant], num_saturators[erasing]);
++redundant;
}
// Adjusting the value of `num_rows' to the number of meaningful
// rows of `sys': `num_lines_or_equalities' - `rank' is the number of
// redundant equalities moved to the bottom of `sys', which are
// no longer meaningful.
num_rows -= num_lines_or_equalities - rank;
// If the above loop exited because it moved all inequalities, it may not
// have removed all the rendundant rows.
sys.remove_trailing_rows(sys.num_rows() - num_rows);
PPL_ASSERT(sys.num_rows() == num_rows);
sat.remove_trailing_rows(num_lines_or_equalities - rank);
// Adjusting the value of `num_lines_or_equalities'.
num_lines_or_equalities = rank;
}
const dimension_type old_num_rows = sys.num_rows();
// Now we use the definition of redundancy (given in the Introduction)
// to remove redundant inequalities.
// First we check the saturation rule, which provides a necessary
// condition for an inequality to be irredundant (i.e., it provides
// a sufficient condition for identifying redundant inequalities).
// Let
//
// num_saturators[i] = num_sat_lines[i] + num_sat_rays_or_points[i],
// dim_lin_space = num_irredundant_lines,
// dim_ray_space
// = dim_vector_space - num_irredundant_equalities - dim_lin_space
// = num_columns - 1 - num_lines_or_equalities - dim_lin_space,
// min_sat_rays_or_points = dim_ray_space.
//
// An inequality saturated by less than `dim_ray_space' _rays/points_
// is redundant. Thus we have the implication
//
// (num_saturators[i] - num_sat_lines[i] < dim_ray_space)
// ==>
// redundant(sys[i]).
//
// Moreover, since every line saturates all inequalities, we also have
// dim_lin_space = num_sat_lines[i]
// so that we can rewrite the condition above as follows:
//
// (num_saturators[i] < num_columns - num_lines_or_equalities - 1)
// ==>
// redundant(sys[i]).
//
const dimension_type sys_num_columns
= sys.topology() == NECESSARILY_CLOSED ? sys.space_dimension() + 1
: sys.space_dimension() + 2;
const dimension_type min_saturators
= sys_num_columns - num_lines_or_equalities - 1;
for (dimension_type i = num_lines_or_equalities; i < num_rows; ) {
if (num_saturators[i] < min_saturators) {
// The inequality `sys[i]' is redundant.
--num_rows;
sys.remove_row(i);
swap(sat[i], sat[num_rows]);
swap(num_saturators[i], num_saturators[num_rows]);
}
else
++i;
}
// Now we check the independence rule.
for (dimension_type i = num_lines_or_equalities; i < num_rows; ) {
bool redundant = false;
// NOTE: in the inner loop, index `j' runs through _all_ the
// inequalities and we do not test if `sat[i]' is strictly
// contained into `sat[j]'. Experimentation has shown that this
// is faster than having `j' only run through the indexes greater
// than `i' and also doing the test `strict_subset(sat[i],
// sat[k])'.
for (dimension_type j = num_lines_or_equalities; j < num_rows; ) {
if (i == j)
// We want to compare different rows of `sys'.
++j;
else {
// Let us recall that each generator lies on a facet of the
// polyhedron (see the Introduction).
// Given two constraints `c_1' and `c_2', if there are `m'
// generators lying on the hyper-plane corresponding to `c_1',
// the same `m' generators lie on the hyper-plane
// corresponding to `c_2', too, and there is another one lying
// on the latter but not on the former, then `c_2' is more
// restrictive than `c_1', i.e., `c_1' is redundant.
bool strict_subset;
if (subset_or_equal(sat[j], sat[i], strict_subset))
if (strict_subset) {
// All the saturators of the inequality `sys[i]' are
// saturators of the inequality `sys[j]' too,
// and there exists at least one saturator of `sys[j]'
// which is not a saturator of `sys[i]'.
// It follows that inequality `sys[i]' is redundant.
redundant = true;
break;
}
else {
// We have `sat[j] == sat[i]'. Hence inequalities
// `sys[i]' and `sys[j]' are saturated by the same set of
// generators. Then we can remove either one of the two
// inequalities: we remove `sys[j]'.
--num_rows;
sys.remove_row(j);
PPL_ASSERT(sys.num_rows() == num_rows);
swap(sat[j], sat[num_rows]);
swap(num_saturators[j], num_saturators[num_rows]);
}
else
// If we reach this point then we know that `sat[i]' does
// not contain (and is different from) `sat[j]', so that
// `sys[i]' is not made redundant by inequality `sys[j]'.
++j;
}
}
if (redundant) {
// The inequality `sys[i]' is redundant.
--num_rows;
sys.remove_row(i);
PPL_ASSERT(sys.num_rows() == num_rows);
swap(sat[i], sat[num_rows]);
swap(num_saturators[i], num_saturators[num_rows]);
}
else
// The inequality `sys[i]' is not redundant.
++i;
}
// Here we physically remove the `sat' rows corresponding to the redundant
// inequalities previously removed from `sys'.
sat.remove_trailing_rows(old_num_rows - num_rows);
// At this point the first `num_lines_or_equalities' rows of 'sys'
// represent the irredundant equalities, while the remaining rows
// (i.e., those having indexes from `num_lines_or_equalities' to
// `num_rows' - 1) represent the irredundant inequalities.
#ifndef NDEBUG
// Check if the flag is set (that of the equalities is already set).
for (dimension_type i = num_lines_or_equalities; i < num_rows; ++i)
PPL_ASSERT(sys[i].is_ray_or_point_or_inequality());
#endif
// Finally, since now the sub-system (of `sys') of the irredundant
// equalities is in triangular form, we back substitute each
// variables with the expression obtained considering the equalities
// starting from the last one.
sys.back_substitute(num_lines_or_equalities);
// The returned value is the number of irredundant equalities i.e.,
// the rank of the sub-system of `sys' containing only equalities.
// (See the Introduction for definition of lineality space dimension.)
return num_lines_or_equalities;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Polyhedron_defs.hh line 2862. */
/* Automatically generated from PPL source file ../src/Grid_defs.hh line 1. */
/* Grid class declaration.
*/
/* Automatically generated from PPL source file ../src/Grid_Generator_System_defs.hh line 1. */
/* Grid_Generator_System class declaration.
*/
/* Automatically generated from PPL source file ../src/Grid_Generator_System_defs.hh line 28. */
/* Automatically generated from PPL source file ../src/Grid_Generator_System_defs.hh line 33. */
#include <iosfwd>
namespace Parma_Polyhedra_Library {
namespace IO_Operators {
//! Output operator.
/*!
\relates Parma_Polyhedra_Library::Grid_Generator_System
Writes <CODE>false</CODE> if \p gs is empty. Otherwise, writes on
\p s the generators of \p gs, all in one row and separated by ", ".
*/
std::ostream& operator<<(std::ostream& s, const Grid_Generator_System& gs);
} // namespace IO_Operators
//! Swaps \p x with \p y.
/*! \relates Grid_Generator_System */
void swap(Grid_Generator_System& x, Grid_Generator_System& y);
//! Returns <CODE>true</CODE> if and only if \p x and \p y are identical.
/*! \relates Grid_Generator_System */
bool operator==(const Grid_Generator_System& x,
const Grid_Generator_System& y);
} // namespace Parma_Polyhedra_Library
//! A system of grid generators.
/*! \ingroup PPL_CXX_interface
An object of the class Grid_Generator_System is a system of
grid generators, i.e., a multiset of objects of the class
Grid_Generator (lines, parameters and points).
When inserting generators in a system, space dimensions are
automatically adjusted so that all the generators in the system
are defined on the same vector space.
A system of grid generators which is meant to define a non-empty
grid must include at least one point: the reason is that
lines and parameters need a supporting point
(lines only specify directions while parameters only
specify direction and distance.
\par
In all the examples it is assumed that variables
<CODE>x</CODE> and <CODE>y</CODE> are defined as follows:
\code
Variable x(0);
Variable y(1);
\endcode
\par Example 1
The following code defines the line having the same direction
as the \f$x\f$ axis (i.e., the first Cartesian axis)
in \f$\Rset^2\f$:
\code
Grid_Generator_System gs;
gs.insert(grid_line(x + 0*y));
\endcode
As said above, this system of generators corresponds to
an empty grid, because the line has no supporting point.
To define a system of generators that does correspond to
the \f$x\f$ axis, we can add the following code which
inserts the origin of the space as a point:
\code
gs.insert(grid_point(0*x + 0*y));
\endcode
Since space dimensions are automatically adjusted, the following
code obtains the same effect:
\code
gs.insert(grid_point(0*x));
\endcode
In contrast, if we had added the following code, we would have
defined a line parallel to the \f$x\f$ axis through
the point \f$(0, 1)^\transpose \in \Rset^2\f$.
\code
gs.insert(grid_point(0*x + 1*y));
\endcode
\par Example 2
The following code builds a system of generators corresponding
to the grid consisting of all the integral points on the \f$x\f$ axes;
that is, all points satisfying the congruence relation
\f[
\bigl\{\,
(x, 0)^\transpose \in \Rset^2
\bigm|
x \pmod{1}\ 0
\,\bigr\},
\f]
\code
Grid_Generator_System gs;
gs.insert(parameter(x + 0*y));
gs.insert(grid_point(0*x + 0*y));
\endcode
\par Example 3
The following code builds a system of generators having three points
corresponding to a non-relational grid consisting of all points
whose coordinates are integer multiple of 3.
\code
Grid_Generator_System gs;
gs.insert(grid_point(0*x + 0*y));
gs.insert(grid_point(0*x + 3*y));
gs.insert(grid_point(3*x + 0*y));
\endcode
\par Example 4
By using parameters instead of two of the points we
can define the same grid as that defined in the previous example.
Note that there has to be at least one point and, for this purpose,
any point in the grid could be considered.
Thus the following code builds two identical grids from the
grid generator systems \p gs and \p gs1.
\code
Grid_Generator_System gs;
gs.insert(grid_point(0*x + 0*y));
gs.insert(parameter(0*x + 3*y));
gs.insert(parameter(3*x + 0*y));
Grid_Generator_System gs1;
gs1.insert(grid_point(3*x + 3*y));
gs1.insert(parameter(0*x + 3*y));
gs1.insert(parameter(3*x + 0*y));
\endcode
\par Example 5
The following code builds a system of generators having one point and
a parameter corresponding to all the integral points that
lie on \f$x + y = 2\f$ in \f$\Rset^2\f$
\code
Grid_Generator_System gs;
gs.insert(grid_point(1*x + 1*y));
gs.insert(parameter(1*x - 1*y));
\endcode
\note
After inserting a multiset of generators in a grid generator system,
there are no guarantees that an <EM>exact</EM> copy of them
can be retrieved:
in general, only an <EM>equivalent</EM> grid generator system
will be available, where original generators may have been
reordered, removed (if they are duplicate or redundant), etc.
*/
class Parma_Polyhedra_Library::Grid_Generator_System {
public:
typedef Grid_Generator row_type;
static const Representation default_representation = SPARSE;
//! Default constructor: builds an empty system of generators.
explicit Grid_Generator_System(Representation r = default_representation);
//! Builds the singleton system containing only generator \p g.
explicit Grid_Generator_System(const Grid_Generator& g,
Representation r = default_representation);
//! Builds an empty system of generators of dimension \p dim.
explicit Grid_Generator_System(dimension_type dim,
Representation r = default_representation);
//! Ordinary copy constructor.
//! The new Grid_Generator_System will have the same representation as `gs'.
Grid_Generator_System(const Grid_Generator_System& gs);
//! Copy constructor with specified representation.
Grid_Generator_System(const Grid_Generator_System& gs, Representation r);
//! Destructor.
~Grid_Generator_System();
//! Assignment operator.
Grid_Generator_System& operator=(const Grid_Generator_System& y);
//! Returns the current representation of *this.
Representation representation() const;
//! Converts *this to the specified representation.
void set_representation(Representation r);
//! Returns the maximum space dimension a Grid_Generator_System can handle.
static dimension_type max_space_dimension();
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
/*! \brief
Removes all the generators from the generator system and sets its
space dimension to 0.
*/
void clear();
/*! \brief
Inserts into \p *this a copy of the generator \p g, increasing the
number of space dimensions if needed.
If \p g is an all-zero parameter then the only action is to ensure
that the space dimension of \p *this is at least the space
dimension of \p g.
*/
void insert(const Grid_Generator& g);
/*! \brief
Inserts into \p *this the generator \p g, increasing the number of
space dimensions if needed.
*/
void insert(Grid_Generator& g, Recycle_Input);
/*! \brief
Inserts into \p *this the generators in \p gs, increasing the
number of space dimensions if needed.
*/
void insert(Grid_Generator_System& gs, Recycle_Input);
//! Initializes the class.
static void initialize();
//! Finalizes the class.
static void finalize();
/*! \brief
Returns the singleton system containing only
Grid_Generator::zero_dim_point().
*/
static const Grid_Generator_System& zero_dim_univ();
//! An iterator over a system of grid generators
/*! \ingroup PPL_CXX_interface
A const_iterator is used to provide read-only access
to each generator contained in an object of Grid_Generator_System.
\par Example
The following code prints the system of generators
of the grid <CODE>gr</CODE>:
\code
const Grid_Generator_System& ggs = gr.generators();
for (Grid_Generator_System::const_iterator i = ggs.begin(),
ggs_end = ggs.end(); i != ggs_end; ++i)
cout << *i << endl;
\endcode
The same effect can be obtained more concisely by using
more features of the STL:
\code
const Grid_Generator_System& ggs = gr.generators();
copy(ggs.begin(), ggs.end(), ostream_iterator<Grid_Generator>(cout, "\n"));
\endcode
*/
class const_iterator
: public std::iterator<std::forward_iterator_tag,
Grid_Generator,
ptrdiff_t,
const Grid_Generator*,
const Grid_Generator&> {
public:
//! Default constructor.
const_iterator();
//! Ordinary copy constructor.
const_iterator(const const_iterator& y);
//! Destructor.
~const_iterator();
//! Assignment operator.
const_iterator& operator=(const const_iterator& y);
//! Dereference operator.
const Grid_Generator& operator*() const;
//! Indirect member selector.
const Grid_Generator* operator->() const;
//! Prefix increment operator.
const_iterator& operator++();
//! Postfix increment operator.
const_iterator operator++(int);
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this and \p y are
identical.
*/
bool operator==(const const_iterator& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this and \p y are
different.
*/
bool operator!=(const const_iterator& y) const;
private:
friend class Grid_Generator_System;
Linear_System<Grid_Generator>::const_iterator i;
//! Copy constructor from Linear_System< Grid_Generator>::const_iterator.
const_iterator(const Linear_System<Grid_Generator>::const_iterator& y);
};
//! Returns <CODE>true</CODE> if and only if \p *this has no generators.
bool empty() const;
/*! \brief
Returns the const_iterator pointing to the first generator, if \p
*this is not empty; otherwise, returns the past-the-end
const_iterator.
*/
const_iterator begin() const;
//! Returns the past-the-end const_iterator.
const_iterator end() const;
//! Returns the number of rows (generators) in the system.
dimension_type num_rows() const;
//! Returns the number of parameters in the system.
dimension_type num_parameters() const;
//! Returns the number of lines in the system.
dimension_type num_lines() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this contains one or
more points.
*/
bool has_points() const;
//! Returns <CODE>true</CODE> if \p *this is identical to \p y.
bool is_equal_to(const Grid_Generator_System& y) const;
//! Checks if all the invariants are satisfied.
bool OK() const;
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
Resizes the matrix of generators using the numbers of rows and columns
read from \p s, then initializes the coordinates of each generator
and its type reading the contents from \p s.
*/
bool ascii_load(std::istream& s);
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
//! Swaps \p *this with \p y.
void m_swap(Grid_Generator_System& y);
private:
//! Returns a constant reference to the \p k- th generator of the system.
const Grid_Generator& operator[](dimension_type k) const;
//! Assigns to a given variable an affine expression.
/*!
\param v
The variable to which the affine transformation is assigned;
\param expr
The numerator of the affine transformation:
\f$\sum_{i = 0}^{n - 1} a_i x_i + b\f$;
\param denominator
The denominator of the affine transformation;
We allow affine transformations (see the Section \ref
rational_grid_operations)to have rational
coefficients. Since the coefficients of linear expressions are
integers we also provide an integer \p denominator that will
be used as denominator of the affine transformation. The
denominator is required to be a positive integer and its
default value is 1.
The affine transformation assigns to every variable \p v, in every
column, the follow expression:
\f[
\frac{\sum_{i = 0}^{n - 1} a_i x_i + b}
{\mathrm{denominator}}.
\f]
\p expr is a constant parameter and unaltered by this computation.
*/
void affine_image(Variable v,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator);
//! Sets the sortedness flag of the system to \p b.
void set_sorted(bool b);
/*! \brief
Adds \p dims rows and \p dims columns of zeroes to the matrix,
initializing the added rows as in the universe system.
\param dims
The number of rows and columns to be added: must be strictly
positive.
Turns the \f$r \times c\f$ matrix \f$A\f$ into the \f$(r+dims)
\times (c+dims)\f$ matrix
\f$\bigl(\genfrac{}{}{0pt}{}{A}{0} \genfrac{}{}{0pt}{}{0}{B}\bigr)\f$
where \f$B\f$ is the \f$dims \times dims\f$ unit matrix of the form
\f$\bigl(\genfrac{}{}{0pt}{}{1}{0} \genfrac{}{}{0pt}{}{0}{1}\bigr)\f$.
The matrix is expanded avoiding reallocation whenever possible.
*/
void add_universe_rows_and_columns(dimension_type dims);
//! Resizes the system to the specified space dimension.
void set_space_dimension(dimension_type space_dim);
//! Removes all the specified dimensions from the generator system.
/*!
The space dimension of the variable with the highest space
dimension in \p vars must be at most the space dimension
of \p this.
*/
void remove_space_dimensions(const Variables_Set& vars);
//! Shift by \p n positions the coefficients of variables, starting from
//! the coefficient of \p v. This increases the space dimension by \p n.
void shift_space_dimensions(Variable v, dimension_type n);
//! Sets the index to indicate that the system has no pending rows.
void unset_pending_rows();
//! Permutes the space dimensions of the matrix.
/*
\param cycle
A vector representing a cycle of the permutation according to which the
columns must be rearranged.
The \p cycle vector represents a cycle of a permutation of space
dimensions.
For example, the permutation
\f$ \{ x_1 \mapsto x_2, x_2 \mapsto x_3, x_3 \mapsto x_1 \}\f$ can be
represented by the vector containing \f$ x_1, x_2, x_3 \f$.
*/
void permute_space_dimensions(const std::vector<Variable>& cycle);
bool has_no_rows() const;
//! Makes the system shrink by removing its \p n trailing rows.
void remove_trailing_rows(dimension_type n);
void insert_verbatim(const Grid_Generator& g);
//! Returns the system topology.
Topology topology() const;
//! Returns the index of the first pending row.
dimension_type first_pending_row() const;
Linear_System<Grid_Generator> sys;
/*! \brief
Holds (between class initialization and finalization) a pointer to
the singleton system containing only Grid_Generator::zero_dim_point().
*/
static const Grid_Generator_System* zero_dim_univ_p;
friend bool
operator==(const Grid_Generator_System& x, const Grid_Generator_System& y);
//! Sets the index of the first pending row to \p i.
void set_index_first_pending_row(dimension_type i);
//! Removes all the invalid lines and parameters.
/*!
The invalid lines and parameters are those with all
the homogeneous terms set to zero.
*/
void remove_invalid_lines_and_parameters();
friend class Polyhedron;
friend class Grid;
};
// Grid_Generator_System_inlines.hh is not included here on purpose.
/* Automatically generated from PPL source file ../src/Grid_Generator_System_inlines.hh line 1. */
/* Grid_Generator_System class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Grid_Generator_System_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
inline void
Grid_Generator_System::set_sorted(bool b) {
sys.set_sorted(b);
}
inline void
Grid_Generator_System::unset_pending_rows() {
sys.unset_pending_rows();
}
inline void
Grid_Generator_System::set_index_first_pending_row(const dimension_type i) {
sys.set_index_first_pending_row(i);
}
inline void
Grid_Generator_System
::permute_space_dimensions(const std::vector<Variable>& cycle) {
return sys.permute_space_dimensions(cycle);
}
inline bool
Grid_Generator_System::is_equal_to(const Grid_Generator_System& y) const {
return (sys == y.sys);
}
inline
Grid_Generator_System::Grid_Generator_System(Representation r)
: sys(NECESSARILY_CLOSED, r) {
sys.set_sorted(false);
PPL_ASSERT(space_dimension() == 0);
}
inline
Grid_Generator_System::Grid_Generator_System(const Grid_Generator_System& gs)
: sys(gs.sys) {
}
inline
Grid_Generator_System::Grid_Generator_System(const Grid_Generator_System& gs,
Representation r)
: sys(gs.sys, r) {
}
inline
Grid_Generator_System::Grid_Generator_System(dimension_type dim,
Representation r)
: sys(NECESSARILY_CLOSED, r) {
sys.set_space_dimension(dim);
sys.set_sorted(false);
PPL_ASSERT(space_dimension() == dim);
}
inline
Grid_Generator_System::Grid_Generator_System(const Grid_Generator& g,
Representation r)
: sys(NECESSARILY_CLOSED, r) {
sys.insert(g);
sys.set_sorted(false);
}
inline
Grid_Generator_System::~Grid_Generator_System() {
}
inline Grid_Generator_System&
Grid_Generator_System::operator=(const Grid_Generator_System& y) {
Grid_Generator_System tmp = y;
swap(*this, tmp);
return *this;
}
inline Representation
Grid_Generator_System::representation() const {
return sys.representation();
}
inline void
Grid_Generator_System::set_representation(Representation r) {
sys.set_representation(r);
}
inline dimension_type
Grid_Generator_System::max_space_dimension() {
// Grid generators use an extra column for the parameter divisor.
return Linear_System<Grid_Generator>::max_space_dimension() - 1;
}
inline dimension_type
Grid_Generator_System::space_dimension() const {
return sys.space_dimension();
}
inline const Grid_Generator_System&
Grid_Generator_System::zero_dim_univ() {
PPL_ASSERT(zero_dim_univ_p != 0);
return *zero_dim_univ_p;
}
inline void
Grid_Generator_System::clear() {
sys.clear();
sys.set_sorted(false);
sys.unset_pending_rows();
PPL_ASSERT(space_dimension() == 0);
}
inline void
Grid_Generator_System::m_swap(Grid_Generator_System& y) {
swap(sys, y.sys);
}
inline memory_size_type
Grid_Generator_System::external_memory_in_bytes() const {
return sys.external_memory_in_bytes();
}
inline memory_size_type
Grid_Generator_System::total_memory_in_bytes() const {
return external_memory_in_bytes() + sizeof(*this);
}
inline dimension_type
Grid_Generator_System::num_rows() const {
return sys.num_rows();
}
inline
Grid_Generator_System::const_iterator::const_iterator()
: i() {
}
inline
Grid_Generator_System::const_iterator::const_iterator(const const_iterator& y)
: i(y.i) {
}
inline
Grid_Generator_System::const_iterator::~const_iterator() {
}
inline Grid_Generator_System::const_iterator&
Grid_Generator_System::const_iterator::operator=(const const_iterator& y) {
i = y.i;
return *this;
}
inline const Grid_Generator&
Grid_Generator_System::const_iterator::operator*() const {
return *i;
}
inline const Grid_Generator*
Grid_Generator_System::const_iterator::operator->() const {
return i.operator->();
}
inline Grid_Generator_System::const_iterator&
Grid_Generator_System::const_iterator::operator++() {
++i;
return *this;
}
inline Grid_Generator_System::const_iterator
Grid_Generator_System::const_iterator::operator++(int) {
const const_iterator tmp = *this;
operator++();
return tmp;
}
inline bool
Grid_Generator_System
::const_iterator::operator==(const const_iterator& y) const {
return i == y.i;
}
inline bool
Grid_Generator_System
::const_iterator::operator!=(const const_iterator& y) const {
return i != y.i;
}
inline bool
Grid_Generator_System::empty() const {
return sys.has_no_rows();
}
inline
Grid_Generator_System::const_iterator
::const_iterator(const Linear_System<Grid_Generator>::const_iterator& y)
: i(y) {
}
inline Grid_Generator_System::const_iterator
Grid_Generator_System::begin() const {
return static_cast<Grid_Generator_System::const_iterator>(sys.begin());
}
inline Grid_Generator_System::const_iterator
Grid_Generator_System::end() const {
return static_cast<Grid_Generator_System::const_iterator>(sys.end());
}
inline const Grid_Generator&
Grid_Generator_System::operator[](const dimension_type k) const {
return sys[k];
}
inline bool
Grid_Generator_System::has_no_rows() const {
return sys.has_no_rows();
}
inline void
Grid_Generator_System::remove_trailing_rows(dimension_type n) {
sys.remove_trailing_rows(n);
}
inline void
Grid_Generator_System::insert_verbatim(const Grid_Generator& g) {
sys.insert(g);
}
inline Topology
Grid_Generator_System::topology() const {
return sys.topology();
}
inline dimension_type
Grid_Generator_System::first_pending_row() const {
return sys.first_pending_row();
}
/*! \relates Grid_Generator_System */
inline bool
operator==(const Grid_Generator_System& x,
const Grid_Generator_System& y) {
return x.is_equal_to(y);
}
/*! \relates Grid_Generator_System */
inline void
swap(Grid_Generator_System& x, Grid_Generator_System& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Grid_Certificate_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Grid_Certificate;
}
/* Automatically generated from PPL source file ../src/Grid_defs.hh line 47. */
#include <vector>
#include <iosfwd>
namespace Parma_Polyhedra_Library {
namespace IO_Operators {
//! Output operator.
/*!
\relates Parma_Polyhedra_Library::Grid
Writes a textual representation of \p gr on \p s: <CODE>false</CODE>
is written if \p gr is an empty grid; <CODE>true</CODE> is written
if \p gr is a universe grid; a minimized system of congruences
defining \p gr is written otherwise, all congruences in one row
separated by ", "s.
*/
std::ostream&
operator<<(std::ostream& s, const Grid& gr);
} // namespace IO_Operators
//! Swaps \p x with \p y.
/*! \relates Grid */
void swap(Grid& x, Grid& y);
/*! \brief
Returns <CODE>true</CODE> if and only if \p x and \p y are the same
grid.
\relates Grid
Note that \p x and \p y may be dimension-incompatible grids: in
those cases, the value <CODE>false</CODE> is returned.
*/
bool operator==(const Grid& x, const Grid& y);
/*! \brief
Returns <CODE>true</CODE> if and only if \p x and \p y are different
grids.
\relates Grid
Note that \p x and \p y may be dimension-incompatible grids: in
those cases, the value <CODE>true</CODE> is returned.
*/
bool operator!=(const Grid& x, const Grid& y);
} // namespace Parma_Polyhedra_Library
//! A grid.
/*! \ingroup PPL_CXX_interface
An object of the class Grid represents a rational grid.
The domain of grids <EM>optimally supports</EM>:
- all (proper and non-proper) congruences;
- tautological and inconsistent constraints;
- linear equality constraints (i.e., non-proper congruences).
Depending on the method, using a constraint that is not optimally
supported by the domain will either raise an exception or
result in a (possibly non-optimal) upward approximation.
The domain of grids support a concept of double description similar
to the one developed for polyhedra: hence, a grid can be specified
as either a finite system of congruences or a finite system of
generators (see Section \ref sect_rational_grids) and it is always
possible to obtain either representation.
That is, if we know the system of congruences, we can obtain
from this a system of generators that define the same grid
and vice versa.
These systems can contain redundant members, or they can be in the
minimal form.
A key attribute of any grid is its space dimension (the dimension
\f$n \in \Nset\f$ of the enclosing vector space):
- all grids, the empty ones included, are endowed with a space
dimension;
- most operations working on a grid and another object (another
grid, a congruence, a generator, a set of variables, etc.) will
throw an exception if the grid and the object are not
dimension-compatible (see Section \ref Grid_Space_Dimensions);
- the only ways in which the space dimension of a grid can be
changed are with <EM>explicit</EM> calls to operators provided for
that purpose, and with standard copy, assignment and swap
operators.
Note that two different grids can be defined on the zero-dimension
space: the empty grid and the universe grid \f$R^0\f$.
\par
In all the examples it is assumed that variables
<CODE>x</CODE> and <CODE>y</CODE> are defined (where they are
used) as follows:
\code
Variable x(0);
Variable y(1);
\endcode
\par Example 1
The following code builds a grid corresponding to the even integer
pairs in \f$\Rset^2\f$, given as a system of congruences:
\code
Congruence_System cgs;
cgs.insert((x %= 0) / 2);
cgs.insert((y %= 0) / 2);
Grid gr(cgs);
\endcode
The following code builds the same grid as above, but starting
from a system of generators specifying three of the points:
\code
Grid_Generator_System gs;
gs.insert(grid_point(0*x + 0*y));
gs.insert(grid_point(0*x + 2*y));
gs.insert(grid_point(2*x + 0*y));
Grid gr(gs);
\endcode
\par Example 2
The following code builds a grid corresponding to a line in
\f$\Rset^2\f$ by adding a single congruence to the universe grid:
\code
Congruence_System cgs;
cgs.insert(x - y == 0);
Grid gr(cgs);
\endcode
The following code builds the same grid as above, but starting
from a system of generators specifying a point and a line:
\code
Grid_Generator_System gs;
gs.insert(grid_point(0*x + 0*y));
gs.insert(grid_line(x + y));
Grid gr(gs);
\endcode
\par Example 3
The following code builds a grid corresponding to the integral
points on the line \f$x = y\f$ in \f$\Rset^2\f$ constructed
by adding an equality and congruence to the universe grid:
\code
Congruence_System cgs;
cgs.insert(x - y == 0);
cgs.insert(x %= 0);
Grid gr(cgs);
\endcode
The following code builds the same grid as above, but starting
from a system of generators specifying a point and a parameter:
\code
Grid_Generator_System gs;
gs.insert(grid_point(0*x + 0*y));
gs.insert(parameter(x + y));
Grid gr(gs);
\endcode
\par Example 4
The following code builds the grid corresponding to a plane by
creating the universe grid in \f$\Rset^2\f$:
\code
Grid gr(2);
\endcode
The following code builds the same grid as above, but starting
from the empty grid in \f$\Rset^2\f$ and inserting the appropriate
generators (a point, and two lines).
\code
Grid gr(2, EMPTY);
gr.add_grid_generator(grid_point(0*x + 0*y));
gr.add_grid_generator(grid_line(x));
gr.add_grid_generator(grid_line(y));
\endcode
Note that a generator system must contain a point when describing
a grid. To ensure that this is always the case it is required
that the first generator inserted in an empty grid is a point
(otherwise, an exception is thrown).
\par Example 5
The following code shows the use of the function
<CODE>add_space_dimensions_and_embed</CODE>:
\code
Grid gr(1);
gr.add_congruence(x == 2);
gr.add_space_dimensions_and_embed(1);
\endcode
We build the universe grid in the 1-dimension space \f$\Rset\f$.
Then we add a single equality congruence,
thus obtaining the grid corresponding to the singleton set
\f$\{ 2 \} \sseq \Rset\f$.
After the last line of code, the resulting grid is
\f[
\bigl\{\,
(2, y)^\transpose \in \Rset^2
\bigm|
y \in \Rset
\,\bigr\}.
\f]
\par Example 6
The following code shows the use of the function
<CODE>add_space_dimensions_and_project</CODE>:
\code
Grid gr(1);
gr.add_congruence(x == 2);
gr.add_space_dimensions_and_project(1);
\endcode
The first two lines of code are the same as in Example 4 for
<CODE>add_space_dimensions_and_embed</CODE>.
After the last line of code, the resulting grid is
the singleton set
\f$\bigl\{ (2, 0)^\transpose \bigr\} \sseq \Rset^2\f$.
\par Example 7
The following code shows the use of the function
<CODE>affine_image</CODE>:
\code
Grid gr(2, EMPTY);
gr.add_grid_generator(grid_point(0*x + 0*y));
gr.add_grid_generator(grid_point(4*x + 0*y));
gr.add_grid_generator(grid_point(0*x + 2*y));
Linear_Expression expr = x + 3;
gr.affine_image(x, expr);
\endcode
In this example the starting grid is all the pairs of \f$x\f$ and
\f$y\f$ in \f$\Rset^2\f$ where \f$x\f$ is an integer multiple of 4
and \f$y\f$ is an integer multiple of 2. The considered variable
is \f$x\f$ and the affine expression is \f$x+3\f$. The resulting
grid is the given grid translated 3 integers to the right (all the
pairs \f$(x, y)\f$ where \f$x\f$ is -1 plus an integer multiple of 4
and \f$y\f$ is an integer multiple of 2).
Moreover, if the affine transformation for the same variable \p x
is instead \f$x+y\f$:
\code
Linear_Expression expr = x + y;
\endcode
the resulting grid is every second integral point along the \f$x=y\f$
line, with this line of points repeated at every fourth integral value
along the \f$x\f$ axis.
Instead, if we do not use an invertible transformation for the
same variable; for example, the affine expression \f$y\f$:
\code
Linear_Expression expr = y;
\endcode
the resulting grid is every second point along the \f$x=y\f$ line.
\par Example 8
The following code shows the use of the function
<CODE>affine_preimage</CODE>:
\code
Grid gr(2, EMPTY);
gr.add_grid_generator(grid_point(0*x + 0*y));
gr.add_grid_generator(grid_point(4*x + 0*y));
gr.add_grid_generator(grid_point(0*x + 2*y));
Linear_Expression expr = x + 3;
gr.affine_preimage(x, expr);
\endcode
In this example the starting grid, \p var and the affine
expression and the denominator are the same as in Example 6, while
the resulting grid is similar but translated 3 integers to the
left (all the pairs \f$(x, y)\f$
where \f$x\f$ is -3 plus an integer multiple of 4 and
\f$y\f$ is an integer multiple of 2)..
Moreover, if the affine transformation for \p x is \f$x+y\f$
\code
Linear_Expression expr = x + y;
\endcode
the resulting grid is a similar grid to the result in Example 6,
only the grid is slanted along \f$x=-y\f$.
Instead, if we do not use an invertible transformation for the same
variable \p x, for example, the affine expression \f$y\f$:
\code
Linear_Expression expr = y;
\endcode
the resulting grid is every fourth line parallel to the \f$x\f$
axis.
\par Example 9
For this example we also use the variables:
\code
Variable z(2);
Variable w(3);
\endcode
The following code shows the use of the function
<CODE>remove_space_dimensions</CODE>:
\code
Grid_Generator_System gs;
gs.insert(grid_point(3*x + y +0*z + 2*w));
Grid gr(gs);
Variables_Set vars;
vars.insert(y);
vars.insert(z);
gr.remove_space_dimensions(vars);
\endcode
The starting grid is the singleton set
\f$\bigl\{ (3, 1, 0, 2)^\transpose \bigr\} \sseq \Rset^4\f$, while
the resulting grid is
\f$\bigl\{ (3, 2)^\transpose \bigr\} \sseq \Rset^2\f$.
Be careful when removing space dimensions <EM>incrementally</EM>:
since dimensions are automatically renamed after each application
of the <CODE>remove_space_dimensions</CODE> operator, unexpected
results can be obtained.
For instance, by using the following code we would obtain
a different result:
\code
set<Variable> vars1;
vars1.insert(y);
gr.remove_space_dimensions(vars1);
set<Variable> vars2;
vars2.insert(z);
gr.remove_space_dimensions(vars2);
\endcode
In this case, the result is the grid
\f$\bigl\{(3, 0)^\transpose \bigr\} \sseq \Rset^2\f$:
when removing the set of dimensions \p vars2
we are actually removing variable \f$w\f$ of the original grid.
For the same reason, the operator \p remove_space_dimensions
is not idempotent: removing twice the same non-empty set of dimensions
is never the same as removing them just once.
*/
class Parma_Polyhedra_Library::Grid {
public:
//! The numeric type of coefficients.
typedef Coefficient coefficient_type;
//! Returns the maximum space dimension all kinds of Grid can handle.
static dimension_type max_space_dimension();
/*! \brief
Returns true indicating that this domain has methods that
can recycle congruences.
*/
static bool can_recycle_congruence_systems();
/*! \brief
Returns true indicating that this domain has methods that
can recycle constraints.
*/
static bool can_recycle_constraint_systems();
//! Builds a grid having the specified properties.
/*!
\param num_dimensions
The number of dimensions of the vector space enclosing the grid;
\param kind
Specifies whether the universe or the empty grid has to be built.
\exception std::length_error
Thrown if \p num_dimensions exceeds the maximum allowed space
dimension.
*/
explicit Grid(dimension_type num_dimensions = 0,
Degenerate_Element kind = UNIVERSE);
//! Builds a grid, copying a system of congruences.
/*!
The grid inherits the space dimension of the congruence system.
\param cgs
The system of congruences defining the grid.
\exception std::length_error
Thrown if \p num_dimensions exceeds the maximum allowed space
dimension.
*/
explicit Grid(const Congruence_System& cgs);
//! Builds a grid, recycling a system of congruences.
/*!
The grid inherits the space dimension of the congruence system.
\param cgs
The system of congruences defining the grid. Its data-structures
may be recycled to build the grid.
\param dummy
A dummy tag to syntactically differentiate this one
from the other constructors.
\exception std::length_error
Thrown if \p num_dimensions exceeds the maximum allowed space
dimension.
*/
Grid(Congruence_System& cgs, Recycle_Input dummy);
//! Builds a grid, copying a system of constraints.
/*!
The grid inherits the space dimension of the constraint system.
\param cs
The system of constraints defining the grid.
\exception std::invalid_argument
Thrown if the constraint system \p cs contains inequality constraints.
\exception std::length_error
Thrown if \p num_dimensions exceeds the maximum allowed space
dimension.
*/
explicit Grid(const Constraint_System& cs);
//! Builds a grid, recycling a system of constraints.
/*!
The grid inherits the space dimension of the constraint system.
\param cs
The system of constraints defining the grid. Its data-structures
may be recycled to build the grid.
\param dummy
A dummy tag to syntactically differentiate this one
from the other constructors.
\exception std::invalid_argument
Thrown if the constraint system \p cs contains inequality constraints.
\exception std::length_error
Thrown if \p num_dimensions exceeds the maximum allowed space
dimension.
*/
Grid(Constraint_System& cs, Recycle_Input dummy);
//! Builds a grid, copying a system of grid generators.
/*!
The grid inherits the space dimension of the generator system.
\param ggs
The system of generators defining the grid.
\exception std::invalid_argument
Thrown if the system of generators is not empty but has no points.
\exception std::length_error
Thrown if \p num_dimensions exceeds the maximum allowed space
dimension.
*/
explicit Grid(const Grid_Generator_System& ggs);
//! Builds a grid, recycling a system of grid generators.
/*!
The grid inherits the space dimension of the generator system.
\param ggs
The system of generators defining the grid. Its data-structures
may be recycled to build the grid.
\param dummy
A dummy tag to syntactically differentiate this one
from the other constructors.
\exception std::invalid_argument
Thrown if the system of generators is not empty but has no points.
\exception std::length_error
Thrown if \p num_dimensions exceeds the maximum allowed space dimension.
*/
Grid(Grid_Generator_System& ggs, Recycle_Input dummy);
//! Builds a grid out of a box.
/*!
The grid inherits the space dimension of the box.
The built grid is the most precise grid that includes the box.
\param box
The box representing the grid to be built.
\param complexity
This argument is ignored as the algorithm used has
polynomial complexity.
\exception std::length_error
Thrown if the space dimension of \p box exceeds the maximum
allowed space dimension.
*/
template <typename Interval>
explicit Grid(const Box<Interval>& box,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a grid out of a bounded-difference shape.
/*!
The grid inherits the space dimension of the BDS.
The built grid is the most precise grid that includes the BDS.
\param bd
The BDS representing the grid to be built.
\param complexity
This argument is ignored as the algorithm used has
polynomial complexity.
\exception std::length_error
Thrown if the space dimension of \p bd exceeds the maximum
allowed space dimension.
*/
template <typename U>
explicit Grid(const BD_Shape<U>& bd,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a grid out of an octagonal shape.
/*!
The grid inherits the space dimension of the octagonal shape.
The built grid is the most precise grid that includes the octagonal shape.
\param os
The octagonal shape representing the grid to be built.
\param complexity
This argument is ignored as the algorithm used has
polynomial complexity.
\exception std::length_error
Thrown if the space dimension of \p os exceeds the maximum
allowed space dimension.
*/
template <typename U>
explicit Grid(const Octagonal_Shape<U>& os,
Complexity_Class complexity = ANY_COMPLEXITY);
/*! \brief
Builds a grid from a polyhedron using algorithms whose complexity
does not exceed the one specified by \p complexity.
If \p complexity is \p ANY_COMPLEXITY, then the grid built is the
smallest one containing \p ph.
The grid inherits the space dimension of polyhedron.
\param ph
The polyhedron.
\param complexity
The complexity class.
\exception std::length_error
Thrown if \p num_dimensions exceeds the maximum allowed space
dimension.
*/
explicit Grid(const Polyhedron& ph,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Ordinary copy constructor.
/*!
The complexity argument is ignored.
*/
Grid(const Grid& y,
Complexity_Class complexity = ANY_COMPLEXITY);
/*! \brief
The assignment operator. (\p *this and \p y can be
dimension-incompatible.)
*/
Grid& operator=(const Grid& y);
//! \name Member Functions that Do Not Modify the Grid
//@{
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
/*! \brief
Returns \f$0\f$, if \p *this is empty; otherwise, returns
the \ref Grid_Affine_Dimension "affine dimension" of \p *this.
*/
dimension_type affine_dimension() const;
/*! \brief
Returns a system of equality constraints satisfied by \p *this
with the same affine dimension as \p *this.
*/
Constraint_System constraints() const;
/*! \brief
Returns a minimal system of equality constraints satisfied by
\p *this with the same affine dimension as \p *this.
*/
Constraint_System minimized_constraints() const;
//! Returns the system of congruences.
const Congruence_System& congruences() const;
//! Returns the system of congruences in minimal form.
const Congruence_System& minimized_congruences() const;
//! Returns the system of generators.
const Grid_Generator_System& grid_generators() const;
//! Returns the minimized system of generators.
const Grid_Generator_System& minimized_grid_generators() const;
//! Returns the relations holding between \p *this and \p cg.
/*
\exception std::invalid_argument
Thrown if \p *this and congruence \p cg are dimension-incompatible.
*/
// FIXME: Poly_Con_Relation seems to encode exactly what we want
// here. We must find a new name for that class. Temporarily,
// we keep using it without changing the name.
Poly_Con_Relation relation_with(const Congruence& cg) const;
//! Returns the relations holding between \p *this and \p g.
/*
\exception std::invalid_argument
Thrown if \p *this and generator \p g are dimension-incompatible.
*/
// FIXME: see the comment for Poly_Con_Relation above.
Poly_Gen_Relation
relation_with(const Grid_Generator& g) const;
//! Returns the relations holding between \p *this and \p g.
/*
\exception std::invalid_argument
Thrown if \p *this and generator \p g are dimension-incompatible.
*/
// FIXME: see the comment for Poly_Con_Relation above.
Poly_Gen_Relation
relation_with(const Generator& g) const;
//! Returns the relations holding between \p *this and \p c.
/*
\exception std::invalid_argument
Thrown if \p *this and constraint \p c are dimension-incompatible.
*/
// FIXME: Poly_Con_Relation seems to encode exactly what we want
// here. We must find a new name for that class. Temporarily,
// we keep using it without changing the name.
Poly_Con_Relation relation_with(const Constraint& c) const;
//! Returns \c true if and only if \p *this is an empty grid.
bool is_empty() const;
//! Returns \c true if and only if \p *this is a universe grid.
bool is_universe() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is a
topologically closed subset of the vector space.
A grid is always topologically closed.
*/
bool is_topologically_closed() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this and \p y are
disjoint.
\exception std::invalid_argument
Thrown if \p x and \p y are dimension-incompatible.
*/
bool is_disjoint_from(const Grid& y) const;
//! Returns <CODE>true</CODE> if and only if \p *this is discrete.
/*!
A grid is discrete if it can be defined by a generator system which
contains only points and parameters. This includes the empty grid
and any grid in dimension zero.
*/
bool is_discrete() const;
//! Returns <CODE>true</CODE> if and only if \p *this is bounded.
bool is_bounded() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
contains at least one integer point.
*/
bool contains_integer_point() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p var is constrained in
\p *this.
\exception std::invalid_argument
Thrown if \p var is not a space dimension of \p *this.
*/
bool constrains(Variable var) const;
//! Returns <CODE>true</CODE> if and only if \p expr is bounded in \p *this.
/*!
This method is the same as bounds_from_below.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds_from_above(const Linear_Expression& expr) const;
//! Returns <CODE>true</CODE> if and only if \p expr is bounded in \p *this.
/*!
This method is the same as bounds_from_above.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds_from_below(const Linear_Expression& expr) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty and
\p expr is bounded from above in \p *this, in which case the
supremum value is computed.
\param expr
The linear expression to be maximized subject to \p *this;
\param sup_n
The numerator of the supremum value;
\param sup_d
The denominator of the supremum value;
\param maximum
<CODE>true</CODE> if the supremum value can be reached in \p this.
Always <CODE>true</CODE> when \p this bounds \p expr. Present for
interface compatibility with class Polyhedron, where closure
points can result in a value of false.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded by \p *this,
<CODE>false</CODE> is returned and \p sup_n, \p sup_d and \p
maximum are left untouched.
*/
bool maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty and
\p expr is bounded from above in \p *this, in which case the
supremum value and a point where \p expr reaches it are computed.
\param expr
The linear expression to be maximized subject to \p *this;
\param sup_n
The numerator of the supremum value;
\param sup_d
The denominator of the supremum value;
\param maximum
<CODE>true</CODE> if the supremum value can be reached in \p this.
Always <CODE>true</CODE> when \p this bounds \p expr. Present for
interface compatibility with class Polyhedron, where closure
points can result in a value of false;
\param point
When maximization succeeds, will be assigned a point where \p expr
reaches its supremum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded by \p *this,
<CODE>false</CODE> is returned and \p sup_n, \p sup_d, \p maximum
and \p point are left untouched.
*/
bool maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum,
Generator& point) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty and
\p expr is bounded from below in \p *this, in which case the
infimum value is computed.
\param expr
The linear expression to be minimized subject to \p *this;
\param inf_n
The numerator of the infimum value;
\param inf_d
The denominator of the infimum value;
\param minimum
<CODE>true</CODE> if the is the infimum value can be reached in \p
this. Always <CODE>true</CODE> when \p this bounds \p expr.
Present for interface compatibility with class Polyhedron, where
closure points can result in a value of false.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from below,
<CODE>false</CODE> is returned and \p inf_n, \p inf_d
and \p minimum are left untouched.
*/
bool minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty and
\p expr is bounded from below in \p *this, in which case the
infimum value and a point where \p expr reaches it are computed.
\param expr
The linear expression to be minimized subject to \p *this;
\param inf_n
The numerator of the infimum value;
\param inf_d
The denominator of the infimum value;
\param minimum
<CODE>true</CODE> if the is the infimum value can be reached in \p
this. Always <CODE>true</CODE> when \p this bounds \p expr.
Present for interface compatibility with class Polyhedron, where
closure points can result in a value of false;
\param point
When minimization succeeds, will be assigned a point where \p expr
reaches its infimum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from below,
<CODE>false</CODE> is returned and \p inf_n, \p inf_d, \p minimum
and \p point are left untouched.
*/
bool minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum,
Generator& point) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty and
\ref Grid_Frequency "frequency" for \p *this with respect to \p expr
is defined, in which case the frequency and the value for \p expr
that is closest to zero are computed.
\param expr
The linear expression for which the frequency is needed;
\param freq_n
The numerator of the maximum frequency of \p expr;
\param freq_d
The denominator of the maximum frequency of \p expr;
\param val_n
The numerator of them value of \p expr at a point in the grid
that is closest to zero;
\param val_d
The denominator of a value of \p expr at a point in the grid
that is closest to zero;
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or frequency is undefined with respect to \p expr,
then <CODE>false</CODE> is returned and \p freq_n, \p freq_d,
\p val_n and \p val_d are left untouched.
*/
bool frequency(const Linear_Expression& expr,
Coefficient& freq_n, Coefficient& freq_d,
Coefficient& val_n, Coefficient& val_d) const;
//! Returns <CODE>true</CODE> if and only if \p *this contains \p y.
/*!
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
bool contains(const Grid& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this strictly
contains \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
bool strictly_contains(const Grid& y) const;
//! Checks if all the invariants are satisfied.
/*!
\return
<CODE>true</CODE> if and only if \p *this satisfies all the
invariants and either \p check_not_empty is <CODE>false</CODE> or
\p *this is not empty.
\param check_not_empty
<CODE>true</CODE> if and only if, in addition to checking the
invariants, \p *this must be checked to be not empty.
The check is performed so as to intrude as little as possible. If
the library has been compiled with run-time assertions enabled,
error messages are written on <CODE>std::cerr</CODE> in case
invariants are violated. This is useful for the purpose of
debugging the library.
*/
bool OK(bool check_not_empty = false) const;
//@} // Member Functions that Do Not Modify the Grid
//! \name Space Dimension Preserving Member Functions that May Modify the Grid
//@{
//! Adds a copy of congruence \p cg to \p *this.
/*!
\exception std::invalid_argument
Thrown if \p *this and congruence \p cg are
dimension-incompatible.
*/
void add_congruence(const Congruence& cg);
/*! \brief
Adds a copy of grid generator \p g to the system of generators of
\p *this.
\exception std::invalid_argument
Thrown if \p *this and generator \p g are dimension-incompatible,
or if \p *this is an empty grid and \p g is not a point.
*/
void add_grid_generator(const Grid_Generator& g);
//! Adds a copy of each congruence in \p cgs to \p *this.
/*!
\param cgs
Contains the congruences that will be added to the system of
congruences of \p *this.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible.
*/
void add_congruences(const Congruence_System& cgs);
//! Adds the congruences in \p cgs to *this.
/*!
\param cgs
The congruence system to be added to \p *this. The congruences in
\p cgs may be recycled.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible.
\warning
The only assumption that can be made about \p cgs upon successful
or exceptional return is that it can be safely destroyed.
*/
void add_recycled_congruences(Congruence_System& cgs);
/*! \brief
Adds to \p *this a congruence equivalent to constraint \p c.
\param c
The constraint to be added.
\exception std::invalid_argument
Thrown if \p *this and \p c are dimension-incompatible
or if constraint \p c is not optimally supported by the grid domain.
*/
void add_constraint(const Constraint& c);
/*! \brief
Adds to \p *this congruences equivalent to the constraints in \p cs.
\param cs
The constraints to be added.
\exception std::invalid_argument
Thrown if \p *this and \p cs are dimension-incompatible
or if \p cs contains a constraint which is not optimally supported
by the grid domain.
*/
void add_constraints(const Constraint_System& cs);
/*! \brief
Adds to \p *this congruences equivalent to the constraints in \p cs.
\param cs
The constraints to be added. They may be recycled.
\exception std::invalid_argument
Thrown if \p *this and \p cs are dimension-incompatible
or if \p cs contains a constraint which is not optimally supported
by the grid domain.
\warning
The only assumption that can be made about \p cs upon successful
or exceptional return is that it can be safely destroyed.
*/
void add_recycled_constraints(Constraint_System& cs);
//! Uses a copy of the congruence \p cg to refine \p *this.
/*!
\param cg
The congruence used.
\exception std::invalid_argument
Thrown if \p *this and congruence \p cg are dimension-incompatible.
*/
void refine_with_congruence(const Congruence& cg);
//! Uses a copy of the congruences in \p cgs to refine \p *this.
/*!
\param cgs
The congruences used.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible.
*/
void refine_with_congruences(const Congruence_System& cgs);
//! Uses a copy of the constraint \p c to refine \p *this.
/*!
\param c
The constraint used. If it is not an equality, it will be ignored
\exception std::invalid_argument
Thrown if \p *this and \p c are dimension-incompatible.
*/
void refine_with_constraint(const Constraint& c);
//! Uses a copy of the constraints in \p cs to refine \p *this.
/*!
\param cs
The constraints used. Constraints that are not equalities are ignored.
\exception std::invalid_argument
Thrown if \p *this and \p cs are dimension-incompatible.
*/
void refine_with_constraints(const Constraint_System& cs);
/*! \brief
Adds a copy of the generators in \p gs to the system of generators
of \p *this.
\param gs
Contains the generators that will be added to the system of
generators of \p *this.
\exception std::invalid_argument
Thrown if \p *this and \p gs are dimension-incompatible, or if
\p *this is empty and the system of generators \p gs is not empty,
but has no points.
*/
void add_grid_generators(const Grid_Generator_System& gs);
/*! \brief
Adds the generators in \p gs to the system of generators of \p
*this.
\param gs
The generator system to be added to \p *this. The generators in
\p gs may be recycled.
\exception std::invalid_argument
Thrown if \p *this and \p gs are dimension-incompatible.
\warning
The only assumption that can be made about \p gs upon successful
or exceptional return is that it can be safely destroyed.
*/
void add_recycled_grid_generators(Grid_Generator_System& gs);
/*! \brief
Computes the \ref Cylindrification "cylindrification" of \p *this with
respect to space dimension \p var, assigning the result to \p *this.
\param var
The space dimension that will be unconstrained.
\exception std::invalid_argument
Thrown if \p var is not a space dimension of \p *this.
*/
void unconstrain(Variable var);
/*! \brief
Computes the \ref Cylindrification "cylindrification" of \p *this with
respect to the set of space dimensions \p vars,
assigning the result to \p *this.
\param vars
The set of space dimension that will be unconstrained.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with one of the
Variable objects contained in \p vars.
*/
void unconstrain(const Variables_Set& vars);
/*! \brief
Assigns to \p *this the intersection of \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void intersection_assign(const Grid& y);
/*! \brief
Assigns to \p *this the least upper bound of \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void upper_bound_assign(const Grid& y);
/*! \brief
If the upper bound of \p *this and \p y is exact it is assigned to \p
*this and <CODE>true</CODE> is returned, otherwise
<CODE>false</CODE> is returned.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
bool upper_bound_assign_if_exact(const Grid& y);
/*! \brief
Assigns to \p *this the \ref Convex_Polyhedral_Difference "grid-difference"
of \p *this and \p y.
The grid difference between grids x and y is the smallest grid
containing all the points from x and y that are only in x.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void difference_assign(const Grid& y);
/*! \brief
Assigns to \p *this a \ref Meet_Preserving_Simplification
"meet-preserving simplification" of \p *this with respect to \p y.
If \c false is returned, then the intersection is empty.
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
bool simplify_using_context_assign(const Grid& y);
/*! \brief
Assigns to \p *this the \ref Grid_Affine_Transformation
"affine image" of \p
*this under the function mapping variable \p var to the affine
expression specified by \p expr and \p denominator.
\param var
The variable to which the affine expression is assigned;
\param expr
The numerator of the affine expression;
\param denominator
The denominator of the affine expression (optional argument with
default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of
\p *this.
\if Include_Implementation_Details
When considering the generators of a grid, the
affine transformation
\f[
\frac{\sum_{i=0}^{n-1} a_i x_i + b}{\mathrm{denominator}}
\f]
is assigned to \p var where \p expr is
\f$\sum_{i=0}^{n-1} a_i x_i + b\f$
(\f$b\f$ is the inhomogeneous term).
If congruences are up-to-date, it uses the specialized function
affine_preimage() (for the system of congruences)
and inverse transformation to reach the same result.
To obtain the inverse transformation we use the following observation.
Observation:
-# The affine transformation is invertible if the coefficient
of \p var in this transformation (i.e., \f$a_\mathrm{var}\f$)
is different from zero.
-# If the transformation is invertible, then we can write
\f[
\mathrm{denominator} * {x'}_\mathrm{var}
= \sum_{i = 0}^{n - 1} a_i x_i + b
= a_\mathrm{var} x_\mathrm{var}
+ \sum_{i \neq var} a_i x_i + b,
\f]
so that the inverse transformation is
\f[
a_\mathrm{var} x_\mathrm{var}
= \mathrm{denominator} * {x'}_\mathrm{var}
- \sum_{i \neq j} a_i x_i - b.
\f]
Then, if the transformation is invertible, all the entities that
were up-to-date remain up-to-date. Otherwise only generators remain
up-to-date.
\endif
*/
void affine_image(Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the \ref Grid_Affine_Transformation
"affine preimage" of
\p *this under the function mapping variable \p var to the affine
expression specified by \p expr and \p denominator.
\param var
The variable to which the affine expression is substituted;
\param expr
The numerator of the affine expression;
\param denominator
The denominator of the affine expression (optional argument with
default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of \p *this.
\if Include_Implementation_Details
When considering congruences of a grid, the affine transformation
\f[
\frac{\sum_{i=0}^{n-1} a_i x_i + b}{denominator},
\f]
is assigned to \p var where \p expr is
\f$\sum_{i=0}^{n-1} a_i x_i + b\f$
(\f$b\f$ is the inhomogeneous term).
If generators are up-to-date, then the specialized function
affine_image() is used (for the system of generators)
and inverse transformation to reach the same result.
To obtain the inverse transformation, we use the following observation.
Observation:
-# The affine transformation is invertible if the coefficient
of \p var in this transformation (i.e. \f$a_\mathrm{var}\f$)
is different from zero.
-# If the transformation is invertible, then we can write
\f[
\mathrm{denominator} * {x'}_\mathrm{var}
= \sum_{i = 0}^{n - 1} a_i x_i + b
= a_\mathrm{var} x_\mathrm{var}
+ \sum_{i \neq \mathrm{var}} a_i x_i + b,
\f],
the inverse transformation is
\f[
a_\mathrm{var} x_\mathrm{var}
= \mathrm{denominator} * {x'}_\mathrm{var}
- \sum_{i \neq j} a_i x_i - b.
\f].
Then, if the transformation is invertible, all the entities that
were up-to-date remain up-to-date. Otherwise only congruences remain
up-to-date.
\endif
*/
void affine_preimage(Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the image of \p *this with respect to
the \ref Grid_Generalized_Image "generalized affine relation"
\f$\mathrm{var}' = \frac{\mathrm{expr}}{\mathrm{denominator}}
\pmod{\mathrm{modulus}}\f$.
\param var
The left hand side variable of the generalized affine relation;
\param relsym
The relation symbol where EQUAL is the symbol for a congruence
relation;
\param expr
The numerator of the right hand side affine expression;
\param denominator
The denominator of the right hand side affine expression.
Optional argument with an automatic value of one;
\param modulus
The modulus of the congruence lhs %= rhs. A modulus of zero
indicates lhs == rhs. Optional argument with an automatic value
of zero.
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of \p
*this.
*/
void
generalized_affine_image(Variable var,
Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one(),
Coefficient_traits::const_reference modulus
= Coefficient_zero());
/*! \brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Grid_Generalized_Image "generalized affine relation"
\f$\mathrm{var}' = \frac{\mathrm{expr}}{\mathrm{denominator}}
\pmod{\mathrm{modulus}}\f$.
\param var
The left hand side variable of the generalized affine relation;
\param relsym
The relation symbol where EQUAL is the symbol for a congruence
relation;
\param expr
The numerator of the right hand side affine expression;
\param denominator
The denominator of the right hand side affine expression.
Optional argument with an automatic value of one;
\param modulus
The modulus of the congruence lhs %= rhs. A modulus of zero
indicates lhs == rhs. Optional argument with an automatic value
of zero.
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of \p
*this.
*/
void
generalized_affine_preimage(Variable var,
Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one(),
Coefficient_traits::const_reference modulus
= Coefficient_zero());
/*! \brief
Assigns to \p *this the image of \p *this with respect to
the \ref Grid_Generalized_Image "generalized affine relation"
\f$\mathrm{lhs}' = \mathrm{rhs} \pmod{\mathrm{modulus}}\f$.
\param lhs
The left hand side affine expression.
\param relsym
The relation symbol where EQUAL is the symbol for a congruence
relation;
\param rhs
The right hand side affine expression.
\param modulus
The modulus of the congruence lhs %= rhs. A modulus of zero
indicates lhs == rhs. Optional argument with an automatic value
of zero.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p lhs or \p
rhs.
*/
void
generalized_affine_image(const Linear_Expression& lhs,
Relation_Symbol relsym,
const Linear_Expression& rhs,
Coefficient_traits::const_reference modulus
= Coefficient_zero());
/*! \brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Grid_Generalized_Image "generalized affine relation"
\f$\mathrm{lhs}' = \mathrm{rhs} \pmod{\mathrm{modulus}}\f$.
\param lhs
The left hand side affine expression;
\param relsym
The relation symbol where EQUAL is the symbol for a congruence
relation;
\param rhs
The right hand side affine expression;
\param modulus
The modulus of the congruence lhs %= rhs. A modulus of zero
indicates lhs == rhs. Optional argument with an automatic value
of zero.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p lhs or \p
rhs.
*/
void
generalized_affine_preimage(const Linear_Expression& lhs,
Relation_Symbol relsym,
const Linear_Expression& rhs,
Coefficient_traits::const_reference modulus
= Coefficient_zero());
/*!
\brief
Assigns to \p *this the image of \p *this with respect to the
\ref Single_Update_Bounded_Affine_Relations "bounded affine relation"
\f$\frac{\mathrm{lb\_expr}}{\mathrm{denominator}}
\leq \mathrm{var}'
\leq \frac{\mathrm{ub\_expr}}{\mathrm{denominator}}\f$.
\param var
The variable updated by the affine relation;
\param lb_expr
The numerator of the lower bounding affine expression;
\param ub_expr
The numerator of the upper bounding affine expression;
\param denominator
The (common) denominator for the lower and upper bounding
affine expressions (optional argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p lb_expr (resp., \p ub_expr)
and \p *this are dimension-incompatible or if \p var is not a space
dimension of \p *this.
*/
void bounded_affine_image(Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*!
\brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Single_Update_Bounded_Affine_Relations "bounded affine relation"
\f$\frac{\mathrm{lb\_expr}}{\mathrm{denominator}}
\leq \mathrm{var}'
\leq \frac{\mathrm{ub\_expr}}{\mathrm{denominator}}\f$.
\param var
The variable updated by the affine relation;
\param lb_expr
The numerator of the lower bounding affine expression;
\param ub_expr
The numerator of the upper bounding affine expression;
\param denominator
The (common) denominator for the lower and upper bounding
affine expressions (optional argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p lb_expr (resp., \p ub_expr)
and \p *this are dimension-incompatible or if \p var is not a space
dimension of \p *this.
*/
void bounded_affine_preimage(Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the result of computing the \ref Grid_Time_Elapse
"time-elapse" between \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void time_elapse_assign(const Grid& y);
/*! \brief
\ref Wrapping_Operator "Wraps" the specified dimensions of the
vector space.
\param vars
The set of Variable objects corresponding to the space dimensions
to be wrapped.
\param w
The width of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param r
The representation of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param o
The overflow behavior of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param cs_p
Possibly null pointer to a constraint system.
This argument is for compatibility with wrap_assign()
for the other domains and only checked for dimension-compatibility.
\param complexity_threshold
A precision parameter of the \ref Wrapping_Operator "wrapping operator".
This argument is for compatibility with wrap_assign()
for the other domains and is ignored.
\param wrap_individually
<CODE>true</CODE> if the dimensions should be wrapped individually.
As wrapping dimensions collectively does not improve the precision,
this argument is ignored.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with one of the
Variable objects contained in \p vars or with <CODE>*cs_p</CODE>.
\warning
It is assumed that variables in \p Vars represent integers. Thus,
where the extra cost is negligible, the integrality of these
variables is enforced; possibly causing a non-integral grid to
become empty.
*/
void wrap_assign(const Variables_Set& vars,
Bounded_Integer_Type_Width w,
Bounded_Integer_Type_Representation r,
Bounded_Integer_Type_Overflow o,
const Constraint_System* cs_p = 0,
unsigned complexity_threshold = 16,
bool wrap_individually = true);
/*! \brief
Possibly tightens \p *this by dropping all points with non-integer
coordinates.
\param complexity
This argument is ignored as the algorithm used has polynomial
complexity.
*/
void drop_some_non_integer_points(Complexity_Class complexity
= ANY_COMPLEXITY);
/*! \brief
Possibly tightens \p *this by dropping all points with non-integer
coordinates for the space dimensions corresponding to \p vars.
\param vars
Points with non-integer coordinates for these variables/space-dimensions
can be discarded.
\param complexity
This argument is ignored as the algorithm used has polynomial
complexity.
*/
void drop_some_non_integer_points(const Variables_Set& vars,
Complexity_Class complexity
= ANY_COMPLEXITY);
//! Assigns to \p *this its topological closure.
void topological_closure_assign();
/*! \brief
Assigns to \p *this the result of computing the \ref Grid_Widening
"Grid widening" between \p *this and \p y using congruence systems.
\param y
A grid that <EM>must</EM> be contained in \p *this;
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Grid_Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void congruence_widening_assign(const Grid& y, unsigned* tp = NULL);
/*! \brief
Assigns to \p *this the result of computing the \ref Grid_Widening
"Grid widening" between \p *this and \p y using generator systems.
\param y
A grid that <EM>must</EM> be contained in \p *this;
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Grid_Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void generator_widening_assign(const Grid& y, unsigned* tp = NULL);
/*! \brief
Assigns to \p *this the result of computing the \ref Grid_Widening
"Grid widening" between \p *this and \p y.
This widening uses either the congruence or generator systems
depending on which of the systems describing x and y
are up to date and minimized.
\param y
A grid that <EM>must</EM> be contained in \p *this;
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Grid_Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void widening_assign(const Grid& y, unsigned* tp = NULL);
/*! \brief
Improves the result of the congruence variant of
\ref Grid_Widening "Grid widening" computation by also enforcing
those congruences in \p cgs that are satisfied by all the points
of \p *this.
\param y
A grid that <EM>must</EM> be contained in \p *this;
\param cgs
The system of congruences used to improve the widened grid;
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Grid_Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this, \p y and \p cgs are dimension-incompatible.
*/
void limited_congruence_extrapolation_assign(const Grid& y,
const Congruence_System& cgs,
unsigned* tp = NULL);
/*! \brief
Improves the result of the generator variant of the
\ref Grid_Widening "Grid widening"
computation by also enforcing those congruences in \p cgs that are
satisfied by all the points of \p *this.
\param y
A grid that <EM>must</EM> be contained in \p *this;
\param cgs
The system of congruences used to improve the widened grid;
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Grid_Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this, \p y and \p cgs are dimension-incompatible.
*/
void limited_generator_extrapolation_assign(const Grid& y,
const Congruence_System& cgs,
unsigned* tp = NULL);
/*! \brief
Improves the result of the \ref Grid_Widening "Grid widening"
computation by also enforcing those congruences in \p cgs that are
satisfied by all the points of \p *this.
\param y
A grid that <EM>must</EM> be contained in \p *this;
\param cgs
The system of congruences used to improve the widened grid;
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Grid_Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this, \p y and \p cgs are dimension-incompatible.
*/
void limited_extrapolation_assign(const Grid& y,
const Congruence_System& cgs,
unsigned* tp = NULL);
//@} // Space Dimension Preserving Member Functions that May Modify [...]
//! \name Member Functions that May Modify the Dimension of the Vector Space
//@{
/*! \brief
\ref Adding_New_Dimensions_to_the_Vector_Space "Adds"
\p m new space dimensions and embeds the old grid in the new
vector space.
\param m
The number of dimensions to add.
\exception std::length_error
Thrown if adding \p m new space dimensions would cause the vector
space to exceed dimension <CODE>max_space_dimension()</CODE>.
The new space dimensions will be those having the highest indexes
in the new grid, which is characterized by a system of congruences
in which the variables which are the new dimensions can have any
value. For instance, when starting from the grid \f$\cL \sseq
\Rset^2\f$ and adding a third space dimension, the result will be
the grid
\f[
\bigl\{\,
(x, y, z)^\transpose \in \Rset^3
\bigm|
(x, y)^\transpose \in \cL
\,\bigr\}.
\f]
*/
void add_space_dimensions_and_embed(dimension_type m);
/*! \brief
\ref Adding_New_Dimensions_to_the_Vector_Space "Adds"
\p m new space dimensions to the grid and does not embed it
in the new vector space.
\param m
The number of space dimensions to add.
\exception std::length_error
Thrown if adding \p m new space dimensions would cause the
vector space to exceed dimension <CODE>max_space_dimension()</CODE>.
The new space dimensions will be those having the highest indexes
in the new grid, which is characterized by a system of congruences
in which the variables running through the new dimensions are all
constrained to be equal to 0. For instance, when starting from
the grid \f$\cL \sseq \Rset^2\f$ and adding a third space
dimension, the result will be the grid
\f[
\bigl\{\,
(x, y, 0)^\transpose \in \Rset^3
\bigm|
(x, y)^\transpose \in \cL
\,\bigr\}.
\f]
*/
void add_space_dimensions_and_project(dimension_type m);
/*! \brief
Assigns to \p *this the \ref Concatenating_Polyhedra "concatenation" of
\p *this and \p y, taken in this order.
\exception std::length_error
Thrown if the concatenation would cause the vector space
to exceed dimension <CODE>max_space_dimension()</CODE>.
*/
void concatenate_assign(const Grid& y);
//! Removes all the specified dimensions from the vector space.
/*!
\param vars
The set of Variable objects corresponding to the space dimensions
to be removed.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with one of the
Variable objects contained in \p vars.
*/
void remove_space_dimensions(const Variables_Set& vars);
/*! \brief
Removes the higher dimensions of the vector space so that the
resulting space will have \ref Removing_Dimensions_from_the_Vector_Space
"dimension \p new_dimension."
\exception std::invalid_argument
Thrown if \p new_dimensions is greater than the space dimension of
\p *this.
*/
void remove_higher_space_dimensions(dimension_type new_dimension);
/*! \brief
Remaps the dimensions of the vector space according to
a \ref Mapping_the_Dimensions_of_the_Vector_Space "partial function".
If \p pfunc maps only some of the dimensions of \p *this then the
rest will be projected away.
If the highest dimension mapped to by \p pfunc is higher than the
highest dimension in \p *this then the number of dimensions in \p
*this will be increased to the highest dimension mapped to by \p
pfunc.
\param pfunc
The partial function specifying the destiny of each space
dimension.
The template type parameter Partial_Function must provide
the following methods.
\code
bool has_empty_codomain() const
\endcode
returns <CODE>true</CODE> if and only if the represented partial
function has an empty codomain (i.e., it is always undefined).
The <CODE>has_empty_codomain()</CODE> method will always be called
before the methods below. However, if
<CODE>has_empty_codomain()</CODE> returns <CODE>true</CODE>, none
of the functions below will be called.
\code
dimension_type max_in_codomain() const
\endcode
returns the maximum value that belongs to the codomain of the
partial function.
The <CODE>max_in_codomain()</CODE> method is called at most once.
\code
bool maps(dimension_type i, dimension_type& j) const
\endcode
Let \f$f\f$ be the represented function and \f$k\f$ be the value
of \p i. If \f$f\f$ is defined in \f$k\f$, then \f$f(k)\f$ is
assigned to \p j and <CODE>true</CODE> is returned. If \f$f\f$ is
undefined in \f$k\f$, then <CODE>false</CODE> is returned.
This method is called at most \f$n\f$ times, where \f$n\f$ is the
dimension of the vector space enclosing the grid.
The result is undefined if \p pfunc does not encode a partial
function with the properties described in the
\ref Mapping_the_Dimensions_of_the_Vector_Space "specification of the mapping operator".
*/
template <typename Partial_Function>
void map_space_dimensions(const Partial_Function& pfunc);
//! Creates \p m copies of the space dimension corresponding to \p var.
/*!
\param var
The variable corresponding to the space dimension to be replicated;
\param m
The number of replicas to be created.
\exception std::invalid_argument
Thrown if \p var does not correspond to a dimension of the vector
space.
\exception std::length_error
Thrown if adding \p m new space dimensions would cause the vector
space to exceed dimension <CODE>max_space_dimension()</CODE>.
If \p *this has space dimension \f$n\f$, with \f$n > 0\f$,
and <CODE>var</CODE> has space dimension \f$k \leq n\f$,
then the \f$k\f$-th space dimension is
\ref Expanding_One_Dimension_of_the_Vector_Space_to_Multiple_Dimensions
"expanded" to \p m new space dimensions
\f$n\f$, \f$n+1\f$, \f$\dots\f$, \f$n+m-1\f$.
*/
void expand_space_dimension(Variable var, dimension_type m);
//! Folds the space dimensions in \p vars into \p dest.
/*!
\param vars
The set of Variable objects corresponding to the space dimensions
to be folded;
\param dest
The variable corresponding to the space dimension that is the
destination of the folding operation.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p dest or with
one of the Variable objects contained in \p vars. Also
thrown if \p dest is contained in \p vars.
If \p *this has space dimension \f$n\f$, with \f$n > 0\f$,
<CODE>dest</CODE> has space dimension \f$k \leq n\f$,
\p vars is a set of variables whose maximum space dimension
is also less than or equal to \f$n\f$, and \p dest is not a member
of \p vars, then the space dimensions corresponding to
variables in \p vars are
\ref Folding_Multiple_Dimensions_of_the_Vector_Space_into_One_Dimension "folded"
into the \f$k\f$-th space dimension.
*/
void fold_space_dimensions(const Variables_Set& vars, Variable dest);
//@} // Member Functions that May Modify the Dimension of the Vector Space
friend bool operator==(const Grid& x, const Grid& y);
friend class Parma_Polyhedra_Library::Grid_Certificate;
template <typename Interval> friend class Parma_Polyhedra_Library::Box;
//! \name Miscellaneous Member Functions
//@{
//! Destructor.
~Grid();
/*! \brief
Swaps \p *this with grid \p y. (\p *this and \p y can be
dimension-incompatible.)
*/
void m_swap(Grid& y);
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
/*! \brief
Returns a 32-bit hash code for \p *this.
If \p x and \p y are such that <CODE>x == y</CODE>,
then <CODE>x.hash_code() == y.hash_code()</CODE>.
*/
int32_t hash_code() const;
//@} // Miscellaneous Member Functions
private:
//! The system of congruences.
Congruence_System con_sys;
//! The system of generators.
Grid_Generator_System gen_sys;
#define PPL_IN_Grid_CLASS
/* Automatically generated from PPL source file ../src/Grid_Status_idefs.hh line 1. */
/* Grid::Status class declaration.
*/
#ifndef PPL_IN_Grid_CLASS
#error "Do not include Grid_Status_idefs.hh directly; use Grid_defs.hh instead"
#endif
//! A conjunctive assertion about a grid.
/*!
The assertions supported that are in use are:
- <EM>zero-dim universe</EM>: the grid is the zero-dimension
vector space \f$\Rset^0 = \{\cdot\}\f$;
- <EM>empty</EM>: the grid is the empty set;
- <EM>congruences up-to-date</EM>: the grid is correctly
characterized by the attached system of congruences, modulo the
processing of pending generators;
- <EM>generators up-to-date</EM>: the grid is correctly
characterized by the attached system of generators, modulo the
processing of pending congruences;
- <EM>congruences minimized</EM>: the non-pending part of the system
of congruences attached to the grid is in minimal form;
- <EM>generators minimized</EM>: the non-pending part of the system
of generators attached to the grid is in minimal form.
Other supported assertions are:
- <EM>congruences pending</EM>
- <EM>generators pending</EM>
- <EM>congruences' saturation matrix up-to-date</EM>
- <EM>generators' saturation matrix up-to-date</EM>.
Not all the conjunctions of these elementary assertions constitute
a legal Status. In fact:
- <EM>zero-dim universe</EM> excludes any other assertion;
- <EM>empty</EM>: excludes any other assertion;
- <EM>congruences pending</EM> and <EM>generators pending</EM>
are mutually exclusive;
- <EM>congruences pending</EM> implies both <EM>congruences minimized</EM>
and <EM>generators minimized</EM>;
- <EM>generators pending</EM> implies both <EM>congruences minimized</EM>
and <EM>generators minimized</EM>;
- <EM>congruences minimized</EM> implies <EM>congruences up-to-date</EM>;
- <EM>generators minimized</EM> implies <EM>generators up-to-date</EM>;
- <EM>congruences' saturation matrix up-to-date</EM> implies both
<EM>congruences up-to-date</EM> and <EM>generators up-to-date</EM>;
- <EM>generators' saturation matrix up-to-date</EM> implies both
<EM>congruences up-to-date</EM> and <EM>generators up-to-date</EM>.
*/
class Status {
public:
//! By default Status is the <EM>zero-dim universe</EM> assertion.
Status();
//! \name Test, remove or add an individual assertion from the conjunction
//@{
bool test_zero_dim_univ() const;
void reset_zero_dim_univ();
void set_zero_dim_univ();
bool test_empty() const;
void reset_empty();
void set_empty();
bool test_c_up_to_date() const;
void reset_c_up_to_date();
void set_c_up_to_date();
bool test_g_up_to_date() const;
void reset_g_up_to_date();
void set_g_up_to_date();
bool test_c_minimized() const;
void reset_c_minimized();
void set_c_minimized();
bool test_g_minimized() const;
void reset_g_minimized();
void set_g_minimized();
bool test_sat_c_up_to_date() const;
void reset_sat_c_up_to_date();
void set_sat_c_up_to_date();
bool test_sat_g_up_to_date() const;
void reset_sat_g_up_to_date();
void set_sat_g_up_to_date();
bool test_c_pending() const;
void reset_c_pending();
void set_c_pending();
bool test_g_pending() const;
void reset_g_pending();
void set_g_pending();
//@} // Test, remove or add an individual assertion from the conjunction
//! Checks if all the invariants are satisfied.
bool OK() const;
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
private:
//! Status is implemented by means of a finite bitset.
typedef unsigned int flags_t;
//! \name Bitmasks for the individual assertions
//@{
static const flags_t ZERO_DIM_UNIV = 0U;
static const flags_t EMPTY = 1U << 0;
static const flags_t C_UP_TO_DATE = 1U << 1;
static const flags_t G_UP_TO_DATE = 1U << 2;
static const flags_t C_MINIMIZED = 1U << 3;
static const flags_t G_MINIMIZED = 1U << 4;
static const flags_t SAT_C_UP_TO_DATE = 1U << 5;
static const flags_t SAT_G_UP_TO_DATE = 1U << 6;
static const flags_t CS_PENDING = 1U << 7;
static const flags_t GS_PENDING = 1U << 8;
//@} // Bitmasks for the individual assertions
//! This holds the current bitset.
flags_t flags;
//! Construct from a bitmask.
Status(flags_t mask);
//! Check whether <EM>all</EM> bits in \p mask are set.
bool test_all(flags_t mask) const;
//! Check whether <EM>at least one</EM> bit in \p mask is set.
bool test_any(flags_t mask) const;
//! Set the bits in \p mask.
void set(flags_t mask);
//! Reset the bits in \p mask.
void reset(flags_t mask);
};
/* Automatically generated from PPL source file ../src/Grid_defs.hh line 1977. */
#undef PPL_IN_Grid_CLASS
//! The status flags to keep track of the grid's internal state.
Status status;
//! The number of dimensions of the enclosing vector space.
dimension_type space_dim;
enum Dimension_Kind {
PARAMETER = 0,
LINE = 1,
GEN_VIRTUAL = 2,
PROPER_CONGRUENCE = PARAMETER,
CON_VIRTUAL = LINE,
EQUALITY = GEN_VIRTUAL
};
typedef std::vector<Dimension_Kind> Dimension_Kinds;
// The type of row associated with each dimension. If the virtual
// rows existed then the reduced systems would be square and upper
// or lower triangular, and the rows in each would have the types
// given in this vector. As the congruence system is reduced to an
// upside-down lower triangular form the ordering of the congruence
// types is last to first.
Dimension_Kinds dim_kinds;
//! Builds a grid universe or empty grid.
/*!
\param num_dimensions
The number of dimensions of the vector space enclosing the grid;
\param kind
specifies whether the universe or the empty grid has to be built.
*/
void construct(dimension_type num_dimensions, Degenerate_Element kind);
//! Builds a grid from a system of congruences.
/*!
The grid inherits the space dimension of the congruence system.
\param cgs
The system of congruences defining the grid. Its data-structures
may be recycled to build the grid.
*/
void construct(Congruence_System& cgs);
//! Builds a grid from a system of grid generators.
/*!
The grid inherits the space dimension of the generator system.
\param ggs
The system of grid generators defining the grid. Its data-structures
may be recycled to build the grid.
*/
void construct(Grid_Generator_System& ggs);
//! \name Private Verifiers: Verify if Individual Flags are Set
//@{
//! Returns <CODE>true</CODE> if the grid is known to be empty.
/*!
The return value <CODE>false</CODE> does not necessarily
implies that \p *this is non-empty.
*/
bool marked_empty() const;
//! Returns <CODE>true</CODE> if the system of congruences is up-to-date.
bool congruences_are_up_to_date() const;
//! Returns <CODE>true</CODE> if the system of generators is up-to-date.
bool generators_are_up_to_date() const;
//! Returns <CODE>true</CODE> if the system of congruences is minimized.
bool congruences_are_minimized() const;
//! Returns <CODE>true</CODE> if the system of generators is minimized.
bool generators_are_minimized() const;
//@} // Private Verifiers: Verify if Individual Flags are Set
//! \name State Flag Setters: Set Only the Specified Flags
//@{
/*! \brief
Sets \p status to express that the grid is the universe
0-dimension vector space, clearing all corresponding matrices.
*/
void set_zero_dim_univ();
/*! \brief
Sets \p status to express that the grid is empty, clearing all
corresponding matrices.
*/
void set_empty();
//! Sets \p status to express that congruences are up-to-date.
void set_congruences_up_to_date();
//! Sets \p status to express that generators are up-to-date.
void set_generators_up_to_date();
//! Sets \p status to express that congruences are minimized.
void set_congruences_minimized();
//! Sets \p status to express that generators are minimized.
void set_generators_minimized();
//@} // State Flag Setters: Set Only the Specified Flags
//! \name State Flag Cleaners: Clear Only the Specified Flag
//@{
//! Clears the \p status flag indicating that the grid is empty.
void clear_empty();
//! Sets \p status to express that congruences are out of date.
void clear_congruences_up_to_date();
//! Sets \p status to express that generators are out of date.
void clear_generators_up_to_date();
//! Sets \p status to express that congruences are no longer minimized.
void clear_congruences_minimized();
//! Sets \p status to express that generators are no longer minimized.
void clear_generators_minimized();
//@} // State Flag Cleaners: Clear Only the Specified Flag
//! \name Updating Matrices
//@{
//! Updates and minimizes the congruences from the generators.
void update_congruences() const;
//! Updates and minimizes the generators from the congruences.
/*!
\return
<CODE>false</CODE> if and only if \p *this turns out to be an
empty grid.
It is illegal to call this method when the Status field already
declares the grid to be empty.
*/
bool update_generators() const;
//@} // Updating Matrices
//! \name Minimization of Descriptions
//@{
//! Minimizes both the congruences and the generators.
/*!
\return
<CODE>false</CODE> if and only if \p *this turns out to be an
empty grid.
Minimization is performed on each system only if the minimized
Status field is clear.
*/
bool minimize() const;
//@} // Minimization of Descriptions
enum Three_Valued_Boolean {
TVB_TRUE,
TVB_FALSE,
TVB_DONT_KNOW
};
//! Polynomial but incomplete equivalence test between grids.
Three_Valued_Boolean quick_equivalence_test(const Grid& y) const;
//! Returns <CODE>true</CODE> if and only if \p *this is included in \p y.
bool is_included_in(const Grid& y) const;
//! Checks if and how \p expr is bounded in \p *this.
/*!
Returns <CODE>true</CODE> if and only if \p from_above is
<CODE>true</CODE> and \p expr is bounded from above in \p *this,
or \p from_above is <CODE>false</CODE> and \p expr is bounded
from below in \p *this.
\param expr
The linear expression to test;
\param method_call
The call description of the public parent method, for example
"bounded_from_above(e)". Passed to throw_dimension_incompatible,
as the first argument.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds(const Linear_Expression& expr, const char* method_call) const;
//! Maximizes or minimizes \p expr subject to \p *this.
/*!
\param expr
The linear expression to be maximized or minimized subject to \p
*this;
\param method_call
The call description of the public parent method, for example
"maximize(e)". Passed to throw_dimension_incompatible, as the
first argument;
\param ext_n
The numerator of the extremum value;
\param ext_d
The denominator of the extremum value;
\param included
<CODE>true</CODE> if and only if the extremum of \p expr in \p
*this can actually be reached (which is always the case);
\param point
When maximization or minimization succeeds, will be assigned the
point where \p expr reaches the extremum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded in the appropriate
direction, <CODE>false</CODE> is returned and \p ext_n, \p ext_d,
\p included and \p point are left untouched.
*/
bool max_min(const Linear_Expression& expr,
const char* method_call,
Coefficient& ext_n, Coefficient& ext_d, bool& included,
Generator* point = NULL) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty and
\ref Grid_Frequency "frequency" for \p *this with respect to \p expr
is defined, in which case the frequency and the value for \p expr
that is closest to zero are computed.
\param expr
The linear expression for which the frequency is needed;
\param freq_n
The numerator of the maximum frequency of \p expr;
\param freq_d
The denominator of the maximum frequency of \p expr;
\param val_n
The numerator of a value of \p expr at a point in the grid
that is closest to zero;
\param val_d
The denominator of a value of \p expr at a point in the grid
that is closest to zero;
If \p *this is empty or frequency is undefined with respect to \p expr,
then <CODE>false</CODE> is returned and \p freq_n, \p freq_d,
\p val_n and \p val_d are left untouched.
\warning
If \p expr and \p *this are dimension-incompatible,
the grid generator system is not minimized or \p *this is
empty, then the behavior is undefined.
*/
bool frequency_no_check(const Linear_Expression& expr,
Coefficient& freq_n, Coefficient& freq_d,
Coefficient& val_n, Coefficient& val_d) const;
//! Checks if and how \p expr is bounded in \p *this.
/*!
Returns <CODE>true</CODE> if and only if \p from_above is
<CODE>true</CODE> and \p expr is bounded from above in \p *this,
or \p from_above is <CODE>false</CODE> and \p expr is bounded
from below in \p *this.
\param expr
The linear expression to test;
*/
bool bounds_no_check(const Linear_Expression& expr) const;
/*! \brief
Adds the congruence \p cg to \p *this.
\warning
If \p cg and \p *this are dimension-incompatible,
the grid generator system is not minimized or \p *this is
empty, then the behavior is undefined.
*/
void add_congruence_no_check(const Congruence& cg);
/*! \brief
Uses the constraint \p c to refine \p *this.
\param c
The constraint to be added.
\exception std::invalid_argument
Thrown if c is a non-trivial inequality constraint.
\warning
If \p c and \p *this are dimension-incompatible,
the behavior is undefined.
*/
void add_constraint_no_check(const Constraint& c);
/*! \brief
Uses the constraint \p c to refine \p *this.
\param c
The constraint to be added.
Non-trivial inequalities are ignored.
\warning
If \p c and \p *this are dimension-incompatible,
the behavior is undefined.
*/
void refine_no_check(const Constraint& c);
//! \name Widening- and Extrapolation-Related Functions
//@{
//! Copies a widened selection of congruences from \p y to \p selected_cgs.
void select_wider_congruences(const Grid& y,
Congruence_System& selected_cgs) const;
//! Copies widened generators from \p y to \p widened_ggs.
void select_wider_generators(const Grid& y,
Grid_Generator_System& widened_ggs) const;
//@} // Widening- and Extrapolation-Related Functions
//! Adds new space dimensions to the given systems.
/*!
\param cgs
A congruence system, to which columns are added;
\param gs
A generator system, to which rows and columns are added;
\param dims
The number of space dimensions to add.
This method is invoked only by
<CODE>add_space_dimensions_and_embed()</CODE>.
*/
void add_space_dimensions(Congruence_System& cgs,
Grid_Generator_System& gs,
dimension_type dims);
//! Adds new space dimensions to the given systems.
/*!
\param gs
A generator system, to which columns are added;
\param cgs
A congruence system, to which rows and columns are added;
\param dims
The number of space dimensions to add.
This method is invoked only by
<CODE>add_space_dimensions_and_project()</CODE>.
*/
void add_space_dimensions(Grid_Generator_System& gs,
Congruence_System& cgs,
dimension_type dims);
//! \name Minimization-related Static Member Functions
//@{
//! Normalizes the divisors in \p sys.
/*!
Converts \p sys to an equivalent system in which the divisors are
of equal value.
\param sys
The generator system to be normalized. It must have at least one
row.
\param divisor
A reference to the initial value of the divisor. The resulting
value of this object is the new system divisor.
\param first_point
If \p first_point has a value other than NULL then it is taken as
the first point in \p sys, and it is assumed that any following
points have the same divisor as \p first_point.
*/
static void
normalize_divisors(Grid_Generator_System& sys,
Coefficient& divisor,
const Grid_Generator* first_point = NULL);
//! Normalizes the divisors in \p sys.
/*!
Converts \p sys to an equivalent system in which the divisors are
of equal value.
\param sys
The generator system to be normalized. It must have at least one
row.
*/
static void
normalize_divisors(Grid_Generator_System& sys);
//! Normalize all the divisors in \p sys and \p gen_sys.
/*!
Modify \p sys and \p gen_sys to use the same single divisor value
for all generators, leaving each system representing the grid it
represented originally.
\param sys
The first of the generator systems to be normalized.
\param gen_sys
The second of the generator systems to be normalized. This system
must have at least one row and the divisors of the generators in
this system must be equal.
\exception std::runtime_error
Thrown if all rows in \p gen_sys are lines and/or parameters.
*/
static void normalize_divisors(Grid_Generator_System& sys,
Grid_Generator_System& gen_sys);
/*! \brief
Converts generator system \p dest to be equivalent to congruence
system \p source.
*/
static void conversion(Congruence_System& source,
Grid_Generator_System& dest,
Dimension_Kinds& dim_kinds);
/*! \brief
Converts congruence system \p dest to be equivalent to generator
system \p source.
*/
static void conversion(Grid_Generator_System& source,
Congruence_System& dest,
Dimension_Kinds& dim_kinds);
//! Converts \p cgs to upper triangular (i.e. minimized) form.
/*!
Returns <CODE>true</CODE> if \p cgs represents the empty set,
otherwise returns <CODE>false</CODE>.
*/
static bool simplify(Congruence_System& cgs,
Dimension_Kinds& dim_kinds);
//! Converts \p gs to lower triangular (i.e. minimized) form.
/*!
Expects \p gs to contain at least one point.
*/
static void simplify(Grid_Generator_System& ggs,
Dimension_Kinds& dim_kinds);
//! Reduces the line \p row using the line \p pivot.
/*!
Uses the line \p pivot to change the representation of the line
\p row so that the element at index \p column of \p row is zero.
*/
// A member of Grid for access to Matrix<Dense_Row>::rows.
static void reduce_line_with_line(Grid_Generator& row,
Grid_Generator& pivot,
dimension_type column);
//! Reduces the equality \p row using the equality \p pivot.
/*!
Uses the equality \p pivot to change the representation of the
equality \p row so that the element at index \p column of \p row
is zero.
*/
// A member of Grid for access to Matrix<Dense_Row>::rows.
static void reduce_equality_with_equality(Congruence& row,
const Congruence& pivot,
dimension_type column);
//! Reduces \p row using \p pivot.
/*!
Uses the point, parameter or proper congruence at \p pivot to
change the representation of the point, parameter or proper
congruence at \p row so that the element at index \p column of \p row
is zero. Only elements from index \p start to index \p end are
modified (i.e. it is assumed that all other elements are zero).
This means that \p col must be in [start,end).
NOTE: This may invalidate the rows, since it messes with the divisors.
Client code has to fix that (if needed) and assert OK().
*/
// Part of Grid for access to Matrix<Dense_Row>::rows.
template <typename R>
static void reduce_pc_with_pc(R& row,
R& pivot,
dimension_type column,
dimension_type start,
dimension_type end);
//! Reduce \p row using \p pivot.
/*!
Use the line \p pivot to change the representation of the
parameter \p row such that the element at index \p column of \p row
is zero.
*/
// This takes a parameter with type Swapping_Vector<Grid_Generator> (instead
// of Grid_Generator_System) to simplify the implementation of `simplify()'.
// NOTE: This may invalidate `row' and the rows in `sys'. Client code must
// fix/check this.
static void reduce_parameter_with_line(Grid_Generator& row,
const Grid_Generator& pivot,
dimension_type column,
Swapping_Vector<Grid_Generator>& sys,
dimension_type num_columns);
//! Reduce \p row using \p pivot.
/*!
Use the equality \p pivot to change the representation of the
congruence \p row such that element at index \p column of \p row
is zero.
*/
// A member of Grid for access to Matrix<Dense_Row>::rows.
// This takes a parameter with type Swapping_Vector<Congruence> (instead of
// Congruence_System) to simplify the implementation of `conversion()'.
static void reduce_congruence_with_equality(Congruence& row,
const Congruence& pivot,
dimension_type column,
Swapping_Vector<Congruence>& sys);
//! Reduce column \p dim in rows preceding \p pivot_index in \p sys.
/*!
Required when converting (or simplifying) a congruence or generator
system to "strong minimal form"; informally, strong minimal form means
that, not only is the system in minimal form (ie a triangular matrix),
but also the absolute values of the coefficients of the proper congruences
and parameters are minimal. As a simple example, the set of congruences
\f$\{3x \equiv_3 0, 4x + y \equiv_3 1\}\f$,
(which is in minimal form) is equivalent to the set
\f$\{3x \equiv_3 0, x + y \equiv_3 1\}\f$
(which is in strong minimal form).
\param sys
The generator or congruence system to be reduced to strong minimal form.
\param dim
Column to be reduced.
\param pivot_index
Index of last row to be reduced.
\param start
Index of first column to be changed.
\param end
Index of last column to be changed.
\param sys_dim_kinds
Dimension kinds of the elements of \p sys.
\param generators
Flag indicating whether \p sys is a congruence or generator system
*/
template <typename M>
// This takes a parameter with type `Swapping_Vector<M::row_type>'
// instead of `M' to simplify the implementation of simplify().
// NOTE: This may invalidate the rows in `sys'. Client code must
// fix/check this.
static void reduce_reduced(Swapping_Vector<typename M::row_type>& sys,
dimension_type dim,
dimension_type pivot_index,
dimension_type start, dimension_type end,
const Dimension_Kinds& sys_dim_kinds,
bool generators = true);
//! Multiply the elements of \p dest by \p multiplier.
// A member of Grid for access to Matrix<Dense_Row>::rows and cgs::operator[].
// The type of `dest' is Swapping_Vector<Congruence> instead of
// Congruence_System to simplify the implementation of conversion().
static void multiply_grid(const Coefficient& multiplier,
Congruence& cg,
Swapping_Vector<Congruence>& dest,
dimension_type num_rows);
//! Multiply the elements of \p dest by \p multiplier.
// A member of Grid for access to Grid_Generator::operator[].
// The type of `dest' is Swapping_Vector<Grid_Generator> instead of
// Grid_Generator_System to simplify the implementation of conversion().
// NOTE: This does not check whether the rows are OK(). Client code
// should do that.
static void multiply_grid(const Coefficient& multiplier,
Grid_Generator& gen,
Swapping_Vector<Grid_Generator>& dest,
dimension_type num_rows);
/*! \brief
If \p sys is lower triangular return <CODE>true</CODE>, else
return <CODE>false</CODE>.
*/
static bool lower_triangular(const Congruence_System& sys,
const Dimension_Kinds& dim_kinds);
/*! \brief
If \p sys is upper triangular return <CODE>true</CODE>, else
return <CODE>false</CODE>.
*/
static bool upper_triangular(const Grid_Generator_System& sys,
const Dimension_Kinds& dim_kinds);
#ifndef NDEBUG
//! Checks that trailing rows contain only zero terms.
/*!
If all columns contain zero in the rows of \p system from row
index \p first to row index \p last then return <code>true</code>,
else return <code>false</code>. \p row_size gives the number of
columns in each row.
This method is only used in assertions in the simplify methods.
*/
template <typename M, typename R>
static bool rows_are_zero(M& system,
dimension_type first,
dimension_type last,
dimension_type row_size);
#endif
//@} // Minimization-Related Static Member Functions
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! \name Exception Throwers
//@{
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
protected:
void throw_dimension_incompatible(const char* method,
const char* other_name,
dimension_type other_dim) const;
void throw_dimension_incompatible(const char* method,
const char* gr_name,
const Grid& gr) const;
void throw_dimension_incompatible(const char* method,
const char* le_name,
const Linear_Expression& le) const;
void throw_dimension_incompatible(const char* method,
const char* cg_name,
const Congruence& cg) const;
void throw_dimension_incompatible(const char* method,
const char* c_name,
const Constraint& c) const;
void throw_dimension_incompatible(const char* method,
const char* g_name,
const Grid_Generator& g) const;
void throw_dimension_incompatible(const char* method,
const char* g_name,
const Generator& g) const;
void throw_dimension_incompatible(const char* method,
const char* cgs_name,
const Congruence_System& cgs) const;
void throw_dimension_incompatible(const char* method,
const char* cs_name,
const Constraint_System& cs) const;
void throw_dimension_incompatible(const char* method,
const char* gs_name,
const Grid_Generator_System& gs) const;
void throw_dimension_incompatible(const char* method,
const char* var_name,
Variable var) const;
void throw_dimension_incompatible(const char* method,
dimension_type required_space_dim) const;
static void throw_invalid_argument(const char* method,
const char* reason);
static void throw_invalid_constraint(const char* method,
const char* c_name);
static void throw_invalid_constraints(const char* method,
const char* cs_name);
static void throw_invalid_generator(const char* method,
const char* g_name);
static void throw_invalid_generators(const char* method,
const char* gs_name);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//@} // Exception Throwers
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
};
/* Automatically generated from PPL source file ../src/Grid_Status_inlines.hh line 1. */
/* Grid::Status class implementation: inline functions.
*/
namespace Parma_Polyhedra_Library {
inline
Grid::Status::Status(flags_t mask)
: flags(mask) {
}
inline
Grid::Status::Status()
: flags(ZERO_DIM_UNIV) {
}
inline bool
Grid::Status::test_all(flags_t mask) const {
return (flags & mask) == mask;
}
inline bool
Grid::Status::test_any(flags_t mask) const {
return (flags & mask) != 0;
}
inline void
Grid::Status::set(flags_t mask) {
flags |= mask;
}
inline void
Grid::Status::reset(flags_t mask) {
flags &= ~mask;
}
inline bool
Grid::Status::test_zero_dim_univ() const {
return flags == ZERO_DIM_UNIV;
}
inline void
Grid::Status::reset_zero_dim_univ() {
// This is a no-op if the current status is not zero-dim.
if (flags == ZERO_DIM_UNIV)
// In the zero-dim space, if it is not the universe it is empty.
flags = EMPTY;
}
inline void
Grid::Status::set_zero_dim_univ() {
// Zero-dim universe is incompatible with anything else.
flags = ZERO_DIM_UNIV;
}
inline bool
Grid::Status::test_empty() const {
return test_any(EMPTY);
}
inline void
Grid::Status::reset_empty() {
reset(EMPTY);
}
inline void
Grid::Status::set_empty() {
flags = EMPTY;
}
inline bool
Grid::Status::test_c_up_to_date() const {
return test_any(C_UP_TO_DATE);
}
inline void
Grid::Status::reset_c_up_to_date() {
reset(C_UP_TO_DATE);
}
inline void
Grid::Status::set_c_up_to_date() {
set(C_UP_TO_DATE);
}
inline bool
Grid::Status::test_g_up_to_date() const {
return test_any(G_UP_TO_DATE);
}
inline void
Grid::Status::reset_g_up_to_date() {
reset(G_UP_TO_DATE);
}
inline void
Grid::Status::set_g_up_to_date() {
set(G_UP_TO_DATE);
}
inline bool
Grid::Status::test_c_minimized() const {
return test_any(C_MINIMIZED);
}
inline void
Grid::Status::reset_c_minimized() {
reset(C_MINIMIZED);
}
inline void
Grid::Status::set_c_minimized() {
set(C_MINIMIZED);
}
inline bool
Grid::Status::test_g_minimized() const {
return test_any(G_MINIMIZED);
}
inline void
Grid::Status::reset_g_minimized() {
reset(G_MINIMIZED);
}
inline void
Grid::Status::set_g_minimized() {
set(G_MINIMIZED);
}
inline bool
Grid::Status::test_c_pending() const {
return test_any(CS_PENDING);
}
inline void
Grid::Status::reset_c_pending() {
reset(CS_PENDING);
}
inline void
Grid::Status::set_c_pending() {
set(CS_PENDING);
}
inline bool
Grid::Status::test_g_pending() const {
return test_any(GS_PENDING);
}
inline void
Grid::Status::reset_g_pending() {
reset(GS_PENDING);
}
inline void
Grid::Status::set_g_pending() {
set(GS_PENDING);
}
inline bool
Grid::Status::test_sat_c_up_to_date() const {
return test_any(SAT_C_UP_TO_DATE);
}
inline void
Grid::Status::reset_sat_c_up_to_date() {
reset(SAT_C_UP_TO_DATE);
}
inline void
Grid::Status::set_sat_c_up_to_date() {
set(SAT_C_UP_TO_DATE);
}
inline bool
Grid::Status::test_sat_g_up_to_date() const {
return test_any(SAT_G_UP_TO_DATE);
}
inline void
Grid::Status::reset_sat_g_up_to_date() {
reset(SAT_G_UP_TO_DATE);
}
inline void
Grid::Status::set_sat_g_up_to_date() {
set(SAT_G_UP_TO_DATE);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Grid_inlines.hh line 1. */
/* Grid class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Grid_inlines.hh line 30. */
#include <algorithm>
namespace Parma_Polyhedra_Library {
inline bool
Grid::marked_empty() const {
return status.test_empty();
}
inline bool
Grid::congruences_are_up_to_date() const {
return status.test_c_up_to_date();
}
inline bool
Grid::generators_are_up_to_date() const {
return status.test_g_up_to_date();
}
inline bool
Grid::congruences_are_minimized() const {
return status.test_c_minimized();
}
inline bool
Grid::generators_are_minimized() const {
return status.test_g_minimized();
}
inline void
Grid::set_generators_up_to_date() {
status.set_g_up_to_date();
}
inline void
Grid::set_congruences_up_to_date() {
status.set_c_up_to_date();
}
inline void
Grid::set_congruences_minimized() {
set_congruences_up_to_date();
status.set_c_minimized();
}
inline void
Grid::set_generators_minimized() {
set_generators_up_to_date();
status.set_g_minimized();
}
inline void
Grid::clear_empty() {
status.reset_empty();
}
inline void
Grid::clear_congruences_minimized() {
status.reset_c_minimized();
}
inline void
Grid::clear_generators_minimized() {
status.reset_g_minimized();
}
inline void
Grid::clear_congruences_up_to_date() {
clear_congruences_minimized();
status.reset_c_up_to_date();
// Can get rid of con_sys here.
}
inline void
Grid::clear_generators_up_to_date() {
clear_generators_minimized();
status.reset_g_up_to_date();
// Can get rid of gen_sys here.
}
inline dimension_type
Grid::max_space_dimension() {
// One dimension is reserved to have a value of type dimension_type
// that does not represent a legal dimension.
return std::min(std::numeric_limits<dimension_type>::max() - 1,
std::min(Congruence_System::max_space_dimension(),
Grid_Generator_System::max_space_dimension()
)
);
}
inline
Grid::Grid(dimension_type num_dimensions,
const Degenerate_Element kind)
: con_sys(),
gen_sys(check_space_dimension_overflow(num_dimensions,
max_space_dimension(),
"PPL::Grid::",
"Grid(n, k)",
"n exceeds the maximum "
"allowed space dimension")) {
construct(num_dimensions, kind);
PPL_ASSERT(OK());
}
inline
Grid::Grid(const Congruence_System& cgs)
: con_sys(check_space_dimension_overflow(cgs.space_dimension(),
max_space_dimension(),
"PPL::Grid::",
"Grid(cgs)",
"the space dimension of cgs "
"exceeds the maximum allowed "
"space dimension")),
gen_sys(cgs.space_dimension()) {
Congruence_System cgs_copy(cgs);
construct(cgs_copy);
}
inline
Grid::Grid(Congruence_System& cgs, Recycle_Input)
: con_sys(check_space_dimension_overflow(cgs.space_dimension(),
max_space_dimension(),
"PPL::Grid::",
"Grid(cgs, recycle)",
"the space dimension of cgs "
"exceeds the maximum allowed "
"space dimension")),
gen_sys(cgs.space_dimension()) {
construct(cgs);
}
inline
Grid::Grid(const Grid_Generator_System& ggs)
: con_sys(check_space_dimension_overflow(ggs.space_dimension(),
max_space_dimension(),
"PPL::Grid::",
"Grid(ggs)",
"the space dimension of ggs "
"exceeds the maximum allowed "
"space dimension")),
gen_sys(ggs.space_dimension()) {
Grid_Generator_System ggs_copy(ggs);
construct(ggs_copy);
}
inline
Grid::Grid(Grid_Generator_System& ggs, Recycle_Input)
: con_sys(check_space_dimension_overflow(ggs.space_dimension(),
max_space_dimension(),
"PPL::Grid::",
"Grid(ggs, recycle)",
"the space dimension of ggs "
"exceeds the maximum allowed "
"space dimension")),
gen_sys(ggs.space_dimension()) {
construct(ggs);
}
template <typename U>
inline
Grid::Grid(const BD_Shape<U>& bd, Complexity_Class)
: con_sys(check_space_dimension_overflow(bd.space_dimension(),
max_space_dimension(),
"PPL::Grid::",
"Grid(bd)",
"the space dimension of bd "
"exceeds the maximum allowed "
"space dimension")),
gen_sys(bd.space_dimension()) {
Congruence_System cgs = bd.congruences();
construct(cgs);
}
template <typename U>
inline
Grid::Grid(const Octagonal_Shape<U>& os, Complexity_Class)
: con_sys(check_space_dimension_overflow(os.space_dimension(),
max_space_dimension(),
"PPL::Grid::",
"Grid(os)",
"the space dimension of os "
"exceeds the maximum allowed "
"space dimension")),
gen_sys(os.space_dimension()) {
Congruence_System cgs = os.congruences();
construct(cgs);
}
inline
Grid::~Grid() {
}
inline dimension_type
Grid::space_dimension() const {
return space_dim;
}
inline memory_size_type
Grid::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
inline int32_t
Grid::hash_code() const {
return hash_code_from_dimension(space_dimension());
}
inline Constraint_System
Grid::constraints() const {
return Constraint_System(congruences());
}
inline Constraint_System
Grid::minimized_constraints() const {
return Constraint_System(minimized_congruences());
}
inline void
Grid::m_swap(Grid& y) {
using std::swap;
swap(con_sys, y.con_sys);
swap(gen_sys, y.gen_sys);
swap(status, y.status);
swap(space_dim, y.space_dim);
swap(dim_kinds, y.dim_kinds);
}
inline void
Grid::add_congruence(const Congruence& cg) {
// Dimension-compatibility check.
if (space_dim < cg.space_dimension())
throw_dimension_incompatible("add_congruence(cg)", "cg", cg);
if (!marked_empty())
add_congruence_no_check(cg);
}
inline void
Grid::add_congruences(const Congruence_System& cgs) {
// TODO: this is just an executable specification.
// Space dimension compatibility check.
if (space_dim < cgs.space_dimension())
throw_dimension_incompatible("add_congruences(cgs)", "cgs", cgs);
if (!marked_empty()) {
Congruence_System cgs_copy = cgs;
add_recycled_congruences(cgs_copy);
}
}
inline void
Grid::refine_with_congruence(const Congruence& cg) {
add_congruence(cg);
}
inline void
Grid::refine_with_congruences(const Congruence_System& cgs) {
add_congruences(cgs);
}
inline bool
Grid::can_recycle_constraint_systems() {
return true;
}
inline bool
Grid::can_recycle_congruence_systems() {
return true;
}
inline void
Grid::add_constraint(const Constraint& c) {
// Space dimension compatibility check.
if (space_dim < c.space_dimension())
throw_dimension_incompatible("add_constraint(c)", "c", c);
if (!marked_empty())
add_constraint_no_check(c);
}
inline void
Grid::add_recycled_constraints(Constraint_System& cs) {
// TODO: really recycle the constraints.
add_constraints(cs);
}
inline bool
Grid::bounds_from_above(const Linear_Expression& expr) const {
return bounds(expr, "bounds_from_above(e)");
}
inline bool
Grid::bounds_from_below(const Linear_Expression& expr) const {
return bounds(expr, "bounds_from_below(e)");
}
inline bool
Grid::maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum) const {
return max_min(expr, "maximize(e, ...)", sup_n, sup_d, maximum);
}
inline bool
Grid::maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum,
Generator& point) const {
return max_min(expr, "maximize(e, ...)", sup_n, sup_d, maximum, &point);
}
inline bool
Grid::minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum) const {
return max_min(expr, "minimize(e, ...)", inf_n, inf_d, minimum);
}
inline bool
Grid::minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum,
Generator& point) const {
return max_min(expr, "minimize(e, ...)", inf_n, inf_d, minimum, &point);
}
inline void
Grid::normalize_divisors(Grid_Generator_System& sys) {
PPL_DIRTY_TEMP_COEFFICIENT(divisor);
divisor = 1;
normalize_divisors(sys, divisor);
}
/*! \relates Grid */
inline bool
operator!=(const Grid& x, const Grid& y) {
return !(x == y);
}
inline bool
Grid::strictly_contains(const Grid& y) const {
const Grid& x = *this;
return x.contains(y) && !y.contains(x);
}
inline void
Grid::topological_closure_assign() {
}
/*! \relates Grid */
inline void
swap(Grid& x, Grid& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Grid_templates.hh line 1. */
/* Grid class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Grid_templates.hh line 30. */
#include <algorithm>
#include <deque>
namespace Parma_Polyhedra_Library {
template <typename Interval>
Grid::Grid(const Box<Interval>& box, Complexity_Class)
: con_sys(),
gen_sys() {
space_dim = check_space_dimension_overflow(box.space_dimension(),
max_space_dimension(),
"PPL::Grid::",
"Grid(box, from_bounding_box)",
"the space dimension of box "
"exceeds the maximum allowed "
"space dimension");
if (box.is_empty()) {
// Empty grid.
set_empty();
PPL_ASSERT(OK());
return;
}
if (space_dim == 0)
set_zero_dim_univ();
else {
// Initialize the space dimension as indicated by the box.
con_sys.set_space_dimension(space_dim);
gen_sys.set_space_dimension(space_dim);
// Add congruences and generators according to `box'.
PPL_DIRTY_TEMP_COEFFICIENT(l_n);
PPL_DIRTY_TEMP_COEFFICIENT(l_d);
PPL_DIRTY_TEMP_COEFFICIENT(u_n);
PPL_DIRTY_TEMP_COEFFICIENT(u_d);
gen_sys.insert(grid_point());
for (dimension_type k = space_dim; k-- > 0; ) {
const Variable v_k = Variable(k);
bool closed = false;
// TODO: Consider producing the system(s) in minimized form.
if (box.has_lower_bound(v_k, l_n, l_d, closed)) {
if (box.has_upper_bound(v_k, u_n, u_d, closed))
if (l_n * u_d == u_n * l_d) {
// A point interval sets dimension k of every point to a
// single value.
con_sys.insert(l_d * v_k == l_n);
// This is declared here because it may be invalidated
// by the call to gen_sys.insert() at the end of the loop.
Grid_Generator& point = gen_sys.sys.rows[0];
// Scale the point to use as divisor the lcm of the
// divisors of the existing point and the lower bound.
const Coefficient& point_divisor = point.divisor();
gcd_assign(u_n, l_d, point_divisor);
// `u_n' now holds the gcd.
exact_div_assign(u_n, point_divisor, u_n);
if (l_d < 0)
neg_assign(u_n);
// l_d * u_n == abs(l_d * (point_divisor / gcd(l_d, point_divisor)))
point.scale_to_divisor(l_d * u_n);
// Set dimension k of the point to the lower bound.
if (l_d < 0)
neg_assign(u_n);
// point[k + 1] = l_n * point_divisor / gcd(l_d, point_divisor)
point.expr.set(Variable(k), l_n * u_n);
PPL_ASSERT(point.OK());
PPL_ASSERT(gen_sys.sys.OK());
continue;
}
}
// A universe interval allows any value in dimension k.
gen_sys.insert(grid_line(v_k));
}
set_congruences_up_to_date();
set_generators_up_to_date();
}
PPL_ASSERT(OK());
}
template <typename Partial_Function>
void
Grid::map_space_dimensions(const Partial_Function& pfunc) {
if (space_dim == 0)
return;
if (pfunc.has_empty_codomain()) {
// All dimensions vanish: the grid becomes zero_dimensional.
if (marked_empty()
|| (!generators_are_up_to_date() && !update_generators())) {
// Removing all dimensions from the empty grid.
space_dim = 0;
set_empty();
}
else
// Removing all dimensions from a non-empty grid.
set_zero_dim_univ();
PPL_ASSERT(OK());
return;
}
dimension_type new_space_dimension = pfunc.max_in_codomain() + 1;
if (new_space_dimension == space_dim) {
// The partial function `pfunc' is indeed total and thus specifies
// a permutation, that is, a renaming of the dimensions. For
// maximum efficiency, we will simply permute the columns of the
// constraint system and/or the generator system.
std::vector<Variable> cycle;
cycle.reserve(space_dim);
// Used to mark elements as soon as they are inserted in a cycle.
std::deque<bool> visited(space_dim);
for (dimension_type i = space_dim; i-- > 0; ) {
if (!visited[i]) {
dimension_type j = i;
do {
visited[j] = true;
// The following initialization is only to make the compiler happy.
dimension_type k = 0;
if (!pfunc.maps(j, k))
throw_invalid_argument("map_space_dimensions(pfunc)",
" pfunc is inconsistent");
if (k == j)
break;
cycle.push_back(Variable(j));
// Go along the cycle.
j = k;
} while (!visited[j]);
// End of cycle.
// Avoid calling clear_*_minimized() if cycle.size() is less than 2,
// to improve efficiency.
if (cycle.size() >= 2) {
// Permute all that is up-to-date.
if (congruences_are_up_to_date()) {
con_sys.permute_space_dimensions(cycle);
clear_congruences_minimized();
}
if (generators_are_up_to_date()) {
gen_sys.permute_space_dimensions(cycle);
clear_generators_minimized();
}
}
cycle.clear();
}
}
PPL_ASSERT(OK());
return;
}
// If control gets here, then `pfunc' is not a permutation and some
// dimensions must be projected away.
const Grid_Generator_System& old_gensys = grid_generators();
if (old_gensys.has_no_rows()) {
// The grid is empty.
Grid new_grid(new_space_dimension, EMPTY);
m_swap(new_grid);
PPL_ASSERT(OK());
return;
}
// Make a local copy of the partial function.
std::vector<dimension_type> pfunc_maps(space_dim, not_a_dimension());
for (dimension_type j = space_dim; j-- > 0; ) {
dimension_type pfunc_j;
if (pfunc.maps(j, pfunc_j))
pfunc_maps[j] = pfunc_j;
}
Grid_Generator_System new_gensys;
// Set sortedness, for the assertion met via gs::insert.
new_gensys.set_sorted(false);
// Get the divisor of the first point.
Grid_Generator_System::const_iterator i;
Grid_Generator_System::const_iterator old_gensys_end = old_gensys.end();
for (i = old_gensys.begin(); i != old_gensys_end; ++i)
if (i->is_point())
break;
PPL_ASSERT(i != old_gensys_end);
const Coefficient& system_divisor = i->divisor();
for (i = old_gensys.begin(); i != old_gensys_end; ++i) {
const Grid_Generator& old_g = *i;
const Grid_Generator::expr_type old_g_e = old_g.expression();
Linear_Expression expr;
expr.set_space_dimension(new_space_dimension);
bool all_zeroes = true;
for (Grid_Generator::expr_type::const_iterator j = old_g_e.begin(),
j_end = old_g_e.end(); j != j_end; ++j) {
const dimension_type mapped_id = pfunc_maps[j.variable().id()];
if (mapped_id != not_a_dimension()) {
add_mul_assign(expr, *j, Variable(mapped_id));
all_zeroes = false;
}
}
switch (old_g.type()) {
case Grid_Generator::LINE:
if (!all_zeroes)
new_gensys.insert(grid_line(expr));
break;
case Grid_Generator::PARAMETER:
if (!all_zeroes)
new_gensys.insert(parameter(expr, system_divisor));
break;
case Grid_Generator::POINT:
new_gensys.insert(grid_point(expr, old_g.divisor()));
break;
}
}
Grid new_grid(new_gensys);
m_swap(new_grid);
PPL_ASSERT(OK(true));
}
// Needed for converting the congruence or grid_generator system
// to "strong minimal form".
template <typename M>
void
Grid::reduce_reduced(Swapping_Vector<typename M::row_type>& rows,
const dimension_type dim,
const dimension_type pivot_index,
const dimension_type start,
const dimension_type end,
const Dimension_Kinds& sys_dim_kinds,
const bool generators) {
// TODO: Remove this.
typedef typename M::row_type M_row_type;
const M_row_type& pivot = rows[pivot_index];
const Coefficient& pivot_dim = pivot.expr.get(dim);
if (pivot_dim == 0)
return;
PPL_DIRTY_TEMP_COEFFICIENT(pivot_dim_half);
pivot_dim_half = (pivot_dim + 1) / 2;
const Dimension_Kind row_kind = sys_dim_kinds[dim];
const bool row_is_line_or_equality
= (row_kind == (generators ? LINE : EQUALITY));
PPL_DIRTY_TEMP_COEFFICIENT(num_rows_to_subtract);
PPL_DIRTY_TEMP_COEFFICIENT(row_dim_remainder);
for (dimension_type kinds_index = dim,
row_index = pivot_index; row_index-- > 0; ) {
if (generators) {
--kinds_index;
// Move over any virtual rows.
while (sys_dim_kinds[kinds_index] == GEN_VIRTUAL)
--kinds_index;
}
else {
++kinds_index;
// Move over any virtual rows.
while (sys_dim_kinds[kinds_index] == CON_VIRTUAL)
++kinds_index;
}
// row_kind CONGRUENCE is included as PARAMETER
if (row_is_line_or_equality
|| (row_kind == PARAMETER
&& sys_dim_kinds[kinds_index] == PARAMETER)) {
M_row_type& row = rows[row_index];
const Coefficient& row_dim = row.expr.get(dim);
// num_rows_to_subtract may be positive or negative.
num_rows_to_subtract = row_dim / pivot_dim;
// Ensure that after subtracting num_rows_to_subtract * r_dim
// from row_dim, -pivot_dim_half < row_dim <= pivot_dim_half.
// E.g., if pivot[dim] = 9, then after this reduction
// -5 < row_dim <= 5.
row_dim_remainder = row_dim % pivot_dim;
if (row_dim_remainder < 0) {
if (row_dim_remainder <= -pivot_dim_half)
--num_rows_to_subtract;
}
else if (row_dim_remainder > 0 && row_dim_remainder > pivot_dim_half)
++num_rows_to_subtract;
// Subtract num_rows_to_subtract copies of pivot from row i. Only the
// entries from dim need to be subtracted, as the preceding
// entries are all zero.
// If num_rows_to_subtract is negative, these copies of pivot are
// added to row i.
if (num_rows_to_subtract != 0)
row.expr.linear_combine(pivot.expr,
Coefficient_one(), -num_rows_to_subtract,
start, end + 1);
}
}
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Grid_defs.hh line 2664. */
/* Automatically generated from PPL source file ../src/BD_Shape_defs.hh line 1. */
/* BD_Shape class declaration.
*/
/* Automatically generated from PPL source file ../src/DB_Matrix_defs.hh line 1. */
/* DB_Matrix class declaration.
*/
/* Automatically generated from PPL source file ../src/DB_Matrix_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename T>
class DB_Matrix;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/DB_Row_defs.hh line 1. */
/* DB_Row class declaration.
*/
/* Automatically generated from PPL source file ../src/DB_Row_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename T>
class DB_Row_Impl_Handler;
template <typename T>
class DB_Row;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Ptr_Iterator_defs.hh line 1. */
/* Ptr_Iterator class declaration.
*/
/* Automatically generated from PPL source file ../src/Ptr_Iterator_types.hh line 1. */
namespace Parma_Polyhedra_Library {
namespace Implementation {
template <typename P>
class Ptr_Iterator;
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Ptr_Iterator_defs.hh line 28. */
#include <iterator>
namespace Parma_Polyhedra_Library {
namespace Implementation {
template<typename P, typename Q>
bool operator==(const Ptr_Iterator<P>& x, const Ptr_Iterator<Q>& y);
template<typename P, typename Q>
bool operator!=(const Ptr_Iterator<P>& x, const Ptr_Iterator<Q>& y);
template<typename P, typename Q>
bool operator<(const Ptr_Iterator<P>& x, const Ptr_Iterator<Q>& y);
template<typename P, typename Q>
bool operator<=(const Ptr_Iterator<P>& x, const Ptr_Iterator<Q>& y);
template<typename P, typename Q>
bool operator>(const Ptr_Iterator<P>& x, const Ptr_Iterator<Q>& y);
template<typename P, typename Q>
bool operator>=(const Ptr_Iterator<P>& x, const Ptr_Iterator<Q>& y);
template<typename P, typename Q>
typename Ptr_Iterator<P>::difference_type
operator-(const Ptr_Iterator<P>& x, const Ptr_Iterator<Q>& y);
template<typename P>
Ptr_Iterator<P> operator+(typename Ptr_Iterator<P>::difference_type m,
const Ptr_Iterator<P>& y);
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! A class to define STL const and non-const iterators from pointer types.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename P>
class Parma_Polyhedra_Library::Implementation::Ptr_Iterator
: public std::iterator<typename std::iterator_traits<P>::iterator_category,
typename std::iterator_traits<P>::value_type,
typename std::iterator_traits<P>::difference_type,
typename std::iterator_traits<P>::pointer,
typename std::iterator_traits<P>::reference> {
public:
typedef typename std::iterator_traits<P>::difference_type difference_type;
typedef typename std::iterator_traits<P>::reference reference;
typedef typename std::iterator_traits<P>::pointer pointer;
//! Default constructor: no guarantees.
Ptr_Iterator();
//! Construct an iterator pointing at \p q.
explicit Ptr_Iterator(const P& q);
/*! \brief
Copy constructor allowing the construction of a const_iterator
from a non-const iterator.
*/
template<typename Q>
Ptr_Iterator(const Ptr_Iterator<Q>& q);
//! Dereference operator.
reference operator*() const;
//! Indirect member selector.
pointer operator->() const;
//! Subscript operator.
reference operator[](const difference_type m) const;
//! Prefix increment operator.
Ptr_Iterator& operator++();
//! Postfix increment operator.
Ptr_Iterator operator++(int);
//! Prefix decrement operator
Ptr_Iterator& operator--();
//! Postfix decrement operator.
Ptr_Iterator operator--(int);
//! Assignment-increment operator.
Ptr_Iterator& operator+=(const difference_type m);
//! Assignment-decrement operator.
Ptr_Iterator& operator-=(const difference_type m);
//! Returns the difference between \p *this and \p y.
difference_type operator-(const Ptr_Iterator& y) const;
//! Returns the sum of \p *this and \p m.
Ptr_Iterator operator+(const difference_type m) const;
//! Returns the difference of \p *this and \p m.
Ptr_Iterator operator-(const difference_type m) const;
private:
//! The base pointer implementing the iterator.
P p;
//! Returns the hidden pointer.
const P& base() const;
template <typename Q, typename R>
friend bool Parma_Polyhedra_Library::Implementation::
operator==(const Ptr_Iterator<Q>& x, const Ptr_Iterator<R>& y);
template <typename Q, typename R>
friend bool Parma_Polyhedra_Library::Implementation::
operator!=(const Ptr_Iterator<Q>& x, const Ptr_Iterator<R>& y);
template<typename Q, typename R>
friend bool Parma_Polyhedra_Library::Implementation::
operator<(const Ptr_Iterator<Q>& x, const Ptr_Iterator<R>& y);
template<typename Q, typename R>
friend bool Parma_Polyhedra_Library::Implementation::
operator<=(const Ptr_Iterator<Q>& x, const Ptr_Iterator<R>& y);
template<typename Q, typename R>
friend bool Parma_Polyhedra_Library::Implementation::
operator>(const Ptr_Iterator<Q>& x, const Ptr_Iterator<R>& y);
template<typename Q, typename R>
friend bool Parma_Polyhedra_Library::Implementation::
operator>=(const Ptr_Iterator<Q>& x, const Ptr_Iterator<R>& y);
template<typename Q, typename R>
friend typename Ptr_Iterator<Q>::difference_type
Parma_Polyhedra_Library::Implementation::
operator-(const Ptr_Iterator<Q>& x, const Ptr_Iterator<R>& y);
friend Ptr_Iterator<P>
Parma_Polyhedra_Library::Implementation::
operator+<>(typename Ptr_Iterator<P>::difference_type m,
const Ptr_Iterator<P>& y);
};
/* Automatically generated from PPL source file ../src/Ptr_Iterator_inlines.hh line 1. */
/* Ptr_Iterator class implementation: inline functions.
*/
#include <algorithm>
/* Automatically generated from PPL source file ../src/Ptr_Iterator_inlines.hh line 29. */
namespace Parma_Polyhedra_Library {
namespace Implementation {
template <typename P>
inline const P&
Ptr_Iterator<P>::base() const {
return p;
}
template <typename P>
inline
Ptr_Iterator<P>::Ptr_Iterator()
: p(P()) {
}
template <typename P>
inline
Ptr_Iterator<P>::Ptr_Iterator(const P& q)
: p(q) {
}
template <typename P>
template <typename Q>
inline
Ptr_Iterator<P>::Ptr_Iterator(const Ptr_Iterator<Q>& q)
: p(q.base()) {
}
template <typename P>
inline typename Ptr_Iterator<P>::reference
Ptr_Iterator<P>::operator*() const {
return *p;
}
template <typename P>
inline typename Ptr_Iterator<P>::pointer
Ptr_Iterator<P>::operator->() const {
return p;
}
template <typename P>
inline typename Ptr_Iterator<P>::reference
Ptr_Iterator<P>::operator[](const difference_type m) const {
return p[m];
}
template <typename P>
inline Ptr_Iterator<P>&
Ptr_Iterator<P>::operator++() {
++p;
return *this;
}
template <typename P>
inline Ptr_Iterator<P>
Ptr_Iterator<P>::operator++(int) {
return Ptr_Iterator(p++);
}
template <typename P>
inline Ptr_Iterator<P>&
Ptr_Iterator<P>::operator--() {
--p;
return *this;
}
template <typename P>
inline Ptr_Iterator<P>
Ptr_Iterator<P>::operator--(int) {
return Ptr_Iterator(p--);
}
template <typename P>
inline Ptr_Iterator<P>&
Ptr_Iterator<P>::operator+=(const difference_type m) {
p += m;
return *this;
}
template <typename P>
inline Ptr_Iterator<P>&
Ptr_Iterator<P>::operator-=(const difference_type m) {
p -= m;
return *this;
}
template <typename P>
inline typename Ptr_Iterator<P>::difference_type
Ptr_Iterator<P>::operator-(const Ptr_Iterator& y) const {
return p - y.p;
}
template <typename P>
inline Ptr_Iterator<P>
Ptr_Iterator<P>::operator+(const difference_type m) const {
return Ptr_Iterator(p + m);
}
template <typename P>
inline Ptr_Iterator<P>
Ptr_Iterator<P>::operator-(const difference_type m) const {
return Ptr_Iterator(p - m);
}
template<typename P, typename Q>
inline bool
operator==(const Ptr_Iterator<P>& x, const Ptr_Iterator<Q>& y) {
return x.base() == y.base();
}
template<typename P, typename Q>
inline bool
operator!=(const Ptr_Iterator<P>& x, const Ptr_Iterator<Q>& y) {
return x.base() != y.base();
}
template<typename P, typename Q>
inline bool
operator<(const Ptr_Iterator<P>& x, const Ptr_Iterator<Q>& y) {
return x.base() < y.base();
}
template<typename P, typename Q>
inline bool
operator<=(const Ptr_Iterator<P>& x, const Ptr_Iterator<Q>& y) {
return x.base() <= y.base();
}
template<typename P, typename Q>
inline bool
operator>(const Ptr_Iterator<P>& x, const Ptr_Iterator<Q>& y) {
return x.base() > y.base();
}
template<typename P, typename Q>
inline bool
operator>=(const Ptr_Iterator<P>& x, const Ptr_Iterator<Q>& y) {
return x.base() >= y.base();
}
template<typename P, typename Q>
inline typename Ptr_Iterator<P>::difference_type
operator-(const Ptr_Iterator<P>& x, const Ptr_Iterator<Q>& y) {
return x.base() - y.base();
}
template<typename P>
inline Ptr_Iterator<P>
operator+(typename Ptr_Iterator<P>::difference_type m,
const Ptr_Iterator<P>& y) {
return Ptr_Iterator<P>(m + y.base());
}
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Ptr_Iterator_defs.hh line 171. */
/* Automatically generated from PPL source file ../src/DB_Row_defs.hh line 30. */
#include <cstddef>
#include <vector>
#ifndef PPL_DB_ROW_EXTRA_DEBUG
#ifdef PPL_ABI_BREAKING_EXTRA_DEBUG
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
When PPL_DB_ROW_EXTRA_DEBUG evaluates to <CODE>true</CODE>, each instance
of the class DB_Row carries its own capacity; this enables extra
consistency checks to be performed.
\ingroup PPL_CXX_interface
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
#define PPL_DB_ROW_EXTRA_DEBUG 1
#else // !defined(PPL_ABI_BREAKING_EXTRA_DEBUG)
#define PPL_DB_ROW_EXTRA_DEBUG 0
#endif // !defined(PPL_ABI_BREAKING_EXTRA_DEBUG)
#endif // !defined(PPL_DB_ROW_EXTRA_DEBUG)
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! The handler of the actual DB_Row implementation.
/*! \ingroup PPL_CXX_interface
Exception-safety is the only responsibility of this class: it has
to ensure that its \p impl member is correctly deallocated.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
class Parma_Polyhedra_Library::DB_Row_Impl_Handler {
public:
//! Default constructor.
DB_Row_Impl_Handler();
//! Destructor.
~DB_Row_Impl_Handler();
class Impl;
//! A pointer to the actual implementation.
Impl* impl;
#if PPL_DB_ROW_EXTRA_DEBUG
//! The capacity of \p impl (only available during debugging).
dimension_type capacity_;
#endif // PPL_DB_ROW_EXTRA_DEBUG
private:
//! Private and unimplemented: copy construction is not allowed.
DB_Row_Impl_Handler(const DB_Row_Impl_Handler&);
//! Private and unimplemented: copy assignment is not allowed.
DB_Row_Impl_Handler& operator=(const DB_Row_Impl_Handler&);
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! The base class for the single rows of matrices.
/*! \ingroup PPL_CXX_interface
The class template DB_Row<T> allows for the efficient representation of
the single rows of a DB_Matrix. It contains elements of type T stored
as a vector. The class T is a family of extended numbers that
must provide representation for
\f$ -\infty \f$, \f$0\f$,\f$ +\infty \f$ (and, consequently for <EM>nan</EM>,
<EM>not a number</EM>, since this arises as the ``result'' of
undefined sums like \f$ +\infty + (-\infty) \f$).
The class T must provide the following methods:
\code
T()
\endcode
is the default constructor: no assumption is made on the particular
object constructed, provided <CODE>T().OK()</CODE> gives <CODE>true</CODE>
(see below).
\code
~T()
\endcode
is the destructor.
\code
bool is_nan() const
\endcode
returns <CODE>true</CODE> if and only \p *this represents
the <EM>not a number</EM> value.
\code
bool OK() const
\endcode
returns <CODE>true</CODE> if and only if \p *this satisfies all
its invariants.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
class Parma_Polyhedra_Library::DB_Row : private DB_Row_Impl_Handler<T> {
public:
//! Pre-constructs a row: construction must be completed by construct().
DB_Row();
//! \name Post-constructors.
//@{
//! Constructs properly a default-constructed element.
/*!
Builds a row with size \p sz and minimum capacity.
*/
void construct(dimension_type sz);
//! Constructs properly a default-constructed element.
/*!
\param sz
The size of the row that will be constructed.
\param capacity
The minimum capacity of the row that will be constructed.
The row that we are constructing has a minimum capacity of
(i.e., it can contain at least) \p elements, \p sz of which
will be constructed now.
*/
void construct(dimension_type sz, dimension_type capacity);
//! Constructs properly a conservative approximation of \p y.
/*!
\param y
A row containing the elements whose upward approximations will
be used to properly construct \p *this.
\param capacity
The capacity of the constructed row.
It is assumed that \p capacity is greater than or equal to the
size of \p y.
*/
template <typename U>
void construct_upward_approximation(const DB_Row<U>& y,
dimension_type capacity);
//@}
//! Tight constructor: resizing will require reallocation.
DB_Row(dimension_type sz);
//! Sizing constructor with capacity.
DB_Row(dimension_type sz, dimension_type capacity);
//! Ordinary copy constructor.
DB_Row(const DB_Row& y);
//! Copy constructor with specified capacity.
/*!
It is assumed that \p capacity is greater than or equal to \p y size.
*/
DB_Row(const DB_Row& y, dimension_type capacity);
//! Copy constructor with specified size and capacity.
/*!
It is assumed that \p sz is greater than or equal to the size of \p y
and, of course, that \p sz is less than or equal to \p capacity.
Any new position is initialized to \f$+\infty\f$.
*/
DB_Row(const DB_Row& y, dimension_type sz, dimension_type capacity);
//! Destructor.
~DB_Row();
//! Assignment operator.
DB_Row& operator=(const DB_Row& y);
//! Swaps \p *this with \p y.
void m_swap(DB_Row& y);
//! Assigns the implementation of \p y to \p *this.
void assign(DB_Row& y);
/*! \brief
Allocates memory for a default constructed DB_Row object,
allowing for \p capacity coefficients at most.
It is assumed that no allocation has been performed before
(otherwise, a memory leak will occur).
After execution, the size of the DB_Row object is zero.
*/
void allocate(dimension_type capacity);
//! Expands the row to size \p new_size.
/*!
Adds new positions to the implementation of the row
obtaining a new row with size \p new_size.
It is assumed that \p new_size is between the current size
and capacity of the row. The new positions are initialized
to \f$+\infty\f$.
*/
void expand_within_capacity(dimension_type new_size);
//! Shrinks the row by erasing elements at the end.
/*!
Destroys elements of the row implementation
from position \p new_size to the end.
It is assumed that \p new_size is not greater than the current size.
*/
void shrink(dimension_type new_size);
//! Returns the size() of the largest possible DB_Row.
static dimension_type max_size();
//! Gives the number of coefficients currently in use.
dimension_type size() const;
//! \name Subscript operators.
//@{
//! Returns a reference to the element of the row indexed by \p k.
T& operator[](dimension_type k);
//! Returns a constant reference to the element of the row indexed by \p k.
const T& operator[](dimension_type k) const;
//@}
//! A (non const) random access iterator to access the row's elements.
typedef Implementation::Ptr_Iterator<T*> iterator;
//! A const random access iterator to access the row's elements.
typedef Implementation::Ptr_Iterator<const T*> const_iterator;
/*! \brief
Returns the const iterator pointing to the first element,
if \p *this is not empty;
otherwise, returns the past-the-end const iterator.
*/
iterator begin();
//! Returns the past-the-end iterator.
iterator end();
/*! \brief
Returns the const iterator pointing to the first element,
if \p *this is not empty;
otherwise, returns the past-the-end const iterator.
*/
const_iterator begin() const;
//! Returns the past-the-end const iterator.
const_iterator end() const;
/*! \brief
Returns a lower bound to the total size in bytes of the memory
occupied by \p *this.
*/
memory_size_type total_memory_in_bytes() const;
/*! \brief
Returns a lower bound to the size in bytes of the memory
managed by \p *this.
*/
memory_size_type external_memory_in_bytes() const;
/*! \brief
Returns the total size in bytes of the memory occupied by \p *this,
provided the capacity of \p *this is given by \p capacity.
*/
memory_size_type total_memory_in_bytes(dimension_type capacity) const;
/*! \brief
Returns the size in bytes of the memory managed by \p *this,
provided the capacity of \p *this is given by \p capacity.
*/
memory_size_type external_memory_in_bytes(dimension_type capacity) const;
//! Checks if all the invariants are satisfied.
bool OK(dimension_type row_size, dimension_type row_capacity) const;
private:
template <typename U> friend class Parma_Polyhedra_Library::DB_Row;
//! Exception-safe copy construction mechanism for coefficients.
void copy_construct_coefficients(const DB_Row& y);
#if PPL_DB_ROW_EXTRA_DEBUG
//! Returns the capacity of the row (only available during debugging).
dimension_type capacity() const;
#endif // PPL_DB_ROW_EXTRA_DEBUG
};
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Swaps \p x with \p y.
/*! \relates DB_Row */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
void swap(DB_Row<T>& x, DB_Row<T>& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Swaps objects referred by \p x and \p y.
/*! \relates DB_Row */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
void iter_swap(typename std::vector<DB_Row<T> >::iterator x,
typename std::vector<DB_Row<T> >::iterator y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! \name Classical comparison operators.
//@{
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
/*! \relates DB_Row */
template <typename T>
bool operator==(const DB_Row<T>& x, const DB_Row<T>& y);
/*! \relates DB_Row */
template <typename T>
bool operator!=(const DB_Row<T>& x, const DB_Row<T>& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//@}
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
} // namespace Parma_Polyhedra_Library
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! The real implementation of a DB_Row object.
/*! \ingroup PPL_CXX_interface
The class DB_Row_Impl_Handler::Impl provides the implementation of
DB_Row objects and, in particular, of the corresponding memory
allocation functions.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
class Parma_Polyhedra_Library::DB_Row_Impl_Handler<T>::Impl {
public:
//! \name Custom allocator and deallocator.
//@{
/*! \brief
Allocates a chunk of memory able to contain \p capacity T objects
beyond the specified \p fixed_size and returns a pointer to the new
allocated memory.
*/
static void* operator new(size_t fixed_size, dimension_type capacity);
//! Uses the standard delete operator to free the memory \p p points to.
static void operator delete(void* p);
/*! \brief
Placement version: uses the standard operator delete to free
the memory \p p points to.
*/
static void operator delete(void* p, dimension_type capacity);
//@}
//! Default constructor.
Impl();
//! Destructor.
/*!
Uses <CODE>shrink()</CODE> method with argument \f$0\f$
to delete all the row elements.
*/
~Impl();
//! Expands the row to size \p new_size.
/*!
It is assumed that \p new_size is between the current size and capacity.
*/
void expand_within_capacity(dimension_type new_size);
//! Shrinks the row by erasing elements at the end.
/*!
It is assumed that \p new_size is not greater than the current size.
*/
void shrink(dimension_type new_size);
//! Exception-safe copy construction mechanism for coefficients.
void copy_construct_coefficients(const Impl& y);
/*! \brief
Exception-safe upward approximation construction mechanism
for coefficients.
*/
template <typename U>
void construct_upward_approximation(const U& y);
//! Returns the size() of the largest possible Impl.
static dimension_type max_size();
//! \name Size accessors.
//@{
//! Returns the actual size of \p this.
dimension_type size() const;
//! Sets to \p new_sz the actual size of \p *this.
void set_size(dimension_type new_sz);
//! Increments the size of \p *this by 1.
void bump_size();
//@}
//! \name Subscript operators.
//@{
//! Returns a reference to the element of \p *this indexed by \p k.
T& operator[](dimension_type k);
//! Returns a constant reference to the element of \p *this indexed by \p k.
const T& operator[](dimension_type k) const;
//@}
/*! \brief
Returns a lower bound to the total size in bytes of the memory
occupied by \p *this.
*/
memory_size_type total_memory_in_bytes() const;
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes(dimension_type capacity) const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
private:
friend class DB_Row<T>;
//! The number of coefficients in the row.
dimension_type size_;
//! The vector of coefficients.
T vec_[
#if PPL_CXX_SUPPORTS_ZERO_LENGTH_ARRAYS
0
#else
1
#endif
];
//! Private and unimplemented: copy construction is not allowed.
Impl(const Impl& y);
//! Private and unimplemented: assignment is not allowed.
Impl& operator=(const Impl&);
//! Exception-safe copy construction mechanism.
void copy_construct(const Impl& y);
};
/* Automatically generated from PPL source file ../src/DB_Row_inlines.hh line 1. */
/* DB_Row class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/DB_Row_inlines.hh line 29. */
#include <cstddef>
#include <limits>
#include <algorithm>
#include <iostream>
namespace Parma_Polyhedra_Library {
template <typename T>
inline void*
DB_Row_Impl_Handler<T>::Impl::operator new(const size_t fixed_size,
const dimension_type capacity) {
#if PPL_CXX_SUPPORTS_ZERO_LENGTH_ARRAYS
return ::operator new(fixed_size + capacity*sizeof(T));
#else
PPL_ASSERT(capacity >= 1);
return ::operator new(fixed_size + (capacity-1)*sizeof(T));
#endif
}
template <typename T>
inline void
DB_Row_Impl_Handler<T>::Impl::operator delete(void* p) {
::operator delete(p);
}
template <typename T>
inline void
DB_Row_Impl_Handler<T>::Impl::operator delete(void* p, dimension_type) {
::operator delete(p);
}
template <typename T>
inline memory_size_type
DB_Row_Impl_Handler<T>::Impl
::total_memory_in_bytes(dimension_type capacity) const {
return
sizeof(*this)
+ capacity*sizeof(T)
#if !PPL_CXX_SUPPORTS_ZERO_LENGTH_ARRAYS
- 1*sizeof(T)
#endif
+ external_memory_in_bytes();
}
template <typename T>
inline memory_size_type
DB_Row_Impl_Handler<T>::Impl::total_memory_in_bytes() const {
// In general, this is a lower bound, as the capacity of *this
// may be strictly greater than `size_'
return total_memory_in_bytes(size_);
}
template <typename T>
inline dimension_type
DB_Row_Impl_Handler<T>::Impl::max_size() {
return std::numeric_limits<size_t>::max() / sizeof(T);
}
template <typename T>
inline dimension_type
DB_Row_Impl_Handler<T>::Impl::size() const {
return size_;
}
template <typename T>
inline void
DB_Row_Impl_Handler<T>::Impl::set_size(const dimension_type new_sz) {
size_ = new_sz;
}
template <typename T>
inline void
DB_Row_Impl_Handler<T>::Impl::bump_size() {
++size_;
}
template <typename T>
inline
DB_Row_Impl_Handler<T>::Impl::Impl()
: size_(0) {
}
template <typename T>
inline
DB_Row_Impl_Handler<T>::Impl::~Impl() {
shrink(0);
}
template <typename T>
inline
DB_Row_Impl_Handler<T>::DB_Row_Impl_Handler()
: impl(0) {
#if PPL_DB_ROW_EXTRA_DEBUG
capacity_ = 0;
#endif
}
template <typename T>
inline
DB_Row_Impl_Handler<T>::~DB_Row_Impl_Handler() {
delete impl;
}
template <typename T>
inline T&
DB_Row_Impl_Handler<T>::Impl::operator[](const dimension_type k) {
PPL_ASSERT(k < size());
return vec_[k];
}
template <typename T>
inline const T&
DB_Row_Impl_Handler<T>::Impl::operator[](const dimension_type k) const {
PPL_ASSERT(k < size());
return vec_[k];
}
template <typename T>
inline dimension_type
DB_Row<T>::max_size() {
return DB_Row_Impl_Handler<T>::Impl::max_size();
}
template <typename T>
inline dimension_type
DB_Row<T>::size() const {
return this->impl->size();
}
#if PPL_DB_ROW_EXTRA_DEBUG
template <typename T>
inline dimension_type
DB_Row<T>::capacity() const {
return this->capacity_;
}
#endif // PPL_DB_ROW_EXTRA_DEBUG
template <typename T>
inline
DB_Row<T>::DB_Row()
: DB_Row_Impl_Handler<T>() {
}
template <typename T>
inline void
DB_Row<T>::allocate(
#if PPL_CXX_SUPPORTS_ZERO_LENGTH_ARRAYS
const
#endif
dimension_type capacity) {
DB_Row<T>& x = *this;
PPL_ASSERT(capacity <= max_size());
#if !PPL_CXX_SUPPORTS_ZERO_LENGTH_ARRAYS
if (capacity == 0)
++capacity;
#endif
PPL_ASSERT(x.impl == 0);
x.impl = new (capacity) typename DB_Row_Impl_Handler<T>::Impl();
#if PPL_DB_ROW_EXTRA_DEBUG
PPL_ASSERT(x.capacity_ == 0);
x.capacity_ = capacity;
#endif
}
template <typename T>
inline void
DB_Row<T>::expand_within_capacity(const dimension_type new_size) {
DB_Row<T>& x = *this;
PPL_ASSERT(x.impl);
#if PPL_DB_ROW_EXTRA_DEBUG
PPL_ASSERT(new_size <= x.capacity_);
#endif
x.impl->expand_within_capacity(new_size);
}
template <typename T>
inline void
DB_Row<T>::copy_construct_coefficients(const DB_Row& y) {
DB_Row<T>& x = *this;
PPL_ASSERT(x.impl && y.impl);
#if PPL_DB_ROW_EXTRA_DEBUG
PPL_ASSERT(y.size() <= x.capacity_);
#endif
x.impl->copy_construct_coefficients(*(y.impl));
}
template <typename T>
template <typename U>
inline void
DB_Row<T>::construct_upward_approximation(const DB_Row<U>& y,
const dimension_type capacity) {
DB_Row<T>& x = *this;
PPL_ASSERT(y.size() <= capacity && capacity <= max_size());
allocate(capacity);
PPL_ASSERT(y.impl);
x.impl->construct_upward_approximation(*(y.impl));
}
template <typename T>
inline void
DB_Row<T>::construct(const dimension_type sz,
const dimension_type capacity) {
PPL_ASSERT(sz <= capacity && capacity <= max_size());
allocate(capacity);
expand_within_capacity(sz);
}
template <typename T>
inline void
DB_Row<T>::construct(const dimension_type sz) {
construct(sz, sz);
}
template <typename T>
inline
DB_Row<T>::DB_Row(const dimension_type sz,
const dimension_type capacity)
: DB_Row_Impl_Handler<T>() {
construct(sz, capacity);
}
template <typename T>
inline
DB_Row<T>::DB_Row(const dimension_type sz) {
construct(sz);
}
template <typename T>
inline
DB_Row<T>::DB_Row(const DB_Row& y)
: DB_Row_Impl_Handler<T>() {
if (y.impl != 0) {
allocate(compute_capacity(y.size(), max_size()));
copy_construct_coefficients(y);
}
}
template <typename T>
inline
DB_Row<T>::DB_Row(const DB_Row& y,
const dimension_type capacity)
: DB_Row_Impl_Handler<T>() {
PPL_ASSERT(y.impl);
PPL_ASSERT(y.size() <= capacity && capacity <= max_size());
allocate(capacity);
copy_construct_coefficients(y);
}
template <typename T>
inline
DB_Row<T>::DB_Row(const DB_Row& y,
const dimension_type sz,
const dimension_type capacity)
: DB_Row_Impl_Handler<T>() {
PPL_ASSERT(y.impl);
PPL_ASSERT(y.size() <= sz && sz <= capacity && capacity <= max_size());
allocate(capacity);
copy_construct_coefficients(y);
expand_within_capacity(sz);
}
template <typename T>
inline
DB_Row<T>::~DB_Row() {
}
template <typename T>
inline void
DB_Row<T>::shrink(const dimension_type new_size) {
DB_Row<T>& x = *this;
PPL_ASSERT(x.impl);
x.impl->shrink(new_size);
}
template <typename T>
inline void
DB_Row<T>::m_swap(DB_Row& y) {
using std::swap;
DB_Row<T>& x = *this;
swap(x.impl, y.impl);
#if PPL_DB_ROW_EXTRA_DEBUG
swap(x.capacity_, y.capacity_);
#endif
}
template <typename T>
inline void
DB_Row<T>::assign(DB_Row& y) {
DB_Row<T>& x = *this;
x.impl = y.impl;
#if PPL_DB_ROW_EXTRA_DEBUG
x.capacity_ = y.capacity_;
#endif
}
template <typename T>
inline DB_Row<T>&
DB_Row<T>::operator=(const DB_Row& y) {
DB_Row tmp(y);
m_swap(tmp);
return *this;
}
template <typename T>
inline T&
DB_Row<T>::operator[](const dimension_type k) {
DB_Row<T>& x = *this;
return (*x.impl)[k];
}
template <typename T>
inline const T&
DB_Row<T>::operator[](const dimension_type k) const {
const DB_Row<T>& x = *this;
return (*x.impl)[k];
}
template <typename T>
inline typename DB_Row<T>::iterator
DB_Row<T>::begin() {
DB_Row<T>& x = *this;
return iterator(x.impl->vec_);
}
template <typename T>
inline typename DB_Row<T>::iterator
DB_Row<T>::end() {
DB_Row<T>& x = *this;
return iterator(x.impl->vec_ + x.impl->size_);
}
template <typename T>
inline typename DB_Row<T>::const_iterator
DB_Row<T>::begin() const {
const DB_Row<T>& x = *this;
return const_iterator(x.impl->vec_);
}
template <typename T>
inline typename DB_Row<T>::const_iterator
DB_Row<T>::end() const {
const DB_Row<T>& x = *this;
return const_iterator(x.impl->vec_ + x.impl->size_);
}
template <typename T>
inline memory_size_type
DB_Row<T>::external_memory_in_bytes(dimension_type capacity) const {
const DB_Row<T>& x = *this;
return x.impl->total_memory_in_bytes(capacity);
}
template <typename T>
inline memory_size_type
DB_Row<T>::total_memory_in_bytes(dimension_type capacity) const {
return sizeof(*this) + external_memory_in_bytes(capacity);
}
template <typename T>
inline memory_size_type
DB_Row<T>::external_memory_in_bytes() const {
const DB_Row<T>& x = *this;
#if PPL_DB_ROW_EXTRA_DEBUG
return x.impl->total_memory_in_bytes(x.capacity_);
#else
return x.impl->total_memory_in_bytes();
#endif
}
template <typename T>
inline memory_size_type
DB_Row<T>::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
/*! \relates DB_Row */
template <typename T>
inline bool
operator!=(const DB_Row<T>& x, const DB_Row<T>& y) {
return !(x == y);
}
/*! \relates DB_Row */
template <typename T>
inline void
swap(DB_Row<T>& x, DB_Row<T>& y) {
x.m_swap(y);
}
/*! \relates DB_Row */
template <typename T>
inline void
iter_swap(typename std::vector<DB_Row<T> >::iterator x,
typename std::vector<DB_Row<T> >::iterator y) {
swap(*x, *y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/DB_Row_templates.hh line 1. */
/* DB_Row class implementation: non-inline template functions.
*/
/* Automatically generated from PPL source file ../src/DB_Row_templates.hh line 28. */
namespace Parma_Polyhedra_Library {
template <typename T>
template <typename U>
void
DB_Row_Impl_Handler<T>::Impl::construct_upward_approximation(const U& y) {
const dimension_type y_size = y.size();
#if PPL_CXX_SUPPORTS_ZERO_LENGTH_ARRAYS
// Construct in direct order: will destroy in reverse order.
for (dimension_type i = 0; i < y_size; ++i) {
construct(vec_[i], y[i], ROUND_UP);
bump_size();
}
#else // PPL_CXX_SUPPORTS_ZERO_LENGTH_ARRAYS
if (y_size > 0) {
assign_r(vec_[0], y[0], ROUND_UP);
bump_size();
// Construct in direct order: will destroy in reverse order.
for (dimension_type i = 1; i < y_size; ++i) {
construct(vec_[i], y[i], ROUND_UP);
bump_size();
}
}
#endif // PPL_CXX_SUPPORTS_ZERO_LENGTH_ARRAYS
}
template <typename T>
void
DB_Row_Impl_Handler<T>::
Impl::expand_within_capacity(const dimension_type new_size) {
PPL_ASSERT(size() <= new_size && new_size <= max_size());
#if !PPL_CXX_SUPPORTS_ZERO_LENGTH_ARRAYS
if (size() == 0 && new_size > 0) {
// vec_[0] is already constructed: we just need to assign +infinity.
assign_r(vec_[0], PLUS_INFINITY, ROUND_NOT_NEEDED);
bump_size();
}
#endif
// Construct in direct order: will destroy in reverse order.
for (dimension_type i = size(); i < new_size; ++i) {
new (&vec_[i]) T(PLUS_INFINITY, ROUND_NOT_NEEDED);
bump_size();
}
}
template <typename T>
void
DB_Row_Impl_Handler<T>::Impl::shrink(dimension_type new_size) {
const dimension_type old_size = size();
PPL_ASSERT(new_size <= old_size);
// Since ~T() does not throw exceptions, nothing here does.
set_size(new_size);
#if !PPL_CXX_SUPPORTS_ZERO_LENGTH_ARRAYS
// Make sure we do not try to destroy vec_[0].
if (new_size == 0)
++new_size;
#endif
// We assume construction was done "forward".
// We thus perform destruction "backward".
for (dimension_type i = old_size; i-- > new_size; )
vec_[i].~T();
}
template <typename T>
void
DB_Row_Impl_Handler<T>::Impl::copy_construct_coefficients(const Impl& y) {
const dimension_type y_size = y.size();
#if PPL_CXX_SUPPORTS_ZERO_LENGTH_ARRAYS
// Construct in direct order: will destroy in reverse order.
for (dimension_type i = 0; i < y_size; ++i) {
new (&vec_[i]) T(y.vec_[i]);
bump_size();
}
#else // PPL_CXX_SUPPORTS_ZERO_LENGTH_ARRAYS
if (y_size > 0) {
vec_[0] = y.vec_[0];
bump_size();
// Construct in direct order: will destroy in reverse order.
for (dimension_type i = 1; i < y_size; ++i) {
new (&vec_[i]) T(y.vec_[i]);
bump_size();
}
}
#endif // PPL_CXX_SUPPORTS_ZERO_LENGTH_ARRAYS
}
template <typename T>
memory_size_type
DB_Row_Impl_Handler<T>::Impl::external_memory_in_bytes() const {
memory_size_type n = 0;
for (dimension_type i = size(); i-- > 0; )
n += Parma_Polyhedra_Library::external_memory_in_bytes(vec_[i]);
return n;
}
template <typename T>
bool
DB_Row<T>::OK(const dimension_type row_size,
const dimension_type
#if PPL_DB_ROW_EXTRA_DEBUG
row_capacity
#endif
) const {
#ifndef NDEBUG
using std::endl;
using std::cerr;
#endif
const DB_Row<T>& x = *this;
bool is_broken = false;
#if PPL_DB_ROW_EXTRA_DEBUG
# if !PPL_CXX_SUPPORTS_ZERO_LENGTH_ARRAYS
if (x.capacity_ == 0) {
cerr << "Illegal row capacity: is 0, should be at least 1"
<< endl;
is_broken = true;
}
else if (x.capacity_ == 1 && row_capacity == 0)
// This is fine.
;
else
# endif // !PPL_CXX_SUPPORTS_ZERO_LENGTH_ARRAYS
if (x.capacity_ != row_capacity) {
cerr << "DB_Row capacity mismatch: is " << x.capacity_
<< ", should be " << row_capacity << "."
<< endl;
is_broken = true;
}
#endif // PPL_DB_ROW_EXTRA_DEBUG
if (x.size() != row_size) {
#ifndef NDEBUG
cerr << "DB_Row size mismatch: is " << x.size()
<< ", should be " << row_size << "."
<< endl;
#endif
is_broken = true;
}
#if PPL_DB_ROW_EXTRA_DEBUG
if (x.capacity_ < x.size()) {
#ifndef NDEBUG
cerr << "DB_Row is completely broken: capacity is " << x.capacity_
<< ", size is " << x.size() << "."
<< endl;
#endif
is_broken = true;
}
#endif // PPL_DB_ROW_EXTRA_DEBUG
for (dimension_type i = x.size(); i-- > 0; ) {
const T& element = x[i];
// Not OK is bad.
if (!element.OK()) {
is_broken = true;
break;
}
// In addition, nans should never occur.
if (is_not_a_number(element)) {
#ifndef NDEBUG
cerr << "Not-a-number found in DB_Row."
<< endl;
#endif
is_broken = true;
break;
}
}
return !is_broken;
}
/*! \relates DB_Row */
template <typename T>
bool
operator==(const DB_Row<T>& x, const DB_Row<T>& y) {
if (x.size() != y.size())
return false;
for (dimension_type i = x.size(); i-- > 0; )
if (x[i] != y[i])
return false;
return true;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/DB_Row_defs.hh line 469. */
/* Automatically generated from PPL source file ../src/DB_Matrix_defs.hh line 32. */
#include <vector>
#include <cstddef>
#include <iosfwd>
namespace Parma_Polyhedra_Library {
namespace IO_Operators {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Output operator.
/*! \relates Parma_Polyhedra_Library::DB_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
std::ostream&
operator<<(std::ostream& s, const DB_Matrix<T>& c);
} // namespace IO_Operators
} // namespace Parma_Polyhedra_Library
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! The base class for the square matrices.
/*! \ingroup PPL_CXX_interface
The template class DB_Matrix<T> allows for the representation of
a square matrix of T objects.
Each DB_Matrix<T> object can be viewed as a multiset of DB_Row<T>.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
class Parma_Polyhedra_Library::DB_Matrix {
public:
//! Returns the maximum number of rows a DB_Matrix can handle.
static dimension_type max_num_rows();
//! Returns the maximum number of columns a DB_Matrix can handle.
static dimension_type max_num_columns();
//! Builds an empty matrix.
/*!
DB_Rows' size and capacity are initialized to \f$0\f$.
*/
DB_Matrix();
//! Builds a square matrix having the specified dimension.
explicit DB_Matrix(dimension_type n_rows);
//! Copy constructor.
DB_Matrix(const DB_Matrix& y);
//! Constructs a conservative approximation of \p y.
template <typename U>
explicit DB_Matrix(const DB_Matrix<U>& y);
//! Destructor.
~DB_Matrix();
//! Assignment operator.
DB_Matrix& operator=(const DB_Matrix& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! A read-only iterator over the rows of the matrix.
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
class const_iterator {
private:
typedef typename std::vector<DB_Row<T> >::const_iterator Iter;
//! The const iterator on the rows' vector \p rows.
Iter i;
public:
typedef std::forward_iterator_tag iterator_category;
typedef typename std::iterator_traits<Iter>::value_type value_type;
typedef typename std::iterator_traits<Iter>::difference_type
difference_type;
typedef typename std::iterator_traits<Iter>::pointer pointer;
typedef typename std::iterator_traits<Iter>::reference reference;
//! Default constructor.
const_iterator();
/*! \brief
Builds a const iterator on the matrix starting from
an iterator \p b on the elements of the vector \p rows.
*/
explicit const_iterator(const Iter& b);
//! Ordinary copy constructor.
const_iterator(const const_iterator& y);
//! Assignment operator.
const_iterator& operator=(const const_iterator& y);
//! Dereference operator.
reference operator*() const;
//! Indirect member selector.
pointer operator->() const;
//! Prefix increment operator.
const_iterator& operator++();
//! Postfix increment operator.
const_iterator operator++(int);
/*! \brief
Returns <CODE>true</CODE> if and only if
\p *this and \p y are identical.
*/
bool operator==(const const_iterator& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if
\p *this and \p y are different.
*/
bool operator!=(const const_iterator& y) const;
};
/*! \brief
Returns the const_iterator pointing to the first row,
if \p *this is not empty;
otherwise, returns the past-the-end const_iterator.
*/
const_iterator begin() const;
//! Returns the past-the-end const_iterator.
const_iterator end() const;
private:
template <typename U> friend class DB_Matrix;
//! The rows of the matrix.
std::vector<DB_Row<T> > rows;
//! Size of the initialized part of each row.
dimension_type row_size;
/*! \brief
Capacity allocated for each row, i.e., number of
<CODE>long</CODE> objects that each row can contain.
*/
dimension_type row_capacity;
public:
//! Swaps \p *this with \p y.
void m_swap(DB_Matrix& y);
//! Makes the matrix grow by adding more rows and more columns.
/*!
\param new_n_rows
The number of rows and columns of the resized matrix.
A new matrix, with the specified dimension, is created.
The contents of the old matrix are copied in the upper, left-hand
corner of the new matrix, which is then assigned to \p *this.
*/
void grow(dimension_type new_n_rows);
//! Resizes the matrix without worrying about the old contents.
/*!
\param new_n_rows
The number of rows and columns of the resized matrix.
A new matrix, with the specified dimension, is created without copying
the content of the old matrix and assigned to \p *this.
*/
void resize_no_copy(dimension_type new_n_rows);
//! Returns the number of rows in the matrix.
dimension_type num_rows() const;
//! \name Subscript operators.
//@{
//! Returns a reference to the \p k-th row of the matrix.
DB_Row<T>& operator[](dimension_type k);
//! Returns a constant reference to the \p k-th row of the matrix.
const DB_Row<T>& operator[](dimension_type k) const;
//@}
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
//! Checks if all the invariants are satisfied.
bool OK() const;
};
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Swaps \p x with \p y.
/*! \relates DB_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
void swap(DB_Matrix<T>& x, DB_Matrix<T>& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x and \p y are identical.
/*! \relates DB_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
bool operator==(const DB_Matrix<T>& x, const DB_Matrix<T>& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x and \p y are different.
/*! \relates DB_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
bool operator!=(const DB_Matrix<T>& x, const DB_Matrix<T>& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Computes the rectilinear (or Manhattan) distance between \p x and \p y.
/*! \relates DB_Matrix
If the rectilinear distance between \p x and \p y is defined,
stores an approximation of it into to \p r
and returns <CODE>true</CODE>; returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Temp, typename To, typename T>
bool rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const DB_Matrix<T>& x,
const DB_Matrix<T>& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Computes the euclidean distance between \p x and \p y.
/*! \relates DB_Matrix
If the Euclidean distance between \p x and \p y is defined,
stores an approximation of it into to \p r
and returns <CODE>true</CODE>; returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Temp, typename To, typename T>
bool euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const DB_Matrix<T>& x,
const DB_Matrix<T>& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Computes the \f$L_\infty\f$ distance between \p x and \p y.
/*! \relates DB_Matrix
If the \f$L_\infty\f$ distance between \p x and \p y is defined,
stores an approximation of it into to \p r
and returns <CODE>true</CODE>; returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Temp, typename To, typename T>
bool l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const DB_Matrix<T>& x,
const DB_Matrix<T>& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/DB_Matrix_inlines.hh line 1. */
/* DB_Matrix class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/DB_Matrix_inlines.hh line 31. */
#include <iostream>
namespace Parma_Polyhedra_Library {
template <typename T>
inline void
DB_Matrix<T>::m_swap(DB_Matrix& y) {
using std::swap;
swap(rows, y.rows);
swap(row_size, y.row_size);
swap(row_capacity, y.row_capacity);
}
template <typename T>
inline dimension_type
DB_Matrix<T>::max_num_rows() {
return std::vector<DB_Row<T> >().max_size();
}
template <typename T>
inline dimension_type
DB_Matrix<T>::max_num_columns() {
return DB_Row<T>::max_size();
}
template <typename T>
inline memory_size_type
DB_Matrix<T>::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
template <typename T>
inline
DB_Matrix<T>::const_iterator::const_iterator()
: i(Iter()) {
}
template <typename T>
inline
DB_Matrix<T>::const_iterator::const_iterator(const Iter& b)
: i(b) {
}
template <typename T>
inline
DB_Matrix<T>::const_iterator::const_iterator(const const_iterator& y)
: i(y.i) {
}
template <typename T>
inline typename DB_Matrix<T>::const_iterator&
DB_Matrix<T>::const_iterator::operator=(const const_iterator& y) {
i = y.i;
return *this;
}
template <typename T>
inline typename DB_Matrix<T>::const_iterator::reference
DB_Matrix<T>::const_iterator::operator*() const {
return *i;
}
template <typename T>
inline typename DB_Matrix<T>::const_iterator::pointer
DB_Matrix<T>::const_iterator::operator->() const {
return &*i;
}
template <typename T>
inline typename DB_Matrix<T>::const_iterator&
DB_Matrix<T>::const_iterator::operator++() {
++i;
return *this;
}
template <typename T>
inline typename DB_Matrix<T>::const_iterator
DB_Matrix<T>::const_iterator::operator++(int) {
return const_iterator(i++);
}
template <typename T>
inline bool
DB_Matrix<T>::const_iterator::operator==(const const_iterator& y) const {
return i == y.i;
}
template <typename T>
inline bool
DB_Matrix<T>::const_iterator::operator!=(const const_iterator& y) const {
return !operator==(y);
}
template <typename T>
inline typename DB_Matrix<T>::const_iterator
DB_Matrix<T>::begin() const {
return const_iterator(rows.begin());
}
template <typename T>
inline typename DB_Matrix<T>::const_iterator
DB_Matrix<T>::end() const {
return const_iterator(rows.end());
}
template <typename T>
inline
DB_Matrix<T>::DB_Matrix()
: rows(),
row_size(0),
row_capacity(0) {
}
template <typename T>
inline
DB_Matrix<T>::~DB_Matrix() {
}
template <typename T>
inline DB_Row<T>&
DB_Matrix<T>::operator[](const dimension_type k) {
PPL_ASSERT(k < rows.size());
return rows[k];
}
template <typename T>
inline const DB_Row<T>&
DB_Matrix<T>::operator[](const dimension_type k) const {
PPL_ASSERT(k < rows.size());
return rows[k];
}
template <typename T>
inline dimension_type
DB_Matrix<T>::num_rows() const {
return rows.size();
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates DB_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
inline bool
operator!=(const DB_Matrix<T>& x, const DB_Matrix<T>& y) {
return !(x == y);
}
template <typename T>
inline
DB_Matrix<T>::DB_Matrix(const DB_Matrix& y)
: rows(y.rows),
row_size(y.row_size),
row_capacity(compute_capacity(y.row_size, max_num_columns())) {
}
template <typename T>
inline DB_Matrix<T>&
DB_Matrix<T>::operator=(const DB_Matrix& y) {
// Without the following guard against auto-assignments we would
// recompute the row capacity based on row size, possibly without
// actually increasing the capacity of the rows. This would lead to
// an inconsistent state.
if (this != &y) {
// The following assignment may do nothing on auto-assignments...
rows = y.rows;
row_size = y.row_size;
// ... hence the following assignment must not be done on
// auto-assignments.
row_capacity = compute_capacity(y.row_size, max_num_columns());
}
return *this;
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates DB_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Specialization, typename Temp, typename To, typename T>
inline bool
l_m_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const DB_Matrix<T>& x,
const DB_Matrix<T>& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
const dimension_type x_num_rows = x.num_rows();
if (x_num_rows != y.num_rows())
return false;
assign_r(tmp0, 0, ROUND_NOT_NEEDED);
for (dimension_type i = x_num_rows; i-- > 0; ) {
const DB_Row<T>& x_i = x[i];
const DB_Row<T>& y_i = y[i];
for (dimension_type j = x_num_rows; j-- > 0; ) {
const T& x_i_j = x_i[j];
const T& y_i_j = y_i[j];
if (is_plus_infinity(x_i_j)) {
if (is_plus_infinity(y_i_j))
continue;
else {
pinf:
assign_r(r, PLUS_INFINITY, ROUND_NOT_NEEDED);
return true;
}
}
else if (is_plus_infinity(y_i_j))
goto pinf;
const Temp* tmp1p;
const Temp* tmp2p;
if (x_i_j > y_i_j) {
maybe_assign(tmp1p, tmp1, x_i_j, dir);
maybe_assign(tmp2p, tmp2, y_i_j, inverse(dir));
}
else {
maybe_assign(tmp1p, tmp1, y_i_j, dir);
maybe_assign(tmp2p, tmp2, x_i_j, inverse(dir));
}
sub_assign_r(tmp1, *tmp1p, *tmp2p, dir);
PPL_ASSERT(sgn(tmp1) >= 0);
Specialization::combine(tmp0, tmp1, dir);
}
}
Specialization::finalize(tmp0, dir);
assign_r(r, tmp0, dir);
return true;
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates DB_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Temp, typename To, typename T>
inline bool
rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const DB_Matrix<T>& x,
const DB_Matrix<T>& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
return
l_m_distance_assign<Rectilinear_Distance_Specialization<Temp> >(r, x, y,
dir,
tmp0,
tmp1,
tmp2);
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates DB_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Temp, typename To, typename T>
inline bool
euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const DB_Matrix<T>& x,
const DB_Matrix<T>& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
return
l_m_distance_assign<Euclidean_Distance_Specialization<Temp> >(r, x, y,
dir,
tmp0,
tmp1,
tmp2);
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates DB_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Temp, typename To, typename T>
inline bool
l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const DB_Matrix<T>& x,
const DB_Matrix<T>& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
return
l_m_distance_assign<L_Infinity_Distance_Specialization<Temp> >(r, x, y,
dir,
tmp0,
tmp1,
tmp2);
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates DB_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
inline void
swap(DB_Matrix<T>& x, DB_Matrix<T>& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/DB_Matrix_templates.hh line 1. */
/* DB_Matrix class implementation: non-inline template functions.
*/
namespace Parma_Polyhedra_Library {
template <typename T>
DB_Matrix<T>::DB_Matrix(const dimension_type n_rows)
: rows(n_rows),
row_size(n_rows),
row_capacity(compute_capacity(n_rows, max_num_columns())) {
// Construct in direct order: will destroy in reverse order.
for (dimension_type i = 0; i < n_rows; ++i)
rows[i].construct(n_rows, row_capacity);
PPL_ASSERT(OK());
}
template <typename T>
template <typename U>
DB_Matrix<T>::DB_Matrix(const DB_Matrix<U>& y)
: rows(y.rows.size()),
row_size(y.row_size),
row_capacity(compute_capacity(y.row_size, max_num_columns())) {
// Construct in direct order: will destroy in reverse order.
for (dimension_type i = 0, n_rows = rows.size(); i < n_rows; ++i)
rows[i].construct_upward_approximation(y[i], row_capacity);
PPL_ASSERT(OK());
}
template <typename T>
void
DB_Matrix<T>::grow(const dimension_type new_n_rows) {
const dimension_type old_n_rows = rows.size();
PPL_ASSERT(new_n_rows >= old_n_rows);
if (new_n_rows > old_n_rows) {
if (new_n_rows <= row_capacity) {
// We can recycle the old rows.
if (rows.capacity() < new_n_rows) {
// Reallocation will take place.
std::vector<DB_Row<T> > new_rows;
new_rows.reserve(compute_capacity(new_n_rows, max_num_rows()));
new_rows.insert(new_rows.end(), new_n_rows, DB_Row<T>());
// Construct the new rows.
dimension_type i = new_n_rows;
while (i-- > old_n_rows)
new_rows[i].construct(new_n_rows, row_capacity);
// Steal the old rows.
++i;
while (i-- > 0)
swap(new_rows[i], rows[i]);
// Put the new vector into place.
using std::swap;
swap(rows, new_rows);
}
else {
// Reallocation will NOT take place.
rows.insert(rows.end(), new_n_rows - old_n_rows, DB_Row<T>());
for (dimension_type i = new_n_rows; i-- > old_n_rows; )
rows[i].construct(new_n_rows, row_capacity);
}
}
else {
// We cannot even recycle the old rows.
DB_Matrix new_matrix;
new_matrix.rows.reserve(compute_capacity(new_n_rows, max_num_rows()));
new_matrix.rows.insert(new_matrix.rows.end(), new_n_rows, DB_Row<T>());
// Construct the new rows.
new_matrix.row_size = new_n_rows;
new_matrix.row_capacity = compute_capacity(new_n_rows,
max_num_columns());
dimension_type i = new_n_rows;
while (i-- > old_n_rows)
new_matrix.rows[i].construct(new_matrix.row_size,
new_matrix.row_capacity);
// Copy the old rows.
++i;
while (i-- > 0) {
// FIXME: copying may be unnecessarily costly.
DB_Row<T> new_row(rows[i],
new_matrix.row_size,
new_matrix.row_capacity);
swap(new_matrix.rows[i], new_row);
}
// Put the new vector into place.
m_swap(new_matrix);
return;
}
}
// Here we have the right number of rows.
if (new_n_rows > row_size) {
// We need more columns.
if (new_n_rows <= row_capacity)
// But we have enough capacity: we resize existing rows.
for (dimension_type i = old_n_rows; i-- > 0; )
rows[i].expand_within_capacity(new_n_rows);
else {
// Capacity exhausted: we must reallocate the rows and
// make sure all the rows have the same capacity.
const dimension_type new_row_capacity
= compute_capacity(new_n_rows, max_num_columns());
for (dimension_type i = old_n_rows; i-- > 0; ) {
// FIXME: copying may be unnecessarily costly.
DB_Row<T> new_row(rows[i], new_n_rows, new_row_capacity);
swap(rows[i], new_row);
}
row_capacity = new_row_capacity;
}
// Rows have grown or shrunk.
row_size = new_n_rows;
}
}
template <typename T>
void
DB_Matrix<T>::resize_no_copy(const dimension_type new_n_rows) {
dimension_type old_n_rows = rows.size();
if (new_n_rows > old_n_rows) {
// Rows will be inserted.
if (new_n_rows <= row_capacity) {
// We can recycle the old rows.
if (rows.capacity() < new_n_rows) {
// Reallocation (of vector `rows') will take place.
std::vector<DB_Row<T> > new_rows;
new_rows.reserve(compute_capacity(new_n_rows, max_num_rows()));
new_rows.insert(new_rows.end(), new_n_rows, DB_Row<T>());
// Construct the new rows (be careful: each new row must have
// the same capacity as each one of the old rows).
dimension_type i = new_n_rows;
while (i-- > old_n_rows)
new_rows[i].construct(new_n_rows, row_capacity);
// Steal the old rows.
++i;
while (i-- > 0)
swap(new_rows[i], rows[i]);
// Put the new vector into place.
using std::swap;
swap(rows, new_rows);
}
else {
// Reallocation (of vector `rows') will NOT take place.
rows.insert(rows.end(), new_n_rows - old_n_rows, DB_Row<T>());
// Be careful: each new row must have
// the same capacity as each one of the old rows.
for (dimension_type i = new_n_rows; i-- > old_n_rows; )
rows[i].construct(new_n_rows, row_capacity);
}
}
else {
// We cannot even recycle the old rows: allocate a new matrix and swap.
DB_Matrix new_matrix(new_n_rows);
m_swap(new_matrix);
return;
}
}
else if (new_n_rows < old_n_rows) {
// Drop some rows.
rows.resize(new_n_rows);
// Shrink the existing rows.
for (dimension_type i = new_n_rows; i-- > 0; )
rows[i].shrink(new_n_rows);
old_n_rows = new_n_rows;
}
// Here we have the right number of rows.
if (new_n_rows > row_size) {
// We need more columns.
if (new_n_rows <= row_capacity)
// But we have enough capacity: we resize existing rows.
for (dimension_type i = old_n_rows; i-- > 0; )
rows[i].expand_within_capacity(new_n_rows);
else {
// Capacity exhausted: we must reallocate the rows and
// make sure all the rows have the same capacity.
const dimension_type new_row_capacity
= compute_capacity(new_n_rows, max_num_columns());
for (dimension_type i = old_n_rows; i-- > 0; ) {
DB_Row<T> new_row(new_n_rows, new_row_capacity);
swap(rows[i], new_row);
}
row_capacity = new_row_capacity;
}
}
// DB_Rows have grown or shrunk.
row_size = new_n_rows;
}
template <typename T>
void
DB_Matrix<T>::ascii_dump(std::ostream& s) const {
const DB_Matrix<T>& x = *this;
const char separator = ' ';
const dimension_type nrows = x.num_rows();
s << nrows << separator << "\n";
for (dimension_type i = 0; i < nrows; ++i) {
for (dimension_type j = 0; j < nrows; ++j) {
using namespace IO_Operators;
s << x[i][j] << separator;
}
s << "\n";
}
}
PPL_OUTPUT_TEMPLATE_DEFINITIONS(T, DB_Matrix<T>)
template <typename T>
bool
DB_Matrix<T>::ascii_load(std::istream& s) {
dimension_type nrows;
if (!(s >> nrows))
return false;
resize_no_copy(nrows);
DB_Matrix& x = *this;
for (dimension_type i = 0; i < nrows; ++i)
for (dimension_type j = 0; j < nrows; ++j) {
Result r = input(x[i][j], s, ROUND_CHECK);
if (result_relation(r) != VR_EQ || is_minus_infinity(x[i][j]))
return false;
}
// Check invariants.
PPL_ASSERT(OK());
return true;
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates DB_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
bool
operator==(const DB_Matrix<T>& x, const DB_Matrix<T>& y) {
const dimension_type x_num_rows = x.num_rows();
if (x_num_rows != y.num_rows())
return false;
for (dimension_type i = x_num_rows; i-- > 0; )
if (x[i] != y[i])
return false;
return true;
}
template <typename T>
memory_size_type
DB_Matrix<T>::external_memory_in_bytes() const {
memory_size_type n = rows.capacity() * sizeof(DB_Row<T>);
for (dimension_type i = num_rows(); i-- > 0; )
n += rows[i].external_memory_in_bytes(row_capacity);
return n;
}
template <typename T>
bool
DB_Matrix<T>::OK() const {
#ifndef NDEBUG
using std::endl;
using std::cerr;
#endif
// The matrix must be square.
if (num_rows() != row_size) {
#ifndef NDEBUG
cerr << "DB_Matrix has fewer columns than rows:\n"
<< "row_size is " << row_size
<< ", num_rows() is " << num_rows() << "!"
<< endl;
#endif
return false;
}
const DB_Matrix& x = *this;
const dimension_type n_rows = x.num_rows();
for (dimension_type i = 0; i < n_rows; ++i) {
if (!x[i].OK(row_size, row_capacity))
return false;
}
// All checks passed.
return true;
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates Parma_Polyhedra_Library::DB_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
std::ostream&
IO_Operators::operator<<(std::ostream& s, const DB_Matrix<T>& c) {
const dimension_type n = c.num_rows();
for (dimension_type i = 0; i < n; ++i) {
for (dimension_type j = 0; j < n; ++j)
s << c[i][j] << " ";
s << "\n";
}
return s;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/DB_Matrix_defs.hh line 324. */
/* Automatically generated from PPL source file ../src/WRD_coefficient_types_defs.hh line 1. */
/* Coefficient types of weakly-relational domains: declarations.
*/
/* Automatically generated from PPL source file ../src/WRD_coefficient_types_defs.hh line 28. */
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface \brief
The production policy for checked numbers used in weakly-relational
domains.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
struct WRD_Extended_Number_Policy {
//! Check for overflowed result.
const_bool_nodef(check_overflow, true);
//! Do not check for attempts to add infinities with different sign.
const_bool_nodef(check_inf_add_inf, false);
//! Do not check for attempts to subtract infinities with same sign.
const_bool_nodef(check_inf_sub_inf, false);
//! Do not check for attempts to multiply infinities by zero.
const_bool_nodef(check_inf_mul_zero, false);
//! Do not check for attempts to divide by zero.
const_bool_nodef(check_div_zero, false);
//! Do not check for attempts to divide infinities.
const_bool_nodef(check_inf_div_inf, false);
//! Do not check for attempts to compute remainder of infinities.
const_bool_nodef(check_inf_mod, false);
//! Do not checks for attempts to take the square root of a negative number.
const_bool_nodef(check_sqrt_neg, false);
//! Handle not-a-number special value.
const_bool_nodef(has_nan, true);
//! Handle infinity special values.
const_bool_nodef(has_infinity, true);
// `convertible' is intentionally not defined: the compile time
// error on conversions is the expected behavior.
//! Honor requests to check for FPU inexact results.
const_bool_nodef(fpu_check_inexact, true);
//! Do not make extra checks to detect FPU NaN results.
const_bool_nodef(fpu_check_nan_result, false);
// ROUND_DEFAULT_CONSTRUCTOR is intentionally not defined.
// ROUND_DEFAULT_OPERATOR is intentionally not defined.
// ROUND_DEFAULT_FUNCTION is intentionally not defined.
// ROUND_DEFAULT_INPUT is intentionally not defined.
// ROUND_DEFAULT_OUTPUT is intentionally not defined.
/*! \brief
Handles \p r: called by all constructors, operators and functions that
do not return a Result value.
*/
static void handle_result(Result r);
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_CXX_interface \brief
The debugging policy for checked numbers used in weakly-relational
domains.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
struct Debug_WRD_Extended_Number_Policy {
//! Check for overflowed result.
const_bool_nodef(check_overflow, true);
//! Check for attempts to add infinities with different sign.
const_bool_nodef(check_inf_add_inf, true);
//! Check for attempts to subtract infinities with same sign.
const_bool_nodef(check_inf_sub_inf, true);
//! Check for attempts to multiply infinities by zero.
const_bool_nodef(check_inf_mul_zero, true);
//! Check for attempts to divide by zero.
const_bool_nodef(check_div_zero, true);
//! Check for attempts to divide infinities.
const_bool_nodef(check_inf_div_inf, true);
//! Check for attempts to compute remainder of infinities.
const_bool_nodef(check_inf_mod, true);
//! Checks for attempts to take the square root of a negative number.
const_bool_nodef(check_sqrt_neg, true);
//! Handle not-a-number special value.
const_bool_nodef(has_nan, true);
//! Handle infinity special values.
const_bool_nodef(has_infinity, true);
// `convertible' is intentionally not defined: the compile time
// error on conversions is the expected behavior.
//! Honor requests to check for FPU inexact results.
const_bool_nodef(fpu_check_inexact, true);
//! Make extra checks to detect FPU NaN results.
const_bool_nodef(fpu_check_nan_result, true);
// ROUND_DEFAULT_CONSTRUCTOR is intentionally not defined.
// ROUND_DEFAULT_OPERATOR is intentionally not defined.
// ROUND_DEFAULT_FUNCTION is intentionally not defined.
// ROUND_DEFAULT_INPUT is intentionally not defined.
// ROUND_DEFAULT_OUTPUT is intentionally not defined.
/*! \brief
Handles \p r: called by all constructors, operators and functions that
do not return a Result value.
*/
static void handle_result(Result r);
};
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/WRD_coefficient_types_inlines.hh line 1. */
/* Coefficient types of weakly-relational domains: inline functions.
*/
namespace Parma_Polyhedra_Library {
inline void
WRD_Extended_Number_Policy::handle_result(Result r) {
if (result_class(r) == VC_NAN)
throw_result_exception(r);
}
inline void
Debug_WRD_Extended_Number_Policy::handle_result(Result r) {
if (result_class(r) == VC_NAN)
throw_result_exception(r);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/WRD_coefficient_types_defs.hh line 152. */
/* Automatically generated from PPL source file ../src/BD_Shape_defs.hh line 52. */
#include <cstddef>
#include <iosfwd>
#include <vector>
namespace Parma_Polyhedra_Library {
namespace IO_Operators {
//! Output operator.
/*! \relates Parma_Polyhedra_Library::BD_Shape
Writes a textual representation of \p bds on \p s:
<CODE>false</CODE> is written if \p bds is an empty polyhedron;
<CODE>true</CODE> is written if \p bds is the universe polyhedron;
a system of constraints defining \p bds is written otherwise,
all constraints separated by ", ".
*/
template <typename T>
std::ostream&
operator<<(std::ostream& s, const BD_Shape<T>& bds);
} // namespace IO_Operators
//! Swaps \p x with \p y.
/*! \relates BD_Shape */
template <typename T>
void swap(BD_Shape<T>& x, BD_Shape<T>& y);
//! Returns <CODE>true</CODE> if and only if \p x and \p y are the same BDS.
/*! \relates BD_Shape
Note that \p x and \p y may be dimension-incompatible shapes:
in this case, the value <CODE>false</CODE> is returned.
*/
template <typename T>
bool operator==(const BD_Shape<T>& x, const BD_Shape<T>& y);
//! Returns <CODE>true</CODE> if and only if \p x and \p y are not the same BDS.
/*! \relates BD_Shape
Note that \p x and \p y may be dimension-incompatible shapes:
in this case, the value <CODE>true</CODE> is returned.
*/
template <typename T>
bool operator!=(const BD_Shape<T>& x, const BD_Shape<T>& y);
//! Computes the rectilinear (or Manhattan) distance between \p x and \p y.
/*! \relates BD_Shape
If the rectilinear distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<To, Extended_Number_Policy\></CODE>.
*/
template <typename To, typename T>
bool rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
Rounding_Dir dir);
//! Computes the rectilinear (or Manhattan) distance between \p x and \p y.
/*! \relates BD_Shape
If the rectilinear distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<Temp, Extended_Number_Policy\></CODE>.
*/
template <typename Temp, typename To, typename T>
bool rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
Rounding_Dir dir);
//! Computes the rectilinear (or Manhattan) distance between \p x and \p y.
/*! \relates BD_Shape
If the rectilinear distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
*/
template <typename Temp, typename To, typename T>
bool rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
//! Computes the euclidean distance between \p x and \p y.
/*! \relates BD_Shape
If the euclidean distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<To, Extended_Number_Policy\></CODE>.
*/
template <typename To, typename T>
bool euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
Rounding_Dir dir);
//! Computes the euclidean distance between \p x and \p y.
/*! \relates BD_Shape
If the euclidean distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<Temp, Extended_Number_Policy\></CODE>.
*/
template <typename Temp, typename To, typename T>
bool euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
Rounding_Dir dir);
//! Computes the euclidean distance between \p x and \p y.
/*! \relates BD_Shape
If the euclidean distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
*/
template <typename Temp, typename To, typename T>
bool euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
//! Computes the \f$L_\infty\f$ distance between \p x and \p y.
/*! \relates BD_Shape
If the \f$L_\infty\f$ distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<To, Extended_Number_Policy\></CODE>.
*/
template <typename To, typename T>
bool l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
Rounding_Dir dir);
//! Computes the \f$L_\infty\f$ distance between \p x and \p y.
/*! \relates BD_Shape
If the \f$L_\infty\f$ distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<Temp, Extended_Number_Policy\></CODE>.
*/
template <typename Temp, typename To, typename T>
bool l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
Rounding_Dir dir);
//! Computes the \f$L_\infty\f$ distance between \p x and \p y.
/*! \relates BD_Shape
If the \f$L_\infty\f$ distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
*/
template <typename Temp, typename To, typename T>
bool l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
// This class contains some helper functions that need to be friends of
// Linear_Expression.
class BD_Shape_Helpers {
public:
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Decodes the constraint \p c as a bounded difference.
/*! \relates BD_Shape
\return
<CODE>true</CODE> if the constraint \p c is a
\ref Bounded_Difference_Shapes "bounded difference";
<CODE>false</CODE> otherwise.
\param c
The constraint to be decoded.
\param c_num_vars
If <CODE>true</CODE> is returned, then it will be set to the number
of variables having a non-zero coefficient. The only legal values
will therefore be 0, 1 and 2.
\param c_first_var
If <CODE>true</CODE> is returned and if \p c_num_vars is not set to 0,
then it will be set to the index of the first variable having
a non-zero coefficient in \p c.
\param c_second_var
If <CODE>true</CODE> is returned and if \p c_num_vars is set to 2,
then it will be set to the index of the second variable having
a non-zero coefficient in \p c. If \p c_num_vars is set to 1, this must be
0.
\param c_coeff
If <CODE>true</CODE> is returned and if \p c_num_vars is not set to 0,
then it will be set to the value of the first non-zero coefficient
in \p c.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
static bool extract_bounded_difference(const Constraint& c,
dimension_type& c_num_vars,
dimension_type& c_first_var,
dimension_type& c_second_var,
Coefficient& c_coeff);
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Extracts leader indices from the predecessor relation.
/*! \relates BD_Shape */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
void compute_leader_indices(const std::vector<dimension_type>& predecessor,
std::vector<dimension_type>& indices);
} // namespace Parma_Polyhedra_Library
//! A bounded difference shape.
/*! \ingroup PPL_CXX_interface
The class template BD_Shape<T> allows for the efficient representation
of a restricted kind of <EM>topologically closed</EM> convex polyhedra
called <EM>bounded difference shapes</EM> (BDSs, for short).
The name comes from the fact that the closed affine half-spaces that
characterize the polyhedron can be expressed by constraints of the form
\f$\pm x_i \leq k\f$ or \f$x_i - x_j \leq k\f$, where the inhomogeneous
term \f$k\f$ is a rational number.
Based on the class template type parameter \p T, a family of extended
numbers is built and used to approximate the inhomogeneous term of
bounded differences. These extended numbers provide a representation
for the value \f$+\infty\f$, as well as <EM>rounding-aware</EM>
implementations for several arithmetic functions.
The value of the type parameter \p T may be one of the following:
- a bounded precision integer type (e.g., \c int32_t or \c int64_t);
- a bounded precision floating point type (e.g., \c float or \c double);
- an unbounded integer or rational type, as provided by GMP
(i.e., \c mpz_class or \c mpq_class).
The user interface for BDSs is meant to be as similar as possible to
the one developed for the polyhedron class C_Polyhedron.
The domain of BD shapes <EM>optimally supports</EM>:
- tautological and inconsistent constraints and congruences;
- bounded difference constraints;
- non-proper congruences (i.e., equalities) that are expressible
as bounded-difference constraints.
Depending on the method, using a constraint or congruence that is not
optimally supported by the domain will either raise an exception or
result in a (possibly non-optimal) upward approximation.
A constraint is a bounded difference if it has the form
\f[
a_i x_i - a_j x_j \relsym b
\f]
where \f$\mathord{\relsym} \in \{ \leq, =, \geq \}\f$ and
\f$a_i\f$, \f$a_j\f$, \f$b\f$ are integer coefficients such that
\f$a_i = 0\f$, or \f$a_j = 0\f$, or \f$a_i = a_j\f$.
The user is warned that the above bounded difference Constraint object
will be mapped into a \e correct and \e optimal approximation that,
depending on the expressive power of the chosen template argument \p T,
may loose some precision. Also note that strict constraints are not
bounded differences.
For instance, a Constraint object encoding \f$3x - 3y \leq 1\f$ will be
approximated by:
- \f$x - y \leq 1\f$,
if \p T is a (bounded or unbounded) integer type;
- \f$x - y \leq \frac{1}{3}\f$,
if \p T is the unbounded rational type \c mpq_class;
- \f$x - y \leq k\f$, where \f$k > \frac{1}{3}\f$,
if \p T is a floating point type (having no exact representation
for \f$\frac{1}{3}\f$).
On the other hand, depending from the context, a Constraint object
encoding \f$3x - y \leq 1\f$ will be either upward approximated
(e.g., by safely ignoring it) or it will cause an exception.
In the following examples it is assumed that the type argument \p T
is one of the possible instances listed above and that variables
<CODE>x</CODE>, <CODE>y</CODE> and <CODE>z</CODE> are defined
(where they are used) as follows:
\code
Variable x(0);
Variable y(1);
Variable z(2);
\endcode
\par Example 1
The following code builds a BDS corresponding to a cube in \f$\Rset^3\f$,
given as a system of constraints:
\code
Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 1);
cs.insert(y >= 0);
cs.insert(y <= 1);
cs.insert(z >= 0);
cs.insert(z <= 1);
BD_Shape<T> bd(cs);
\endcode
Since only those constraints having the syntactic form of a
<EM>bounded difference</EM> are optimally supported, the following code
will throw an exception (caused by constraints 7, 8 and 9):
\code
Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 1);
cs.insert(y >= 0);
cs.insert(y <= 1);
cs.insert(z >= 0);
cs.insert(z <= 1);
cs.insert(x + y <= 0); // 7
cs.insert(x - z + x >= 0); // 8
cs.insert(3*z - y <= 1); // 9
BD_Shape<T> bd(cs);
\endcode
*/
template <typename T>
class Parma_Polyhedra_Library::BD_Shape {
private:
/*! \brief
The (extended) numeric type of the inhomogeneous term of
the inequalities defining a BDS.
*/
#ifndef NDEBUG
typedef Checked_Number<T, Debug_WRD_Extended_Number_Policy> N;
#else
typedef Checked_Number<T, WRD_Extended_Number_Policy> N;
#endif
public:
//! The numeric base type upon which bounded differences are built.
typedef T coefficient_type_base;
/*! \brief
The (extended) numeric type of the inhomogeneous term of the
inequalities defining a BDS.
*/
typedef N coefficient_type;
//! Returns the maximum space dimension that a BDS can handle.
static dimension_type max_space_dimension();
/*! \brief
Returns \c false indicating that this domain cannot recycle constraints.
*/
static bool can_recycle_constraint_systems();
/*! \brief
Returns \c false indicating that this domain cannot recycle congruences.
*/
static bool can_recycle_congruence_systems();
//! \name Constructors, Assignment, Swap and Destructor
//@{
//! Builds a universe or empty BDS of the specified space dimension.
/*!
\param num_dimensions
The number of dimensions of the vector space enclosing the BDS;
\param kind
Specifies whether the universe or the empty BDS has to be built.
*/
explicit BD_Shape(dimension_type num_dimensions = 0,
Degenerate_Element kind = UNIVERSE);
//! Ordinary copy constructor.
/*!
The complexity argument is ignored.
*/
BD_Shape(const BD_Shape& y,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a conservative, upward approximation of \p y.
/*!
The complexity argument is ignored.
*/
template <typename U>
explicit BD_Shape(const BD_Shape<U>& y,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a BDS from the system of constraints \p cs.
/*!
The BDS inherits the space dimension of \p cs.
\param cs
A system of BD constraints.
\exception std::invalid_argument
Thrown if \p cs contains a constraint which is not optimally supported
by the BD shape domain.
*/
explicit BD_Shape(const Constraint_System& cs);
//! Builds a BDS from a system of congruences.
/*!
The BDS inherits the space dimension of \p cgs
\param cgs
A system of congruences.
\exception std::invalid_argument
Thrown if \p cgs contains congruences which are not optimally
supported by the BD shape domain.
*/
explicit BD_Shape(const Congruence_System& cgs);
//! Builds a BDS from the system of generators \p gs.
/*!
Builds the smallest BDS containing the polyhedron defined by \p gs.
The BDS inherits the space dimension of \p gs.
\exception std::invalid_argument
Thrown if the system of generators is not empty but has no points.
*/
explicit BD_Shape(const Generator_System& gs);
//! Builds a BDS from the polyhedron \p ph.
/*!
Builds a BDS containing \p ph using algorithms whose complexity
does not exceed the one specified by \p complexity. If
\p complexity is \p ANY_COMPLEXITY, then the BDS built is the
smallest one containing \p ph.
*/
explicit BD_Shape(const Polyhedron& ph,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a BDS out of a box.
/*!
The BDS inherits the space dimension of the box.
The built BDS is the most precise BDS that includes the box.
\param box
The box representing the BDS to be built.
\param complexity
This argument is ignored as the algorithm used has
polynomial complexity.
\exception std::length_error
Thrown if the space dimension of \p box exceeds the maximum
allowed space dimension.
*/
template <typename Interval>
explicit BD_Shape(const Box<Interval>& box,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a BDS out of a grid.
/*!
The BDS inherits the space dimension of the grid.
The built BDS is the most precise BDS that includes the grid.
\param grid
The grid used to build the BDS.
\param complexity
This argument is ignored as the algorithm used has
polynomial complexity.
\exception std::length_error
Thrown if the space dimension of \p grid exceeds the maximum
allowed space dimension.
*/
explicit BD_Shape(const Grid& grid,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a BDS from an octagonal shape.
/*!
The BDS inherits the space dimension of the octagonal shape.
The built BDS is the most precise BDS that includes the octagonal shape.
\param os
The octagonal shape used to build the BDS.
\param complexity
This argument is ignored as the algorithm used has
polynomial complexity.
\exception std::length_error
Thrown if the space dimension of \p os exceeds the maximum
allowed space dimension.
*/
template <typename U>
explicit BD_Shape(const Octagonal_Shape<U>& os,
Complexity_Class complexity = ANY_COMPLEXITY);
/*! \brief
The assignment operator
(\p *this and \p y can be dimension-incompatible).
*/
BD_Shape& operator=(const BD_Shape& y);
/*! \brief
Swaps \p *this with \p y
(\p *this and \p y can be dimension-incompatible).
*/
void m_swap(BD_Shape& y);
//! Destructor.
~BD_Shape();
//@} Constructors, Assignment, Swap and Destructor
//! \name Member Functions that Do Not Modify the BD_Shape
//@{
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
/*! \brief
Returns \f$0\f$, if \p *this is empty; otherwise, returns the
\ref Affine_Independence_and_Affine_Dimension "affine dimension"
of \p *this.
*/
dimension_type affine_dimension() const;
//! Returns a system of constraints defining \p *this.
Constraint_System constraints() const;
//! Returns a minimized system of constraints defining \p *this.
Constraint_System minimized_constraints() const;
//! Returns a system of (equality) congruences satisfied by \p *this.
Congruence_System congruences() const;
/*! \brief
Returns a minimal system of (equality) congruences
satisfied by \p *this with the same affine dimension as \p *this.
*/
Congruence_System minimized_congruences() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p expr is
bounded from above in \p *this.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds_from_above(const Linear_Expression& expr) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p expr is
bounded from below in \p *this.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds_from_below(const Linear_Expression& expr) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from above in \p *this, in which case
the supremum value is computed.
\param expr
The linear expression to be maximized subject to \p *this;
\param sup_n
The numerator of the supremum value;
\param sup_d
The denominator of the supremum value;
\param maximum
<CODE>true</CODE> if and only if the supremum is also the maximum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from above,
<CODE>false</CODE> is returned and \p sup_n, \p sup_d
and \p maximum are left untouched.
*/
bool maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from above in \p *this, in which case
the supremum value and a point where \p expr reaches it are computed.
\param expr
The linear expression to be maximized subject to \p *this;
\param sup_n
The numerator of the supremum value;
\param sup_d
The denominator of the supremum value;
\param maximum
<CODE>true</CODE> if and only if the supremum is also the maximum value;
\param g
When maximization succeeds, will be assigned the point or
closure point where \p expr reaches its supremum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from above,
<CODE>false</CODE> is returned and \p sup_n, \p sup_d, \p maximum
and \p g are left untouched.
*/
bool maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum,
Generator& g) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from below in \p *this, in which case
the infimum value is computed.
\param expr
The linear expression to be minimized subject to \p *this;
\param inf_n
The numerator of the infimum value;
\param inf_d
The denominator of the infimum value;
\param minimum
<CODE>true</CODE> if and only if the infimum is also the minimum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from below,
<CODE>false</CODE> is returned and \p inf_n, \p inf_d
and \p minimum are left untouched.
*/
bool minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from below in \p *this, in which case
the infimum value and a point where \p expr reaches it are computed.
\param expr
The linear expression to be minimized subject to \p *this;
\param inf_n
The numerator of the infimum value;
\param inf_d
The denominator of the infimum value;
\param minimum
<CODE>true</CODE> if and only if the infimum is also the minimum value;
\param g
When minimization succeeds, will be assigned a point or
closure point where \p expr reaches its infimum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from below,
<CODE>false</CODE> is returned and \p inf_n, \p inf_d, \p minimum
and \p g are left untouched.
*/
bool minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum,
Generator& g) const;
/*! \brief
Returns <CODE>true</CODE> if and only if there exist a
unique value \p val such that \p *this
saturates the equality <CODE>expr = val</CODE>.
\param expr
The linear expression for which the frequency is needed;
\param freq_n
If <CODE>true</CODE> is returned, the value is set to \f$0\f$;
Present for interface compatibility with class Grid, where
the \ref Grid_Frequency "frequency" can have a non-zero value;
\param freq_d
If <CODE>true</CODE> is returned, the value is set to \f$1\f$;
\param val_n
The numerator of \p val;
\param val_d
The denominator of \p val;
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If <CODE>false</CODE> is returned, then \p freq_n, \p freq_d,
\p val_n and \p val_d are left untouched.
*/
bool frequency(const Linear_Expression& expr,
Coefficient& freq_n, Coefficient& freq_d,
Coefficient& val_n, Coefficient& val_d) const;
//! Returns <CODE>true</CODE> if and only if \p *this contains \p y.
/*!
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
bool contains(const BD_Shape& y) const;
//! Returns <CODE>true</CODE> if and only if \p *this strictly contains \p y.
/*!
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
bool strictly_contains(const BD_Shape& y) const;
//! Returns <CODE>true</CODE> if and only if \p *this and \p y are disjoint.
/*!
\exception std::invalid_argument
Thrown if \p x and \p y are topology-incompatible or
dimension-incompatible.
*/
bool is_disjoint_from(const BD_Shape& y) const;
//! Returns the relations holding between \p *this and the constraint \p c.
/*!
\exception std::invalid_argument
Thrown if \p *this and constraint \p c are dimension-incompatible.
*/
Poly_Con_Relation relation_with(const Constraint& c) const;
//! Returns the relations holding between \p *this and the congruence \p cg.
/*!
\exception std::invalid_argument
Thrown if \p *this and congruence \p cg are dimension-incompatible.
*/
Poly_Con_Relation relation_with(const Congruence& cg) const;
//! Returns the relations holding between \p *this and the generator \p g.
/*!
\exception std::invalid_argument
Thrown if \p *this and generator \p g are dimension-incompatible.
*/
Poly_Gen_Relation relation_with(const Generator& g) const;
//! Returns <CODE>true</CODE> if and only if \p *this is an empty BDS.
bool is_empty() const;
//! Returns <CODE>true</CODE> if and only if \p *this is a universe BDS.
bool is_universe() const;
//! Returns <CODE>true</CODE> if and only if \p *this is discrete.
bool is_discrete() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
is a topologically closed subset of the vector space.
*/
bool is_topologically_closed() const;
//! Returns <CODE>true</CODE> if and only if \p *this is a bounded BDS.
bool is_bounded() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
contains at least one integer point.
*/
bool contains_integer_point() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p var is constrained in
\p *this.
\exception std::invalid_argument
Thrown if \p var is not a space dimension of \p *this.
*/
bool constrains(Variable var) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this satisfies
all its invariants.
*/
bool OK() const;
//@} Member Functions that Do Not Modify the BD_Shape
//! \name Space-Dimension Preserving Member Functions that May Modify the BD_Shape
//@{
/*! \brief
Adds a copy of constraint \p c to the system of bounded differences
defining \p *this.
\param c
The constraint to be added.
\exception std::invalid_argument
Thrown if \p *this and constraint \p c are dimension-incompatible,
or \p c is not optimally supported by the BD shape domain.
*/
void add_constraint(const Constraint& c);
/*! \brief
Adds a copy of congruence \p cg to the system of congruences of \p *this.
\param cg
The congruence to be added.
\exception std::invalid_argument
Thrown if \p *this and congruence \p cg are dimension-incompatible,
or \p cg is not optimally supported by the BD shape domain.
*/
void add_congruence(const Congruence& cg);
/*! \brief
Adds the constraints in \p cs to the system of bounded differences
defining \p *this.
\param cs
The constraints that will be added.
\exception std::invalid_argument
Thrown if \p *this and \p cs are dimension-incompatible,
or \p cs contains a constraint which is not optimally supported
by the BD shape domain.
*/
void add_constraints(const Constraint_System& cs);
/*! \brief
Adds the constraints in \p cs to the system of constraints
of \p *this.
\param cs
The constraint system to be added to \p *this. The constraints in
\p cs may be recycled.
\exception std::invalid_argument
Thrown if \p *this and \p cs are dimension-incompatible,
or \p cs contains a constraint which is not optimally supported
by the BD shape domain.
\warning
The only assumption that can be made on \p cs upon successful or
exceptional return is that it can be safely destroyed.
*/
void add_recycled_constraints(Constraint_System& cs);
/*! \brief
Adds to \p *this constraints equivalent to the congruences in \p cgs.
\param cgs
Contains the congruences that will be added to the system of
constraints of \p *this.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible,
or \p cgs contains a congruence which is not optimally supported
by the BD shape domain.
*/
void add_congruences(const Congruence_System& cgs);
/*! \brief
Adds to \p *this constraints equivalent to the congruences in \p cgs.
\param cgs
Contains the congruences that will be added to the system of
constraints of \p *this. Its elements may be recycled.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible,
or \p cgs contains a congruence which is not optimally supported
by the BD shape domain.
\warning
The only assumption that can be made on \p cgs upon successful or
exceptional return is that it can be safely destroyed.
*/
void add_recycled_congruences(Congruence_System& cgs);
/*! \brief
Uses a copy of constraint \p c to refine the system of bounded differences
defining \p *this.
\param c
The constraint. If it is not a bounded difference, it will be ignored.
\exception std::invalid_argument
Thrown if \p *this and constraint \p c are dimension-incompatible.
*/
void refine_with_constraint(const Constraint& c);
/*! \brief
Uses a copy of congruence \p cg to refine the system of
bounded differences of \p *this.
\param cg
The congruence. If it is not a bounded difference equality, it
will be ignored.
\exception std::invalid_argument
Thrown if \p *this and congruence \p cg are dimension-incompatible.
*/
void refine_with_congruence(const Congruence& cg);
/*! \brief
Uses a copy of the constraints in \p cs to refine the system of
bounded differences defining \p *this.
\param cs
The constraint system to be used. Constraints that are not bounded
differences are ignored.
\exception std::invalid_argument
Thrown if \p *this and \p cs are dimension-incompatible.
*/
void refine_with_constraints(const Constraint_System& cs);
/*! \brief
Uses a copy of the congruences in \p cgs to refine the system of
bounded differences defining \p *this.
\param cgs
The congruence system to be used. Congruences that are not bounded
difference equalities are ignored.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible.
*/
void refine_with_congruences(const Congruence_System& cgs);
/*! \brief
Refines the system of BD_Shape constraints defining \p *this using
the constraint expressed by \p left \f$\leq\f$ \p right.
\param left
The linear form on intervals with floating point boundaries that
is at the left of the comparison operator. All of its coefficients
MUST be bounded.
\param right
The linear form on intervals with floating point boundaries that
is at the right of the comparison operator. All of its coefficients
MUST be bounded.
\exception std::invalid_argument
Thrown if \p left (or \p right) is dimension-incompatible with \p *this.
This function is used in abstract interpretation to model a filter
that is generated by a comparison of two expressions that are correctly
approximated by \p left and \p right respectively.
*/
template <typename Interval_Info>
void refine_with_linear_form_inequality(
const Linear_Form<Interval<T, Interval_Info> >& left,
const Linear_Form<Interval<T, Interval_Info> >& right);
/*! \brief
Refines the system of BD_Shape constraints defining \p *this using
the constraint expressed by \p left \f$\relsym\f$ \p right, where
\f$\relsym\f$ is the relation symbol specified by \p relsym.
\param left
The linear form on intervals with floating point boundaries that
is at the left of the comparison operator. All of its coefficients
MUST be bounded.
\param right
The linear form on intervals with floating point boundaries that
is at the right of the comparison operator. All of its coefficients
MUST be bounded.
\param relsym
The relation symbol.
\exception std::invalid_argument
Thrown if \p left (or \p right) is dimension-incompatible with \p *this.
\exception std::runtime_error
Thrown if \p relsym is not a valid relation symbol.
This function is used in abstract interpretation to model a filter
that is generated by a comparison of two expressions that are correctly
approximated by \p left and \p right respectively.
*/
template <typename Interval_Info>
void generalized_refine_with_linear_form_inequality(
const Linear_Form<Interval<T, Interval_Info> >& left,
const Linear_Form<Interval<T, Interval_Info> >& right,
Relation_Symbol relsym);
//! Applies to \p dest the interval constraints embedded in \p *this.
/*!
\param dest
The object to which the constraints will be added.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p dest.
The template type parameter U must provide the following methods.
\code
dimension_type space_dimension() const
\endcode
returns the space dimension of the object.
\code
void set_empty()
\endcode
sets the object to an empty object.
\code
bool restrict_lower(dimension_type dim, const T& lb)
\endcode
restricts the object by applying the lower bound \p lb to the space
dimension \p dim and returns <CODE>false</CODE> if and only if the
object becomes empty.
\code
bool restrict_upper(dimension_type dim, const T& ub)
\endcode
restricts the object by applying the upper bound \p ub to the space
dimension \p dim and returns <CODE>false</CODE> if and only if the
object becomes empty.
*/
template <typename U>
void export_interval_constraints(U& dest) const;
/*! \brief
Computes the \ref Cylindrification "cylindrification" of \p *this with
respect to space dimension \p var, assigning the result to \p *this.
\param var
The space dimension that will be unconstrained.
\exception std::invalid_argument
Thrown if \p var is not a space dimension of \p *this.
*/
void unconstrain(Variable var);
/*! \brief
Computes the \ref Cylindrification "cylindrification" of \p *this with
respect to the set of space dimensions \p vars,
assigning the result to \p *this.
\param vars
The set of space dimension that will be unconstrained.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with one of the
Variable objects contained in \p vars.
*/
void unconstrain(const Variables_Set& vars);
//! Assigns to \p *this the intersection of \p *this and \p y.
/*!
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void intersection_assign(const BD_Shape& y);
/*! \brief
Assigns to \p *this the smallest BDS containing the union
of \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void upper_bound_assign(const BD_Shape& y);
/*! \brief
If the upper bound of \p *this and \p y is exact, it is assigned
to \p *this and <CODE>true</CODE> is returned,
otherwise <CODE>false</CODE> is returned.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
bool upper_bound_assign_if_exact(const BD_Shape& y);
/*! \brief
If the \e integer upper bound of \p *this and \p y is exact,
it is assigned to \p *this and <CODE>true</CODE> is returned;
otherwise <CODE>false</CODE> is returned.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
\note
The integer upper bound of two rational BDS is the smallest rational
BDS containing all the integral points of the two arguments.
This method requires that the coefficient type parameter \c T is
an integral type.
*/
bool integer_upper_bound_assign_if_exact(const BD_Shape& y);
/*! \brief
Assigns to \p *this the smallest BD shape containing
the set difference of \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void difference_assign(const BD_Shape& y);
/*! \brief
Assigns to \p *this a \ref Meet_Preserving_Simplification
"meet-preserving simplification" of \p *this with respect to \p y.
If \c false is returned, then the intersection is empty.
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
bool simplify_using_context_assign(const BD_Shape& y);
/*! \brief
Assigns to \p *this the
\ref Single_Update_Affine_Functions "affine image"
of \p *this under the function mapping variable \p var into the
affine expression specified by \p expr and \p denominator.
\param var
The variable to which the affine expression is assigned.
\param expr
The numerator of the affine expression.
\param denominator
The denominator of the affine expression.
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this
are dimension-incompatible or if \p var is not a dimension of \p *this.
*/
void affine_image(Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
// FIXME: To be completed.
/*! \brief
Assigns to \p *this the \ref affine_form_relation "affine form image"
of \p *this under the function mapping variable \p var into the
affine expression(s) specified by \p lf.
\param var
The variable to which the affine expression is assigned.
\param lf
The linear form on intervals with floating point coefficients that
defines the affine expression. ALL of its coefficients MUST be bounded.
\exception std::invalid_argument
Thrown if \p lf and \p *this are dimension-incompatible or if \p var
is not a dimension of \p *this.
*/
template <typename Interval_Info>
void affine_form_image(Variable var,
const Linear_Form<Interval<T, Interval_Info> >& lf);
/*! \brief
Assigns to \p *this the
\ref Single_Update_Affine_Functions "affine preimage"
of \p *this under the function mapping variable \p var into the
affine expression specified by \p expr and \p denominator.
\param var
The variable to which the affine expression is substituted.
\param expr
The numerator of the affine expression.
\param denominator
The denominator of the affine expression.
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this
are dimension-incompatible or if \p var is not a dimension of \p *this.
*/
void affine_preimage(Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the image of \p *this with respect to the
\ref Generalized_Affine_Relations "affine relation"
\f$\mathrm{var}' \relsym \frac{\mathrm{expr}}{\mathrm{denominator}}\f$,
where \f$\mathord{\relsym}\f$ is the relation symbol encoded
by \p relsym.
\param var
The left hand side variable of the generalized affine transfer function.
\param relsym
The relation symbol.
\param expr
The numerator of the right hand side affine expression.
\param denominator
The denominator of the right hand side affine expression.
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this
are dimension-incompatible or if \p var is not a dimension
of \p *this or if \p relsym is a strict relation symbol.
*/
void generalized_affine_image(Variable var,
Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the image of \p *this with respect to the
\ref Generalized_Affine_Relations "affine relation"
\f$\mathrm{lhs}' \relsym \mathrm{rhs}\f$, where
\f$\mathord{\relsym}\f$ is the relation symbol encoded by \p relsym.
\param lhs
The left hand side affine expression.
\param relsym
The relation symbol.
\param rhs
The right hand side affine expression.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p lhs or \p rhs
or if \p relsym is a strict relation symbol.
*/
void generalized_affine_image(const Linear_Expression& lhs,
Relation_Symbol relsym,
const Linear_Expression& rhs);
/*! \brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Generalized_Affine_Relations "affine relation"
\f$\mathrm{var}' \relsym \frac{\mathrm{expr}}{\mathrm{denominator}}\f$,
where \f$\mathord{\relsym}\f$ is the relation symbol encoded
by \p relsym.
\param var
The left hand side variable of the generalized affine transfer function.
\param relsym
The relation symbol.
\param expr
The numerator of the right hand side affine expression.
\param denominator
The denominator of the right hand side affine expression.
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this
are dimension-incompatible or if \p var is not a dimension
of \p *this or if \p relsym is a strict relation symbol.
*/
void generalized_affine_preimage(Variable var,
Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference
denominator = Coefficient_one());
/*! \brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Generalized_Affine_Relations "affine relation"
\f$\mathrm{lhs}' \relsym \mathrm{rhs}\f$, where
\f$\mathord{\relsym}\f$ is the relation symbol encoded by \p relsym.
\param lhs
The left hand side affine expression.
\param relsym
The relation symbol.
\param rhs
The right hand side affine expression.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p lhs or \p rhs
or if \p relsym is a strict relation symbol.
*/
void generalized_affine_preimage(const Linear_Expression& lhs,
Relation_Symbol relsym,
const Linear_Expression& rhs);
/*!
\brief
Assigns to \p *this the image of \p *this with respect to the
\ref Single_Update_Bounded_Affine_Relations "bounded affine relation"
\f$\frac{\mathrm{lb\_expr}}{\mathrm{denominator}}
\leq \mathrm{var}'
\leq \frac{\mathrm{ub\_expr}}{\mathrm{denominator}}\f$.
\param var
The variable updated by the affine relation;
\param lb_expr
The numerator of the lower bounding affine expression;
\param ub_expr
The numerator of the upper bounding affine expression;
\param denominator
The (common) denominator for the lower and upper bounding
affine expressions (optional argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p lb_expr (resp., \p ub_expr)
and \p *this are dimension-incompatible or if \p var is not a space
dimension of \p *this.
*/
void bounded_affine_image(Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*!
\brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Single_Update_Bounded_Affine_Relations "bounded affine relation"
\f$\frac{\mathrm{lb\_expr}}{\mathrm{denominator}}
\leq \mathrm{var}'
\leq \frac{\mathrm{ub\_expr}}{\mathrm{denominator}}\f$.
\param var
The variable updated by the affine relation;
\param lb_expr
The numerator of the lower bounding affine expression;
\param ub_expr
The numerator of the upper bounding affine expression;
\param denominator
The (common) denominator for the lower and upper bounding
affine expressions (optional argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p lb_expr (resp., \p ub_expr)
and \p *this are dimension-incompatible or if \p var is not a space
dimension of \p *this.
*/
void bounded_affine_preimage(Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the result of computing the
\ref Time_Elapse_Operator "time-elapse" between \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void time_elapse_assign(const BD_Shape& y);
/*! \brief
\ref Wrapping_Operator "Wraps" the specified dimensions of the
vector space.
\param vars
The set of Variable objects corresponding to the space dimensions
to be wrapped.
\param w
The width of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param r
The representation of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param o
The overflow behavior of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param cs_p
Possibly null pointer to a constraint system whose variables
are contained in \p vars. If <CODE>*cs_p</CODE> depends on
variables not in \p vars, the behavior is undefined.
When non-null, the pointed-to constraint system is assumed to
represent the conditional or looping construct guard with respect
to which wrapping is performed. Since wrapping requires the
computation of upper bounds and due to non-distributivity of
constraint refinement over upper bounds, passing a constraint
system in this way can be more precise than refining the result of
the wrapping operation with the constraints in <CODE>*cs_p</CODE>.
\param complexity_threshold
A precision parameter of the \ref Wrapping_Operator "wrapping operator":
higher values result in possibly improved precision.
\param wrap_individually
<CODE>true</CODE> if the dimensions should be wrapped individually
(something that results in much greater efficiency to the detriment of
precision).
\exception std::invalid_argument
Thrown if <CODE>*cs_p</CODE> is dimension-incompatible with
\p vars, or if \p *this is dimension-incompatible \p vars or with
<CODE>*cs_p</CODE>.
*/
void wrap_assign(const Variables_Set& vars,
Bounded_Integer_Type_Width w,
Bounded_Integer_Type_Representation r,
Bounded_Integer_Type_Overflow o,
const Constraint_System* cs_p = 0,
unsigned complexity_threshold = 16,
bool wrap_individually = true);
/*! \brief
Possibly tightens \p *this by dropping some points with non-integer
coordinates.
\param complexity
The maximal complexity of any algorithms used.
\note
Currently there is no optimality guarantee, not even if
\p complexity is <CODE>ANY_COMPLEXITY</CODE>.
*/
void drop_some_non_integer_points(Complexity_Class complexity
= ANY_COMPLEXITY);
/*! \brief
Possibly tightens \p *this by dropping some points with non-integer
coordinates for the space dimensions corresponding to \p vars.
\param vars
Points with non-integer coordinates for these variables/space-dimensions
can be discarded.
\param complexity
The maximal complexity of any algorithms used.
\note
Currently there is no optimality guarantee, not even if
\p complexity is <CODE>ANY_COMPLEXITY</CODE>.
*/
void drop_some_non_integer_points(const Variables_Set& vars,
Complexity_Class complexity
= ANY_COMPLEXITY);
//! Assigns to \p *this its topological closure.
void topological_closure_assign();
/*! \brief
Assigns to \p *this the result of computing the
\ref CC76_extrapolation "CC76-extrapolation" between \p *this and \p y.
\param y
A BDS that <EM>must</EM> be contained in \p *this.
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void CC76_extrapolation_assign(const BD_Shape& y, unsigned* tp = 0);
/*! \brief
Assigns to \p *this the result of computing the
\ref CC76_extrapolation "CC76-extrapolation" between \p *this and \p y.
\param y
A BDS that <EM>must</EM> be contained in \p *this.
\param first
An iterator referencing the first stop-point.
\param last
An iterator referencing one past the last stop-point.
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
template <typename Iterator>
void CC76_extrapolation_assign(const BD_Shape& y,
Iterator first, Iterator last,
unsigned* tp = 0);
/*! \brief
Assigns to \p *this the result of computing the
\ref BHMZ05_widening "BHMZ05-widening" of \p *this and \p y.
\param y
A BDS that <EM>must</EM> be contained in \p *this.
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void BHMZ05_widening_assign(const BD_Shape& y, unsigned* tp = 0);
/*! \brief
Improves the result of the \ref BHMZ05_widening "BHMZ05-widening"
computation by also enforcing those constraints in \p cs that are
satisfied by all the points of \p *this.
\param y
A BDS that <EM>must</EM> be contained in \p *this.
\param cs
The system of constraints used to improve the widened BDS.
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this, \p y and \p cs are dimension-incompatible or
if \p cs contains a strict inequality.
*/
void limited_BHMZ05_extrapolation_assign(const BD_Shape& y,
const Constraint_System& cs,
unsigned* tp = 0);
/*! \brief
Assigns to \p *this the result of restoring in \p y the constraints
of \p *this that were lost by
\ref CC76_extrapolation "CC76-extrapolation" applications.
\param y
A BDS that <EM>must</EM> contain \p *this.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
\note
As was the case for widening operators, the argument \p y is meant to
denote the value computed in the previous iteration step, whereas
\p *this denotes the value computed in the current iteration step
(in the <EM>decreasing</EM> iteration sequence). Hence, the call
<CODE>x.CC76_narrowing_assign(y)</CODE> will assign to \p x
the result of the computation \f$\mathtt{y} \Delta \mathtt{x}\f$.
*/
void CC76_narrowing_assign(const BD_Shape& y);
/*! \brief
Improves the result of the \ref CC76_extrapolation "CC76-extrapolation"
computation by also enforcing those constraints in \p cs that are
satisfied by all the points of \p *this.
\param y
A BDS that <EM>must</EM> be contained in \p *this.
\param cs
The system of constraints used to improve the widened BDS.
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this, \p y and \p cs are dimension-incompatible or
if \p cs contains a strict inequality.
*/
void limited_CC76_extrapolation_assign(const BD_Shape& y,
const Constraint_System& cs,
unsigned* tp = 0);
/*! \brief
Assigns to \p *this the result of computing the
\ref H79_widening "H79-widening" between \p *this and \p y.
\param y
A BDS that <EM>must</EM> be contained in \p *this.
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void H79_widening_assign(const BD_Shape& y, unsigned* tp = 0);
//! Same as H79_widening_assign(y, tp).
void widening_assign(const BD_Shape& y, unsigned* tp = 0);
/*! \brief
Improves the result of the \ref H79_widening "H79-widening"
computation by also enforcing those constraints in \p cs that are
satisfied by all the points of \p *this.
\param y
A BDS that <EM>must</EM> be contained in \p *this.
\param cs
The system of constraints used to improve the widened BDS.
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this, \p y and \p cs are dimension-incompatible.
*/
void limited_H79_extrapolation_assign(const BD_Shape& y,
const Constraint_System& cs,
unsigned* tp = 0);
//@} Space-Dimension Preserving Member Functions that May Modify [...]
//! \name Member Functions that May Modify the Dimension of the Vector Space
//@{
//! Adds \p m new dimensions and embeds the old BDS into the new space.
/*!
\param m
The number of dimensions to add.
The new dimensions will be those having the highest indexes in the new
BDS, which is defined by a system of bounded differences in which the
variables running through the new dimensions are unconstrained.
For instance, when starting from the BDS \f$\cB \sseq \Rset^2\f$
and adding a third dimension, the result will be the BDS
\f[
\bigl\{\,
(x, y, z)^\transpose \in \Rset^3
\bigm|
(x, y)^\transpose \in \cB
\,\bigr\}.
\f]
*/
void add_space_dimensions_and_embed(dimension_type m);
/*! \brief
Adds \p m new dimensions to the BDS and does not embed it in
the new vector space.
\param m
The number of dimensions to add.
The new dimensions will be those having the highest indexes in the
new BDS, which is defined by a system of bounded differences in
which the variables running through the new dimensions are all
constrained to be equal to 0.
For instance, when starting from the BDS \f$\cB \sseq \Rset^2\f$
and adding a third dimension, the result will be the BDS
\f[
\bigl\{\,
(x, y, 0)^\transpose \in \Rset^3
\bigm|
(x, y)^\transpose \in \cB
\,\bigr\}.
\f]
*/
void add_space_dimensions_and_project(dimension_type m);
/*! \brief
Assigns to \p *this the \ref Concatenating_Polyhedra "concatenation"
of \p *this and \p y, taken in this order.
\exception std::length_error
Thrown if the concatenation would cause the vector space
to exceed dimension <CODE>max_space_dimension()</CODE>.
*/
void concatenate_assign(const BD_Shape& y);
//! Removes all the specified dimensions.
/*!
\param vars
The set of Variable objects corresponding to the dimensions to be removed.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with one of the Variable
objects contained in \p vars.
*/
void remove_space_dimensions(const Variables_Set& vars);
/*! \brief
Removes the higher dimensions so that the resulting space
will have dimension \p new_dimension.
\exception std::invalid_argument
Thrown if \p new_dimension is greater than the space dimension
of \p *this.
*/
void remove_higher_space_dimensions(dimension_type new_dimension);
/*! \brief
Remaps the dimensions of the vector space according to
a \ref Mapping_the_Dimensions_of_the_Vector_Space "partial function".
\param pfunc
The partial function specifying the destiny of each dimension.
The template type parameter Partial_Function must provide
the following methods.
\code
bool has_empty_codomain() const
\endcode
returns <CODE>true</CODE> if and only if the represented partial
function has an empty co-domain (i.e., it is always undefined).
The <CODE>has_empty_codomain()</CODE> method will always be called
before the methods below. However, if
<CODE>has_empty_codomain()</CODE> returns <CODE>true</CODE>, none
of the functions below will be called.
\code
dimension_type max_in_codomain() const
\endcode
returns the maximum value that belongs to the co-domain
of the partial function.
\code
bool maps(dimension_type i, dimension_type& j) const
\endcode
Let \f$f\f$ be the represented function and \f$k\f$ be the value
of \p i. If \f$f\f$ is defined in \f$k\f$, then \f$f(k)\f$ is
assigned to \p j and <CODE>true</CODE> is returned.
If \f$f\f$ is undefined in \f$k\f$, then <CODE>false</CODE> is
returned.
The result is undefined if \p pfunc does not encode a partial
function with the properties described in the
\ref Mapping_the_Dimensions_of_the_Vector_Space
"specification of the mapping operator".
*/
template <typename Partial_Function>
void map_space_dimensions(const Partial_Function& pfunc);
//! Creates \p m copies of the space dimension corresponding to \p var.
/*!
\param var
The variable corresponding to the space dimension to be replicated;
\param m
The number of replicas to be created.
\exception std::invalid_argument
Thrown if \p var does not correspond to a dimension of the vector space.
\exception std::length_error
Thrown if adding \p m new space dimensions would cause the
vector space to exceed dimension <CODE>max_space_dimension()</CODE>.
If \p *this has space dimension \f$n\f$, with \f$n > 0\f$,
and <CODE>var</CODE> has space dimension \f$k \leq n\f$,
then the \f$k\f$-th space dimension is
\ref expand_space_dimension "expanded" to \p m new space dimensions
\f$n\f$, \f$n+1\f$, \f$\dots\f$, \f$n+m-1\f$.
*/
void expand_space_dimension(Variable var, dimension_type m);
//! Folds the space dimensions in \p vars into \p dest.
/*!
\param vars
The set of Variable objects corresponding to the space dimensions
to be folded;
\param dest
The variable corresponding to the space dimension that is the
destination of the folding operation.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p dest or with
one of the Variable objects contained in \p vars.
Also thrown if \p dest is contained in \p vars.
If \p *this has space dimension \f$n\f$, with \f$n > 0\f$,
<CODE>dest</CODE> has space dimension \f$k \leq n\f$,
\p vars is a set of variables whose maximum space dimension
is also less than or equal to \f$n\f$, and \p dest is not a member
of \p vars, then the space dimensions corresponding to
variables in \p vars are \ref fold_space_dimensions "folded"
into the \f$k\f$-th space dimension.
*/
void fold_space_dimensions(const Variables_Set& vars, Variable dest);
//! Refines \p store with the constraints defining \p *this.
/*!
\param store
The interval floating point abstract store to refine.
*/
template <typename Interval_Info>
void refine_fp_interval_abstract_store(Box<Interval<T, Interval_Info> >&
store) const;
//@} // Member Functions that May Modify the Dimension of the Vector Space
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
/*! \brief
Returns a 32-bit hash code for \p *this.
If \p x and \p y are such that <CODE>x == y</CODE>,
then <CODE>x.hash_code() == y.hash_code()</CODE>.
*/
int32_t hash_code() const;
friend bool operator==<T>(const BD_Shape<T>& x, const BD_Shape<T>& y);
template <typename Temp, typename To, typename U>
friend bool Parma_Polyhedra_Library::rectilinear_distance_assign
(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<U>& x, const BD_Shape<U>& y, const Rounding_Dir dir,
Temp& tmp0, Temp& tmp1, Temp& tmp2);
template <typename Temp, typename To, typename U>
friend bool Parma_Polyhedra_Library::euclidean_distance_assign
(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<U>& x, const BD_Shape<U>& y, const Rounding_Dir dir,
Temp& tmp0, Temp& tmp1, Temp& tmp2);
template <typename Temp, typename To, typename U>
friend bool Parma_Polyhedra_Library::l_infinity_distance_assign
(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<U>& x, const BD_Shape<U>& y, const Rounding_Dir dir,
Temp& tmp0, Temp& tmp1, Temp& tmp2);
private:
template <typename U> friend class Parma_Polyhedra_Library::BD_Shape;
template <typename Interval> friend class Parma_Polyhedra_Library::Box;
//! The matrix representing the system of bounded differences.
DB_Matrix<N> dbm;
#define PPL_IN_BD_Shape_CLASS
/* Automatically generated from PPL source file ../src/BDS_Status_idefs.hh line 1. */
/* BD_Shape<T>::Status class declaration.
*/
#ifndef PPL_IN_BD_Shape_CLASS
#error "Do not include BDS_Status_idefs.hh directly; use BD_Shape_defs.hh instead"
#endif
//! A conjunctive assertion about a BD_Shape<T> object.
/*! \ingroup PPL_CXX_interface
The assertions supported are:
- <EM>zero-dim universe</EM>: the BDS is the zero-dimensional
vector space \f$\Rset^0 = \{\cdot\}\f$;
- <EM>empty</EM>: the BDS is the empty set;
- <EM>shortest-path closed</EM>: the BDS is represented by a shortest-path
closed system of bounded differences, so that all the constraints are
as tight as possible;
- <EM>shortest-path reduced</EM>: the BDS is represented by a shortest-path
closed system of bounded differences and each constraint in such a system
is marked as being either redundant or non-redundant.
Not all the conjunctions of these elementary assertions constitute
a legal Status. In fact:
- <EM>zero-dim universe</EM> excludes any other assertion;
- <EM>empty</EM>: excludes any other assertion;
- <EM>shortest-path reduced</EM> implies <EM>shortest-path closed</EM>.
*/
class Status {
public:
//! By default Status is the <EM>zero-dim universe</EM> assertion.
Status();
//! \name Test, remove or add an individual assertion from the conjunction.
//@{
bool test_zero_dim_univ() const;
void reset_zero_dim_univ();
void set_zero_dim_univ();
bool test_empty() const;
void reset_empty();
void set_empty();
bool test_shortest_path_closed() const;
void reset_shortest_path_closed();
void set_shortest_path_closed();
bool test_shortest_path_reduced() const;
void reset_shortest_path_reduced();
void set_shortest_path_reduced();
//@}
//! Checks if all the invariants are satisfied.
bool OK() const;
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
private:
//! Status is implemented by means of a finite bitset.
typedef unsigned int flags_t;
//! \name Bit-masks for the individual assertions.
//@{
static const flags_t ZERO_DIM_UNIV = 0U;
static const flags_t EMPTY = 1U << 0;
static const flags_t SHORTEST_PATH_CLOSED = 1U << 1;
static const flags_t SHORTEST_PATH_REDUCED = 1U << 2;
//@}
//! This holds the current bitset.
flags_t flags;
//! Construct from a bit-mask.
Status(flags_t mask);
//! Check whether <EM>all</EM> bits in \p mask are set.
bool test_all(flags_t mask) const;
//! Check whether <EM>at least one</EM> bit in \p mask is set.
bool test_any(flags_t mask) const;
//! Set the bits in \p mask.
void set(flags_t mask);
//! Reset the bits in \p mask.
void reset(flags_t mask);
};
/* Automatically generated from PPL source file ../src/BD_Shape_defs.hh line 1941. */
#undef PPL_IN_BD_Shape_CLASS
//! The status flags to keep track of the internal state.
Status status;
//! A matrix indicating which constraints are redundant.
Bit_Matrix redundancy_dbm;
//! Returns <CODE>true</CODE> if the BDS is the zero-dimensional universe.
bool marked_zero_dim_univ() const;
/*! \brief
Returns <CODE>true</CODE> if the BDS is known to be empty.
The return value <CODE>false</CODE> does not necessarily
implies that \p *this is non-empty.
*/
bool marked_empty() const;
/*! \brief
Returns <CODE>true</CODE> if the system of bounded differences
is known to be shortest-path closed.
The return value <CODE>false</CODE> does not necessarily
implies that <CODE>this->dbm</CODE> is not shortest-path closed.
*/
bool marked_shortest_path_closed() const;
/*! \brief
Returns <CODE>true</CODE> if the system of bounded differences
is known to be shortest-path reduced.
The return value <CODE>false</CODE> does not necessarily
implies that <CODE>this->dbm</CODE> is not shortest-path reduced.
*/
bool marked_shortest_path_reduced() const;
//! Turns \p *this into an empty BDS.
void set_empty();
//! Turns \p *this into an zero-dimensional universe BDS.
void set_zero_dim_univ();
//! Marks \p *this as shortest-path closed.
void set_shortest_path_closed();
//! Marks \p *this as shortest-path closed.
void set_shortest_path_reduced();
//! Marks \p *this as possibly not shortest-path closed.
void reset_shortest_path_closed();
//! Marks \p *this as possibly not shortest-path reduced.
void reset_shortest_path_reduced();
//! Assigns to <CODE>this->dbm</CODE> its shortest-path closure.
void shortest_path_closure_assign() const;
/*! \brief
Assigns to <CODE>this->dbm</CODE> its shortest-path closure and
records into <CODE>this->redundancy_dbm</CODE> which of the entries
in <CODE>this->dbm</CODE> are redundant.
*/
void shortest_path_reduction_assign() const;
/*! \brief
Returns <CODE>true</CODE> if and only if <CODE>this->dbm</CODE>
is shortest-path closed and <CODE>this->redundancy_dbm</CODE>
correctly flags the redundant entries in <CODE>this->dbm</CODE>.
*/
bool is_shortest_path_reduced() const;
/*! \brief
Incrementally computes shortest-path closure, assuming that only
constraints affecting variable \p var need to be considered.
\note
It is assumed that \c *this, which was shortest-path closed,
has only been modified by adding constraints affecting variable
\p var. If this assumption is not satisfied, i.e., if a non-redundant
constraint not affecting variable \p var has been added, the behavior
is undefined.
*/
void incremental_shortest_path_closure_assign(Variable var) const;
//! Checks if and how \p expr is bounded in \p *this.
/*!
Returns <CODE>true</CODE> if and only if \p from_above is
<CODE>true</CODE> and \p expr is bounded from above in \p *this,
or \p from_above is <CODE>false</CODE> and \p expr is bounded
from below in \p *this.
\param expr
The linear expression to test;
\param from_above
<CODE>true</CODE> if and only if the boundedness of interest is
"from above".
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds(const Linear_Expression& expr, bool from_above) const;
//! Maximizes or minimizes \p expr subject to \p *this.
/*!
\param expr
The linear expression to be maximized or minimized subject to \p
*this;
\param maximize
<CODE>true</CODE> if maximization is what is wanted;
\param ext_n
The numerator of the extremum value;
\param ext_d
The denominator of the extremum value;
\param included
<CODE>true</CODE> if and only if the extremum of \p expr can
actually be reached in \p * this;
\param g
When maximization or minimization succeeds, will be assigned
a point or closure point where \p expr reaches the
corresponding extremum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded in the appropriate
direction, <CODE>false</CODE> is returned and \p ext_n, \p ext_d,
\p included and \p g are left untouched.
*/
bool max_min(const Linear_Expression& expr,
bool maximize,
Coefficient& ext_n, Coefficient& ext_d, bool& included,
Generator& g) const;
//! Maximizes or minimizes \p expr subject to \p *this.
/*!
\param expr
The linear expression to be maximized or minimized subject to \p
*this;
\param maximize
<CODE>true</CODE> if maximization is what is wanted;
\param ext_n
The numerator of the extremum value;
\param ext_d
The denominator of the extremum value;
\param included
<CODE>true</CODE> if and only if the extremum of \p expr can
actually be reached in \p * this;
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded in the appropriate
direction, <CODE>false</CODE> is returned and \p ext_n, \p ext_d,
\p included and \p point are left untouched.
*/
bool max_min(const Linear_Expression& expr,
bool maximize,
Coefficient& ext_n, Coefficient& ext_d, bool& included) const;
/*! \brief
If the upper bound of \p *this and \p y is exact it is assigned
to \p *this and \c true is returned, otherwise \c false is returned.
Current implementation is based on a variant of Algorithm 4.1 in
A. Bemporad, K. Fukuda, and F. D. Torrisi
<em>Convexity Recognition of the Union of Polyhedra</em>
Technical Report AUT00-13, ETH Zurich, 2000
tailored to the special case of BD shapes.
\note
It is assumed that \p *this and \p y are dimension-compatible;
if the assumption does not hold, the behavior is undefined.
*/
bool BFT00_upper_bound_assign_if_exact(const BD_Shape& y);
/*! \brief
If the upper bound of \p *this and \p y is exact it is assigned
to \p *this and \c true is returned, otherwise \c false is returned.
Implementation for the rational (resp., integer) case is based on
Theorem 5.2 (resp. Theorem 5.3) of \ref BHZ09b "[BHZ09b]".
The Boolean template parameter \c integer_upper_bound allows for
choosing between the rational and integer upper bound algorithms.
\note
It is assumed that \p *this and \p y are dimension-compatible;
if the assumption does not hold, the behavior is undefined.
\note
The integer case is only enabled if T is an integer data type.
*/
template <bool integer_upper_bound>
bool BHZ09_upper_bound_assign_if_exact(const BD_Shape& y);
/*! \brief
Uses the constraint \p c to refine \p *this.
\param c
The constraint to be added. Non BD constraints are ignored.
\warning
If \p c and \p *this are dimension-incompatible,
the behavior is undefined.
*/
void refine_no_check(const Constraint& c);
/*! \brief
Uses the congruence \p cg to refine \p *this.
\param cg
The congruence to be added.
Nontrivial proper congruences are ignored.
Non BD equalities are ignored.
\warning
If \p cg and \p *this are dimension-incompatible,
the behavior is undefined.
*/
void refine_no_check(const Congruence& cg);
//! Adds the constraint <CODE>dbm[i][j] \<= k</CODE>.
void add_dbm_constraint(dimension_type i, dimension_type j, const N& k);
//! Adds the constraint <CODE>dbm[i][j] \<= numer/denom</CODE>.
void add_dbm_constraint(dimension_type i, dimension_type j,
Coefficient_traits::const_reference numer,
Coefficient_traits::const_reference denom);
/*! \brief
Adds to the BDS the constraint
\f$\mathrm{var} \relsym \frac{\mathrm{expr}}{\mathrm{denominator}}\f$.
Note that the coefficient of \p var in \p expr is null.
*/
void refine(Variable var, Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
//! Removes all the constraints on row/column \p v.
void forget_all_dbm_constraints(dimension_type v);
//! Removes all binary constraints on row/column \p v.
void forget_binary_dbm_constraints(dimension_type v);
//! An helper function for the computation of affine relations.
/*!
For each dbm index \p u (less than or equal to \p last_v and different
from \p v), deduce constraints of the form <CODE>v - u \<= c</CODE>,
starting from \p ub_v which is an upper bound for \p v.
The shortest-path closure is able to deduce the constraint
<CODE>v - u \<= ub_v - lb_u</CODE>. We can be more precise if variable
\p u played an active role in the computation of the upper bound for
\p v, i.e., if the corresponding coefficient
<CODE>q == sc_expr[u]/sc_denom</CODE> is greater than zero. In particular:
- if <CODE>q \>= 1</CODE>, then <CODE>v - u \<= ub_v - ub_u</CODE>;
- if <CODE>0 \< q \< 1</CODE>, then
<CODE>v - u \<= ub_v - (q*ub_u + (1-q)*lb_u)</CODE>.
*/
void deduce_v_minus_u_bounds(dimension_type v,
dimension_type last_v,
const Linear_Expression& sc_expr,
Coefficient_traits::const_reference sc_denom,
const N& ub_v);
/*! \brief
Auxiliary function for \ref affine_form_relation "affine form image" that
handle the general case: \f$l = c\f$
*/
template <typename Interval_Info>
void inhomogeneous_affine_form_image(const dimension_type& var_id,
const Interval<T, Interval_Info>& b);
/*! \brief
Auxiliary function for \ref affine_form_relation "affine form
image" that handle the general case: \f$l = ax + c\f$
*/
template <typename Interval_Info>
void one_variable_affine_form_image
(const dimension_type& var_id,
const Interval<T, Interval_Info>& b,
const Interval<T, Interval_Info>& w_coeff,
const dimension_type& w_id,
const dimension_type& space_dim);
/*! \brief
Auxiliary function for \ref affine_form_relation "affine form image" that
handle the general case: \f$l = ax + by + c\f$
*/
template <typename Interval_Info>
void two_variables_affine_form_image
(const dimension_type& var_id,
const Linear_Form<Interval<T,Interval_Info> >& lf,
const dimension_type& space_dim);
/*! \brief
Auxiliary function for refine with linear form that handle
the general case: \f$l = ax + c\f$
*/
template <typename Interval_Info>
void left_inhomogeneous_refine
(const dimension_type& right_t,
const dimension_type& right_w_id,
const Linear_Form<Interval<T, Interval_Info> >& left,
const Linear_Form<Interval<T, Interval_Info> >& right);
/*! \brief
Auxiliary function for refine with linear form that handle
the general case: \f$ax + b = cy + d\f$
*/
template <typename Interval_Info>
void left_one_var_refine
(const dimension_type& left_w_id,
const dimension_type& right_t,
const dimension_type& right_w_id,
const Linear_Form<Interval<T, Interval_Info> >& left,
const Linear_Form<Interval<T, Interval_Info> >& right);
/*! \brief
Auxiliary function for refine with linear form that handle
the general case.
*/
template <typename Interval_Info>
void general_refine(const dimension_type& left_w_id,
const dimension_type& right_w_id,
const Linear_Form<Interval<T, Interval_Info> >& left,
const Linear_Form<Interval<T, Interval_Info> >& right);
template <typename Interval_Info>
void linear_form_upper_bound(const Linear_Form<Interval<T, Interval_Info> >&
lf,
N& result) const;
//! An helper function for the computation of affine relations.
/*!
For each dbm index \p u (less than or equal to \p last_v and different
from \p v), deduce constraints of the form <CODE>u - v \<= c</CODE>,
starting from \p minus_lb_v which is a lower bound for \p v.
The shortest-path closure is able to deduce the constraint
<CODE>u - v \<= ub_u - lb_v</CODE>. We can be more precise if variable
\p u played an active role in the computation of the lower bound for
\p v, i.e., if the corresponding coefficient
<CODE>q == sc_expr[u]/sc_denom</CODE> is greater than zero.
In particular:
- if <CODE>q \>= 1</CODE>, then <CODE>u - v \<= lb_u - lb_v</CODE>;
- if <CODE>0 \< q \< 1</CODE>, then
<CODE>u - v \<= (q*lb_u + (1-q)*ub_u) - lb_v</CODE>.
*/
void deduce_u_minus_v_bounds(dimension_type v,
dimension_type last_v,
const Linear_Expression& sc_expr,
Coefficient_traits::const_reference sc_denom,
const N& minus_lb_v);
/*! \brief
Adds to \p limiting_shape the bounded differences in \p cs
that are satisfied by \p *this.
*/
void get_limiting_shape(const Constraint_System& cs,
BD_Shape& limiting_shape) const;
//! Compute the (zero-equivalence classes) predecessor relation.
/*!
It is assumed that the BDS is not empty and shortest-path closed.
*/
void compute_predecessors(std::vector<dimension_type>& predecessor) const;
//! Compute the leaders of zero-equivalence classes.
/*!
It is assumed that the BDS is not empty and shortest-path closed.
*/
void compute_leaders(std::vector<dimension_type>& leaders) const;
void drop_some_non_integer_points_helper(N& elem);
friend std::ostream&
Parma_Polyhedra_Library::IO_Operators
::operator<<<>(std::ostream& s, const BD_Shape<T>& c);
//! \name Exception Throwers
//@{
void throw_dimension_incompatible(const char* method,
const BD_Shape& y) const;
void throw_dimension_incompatible(const char* method,
dimension_type required_dim) const;
void throw_dimension_incompatible(const char* method,
const Constraint& c) const;
void throw_dimension_incompatible(const char* method,
const Congruence& cg) const;
void throw_dimension_incompatible(const char* method,
const Generator& g) const;
void throw_dimension_incompatible(const char* method,
const char* le_name,
const Linear_Expression& le) const;
template<typename Interval_Info>
void
throw_dimension_incompatible(const char* method,
const char* lf_name,
const Linear_Form<Interval<T, Interval_Info> >&
lf) const;
static void throw_expression_too_complex(const char* method,
const Linear_Expression& le);
static void throw_invalid_argument(const char* method, const char* reason);
//@} // Exception Throwers
};
/* Automatically generated from PPL source file ../src/BDS_Status_inlines.hh line 1. */
/* BD_Shape<T>::Status class implementation: inline functions.
*/
namespace Parma_Polyhedra_Library {
template <typename T>
inline
BD_Shape<T>::Status::Status(flags_t mask)
: flags(mask) {
}
template <typename T>
inline
BD_Shape<T>::Status::Status()
: flags(ZERO_DIM_UNIV) {
}
template <typename T>
inline bool
BD_Shape<T>::Status::test_all(flags_t mask) const {
return (flags & mask) == mask;
}
template <typename T>
inline bool
BD_Shape<T>::Status::test_any(flags_t mask) const {
return (flags & mask) != 0;
}
template <typename T>
inline void
BD_Shape<T>::Status::set(flags_t mask) {
flags |= mask;
}
template <typename T>
inline void
BD_Shape<T>::Status::reset(flags_t mask) {
flags &= ~mask;
}
template <typename T>
inline bool
BD_Shape<T>::Status::test_zero_dim_univ() const {
return flags == ZERO_DIM_UNIV;
}
template <typename T>
inline void
BD_Shape<T>::Status::reset_zero_dim_univ() {
// This is a no-op if the current status is not zero-dim.
if (flags == ZERO_DIM_UNIV)
// In the zero-dim space, if it is not the universe it is empty.
flags = EMPTY;
}
template <typename T>
inline void
BD_Shape<T>::Status::set_zero_dim_univ() {
// Zero-dim universe is incompatible with anything else.
flags = ZERO_DIM_UNIV;
}
template <typename T>
inline bool
BD_Shape<T>::Status::test_empty() const {
return test_any(EMPTY);
}
template <typename T>
inline void
BD_Shape<T>::Status::reset_empty() {
reset(EMPTY);
}
template <typename T>
inline void
BD_Shape<T>::Status::set_empty() {
flags = EMPTY;
}
template <typename T>
inline bool
BD_Shape<T>::Status::test_shortest_path_closed() const {
return test_any(SHORTEST_PATH_CLOSED);
}
template <typename T>
inline void
BD_Shape<T>::Status::reset_shortest_path_closed() {
// A system is reduced only if it is also closed.
reset(SHORTEST_PATH_CLOSED | SHORTEST_PATH_REDUCED);
}
template <typename T>
inline void
BD_Shape<T>::Status::set_shortest_path_closed() {
set(SHORTEST_PATH_CLOSED);
}
template <typename T>
inline bool
BD_Shape<T>::Status::test_shortest_path_reduced() const {
return test_any(SHORTEST_PATH_REDUCED);
}
template <typename T>
inline void
BD_Shape<T>::Status::reset_shortest_path_reduced() {
reset(SHORTEST_PATH_REDUCED);
}
template <typename T>
inline void
BD_Shape<T>::Status::set_shortest_path_reduced() {
PPL_ASSERT(test_shortest_path_closed());
set(SHORTEST_PATH_REDUCED);
}
template <typename T>
bool
BD_Shape<T>::Status::OK() const {
if (test_zero_dim_univ())
// Zero-dim universe is OK.
return true;
if (test_empty()) {
Status copy = *this;
copy.reset_empty();
if (copy.test_zero_dim_univ())
return true;
else {
#ifndef NDEBUG
std::cerr << "The empty flag is incompatible with any other one."
<< std::endl;
#endif
return false;
}
}
// Shortest-path reduction implies shortest-path closure.
if (test_shortest_path_reduced()) {
if (test_shortest_path_closed())
return true;
else {
#ifndef NDEBUG
std::cerr << "The shortest-path reduction flag should also imply "
<< "the closure flag."
<< std::endl;
#endif
return false;
}
}
// Any other case is OK.
return true;
}
namespace Implementation {
namespace BD_Shapes {
// These are the keywords that indicate the individual assertions.
const std::string zero_dim_univ = "ZE";
const std::string empty = "EM";
const std::string sp_closed = "SPC";
const std::string sp_reduced = "SPR";
const char yes = '+';
const char no = '-';
const char separator = ' ';
/*! \relates Parma_Polyhedra_Library::BD_Shape::Status
Reads a keyword and its associated on/off flag from \p s.
Returns <CODE>true</CODE> if the operation is successful,
returns <CODE>false</CODE> otherwise.
When successful, \p positive is set to <CODE>true</CODE> if the flag
is on; it is set to <CODE>false</CODE> otherwise.
*/
inline bool
get_field(std::istream& s, const std::string& keyword, bool& positive) {
std::string str;
if (!(s >> str)
|| (str[0] != yes && str[0] != no)
|| str.substr(1) != keyword)
return false;
positive = (str[0] == yes);
return true;
}
} // namespace BD_Shapes
} // namespace Implementation
template <typename T>
void
BD_Shape<T>::Status::ascii_dump(std::ostream& s) const {
using namespace Implementation::BD_Shapes;
s << (test_zero_dim_univ() ? yes : no) << zero_dim_univ << separator
<< (test_empty() ? yes : no) << empty << separator
<< separator
<< (test_shortest_path_closed() ? yes : no) << sp_closed << separator
<< (test_shortest_path_reduced() ? yes : no) << sp_reduced << separator;
}
PPL_OUTPUT_TEMPLATE_DEFINITIONS_ASCII_ONLY(T, BD_Shape<T>::Status)
template <typename T>
bool
BD_Shape<T>::Status::ascii_load(std::istream& s) {
using namespace Implementation::BD_Shapes;
PPL_UNINITIALIZED(bool, positive);
if (!get_field(s, zero_dim_univ, positive))
return false;
if (positive)
set_zero_dim_univ();
if (!get_field(s, empty, positive))
return false;
if (positive)
set_empty();
if (!get_field(s, sp_closed, positive))
return false;
if (positive)
set_shortest_path_closed();
else
reset_shortest_path_closed();
if (!get_field(s, sp_reduced, positive))
return false;
if (positive)
set_shortest_path_reduced();
else
reset_shortest_path_reduced();
// Check invariants.
PPL_ASSERT(OK());
return true;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/BD_Shape_inlines.hh line 1. */
/* BD_Shape class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/C_Polyhedron_defs.hh line 1. */
/* C_Polyhedron class declaration.
*/
/* Automatically generated from PPL source file ../src/C_Polyhedron_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class C_Polyhedron;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/NNC_Polyhedron_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class NNC_Polyhedron;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/C_Polyhedron_defs.hh line 33. */
//! A closed convex polyhedron.
/*! \ingroup PPL_CXX_interface
An object of the class C_Polyhedron represents a
<EM>topologically closed</EM> convex polyhedron
in the vector space \f$\Rset^n\f$.
When building a closed polyhedron starting from
a system of constraints, an exception is thrown if the system
contains a <EM>strict inequality</EM> constraint.
Similarly, an exception is thrown when building a closed polyhedron
starting from a system of generators containing a <EM>closure point</EM>.
\note
Such an exception will be obtained even if the system of
constraints (resp., generators) actually defines
a topologically closed subset of the vector space, i.e.,
even if all the strict inequalities (resp., closure points)
in the system happen to be redundant with respect to the
system obtained by removing all the strict inequality constraints
(resp., all the closure points).
In contrast, when building a closed polyhedron starting from
an object of the class NNC_Polyhedron,
the precise topological closure test will be performed.
*/
class Parma_Polyhedra_Library::C_Polyhedron : public Polyhedron {
public:
//! Builds either the universe or the empty C polyhedron.
/*!
\param num_dimensions
The number of dimensions of the vector space enclosing the C polyhedron;
\param kind
Specifies whether a universe or an empty C polyhedron should be built.
\exception std::length_error
Thrown if \p num_dimensions exceeds the maximum allowed space dimension.
Both parameters are optional:
by default, a 0-dimension space universe C polyhedron is built.
*/
explicit C_Polyhedron(dimension_type num_dimensions = 0,
Degenerate_Element kind = UNIVERSE);
//! Builds a C polyhedron from a system of constraints.
/*!
The polyhedron inherits the space dimension of the constraint system.
\param cs
The system of constraints defining the polyhedron.
\exception std::invalid_argument
Thrown if the system of constraints contains strict inequalities.
*/
explicit C_Polyhedron(const Constraint_System& cs);
//! Builds a C polyhedron recycling a system of constraints.
/*!
The polyhedron inherits the space dimension of the constraint system.
\param cs
The system of constraints defining the polyhedron. It is not
declared <CODE>const</CODE> because its data-structures may be
recycled to build the polyhedron.
\param dummy
A dummy tag to syntactically differentiate this one
from the other constructors.
\exception std::invalid_argument
Thrown if the system of constraints contains strict inequalities.
*/
C_Polyhedron(Constraint_System& cs, Recycle_Input dummy);
//! Builds a C polyhedron from a system of generators.
/*!
The polyhedron inherits the space dimension of the generator system.
\param gs
The system of generators defining the polyhedron.
\exception std::invalid_argument
Thrown if the system of generators is not empty but has no points,
or if it contains closure points.
*/
explicit C_Polyhedron(const Generator_System& gs);
//! Builds a C polyhedron recycling a system of generators.
/*!
The polyhedron inherits the space dimension of the generator system.
\param gs
The system of generators defining the polyhedron. It is not
declared <CODE>const</CODE> because its data-structures may be
recycled to build the polyhedron.
\param dummy
A dummy tag to syntactically differentiate this one
from the other constructors.
\exception std::invalid_argument
Thrown if the system of generators is not empty but has no points,
or if it contains closure points.
*/
C_Polyhedron(Generator_System& gs, Recycle_Input dummy);
//! Builds a C polyhedron from a system of congruences.
/*!
The polyhedron inherits the space dimension of the congruence system.
\param cgs
The system of congruences defining the polyhedron.
*/
explicit C_Polyhedron(const Congruence_System& cgs);
//! Builds a C polyhedron recycling a system of congruences.
/*!
The polyhedron inherits the space dimension of the congruence
system.
\param cgs
The system of congruences defining the polyhedron. It is not
declared <CODE>const</CODE> because its data-structures may be
recycled to build the polyhedron.
\param dummy
A dummy tag to syntactically differentiate this one
from the other constructors.
*/
C_Polyhedron(Congruence_System& cgs, Recycle_Input dummy);
/*! \brief
Builds a C polyhedron representing the topological closure
of the NNC polyhedron \p y.
\param y
The NNC polyhedron to be used;
\param complexity
This argument is ignored.
*/
explicit C_Polyhedron(const NNC_Polyhedron& y,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a C polyhedron out of a box.
/*!
The polyhedron inherits the space dimension of the box
and is the most precise that includes the box.
The algorithm used has polynomial complexity.
\param box
The box representing the polyhedron to be approximated;
\param complexity
This argument is ignored.
\exception std::length_error
Thrown if the space dimension of \p box exceeds the maximum allowed
space dimension.
*/
template <typename Interval>
explicit C_Polyhedron(const Box<Interval>& box,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a C polyhedron out of a BD shape.
/*!
The polyhedron inherits the space dimension of the BDS and is
the most precise that includes the BDS.
\param bd
The BDS used to build the polyhedron.
\param complexity
This argument is ignored as the algorithm used has
polynomial complexity.
*/
template <typename U>
explicit C_Polyhedron(const BD_Shape<U>& bd,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a C polyhedron out of an octagonal shape.
/*!
The polyhedron inherits the space dimension of the octagonal shape
and is the most precise that includes the octagonal shape.
\param os
The octagonal shape used to build the polyhedron.
\param complexity
This argument is ignored as the algorithm used has
polynomial complexity.
*/
template <typename U>
explicit C_Polyhedron(const Octagonal_Shape<U>& os,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a C polyhedron out of a grid.
/*!
The polyhedron inherits the space dimension of the grid
and is the most precise that includes the grid.
\param grid
The grid used to build the polyhedron.
\param complexity
This argument is ignored as the algorithm used has
polynomial complexity.
*/
explicit C_Polyhedron(const Grid& grid,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Ordinary copy constructor.
/*!
The complexity argument is ignored.
*/
C_Polyhedron(const C_Polyhedron& y,
Complexity_Class complexity = ANY_COMPLEXITY);
/*! \brief
The assignment operator.
(\p *this and \p y can be dimension-incompatible.)
*/
C_Polyhedron& operator=(const C_Polyhedron& y);
//! Assigns to \p *this the topological closure of the NNC polyhedron \p y.
C_Polyhedron& operator=(const NNC_Polyhedron& y);
//! Destructor.
~C_Polyhedron();
/*! \brief
If the poly-hull of \p *this and \p y is exact it is assigned
to \p *this and <CODE>true</CODE> is returned,
otherwise <CODE>false</CODE> is returned.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
bool poly_hull_assign_if_exact(const C_Polyhedron& y);
//! Same as poly_hull_assign_if_exact(y).
bool upper_bound_assign_if_exact(const C_Polyhedron& y);
/*! \brief
Assigns to \p *this the smallest C polyhedron containing the
result of computing the
\ref Positive_Time_Elapse_Operator "positive time-elapse"
between \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void positive_time_elapse_assign(const Polyhedron& y);
};
/* Automatically generated from PPL source file ../src/C_Polyhedron_inlines.hh line 1. */
/* C_Polyhedron class implementation: inline functions.
*/
#include <algorithm>
#include <stdexcept>
namespace Parma_Polyhedra_Library {
inline
C_Polyhedron::~C_Polyhedron() {
}
inline
C_Polyhedron::C_Polyhedron(dimension_type num_dimensions,
Degenerate_Element kind)
: Polyhedron(NECESSARILY_CLOSED,
check_space_dimension_overflow(num_dimensions,
NECESSARILY_CLOSED,
"C_Polyhedron(n, k)",
"n exceeds the maximum "
"allowed space dimension"),
kind) {
}
inline
C_Polyhedron::C_Polyhedron(const Constraint_System& cs)
: Polyhedron(NECESSARILY_CLOSED,
check_obj_space_dimension_overflow(cs, NECESSARILY_CLOSED,
"C_Polyhedron(cs)",
"the space dimension of cs "
"exceeds the maximum allowed "
"space dimension")) {
}
inline
C_Polyhedron::C_Polyhedron(Constraint_System& cs, Recycle_Input)
: Polyhedron(NECESSARILY_CLOSED,
check_obj_space_dimension_overflow(cs, NECESSARILY_CLOSED,
"C_Polyhedron(cs, recycle)",
"the space dimension of cs "
"exceeds the maximum allowed "
"space dimension"),
Recycle_Input()) {
}
inline
C_Polyhedron::C_Polyhedron(const Generator_System& gs)
: Polyhedron(NECESSARILY_CLOSED,
check_obj_space_dimension_overflow(gs, NECESSARILY_CLOSED,
"C_Polyhedron(gs)",
"the space dimension of gs "
"exceeds the maximum allowed "
"space dimension")) {
}
inline
C_Polyhedron::C_Polyhedron(Generator_System& gs, Recycle_Input)
: Polyhedron(NECESSARILY_CLOSED,
check_obj_space_dimension_overflow(gs, NECESSARILY_CLOSED,
"C_Polyhedron(gs, recycle)",
"the space dimension of gs "
"exceeds the maximum allowed "
"space dimension"),
Recycle_Input()) {
}
template <typename Interval>
inline
C_Polyhedron::C_Polyhedron(const Box<Interval>& box, Complexity_Class)
: Polyhedron(NECESSARILY_CLOSED,
check_obj_space_dimension_overflow(box, NECESSARILY_CLOSED,
"C_Polyhedron(box)",
"the space dimension of box "
"exceeds the maximum allowed "
"space dimension")) {
}
template <typename U>
inline
C_Polyhedron::C_Polyhedron(const BD_Shape<U>& bd, Complexity_Class)
: Polyhedron(NECESSARILY_CLOSED,
check_space_dimension_overflow(bd.space_dimension(),
NECESSARILY_CLOSED,
"C_Polyhedron(bd)",
"the space dimension of bd "
"exceeds the maximum allowed "
"space dimension"),
UNIVERSE) {
add_constraints(bd.constraints());
}
template <typename U>
inline
C_Polyhedron::C_Polyhedron(const Octagonal_Shape<U>& os, Complexity_Class)
: Polyhedron(NECESSARILY_CLOSED,
check_space_dimension_overflow(os.space_dimension(),
NECESSARILY_CLOSED,
"C_Polyhedron(os)",
"the space dimension of os "
"exceeds the maximum allowed "
"space dimension"),
UNIVERSE) {
add_constraints(os.constraints());
}
inline
C_Polyhedron::C_Polyhedron(const C_Polyhedron& y, Complexity_Class)
: Polyhedron(y) {
}
inline C_Polyhedron&
C_Polyhedron::operator=(const C_Polyhedron& y) {
Polyhedron::operator=(y);
return *this;
}
inline C_Polyhedron&
C_Polyhedron::operator=(const NNC_Polyhedron& y) {
C_Polyhedron c_y(y);
m_swap(c_y);
return *this;
}
inline bool
C_Polyhedron::upper_bound_assign_if_exact(const C_Polyhedron& y) {
return poly_hull_assign_if_exact(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/C_Polyhedron_defs.hh line 290. */
/* Automatically generated from PPL source file ../src/Octagonal_Shape_defs.hh line 1. */
/* Octagonal_Shape class declaration.
*/
/* Automatically generated from PPL source file ../src/OR_Matrix_defs.hh line 1. */
/* OR_Matrix class declaration.
*/
/* Automatically generated from PPL source file ../src/OR_Matrix_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename T>
class OR_Matrix;
}
/* Automatically generated from PPL source file ../src/OR_Matrix_defs.hh line 31. */
#include <cstddef>
#include <iosfwd>
#ifndef PPL_OR_MATRIX_EXTRA_DEBUG
#ifdef PPL_ABI_BREAKING_EXTRA_DEBUG
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
When PPL_OR_MATRIX_EXTRA_DEBUG evaluates to <CODE>true</CODE>, each
instance of the class OR_Matrix::Pseudo_Row carries its own size;
this enables extra consistency checks to be performed.
\ingroup PPL_CXX_interface
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
#define PPL_OR_MATRIX_EXTRA_DEBUG 1
#else // !defined(PPL_ABI_BREAKING_EXTRA_DEBUG)
#define PPL_OR_MATRIX_EXTRA_DEBUG 0
#endif // !defined(PPL_ABI_BREAKING_EXTRA_DEBUG)
#endif // !defined(PPL_OR_MATRIX_EXTRA_DEBUG)
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x and \p y are identical.
/*! \relates OR_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
bool operator==(const OR_Matrix<T>& x, const OR_Matrix<T>& y);
namespace IO_Operators {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Output operator.
/*! \relates Parma_Polyhedra_Library::OR_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
std::ostream&
operator<<(std::ostream& s, const OR_Matrix<T>& m);
} // namespace IO_Operators
} // namespace Parma_Polyhedra_Library
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! A matrix representing octagonal constraints.
/*!
An OR_Matrix object is a DB_Row object that allows
the representation of a \em pseudo-triangular matrix,
like the following:
<PRE>
_ _
0 |_|_|
1 |_|_|_ _
2 |_|_|_|_|
3 |_|_|_|_|_ _
4 |_|_|_|_|_|_|
5 |_|_|_|_|_|_|
. . .
_ _ _ _ _ _ _
2n-2 |_|_|_|_|_|_| ... |_|
2n-1 |_|_|_|_|_|_| ... |_|
0 1 2 3 4 5 ... 2n-1
</PRE>
It is characterized by parameter n that defines the structure,
and such that there are 2*n rows (and 2*n columns).
It provides row_iterators for the access to the rows
and element_iterators for the access to the elements.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
class Parma_Polyhedra_Library::OR_Matrix {
private:
/*! \brief
An object that behaves like a matrix's row with respect to
the subscript operators.
*/
template <typename U>
class Pseudo_Row {
public:
/*! \brief
Copy constructor allowing the construction of a const pseudo-row
from a non-const pseudo-row.
Ordinary copy constructor.
*/
template <typename V>
Pseudo_Row(const Pseudo_Row<V>& y);
//! Destructor.
~Pseudo_Row();
//! Subscript operator.
U& operator[](dimension_type k) const;
//! Default constructor: creates an invalid object that has to be assigned.
Pseudo_Row();
//! Assignment operator.
Pseudo_Row& operator=(const Pseudo_Row& y);
#if !defined(__GNUC__) || __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ > 0)
private:
#else
// Work around a bug of GCC 4.0.x (and, likely, previous versions).
public:
#endif
#if PPL_OR_MATRIX_EXTRA_DEBUG
//! Private constructor for a Pseudo_Row with size \p s beginning at \p y.
Pseudo_Row(U& y, dimension_type s);
#else // !PPL_OR_MATRIX_EXTRA_DEBUG
//! Private constructor for a Pseudo_Row beginning at \p y.
explicit Pseudo_Row(U& y);
#endif // !PPL_OR_MATRIX_EXTRA_DEBUG
//! Holds a reference to the beginning of this row.
U* first;
#if !defined(__GNUC__) || __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ > 0)
#else
// Work around a bug of GCC 4.0.x (and, likely, previous versions).
private:
#endif
#if PPL_OR_MATRIX_EXTRA_DEBUG
//! The size of the row.
dimension_type size_;
//! Returns the size of the row.
dimension_type size() const;
#endif // PPL_OR_MATRIX_EXTRA_DEBUG
// FIXME: the EDG-based compilers (such as Comeau and Intel)
// are here in wild disagreement with GCC: what is a legal friend
// declaration for one, is illegal for the others.
#ifdef __EDG__
template <typename V> template<typename W>
friend class OR_Matrix<V>::Pseudo_Row;
template <typename V> template<typename W>
friend class OR_Matrix<V>::any_row_iterator;
#else
template <typename V> friend class Pseudo_Row;
template <typename V> friend class any_row_iterator;
#endif
friend class OR_Matrix;
}; // class Pseudo_Row
public:
//! A (non const) reference to a matrix's row.
typedef Pseudo_Row<T> row_reference_type;
//! A const reference to a matrix's row.
typedef Pseudo_Row<const T> const_row_reference_type;
private:
/*! \brief
A template class to derive both OR_Matrix::iterator
and OR_Matrix::const_iterator.
*/
template <typename U>
class any_row_iterator {
public:
typedef std::random_access_iterator_tag iterator_category;
typedef Pseudo_Row<U> value_type;
typedef long difference_type;
typedef const Pseudo_Row<U>* pointer;
typedef const Pseudo_Row<U>& reference;
//! Constructor to build past-the-end objects.
any_row_iterator(dimension_type n_rows);
/*! \brief
Builds an iterator pointing at the beginning of an OR_Matrix whose
first element is \p base;
*/
explicit any_row_iterator(U& base);
/*! \brief
Copy constructor allowing the construction of a const_iterator
from a non-const iterator.
*/
template <typename V>
any_row_iterator(const any_row_iterator<V>& y);
/*! \brief
Assignment operator allowing the assignment of a non-const iterator
to a const_iterator.
*/
template <typename V>
any_row_iterator& operator=(const any_row_iterator<V>& y);
//! Dereference operator.
reference operator*() const;
//! Indirect member selector.
pointer operator->() const;
//! Prefix increment operator.
any_row_iterator& operator++();
//! Postfix increment operator.
any_row_iterator operator++(int);
//! Prefix decrement operator.
any_row_iterator& operator--();
//! Postfix decrement operator.
any_row_iterator operator--(int);
//! Subscript operator.
reference operator[](difference_type m) const;
//! Assignment-increment operator.
any_row_iterator& operator+=(difference_type m);
//! Assignment-increment operator for \p m of unsigned type.
template <typename Unsigned>
typename Enable_If<(static_cast<Unsigned>(-1) > 0), any_row_iterator&>::type
operator+=(Unsigned m);
//! Assignment-decrement operator.
any_row_iterator& operator-=(difference_type m);
//! Returns the difference between \p *this and \p y.
difference_type operator-(const any_row_iterator& y) const;
//! Returns the sum of \p *this and \p m.
any_row_iterator operator+(difference_type m) const;
//! Returns the sum of \p *this and \p m, for \p m of unsigned type.
template <typename Unsigned>
typename Enable_If<(static_cast<Unsigned>(-1) > 0), any_row_iterator>::type
operator+(Unsigned m) const;
//! Returns the difference of \p *this and \p m.
any_row_iterator operator-(difference_type m) const;
//! Returns <CODE>true</CODE> if and only if \p *this is equal to \p y.
bool operator==(const any_row_iterator& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
is different from \p y.
*/
bool operator!=(const any_row_iterator& y) const;
//! Returns <CODE>true</CODE> if and only if \p *this is less than \p y.
bool operator<(const any_row_iterator& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is less than
or equal to \p y.
*/
bool operator<=(const any_row_iterator& y) const;
//! Returns <CODE>true</CODE> if and only if \p *this is greater than \p y.
bool operator>(const any_row_iterator& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is greater than
or equal to \p y.
*/
bool operator>=(const any_row_iterator& y) const;
dimension_type row_size() const;
dimension_type index() const;
private:
//! Represents the beginning of a row.
Pseudo_Row<U> value;
//! External index.
dimension_type e;
//! Internal index: <CODE>i = (e+1)*(e+1)/2</CODE>.
dimension_type i;
// FIXME: the EDG-based compilers (such as Comeau and Intel)
// are here in wild disagreement with GCC: what is a legal friend
// declaration for one, is illegal for the others.
#ifdef __EDG__
template <typename V> template<typename W>
friend class OR_Matrix<V>::any_row_iterator;
#else
template <typename V> friend class any_row_iterator;
#endif
}; // class any_row_iterator
public:
//! A (non const) row iterator.
typedef any_row_iterator<T> row_iterator;
//! A const row iterator.
typedef any_row_iterator<const T> const_row_iterator;
//! A (non const) element iterator.
typedef typename DB_Row<T>::iterator element_iterator;
//! A const element iterator.
typedef typename DB_Row<T>::const_iterator const_element_iterator;
public:
//! Returns the maximum number of rows of a OR_Matrix.
static dimension_type max_num_rows();
//! Builds a matrix with specified dimensions.
/*!
\param num_dimensions
The space dimension of the matrix that will be created.
This constructor creates a matrix with \p 2*num_dimensions rows.
Each element is initialized to plus infinity.
*/
OR_Matrix(dimension_type num_dimensions);
//! Copy constructor.
OR_Matrix(const OR_Matrix& y);
//! Constructs a conservative approximation of \p y.
template <typename U>
explicit OR_Matrix(const OR_Matrix<U>& y);
//! Destructor.
~OR_Matrix();
//! Assignment operator.
OR_Matrix& operator=(const OR_Matrix& y);
private:
template <typename U> friend class OR_Matrix;
//! Contains the rows of the matrix.
/*!
A DB_Row which contains the rows of the OR_Matrix
inserting each successive row to the end of the vec.
To contain all the elements of OR_Matrix the size of the DB_Row
is 2*n*(n+1), where the n is the characteristic parameter of
OR_Matrix.
*/
DB_Row<T> vec;
//! Contains the dimension of the space of the matrix.
dimension_type space_dim;
//! Contains the capacity of \p vec.
dimension_type vec_capacity;
//! Private and not implemented: default construction is not allowed.
OR_Matrix();
/*! \brief
Returns the index into <CODE>vec</CODE> of the first element
of the row of index \p k.
*/
static dimension_type row_first_element_index(dimension_type k);
public:
//! Returns the size of the row of index \p k.
static dimension_type row_size(dimension_type k);
//! Swaps \p *this with \p y.
void m_swap(OR_Matrix& y);
//! Makes the matrix grow by adding more space dimensions.
/*!
\param new_dim
The new dimension of the resized matrix.
Adds new rows of right dimension to the end if
there is enough capacity; otherwise, creates a new matrix,
with the specified dimension, copying the old elements
in the upper part of the new matrix, which is
then assigned to \p *this.
Each new element is initialized to plus infinity.
*/
void grow(dimension_type new_dim);
//! Makes the matrix shrink by removing the last space dimensions.
/*!
\param new_dim
The new dimension of the resized matrix.
Erases from matrix to the end the rows with index
greater than 2*new_dim-1.
*/
void shrink(dimension_type new_dim);
//! Resizes the matrix without worrying about the old contents.
/*!
\param new_dim
The new dimension of the resized matrix.
If the new dimension is greater than the old one, it adds new rows
of right dimension to the end if there is enough capacity; otherwise,
it creates a new matrix, with the specified dimension, which is
then assigned to \p *this.
If the new dimension is less than the old one, it erase from the matrix
the rows having index greater than 2*new_dim-1
*/
void resize_no_copy(dimension_type new_dim);
//! Returns the space-dimension of the matrix.
dimension_type space_dimension() const;
//! Returns the number of rows in the matrix.
dimension_type num_rows() const;
//! \name Subscript operators.
//@{
//! Returns a reference to the \p k-th row of the matrix.
row_reference_type operator[](dimension_type k);
//! Returns a constant reference to the \p k-th row of the matrix.
const_row_reference_type operator[](dimension_type k) const;
//@}
/*! \brief
Returns an iterator pointing to the first row,
if \p *this is not empty;
otherwise, returns the past-the-end const_iterator.
*/
row_iterator row_begin();
//! Returns the past-the-end const_iterator.
row_iterator row_end();
/*! \brief
Returns a const row iterator pointing to the first row,
if \p *this is not empty;
otherwise, returns the past-the-end const_iterator.
*/
const_row_iterator row_begin() const;
//! Returns the past-the-end const row iterator.
const_row_iterator row_end() const;
/*! \brief
Returns an iterator pointing to the first element,
if \p *this is not empty;
otherwise, returns the past-the-end const_iterator.
*/
element_iterator element_begin();
//! Returns the past-the-end const_iterator.
element_iterator element_end();
/*! \brief
Returns a const element iterator pointing to the first element,
if \p *this is not empty;
otherwise, returns the past-the-end const_iterator.
*/
const_element_iterator element_begin() const;
//! Returns the past-the-end const element iterator.
const_element_iterator element_end() const;
//! Clears the matrix deallocating all its rows.
void clear();
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
friend bool operator==<T>(const OR_Matrix<T>& x, const OR_Matrix<T>& y);
//! Checks if all the invariants are satisfied.
bool OK() const;
};
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Swaps \p x with \p y.
/*! \relates OR_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
void swap(OR_Matrix<T>& x, OR_Matrix<T>& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x and \p y are different.
/*! \relates OR_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
bool operator!=(const OR_Matrix<T>& x, const OR_Matrix<T>& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Computes the rectilinear (or Manhattan) distance between \p x and \p y.
/*! \relates OR_Matrix
If the rectilinear distance between \p x and \p y is defined,
stores an approximation of it into to \p r
and returns <CODE>true</CODE>; returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Temp, typename To, typename T>
bool rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const OR_Matrix<T>& x,
const OR_Matrix<T>& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Computes the euclidean distance between \p x and \p y.
/*! \relates OR_Matrix
If the Euclidean distance between \p x and \p y is defined,
stores an approximation of it into to \p r
and returns <CODE>true</CODE>; returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Temp, typename To, typename T>
bool euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const OR_Matrix<T>& x,
const OR_Matrix<T>& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Computes the \f$L_\infty\f$ distance between \p x and \p y.
/*! \relates OR_Matrix
If the \f$L_\infty\f$ distance between \p x and \p y is defined,
stores an approximation of it into to \p r
and returns <CODE>true</CODE>; returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Temp, typename To, typename T>
bool l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const OR_Matrix<T>& x,
const OR_Matrix<T>& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/OR_Matrix_inlines.hh line 1. */
/* OR_Matrix class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/OR_Matrix_inlines.hh line 33. */
#include <algorithm>
namespace Parma_Polyhedra_Library {
template <typename T>
inline dimension_type
OR_Matrix<T>::row_first_element_index(const dimension_type k) {
return ((k + 1)*(k + 1))/2;
}
template <typename T>
inline dimension_type
OR_Matrix<T>::row_size(const dimension_type k) {
return k + 2 - k % 2;
}
#if PPL_OR_MATRIX_EXTRA_DEBUG
template <typename T>
template <typename U>
inline dimension_type
OR_Matrix<T>::Pseudo_Row<U>::size() const {
return size_;
}
#endif // PPL_OR_MATRIX_EXTRA_DEBUG
template <typename T>
template <typename U>
inline
OR_Matrix<T>::Pseudo_Row<U>::Pseudo_Row()
: first(0)
#if PPL_OR_MATRIX_EXTRA_DEBUG
, size_(0)
#endif
{
}
template <typename T>
template <typename U>
inline
OR_Matrix<T>::Pseudo_Row<U>::Pseudo_Row(U& y
#if PPL_OR_MATRIX_EXTRA_DEBUG
, dimension_type s
#endif
)
: first(&y)
#if PPL_OR_MATRIX_EXTRA_DEBUG
, size_(s)
#endif
{
}
template <typename T>
template <typename U>
template <typename V>
inline
OR_Matrix<T>::Pseudo_Row<U>::Pseudo_Row(const Pseudo_Row<V>& y)
: first(y.first)
#if PPL_OR_MATRIX_EXTRA_DEBUG
, size_(y.size_)
#endif
{
}
template <typename T>
template <typename U>
inline OR_Matrix<T>::Pseudo_Row<U>&
OR_Matrix<T>::Pseudo_Row<U>::operator=(const Pseudo_Row& y) {
first = y.first;
#if PPL_OR_MATRIX_EXTRA_DEBUG
size_ = y.size_;
#endif
return *this;
}
template <typename T>
template <typename U>
inline
OR_Matrix<T>::Pseudo_Row<U>::~Pseudo_Row() {
}
template <typename T>
template <typename U>
inline U&
OR_Matrix<T>::Pseudo_Row<U>::operator[](const dimension_type k) const {
#if PPL_OR_MATRIX_EXTRA_DEBUG
PPL_ASSERT(k < size_);
#endif
return *(first + k);
}
template <typename T>
template <typename U>
inline
OR_Matrix<T>::any_row_iterator<U>
::any_row_iterator(const dimension_type n_rows)
: value(),
e(n_rows)
// Field `i' is intentionally not initialized here.
{
#if PPL_OR_MATRIX_EXTRA_DEBUG
// Turn `value' into a valid object.
value.size_ = OR_Matrix::row_size(e);
#endif
}
template <typename T>
template <typename U>
inline
OR_Matrix<T>::any_row_iterator<U>::any_row_iterator(U& base)
: value(base
#if PPL_OR_MATRIX_EXTRA_DEBUG
, OR_Matrix<T>::row_size(0)
#endif
),
e(0),
i(0) {
}
template <typename T>
template <typename U>
template <typename V>
inline
OR_Matrix<T>::any_row_iterator<U>
::any_row_iterator(const any_row_iterator<V>& y)
: value(y.value),
e(y.e),
i(y.i) {
}
template <typename T>
template <typename U>
template <typename V>
inline typename OR_Matrix<T>::template any_row_iterator<U>&
OR_Matrix<T>::any_row_iterator<U>::operator=(const any_row_iterator<V>& y) {
value = y.value;
e = y.e;
i = y.i;
return *this;
}
template <typename T>
template <typename U>
inline typename OR_Matrix<T>::template any_row_iterator<U>::reference
OR_Matrix<T>::any_row_iterator<U>::operator*() const {
return value;
}
template <typename T>
template <typename U>
inline typename OR_Matrix<T>::template any_row_iterator<U>::pointer
OR_Matrix<T>::any_row_iterator<U>::operator->() const {
return &value;
}
template <typename T>
template <typename U>
inline typename OR_Matrix<T>::template any_row_iterator<U>&
OR_Matrix<T>::any_row_iterator<U>::operator++() {
++e;
dimension_type increment = e;
if (e % 2 != 0)
++increment;
#if PPL_OR_MATRIX_EXTRA_DEBUG
else {
value.size_ += 2;
}
#endif
i += increment;
value.first += increment;
return *this;
}
template <typename T>
template <typename U>
inline typename OR_Matrix<T>::template any_row_iterator<U>
OR_Matrix<T>::any_row_iterator<U>::operator++(int) {
any_row_iterator old = *this;
++(*this);
return old;
}
template <typename T>
template <typename U>
inline typename OR_Matrix<T>::template any_row_iterator<U>&
OR_Matrix<T>::any_row_iterator<U>::operator--() {
dimension_type decrement = e + 1;
--e;
if (e % 2 != 0) {
++decrement;
#if PPL_OR_MATRIX_EXTRA_DEBUG
value.size_ -= 2;
#endif
}
i -= decrement;
value.first -= decrement;
return *this;
}
template <typename T>
template <typename U>
inline typename OR_Matrix<T>::template any_row_iterator<U>
OR_Matrix<T>::any_row_iterator<U>::operator--(int) {
any_row_iterator old = *this;
--(*this);
return old;
}
template <typename T>
template <typename U>
inline typename OR_Matrix<T>::template any_row_iterator<U>&
OR_Matrix<T>::any_row_iterator<U>::operator+=(const difference_type m) {
difference_type e_dt = static_cast<difference_type>(e);
difference_type i_dt = static_cast<difference_type>(i);
difference_type increment = m + (m * m) / 2 + m * e_dt;
if (e_dt % 2 == 0 && m % 2 != 0)
++increment;
e_dt += m;
i_dt += increment;
e = static_cast<dimension_type>(e_dt);
i = static_cast<dimension_type>(i_dt);
value.first += increment;
#if PPL_OR_MATRIX_EXTRA_DEBUG
difference_type value_size_dt = static_cast<difference_type>(value.size_);
value_size_dt += (m - m % 2);
value.size_ = static_cast<dimension_type>(value_size_dt);
#endif
return *this;
}
template <typename T>
template <typename U>
template <typename Unsigned>
inline typename
Enable_If<(static_cast<Unsigned>(-1) > 0),
typename OR_Matrix<T>::template any_row_iterator<U>& >::type
OR_Matrix<T>::any_row_iterator<U>::operator+=(Unsigned m) {
dimension_type n = m;
dimension_type increment = n + (n*n)/2 + n*e;
if (e % 2 == 0 && n % 2 != 0)
++increment;
e += n;
i += increment;
value.first += increment;
#if PPL_OR_MATRIX_EXTRA_DEBUG
value.size_ = value.size_ + n - n % 2;
#endif
return *this;
}
template <typename T>
template <typename U>
inline typename OR_Matrix<T>::template any_row_iterator<U>&
OR_Matrix<T>::any_row_iterator<U>::operator-=(difference_type m) {
return *this += -m;
}
template <typename T>
template <typename U>
inline typename OR_Matrix<T>::template any_row_iterator<U>::difference_type
OR_Matrix<T>::any_row_iterator<U>::operator-(const any_row_iterator& y) const {
return e - y.e;
}
template <typename T>
template <typename U>
inline typename OR_Matrix<T>::template any_row_iterator<U>
OR_Matrix<T>::any_row_iterator<U>::operator+(difference_type m) const {
any_row_iterator r = *this;
r += m;
return r;
}
template <typename T>
template <typename U>
template <typename Unsigned>
inline typename
Enable_If<(static_cast<Unsigned>(-1) > 0),
typename OR_Matrix<T>::template any_row_iterator<U> >::type
OR_Matrix<T>::any_row_iterator<U>::operator+(Unsigned m) const {
any_row_iterator r = *this;
r += m;
return r;
}
template <typename T>
template <typename U>
inline typename OR_Matrix<T>::template any_row_iterator<U>
OR_Matrix<T>::any_row_iterator<U>::operator-(const difference_type m) const {
any_row_iterator r = *this;
r -= m;
return r;
}
template <typename T>
template <typename U>
inline bool
OR_Matrix<T>::any_row_iterator<U>
::operator==(const any_row_iterator& y) const {
return e == y.e;
}
template <typename T>
template <typename U>
inline bool
OR_Matrix<T>::any_row_iterator<U>
::operator!=(const any_row_iterator& y) const {
return e != y.e;
}
template <typename T>
template <typename U>
inline bool
OR_Matrix<T>::any_row_iterator<U>::operator<(const any_row_iterator& y) const {
return e < y.e;
}
template <typename T>
template <typename U>
inline bool
OR_Matrix<T>::any_row_iterator<U>
::operator<=(const any_row_iterator& y) const {
return e <= y.e;
}
template <typename T>
template <typename U>
inline bool
OR_Matrix<T>::any_row_iterator<U>::operator>(const any_row_iterator& y) const {
return e > y.e;
}
template <typename T>
template <typename U>
inline bool
OR_Matrix<T>::any_row_iterator<U>
::operator>=(const any_row_iterator& y) const {
return e >= y.e;
}
template <typename T>
template <typename U>
inline dimension_type
OR_Matrix<T>::any_row_iterator<U>::row_size() const {
return OR_Matrix::row_size(e);
}
template <typename T>
template <typename U>
inline dimension_type
OR_Matrix<T>::any_row_iterator<U>::index() const {
return e;
}
template <typename T>
inline typename OR_Matrix<T>::row_iterator
OR_Matrix<T>::row_begin() {
return num_rows() == 0 ? row_iterator(0) : row_iterator(vec[0]);
}
template <typename T>
inline typename OR_Matrix<T>::row_iterator
OR_Matrix<T>::row_end() {
return row_iterator(num_rows());
}
template <typename T>
inline typename OR_Matrix<T>::const_row_iterator
OR_Matrix<T>::row_begin() const {
return num_rows() == 0 ? const_row_iterator(0) : const_row_iterator(vec[0]);
}
template <typename T>
inline typename OR_Matrix<T>::const_row_iterator
OR_Matrix<T>::row_end() const {
return const_row_iterator(num_rows());
}
template <typename T>
inline typename OR_Matrix<T>::element_iterator
OR_Matrix<T>::element_begin() {
return vec.begin();
}
template <typename T>
inline typename OR_Matrix<T>::element_iterator
OR_Matrix<T>::element_end() {
return vec.end();
}
template <typename T>
inline typename OR_Matrix<T>::const_element_iterator
OR_Matrix<T>::element_begin() const {
return vec.begin();
}
template <typename T>
inline typename OR_Matrix<T>::const_element_iterator
OR_Matrix<T>::element_end() const {
return vec.end();
}
template <typename T>
inline void
OR_Matrix<T>::m_swap(OR_Matrix& y) {
using std::swap;
swap(vec, y.vec);
swap(space_dim, y.space_dim);
swap(vec_capacity, y.vec_capacity);
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns the integer square root of \p x.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
inline dimension_type
isqrt(dimension_type x) {
dimension_type r = 0;
const dimension_type FIRST_BIT_MASK = 0x40000000U;
for (dimension_type t = FIRST_BIT_MASK; t != 0; t >>= 2) {
const dimension_type s = r + t;
if (s <= x) {
x -= s;
r = s + t;
}
r >>= 1;
}
return r;
}
template <typename T>
inline dimension_type
OR_Matrix<T>::max_num_rows() {
// Compute the maximum number of rows that are contained in a DB_Row
// that allocates a pseudo-triangular matrix.
const dimension_type k = isqrt(2*DB_Row<T>::max_size() + 1);
return (k - 1) - (k - 1) % 2;
}
template <typename T>
inline memory_size_type
OR_Matrix<T>::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
template <typename T>
inline
OR_Matrix<T>::OR_Matrix(const dimension_type num_dimensions)
: vec(2*num_dimensions*(num_dimensions + 1)),
space_dim(num_dimensions),
vec_capacity(vec.size()) {
}
template <typename T>
inline
OR_Matrix<T>::~OR_Matrix() {
}
template <typename T>
inline typename OR_Matrix<T>::row_reference_type
OR_Matrix<T>::operator[](dimension_type k) {
return row_reference_type(vec[row_first_element_index(k)]
#if PPL_OR_MATRIX_EXTRA_DEBUG
, row_size(k)
#endif
);
}
template <typename T>
inline typename OR_Matrix<T>::const_row_reference_type
OR_Matrix<T>::operator[](dimension_type k) const {
return const_row_reference_type(vec[row_first_element_index(k)]
#if PPL_OR_MATRIX_EXTRA_DEBUG
, row_size(k)
#endif
);
}
template <typename T>
inline dimension_type
OR_Matrix<T>::space_dimension() const {
return space_dim;
}
template <typename T>
inline dimension_type
OR_Matrix<T>::num_rows() const {
return 2*space_dimension();
}
template <typename T>
inline void
OR_Matrix<T>::clear() {
OR_Matrix<T>(0).m_swap(*this);
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates OR_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
inline bool
operator==(const OR_Matrix<T>& x, const OR_Matrix<T>& y) {
return x.space_dim == y.space_dim && x.vec == y.vec;
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates OR_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
inline bool
operator!=(const OR_Matrix<T>& x, const OR_Matrix<T>& y) {
return !(x == y);
}
template <typename T>
inline
OR_Matrix<T>::OR_Matrix(const OR_Matrix& y)
: vec(y.vec),
space_dim(y.space_dim),
vec_capacity(compute_capacity(y.vec.size(),
DB_Row<T>::max_size())) {
}
template <typename T>
template <typename U>
inline
OR_Matrix<T>::OR_Matrix(const OR_Matrix<U>& y)
: vec(),
space_dim(y.space_dim),
vec_capacity(compute_capacity(y.vec.size(),
DB_Row<T>::max_size())) {
vec.construct_upward_approximation(y.vec, vec_capacity);
PPL_ASSERT(OK());
}
template <typename T>
inline OR_Matrix<T>&
OR_Matrix<T>::operator=(const OR_Matrix& y) {
vec = y.vec;
space_dim = y.space_dim;
vec_capacity = compute_capacity(y.vec.size(), DB_Row<T>::max_size());
return *this;
}
template <typename T>
inline void
OR_Matrix<T>::grow(const dimension_type new_dim) {
PPL_ASSERT(new_dim >= space_dim);
if (new_dim > space_dim) {
const dimension_type new_size = 2*new_dim*(new_dim + 1);
if (new_size <= vec_capacity) {
// We can recycle the old vec.
vec.expand_within_capacity(new_size);
space_dim = new_dim;
}
else {
// We cannot recycle the old vec.
OR_Matrix<T> new_matrix(new_dim);
element_iterator j = new_matrix.element_begin();
for (element_iterator i = element_begin(),
mend = element_end(); i != mend; ++i, ++j)
assign_or_swap(*j, *i);
m_swap(new_matrix);
}
}
}
template <typename T>
inline void
OR_Matrix<T>::shrink(const dimension_type new_dim) {
PPL_ASSERT(new_dim <= space_dim);
const dimension_type new_size = 2*new_dim*(new_dim + 1);
vec.shrink(new_size);
space_dim = new_dim;
}
template <typename T>
inline void
OR_Matrix<T>::resize_no_copy(const dimension_type new_dim) {
if (new_dim > space_dim) {
const dimension_type new_size = 2*new_dim*(new_dim + 1);
if (new_size <= vec_capacity) {
// We can recycle the old vec.
vec.expand_within_capacity(new_size);
space_dim = new_dim;
}
else {
// We cannot recycle the old vec.
OR_Matrix<T> new_matrix(new_dim);
m_swap(new_matrix);
}
}
else if (new_dim < space_dim)
shrink(new_dim);
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates OR_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Specialization, typename Temp, typename To, typename T>
inline bool
l_m_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const OR_Matrix<T>& x,
const OR_Matrix<T>& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
if (x.num_rows() != y.num_rows())
return false;
assign_r(tmp0, 0, ROUND_NOT_NEEDED);
for (typename OR_Matrix<T>::const_element_iterator
i = x.element_begin(), j = y.element_begin(),
mat_end = x.element_end(); i != mat_end; ++i, ++j) {
const T& x_i = *i;
const T& y_i = *j;
if (is_plus_infinity(x_i)) {
if (is_plus_infinity(y_i))
continue;
else {
pinf:
assign_r(r, PLUS_INFINITY, ROUND_NOT_NEEDED);
return true;
}
}
else if (is_plus_infinity(y_i))
goto pinf;
const Temp* tmp1p;
const Temp* tmp2p;
if (x_i > y_i) {
maybe_assign(tmp1p, tmp1, x_i, dir);
maybe_assign(tmp2p, tmp2, y_i, inverse(dir));
}
else {
maybe_assign(tmp1p, tmp1, y_i, dir);
maybe_assign(tmp2p, tmp2, x_i, inverse(dir));
}
sub_assign_r(tmp1, *tmp1p, *tmp2p, dir);
PPL_ASSERT(sgn(tmp1) >= 0);
Specialization::combine(tmp0, tmp1, dir);
}
Specialization::finalize(tmp0, dir);
assign_r(r, tmp0, dir);
return true;
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates OR_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Temp, typename To, typename T>
inline bool
rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const OR_Matrix<T>& x,
const OR_Matrix<T>& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
return
l_m_distance_assign<Rectilinear_Distance_Specialization<Temp> >(r, x, y,
dir,
tmp0,
tmp1,
tmp2);
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates OR_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Temp, typename To, typename T>
inline bool
euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const OR_Matrix<T>& x,
const OR_Matrix<T>& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
return
l_m_distance_assign<Euclidean_Distance_Specialization<Temp> >(r, x, y,
dir,
tmp0,
tmp1,
tmp2);
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates OR_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Temp, typename To, typename T>
inline bool
l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const OR_Matrix<T>& x,
const OR_Matrix<T>& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
return
l_m_distance_assign<L_Infinity_Distance_Specialization<Temp> >(r, x, y,
dir,
tmp0,
tmp1,
tmp2);
}
/*! \relates OR_Matrix */
template <typename T>
inline void
swap(OR_Matrix<T>& x, OR_Matrix<T>& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/OR_Matrix_templates.hh line 1. */
/* OR_Matrix class implementation: non-inline template functions.
*/
#include <iostream>
namespace Parma_Polyhedra_Library {
template <typename T>
memory_size_type
OR_Matrix<T>::external_memory_in_bytes() const{
return vec.external_memory_in_bytes();
}
template <typename T>
bool
OR_Matrix<T>::OK() const {
#ifndef NDEBUG
using std::endl;
using std::cerr;
#endif
// The right number of cells should be in use.
const dimension_type dim = space_dimension();
if (vec.size() != 2*dim*(dim + 1)) {
#ifndef NDEBUG
cerr << "OR_Matrix has a wrong number of cells:\n"
<< "vec.size() is " << vec.size()
<< ", expected size is " << (2*dim*(dim+1)) << "!\n";
#endif
return false;
}
// The underlying DB_Row should be OK.
if (!vec.OK(vec.size(), vec_capacity))
return false;
// All checks passed.
return true;
}
template <typename T>
void
OR_Matrix<T>::ascii_dump(std::ostream& s) const {
const OR_Matrix<T>& x = *this;
const char separator = ' ';
dimension_type space = x.space_dimension();
s << space << separator << "\n";
for (const_row_iterator i = x.row_begin(),
x_row_end = x.row_end(); i != x_row_end; ++i) {
const_row_reference_type r = *i;
dimension_type rs = i.row_size();
for (dimension_type j = 0; j < rs; ++j) {
using namespace IO_Operators;
s << r[j] << separator;
}
s << "\n";
}
}
PPL_OUTPUT_TEMPLATE_DEFINITIONS(T, OR_Matrix<T>)
template <typename T>
bool
OR_Matrix<T>::ascii_load(std::istream& s) {
dimension_type space;
if (!(s >> space))
return false;
resize_no_copy(space);
for (row_iterator i = row_begin(),
this_row_end = row_end(); i != this_row_end; ++i) {
row_reference_type r_i = *i;
const dimension_type rs = i.row_size();
for (dimension_type j = 0; j < rs; ++j) {
Result r = input(r_i[j], s, ROUND_CHECK);
if (result_relation(r) != VR_EQ || is_minus_infinity(r_i[j]))
return false;
}
}
PPL_ASSERT(OK());
return true;
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates Parma_Polyhedra_Library::OR_Matrix */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
std::ostream&
IO_Operators::operator<<(std::ostream& s, const OR_Matrix<T>& m) {
for (typename OR_Matrix<T>::const_row_iterator m_iter = m.row_begin(),
m_end = m.row_end(); m_iter != m_end; ++m_iter) {
typename OR_Matrix<T>::const_row_reference_type r_m = *m_iter;
const dimension_type mr_size = m_iter.row_size();
for (dimension_type j = 0; j < mr_size; ++j)
s << r_m[j] << " ";
s << "\n";
}
return s;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/OR_Matrix_defs.hh line 609. */
/* Automatically generated from PPL source file ../src/Octagonal_Shape_defs.hh line 50. */
#include <vector>
#include <cstddef>
#include <climits>
#include <iosfwd>
namespace Parma_Polyhedra_Library {
namespace IO_Operators {
//! Output operator.
/*! \relates Parma_Polyhedra_Library::Octagonal_Shape
Writes a textual representation of \p oct on \p s:
<CODE>false</CODE> is written if \p oct is an empty polyhedron;
<CODE>true</CODE> is written if \p oct is a universe polyhedron;
a system of constraints defining \p oct is written otherwise,
all constraints separated by ", ".
*/
template <typename T>
std::ostream&
operator<<(std::ostream& s, const Octagonal_Shape<T>& oct);
} // namespace IO_Operators
//! Swaps \p x with \p y.
/*! \relates Octagonal_Shape */
template <typename T>
void swap(Octagonal_Shape<T>& x, Octagonal_Shape<T>& y);
/*! \brief
Returns <CODE>true</CODE> if and only if \p x and \p y are the same octagon.
\relates Octagonal_Shape
Note that \p x and \p y may be dimension-incompatible shapes:
in this case, the value <CODE>false</CODE> is returned.
*/
template <typename T>
bool operator==(const Octagonal_Shape<T>& x, const Octagonal_Shape<T>& y);
/*! \brief
Returns <CODE>true</CODE> if and only if \p x and \p y are different shapes.
\relates Octagonal_Shape
Note that \p x and \p y may be dimension-incompatible shapes:
in this case, the value <CODE>true</CODE> is returned.
*/
template <typename T>
bool operator!=(const Octagonal_Shape<T>& x, const Octagonal_Shape<T>& y);
//! Computes the rectilinear (or Manhattan) distance between \p x and \p y.
/*! \relates Octagonal_Shape
If the rectilinear distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<To, Extended_Number_Policy\></CODE>.
*/
template <typename To, typename T>
bool rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Octagonal_Shape<T>& x,
const Octagonal_Shape<T>& y,
Rounding_Dir dir);
//! Computes the rectilinear (or Manhattan) distance between \p x and \p y.
/*! \relates Octagonal_Shape
If the rectilinear distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<Temp, Extended_Number_Policy\></CODE>.
*/
template <typename Temp, typename To, typename T>
bool rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Octagonal_Shape<T>& x,
const Octagonal_Shape<T>& y,
Rounding_Dir dir);
//! Computes the rectilinear (or Manhattan) distance between \p x and \p y.
/*! \relates Octagonal_Shape
If the rectilinear distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
*/
template <typename Temp, typename To, typename T>
bool rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Octagonal_Shape<T>& x,
const Octagonal_Shape<T>& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
//! Computes the euclidean distance between \p x and \p y.
/*! \relates Octagonal_Shape
If the euclidean distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<To, Extended_Number_Policy\></CODE>.
*/
template <typename To, typename T>
bool euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Octagonal_Shape<T>& x,
const Octagonal_Shape<T>& y,
Rounding_Dir dir);
//! Computes the euclidean distance between \p x and \p y.
/*! \relates Octagonal_Shape
If the euclidean distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<Temp, Extended_Number_Policy\></CODE>.
*/
template <typename Temp, typename To, typename T>
bool euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Octagonal_Shape<T>& x,
const Octagonal_Shape<T>& y,
Rounding_Dir dir);
//! Computes the euclidean distance between \p x and \p y.
/*! \relates Octagonal_Shape
If the euclidean distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
*/
template <typename Temp, typename To, typename T>
bool euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Octagonal_Shape<T>& x,
const Octagonal_Shape<T>& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
//! Computes the \f$L_\infty\f$ distance between \p x and \p y.
/*! \relates Octagonal_Shape
If the \f$L_\infty\f$ distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<To, Extended_Number_Policy\></CODE>.
*/
template <typename To, typename T>
bool l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Octagonal_Shape<T>& x,
const Octagonal_Shape<T>& y,
Rounding_Dir dir);
//! Computes the \f$L_\infty\f$ distance between \p x and \p y.
/*! \relates Octagonal_Shape
If the \f$L_\infty\f$ distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
<CODE>Checked_Number\<Temp, Extended_Number_Policy\></CODE>.
*/
template <typename Temp, typename To, typename T>
bool l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Octagonal_Shape<T>& x,
const Octagonal_Shape<T>& y,
Rounding_Dir dir);
//! Computes the \f$L_\infty\f$ distance between \p x and \p y.
/*! \relates Octagonal_Shape
If the \f$L_\infty\f$ distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
*/
template <typename Temp, typename To, typename T>
bool l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Octagonal_Shape<T>& x,
const Octagonal_Shape<T>& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
// This class contains some helper functions that need to be friends of
// Linear_Expression.
class Octagonal_Shape_Helper {
public:
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Decodes the constraint \p c as an octagonal difference.
/*! \relates Octagonal_Shape
\return
<CODE>true</CODE> if the constraint \p c is an octagonal difference;
<CODE>false</CODE> otherwise.
\param c
The constraint to be decoded.
\param c_space_dim
The space dimension of the constraint \p c (it is <EM>assumed</EM>
to match the actual space dimension of \p c).
\param c_num_vars
If <CODE>true</CODE> is returned, then it will be set to the number
of variables having a non-zero coefficient. The only legal values
will therefore be 0, 1 and 2.
\param c_first_var
If <CODE>true</CODE> is returned and if \p c_num_vars is not set to 0,
then it will be set to the index of the first variable having
a non-zero coefficient in \p c.
\param c_second_var
If <CODE>true</CODE> is returned and if \p c_num_vars is set to 2,
then it will be set to the index of the second variable having
a non-zero coefficient in \p c.
\param c_coeff
If <CODE>true</CODE> is returned and if \p c_num_vars is not set to 0,
then it will be set to the value of the first non-zero coefficient
in \p c.
\param c_term
If <CODE>true</CODE> is returned and if \p c_num_vars is not set to 0,
then it will be set to the right value of the inhomogeneous term
of \p c.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
static bool extract_octagonal_difference(const Constraint& c,
dimension_type c_space_dim,
dimension_type& c_num_vars,
dimension_type& c_first_var,
dimension_type& c_second_var,
Coefficient& c_coeff,
Coefficient& c_term);
};
} // namespace Parma_Polyhedra_Library
//! An octagonal shape.
/*! \ingroup PPL_CXX_interface
The class template Octagonal_Shape<T> allows for the efficient
representation of a restricted kind of <EM>topologically closed</EM>
convex polyhedra called <EM>octagonal shapes</EM> (OSs, for short).
The name comes from the fact that, in a vector space of dimension 2,
bounded OSs are polygons with at most eight sides.
The closed affine half-spaces that characterize the OS can be expressed
by constraints of the form
\f[
ax_i + bx_j \leq k
\f]
where \f$a, b \in \{-1, 0, 1\}\f$ and \f$k\f$ is a rational number,
which are called <EM>octagonal constraints</EM>.
Based on the class template type parameter \p T, a family of extended
numbers is built and used to approximate the inhomogeneous term of
octagonal constraints. These extended numbers provide a representation
for the value \f$+\infty\f$, as well as <EM>rounding-aware</EM>
implementations for several arithmetic functions.
The value of the type parameter \p T may be one of the following:
- a bounded precision integer type (e.g., \c int32_t or \c int64_t);
- a bounded precision floating point type (e.g., \c float or \c double);
- an unbounded integer or rational type, as provided by GMP
(i.e., \c mpz_class or \c mpq_class).
The user interface for OSs is meant to be as similar as possible to
the one developed for the polyhedron class C_Polyhedron.
The OS domain <EM>optimally supports</EM>:
- tautological and inconsistent constraints and congruences;
- octagonal constraints;
- non-proper congruences (i.e., equalities) that are expressible
as octagonal constraints.
Depending on the method, using a constraint or congruence that is not
optimally supported by the domain will either raise an exception or
result in a (possibly non-optimal) upward approximation.
A constraint is octagonal if it has the form
\f[
\pm a_i x_i \pm a_j x_j \relsym b
\f]
where \f$\mathord{\relsym} \in \{ \leq, =, \geq \}\f$ and
\f$a_i\f$, \f$a_j\f$, \f$b\f$ are integer coefficients such that
\f$a_i = 0\f$, or \f$a_j = 0\f$, or \f$a_i = a_j\f$.
The user is warned that the above octagonal Constraint object
will be mapped into a \e correct and \e optimal approximation that,
depending on the expressive power of the chosen template argument \p T,
may loose some precision.
Also note that strict constraints are not octagonal.
For instance, a Constraint object encoding \f$3x + 3y \leq 1\f$ will be
approximated by:
- \f$x + y \leq 1\f$,
if \p T is a (bounded or unbounded) integer type;
- \f$x + y \leq \frac{1}{3}\f$,
if \p T is the unbounded rational type \c mpq_class;
- \f$x + y \leq k\f$, where \f$k > \frac{1}{3}\f$,
if \p T is a floating point type (having no exact representation
for \f$\frac{1}{3}\f$).
On the other hand, depending from the context, a Constraint object
encoding \f$3x - y \leq 1\f$ will be either upward approximated
(e.g., by safely ignoring it) or it will cause an exception.
In the following examples it is assumed that the type argument \p T
is one of the possible instances listed above and that variables
\c x, \c y and \c z are defined (where they are used) as follows:
\code
Variable x(0);
Variable y(1);
Variable z(2);
\endcode
\par Example 1
The following code builds an OS corresponding to a cube in \f$\Rset^3\f$,
given as a system of constraints:
\code
Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 3);
cs.insert(y >= 0);
cs.insert(y <= 3);
cs.insert(z >= 0);
cs.insert(z <= 3);
Octagonal_Shape<T> oct(cs);
\endcode
In contrast, the following code will raise an exception,
since constraints 7, 8, and 9 are not octagonal:
\code
Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 3);
cs.insert(y >= 0);
cs.insert(y <= 3);
cs.insert(z >= 0);
cs.insert(z <= 3);
cs.insert(x - 3*y <= 5); // (7)
cs.insert(x - y + z <= 5); // (8)
cs.insert(x + y + z <= 5); // (9)
Octagonal_Shape<T> oct(cs);
\endcode
*/
template <typename T>
class Parma_Polyhedra_Library::Octagonal_Shape {
private:
/*! \brief
The (extended) numeric type of the inhomogeneous term of
the inequalities defining an OS.
*/
#ifndef NDEBUG
typedef Checked_Number<T, Debug_WRD_Extended_Number_Policy> N;
#else
typedef Checked_Number<T, WRD_Extended_Number_Policy> N;
#endif
public:
//! The numeric base type upon which OSs are built.
typedef T coefficient_type_base;
/*! \brief
The (extended) numeric type of the inhomogeneous term of the
inequalities defining an OS.
*/
typedef N coefficient_type;
//! Returns the maximum space dimension that an OS can handle.
static dimension_type max_space_dimension();
/*! \brief
Returns false indicating that this domain cannot recycle constraints
*/
static bool can_recycle_constraint_systems();
/*! \brief
Returns false indicating that this domain cannot recycle congruences
*/
static bool can_recycle_congruence_systems();
//! \name Constructors, Assignment, Swap and Destructor
//@{
//! Builds an universe or empty OS of the specified space dimension.
/*!
\param num_dimensions
The number of dimensions of the vector space enclosing the OS;
\param kind
Specifies whether the universe or the empty OS has to be built.
*/
explicit Octagonal_Shape(dimension_type num_dimensions = 0,
Degenerate_Element kind = UNIVERSE);
//! Ordinary copy constructor.
/*!
The complexity argument is ignored.
*/
Octagonal_Shape(const Octagonal_Shape& y,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a conservative, upward approximation of \p y.
/*!
The complexity argument is ignored.
*/
template <typename U>
explicit Octagonal_Shape(const Octagonal_Shape<U>& y,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds an OS from the system of constraints \p cs.
/*!
The OS inherits the space dimension of \p cs.
\param cs
A system of octagonal constraints.
\exception std::invalid_argument
Thrown if \p cs contains a constraint which is not optimally supported
by the Octagonal shape domain.
*/
explicit Octagonal_Shape(const Constraint_System& cs);
//! Builds an OS from a system of congruences.
/*!
The OS inherits the space dimension of \p cgs
\param cgs
A system of congruences.
\exception std::invalid_argument
Thrown if \p cgs contains a congruence which is not optimally supported
by the Octagonal shape domain.
*/
explicit Octagonal_Shape(const Congruence_System& cgs);
//! Builds an OS from the system of generators \p gs.
/*!
Builds the smallest OS containing the polyhedron defined by \p gs.
The OS inherits the space dimension of \p gs.
\exception std::invalid_argument
Thrown if the system of generators is not empty but has no points.
*/
explicit Octagonal_Shape(const Generator_System& gs);
//! Builds an OS from the polyhedron \p ph.
/*!
Builds an OS containing \p ph using algorithms whose complexity
does not exceed the one specified by \p complexity. If
\p complexity is \p ANY_COMPLEXITY, then the OS built is the
smallest one containing \p ph.
*/
explicit Octagonal_Shape(const Polyhedron& ph,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds an OS out of a box.
/*!
The OS inherits the space dimension of the box.
The built OS is the most precise OS that includes the box.
\param box
The box representing the OS to be built.
\param complexity
This argument is ignored as the algorithm used has
polynomial complexity.
\exception std::length_error
Thrown if the space dimension of \p box exceeds the maximum
allowed space dimension.
*/
template <typename Interval>
explicit Octagonal_Shape(const Box<Interval>& box,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds an OS that approximates a grid.
/*!
The OS inherits the space dimension of the grid.
The built OS is the most precise OS that includes the grid.
\param grid
The grid used to build the OS.
\param complexity
This argument is ignored as the algorithm used has
polynomial complexity.
\exception std::length_error
Thrown if the space dimension of \p grid exceeds the maximum
allowed space dimension.
*/
explicit Octagonal_Shape(const Grid& grid,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds an OS from a BD shape.
/*!
The OS inherits the space dimension of the BD shape.
The built OS is the most precise OS that includes the BD shape.
\param bd
The BD shape used to build the OS.
\param complexity
This argument is ignored as the algorithm used has
polynomial complexity.
\exception std::length_error
Thrown if the space dimension of \p bd exceeds the maximum
allowed space dimension.
*/
template <typename U>
explicit Octagonal_Shape(const BD_Shape<U>& bd,
Complexity_Class complexity = ANY_COMPLEXITY);
/*! \brief
The assignment operator.
(\p *this and \p y can be dimension-incompatible.)
*/
Octagonal_Shape& operator=(const Octagonal_Shape& y);
/*! \brief
Swaps \p *this with octagon \p y.
(\p *this and \p y can be dimension-incompatible.)
*/
void m_swap(Octagonal_Shape& y);
//! Destructor.
~Octagonal_Shape();
//@} Constructors, Assignment, Swap and Destructor
//! \name Member Functions that Do Not Modify the Octagonal_Shape
//@{
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
/*! \brief
Returns \f$0\f$, if \p *this is empty; otherwise, returns the
\ref Affine_Independence_and_Affine_Dimension "affine dimension"
of \p *this.
*/
dimension_type affine_dimension() const;
//! Returns the system of constraints defining \p *this.
Constraint_System constraints() const;
//! Returns a minimized system of constraints defining \p *this.
Constraint_System minimized_constraints() const;
//! Returns a system of (equality) congruences satisfied by \p *this.
Congruence_System congruences() const;
/*! \brief
Returns a minimal system of (equality) congruences
satisfied by \p *this with the same affine dimension as \p *this.
*/
Congruence_System minimized_congruences() const;
//! Returns <CODE>true</CODE> if and only if \p *this contains \p y.
/*!
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
bool contains(const Octagonal_Shape& y) const;
//! Returns <CODE>true</CODE> if and only if \p *this strictly contains \p y.
/*!
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
bool strictly_contains(const Octagonal_Shape& y) const;
//! Returns <CODE>true</CODE> if and only if \p *this and \p y are disjoint.
/*!
\exception std::invalid_argument
Thrown if \p x and \p y are topology-incompatible or
dimension-incompatible.
*/
bool is_disjoint_from(const Octagonal_Shape& y) const;
/*! \brief
Returns the relations holding between \p *this and the constraint \p c.
\exception std::invalid_argument
Thrown if \p *this and constraint \p c are dimension-incompatible.
*/
Poly_Con_Relation relation_with(const Constraint& c) const;
/*! \brief
Returns the relations holding between \p *this and the congruence \p cg.
\exception std::invalid_argument
Thrown if \p *this and \p cg are dimension-incompatible.
*/
Poly_Con_Relation relation_with(const Congruence& cg) const;
/*! \brief
Returns the relations holding between \p *this and the generator \p g.
\exception std::invalid_argument
Thrown if \p *this and generator \p g are dimension-incompatible.
*/
Poly_Gen_Relation relation_with(const Generator& g) const;
//! Returns <CODE>true</CODE> if and only if \p *this is an empty OS.
bool is_empty() const;
//! Returns <CODE>true</CODE> if and only if \p *this is a universe OS.
bool is_universe() const;
//! Returns <CODE>true</CODE> if and only if \p *this is discrete.
bool is_discrete() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
is a bounded OS.
*/
bool is_bounded() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
is a topologically closed subset of the vector space.
*/
bool is_topologically_closed() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
contains (at least) an integer point.
*/
bool contains_integer_point() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p var is constrained in
\p *this.
\exception std::invalid_argument
Thrown if \p var is not a space dimension of \p *this.
*/
bool constrains(Variable var) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p expr is
bounded from above in \p *this.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds_from_above(const Linear_Expression& expr) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p expr is
bounded from below in \p *this.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds_from_below(const Linear_Expression& expr) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from above in \p *this, in which case
the supremum value is computed.
\param expr
The linear expression to be maximized subject to \p *this;
\param sup_n
The numerator of the supremum value;
\param sup_d
The denominator of the supremum value;
\param maximum
<CODE>true</CODE> if and only if the supremum is also the maximum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from above,
<CODE>false</CODE> is returned and \p sup_n, \p sup_d
and \p maximum are left untouched.
*/
bool maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from above in \p *this, in which case
the supremum value and a point where \p expr reaches it are computed.
\param expr
The linear expression to be maximized subject to \p *this;
\param sup_n
The numerator of the supremum value;
\param sup_d
The denominator of the supremum value;
\param maximum
<CODE>true</CODE> if and only if the supremum is also the maximum value;
\param g
When maximization succeeds, will be assigned the point or
closure point where \p expr reaches its supremum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from above,
<CODE>false</CODE> is returned and \p sup_n, \p sup_d, \p maximum
and \p g are left untouched.
*/
bool maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum,
Generator& g) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from below in \p *this, in which case
the infimum value is computed.
\param expr
The linear expression to be minimized subject to \p *this;
\param inf_n
The numerator of the infimum value;
\param inf_d
The denominator of the infimum value;
\param minimum
<CODE>true</CODE> if and only if the infimum is also the minimum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from below,
<CODE>false</CODE> is returned and \p inf_n, \p inf_d
and \p minimum are left untouched.
*/
bool minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from below in \p *this, in which case
the infimum value and a point where \p expr reaches it are computed.
\param expr
The linear expression to be minimized subject to \p *this;
\param inf_n
The numerator of the infimum value;
\param inf_d
The denominator of the infimum value;
\param minimum
<CODE>true</CODE> if and only if the infimum is also the minimum value;
\param g
When minimization succeeds, will be assigned a point or
closure point where \p expr reaches its infimum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from below,
<CODE>false</CODE> is returned and \p inf_n, \p inf_d, \p minimum
and \p g are left untouched.
*/
bool minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum,
Generator& g) const;
/*! \brief
Returns <CODE>true</CODE> if and only if there exist a
unique value \p val such that \p *this
saturates the equality <CODE>expr = val</CODE>.
\param expr
The linear expression for which the frequency is needed;
\param freq_n
If <CODE>true</CODE> is returned, the value is set to \f$0\f$;
Present for interface compatibility with class Grid, where
the \ref Grid_Frequency "frequency" can have a non-zero value;
\param freq_d
If <CODE>true</CODE> is returned, the value is set to \f$1\f$;
\param val_n
The numerator of \p val;
\param val_d
The denominator of \p val;
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If <CODE>false</CODE> is returned, then \p freq_n, \p freq_d,
\p val_n and \p val_d are left untouched.
*/
bool frequency(const Linear_Expression& expr,
Coefficient& freq_n, Coefficient& freq_d,
Coefficient& val_n, Coefficient& val_d) const;
//! Checks if all the invariants are satisfied.
bool OK() const;
//@} Member Functions that Do Not Modify the Octagonal_Shape
//! \name Space-Dimension Preserving Member Functions that May Modify the Octagonal_Shape
//@{
/*! \brief
Adds a copy of constraint \p c to the system of constraints
defining \p *this.
\param c
The constraint to be added.
\exception std::invalid_argument
Thrown if \p *this and constraint \p c are dimension-incompatible,
or \p c is not optimally supported by the OS domain.
*/
void add_constraint(const Constraint& c);
/*! \brief
Adds the constraints in \p cs to the system of constraints
defining \p *this.
\param cs
The constraints that will be added.
\exception std::invalid_argument
Thrown if \p *this and \p cs are dimension-incompatible,
or \p cs contains a constraint which is not optimally supported
by the OS domain.
*/
void add_constraints(const Constraint_System& cs);
/*! \brief
Adds the constraints in \p cs to the system of constraints
of \p *this.
\param cs
The constraint system to be added to \p *this. The constraints in
\p cs may be recycled.
\exception std::invalid_argument
Thrown if \p *this and \p cs are dimension-incompatible,
or \p cs contains a constraint which is not optimally supported
by the OS domain.
\warning
The only assumption that can be made on \p cs upon successful or
exceptional return is that it can be safely destroyed.
*/
void add_recycled_constraints(Constraint_System& cs);
/*! \brief
Adds to \p *this a constraint equivalent to the congruence \p cg.
\param cg
The congruence to be added.
\exception std::invalid_argument
Thrown if \p *this and congruence \p cg are dimension-incompatible,
or \p cg is not optimally supported by the OS domain.
*/
void add_congruence(const Congruence& cg);
/*! \brief
Adds to \p *this constraints equivalent to the congruences in \p cgs.
\param cgs
The congruences to be added.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible,
or \p cgs contains a congruence which is not optimally supported
by the OS domain.
*/
void add_congruences(const Congruence_System& cgs);
/*! \brief
Adds to \p *this constraints equivalent to the congruences in \p cgs.
\param cgs
The congruence system to be added to \p *this. The congruences in
\p cgs may be recycled.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible,
or \p cgs contains a congruence which is not optimally supported
by the OS domain.
\warning
The only assumption that can be made on \p cgs upon successful or
exceptional return is that it can be safely destroyed.
*/
void add_recycled_congruences(Congruence_System& cgs);
/*! \brief
Uses a copy of constraint \p c to refine the system of octagonal
constraints defining \p *this.
\param c
The constraint. If it is not a octagonal constraint, it will be ignored.
\exception std::invalid_argument
Thrown if \p *this and constraint \p c are dimension-incompatible.
*/
void refine_with_constraint(const Constraint& c);
/*! \brief
Uses a copy of congruence \p cg to refine the system of
octagonal constraints of \p *this.
\param cg
The congruence. If it is not a octagonal equality, it
will be ignored.
\exception std::invalid_argument
Thrown if \p *this and congruence \p cg are dimension-incompatible.
*/
void refine_with_congruence(const Congruence& cg);
/*! \brief
Uses a copy of the constraints in \p cs to refine the system of
octagonal constraints defining \p *this.
\param cs
The constraint system to be used. Constraints that are not octagonal
are ignored.
\exception std::invalid_argument
Thrown if \p *this and \p cs are dimension-incompatible.
*/
void refine_with_constraints(const Constraint_System& cs);
/*! \brief
Uses a copy of the congruences in \p cgs to refine the system of
octagonal constraints defining \p *this.
\param cgs
The congruence system to be used. Congruences that are not octagonal
equalities are ignored.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible.
*/
void refine_with_congruences(const Congruence_System& cgs);
/*! \brief
Refines the system of octagonal constraints defining \p *this using
the constraint expressed by \p left \f$\leq\f$ \p right.
\param left
The linear form on intervals with floating point boundaries that
is at the left of the comparison operator. All of its coefficients
MUST be bounded.
\param right
The linear form on intervals with floating point boundaries that
is at the right of the comparison operator. All of its coefficients
MUST be bounded.
\exception std::invalid_argument
Thrown if \p left (or \p right) is dimension-incompatible with \p *this.
This function is used in abstract interpretation to model a filter
that is generated by a comparison of two expressions that are correctly
approximated by \p left and \p right respectively.
*/
template <typename Interval_Info>
void refine_with_linear_form_inequality(
const Linear_Form< Interval<T, Interval_Info> >& left,
const Linear_Form< Interval<T, Interval_Info> >& right);
/*! \brief
Refines the system of octagonal constraints defining \p *this using
the constraint expressed by \p left \f$\relsym\f$ \p right, where
\f$\relsym\f$ is the relation symbol specified by \p relsym.
\param left
The linear form on intervals with floating point boundaries that
is at the left of the comparison operator. All of its coefficients
MUST be bounded.
\param right
The linear form on intervals with floating point boundaries that
is at the right of the comparison operator. All of its coefficients
MUST be bounded.
\param relsym
The relation symbol.
\exception std::invalid_argument
Thrown if \p left (or \p right) is dimension-incompatible with \p *this.
\exception std::runtime_error
Thrown if \p relsym is not a valid relation symbol.
This function is used in abstract interpretation to model a filter
that is generated by a comparison of two expressions that are correctly
approximated by \p left and \p right respectively.
*/
template <typename Interval_Info>
void generalized_refine_with_linear_form_inequality(
const Linear_Form< Interval<T, Interval_Info> >& left,
const Linear_Form< Interval<T, Interval_Info> >& right,
Relation_Symbol relsym);
/*! \brief
Computes the \ref Cylindrification "cylindrification" of \p *this with
respect to space dimension \p var, assigning the result to \p *this.
\param var
The space dimension that will be unconstrained.
\exception std::invalid_argument
Thrown if \p var is not a space dimension of \p *this.
*/
void unconstrain(Variable var);
/*! \brief
Computes the \ref Cylindrification "cylindrification" of \p *this with
respect to the set of space dimensions \p vars,
assigning the result to \p *this.
\param vars
The set of space dimension that will be unconstrained.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with one of the
Variable objects contained in \p vars.
*/
void unconstrain(const Variables_Set& vars);
//! Assigns to \p *this the intersection of \p *this and \p y.
/*!
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void intersection_assign(const Octagonal_Shape& y);
/*! \brief
Assigns to \p *this the smallest OS that contains
the convex union of \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void upper_bound_assign(const Octagonal_Shape& y);
/*! \brief
If the upper bound of \p *this and \p y is exact, it is assigned
to \p *this and <CODE>true</CODE> is returned,
otherwise <CODE>false</CODE> is returned.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
Implementation is based on Theorem 6.3 of \ref BHZ09b "[BHZ09b]".
*/
bool upper_bound_assign_if_exact(const Octagonal_Shape& y);
/*! \brief
If the \e integer upper bound of \p *this and \p y is exact,
it is assigned to \p *this and <CODE>true</CODE> is returned;
otherwise <CODE>false</CODE> is returned.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
\note
This operator is only available when the class template parameter
\c T is bound to an integer data type.
\note
The integer upper bound of two rational OS is the smallest
rational OS containing all the integral points in the two arguments.
In general, the result is \e not an upper bound for the two input
arguments, as it may cut away non-integral portions of the two
rational shapes.
Implementation is based on Theorem 6.8 of \ref BHZ09b "[BHZ09b]".
*/
bool integer_upper_bound_assign_if_exact(const Octagonal_Shape& y);
/*! \brief
Assigns to \p *this the smallest octagon containing
the set difference of \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void difference_assign(const Octagonal_Shape& y);
/*! \brief
Assigns to \p *this a \ref Meet_Preserving_Simplification
"meet-preserving simplification" of \p *this with respect to \p y.
If \c false is returned, then the intersection is empty.
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
bool simplify_using_context_assign(const Octagonal_Shape& y);
/*! \brief
Assigns to \p *this the \ref affine_relation "affine image"
of \p *this under the function mapping variable \p var into the
affine expression specified by \p expr and \p denominator.
\param var
The variable to which the affine expression is assigned.
\param expr
The numerator of the affine expression.
\param denominator
The denominator of the affine expression.
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this
are dimension-incompatible or if \p var is not a dimension of \p *this.
*/
void affine_image(Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
// FIXME: To be completed.
/*! \brief
Assigns to \p *this the \ref affine_form_relation "affine form image"
of \p *this under the function mapping variable \p var into the
affine expression(s) specified by \p lf.
\param var
The variable to which the affine expression is assigned.
\param lf
The linear form on intervals with floating point boundaries that
defines the affine expression(s). ALL of its coefficients MUST be bounded.
\exception std::invalid_argument
Thrown if \p lf and \p *this are dimension-incompatible or if \p var
is not a dimension of \p *this.
This function is used in abstract interpretation to model an assignment
of a value that is correctly overapproximated by \p lf to the
floating point variable represented by \p var.
*/
template <typename Interval_Info>
void affine_form_image(Variable var,
const Linear_Form< Interval<T, Interval_Info> >& lf);
/*! \brief
Assigns to \p *this the \ref affine_relation "affine preimage"
of \p *this under the function mapping variable \p var into the
affine expression specified by \p expr and \p denominator.
\param var
The variable to which the affine expression is substituted.
\param expr
The numerator of the affine expression.
\param denominator
The denominator of the affine expression.
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this
are dimension-incompatible or if \p var is not a dimension of \p *this.
*/
void affine_preimage(Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the image of \p *this with respect to the
\ref Generalized_Affine_Relations "generalized affine transfer function"
\f$\mathrm{var}' \relsym \frac{\mathrm{expr}}{\mathrm{denominator}}\f$,
where \f$\mathord{\relsym}\f$ is the relation symbol encoded
by \p relsym.
\param var
The left hand side variable of the generalized affine transfer function.
\param relsym
The relation symbol.
\param expr
The numerator of the right hand side affine expression.
\param denominator
The denominator of the right hand side affine expression.
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this
are dimension-incompatible or if \p var is not a dimension of \p *this
or if \p relsym is a strict relation symbol.
*/
void generalized_affine_image(Variable var,
Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the image of \p *this with respect to the
\ref Generalized_Affine_Relations "generalized affine transfer function"
\f$\mathrm{lhs}' \relsym \mathrm{rhs}\f$, where
\f$\mathord{\relsym}\f$ is the relation symbol encoded by \p relsym.
\param lhs
The left hand side affine expression.
\param relsym
The relation symbol.
\param rhs
The right hand side affine expression.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p lhs or \p rhs
or if \p relsym is a strict relation symbol.
*/
void generalized_affine_image(const Linear_Expression& lhs,
Relation_Symbol relsym,
const Linear_Expression& rhs);
/*!
\brief
Assigns to \p *this the image of \p *this with respect to the
\ref Single_Update_Bounded_Affine_Relations "bounded affine relation"
\f$\frac{\mathrm{lb\_expr}}{\mathrm{denominator}}
\leq \mathrm{var}'
\leq \frac{\mathrm{ub\_expr}}{\mathrm{denominator}}\f$.
\param var
The variable updated by the affine relation;
\param lb_expr
The numerator of the lower bounding affine expression;
\param ub_expr
The numerator of the upper bounding affine expression;
\param denominator
The (common) denominator for the lower and upper bounding
affine expressions (optional argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p lb_expr (resp., \p ub_expr)
and \p *this are dimension-incompatible or if \p var is not a space
dimension of \p *this.
*/
void bounded_affine_image(Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Generalized_Affine_Relations "affine relation"
\f$\mathrm{var}' \relsym \frac{\mathrm{expr}}{\mathrm{denominator}}\f$,
where \f$\mathord{\relsym}\f$ is the relation symbol encoded
by \p relsym.
\param var
The left hand side variable of the generalized affine transfer function.
\param relsym
The relation symbol.
\param expr
The numerator of the right hand side affine expression.
\param denominator
The denominator of the right hand side affine expression.
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this
are dimension-incompatible or if \p var is not a dimension
of \p *this or if \p relsym is a strict relation symbol.
*/
void generalized_affine_preimage(Variable var,
Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference
denominator = Coefficient_one());
/*! \brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Generalized_Affine_Relations "generalized affine relation"
\f$\mathrm{lhs}' \relsym \mathrm{rhs}\f$, where
\f$\mathord{\relsym}\f$ is the relation symbol encoded by \p relsym.
\param lhs
The left hand side affine expression;
\param relsym
The relation symbol;
\param rhs
The right hand side affine expression.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p lhs or \p rhs
or if \p relsym is a strict relation symbol.
*/
void generalized_affine_preimage(const Linear_Expression& lhs,
Relation_Symbol relsym,
const Linear_Expression& rhs);
/*!
\brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Single_Update_Bounded_Affine_Relations "bounded affine relation"
\f$\frac{\mathrm{lb\_expr}}{\mathrm{denominator}}
\leq \mathrm{var}'
\leq \frac{\mathrm{ub\_expr}}{\mathrm{denominator}}\f$.
\param var
The variable updated by the affine relation;
\param lb_expr
The numerator of the lower bounding affine expression;
\param ub_expr
The numerator of the upper bounding affine expression;
\param denominator
The (common) denominator for the lower and upper bounding
affine expressions (optional argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p lb_expr (resp., \p ub_expr)
and \p *this are dimension-incompatible or if \p var is not a space
dimension of \p *this.
*/
void bounded_affine_preimage(Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the result of computing the
\ref Time_Elapse_Operator "time-elapse" between \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void time_elapse_assign(const Octagonal_Shape& y);
/*! \brief
\ref Wrapping_Operator "Wraps" the specified dimensions of the
vector space.
\param vars
The set of Variable objects corresponding to the space dimensions
to be wrapped.
\param w
The width of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param r
The representation of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param o
The overflow behavior of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param cs_p
Possibly null pointer to a constraint system whose variables
are contained in \p vars. If <CODE>*cs_p</CODE> depends on
variables not in \p vars, the behavior is undefined.
When non-null, the pointed-to constraint system is assumed to
represent the conditional or looping construct guard with respect
to which wrapping is performed. Since wrapping requires the
computation of upper bounds and due to non-distributivity of
constraint refinement over upper bounds, passing a constraint
system in this way can be more precise than refining the result of
the wrapping operation with the constraints in <CODE>*cs_p</CODE>.
\param complexity_threshold
A precision parameter of the \ref Wrapping_Operator "wrapping operator":
higher values result in possibly improved precision.
\param wrap_individually
<CODE>true</CODE> if the dimensions should be wrapped individually
(something that results in much greater efficiency to the detriment of
precision).
\exception std::invalid_argument
Thrown if <CODE>*cs_p</CODE> is dimension-incompatible with
\p vars, or if \p *this is dimension-incompatible \p vars or with
<CODE>*cs_p</CODE>.
*/
void wrap_assign(const Variables_Set& vars,
Bounded_Integer_Type_Width w,
Bounded_Integer_Type_Representation r,
Bounded_Integer_Type_Overflow o,
const Constraint_System* cs_p = 0,
unsigned complexity_threshold = 16,
bool wrap_individually = true);
/*! \brief
Possibly tightens \p *this by dropping some points with non-integer
coordinates.
\param complexity
The maximal complexity of any algorithms used.
\note
Currently there is no optimality guarantee, not even if
\p complexity is <CODE>ANY_COMPLEXITY</CODE>.
*/
void drop_some_non_integer_points(Complexity_Class complexity
= ANY_COMPLEXITY);
/*! \brief
Possibly tightens \p *this by dropping some points with non-integer
coordinates for the space dimensions corresponding to \p vars.
\param vars
Points with non-integer coordinates for these variables/space-dimensions
can be discarded.
\param complexity
The maximal complexity of any algorithms used.
\note
Currently there is no optimality guarantee, not even if
\p complexity is <CODE>ANY_COMPLEXITY</CODE>.
*/
void drop_some_non_integer_points(const Variables_Set& vars,
Complexity_Class complexity
= ANY_COMPLEXITY);
//! Assigns to \p *this its topological closure.
void topological_closure_assign();
/*! \brief
Assigns to \p *this the result of computing the
\ref CC76_extrapolation "CC76-extrapolation" between \p *this and \p y.
\param y
An OS that <EM>must</EM> be contained in \p *this.
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void CC76_extrapolation_assign(const Octagonal_Shape& y, unsigned* tp = 0);
/*! \brief
Assigns to \p *this the result of computing the
\ref CC76_extrapolation "CC76-extrapolation" between \p *this and \p y.
\param y
An OS that <EM>must</EM> be contained in \p *this.
\param first
An iterator that points to the first stop_point.
\param last
An iterator that points to the last stop_point.
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
template <typename Iterator>
void CC76_extrapolation_assign(const Octagonal_Shape& y,
Iterator first, Iterator last,
unsigned* tp = 0);
/*! \brief
Assigns to \p *this the result of computing the
\ref BHMZ05_widening "BHMZ05-widening" between \p *this and \p y.
\param y
An OS that <EM>must</EM> be contained in \p *this.
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void BHMZ05_widening_assign(const Octagonal_Shape& y, unsigned* tp = 0);
//! Same as BHMZ05_widening_assign(y, tp).
void widening_assign(const Octagonal_Shape& y, unsigned* tp = 0);
/*! \brief
Improves the result of the \ref BHMZ05_widening "BHMZ05-widening"
computation by also enforcing those constraints in \p cs that are
satisfied by all the points of \p *this.
\param y
An OS that <EM>must</EM> be contained in \p *this.
\param cs
The system of constraints used to improve the widened OS.
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this, \p y and \p cs are dimension-incompatible or
if there is in \p cs a strict inequality.
*/
void limited_BHMZ05_extrapolation_assign(const Octagonal_Shape& y,
const Constraint_System& cs,
unsigned* tp = 0);
/*! \brief
Restores from \p y the constraints of \p *this, lost by
\ref CC76_extrapolation "CC76-extrapolation" applications.
\param y
An OS that <EM>must</EM> contain \p *this.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void CC76_narrowing_assign(const Octagonal_Shape& y);
/*! \brief
Improves the result of the \ref CC76_extrapolation "CC76-extrapolation"
computation by also enforcing those constraints in \p cs that are
satisfied by all the points of \p *this.
\param y
An OS that <EM>must</EM> be contained in \p *this.
\param cs
The system of constraints used to improve the widened OS.
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this, \p y and \p cs are dimension-incompatible or
if \p cs contains a strict inequality.
*/
void limited_CC76_extrapolation_assign(const Octagonal_Shape& y,
const Constraint_System& cs,
unsigned* tp = 0);
//@} Space-Dimension Preserving Member Functions that May Modify [...]
//! \name Member Functions that May Modify the Dimension of the Vector Space
//@{
//! Adds \p m new dimensions and embeds the old OS into the new space.
/*!
\param m
The number of dimensions to add.
The new dimensions will be those having the highest indexes in the new OS,
which is characterized by a system of constraints in which the variables
running through the new dimensions are not constrained.
For instance, when starting from the OS \f$\cO \sseq \Rset^2\f$
and adding a third dimension, the result will be the OS
\f[
\bigl\{\,
(x, y, z)^\transpose \in \Rset^3
\bigm|
(x, y)^\transpose \in \cO
\,\bigr\}.
\f]
*/
void add_space_dimensions_and_embed(dimension_type m);
/*! \brief
Adds \p m new dimensions to the OS
and does not embed it in the new space.
\param m
The number of dimensions to add.
The new dimensions will be those having the highest indexes
in the new OS, which is characterized by a system
of constraints in which the variables running through
the new dimensions are all constrained to be equal to 0.
For instance, when starting from the OS \f$\cO \sseq \Rset^2\f$
and adding a third dimension, the result will be the OS
\f[
\bigl\{\,
(x, y, 0)^\transpose \in \Rset^3
\bigm|
(x, y)^\transpose \in \cO
\,\bigr\}.
\f]
*/
void add_space_dimensions_and_project(dimension_type m);
/*! \brief
Assigns to \p *this the \ref Concatenating_Polyhedra "concatenation"
of \p *this and \p y, taken in this order.
\exception std::length_error
Thrown if the concatenation would cause the vector space
to exceed dimension <CODE>max_space_dimension()</CODE>.
*/
void concatenate_assign(const Octagonal_Shape& y);
//! Removes all the specified dimensions.
/*!
\param vars
The set of Variable objects corresponding to the dimensions to be removed.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with one of the Variable
objects contained in \p vars.
*/
void remove_space_dimensions(const Variables_Set& vars);
/*! \brief
Removes the higher dimensions so that the resulting space
will have dimension \p new_dimension.
\exception std::invalid_argument
Thrown if \p new_dimension is greater than the space dimension
of \p *this.
*/
void remove_higher_space_dimensions(dimension_type new_dimension);
/*! \brief
Remaps the dimensions of the vector space according to
a \ref Mapping_the_Dimensions_of_the_Vector_Space "partial function".
\param pfunc
The partial function specifying the destiny of each dimension.
The template type parameter Partial_Function must provide
the following methods.
\code
bool has_empty_codomain() const
\endcode
returns <CODE>true</CODE> if and only if the represented partial
function has an empty codomain (i.e., it is always undefined).
The <CODE>has_empty_codomain()</CODE> method will always be called
before the methods below. However, if
<CODE>has_empty_codomain()</CODE> returns <CODE>true</CODE>, none
of the functions below will be called.
\code
dimension_type max_in_codomain() const
\endcode
returns the maximum value that belongs to the codomain
of the partial function.
\code
bool maps(dimension_type i, dimension_type& j) const
\endcode
Let \f$f\f$ be the represented function and \f$k\f$ be the value
of \p i. If \f$f\f$ is defined in \f$k\f$, then \f$f(k)\f$ is
assigned to \p j and <CODE>true</CODE> is returned.
If \f$f\f$ is undefined in \f$k\f$, then <CODE>false</CODE> is
returned.
The result is undefined if \p pfunc does not encode a partial
function with the properties described in the
\ref Mapping_the_Dimensions_of_the_Vector_Space "specification of the mapping operator".
*/
template <typename Partial_Function>
void map_space_dimensions(const Partial_Function& pfunc);
//! Creates \p m copies of the space dimension corresponding to \p var.
/*!
\param var
The variable corresponding to the space dimension to be replicated;
\param m
The number of replicas to be created.
\exception std::invalid_argument
Thrown if \p var does not correspond to a dimension of the vector space.
\exception std::length_error
Thrown if adding \p m new space dimensions would cause the
vector space to exceed dimension <CODE>max_space_dimension()</CODE>.
If \p *this has space dimension \f$n\f$, with \f$n > 0\f$,
and <CODE>var</CODE> has space dimension \f$k \leq n\f$,
then the \f$k\f$-th space dimension is
\ref expand_space_dimension "expanded" to \p m new space dimensions
\f$n\f$, \f$n+1\f$, \f$\dots\f$, \f$n+m-1\f$.
*/
void expand_space_dimension(Variable var, dimension_type m);
//! Folds the space dimensions in \p vars into \p dest.
/*!
\param vars
The set of Variable objects corresponding to the space dimensions
to be folded;
\param dest
The variable corresponding to the space dimension that is the
destination of the folding operation.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p dest or with
one of the Variable objects contained in \p vars.
Also thrown if \p dest is contained in \p vars.
If \p *this has space dimension \f$n\f$, with \f$n > 0\f$,
<CODE>dest</CODE> has space dimension \f$k \leq n\f$,
\p vars is a set of variables whose maximum space dimension
is also less than or equal to \f$n\f$, and \p dest is not a member
of \p vars, then the space dimensions corresponding to
variables in \p vars are \ref fold_space_dimensions "folded"
into the \f$k\f$-th space dimension.
*/
void fold_space_dimensions(const Variables_Set& vars, Variable dest);
//! Applies to \p dest the interval constraints embedded in \p *this.
/*!
\param dest
The object to which the constraints will be added.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p dest.
The template type parameter U must provide the following methods.
\code
dimension_type space_dimension() const
\endcode
returns the space dimension of the object.
\code
void set_empty()
\endcode
sets the object to an empty object.
\code
bool restrict_lower(dimension_type dim, const T& lb)
\endcode
restricts the object by applying the lower bound \p lb to the space
dimension \p dim and returns <CODE>false</CODE> if and only if the
object becomes empty.
\code
bool restrict_upper(dimension_type dim, const T& ub)
\endcode
restricts the object by applying the upper bound \p ub to the space
dimension \p dim and returns <CODE>false</CODE> if and only if the
object becomes empty.
*/
template <typename U>
void export_interval_constraints(U& dest) const;
//! Refines \p store with the constraints defining \p *this.
/*!
\param store
The interval floating point abstract store to refine.
*/
template <typename Interval_Info>
void refine_fp_interval_abstract_store(
Box< Interval<T, Interval_Info> >& store) const;
//@} // Member Functions that May Modify the Dimension of the Vector Space
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
/*! \brief
Returns a 32-bit hash code for \p *this.
If \p x and \p y are such that <CODE>x == y</CODE>,
then <CODE>x.hash_code() == y.hash_code()</CODE>.
*/
int32_t hash_code() const;
friend bool
operator==<T>(const Octagonal_Shape<T>& x, const Octagonal_Shape<T>& y);
template <typename Temp, typename To, typename U>
friend bool Parma_Polyhedra_Library::rectilinear_distance_assign
(Checked_Number<To, Extended_Number_Policy>& r,
const Octagonal_Shape<U>& x, const Octagonal_Shape<U>& y,
const Rounding_Dir dir, Temp& tmp0, Temp& tmp1, Temp& tmp2);
template <typename Temp, typename To, typename U>
friend bool Parma_Polyhedra_Library::euclidean_distance_assign
(Checked_Number<To, Extended_Number_Policy>& r,
const Octagonal_Shape<U>& x, const Octagonal_Shape<U>& y,
const Rounding_Dir dir, Temp& tmp0, Temp& tmp1, Temp& tmp2);
template <typename Temp, typename To, typename U>
friend bool Parma_Polyhedra_Library::l_infinity_distance_assign
(Checked_Number<To, Extended_Number_Policy>& r,
const Octagonal_Shape<U>& x, const Octagonal_Shape<U>& y,
const Rounding_Dir dir, Temp& tmp0, Temp& tmp1, Temp& tmp2);
private:
template <typename U> friend class Parma_Polyhedra_Library::Octagonal_Shape;
template <typename Interval> friend class Parma_Polyhedra_Library::Box;
//! The matrix that represents the octagonal shape.
OR_Matrix<N> matrix;
//! Dimension of the space of the octagonal shape.
dimension_type space_dim;
// Please, do not move the following include directive:
// `Og_Status_idefs.hh' must be included exactly at this point.
// And please do not remove the space separating `#' from `include':
// this ensures that the directive will not be moved during the
// procedure that automatically creates the library's include file
// (see `Makefile.am' in the `src' directory).
#define PPL_IN_Octagonal_Shape_CLASS
/* Automatically generated from PPL source file ../src/Og_Status_idefs.hh line 1. */
/* Octagonal_Shape<T>::Status class declaration.
*/
#ifndef PPL_IN_Octagonal_Shape_CLASS
#error "Do not include Og_Status_idefs.hh directly; use Octagonal_Shape_defs.hh instead"
#endif
//! A conjunctive assertion about a Octagonal_Shape<T> object.
/*!
The assertions supported are:
- <EM>zero-dim universe</EM>: the polyhedron is the zero-dimensional
vector space \f$\Rset^0 = \{\cdot\}\f$;
- <EM>empty</EM>: the polyhedron is the empty set;
- <EM>strongly closed</EM>: the Octagonal_Shape object is strongly
closed, so that all the constraints are as tight as possible.
Not all the conjunctions of these elementary assertions constitute
a legal Status. In fact:
- <EM>zero-dim universe</EM> excludes any other assertion;
- <EM>empty</EM>: excludes any other assertion.
*/
class Status {
public:
//! By default Status is the <EM>zero-dim universe</EM> assertion.
Status();
//! \name Test, remove or add an individual assertion from the conjunction.
//@{
bool test_zero_dim_univ() const;
void reset_zero_dim_univ();
void set_zero_dim_univ();
bool test_empty() const;
void reset_empty();
void set_empty();
bool test_strongly_closed() const;
void reset_strongly_closed();
void set_strongly_closed();
//@}
//! Checks if all the invariants are satisfied.
bool OK() const;
/*! \brief
Writes to \p s an ASCII representation of the internal
representation of \p *this.
*/
void ascii_dump(std::ostream& s) const;
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
private:
//! Status is implemented by means of a finite bitset.
typedef unsigned int flags_t;
//! \name Bitmasks for the individual assertions.
//@{
static const flags_t ZERO_DIM_UNIV = 0U;
static const flags_t EMPTY = 1U << 0;
static const flags_t STRONGLY_CLOSED = 1U << 1;
//@}
//! This holds the current bitset.
flags_t flags;
//! Construct from a bitmask.
Status(flags_t mask);
//! Check whether <EM>all</EM> bits in \p mask are set.
bool test_all(flags_t mask) const;
//! Check whether <EM>at least one</EM> bit in \p mask is set.
bool test_any(flags_t mask) const;
//! Set the bits in \p mask.
void set(flags_t mask);
//! Reset the bits in \p mask.
void reset(flags_t mask);
};
/* Automatically generated from PPL source file ../src/Octagonal_Shape_defs.hh line 1923. */
#undef PPL_IN_Octagonal_Shape_CLASS
//! The status flags to keep track of the internal state.
Status status;
//! Returns <CODE>true</CODE> if the OS is the zero-dimensional universe.
bool marked_zero_dim_univ() const;
//! Returns <CODE>true</CODE> if the OS is known to be empty.
/*!
The return value <CODE>false</CODE> does not necessarily
implies that \p *this is non-empty.
*/
bool marked_empty() const;
/*! \brief
Returns <CODE>true</CODE> if \c this->matrix is known to be
strongly closed.
The return value <CODE>false</CODE> does not necessarily
implies that \c this->matrix is not strongly closed.
*/
bool marked_strongly_closed() const;
//! Turns \p *this into a zero-dimensional universe OS.
void set_zero_dim_univ();
//! Turns \p *this into an empty OS.
void set_empty();
//! Marks \p *this as strongly closed.
void set_strongly_closed();
//! Marks \p *this as possibly not strongly closed.
void reset_strongly_closed();
N& matrix_at(dimension_type i, dimension_type j);
const N& matrix_at(dimension_type i, dimension_type j) const;
/*! \brief
Returns an upper bound for \p lf according to the constraints
embedded in \p *this.
\p lf must be a linear form on intervals with floating point coefficients.
If all coefficients in \p lf are bounded, then \p result will become a
correct overapproximation of the value of \p lf when variables in
\p lf satisfy the constraints expressed by \p *this. Otherwise the
behavior of the method is undefined.
*/
template <typename Interval_Info>
void linear_form_upper_bound(
const Linear_Form< Interval<T, Interval_Info> >& lf,
N& result) const;
// FIXME: this function is currently not used. Consider removing it.
static void interval_coefficient_upper_bound(const N& var_ub,
const N& minus_var_ub,
const N& int_ub, const N& int_lb,
N& result);
/*! \brief
Uses the constraint \p c to refine \p *this.
\param c
The constraint to be added. Non-octagonal constraints are ignored.
\warning
If \p c and \p *this are dimension-incompatible,
the behavior is undefined.
*/
void refine_no_check(const Constraint& c);
/*! \brief
Uses the congruence \p cg to refine \p *this.
\param cg
The congruence to be added.
Nontrivial proper congruences are ignored.
Non-octagonal equalities are ignored.
\warning
If \p cg and \p *this are dimension-incompatible,
the behavior is undefined.
*/
void refine_no_check(const Congruence& cg);
//! Adds the constraint <CODE>matrix[i][j] <= k</CODE>.
void add_octagonal_constraint(dimension_type i,
dimension_type j,
const N& k);
//! Adds the constraint <CODE>matrix[i][j] <= numer/denom</CODE>.
void add_octagonal_constraint(dimension_type i,
dimension_type j,
Coefficient_traits::const_reference numer,
Coefficient_traits::const_reference denom);
/*! \brief
Adds to the Octagonal_Shape the constraint
\f$\mathrm{var} \relsym \frac{\mathrm{expr}}{\mathrm{denominator}}\f$.
Note that the coefficient of \p var in \p expr is null.
*/
void refine(Variable var,
Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
//! Removes all the constraints on variable \p v_id.
void forget_all_octagonal_constraints(dimension_type v_id);
//! Removes all binary constraints on variable \p v_id.
void forget_binary_octagonal_constraints(dimension_type v_id);
//! An helper function for the computation of affine relations.
/*!
For each variable index \c u_id (less than or equal to \p last_id
and different from \p v_id), deduce constraints of the form
<CODE>v - u \<= k</CODE> and <CODE>v + u \<= k</CODE>,
starting from \p ub_v, which is an upper bound for \c v
computed according to \p sc_expr and \p sc_denom.
Strong-closure will be able to deduce the constraints
<CODE>v - u \<= ub_v - lb_u</CODE> and <CODE>v + u \<= ub_v + ub_u</CODE>.
We can be more precise if variable \c u played an active role in the
computation of the upper bound for \c v.
Namely, if the corresponding coefficient
<CODE>q == sc_expr[u]/sc_denom</CODE> of \c u in \p sc_expr
is greater than zero, we can improve the bound for <CODE>v - u</CODE>.
In particular:
- if <CODE>q \>= 1</CODE>, then <CODE>v - u \<= ub_v - ub_u</CODE>;
- if <CODE>0 \< q \< 1</CODE>, then
<CODE>v - u \<= ub_v - (q*ub_u + (1-q)*lb_u)</CODE>.
Conversely, if \c q is less than zero, we can improve the bound for
<CODE>v + u</CODE>. In particular:
- if <CODE>q \<= -1</CODE>, then <CODE>v + u \<= ub_v + lb_u</CODE>;
- if <CODE>-1 \< q \< 0</CODE>, then
<CODE>v + u \<= ub_v + ((-q)*lb_u + (1+q)*ub_u)</CODE>.
*/
void deduce_v_pm_u_bounds(dimension_type v_id,
dimension_type last_id,
const Linear_Expression& sc_expr,
Coefficient_traits::const_reference sc_denom,
const N& ub_v);
//! An helper function for the computation of affine relations.
/*!
For each variable index \c u_id (less than or equal to \p last_id
and different from \p v_id), deduce constraints of the form
<CODE>-v + u \<= k</CODE> and <CODE>-v - u \<= k</CODE>,
starting from \p minus_lb_v, which is the negation of a lower bound
for \c v computed according to \p sc_expr and \p sc_denom.
Strong-closure will be able to deduce the constraints
<CODE>-v - u \<= -lb_v - lb_u</CODE> and
<CODE>-v + u \<= -lb_v + ub_u</CODE>.
We can be more precise if variable \c u played an active role in the
computation of (the negation of) the lower bound for \c v.
Namely, if the corresponding coefficient
<CODE>q == sc_expr[u]/sc_denom</CODE> of \c u in \p sc_expr
is greater than zero, we can improve the bound for <CODE>-v + u</CODE>.
In particular:
- if <CODE>q \>= 1</CODE>, then <CODE>-v + u \<= -lb_v + lb_u</CODE>;
- if <CODE>0 \< q \< 1</CODE>, then
<CODE>-v + u \<= -lb_v + (q*lb_u + (1-q)*ub_u)</CODE>.
Conversely, if \c q is less than zero, we can improve the bound for
<CODE>-v - u</CODE>. In particular:
- if <CODE>q \<= -1</CODE>, then <CODE>-v - u \<= -lb_v - ub_u</CODE>;
- if <CODE>-1 \< q \< 0</CODE>, then
<CODE>-v - u \<= -lb_v - ((-q)*ub_u + (1+q)*lb_u)</CODE>.
*/
void deduce_minus_v_pm_u_bounds(dimension_type v_id,
dimension_type last_id,
const Linear_Expression& sc_expr,
Coefficient_traits::const_reference sc_denom,
const N& minus_lb_v);
/*! \brief
Adds to \p limiting_octagon the octagonal differences in \p cs
that are satisfied by \p *this.
*/
void get_limiting_octagon(const Constraint_System& cs,
Octagonal_Shape& limiting_octagon) const;
//! Compute the (zero-equivalence classes) successor relation.
/*!
It is assumed that the octagon is not empty and strongly closed.
*/
void compute_successors(std::vector<dimension_type>& successor) const;
//! Compute the leaders of zero-equivalence classes.
/*!
It is assumed that the OS is not empty and strongly closed.
*/
void compute_leaders(std::vector<dimension_type>& successor,
std::vector<dimension_type>& no_sing_leaders,
bool& exist_sing_class,
dimension_type& sing_leader) const;
//! Compute the leaders of zero-equivalence classes.
/*!
It is assumed that the OS is not empty and strongly closed.
*/
void compute_leaders(std::vector<dimension_type>& leaders) const;
/*! \brief
Stores into \p non_redundant information about the matrix entries
that are non-redundant (i.e., they will occur in the strongly
reduced matrix).
It is assumed that the OS is not empty and strongly closed;
moreover, argument \p non_redundant is assumed to be empty.
*/
void non_redundant_matrix_entries(std::vector<Bit_Row>& non_redundant) const;
//! Removes the redundant constraints from \c this->matrix.
void strong_reduction_assign() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \c this->matrix
is strongly reduced.
*/
bool is_strongly_reduced() const;
/*! \brief
Returns <CODE>true</CODE> if in the octagon taken two at a time
unary constraints, there is also the constraint that represent their sum.
*/
bool is_strong_coherent() const;
bool tight_coherence_would_make_empty() const;
//! Assigns to \c this->matrix its strong closure.
/*!
Strong closure is a necessary condition for the precision and/or
the correctness of many methods. It explicitly records into \c matrix
those constraints that are implicitly obtainable by the other ones,
therefore obtaining a canonical representation for the OS.
*/
void strong_closure_assign() const;
//! Applies the strong-coherence step to \c this->matrix.
void strong_coherence_assign();
//! Assigns to \c this->matrix its tight closure.
/*!
\note
This is \e not marked as a <code>const</code> method,
as it may modify the rational-valued geometric shape by cutting away
non-integral points. The method is only available if the template
parameter \c T is bound to an integer data type.
*/
void tight_closure_assign();
/*! \brief
Incrementally computes strong closure, assuming that only
constraints affecting variable \p var need to be considered.
\note
It is assumed that \c *this, which was strongly closed, has only been
modified by adding constraints affecting variable \p var. If this
assumption is not satisfied, i.e., if a non-redundant constraint not
affecting variable \p var has been added, the behavior is undefined.
Worst-case complexity is \f$O(n^2)\f$.
*/
void incremental_strong_closure_assign(Variable var) const;
//! Checks if and how \p expr is bounded in \p *this.
/*!
Returns <CODE>true</CODE> if and only if \p from_above is
<CODE>true</CODE> and \p expr is bounded from above in \p *this,
or \p from_above is <CODE>false</CODE> and \p expr is bounded
from below in \p *this.
\param expr
The linear expression to test;
\param from_above
<CODE>true</CODE> if and only if the boundedness of interest is
"from above".
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds(const Linear_Expression& expr, bool from_above) const;
//! Maximizes or minimizes \p expr subject to \p *this.
/*!
\param expr
The linear expression to be maximized or minimized subject to \p
*this;
\param maximize
<CODE>true</CODE> if maximization is what is wanted;
\param ext_n
The numerator of the extremum value;
\param ext_d
The denominator of the extremum value;
\param included
<CODE>true</CODE> if and only if the extremum of \p expr can
actually be reached in \p * this;
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded in the appropriate
direction, <CODE>false</CODE> is returned and \p ext_n, \p ext_d and
\p included are left untouched.
*/
bool max_min(const Linear_Expression& expr,
bool maximize,
Coefficient& ext_n, Coefficient& ext_d, bool& included) const;
//! Maximizes or minimizes \p expr subject to \p *this.
/*!
\param expr
The linear expression to be maximized or minimized subject to \p
*this;
\param maximize
<CODE>true</CODE> if maximization is what is wanted;
\param ext_n
The numerator of the extremum value;
\param ext_d
The denominator of the extremum value;
\param included
<CODE>true</CODE> if and only if the extremum of \p expr can
actually be reached in \p * this;
\param g
When maximization or minimization succeeds, will be assigned
a point or closure point where \p expr reaches the
corresponding extremum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded in the appropriate
direction, <CODE>false</CODE> is returned and \p ext_n, \p ext_d,
\p included and \p g are left untouched.
*/
bool max_min(const Linear_Expression& expr,
bool maximize,
Coefficient& ext_n, Coefficient& ext_d, bool& included,
Generator& g) const;
void drop_some_non_integer_points_helper(N& elem);
friend std::ostream&
Parma_Polyhedra_Library::IO_Operators
::operator<<<>(std::ostream& s, const Octagonal_Shape<T>& c);
//! \name Exception Throwers
//@{
void throw_dimension_incompatible(const char* method,
const Octagonal_Shape& y) const;
void throw_dimension_incompatible(const char* method,
dimension_type required_dim) const;
void throw_dimension_incompatible(const char* method,
const Constraint& c) const;
void throw_dimension_incompatible(const char* method,
const Congruence& cg) const;
void throw_dimension_incompatible(const char* method,
const Generator& g) const;
void throw_dimension_incompatible(const char* method,
const char* le_name,
const Linear_Expression& le) const;
template <typename C>
void throw_dimension_incompatible(const char* method,
const char* lf_name,
const Linear_Form<C>& lf) const;
static void throw_constraint_incompatible(const char* method);
static void throw_expression_too_complex(const char* method,
const Linear_Expression& le);
static void throw_invalid_argument(const char* method, const char* reason);
//@} // Exception Throwers
};
/* Automatically generated from PPL source file ../src/Og_Status_inlines.hh line 1. */
/* Octagonal_Shape<T>::Status class implementation: inline functions.
*/
namespace Parma_Polyhedra_Library {
template <typename T>
inline
Octagonal_Shape<T>::Status::Status(flags_t mask)
: flags(mask) {
}
template <typename T>
inline
Octagonal_Shape<T>::Status::Status()
: flags(ZERO_DIM_UNIV) {
}
template <typename T>
inline bool
Octagonal_Shape<T>::Status::test_all(flags_t mask) const {
return (flags & mask) == mask;
}
template <typename T>
inline bool
Octagonal_Shape<T>::Status::test_any(flags_t mask) const {
return (flags & mask) != 0;
}
template <typename T>
inline void
Octagonal_Shape<T>::Status::set(flags_t mask) {
flags |= mask;
}
template <typename T>
inline void
Octagonal_Shape<T>::Status::reset(flags_t mask) {
flags &= ~mask;
}
template <typename T>
inline bool
Octagonal_Shape<T>::Status::test_zero_dim_univ() const {
return flags == ZERO_DIM_UNIV;
}
template <typename T>
inline void
Octagonal_Shape<T>::Status::reset_zero_dim_univ() {
// This is a no-op if the current status is not zero-dim.
if (flags == ZERO_DIM_UNIV)
// In the zero-dim space, if it is not the universe it is empty.
flags = EMPTY;
}
template <typename T>
inline void
Octagonal_Shape<T>::Status::set_zero_dim_univ() {
// Zero-dim universe is incompatible with anything else.
flags = ZERO_DIM_UNIV;
}
template <typename T>
inline bool
Octagonal_Shape<T>::Status::test_empty() const {
return test_any(EMPTY);
}
template <typename T>
inline void
Octagonal_Shape<T>::Status::reset_empty() {
reset(EMPTY);
}
template <typename T>
inline void
Octagonal_Shape<T>::Status::set_empty() {
flags = EMPTY;
}
template <typename T>
inline bool
Octagonal_Shape<T>::Status::test_strongly_closed() const {
return test_any(STRONGLY_CLOSED);
}
template <typename T>
inline void
Octagonal_Shape<T>::Status::reset_strongly_closed() {
reset(STRONGLY_CLOSED);
}
template <typename T>
inline void
Octagonal_Shape<T>::Status::set_strongly_closed() {
set(STRONGLY_CLOSED);
}
template <typename T>
inline bool
Octagonal_Shape<T>::Status::OK() const {
if (test_zero_dim_univ())
// Zero-dim universe is OK.
return true;
if (test_empty()) {
Status copy = *this;
copy.reset_empty();
if (copy.test_zero_dim_univ())
return true;
else {
#ifndef NDEBUG
std::cerr << "The empty flag is incompatible with any other one."
<< std::endl;
#endif
return false;
}
}
// Any other case is OK.
return true;
}
namespace Implementation {
namespace Octagonal_Shapes {
// These are the keywords that indicate the individual assertions.
const std::string zero_dim_univ = "ZE";
const std::string empty = "EM";
const std::string strong_closed = "SC";
const char yes = '+';
const char no = '-';
const char separator = ' ';
/*! \relates Parma_Polyhedra_Library::Octagonal_Shape::Status
Reads a keyword and its associated on/off flag from \p s.
Returns <CODE>true</CODE> if the operation is successful,
returns <CODE>false</CODE> otherwise.
When successful, \p positive is set to <CODE>true</CODE> if the flag
is on; it is set to <CODE>false</CODE> otherwise.
*/
inline bool
get_field(std::istream& s, const std::string& keyword, bool& positive) {
std::string str;
if (!(s >> str)
|| (str[0] != yes && str[0] != no)
|| str.substr(1) != keyword)
return false;
positive = (str[0] == yes);
return true;
}
} // namespace Octagonal_Shapes
} // namespace Implementation
template <typename T>
inline void
Octagonal_Shape<T>::Status::ascii_dump(std::ostream& s) const {
using namespace Implementation::Octagonal_Shapes;
s << (test_zero_dim_univ() ? yes : no) << zero_dim_univ
<< separator
<< (test_empty() ? yes : no) << empty
<< separator
<< separator
<< (test_strongly_closed() ? yes : no) << strong_closed
<< separator;
}
template <typename T>
inline bool
Octagonal_Shape<T>::Status::ascii_load(std::istream& s) {
using namespace Implementation::Octagonal_Shapes;
PPL_UNINITIALIZED(bool, positive);
if (!get_field(s, zero_dim_univ, positive))
return false;
if (positive)
set_zero_dim_univ();
if (!get_field(s, empty, positive))
return false;
if (positive)
set_empty();
if (!get_field(s, strong_closed, positive))
return false;
if (positive)
set_strongly_closed();
else
reset_strongly_closed();
// Check invariants.
PPL_ASSERT(OK());
return true;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Octagonal_Shape_inlines.hh line 1. */
/* Octagonal_Shape class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/wrap_assign.hh line 1. */
/* Generic implementation of the wrap_assign() function.
*/
/* Automatically generated from PPL source file ../src/wrap_assign.hh line 32. */
namespace Parma_Polyhedra_Library {
namespace Implementation {
struct Wrap_Dim_Translations {
Variable var;
Coefficient first_quadrant;
Coefficient last_quadrant;
Wrap_Dim_Translations(Variable v,
Coefficient_traits::const_reference f,
Coefficient_traits::const_reference l)
: var(v), first_quadrant(f), last_quadrant(l) {
}
};
typedef std::vector<Wrap_Dim_Translations> Wrap_Translations;
template <typename PSET>
void
wrap_assign_ind(PSET& pointset,
Variables_Set& vars,
Wrap_Translations::const_iterator first,
Wrap_Translations::const_iterator end,
Bounded_Integer_Type_Width w,
Coefficient_traits::const_reference min_value,
Coefficient_traits::const_reference max_value,
const Constraint_System& cs,
Coefficient& tmp1,
Coefficient& tmp2) {
const dimension_type space_dim = pointset.space_dimension();
for (Wrap_Translations::const_iterator i = first; i != end; ++i) {
const Wrap_Dim_Translations& wrap_dim_translations = *i;
const Variable x(wrap_dim_translations.var);
const Coefficient& first_quadrant = wrap_dim_translations.first_quadrant;
const Coefficient& last_quadrant = wrap_dim_translations.last_quadrant;
Coefficient& quadrant = tmp1;
Coefficient& shift = tmp2;
PSET hull(space_dim, EMPTY);
for (quadrant = first_quadrant; quadrant <= last_quadrant; ++quadrant) {
PSET p(pointset);
if (quadrant != 0) {
mul_2exp_assign(shift, quadrant, w);
p.affine_image(x, x - shift, 1);
}
// `x' has just been wrapped.
vars.erase(x.id());
// Refine `p' with all the constraints in `cs' not depending
// on variables in `vars'.
if (vars.empty())
p.refine_with_constraints(cs);
else {
for (Constraint_System::const_iterator j = cs.begin(),
cs_end = cs.end(); j != cs_end; ++j)
if (j->expression().all_zeroes(vars))
// `*j' does not depend on variables in `vars'.
p.refine_with_constraint(*j);
}
p.refine_with_constraint(min_value <= x);
p.refine_with_constraint(x <= max_value);
hull.upper_bound_assign(p);
}
pointset.m_swap(hull);
}
}
template <typename PSET>
void
wrap_assign_col(PSET& dest,
const PSET& src,
const Variables_Set& vars,
Wrap_Translations::const_iterator first,
Wrap_Translations::const_iterator end,
Bounded_Integer_Type_Width w,
Coefficient_traits::const_reference min_value,
Coefficient_traits::const_reference max_value,
const Constraint_System* cs_p,
Coefficient& tmp) {
if (first == end) {
PSET p(src);
if (cs_p != 0)
p.refine_with_constraints(*cs_p);
for (Variables_Set::const_iterator i = vars.begin(),
vars_end = vars.end(); i != vars_end; ++i) {
const Variable x(*i);
p.refine_with_constraint(min_value <= x);
p.refine_with_constraint(x <= max_value);
}
dest.upper_bound_assign(p);
}
else {
const Wrap_Dim_Translations& wrap_dim_translations = *first;
const Variable x(wrap_dim_translations.var);
const Coefficient& first_quadrant = wrap_dim_translations.first_quadrant;
const Coefficient& last_quadrant = wrap_dim_translations.last_quadrant;
Coefficient& shift = tmp;
PPL_DIRTY_TEMP_COEFFICIENT(quadrant);
for (quadrant = first_quadrant; quadrant <= last_quadrant; ++quadrant) {
if (quadrant != 0) {
mul_2exp_assign(shift, quadrant, w);
PSET p(src);
p.affine_image(x, x - shift, 1);
wrap_assign_col(dest, p, vars, first+1, end, w, min_value, max_value,
cs_p, tmp);
}
else
wrap_assign_col(dest, src, vars, first+1, end, w, min_value, max_value,
cs_p, tmp);
}
}
}
template <typename PSET>
void
wrap_assign(PSET& pointset,
const Variables_Set& vars,
const Bounded_Integer_Type_Width w,
const Bounded_Integer_Type_Representation r,
const Bounded_Integer_Type_Overflow o,
const Constraint_System* cs_p,
const unsigned complexity_threshold,
const bool wrap_individually,
const char* class_name) {
// We must have cs_p->space_dimension() <= vars.space_dimension()
// and vars.space_dimension() <= pointset.space_dimension().
// Dimension-compatibility check of `*cs_p', if any.
if (cs_p != 0) {
const dimension_type vars_space_dim = vars.space_dimension();
if (cs_p->space_dimension() > vars_space_dim) {
std::ostringstream s;
s << "PPL::" << class_name << "::wrap_assign(..., cs_p, ...):"
<< std::endl
<< "vars.space_dimension() == " << vars_space_dim
<< ", cs_p->space_dimension() == " << cs_p->space_dimension() << ".";
throw std::invalid_argument(s.str());
}
#ifndef NDEBUG
// Check that all variables upon which `*cs_p' depends are in `vars'.
// An assertion is violated otherwise.
const Constraint_System cs = *cs_p;
const dimension_type cs_space_dim = cs.space_dimension();
Variables_Set::const_iterator vars_end = vars.end();
for (Constraint_System::const_iterator i = cs.begin(),
cs_end = cs.end(); i != cs_end; ++i) {
const Constraint& c = *i;
for (dimension_type d = cs_space_dim; d-- > 0; ) {
PPL_ASSERT(c.coefficient(Variable(d)) == 0
|| vars.find(d) != vars_end);
}
}
#endif
}
// Wrapping no variable only requires refining with *cs_p, if any.
if (vars.empty()) {
if (cs_p != 0)
pointset.refine_with_constraints(*cs_p);
return;
}
// Dimension-compatibility check of `vars'.
const dimension_type space_dim = pointset.space_dimension();
if (vars.space_dimension() > space_dim) {
std::ostringstream s;
s << "PPL::" << class_name << "::wrap_assign(vs, ...):" << std::endl
<< "this->space_dimension() == " << space_dim
<< ", required space dimension == " << vars.space_dimension() << ".";
throw std::invalid_argument(s.str());
}
// Wrapping an empty polyhedron is a no-op.
if (pointset.is_empty())
return;
// Set `min_value' and `max_value' to the minimum and maximum values
// a variable of width `w' and signedness `s' can take.
PPL_DIRTY_TEMP_COEFFICIENT(min_value);
PPL_DIRTY_TEMP_COEFFICIENT(max_value);
if (r == UNSIGNED) {
min_value = 0;
mul_2exp_assign(max_value, Coefficient_one(), w);
--max_value;
}
else {
PPL_ASSERT(r == SIGNED_2_COMPLEMENT);
mul_2exp_assign(max_value, Coefficient_one(), w-1);
neg_assign(min_value, max_value);
--max_value;
}
// If we are wrapping variables collectively, the ranges for the
// required translations are saved in `translations' instead of being
// immediately applied.
Wrap_Translations translations;
// Dimensions subject to translation are added to this set if we are
// wrapping collectively or if `cs_p' is non null.
Variables_Set dimensions_to_be_translated;
// This will contain a lower bound to the number of abstractions
// to be joined in order to obtain the collective wrapping result.
// As soon as this exceeds `complexity_threshold', counting will be
// interrupted and the full range will be the result of wrapping
// any dimension that is not fully contained in quadrant 0.
unsigned collective_wrap_complexity = 1;
// This flag signals that the maximum complexity for collective
// wrapping as been exceeded.
bool collective_wrap_too_complex = false;
if (!wrap_individually) {
translations.reserve(space_dim);
}
// We use `full_range_bounds' to delay conversions whenever
// this delay does not negatively affect precision.
Constraint_System full_range_bounds;
PPL_DIRTY_TEMP_COEFFICIENT(l_n);
PPL_DIRTY_TEMP_COEFFICIENT(l_d);
PPL_DIRTY_TEMP_COEFFICIENT(u_n);
PPL_DIRTY_TEMP_COEFFICIENT(u_d);
for (Variables_Set::const_iterator i = vars.begin(),
vars_end = vars.end(); i != vars_end; ++i) {
const Variable x(*i);
bool extremum;
if (!pointset.minimize(x, l_n, l_d, extremum)) {
set_full_range:
pointset.unconstrain(x);
full_range_bounds.insert(min_value <= x);
full_range_bounds.insert(x <= max_value);
continue;
}
if (!pointset.maximize(x, u_n, u_d, extremum))
goto set_full_range;
div_assign_r(l_n, l_n, l_d, ROUND_DOWN);
div_assign_r(u_n, u_n, u_d, ROUND_DOWN);
l_n -= min_value;
u_n -= min_value;
div_2exp_assign_r(l_n, l_n, w, ROUND_DOWN);
div_2exp_assign_r(u_n, u_n, w, ROUND_DOWN);
Coefficient& first_quadrant = l_n;
const Coefficient& last_quadrant = u_n;
// Special case: this variable does not need wrapping.
if (first_quadrant == 0 && last_quadrant == 0)
continue;
// If overflow is impossible, try not to add useless constraints.
if (o == OVERFLOW_IMPOSSIBLE) {
if (first_quadrant < 0)
full_range_bounds.insert(min_value <= x);
if (last_quadrant > 0)
full_range_bounds.insert(x <= max_value);
continue;
}
if (o == OVERFLOW_UNDEFINED || collective_wrap_too_complex)
goto set_full_range;
Coefficient& quadrants = u_d;
quadrants = last_quadrant - first_quadrant + 1;
PPL_UNINITIALIZED(unsigned, extension);
Result res = assign_r(extension, quadrants, ROUND_IGNORE);
if (result_overflow(res) != 0 || extension > complexity_threshold)
goto set_full_range;
if (!wrap_individually && !collective_wrap_too_complex) {
res = mul_assign_r(collective_wrap_complexity,
collective_wrap_complexity, extension, ROUND_IGNORE);
if (result_overflow(res) != 0
|| collective_wrap_complexity > complexity_threshold)
collective_wrap_too_complex = true;
if (collective_wrap_too_complex) {
// Set all the dimensions in `translations' to full range.
for (Wrap_Translations::const_iterator j = translations.begin(),
translations_end = translations.end();
j != translations_end;
++j) {
const Variable y(j->var);
pointset.unconstrain(y);
full_range_bounds.insert(min_value <= y);
full_range_bounds.insert(y <= max_value);
}
}
}
if (wrap_individually && cs_p == 0) {
Coefficient& quadrant = first_quadrant;
// Temporary variable holding the shifts to be applied in order
// to implement the translations.
Coefficient& shift = l_d;
PSET hull(space_dim, EMPTY);
for ( ; quadrant <= last_quadrant; ++quadrant) {
PSET p(pointset);
if (quadrant != 0) {
mul_2exp_assign(shift, quadrant, w);
p.affine_image(x, x - shift, 1);
}
p.refine_with_constraint(min_value <= x);
p.refine_with_constraint(x <= max_value);
hull.upper_bound_assign(p);
}
pointset.m_swap(hull);
}
else if (wrap_individually || !collective_wrap_too_complex) {
PPL_ASSERT(!wrap_individually || cs_p != 0);
dimensions_to_be_translated.insert(x);
translations
.push_back(Wrap_Dim_Translations(x, first_quadrant, last_quadrant));
}
}
if (!translations.empty()) {
if (wrap_individually) {
PPL_ASSERT(cs_p != 0);
wrap_assign_ind(pointset, dimensions_to_be_translated,
translations.begin(), translations.end(),
w, min_value, max_value, *cs_p, l_n, l_d);
}
else {
PSET hull(space_dim, EMPTY);
wrap_assign_col(hull, pointset, dimensions_to_be_translated,
translations.begin(), translations.end(),
w, min_value, max_value, cs_p, l_n);
pointset.m_swap(hull);
}
}
if (cs_p != 0)
pointset.refine_with_constraints(*cs_p);
pointset.refine_with_constraints(full_range_bounds);
}
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Octagonal_Shape_inlines.hh line 36. */
#include <algorithm>
namespace Parma_Polyhedra_Library {
namespace Implementation {
namespace Octagonal_Shapes {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns the index coherent to \p i.
/*! \relates Parma_Polyhedra_Library::Octagonal_Shape */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
inline dimension_type
coherent_index(const dimension_type i) {
return (i % 2 != 0) ? (i-1) : (i+1);
}
} // namespace Octagonal_Shapes
} // namespace Implementation
template <typename T>
inline dimension_type
Octagonal_Shape<T>::max_space_dimension() {
return OR_Matrix<N>::max_num_rows()/2;
}
template <typename T>
inline bool
Octagonal_Shape<T>::marked_zero_dim_univ() const {
return status.test_zero_dim_univ();
}
template <typename T>
inline bool
Octagonal_Shape<T>::marked_strongly_closed() const {
return status.test_strongly_closed();
}
template <typename T>
inline bool
Octagonal_Shape<T>::marked_empty() const {
return status.test_empty();
}
template <typename T>
inline void
Octagonal_Shape<T>::set_zero_dim_univ() {
status.set_zero_dim_univ();
}
template <typename T>
inline void
Octagonal_Shape<T>::set_empty() {
status.set_empty();
}
template <typename T>
inline void
Octagonal_Shape<T>::set_strongly_closed() {
status.set_strongly_closed();
}
template <typename T>
inline void
Octagonal_Shape<T>::reset_strongly_closed() {
status.reset_strongly_closed();
}
template <typename T>
inline
Octagonal_Shape<T>::Octagonal_Shape(const dimension_type num_dimensions,
const Degenerate_Element kind)
: matrix(num_dimensions), space_dim(num_dimensions), status() {
if (kind == EMPTY)
set_empty();
else if (num_dimensions > 0)
// A (non zero-dim) universe octagon is strongly closed.
set_strongly_closed();
PPL_ASSERT(OK());
}
template <typename T>
inline
Octagonal_Shape<T>::Octagonal_Shape(const Octagonal_Shape& y, Complexity_Class)
: matrix(y.matrix), space_dim(y.space_dim), status(y.status) {
}
template <typename T>
template <typename U>
inline
Octagonal_Shape<T>::Octagonal_Shape(const Octagonal_Shape<U>& y,
Complexity_Class)
// For maximum precision, enforce shortest-path closure
// before copying the DB matrix.
: matrix((y.strong_closure_assign(), y.matrix)),
space_dim(y.space_dim),
status() {
// TODO: handle flags properly, possibly taking special cases into account.
if (y.marked_empty())
set_empty();
else if (y.marked_zero_dim_univ())
set_zero_dim_univ();
}
template <typename T>
inline
Octagonal_Shape<T>::Octagonal_Shape(const Constraint_System& cs)
: matrix(cs.space_dimension()),
space_dim(cs.space_dimension()),
status() {
if (cs.space_dimension() > 0)
// A (non zero-dim) universe octagon is strongly closed.
set_strongly_closed();
add_constraints(cs);
}
template <typename T>
inline
Octagonal_Shape<T>::Octagonal_Shape(const Congruence_System& cgs)
: matrix(cgs.space_dimension()),
space_dim(cgs.space_dimension()),
status() {
if (cgs.space_dimension() > 0)
// A (non zero-dim) universe octagon is strongly closed.
set_strongly_closed();
add_congruences(cgs);
}
template <typename T>
template <typename Interval>
inline
Octagonal_Shape<T>::Octagonal_Shape(const Box<Interval>& box,
Complexity_Class)
: matrix(box.space_dimension()),
space_dim(box.space_dimension()),
status() {
// Check for emptiness for maximum precision.
if (box.is_empty())
set_empty();
else if (box.space_dimension() > 0) {
// A (non zero-dim) universe OS is strongly closed.
set_strongly_closed();
refine_with_constraints(box.constraints());
}
}
template <typename T>
inline
Octagonal_Shape<T>::Octagonal_Shape(const Grid& grid,
Complexity_Class)
: matrix(grid.space_dimension()),
space_dim(grid.space_dimension()),
status() {
if (grid.space_dimension() > 0)
// A (non zero-dim) universe OS is strongly closed.
set_strongly_closed();
// Taking minimized congruences ensures maximum precision.
refine_with_congruences(grid.minimized_congruences());
}
template <typename T>
template <typename U>
inline
Octagonal_Shape<T>::Octagonal_Shape(const BD_Shape<U>& bd,
Complexity_Class)
: matrix(bd.space_dimension()),
space_dim(bd.space_dimension()),
status() {
// Check for emptiness for maximum precision.
if (bd.is_empty())
set_empty();
else if (bd.space_dimension() > 0) {
// A (non zero-dim) universe OS is strongly closed.
set_strongly_closed();
refine_with_constraints(bd.constraints());
}
}
template <typename T>
inline Congruence_System
Octagonal_Shape<T>::congruences() const {
return minimized_congruences();
}
template <typename T>
inline Octagonal_Shape<T>&
Octagonal_Shape<T>::operator=(const Octagonal_Shape& y) {
matrix = y.matrix;
space_dim = y.space_dim;
status = y.status;
return *this;
}
template <typename T>
inline
Octagonal_Shape<T>::~Octagonal_Shape() {
}
template <typename T>
inline void
Octagonal_Shape<T>::m_swap(Octagonal_Shape& y) {
using std::swap;
swap(matrix, y.matrix);
swap(space_dim, y.space_dim);
swap(status, y.status);
}
template <typename T>
inline dimension_type
Octagonal_Shape<T>::space_dimension() const {
return space_dim;
}
template <typename T>
inline bool
Octagonal_Shape<T>::is_discrete() const {
return affine_dimension() == 0;
}
template <typename T>
inline bool
Octagonal_Shape<T>::is_empty() const {
strong_closure_assign();
return marked_empty();
}
template <typename T>
inline bool
Octagonal_Shape<T>::bounds_from_above(const Linear_Expression& expr) const {
return bounds(expr, true);
}
template <typename T>
inline bool
Octagonal_Shape<T>::bounds_from_below(const Linear_Expression& expr) const {
return bounds(expr, false);
}
template <typename T>
inline bool
Octagonal_Shape<T>::maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d,
bool& maximum) const {
return max_min(expr, true, sup_n, sup_d, maximum);
}
template <typename T>
inline bool
Octagonal_Shape<T>::maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d,
bool& maximum,
Generator& g) const {
return max_min(expr, true, sup_n, sup_d, maximum, g);
}
template <typename T>
inline bool
Octagonal_Shape<T>::minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d,
bool& minimum) const {
return max_min(expr, false, inf_n, inf_d, minimum);
}
template <typename T>
inline bool
Octagonal_Shape<T>::minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d,
bool& minimum,
Generator& g) const {
return max_min(expr, false, inf_n, inf_d, minimum, g);
}
template <typename T>
inline bool
Octagonal_Shape<T>::is_topologically_closed() const {
return true;
}
template <typename T>
inline void
Octagonal_Shape<T>::topological_closure_assign() {
}
/*! \relates Octagonal_Shape */
template <typename T>
inline bool
operator==(const Octagonal_Shape<T>& x, const Octagonal_Shape<T>& y) {
if (x.space_dim != y.space_dim)
// Dimension-incompatible OSs are different.
return false;
// Zero-dim OSs are equal if and only if they are both empty or universe.
if (x.space_dim == 0) {
if (x.marked_empty())
return y.marked_empty();
else
return !y.marked_empty();
}
x.strong_closure_assign();
y.strong_closure_assign();
// If one of two octagons is empty, then they are equal if and only if
// the other octagon is empty too.
if (x.marked_empty())
return y.marked_empty();
if (y.marked_empty())
return false;
// Strong closure is a canonical form.
return x.matrix == y.matrix;
}
/*! \relates Octagonal_Shape */
template <typename T>
inline bool
operator!=(const Octagonal_Shape<T>& x, const Octagonal_Shape<T>& y) {
return !(x == y);
}
template <typename T>
inline const typename Octagonal_Shape<T>::coefficient_type&
Octagonal_Shape<T>::matrix_at(const dimension_type i,
const dimension_type j) const {
PPL_ASSERT(i < matrix.num_rows() && j < matrix.num_rows());
using namespace Implementation::Octagonal_Shapes;
return (j < matrix.row_size(i))
? matrix[i][j]
: matrix[coherent_index(j)][coherent_index(i)];
}
template <typename T>
inline typename Octagonal_Shape<T>::coefficient_type&
Octagonal_Shape<T>::matrix_at(const dimension_type i,
const dimension_type j) {
PPL_ASSERT(i < matrix.num_rows() && j < matrix.num_rows());
using namespace Implementation::Octagonal_Shapes;
return (j < matrix.row_size(i))
? matrix[i][j]
: matrix[coherent_index(j)][coherent_index(i)];
}
template <typename T>
inline Constraint_System
Octagonal_Shape<T>::minimized_constraints() const {
strong_reduction_assign();
return constraints();
}
template <typename T>
inline void
Octagonal_Shape<T>::add_octagonal_constraint(const dimension_type i,
const dimension_type j,
const N& k) {
// Private method: the caller has to ensure the following.
#ifndef NDEBUG
PPL_ASSERT(i < 2*space_dim && j < 2*space_dim && i != j);
typename OR_Matrix<N>::row_iterator m_i = matrix.row_begin() + i;
PPL_ASSERT(j < m_i.row_size());
#endif
N& r_i_j = matrix[i][j];
if (r_i_j > k) {
r_i_j = k;
if (marked_strongly_closed())
reset_strongly_closed();
}
}
template <typename T>
inline void
Octagonal_Shape<T>
::add_octagonal_constraint(const dimension_type i,
const dimension_type j,
Coefficient_traits::const_reference numer,
Coefficient_traits::const_reference denom) {
#ifndef NDEBUG
// Private method: the caller has to ensure the following.
PPL_ASSERT(i < 2*space_dim && j < 2*space_dim && i != j);
typename OR_Matrix<N>::row_iterator m_i = matrix.row_begin() + i;
PPL_ASSERT(j < m_i.row_size());
PPL_ASSERT(denom != 0);
#endif
PPL_DIRTY_TEMP(N, k);
div_round_up(k, numer, denom);
add_octagonal_constraint(i, j, k);
}
template <typename T>
inline void
Octagonal_Shape<T>::add_constraints(const Constraint_System& cs) {
for (Constraint_System::const_iterator i = cs.begin(),
i_end = cs.end(); i != i_end; ++i)
add_constraint(*i);
}
template <typename T>
inline void
Octagonal_Shape<T>::add_recycled_constraints(Constraint_System& cs) {
add_constraints(cs);
}
template <typename T>
inline void
Octagonal_Shape<T>::add_recycled_congruences(Congruence_System& cgs) {
add_congruences(cgs);
}
template <typename T>
inline void
Octagonal_Shape<T>::add_congruences(const Congruence_System& cgs) {
for (Congruence_System::const_iterator i = cgs.begin(),
cgs_end = cgs.end(); i != cgs_end; ++i)
add_congruence(*i);
}
template <typename T>
inline void
Octagonal_Shape<T>::refine_with_constraint(const Constraint& c) {
// Dimension-compatibility check.
if (c.space_dimension() > space_dimension())
throw_dimension_incompatible("refine_with_constraint(c)", c);
if (!marked_empty())
refine_no_check(c);
}
template <typename T>
inline void
Octagonal_Shape<T>::refine_with_constraints(const Constraint_System& cs) {
// Dimension-compatibility check.
if (cs.space_dimension() > space_dimension())
throw_invalid_argument("refine_with_constraints(cs)",
"cs and *this are space-dimension incompatible");
for (Constraint_System::const_iterator i = cs.begin(),
cs_end = cs.end(); !marked_empty() && i != cs_end; ++i)
refine_no_check(*i);
}
template <typename T>
inline void
Octagonal_Shape<T>::refine_with_congruence(const Congruence& cg) {
const dimension_type cg_space_dim = cg.space_dimension();
// Dimension-compatibility check.
if (cg_space_dim > space_dimension())
throw_dimension_incompatible("refine_with_congruence(cg)", cg);
if (!marked_empty())
refine_no_check(cg);
}
template <typename T>
void
Octagonal_Shape<T>::refine_with_congruences(const Congruence_System& cgs) {
// Dimension-compatibility check.
if (cgs.space_dimension() > space_dimension())
throw_invalid_argument("refine_with_congruences(cgs)",
"cgs and *this are space-dimension incompatible");
for (Congruence_System::const_iterator i = cgs.begin(),
cgs_end = cgs.end(); !marked_empty() && i != cgs_end; ++i)
refine_no_check(*i);
}
template <typename T>
inline void
Octagonal_Shape<T>::refine_no_check(const Congruence& cg) {
PPL_ASSERT(!marked_empty());
PPL_ASSERT(cg.space_dimension() <= space_dimension());
if (cg.is_proper_congruence()) {
if (cg.is_inconsistent())
set_empty();
// Other proper congruences are just ignored.
return;
}
PPL_ASSERT(cg.is_equality());
Constraint c(cg);
refine_no_check(c);
}
template <typename T>
inline bool
Octagonal_Shape<T>::can_recycle_constraint_systems() {
return false;
}
template <typename T>
inline bool
Octagonal_Shape<T>::can_recycle_congruence_systems() {
return false;
}
template <typename T>
inline void
Octagonal_Shape<T>
::remove_higher_space_dimensions(const dimension_type new_dimension) {
// Dimension-compatibility check.
if (new_dimension > space_dim)
throw_dimension_incompatible("remove_higher_space_dimension(nd)",
new_dimension);
// The removal of no dimensions from any octagon is a no-op.
// Note that this case also captures the only legal removal of
// dimensions from an octagon in a 0-dim space.
if (new_dimension == space_dim) {
PPL_ASSERT(OK());
return;
}
strong_closure_assign();
matrix.shrink(new_dimension);
// When we remove all dimensions from a non-empty octagon,
// we obtain the zero-dimensional universe octagon.
if (new_dimension == 0 && !marked_empty())
set_zero_dim_univ();
space_dim = new_dimension;
PPL_ASSERT(OK());
}
template <typename T>
void
Octagonal_Shape<T>::wrap_assign(const Variables_Set& vars,
Bounded_Integer_Type_Width w,
Bounded_Integer_Type_Representation r,
Bounded_Integer_Type_Overflow o,
const Constraint_System* cs_p,
unsigned complexity_threshold,
bool wrap_individually) {
Implementation::wrap_assign(*this,
vars, w, r, o, cs_p,
complexity_threshold, wrap_individually,
"Octagonal_Shape");
}
template <typename T>
inline void
Octagonal_Shape<T>::widening_assign(const Octagonal_Shape& y, unsigned* tp) {
BHMZ05_widening_assign(y, tp);
}
template <typename T>
inline void
Octagonal_Shape<T>::CC76_extrapolation_assign(const Octagonal_Shape& y,
unsigned* tp) {
static N stop_points[] = {
N(-2, ROUND_UP),
N(-1, ROUND_UP),
N( 0, ROUND_UP),
N( 1, ROUND_UP),
N( 2, ROUND_UP)
};
CC76_extrapolation_assign(y,
stop_points,
stop_points
+ sizeof(stop_points)/sizeof(stop_points[0]),
tp);
}
template <typename T>
inline void
Octagonal_Shape<T>::time_elapse_assign(const Octagonal_Shape& y) {
// Dimension-compatibility check.
if (space_dimension() != y.space_dimension())
throw_dimension_incompatible("time_elapse_assign(y)", y);
// Compute time-elapse on polyhedra.
// TODO: provide a direct implementation.
C_Polyhedron ph_x(constraints());
C_Polyhedron ph_y(y.constraints());
ph_x.time_elapse_assign(ph_y);
Octagonal_Shape<T> x(ph_x);
m_swap(x);
PPL_ASSERT(OK());
}
template <typename T>
inline bool
Octagonal_Shape<T>::strictly_contains(const Octagonal_Shape& y) const {
const Octagonal_Shape<T>& x = *this;
return x.contains(y) && !y.contains(x);
}
template <typename T>
template <typename Interval_Info>
inline void
Octagonal_Shape<T>::generalized_refine_with_linear_form_inequality(
const Linear_Form< Interval<T, Interval_Info> >& left,
const Linear_Form< Interval<T, Interval_Info> >& right,
const Relation_Symbol relsym) {
switch (relsym) {
case EQUAL:
// TODO: see if we can handle this case more efficiently.
refine_with_linear_form_inequality(left, right);
refine_with_linear_form_inequality(right, left);
break;
case LESS_THAN:
case LESS_OR_EQUAL:
refine_with_linear_form_inequality(left, right);
break;
case GREATER_THAN:
case GREATER_OR_EQUAL:
refine_with_linear_form_inequality(right, left);
break;
case NOT_EQUAL:
break;
default:
PPL_UNREACHABLE;
break;
}
}
template <typename T>
template <typename Interval_Info>
inline void
Octagonal_Shape<T>::
refine_fp_interval_abstract_store(
Box< Interval<T, Interval_Info> >& store) const {
// Check that T is a floating point type.
PPL_COMPILE_TIME_CHECK(!std::numeric_limits<T>::is_exact,
"Octagonal_Shape<T>::refine_fp_interval_abstract_store:"
" T not a floating point type.");
typedef Interval<T, Interval_Info> FP_Interval_Type;
store.intersection_assign(Box<FP_Interval_Type>(*this));
}
/*! \relates Octagonal_Shape */
template <typename Temp, typename To, typename T>
inline bool
rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Octagonal_Shape<T>& x,
const Octagonal_Shape<T>& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
// Dimension-compatibility check.
if (x.space_dim != y.space_dim)
return false;
// Zero-dim OSs are equal if and only if they are both empty or universe.
if (x.space_dim == 0) {
if (x.marked_empty() == y.marked_empty())
assign_r(r, 0, ROUND_NOT_NEEDED);
else
assign_r(r, PLUS_INFINITY, ROUND_NOT_NEEDED);
return true;
}
// The distance computation requires strong closure.
x.strong_closure_assign();
y.strong_closure_assign();
// If one of two OSs is empty, then they are equal if and only if
// the other OS is empty too.
if (x.marked_empty() || y.marked_empty()) {
if (x.marked_empty() == y.marked_empty())
assign_r(r, 0, ROUND_NOT_NEEDED);
else
assign_r(r, PLUS_INFINITY, ROUND_NOT_NEEDED);
return true;
}
return rectilinear_distance_assign(r, x.matrix, y.matrix, dir,
tmp0, tmp1, tmp2);
}
/*! \relates Octagonal_Shape */
template <typename Temp, typename To, typename T>
inline bool
rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Octagonal_Shape<T>& x,
const Octagonal_Shape<T>& y,
const Rounding_Dir dir) {
typedef Checked_Number<Temp, Extended_Number_Policy> Checked_Temp;
PPL_DIRTY_TEMP(Checked_Temp, tmp0);
PPL_DIRTY_TEMP(Checked_Temp, tmp1);
PPL_DIRTY_TEMP(Checked_Temp, tmp2);
return rectilinear_distance_assign(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates Octagonal_Shape */
template <typename To, typename T>
inline bool
rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Octagonal_Shape<T>& x,
const Octagonal_Shape<T>& y,
const Rounding_Dir dir) {
return rectilinear_distance_assign<To, To, T>(r, x, y, dir);
}
/*! \relates Octagonal_Shape */
template <typename Temp, typename To, typename T>
inline bool
euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Octagonal_Shape<T>& x,
const Octagonal_Shape<T>& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
// Dimension-compatibility check.
if (x.space_dim != y.space_dim)
return false;
// Zero-dim OSs are equal if and only if they are both empty or universe.
if (x.space_dim == 0) {
if (x.marked_empty() == y.marked_empty())
assign_r(r, 0, ROUND_NOT_NEEDED);
else
assign_r(r, PLUS_INFINITY, ROUND_NOT_NEEDED);
return true;
}
// The distance computation requires strong closure.
x.strong_closure_assign();
y.strong_closure_assign();
// If one of two OSs is empty, then they are equal if and only if
// the other OS is empty too.
if (x.marked_empty() || y.marked_empty()) {
if (x.marked_empty() == y.marked_empty())
assign_r(r, 0, ROUND_NOT_NEEDED);
else
assign_r(r, PLUS_INFINITY, ROUND_NOT_NEEDED);
return true;
}
return euclidean_distance_assign(r, x.matrix, y.matrix, dir,
tmp0, tmp1, tmp2);
}
/*! \relates Octagonal_Shape */
template <typename Temp, typename To, typename T>
inline bool
euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Octagonal_Shape<T>& x,
const Octagonal_Shape<T>& y,
const Rounding_Dir dir) {
typedef Checked_Number<Temp, Extended_Number_Policy> Checked_Temp;
PPL_DIRTY_TEMP(Checked_Temp, tmp0);
PPL_DIRTY_TEMP(Checked_Temp, tmp1);
PPL_DIRTY_TEMP(Checked_Temp, tmp2);
return euclidean_distance_assign(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates Octagonal_Shape */
template <typename To, typename T>
inline bool
euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Octagonal_Shape<T>& x,
const Octagonal_Shape<T>& y,
const Rounding_Dir dir) {
return euclidean_distance_assign<To, To, T>(r, x, y, dir);
}
/*! \relates Octagonal_Shape */
template <typename Temp, typename To, typename T>
inline bool
l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Octagonal_Shape<T>& x,
const Octagonal_Shape<T>& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
// Dimension-compatibility check.
if (x.space_dim != y.space_dim)
return false;
// Zero-dim OSs are equal if and only if they are both empty or universe.
if (x.space_dim == 0) {
if (x.marked_empty() == y.marked_empty())
assign_r(r, 0, ROUND_NOT_NEEDED);
else
assign_r(r, PLUS_INFINITY, ROUND_NOT_NEEDED);
return true;
}
// The distance computation requires strong closure.
x.strong_closure_assign();
y.strong_closure_assign();
// If one of two OSs is empty, then they are equal if and only if
// the other OS is empty too.
if (x.marked_empty() || y.marked_empty()) {
if (x.marked_empty() == y.marked_empty())
assign_r(r, 0, ROUND_NOT_NEEDED);
else
assign_r(r, PLUS_INFINITY, ROUND_NOT_NEEDED);
return true;
}
return l_infinity_distance_assign(r, x.matrix, y.matrix, dir,
tmp0, tmp1, tmp2);
}
/*! \relates Octagonal_Shape */
template <typename Temp, typename To, typename T>
inline bool
l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Octagonal_Shape<T>& x,
const Octagonal_Shape<T>& y,
const Rounding_Dir dir) {
typedef Checked_Number<Temp, Extended_Number_Policy> Checked_Temp;
PPL_DIRTY_TEMP(Checked_Temp, tmp0);
PPL_DIRTY_TEMP(Checked_Temp, tmp1);
PPL_DIRTY_TEMP(Checked_Temp, tmp2);
return l_infinity_distance_assign(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates Octagonal_Shape */
template <typename To, typename T>
inline bool
l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Octagonal_Shape<T>& x,
const Octagonal_Shape<T>& y,
const Rounding_Dir dir) {
return l_infinity_distance_assign<To, To, T>(r, x, y, dir);
}
template <typename T>
inline memory_size_type
Octagonal_Shape<T>::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
template <typename T>
inline int32_t
Octagonal_Shape<T>::hash_code() const {
return hash_code_from_dimension(space_dimension());
}
template <typename T>
inline void
Octagonal_Shape<T>::drop_some_non_integer_points_helper(N& elem) {
if (!is_integer(elem)) {
#ifndef NDEBUG
Result r =
#endif
floor_assign_r(elem, elem, ROUND_DOWN);
PPL_ASSERT(r == V_EQ);
reset_strongly_closed();
}
}
/*! \relates Octagonal_Shape */
template <typename T>
inline void
swap(Octagonal_Shape<T>& x, Octagonal_Shape<T>& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Octagonal_Shape_templates.hh line 1. */
/* Octagonal_Shape class implementation: non-inline template functions.
*/
/* Automatically generated from PPL source file ../src/Octagonal_Shape_templates.hh line 35. */
#include <vector>
#include <deque>
#include <string>
#include <iostream>
#include <sstream>
#include <stdexcept>
#include <algorithm>
namespace Parma_Polyhedra_Library {
template <typename T>
Octagonal_Shape<T>::Octagonal_Shape(const Polyhedron& ph,
const Complexity_Class complexity)
: matrix(0), space_dim(0), status() {
const dimension_type num_dimensions = ph.space_dimension();
if (ph.marked_empty()) {
*this = Octagonal_Shape(num_dimensions, EMPTY);
return;
}
if (num_dimensions == 0) {
*this = Octagonal_Shape(num_dimensions, UNIVERSE);
return;
}
// Build from generators when we do not care about complexity
// or when the process has polynomial complexity.
if (complexity == ANY_COMPLEXITY
|| (!ph.has_pending_constraints() && ph.generators_are_up_to_date())) {
*this = Octagonal_Shape(ph.generators());
return;
}
// We cannot afford exponential complexity, we do not have a complete set
// of generators for the polyhedron, and the polyhedron is not trivially
// empty or zero-dimensional. Constraints, however, are up to date.
PPL_ASSERT(ph.constraints_are_up_to_date());
if (!ph.has_something_pending() && ph.constraints_are_minimized()) {
// If the constraint system of the polyhedron is minimized,
// the test `is_universe()' has polynomial complexity.
if (ph.is_universe()) {
*this = Octagonal_Shape(num_dimensions, UNIVERSE);
return;
}
}
// See if there is at least one inconsistent constraint in `ph.con_sys'.
for (Constraint_System::const_iterator i = ph.con_sys.begin(),
cs_end = ph.con_sys.end(); i != cs_end; ++i)
if (i->is_inconsistent()) {
*this = Octagonal_Shape(num_dimensions, EMPTY);
return;
}
// If `complexity' allows it, use simplex to derive the exact (modulo
// the fact that our OSs are topologically closed) variable bounds.
if (complexity == SIMPLEX_COMPLEXITY) {
MIP_Problem lp(num_dimensions);
lp.set_optimization_mode(MAXIMIZATION);
const Constraint_System& ph_cs = ph.constraints();
if (!ph_cs.has_strict_inequalities())
lp.add_constraints(ph_cs);
else
// Adding to `lp' a topologically closed version of `ph_cs'.
for (Constraint_System::const_iterator i = ph_cs.begin(),
ph_cs_end = ph_cs.end(); i != ph_cs_end; ++i) {
const Constraint& c = *i;
if (c.is_strict_inequality()) {
Linear_Expression expr(c.expression());
lp.add_constraint(expr >= 0);
}
else
lp.add_constraint(c);
}
// Check for unsatisfiability.
if (!lp.is_satisfiable()) {
*this = Octagonal_Shape<T>(num_dimensions, EMPTY);
return;
}
// Start with a universe OS that will be refined by the simplex.
*this = Octagonal_Shape<T>(num_dimensions, UNIVERSE);
// Get all the upper bounds.
Generator g(point());
PPL_DIRTY_TEMP_COEFFICIENT(numer);
PPL_DIRTY_TEMP_COEFFICIENT(denom);
for (dimension_type i = 0; i < num_dimensions; ++i) {
Variable x(i);
// Evaluate optimal upper bound for `x <= ub'.
lp.set_objective_function(x);
if (lp.solve() == OPTIMIZED_MIP_PROBLEM) {
g = lp.optimizing_point();
lp.evaluate_objective_function(g, numer, denom);
numer *= 2;
div_round_up(matrix[2*i + 1][2*i], numer, denom);
}
// Evaluate optimal upper bounds for `x + y <= ub'.
for (dimension_type j = 0; j < i; ++j) {
Variable y(j);
lp.set_objective_function(x + y);
if (lp.solve() == OPTIMIZED_MIP_PROBLEM) {
g = lp.optimizing_point();
lp.evaluate_objective_function(g, numer, denom);
div_round_up(matrix[2*i + 1][2*j], numer, denom);
}
}
// Evaluate optimal upper bound for `x - y <= ub'.
for (dimension_type j = 0; j < num_dimensions; ++j) {
if (i == j)
continue;
Variable y(j);
lp.set_objective_function(x - y);
if (lp.solve() == OPTIMIZED_MIP_PROBLEM) {
g = lp.optimizing_point();
lp.evaluate_objective_function(g, numer, denom);
div_round_up(((i < j) ?
matrix[2*j][2*i]
: matrix[2*i + 1][2*j + 1]),
numer, denom);
}
}
// Evaluate optimal upper bound for `y - x <= ub'.
for (dimension_type j = 0; j < num_dimensions; ++j) {
if (i == j)
continue;
Variable y(j);
lp.set_objective_function(x - y);
if (lp.solve() == OPTIMIZED_MIP_PROBLEM) {
g = lp.optimizing_point();
lp.evaluate_objective_function(g, numer, denom);
div_round_up(((i < j)
? matrix[2*j][2*i]
: matrix[2*i + 1][2*j + 1]),
numer, denom);
}
}
// Evaluate optimal upper bound for `-x - y <= ub'.
for (dimension_type j = 0; j < i; ++j) {
Variable y(j);
lp.set_objective_function(-x - y);
if (lp.solve() == OPTIMIZED_MIP_PROBLEM) {
g = lp.optimizing_point();
lp.evaluate_objective_function(g, numer, denom);
div_round_up(matrix[2*i][2*j + 1], numer, denom);
}
}
// Evaluate optimal upper bound for `-x <= ub'.
lp.set_objective_function(-x);
if (lp.solve() == OPTIMIZED_MIP_PROBLEM) {
g = lp.optimizing_point();
lp.evaluate_objective_function(g, numer, denom);
numer *= 2;
div_round_up(matrix[2*i][2*i + 1], numer, denom);
}
}
set_strongly_closed();
PPL_ASSERT(OK());
return;
}
// Extract easy-to-find bounds from constraints.
PPL_ASSERT(complexity == POLYNOMIAL_COMPLEXITY);
*this = Octagonal_Shape(num_dimensions, UNIVERSE);
refine_with_constraints(ph.constraints());
}
template <typename T>
Octagonal_Shape<T>::Octagonal_Shape(const Generator_System& gs)
: matrix(gs.space_dimension()),
space_dim(gs.space_dimension()),
status() {
const Generator_System::const_iterator gs_begin = gs.begin();
const Generator_System::const_iterator gs_end = gs.end();
if (gs_begin == gs_end) {
// An empty generator system defines the empty polyhedron.
set_empty();
return;
}
typedef typename OR_Matrix<N>::row_reference_type row_reference;
typename OR_Matrix<N>::row_iterator mat_begin = matrix.row_begin();
PPL_DIRTY_TEMP(N, tmp);
bool mat_initialized = false;
bool point_seen = false;
// Going through all the points and closure points.
for (Generator_System::const_iterator k = gs_begin; k != gs_end; ++k) {
const Generator& g = *k;
switch (g.type()) {
case Generator::POINT:
point_seen = true;
// Intentionally fall through.
case Generator::CLOSURE_POINT:
if (!mat_initialized) {
// When handling the first (closure) point, we initialize the matrix.
mat_initialized = true;
const Coefficient& d = g.divisor();
// TODO: This can be optimized more, if needed, exploiting the
// (possible) sparseness of g. Also consider if OR_Matrix should be
// sparse, too.
for (dimension_type i = 0; i < space_dim; ++i) {
const Coefficient& g_i = g.coefficient(Variable(i));
const dimension_type di = 2*i;
row_reference x_i = *(mat_begin + di);
row_reference x_ii = *(mat_begin + (di + 1));
for (dimension_type j = 0; j < i; ++j) {
const Coefficient& g_j = g.coefficient(Variable(j));
const dimension_type dj = 2*j;
// Set for any point the hyperplanes passing in the point
// and having the octagonal gradient.
// Let be P = [P_1, P_2, ..., P_n] point.
// Hyperplanes: X_i - X_j = P_i - P_j.
div_round_up(x_i[dj], g_j - g_i, d);
div_round_up(x_ii[dj + 1], g_i - g_j, d);
// Hyperplanes: X_i + X_j = P_i + P_j.
div_round_up(x_i[dj + 1], -g_j - g_i, d);
div_round_up(x_ii[dj], g_i + g_j, d);
}
// Hyperplanes: X_i = P_i.
div_round_up(x_i[di + 1], -g_i - g_i, d);
div_round_up(x_ii[di], g_i + g_i, d);
}
}
else {
// This is not the first point: the matrix already contains
// valid values and we must compute maxima.
const Coefficient& d = g.divisor();
// TODO: This can be optimized more, if needed, exploiting the
// (possible) sparseness of g. Also consider if OR_Matrix should be
// sparse, too.
for (dimension_type i = 0; i < space_dim; ++i) {
const Coefficient& g_i = g.coefficient(Variable(i));
const dimension_type di = 2*i;
row_reference x_i = *(mat_begin + di);
row_reference x_ii = *(mat_begin + (di + 1));
for (dimension_type j = 0; j < i; ++j) {
const Coefficient& g_j = g.coefficient(Variable(j));
const dimension_type dj = 2*j;
// Set for any point the straight lines passing in the point
// and having the octagonal gradient; compute maxima values.
// Let be P = [P_1, P_2, ..., P_n] point.
// Hyperplane: X_i - X_j = max (P_i - P_j, const).
div_round_up(tmp, g_j - g_i, d);
max_assign(x_i[dj], tmp);
div_round_up(tmp, g_i - g_j, d);
max_assign(x_ii[dj + 1], tmp);
// Hyperplane: X_i + X_j = max (P_i + P_j, const).
div_round_up(tmp, -g_j - g_i, d);
max_assign(x_i[dj + 1], tmp);
div_round_up(tmp, g_i + g_j, d);
max_assign(x_ii[dj], tmp);
}
// Hyperplane: X_i = max (P_i, const).
div_round_up(tmp, -g_i - g_i, d);
max_assign(x_i[di + 1], tmp);
div_round_up(tmp, g_i + g_i, d);
max_assign(x_ii[di], tmp);
}
}
break;
default:
// Lines and rays temporarily ignored.
break;
}
}
if (!point_seen)
// The generator system is not empty, but contains no points.
throw_invalid_argument("Octagonal_Shape(gs)",
"the non-empty generator system gs "
"contains no points.");
// Going through all the lines and rays.
for (Generator_System::const_iterator k = gs_begin; k != gs_end; ++k) {
const Generator& g = *k;
switch (g.type()) {
case Generator::LINE:
// TODO: This can be optimized more, if needed, exploiting the
// (possible) sparseness of g. Also consider if OR_Matrix should be
// sparse, too.
for (dimension_type i = 0; i < space_dim; ++i) {
const Coefficient& g_i = g.coefficient(Variable(i));
const dimension_type di = 2*i;
row_reference x_i = *(mat_begin + di);
row_reference x_ii = *(mat_begin + (di + 1));
for (dimension_type j = 0; j < i; ++j) {
const Coefficient& g_j = g.coefficient(Variable(j));
const dimension_type dj = 2*j;
// Set for any line the right limit.
if (g_i != g_j) {
// Hyperplane: X_i - X_j <=/>= +Inf.
assign_r(x_i[dj], PLUS_INFINITY, ROUND_NOT_NEEDED);
assign_r(x_ii[dj + 1], PLUS_INFINITY, ROUND_NOT_NEEDED);
}
if (g_i != -g_j) {
// Hyperplane: X_i + X_j <=/>= +Inf.
assign_r(x_i[dj + 1], PLUS_INFINITY, ROUND_NOT_NEEDED);
assign_r(x_ii[dj], PLUS_INFINITY, ROUND_NOT_NEEDED);
}
}
if (g_i != 0) {
// Hyperplane: X_i <=/>= +Inf.
assign_r(x_i[di + 1], PLUS_INFINITY, ROUND_NOT_NEEDED);
assign_r(x_ii[di], PLUS_INFINITY, ROUND_NOT_NEEDED);
}
}
break;
case Generator::RAY:
// TODO: This can be optimized more, if needed, exploiting the
// (possible) sparseness of g. Also consider if OR_Matrix should be
// sparse, too.
for (dimension_type i = 0; i < space_dim; ++i) {
const Coefficient& g_i = g.coefficient(Variable(i));
const dimension_type di = 2*i;
row_reference x_i = *(mat_begin + di);
row_reference x_ii = *(mat_begin + (di + 1));
for (dimension_type j = 0; j < i; ++j) {
const Coefficient& g_j = g.coefficient(Variable(j));
const dimension_type dj = 2*j;
// Set for any ray the right limit in the case
// of the binary constraints.
if (g_i < g_j)
// Hyperplane: X_i - X_j >= +Inf.
assign_r(x_i[dj], PLUS_INFINITY, ROUND_NOT_NEEDED);
if (g_i > g_j)
// Hyperplane: X_i - X_j <= +Inf.
assign_r(x_ii[dj + 1], PLUS_INFINITY, ROUND_NOT_NEEDED);
if (g_i < -g_j)
// Hyperplane: X_i + X_j >= +Inf.
assign_r(x_i[dj + 1], PLUS_INFINITY, ROUND_NOT_NEEDED);
if (g_i > -g_j)
// Hyperplane: X_i + X_j <= +Inf.
assign_r(x_ii[dj], PLUS_INFINITY, ROUND_NOT_NEEDED);
}
// Case: unary constraints.
if (g_i < 0)
// Hyperplane: X_i = +Inf.
assign_r(x_i[di + 1], PLUS_INFINITY, ROUND_NOT_NEEDED);
if (g_i > 0)
// Hyperplane: X_i = +Inf.
assign_r(x_ii[di], PLUS_INFINITY, ROUND_NOT_NEEDED);
}
break;
default:
// Points and closure points already dealt with.
break;
}
}
set_strongly_closed();
PPL_ASSERT(OK());
}
template <typename T>
void
Octagonal_Shape<T>::add_constraint(const Constraint& c) {
const dimension_type c_space_dim = c.space_dimension();
// Dimension-compatibility check.
if (c_space_dim > space_dim)
throw_dimension_incompatible("add_constraint(c)", c);
// Get rid of strict inequalities.
if (c.is_strict_inequality()) {
if (c.is_inconsistent()) {
set_empty();
return;
}
if (c.is_tautological())
return;
// Nontrivial strict inequalities are not allowed.
throw_invalid_argument("add_constraint(c)",
"strict inequalities are not allowed");
}
dimension_type num_vars = 0;
dimension_type i = 0;
dimension_type j = 0;
PPL_DIRTY_TEMP_COEFFICIENT(coeff);
PPL_DIRTY_TEMP_COEFFICIENT(term);
// Constraints that are not octagonal differences are not allowed.
if (!Octagonal_Shape_Helper
::extract_octagonal_difference(c, c_space_dim, num_vars,
i, j, coeff, term))
throw_invalid_argument("add_constraint(c)",
"c is not an octagonal constraint");
if (num_vars == 0) {
// Dealing with a trivial constraint (not a strict inequality).
if (c.inhomogeneous_term() < 0
|| (c.is_equality() && c.inhomogeneous_term() != 0))
set_empty();
return;
}
// Select the cell to be modified for the "<=" part of constraint.
typename OR_Matrix<N>::row_iterator i_iter = matrix.row_begin() + i;
typename OR_Matrix<N>::row_reference_type m_i = *i_iter;
N& m_i_j = m_i[j];
// Set `coeff' to the absolute value of itself.
if (coeff < 0)
neg_assign(coeff);
bool is_oct_changed = false;
// Compute the bound for `m_i_j', rounding towards plus infinity.
PPL_DIRTY_TEMP(N, d);
div_round_up(d, term, coeff);
if (m_i_j > d) {
m_i_j = d;
is_oct_changed = true;
}
if (c.is_equality()) {
// Select the cell to be modified for the ">=" part of constraint.
if (i % 2 == 0)
++i_iter;
else
--i_iter;
typename OR_Matrix<N>::row_reference_type m_ci = *i_iter;
using namespace Implementation::Octagonal_Shapes;
dimension_type cj = coherent_index(j);
N& m_ci_cj = m_ci[cj];
// Also compute the bound for `m_ci_cj', rounding towards plus infinity.
neg_assign(term);
div_round_up(d, term, coeff);
if (m_ci_cj > d) {
m_ci_cj = d;
is_oct_changed = true;
}
}
// This method does not preserve closure.
if (is_oct_changed && marked_strongly_closed())
reset_strongly_closed();
PPL_ASSERT(OK());
}
template <typename T>
void
Octagonal_Shape<T>::add_congruence(const Congruence& cg) {
const dimension_type cg_space_dim = cg.space_dimension();
// Dimension-compatibility check:
// the dimension of `cg' can not be greater than space_dim.
if (space_dimension() < cg_space_dim)
throw_dimension_incompatible("add_congruence(cg)", cg);
// Handle the case of proper congruences first.
if (cg.is_proper_congruence()) {
if (cg.is_tautological())
return;
if (cg.is_inconsistent()) {
set_empty();
return;
}
// Non-trivial and proper congruences are not allowed.
throw_invalid_argument("add_congruence(cg)",
"cg is a non-trivial, proper congruence");
}
PPL_ASSERT(cg.is_equality());
Constraint c(cg);
add_constraint(c);
}
template <typename T>
template <typename Interval_Info>
void
Octagonal_Shape<T>::refine_with_linear_form_inequality(
const Linear_Form< Interval<T, Interval_Info> >& left,
const Linear_Form< Interval<T, Interval_Info> >& right) {
// Check that T is a floating point type.
PPL_COMPILE_TIME_CHECK(!std::numeric_limits<T>::is_exact,
"Octagonal_Shape<T>::refine_with_linear_form_inequality:"
" T not a floating point type.");
// We assume that the analyzer will not try to apply an unreachable filter.
PPL_ASSERT(!marked_empty());
// Dimension-compatibility checks.
// The dimensions of `left' and `right' should not be greater than the
// dimension of `*this'.
const dimension_type left_space_dim = left.space_dimension();
if (space_dim < left_space_dim)
throw_dimension_incompatible(
"refine_with_linear_form_inequality(left, right)", "left", left);
const dimension_type right_space_dim = right.space_dimension();
if (space_dim < right_space_dim)
throw_dimension_incompatible(
"refine_with_linear_form_inequality(left, right)", "right", right);
// Number of non-zero coefficients in `left': will be set to
// 0, 1, or 2, the latter value meaning any value greater than 1.
dimension_type left_t = 0;
// Variable-index of the last non-zero coefficient in `left', if any.
dimension_type left_w_id = 0;
// Number of non-zero coefficients in `right': will be set to
// 0, 1, or 2, the latter value meaning any value greater than 1.
dimension_type right_t = 0;
// Variable-index of the last non-zero coefficient in `right', if any.
dimension_type right_w_id = 0;
// Get information about the number of non-zero coefficients in `left'.
for (dimension_type i = left_space_dim; i-- > 0; )
if (left.coefficient(Variable(i)) != 0) {
if (left_t++ == 1)
break;
else
left_w_id = i;
}
// Get information about the number of non-zero coefficients in `right'.
for (dimension_type i = right_space_dim; i-- > 0; )
if (right.coefficient(Variable(i)) != 0) {
if (right_t++ == 1)
break;
else
right_w_id = i;
}
typedef typename OR_Matrix<N>::row_iterator row_iterator;
typedef typename OR_Matrix<N>::row_reference_type row_reference;
typedef typename OR_Matrix<N>::const_row_iterator Row_iterator;
typedef typename OR_Matrix<N>::const_row_reference_type Row_reference;
typedef Interval<T, Interval_Info> FP_Interval_Type;
// FIXME: there is plenty of duplicate code in the following lines. We could
// shorten it at the expense of a bit of efficiency.
if (left_t == 0) {
if (right_t == 0) {
// The constraint involves constants only. Ignore it: it is up to
// the analyzer to handle it.
PPL_ASSERT(OK());
return;
}
if (right_t == 1) {
// The constraint has the form [a-, a+] <= [b-, b+] + [c-, c+] * x.
// Reduce it to the constraint +/-x <= b+ - a- if [c-, c+] = +/-[1, 1].
const FP_Interval_Type& right_w_coeff =
right.coefficient(Variable(right_w_id));
if (right_w_coeff == 1) {
const dimension_type n_right = right_w_id * 2;
PPL_DIRTY_TEMP(N, b_plus_minus_a_minus);
const FP_Interval_Type& left_a = left.inhomogeneous_term();
const FP_Interval_Type& right_b = right.inhomogeneous_term();
sub_assign_r(b_plus_minus_a_minus, right_b.upper(), left_a.lower(),
ROUND_UP);
mul_2exp_assign_r(b_plus_minus_a_minus, b_plus_minus_a_minus, 1,
ROUND_UP);
add_octagonal_constraint(n_right, n_right + 1, b_plus_minus_a_minus);
PPL_ASSERT(OK());
return;
}
if (right_w_coeff == -1) {
const dimension_type n_right = right_w_id * 2;
PPL_DIRTY_TEMP(N, b_plus_minus_a_minus);
const FP_Interval_Type& left_a = left.inhomogeneous_term();
const FP_Interval_Type& right_b = right.inhomogeneous_term();
sub_assign_r(b_plus_minus_a_minus, right_b.upper(), left_a.lower(),
ROUND_UP);
mul_2exp_assign_r(b_plus_minus_a_minus, b_plus_minus_a_minus, 1,
ROUND_UP);
add_octagonal_constraint(n_right + 1, n_right, b_plus_minus_a_minus);
PPL_ASSERT(OK());
return;
}
}
}
else if (left_t == 1) {
if (right_t == 0) {
// The constraint has the form [b-, b+] + [c-, c+] * x <= [a-, a+]
// Reduce it to the constraint +/-x <= a+ - b- if [c-, c+] = +/-[1, 1].
const FP_Interval_Type& left_w_coeff =
left.coefficient(Variable(left_w_id));
if (left_w_coeff == 1) {
const dimension_type n_left = left_w_id * 2;
PPL_DIRTY_TEMP(N, a_plus_minus_b_minus);
const FP_Interval_Type& left_b = left.inhomogeneous_term();
const FP_Interval_Type& right_a = right.inhomogeneous_term();
sub_assign_r(a_plus_minus_b_minus, right_a.upper(), left_b.lower(),
ROUND_UP);
mul_2exp_assign_r(a_plus_minus_b_minus, a_plus_minus_b_minus, 1,
ROUND_UP);
add_octagonal_constraint(n_left + 1, n_left, a_plus_minus_b_minus);
PPL_ASSERT(OK());
return;
}
if (left_w_coeff == -1) {
const dimension_type n_left = left_w_id * 2;
PPL_DIRTY_TEMP(N, a_plus_minus_b_minus);
const FP_Interval_Type& left_b = left.inhomogeneous_term();
const FP_Interval_Type& right_a = right.inhomogeneous_term();
sub_assign_r(a_plus_minus_b_minus, right_a.upper(), left_b.lower(),
ROUND_UP);
mul_2exp_assign_r(a_plus_minus_b_minus, a_plus_minus_b_minus, 1,
ROUND_UP);
add_octagonal_constraint(n_left, n_left + 1, a_plus_minus_b_minus);
PPL_ASSERT(OK());
return;
}
}
if (right_t == 1) {
// The constraint has the form
// [a-, a+] + [b-, b+] * x <= [c-, c+] + [d-, d+] * y.
// Reduce it to the constraint +/-x +/-y <= c+ - a-
// if [b-, b+] = +/-[1, 1] and [d-, d+] = +/-[1, 1].
const FP_Interval_Type& left_w_coeff =
left.coefficient(Variable(left_w_id));
const FP_Interval_Type& right_w_coeff =
right.coefficient(Variable(right_w_id));
bool is_left_coeff_one = (left_w_coeff == 1);
bool is_left_coeff_minus_one = (left_w_coeff == -1);
bool is_right_coeff_one = (right_w_coeff == 1);
bool is_right_coeff_minus_one = (right_w_coeff == -1);
if (left_w_id == right_w_id) {
if ((is_left_coeff_one && is_right_coeff_one)
|| (is_left_coeff_minus_one && is_right_coeff_minus_one)) {
// Here we have an identity or a constants-only constraint.
PPL_ASSERT(OK());
return;
}
if (is_left_coeff_one && is_right_coeff_minus_one) {
// We fall back to a previous case
// (but we do not need to multiply the result by two).
const dimension_type n_left = left_w_id * 2;
PPL_DIRTY_TEMP(N, a_plus_minus_b_minus);
const FP_Interval_Type& left_b = left.inhomogeneous_term();
const FP_Interval_Type& right_a = right.inhomogeneous_term();
sub_assign_r(a_plus_minus_b_minus, right_a.upper(), left_b.lower(),
ROUND_UP);
add_octagonal_constraint(n_left + 1, n_left, a_plus_minus_b_minus);
PPL_ASSERT(OK());
return;
}
if (is_left_coeff_minus_one && is_right_coeff_one) {
// We fall back to a previous case
// (but we do not need to multiply the result by two).
const dimension_type n_left = left_w_id * 2;
PPL_DIRTY_TEMP(N, a_plus_minus_b_minus);
const FP_Interval_Type& left_b = left.inhomogeneous_term();
const FP_Interval_Type& right_a = right.inhomogeneous_term();
sub_assign_r(a_plus_minus_b_minus, right_a.upper(), left_b.lower(),
ROUND_UP);
add_octagonal_constraint(n_left, n_left + 1, a_plus_minus_b_minus);
PPL_ASSERT(OK());
return;
}
}
else if (is_left_coeff_one && is_right_coeff_one) {
const dimension_type n_left = left_w_id * 2;
const dimension_type n_right = right_w_id * 2;
PPL_DIRTY_TEMP(N, c_plus_minus_a_minus);
const FP_Interval_Type& left_a = left.inhomogeneous_term();
const FP_Interval_Type& right_c = right.inhomogeneous_term();
sub_assign_r(c_plus_minus_a_minus, right_c.upper(), left_a.lower(),
ROUND_UP);
if (left_w_id < right_w_id)
add_octagonal_constraint(n_right, n_left, c_plus_minus_a_minus);
else
add_octagonal_constraint(n_left + 1, n_right + 1,
c_plus_minus_a_minus);
PPL_ASSERT(OK());
return;
}
if (is_left_coeff_one && is_right_coeff_minus_one) {
const dimension_type n_left = left_w_id * 2;
const dimension_type n_right = right_w_id * 2;
PPL_DIRTY_TEMP(N, c_plus_minus_a_minus);
const FP_Interval_Type& left_a = left.inhomogeneous_term();
const FP_Interval_Type& right_c = right.inhomogeneous_term();
sub_assign_r(c_plus_minus_a_minus, right_c.upper(), left_a.lower(),
ROUND_UP);
if (left_w_id < right_w_id)
add_octagonal_constraint(n_right + 1, n_left, c_plus_minus_a_minus);
else
add_octagonal_constraint(n_left + 1, n_right, c_plus_minus_a_minus);
PPL_ASSERT(OK());
return;
}
if (is_left_coeff_minus_one && is_right_coeff_one) {
const dimension_type n_left = left_w_id * 2;
const dimension_type n_right = right_w_id * 2;
PPL_DIRTY_TEMP(N, c_plus_minus_a_minus);
const FP_Interval_Type& left_a = left.inhomogeneous_term();
const FP_Interval_Type& right_c = right.inhomogeneous_term();
sub_assign_r(c_plus_minus_a_minus, right_c.upper(), left_a.lower(),
ROUND_UP);
if (left_w_id < right_w_id)
add_octagonal_constraint(n_right, n_left + 1, c_plus_minus_a_minus);
else
add_octagonal_constraint(n_left, n_right + 1, c_plus_minus_a_minus);
PPL_ASSERT(OK());
return;
}
if (is_left_coeff_minus_one && is_right_coeff_minus_one) {
const dimension_type n_left = left_w_id * 2;
const dimension_type n_right = right_w_id * 2;
PPL_DIRTY_TEMP(N, c_plus_minus_a_minus);
const FP_Interval_Type& left_a = left.inhomogeneous_term();
const FP_Interval_Type& right_c = right.inhomogeneous_term();
sub_assign_r(c_plus_minus_a_minus, right_c.upper(), left_a.lower(),
ROUND_UP);
if (left_w_id < right_w_id)
add_octagonal_constraint(n_right + 1, n_left + 1,
c_plus_minus_a_minus);
else
add_octagonal_constraint(n_left, n_right, c_plus_minus_a_minus);
PPL_ASSERT(OK());
return;
}
}
}
// General case.
// FIRST, update the binary constraints for each pair of DIFFERENT variables
// in `left' and `right'.
// Declare temporaries outside of the loop.
PPL_DIRTY_TEMP(N, low_coeff);
PPL_DIRTY_TEMP(N, high_coeff);
PPL_DIRTY_TEMP(N, upper_bound);
Linear_Form<FP_Interval_Type> right_minus_left(right);
right_minus_left -= left;
dimension_type max_w_id = std::max(left_w_id, right_w_id);
for (dimension_type first_v = 0; first_v < max_w_id; ++first_v) {
for (dimension_type second_v = first_v + 1;
second_v <= max_w_id; ++second_v) {
const FP_Interval_Type& lfv_coefficient =
left.coefficient(Variable(first_v));
const FP_Interval_Type& lsv_coefficient =
left.coefficient(Variable(second_v));
const FP_Interval_Type& rfv_coefficient =
right.coefficient(Variable(first_v));
const FP_Interval_Type& rsv_coefficient =
right.coefficient(Variable(second_v));
// We update the constraints only when both variables appear in at
// least one argument.
bool do_update = false;
assign_r(low_coeff, lfv_coefficient.lower(), ROUND_NOT_NEEDED);
assign_r(high_coeff, lfv_coefficient.upper(), ROUND_NOT_NEEDED);
if (low_coeff != 0 || high_coeff != 0) {
assign_r(low_coeff, lsv_coefficient.lower(), ROUND_NOT_NEEDED);
assign_r(high_coeff, lsv_coefficient.upper(), ROUND_NOT_NEEDED);
if (low_coeff != 0 || high_coeff != 0)
do_update = true;
else {
assign_r(low_coeff, rsv_coefficient.lower(), ROUND_NOT_NEEDED);
assign_r(high_coeff, rsv_coefficient.upper(), ROUND_NOT_NEEDED);
if (low_coeff != 0 || high_coeff != 0)
do_update = true;
}
}
else {
assign_r(low_coeff, rfv_coefficient.lower(), ROUND_NOT_NEEDED);
assign_r(high_coeff, rfv_coefficient.upper(), ROUND_NOT_NEEDED);
if (low_coeff != 0 || high_coeff != 0) {
assign_r(low_coeff, lsv_coefficient.lower(), ROUND_NOT_NEEDED);
assign_r(high_coeff, lsv_coefficient.upper(), ROUND_NOT_NEEDED);
if (low_coeff != 0 || high_coeff != 0)
do_update = true;
else {
assign_r(low_coeff, rsv_coefficient.lower(), ROUND_NOT_NEEDED);
assign_r(high_coeff, rsv_coefficient.upper(), ROUND_NOT_NEEDED);
if (low_coeff != 0 || high_coeff != 0)
do_update = true;
}
}
}
if (do_update) {
Variable first(first_v);
Variable second(second_v);
dimension_type n_first_var = first_v * 2;
dimension_type n_second_var = second_v * 2;
linear_form_upper_bound(right_minus_left - first + second,
upper_bound);
add_octagonal_constraint(n_second_var + 1, n_first_var + 1,
upper_bound);
linear_form_upper_bound(right_minus_left + first + second,
upper_bound);
add_octagonal_constraint(n_second_var + 1, n_first_var, upper_bound);
linear_form_upper_bound(right_minus_left - first - second,
upper_bound);
add_octagonal_constraint(n_second_var, n_first_var + 1, upper_bound);
linear_form_upper_bound(right_minus_left + first - second,
upper_bound);
add_octagonal_constraint(n_second_var, n_first_var, upper_bound);
}
}
}
// Finally, update the unary constraints.
for (dimension_type v = 0; v <= max_w_id; ++v) {
const FP_Interval_Type& lv_coefficient =
left.coefficient(Variable(v));
const FP_Interval_Type& rv_coefficient =
right.coefficient(Variable(v));
// We update the constraints only if v appears in at least one of the
// two arguments.
bool do_update = false;
assign_r(low_coeff, lv_coefficient.lower(), ROUND_NOT_NEEDED);
assign_r(high_coeff, lv_coefficient.upper(), ROUND_NOT_NEEDED);
if (low_coeff != 0 || high_coeff != 0)
do_update = true;
else {
assign_r(low_coeff, rv_coefficient.lower(), ROUND_NOT_NEEDED);
assign_r(high_coeff, rv_coefficient.upper(), ROUND_NOT_NEEDED);
if (low_coeff != 0 || high_coeff != 0)
do_update = true;
}
if (do_update) {
Variable var(v);
dimension_type n_var = 2 * v;
/*
VERY DIRTY trick: since we need to keep the old unary constraints
while computing the new ones, we momentarily keep the new coefficients
in the main diagonal of the matrix. They will be moved later.
*/
linear_form_upper_bound(right_minus_left + var, upper_bound);
mul_2exp_assign_r(matrix[n_var + 1][n_var + 1], upper_bound, 1,
ROUND_UP);
linear_form_upper_bound(right_minus_left - var, upper_bound);
mul_2exp_assign_r(matrix[n_var][n_var], upper_bound, 1,
ROUND_UP);
}
}
/*
Now move the newly computed coefficients from the main diagonal to
their proper place, and restore +infinity on the diagonal.
*/
row_iterator m_ite = matrix.row_begin();
row_iterator m_end = matrix.row_end();
for (dimension_type i = 0; m_ite != m_end; i += 2) {
row_reference upper = *m_ite;
N& ul = upper[i];
add_octagonal_constraint(i, i + 1, ul);
assign_r(ul, PLUS_INFINITY, ROUND_NOT_NEEDED);
++m_ite;
row_reference lower = *m_ite;
N& lr = lower[i + 1];
add_octagonal_constraint(i + 1, i, lr);
assign_r(lr, PLUS_INFINITY, ROUND_NOT_NEEDED);
++m_ite;
}
PPL_ASSERT(OK());
}
template <typename T>
void
Octagonal_Shape<T>::refine_no_check(const Constraint& c) {
PPL_ASSERT(!marked_empty());
const dimension_type c_space_dim = c.space_dimension();
PPL_ASSERT(c_space_dim <= space_dim);
dimension_type num_vars = 0;
dimension_type i = 0;
dimension_type j = 0;
PPL_DIRTY_TEMP_COEFFICIENT(coeff);
PPL_DIRTY_TEMP_COEFFICIENT(term);
// Constraints that are not octagonal differences are ignored.
if (!Octagonal_Shape_Helper
::extract_octagonal_difference(c, c_space_dim, num_vars,
i, j, coeff, term))
return;
if (num_vars == 0) {
const Coefficient& c_inhomo = c.inhomogeneous_term();
// Dealing with a trivial constraint (maybe a strict inequality).
if (c_inhomo < 0
|| (c_inhomo != 0 && c.is_equality())
|| (c_inhomo == 0 && c.is_strict_inequality()))
set_empty();
return;
}
// Select the cell to be modified for the "<=" part of constraint.
typename OR_Matrix<N>::row_iterator i_iter = matrix.row_begin() + i;
typename OR_Matrix<N>::row_reference_type m_i = *i_iter;
N& m_i_j = m_i[j];
// Set `coeff' to the absolute value of itself.
if (coeff < 0)
neg_assign(coeff);
bool is_oct_changed = false;
// Compute the bound for `m_i_j', rounding towards plus infinity.
PPL_DIRTY_TEMP(N, d);
div_round_up(d, term, coeff);
if (m_i_j > d) {
m_i_j = d;
is_oct_changed = true;
}
if (c.is_equality()) {
// Select the cell to be modified for the ">=" part of constraint.
if (i % 2 == 0)
++i_iter;
else
--i_iter;
typename OR_Matrix<N>::row_reference_type m_ci = *i_iter;
using namespace Implementation::Octagonal_Shapes;
dimension_type cj = coherent_index(j);
N& m_ci_cj = m_ci[cj];
// Also compute the bound for `m_ci_cj', rounding towards plus infinity.
neg_assign(term);
div_round_up(d, term, coeff);
if (m_ci_cj > d) {
m_ci_cj = d;
is_oct_changed = true;
}
}
// This method does not preserve closure.
if (is_oct_changed && marked_strongly_closed())
reset_strongly_closed();
PPL_ASSERT(OK());
}
template <typename T>
dimension_type
Octagonal_Shape<T>::affine_dimension() const {
const dimension_type n_rows = matrix.num_rows();
// A zero-space-dim shape always has affine dimension zero.
if (n_rows == 0)
return 0;
// Strong closure is necessary to detect emptiness
// and all (possibly implicit) equalities.
strong_closure_assign();
if (marked_empty())
return 0;
// The vector `leaders' is used to represent non-singular
// equivalence classes:
// `leaders[i] == i' if and only if `i' is the leader of its
// equivalence class (i.e., the minimum index in the class).
std::vector<dimension_type> leaders;
compute_leaders(leaders);
// Due to the splitting of variables, the affine dimension is the
// number of non-singular positive zero-equivalence classes.
dimension_type affine_dim = 0;
for (dimension_type i = 0; i < n_rows; i += 2)
// Note: disregard the singular equivalence class.
if (leaders[i] == i && leaders[i + 1] == i + 1)
++affine_dim;
return affine_dim;
}
template <typename T>
Congruence_System
Octagonal_Shape<T>::minimized_congruences() const {
// Strong closure is necessary to detect emptiness
// and all (possibly implicit) equalities.
strong_closure_assign();
const dimension_type space_dim = space_dimension();
Congruence_System cgs(space_dim);
if (space_dim == 0) {
if (marked_empty())
cgs = Congruence_System::zero_dim_empty();
return cgs;
}
if (marked_empty()) {
cgs.insert(Congruence::zero_dim_false());
return cgs;
}
// The vector `leaders' is used to represent equivalence classes:
// `leaders[i] == i' if and only if `i' is the leader of its
// equivalence class (i.e., the minimum index in the class).
std::vector<dimension_type> leaders;
compute_leaders(leaders);
PPL_DIRTY_TEMP_COEFFICIENT(numer);
PPL_DIRTY_TEMP_COEFFICIENT(denom);
for (dimension_type i = 0, i_end = 2*space_dim; i != i_end; i += 2) {
const dimension_type lead_i = leaders[i];
if (i == lead_i) {
if (leaders[i + 1] == i)
// `i' is the leader of the singular equivalence class.
goto singular;
else
// `i' is the leader of a non-singular equivalence class.
continue;
}
else {
// `i' is not a leader.
if (leaders[i + 1] == lead_i)
// `i' belongs to the singular equivalence class.
goto singular;
else
// `i' does not belong to the singular equivalence class.
goto non_singular;
}
singular:
// `i' belongs to the singular equivalence class:
// we have a unary equality constraint.
{
const Variable x(i/2);
const N& c_ii_i = matrix[i + 1][i];
#ifndef NDEBUG
const N& c_i_ii = matrix[i][i + 1];
PPL_ASSERT(is_additive_inverse(c_i_ii, c_ii_i));
#endif
numer_denom(c_ii_i, numer, denom);
denom *= 2;
cgs.insert(denom*x == numer);
}
continue;
non_singular:
// `i' does not belong to the singular equivalence class.
// we have a binary equality constraint.
{
const N& c_i_li = matrix[i][lead_i];
#ifndef NDEBUG
using namespace Implementation::Octagonal_Shapes;
const N& c_ii_lii = matrix[i + 1][coherent_index(lead_i)];
PPL_ASSERT(is_additive_inverse(c_ii_lii, c_i_li));
#endif
const Variable x(lead_i/2);
const Variable y(i/2);
numer_denom(c_i_li, numer, denom);
if (lead_i % 2 == 0)
cgs.insert(denom*x - denom*y == numer);
else
cgs.insert(denom*x + denom*y + numer == 0);
}
continue;
}
return cgs;
}
template <typename T>
void
Octagonal_Shape<T>::concatenate_assign(const Octagonal_Shape& y) {
// If `y' is an empty 0-dim space octagon, let `*this' become empty.
// If `y' is an universal 0-dim space octagon, we simply return.
if (y.space_dim == 0) {
if (y.marked_empty())
set_empty();
return;
}
// If `*this' is an empty 0-dim space octagon, then it is sufficient
// to adjust the dimension of the vector space.
if (space_dim == 0 && marked_empty()) {
add_space_dimensions_and_embed(y.space_dim);
return;
}
// This is the old number of rows in the matrix. It is equal to
// the first index of columns to change.
dimension_type old_num_rows = matrix.num_rows();
// First we increase the space dimension of `*this' by adding
// `y.space_dimension()' new dimensions.
// The matrix for the new octagon is obtained
// by leaving the old system of constraints in the upper left-hand side
// (where they are at the present) and placing the constraints of `y' in the
// lower right-hand side.
add_space_dimensions_and_embed(y.space_dim);
typename OR_Matrix<N>::const_element_iterator
y_it = y.matrix.element_begin();
for (typename OR_Matrix<N>::row_iterator
i = matrix.row_begin() + old_num_rows,
matrix_row_end = matrix.row_end(); i != matrix_row_end; ++i) {
typename OR_Matrix<N>::row_reference_type r = *i;
dimension_type rs_i = i.row_size();
for (dimension_type j = old_num_rows; j < rs_i; ++j, ++y_it)
r[j] = *y_it;
}
// The concatenation does not preserve the closure.
if (marked_strongly_closed())
reset_strongly_closed();
PPL_ASSERT(OK());
}
template <typename T>
bool
Octagonal_Shape<T>::contains(const Octagonal_Shape& y) const {
// Dimension-compatibility check.
if (space_dim != y.space_dim)
throw_dimension_incompatible("contains(y)", y);
if (space_dim == 0) {
// The zero-dimensional empty octagon only contains another
// zero-dimensional empty octagon.
// The zero-dimensional universe octagon contains any other
// zero-dimensional octagon.
return marked_empty() ? y.marked_empty() : true;
}
// `y' needs to be transitively closed.
y.strong_closure_assign();
// An empty octagon is in any other dimension-compatible octagons.
if (y.marked_empty())
return true;
// If `*this' is empty it can not contain `y' (which is not empty).
if (is_empty())
return false;
// `*this' contains `y' if and only if every element of `*this'
// is greater than or equal to the correspondent one of `y'.
for (typename OR_Matrix<N>::const_element_iterator
i = matrix.element_begin(), j = y.matrix.element_begin(),
matrix_element_end = matrix.element_end();
i != matrix_element_end; ++i, ++j)
if (*i < *j)
return false;
return true;
}
template <typename T>
bool
Octagonal_Shape<T>::is_disjoint_from(const Octagonal_Shape& y) const {
// Dimension-compatibility check.
if (space_dim != y.space_dim)
throw_dimension_incompatible("is_disjoint_from(y)", y);
// If one Octagonal_Shape is empty, the Octagonal_Shapes are disjoint.
strong_closure_assign();
if (marked_empty())
return true;
y.strong_closure_assign();
if (y.marked_empty())
return true;
// Two Octagonal_Shapes are disjoint if and only if their
// intersection is empty, i.e., if and only if there exists a
// variable such that the upper bound of the constraint on that
// variable in the first Octagonal_Shape is strictly less than the
// lower bound of the corresponding constraint in the second
// Octagonal_Shape or vice versa.
const dimension_type n_rows = matrix.num_rows();
typedef typename OR_Matrix<N>::const_row_iterator row_iterator;
typedef typename OR_Matrix<N>::const_row_reference_type row_reference;
const row_iterator m_begin = matrix.row_begin();
const row_iterator m_end = matrix.row_end();
const row_iterator y_begin = y.matrix.row_begin();
PPL_DIRTY_TEMP(N, neg_y_ci_cj);
for (row_iterator i_iter = m_begin; i_iter != m_end; ++i_iter) {
using namespace Implementation::Octagonal_Shapes;
const dimension_type i = i_iter.index();
const dimension_type ci = coherent_index(i);
const dimension_type rs_i = i_iter.row_size();
row_reference m_i = *i_iter;
for (dimension_type j = 0; j < n_rows; ++j) {
const dimension_type cj = coherent_index(j);
row_reference m_cj = *(m_begin + cj);
const N& m_i_j = (j < rs_i) ? m_i[j] : m_cj[ci];
row_reference y_ci = *(y_begin + ci);
row_reference y_j = *(y_begin + j);
const N& y_ci_cj = (j < rs_i) ? y_ci[cj] : y_j[i];
neg_assign_r(neg_y_ci_cj, y_ci_cj, ROUND_UP);
if (m_i_j < neg_y_ci_cj)
return true;
}
}
return false;
}
template <typename T>
bool
Octagonal_Shape<T>::is_universe() const {
// An empty octagon is not universe.
if (marked_empty())
return false;
// If the octagon is non-empty and zero-dimensional,
// then it is necessarily the universe octagon.
if (space_dim == 0)
return true;
// An universe octagon can only contains trivial constraints.
for (typename OR_Matrix<N>::const_element_iterator
i = matrix.element_begin(), matrix_element_end = matrix.element_end();
i != matrix_element_end;
++i)
if (!is_plus_infinity(*i))
return false;
return true;
}
template <typename T>
bool
Octagonal_Shape<T>::is_bounded() const {
strong_closure_assign();
// A zero-dimensional or empty octagon is bounded.
if (marked_empty() || space_dim == 0)
return true;
// A bounded octagon never can contains trivial constraints.
for (typename OR_Matrix<N>::const_row_iterator i = matrix.row_begin(),
matrix_row_end = matrix.row_end(); i != matrix_row_end; ++i) {
typename OR_Matrix<N>::const_row_reference_type x_i = *i;
const dimension_type i_index = i.index();
for (dimension_type j = i.row_size(); j-- > 0; )
if (i_index != j)
if (is_plus_infinity(x_i[j]))
return false;
}
return true;
}
template <typename T>
bool
Octagonal_Shape<T>::contains_integer_point() const {
// Force strong closure.
if (is_empty())
return false;
const dimension_type space_dim = space_dimension();
if (space_dim == 0)
return true;
// A strongly closed and consistent Octagonal_Shape defined by
// integer constraints can only be empty due to tight coherence.
if (std::numeric_limits<T>::is_integer)
return !tight_coherence_would_make_empty();
// Build an integer Octagonal_Shape oct_z with bounds at least as
// tight as those in *this and then recheck for emptiness, also
// exploiting tight-coherence.
Octagonal_Shape<mpz_class> oct_z(space_dim);
oct_z.reset_strongly_closed();
typedef Octagonal_Shape<mpz_class>::N Z;
bool all_integers = true;
typename OR_Matrix<N>::const_element_iterator x_i = matrix.element_begin();
for (typename OR_Matrix<Z>::element_iterator
z_i = oct_z.matrix.element_begin(),
z_end = oct_z.matrix.element_end(); z_i != z_end; ++z_i, ++x_i) {
const N& d = *x_i;
if (is_plus_infinity(d))
continue;
if (is_integer(d))
assign_r(*z_i, d, ROUND_NOT_NEEDED);
else {
all_integers = false;
assign_r(*z_i, d, ROUND_DOWN);
}
}
// Restore strong closure.
if (all_integers)
// oct_z unchanged, so it is still strongly closed.
oct_z.set_strongly_closed();
else {
// oct_z changed: recompute strong closure.
oct_z.strong_closure_assign();
if (oct_z.marked_empty())
return false;
}
return !oct_z.tight_coherence_would_make_empty();
}
template <typename T>
bool
Octagonal_Shape<T>::frequency(const Linear_Expression& expr,
Coefficient& freq_n, Coefficient& freq_d,
Coefficient& val_n, Coefficient& val_d) const {
dimension_type space_dim = space_dimension();
// The dimension of `expr' must be at most the dimension of *this.
if (space_dim < expr.space_dimension())
throw_dimension_incompatible("frequency(e, ...)", "e", expr);
// Check if `expr' has a constant value.
// If it is constant, set the frequency `freq_n' to 0
// and return true. Otherwise the values for \p expr
// are not discrete so return false.
// Space dimension is 0: if empty, then return false;
// otherwise the frequency is 0 and the value is the inhomogeneous term.
if (space_dim == 0) {
if (is_empty())
return false;
freq_n = 0;
freq_d = 1;
val_n = expr.inhomogeneous_term();
val_d = 1;
return true;
}
strong_closure_assign();
// For an empty Octagonal shape, we simply return false.
if (marked_empty())
return false;
// The Octagonal shape has at least 1 dimension and is not empty.
PPL_DIRTY_TEMP_COEFFICIENT(coeff);
PPL_DIRTY_TEMP_COEFFICIENT(coeff_j);
PPL_DIRTY_TEMP_COEFFICIENT(numer);
PPL_DIRTY_TEMP_COEFFICIENT(denom);
Linear_Expression le = expr;
// Boolean to keep track of a variable `v' in expression `le'.
// If we can replace `v' by an expression using variables other
// than `v' and are already in `le', then this is set to true.
bool constant_v = false;
typedef typename OR_Matrix<N>::const_row_iterator row_iterator;
typedef typename OR_Matrix<N>::const_row_reference_type row_reference;
const row_iterator m_begin = matrix.row_begin();
const row_iterator m_end = matrix.row_end();
PPL_DIRTY_TEMP_COEFFICIENT(val_denom);
val_denom = 1;
for (row_iterator i_iter = m_begin; i_iter != m_end; i_iter += 2) {
constant_v = false;
dimension_type i = i_iter.index();
const Variable v(i/2);
coeff = le.coefficient(v);
if (coeff == 0) {
constant_v = true;
continue;
}
// We check the unary constraints.
row_reference m_i = *i_iter;
row_reference m_ii = *(i_iter + 1);
const N& m_i_ii = m_i[i + 1];
const N& m_ii_i = m_ii[i];
if ((!is_plus_infinity(m_i_ii) && !is_plus_infinity(m_ii_i))
&& (is_additive_inverse(m_i_ii, m_ii_i))) {
// If `v' is constant, replace it in `le' by the value.
numer_denom(m_i_ii, numer, denom);
denom *= 2;
le -= coeff*v;
le *= denom;
le -= numer*coeff;
val_denom *= denom;
constant_v = true;
continue;
}
// Check the octagonal constraints between `v' and the other dimensions
// that have non-zero coefficient in `le'.
else {
PPL_ASSERT(!constant_v);
using namespace Implementation::Octagonal_Shapes;
const dimension_type ci = coherent_index(i);
for (row_iterator j_iter = i_iter; j_iter != m_end; j_iter += 2) {
dimension_type j = j_iter.index();
const Variable vj(j/2);
coeff_j = le.coefficient(vj);
if (coeff_j == 0)
// The coefficient in `le' is 0, so do nothing.
continue;
const dimension_type cj = coherent_index(j);
const dimension_type cjj = coherent_index(j + 1);
row_reference m_j = *(m_begin + j);
row_reference m_cj = *(m_begin + cj);
const N& m_j_i = m_j[i];
const N& m_i_j = m_cj[ci];
if ((!is_plus_infinity(m_i_j) && !is_plus_infinity(m_j_i))
&& (is_additive_inverse(m_i_j, m_j_i))) {
// The coefficient for `vj' in `le' is not 0
// and the constraint with `v' is an equality.
// So apply this equality to eliminate `v' in `le'.
numer_denom(m_i_j, numer, denom);
le -= coeff*v;
le += coeff*vj;
le *= denom;
le -= numer*coeff;
val_denom *= denom;
constant_v = true;
break;
}
m_j = *(m_begin + (j + 1));
m_cj = *(m_begin + cjj);
const N& m_j_i1 = m_j[i];
const N& m_i_j1 = m_cj[ci];
if ((!is_plus_infinity(m_i_j1) && !is_plus_infinity(m_j_i1))
&& (is_additive_inverse(m_i_j1, m_j_i1))) {
// The coefficient for `vj' in `le' is not 0
// and the constraint with `v' is an equality.
// So apply this equality to eliminate `v' in `le'.
numer_denom(m_i_j1, numer, denom);
le -= coeff*v;
le -= coeff*vj;
le *= denom;
le -= numer*coeff;
val_denom *= denom;
constant_v = true;
break;
}
}
if (!constant_v)
// The expression `expr' is not constant.
return false;
}
}
if (!constant_v)
// The expression `expr' is not constant.
return false;
// The expression 'expr' is constant.
freq_n = 0;
freq_d = 1;
// Reduce `val_n' and `val_d'.
normalize2(le.inhomogeneous_term(), val_denom, val_n, val_d);
return true;
}
template <typename T>
bool
Octagonal_Shape<T>::constrains(const Variable var) const {
// `var' should be one of the dimensions of the octagonal shape.
const dimension_type var_space_dim = var.space_dimension();
if (space_dimension() < var_space_dim)
throw_dimension_incompatible("constrains(v)", "v", var);
// An octagon known to be empty constrains all variables.
// (Note: do not force emptiness check _yet_)
if (marked_empty())
return true;
// Check whether `var' is syntactically constrained.
const dimension_type n_v = 2*(var_space_dim - 1);
typename OR_Matrix<N>::const_row_iterator m_iter = matrix.row_begin() + n_v;
typename OR_Matrix<N>::const_row_reference_type r_v = *m_iter;
typename OR_Matrix<N>::const_row_reference_type r_cv = *(++m_iter);
for (dimension_type h = m_iter.row_size(); h-- > 0; ) {
if (!is_plus_infinity(r_v[h]) || !is_plus_infinity(r_cv[h]))
return true;
}
++m_iter;
for (typename OR_Matrix<N>::const_row_iterator m_end = matrix.row_end();
m_iter != m_end; ++m_iter) {
typename OR_Matrix<N>::const_row_reference_type r = *m_iter;
if (!is_plus_infinity(r[n_v]) || !is_plus_infinity(r[n_v + 1]))
return true;
}
// `var' is not syntactically constrained:
// now force an emptiness check.
return is_empty();
}
template <typename T>
bool
Octagonal_Shape<T>::is_strong_coherent() const {
// This method is only used by method OK() so as to check if a
// strongly closed matrix is also strong-coherent, as it must be.
const dimension_type num_rows = matrix.num_rows();
// Allocated here once and for all.
PPL_DIRTY_TEMP(N, semi_sum);
// The strong-coherence is: for every indexes i and j (and i != j)
// matrix[i][j] <= (matrix[i][ci] + matrix[cj][j])/2
// where ci = i + 1, if i is even number or
// ci = i - 1, if i is odd.
// Ditto for cj.
for (dimension_type i = num_rows; i-- > 0; ) {
typename OR_Matrix<N>::const_row_iterator iter = matrix.row_begin() + i;
typename OR_Matrix<N>::const_row_reference_type m_i = *iter;
using namespace Implementation::Octagonal_Shapes;
const N& m_i_ci = m_i[coherent_index(i)];
for (dimension_type j = matrix.row_size(i); j-- > 0; )
// Note: on the main diagonal only PLUS_INFINITY can occur.
if (i != j) {
const N& m_cj_j = matrix[coherent_index(j)][j];
if (!is_plus_infinity(m_i_ci)
&& !is_plus_infinity(m_cj_j)) {
// Compute (m_i_ci + m_cj_j)/2 into `semi_sum',
// rounding the result towards plus infinity.
add_assign_r(semi_sum, m_i_ci, m_cj_j, ROUND_UP);
div_2exp_assign_r(semi_sum, semi_sum, 1, ROUND_UP);
if (m_i[j] > semi_sum)
return false;
}
}
}
return true;
}
template <typename T>
bool
Octagonal_Shape<T>::is_strongly_reduced() const {
// This method is only used in assertions: efficiency is not a must.
// An empty octagon is already transitively reduced.
if (marked_empty())
return true;
Octagonal_Shape x = *this;
// The matrix representing an OS is strongly reduced if, by removing
// any constraint, the resulting matrix describes a different OS.
for (typename OR_Matrix<N>::const_row_iterator iter = matrix.row_begin(),
matrix_row_end = matrix.row_end(); iter != matrix_row_end; ++iter) {
typename OR_Matrix<N>::const_row_reference_type m_i = *iter;
const dimension_type i = iter.index();
for (dimension_type j = iter.row_size(); j-- > 0; ) {
if (!is_plus_infinity(m_i[j])) {
Octagonal_Shape x_copy = *this;
assign_r(x_copy.matrix[i][j], PLUS_INFINITY, ROUND_NOT_NEEDED);
if (x == x_copy)
return false;
}
}
}
// The octagon is just reduced.
return true;
}
template <typename T>
bool
Octagonal_Shape<T>::bounds(const Linear_Expression& expr,
const bool from_above) const {
// The dimension of `expr' should not be greater than the dimension
// of `*this'.
const dimension_type expr_space_dim = expr.space_dimension();
if (space_dim < expr_space_dim)
throw_dimension_incompatible((from_above
? "bounds_from_above(e)"
: "bounds_from_below(e)"), "e", expr);
strong_closure_assign();
// A zero-dimensional or empty octagon bounds everything.
if (space_dim == 0 || marked_empty())
return true;
// The constraint `c' is used to check if `expr' is an octagonal difference
// and, in this case, to select the cell.
const Constraint& c = (from_above) ? expr <= 0 : expr >= 0;
dimension_type num_vars = 0;
dimension_type i = 0;
dimension_type j = 0;
PPL_DIRTY_TEMP_COEFFICIENT(coeff);
PPL_DIRTY_TEMP_COEFFICIENT(term);
if (Octagonal_Shape_Helper
::extract_octagonal_difference(c, c.space_dimension(), num_vars,
i, j, coeff, term)) {
if (num_vars == 0)
return true;
// Select the cell to be checked.
typename OR_Matrix<N>::const_row_iterator i_iter = matrix.row_begin() + i;
typename OR_Matrix<N>::const_row_reference_type m_i = *i_iter;
return !is_plus_infinity(m_i[j]);
}
else {
// `c' is not an octagonal constraint: use the MIP solver.
Optimization_Mode mode_bounds =
from_above ? MAXIMIZATION : MINIMIZATION;
MIP_Problem mip(space_dim, constraints(), expr, mode_bounds);
return mip.solve() == OPTIMIZED_MIP_PROBLEM;
}
}
template <typename T>
bool
Octagonal_Shape<T>::max_min(const Linear_Expression& expr,
const bool maximize,
Coefficient& ext_n, Coefficient& ext_d,
bool& included) const {
// The dimension of `expr' should not be greater than the dimension
// of `*this'.
const dimension_type expr_space_dim = expr.space_dimension();
if (space_dim < expr_space_dim)
throw_dimension_incompatible((maximize
? "maximize(e, ...)"
: "minimize(e, ...)"), "e", expr);
// Deal with zero-dim octagons first.
if (space_dim == 0) {
if (marked_empty())
return false;
else {
ext_n = expr.inhomogeneous_term();
ext_d = 1;
included = true;
return true;
}
}
strong_closure_assign();
// For an empty OS we simply return false.
if (marked_empty())
return false;
// The constraint `c' is used to check if `expr' is an octagonal difference
// and, in this case, to select the cell.
const Constraint& c = (maximize) ? expr <= 0 : expr >= 0;
dimension_type num_vars = 0;
dimension_type i = 0;
dimension_type j = 0;
PPL_DIRTY_TEMP_COEFFICIENT(coeff);
PPL_DIRTY_TEMP_COEFFICIENT(term);
if (!Octagonal_Shape_Helper
::extract_octagonal_difference(c, c.space_dimension(), num_vars,
i, j, coeff, term)) {
// `c' is not an octagonal constraint: use the MIP solver.
Optimization_Mode max_min = (maximize) ? MAXIMIZATION : MINIMIZATION;
MIP_Problem mip(space_dim, constraints(), expr, max_min);
if (mip.solve() == OPTIMIZED_MIP_PROBLEM) {
mip.optimal_value(ext_n, ext_d);
included = true;
return true;
}
else
// Here`expr' is unbounded in `*this'.
return false;
}
else {
// `c' is an octagonal constraint.
if (num_vars == 0) {
ext_n = expr.inhomogeneous_term();
ext_d = 1;
included = true;
return true;
}
// Select the cell to be checked.
typename OR_Matrix<N>::const_row_iterator i_iter = matrix.row_begin() + i;
typename OR_Matrix<N>::const_row_reference_type m_i = *i_iter;
PPL_DIRTY_TEMP(N, d);
if (!is_plus_infinity(m_i[j])) {
const Coefficient& b = expr.inhomogeneous_term();
PPL_DIRTY_TEMP_COEFFICIENT(minus_b);
neg_assign(minus_b, b);
const Coefficient& sc_b = maximize ? b : minus_b;
assign_r(d, sc_b, ROUND_UP);
// Set `coeff_expr' to the absolute value of coefficient of a variable
// of `expr'.
PPL_DIRTY_TEMP(N, coeff_expr);
const Coefficient& coeff_i = expr.coefficient(Variable(i/2));
const int sign_i = sgn(coeff_i);
if (sign_i > 0)
assign_r(coeff_expr, coeff_i, ROUND_UP);
else {
PPL_DIRTY_TEMP_COEFFICIENT(minus_coeff_i);
neg_assign(minus_coeff_i, coeff_i);
assign_r(coeff_expr, minus_coeff_i, ROUND_UP);
}
// Approximating the maximum/minimum of `expr'.
if (num_vars == 1) {
PPL_DIRTY_TEMP(N, m_i_j);
div_2exp_assign_r(m_i_j, m_i[j], 1, ROUND_UP);
add_mul_assign_r(d, coeff_expr, m_i_j, ROUND_UP);
}
else
add_mul_assign_r(d, coeff_expr, m_i[j], ROUND_UP);
numer_denom(d, ext_n, ext_d);
if (!maximize)
neg_assign(ext_n);
included = true;
return true;
}
// The `expr' is unbounded.
return false;
}
}
template <typename T>
bool
Octagonal_Shape<T>::max_min(const Linear_Expression& expr,
const bool maximize,
Coefficient& ext_n, Coefficient& ext_d,
bool& included, Generator& g) const {
// The dimension of `expr' should not be greater than the dimension
// of `*this'.
const dimension_type expr_space_dim = expr.space_dimension();
if (space_dim < expr_space_dim)
throw_dimension_incompatible((maximize
? "maximize(e, ...)"
: "minimize(e, ...)"), "e", expr);
// Deal with zero-dim octagons first.
if (space_dim == 0) {
if (marked_empty())
return false;
else {
ext_n = expr.inhomogeneous_term();
ext_d = 1;
included = true;
g = point();
return true;
}
}
strong_closure_assign();
// For an empty OS we simply return false.
if (marked_empty())
return false;
if (!is_universe()) {
// We use MIP_Problems to handle constraints that are not
// octagonal difference.
Optimization_Mode max_min = (maximize) ? MAXIMIZATION : MINIMIZATION;
MIP_Problem mip(space_dim, constraints(), expr, max_min);
if (mip.solve() == OPTIMIZED_MIP_PROBLEM) {
g = mip.optimizing_point();
mip.evaluate_objective_function(g, ext_n, ext_d);
included = true;
return true;
}
}
// The `expr' is unbounded.
return false;
}
template <typename T>
Poly_Con_Relation
Octagonal_Shape<T>::relation_with(const Congruence& cg) const {
dimension_type cg_space_dim = cg.space_dimension();
// Dimension-compatibility check.
if (cg_space_dim > space_dim)
throw_dimension_incompatible("relation_with(cg)", cg);
// If the congruence is an equality,
// find the relation with the equivalent equality constraint.
if (cg.is_equality()) {
Constraint c(cg);
return relation_with(c);
}
strong_closure_assign();
if (marked_empty())
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_included()
&& Poly_Con_Relation::is_disjoint();
if (space_dim == 0) {
if (cg.is_inconsistent())
return Poly_Con_Relation::is_disjoint();
else
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_included();
}
// Find the lower bound for a hyperplane with direction
// defined by the congruence.
Linear_Expression le(cg.expression());
PPL_DIRTY_TEMP_COEFFICIENT(min_numer);
PPL_DIRTY_TEMP_COEFFICIENT(min_denom);
bool min_included;
bool bounded_below = minimize(le, min_numer, min_denom, min_included);
// If there is no lower bound, then some of the hyperplanes defined by
// the congruence will strictly intersect the shape.
if (!bounded_below)
return Poly_Con_Relation::strictly_intersects();
// TODO: Consider adding a max_and_min() method, performing both
// maximization and minimization so as to possibly exploit
// incrementality of the MIP solver.
// Find the upper bound for a hyperplane with direction
// defined by the congruence.
PPL_DIRTY_TEMP_COEFFICIENT(max_numer);
PPL_DIRTY_TEMP_COEFFICIENT(max_denom);
bool max_included;
bool bounded_above = maximize(le, max_numer, max_denom, max_included);
// If there is no upper bound, then some of the hyperplanes defined by
// the congruence will strictly intersect the shape.
if (!bounded_above)
return Poly_Con_Relation::strictly_intersects();
PPL_DIRTY_TEMP_COEFFICIENT(signed_distance);
// Find the position value for the hyperplane that satisfies the congruence
// and is above the lower bound for the shape.
PPL_DIRTY_TEMP_COEFFICIENT(min_value);
min_value = min_numer / min_denom;
const Coefficient& modulus = cg.modulus();
signed_distance = min_value % modulus;
min_value -= signed_distance;
if (min_value * min_denom < min_numer)
min_value += modulus;
// Find the position value for the hyperplane that satisfies the congruence
// and is below the upper bound for the shape.
PPL_DIRTY_TEMP_COEFFICIENT(max_value);
max_value = max_numer / max_denom;
signed_distance = max_value % modulus;
max_value += signed_distance;
if (max_value * max_denom > max_numer)
max_value -= modulus;
// If the upper bound value is less than the lower bound value,
// then there is an empty intersection with the congruence;
// otherwise it will strictly intersect.
if (max_value < min_value)
return Poly_Con_Relation::is_disjoint();
else
return Poly_Con_Relation::strictly_intersects();
}
template <typename T>
Poly_Con_Relation
Octagonal_Shape<T>::relation_with(const Constraint& c) const {
dimension_type c_space_dim = c.space_dimension();
// Dimension-compatibility check.
if (c_space_dim > space_dim)
throw_dimension_incompatible("relation_with(c)", c);
// The closure needs to make explicit the implicit constraints.
strong_closure_assign();
if (marked_empty())
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_included()
&& Poly_Con_Relation::is_disjoint();
if (space_dim == 0) {
// Trivially false zero-dimensional constraint.
if ((c.is_equality() && c.inhomogeneous_term() != 0)
|| (c.is_inequality() && c.inhomogeneous_term() < 0))
return Poly_Con_Relation::is_disjoint();
else if (c.is_strict_inequality() && c.inhomogeneous_term() == 0)
// The constraint 0 > 0 implicitly defines the hyperplane 0 = 0;
// thus, the zero-dimensional point also saturates it.
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_disjoint();
// Trivially true zero-dimensional constraint.
else if (c.is_equality() || c.inhomogeneous_term() == 0)
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_included();
else
// The zero-dimensional point saturates
// neither the positivity constraint 1 >= 0,
// nor the strict positivity constraint 1 > 0.
return Poly_Con_Relation::is_included();
}
dimension_type num_vars = 0;
dimension_type i = 0;
dimension_type j = 0;
PPL_DIRTY_TEMP_COEFFICIENT(coeff);
PPL_DIRTY_TEMP_COEFFICIENT(c_term);
if (!Octagonal_Shape_Helper
::extract_octagonal_difference(c, c_space_dim, num_vars,
i, j, coeff, c_term)) {
// Constraints that are not octagonal differences.
// Use maximize() and minimize() to do much of the work.
// Find the linear expression for the constraint and use that to
// find if the expression is bounded from above or below and if it
// is, find the maximum and minimum values.
Linear_Expression le;
le.set_space_dimension(c.space_dimension());
le.linear_combine(c.expr, Coefficient_one(), Coefficient_one(),
1, c_space_dim + 1);
PPL_DIRTY_TEMP(Coefficient, max_numer);
PPL_DIRTY_TEMP(Coefficient, max_denom);
bool max_included;
PPL_DIRTY_TEMP(Coefficient, min_numer);
PPL_DIRTY_TEMP(Coefficient, min_denom);
bool min_included;
bool bounded_above = maximize(le, max_numer, max_denom, max_included);
bool bounded_below = minimize(le, min_numer, min_denom, min_included);
if (!bounded_above) {
if (!bounded_below)
return Poly_Con_Relation::strictly_intersects();
min_numer += c.inhomogeneous_term() * min_denom;
switch (sgn(min_numer)) {
case 1:
if (c.is_equality())
return Poly_Con_Relation::is_disjoint();
return Poly_Con_Relation::is_included();
case 0:
if (c.is_strict_inequality() || c.is_equality())
return Poly_Con_Relation::strictly_intersects();
return Poly_Con_Relation::is_included();
case -1:
return Poly_Con_Relation::strictly_intersects();
}
}
if (!bounded_below) {
max_numer += c.inhomogeneous_term() * max_denom;
switch (sgn(max_numer)) {
case 1:
return Poly_Con_Relation::strictly_intersects();
case 0:
if (c.is_strict_inequality())
return Poly_Con_Relation::is_disjoint();
return Poly_Con_Relation::strictly_intersects();
case -1:
return Poly_Con_Relation::is_disjoint();
}
}
else {
max_numer += c.inhomogeneous_term() * max_denom;
min_numer += c.inhomogeneous_term() * min_denom;
switch (sgn(max_numer)) {
case 1:
switch (sgn(min_numer)) {
case 1:
if (c.is_equality())
return Poly_Con_Relation::is_disjoint();
return Poly_Con_Relation::is_included();
case 0:
if (c.is_equality())
return Poly_Con_Relation::strictly_intersects();
if (c.is_strict_inequality())
return Poly_Con_Relation::strictly_intersects();
return Poly_Con_Relation::is_included();
case -1:
return Poly_Con_Relation::strictly_intersects();
}
PPL_UNREACHABLE;
break;
case 0:
if (min_numer == 0) {
if (c.is_strict_inequality())
return Poly_Con_Relation::is_disjoint()
&& Poly_Con_Relation::saturates();
return Poly_Con_Relation::is_included()
&& Poly_Con_Relation::saturates();
}
if (c.is_strict_inequality())
return Poly_Con_Relation::is_disjoint();
return Poly_Con_Relation::strictly_intersects();
case -1:
return Poly_Con_Relation::is_disjoint();
}
}
}
if (num_vars == 0) {
// Dealing with a trivial constraint.
switch (sgn(c.inhomogeneous_term())) {
case -1:
return Poly_Con_Relation::is_disjoint();
case 0:
if (c.is_strict_inequality())
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_disjoint();
else
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_included();
case 1:
if (c.is_equality())
return Poly_Con_Relation::is_disjoint();
else
return Poly_Con_Relation::is_included();
}
}
// Select the cell to be checked for the "<=" part of constraint.
typename OR_Matrix<N>::const_row_iterator i_iter = matrix.row_begin() + i;
typename OR_Matrix<N>::const_row_reference_type m_i = *i_iter;
const N& m_i_j = m_i[j];
// Set `coeff' to the absolute value of itself.
if (coeff < 0)
neg_assign(coeff);
// Select the cell to be checked for the ">=" part of constraint.
// Select the right row of the cell.
if (i % 2 == 0)
++i_iter;
else
--i_iter;
typename OR_Matrix<N>::const_row_reference_type m_ci = *i_iter;
using namespace Implementation::Octagonal_Shapes;
const N& m_ci_cj = m_ci[coherent_index(j)];
PPL_DIRTY_TEMP_COEFFICIENT(numer);
PPL_DIRTY_TEMP_COEFFICIENT(denom);
// The following variables of mpq_class type are used to be precise
// when the octagon is defined by integer constraints.
PPL_DIRTY_TEMP(mpq_class, q_x);
PPL_DIRTY_TEMP(mpq_class, q_y);
PPL_DIRTY_TEMP(mpq_class, d);
PPL_DIRTY_TEMP(mpq_class, d1);
PPL_DIRTY_TEMP(mpq_class, c_denom);
PPL_DIRTY_TEMP(mpq_class, q_denom);
assign_r(c_denom, coeff, ROUND_NOT_NEEDED);
assign_r(d, c_term, ROUND_NOT_NEEDED);
neg_assign_r(d1, d, ROUND_NOT_NEEDED);
div_assign_r(d, d, c_denom, ROUND_NOT_NEEDED);
div_assign_r(d1, d1, c_denom, ROUND_NOT_NEEDED);
if (is_plus_infinity(m_i_j)) {
if (!is_plus_infinity(m_ci_cj)) {
// `*this' is in the following form:
// `-m_ci_cj <= v - u'.
// In this case `*this' is disjoint from `c' if
// `-m_ci_cj > d' (`-m_ci_cj >= d' if c is a strict inequality),
// i.e., if `m_ci_cj < d1' (`m_ci_cj <= d1'
// if c is a strict inequality).
numer_denom(m_ci_cj, numer, denom);
assign_r(q_denom, denom, ROUND_NOT_NEEDED);
assign_r(q_y, numer, ROUND_NOT_NEEDED);
div_assign_r(q_y, q_y, q_denom, ROUND_NOT_NEEDED);
if (q_y < d1)
return Poly_Con_Relation::is_disjoint();
if (q_y == d1 && c.is_strict_inequality())
return Poly_Con_Relation::is_disjoint();
}
// In all other cases `*this' intersects `c'.
return Poly_Con_Relation::strictly_intersects();
}
// Here `m_i_j' is not plus-infinity.
numer_denom(m_i_j, numer, denom);
assign_r(q_denom, denom, ROUND_NOT_NEEDED);
assign_r(q_x, numer, ROUND_NOT_NEEDED);
div_assign_r(q_x, q_x, q_denom, ROUND_NOT_NEEDED);
if (!is_plus_infinity(m_ci_cj)) {
numer_denom(m_ci_cj, numer, denom);
assign_r(q_denom, denom, ROUND_NOT_NEEDED);
assign_r(q_y, numer, ROUND_NOT_NEEDED);
div_assign_r(q_y, q_y, q_denom, ROUND_NOT_NEEDED);
if (q_x == d && q_y == d1) {
if (c.is_strict_inequality())
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_disjoint();
else
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_included();
}
// `*this' is disjoint from `c' when
// `m_ci_cj < d1' (`m_ci_cj <= d1' if `c' is a strict inequality).
if (q_y < d1)
return Poly_Con_Relation::is_disjoint();
if (q_y == d1 && c.is_strict_inequality())
return Poly_Con_Relation::is_disjoint();
}
// Here `m_ci_cj' can be also plus-infinity.
// If `c' is an equality, `*this' is disjoint from `c' if
// `m_i_j < d'.
if (d > q_x) {
if (c.is_equality())
return Poly_Con_Relation::is_disjoint();
else
return Poly_Con_Relation::is_included();
}
if (d == q_x && c.is_nonstrict_inequality())
return Poly_Con_Relation::is_included();
// In all other cases `*this' intersects `c'.
return Poly_Con_Relation::strictly_intersects();
}
template <typename T>
Poly_Gen_Relation
Octagonal_Shape<T>::relation_with(const Generator& g) const {
const dimension_type g_space_dim = g.space_dimension();
// Dimension-compatibility check.
if (space_dim < g_space_dim)
throw_dimension_incompatible("relation_with(g)", g);
// The closure needs to make explicit the implicit constraints and if the
// octagon is empty.
strong_closure_assign();
// The empty octagon cannot subsume a generator.
if (marked_empty())
return Poly_Gen_Relation::nothing();
// A universe octagon in a zero-dimensional space subsumes
// all the generators of a zero-dimensional space.
if (space_dim == 0)
return Poly_Gen_Relation::subsumes();
const bool is_line = g.is_line();
const bool is_line_or_ray = g.is_line_or_ray();
// The relation between the octagon and the given generator is obtained
// checking if the generator satisfies all the constraints in the octagon.
// To check if the generator satisfies all the constraints it's enough
// studying the sign of the scalar product between the generator and
// all the constraints in the octagon.
typedef typename OR_Matrix<N>::const_row_iterator row_iterator;
typedef typename OR_Matrix<N>::const_row_reference_type row_reference;
const row_iterator m_begin = matrix.row_begin();
const row_iterator m_end = matrix.row_end();
PPL_DIRTY_TEMP_COEFFICIENT(numer);
PPL_DIRTY_TEMP_COEFFICIENT(denom);
PPL_DIRTY_TEMP_COEFFICIENT(product);
// We find in `*this' all the constraints.
for (row_iterator i_iter = m_begin; i_iter != m_end; i_iter += 2) {
dimension_type i = i_iter.index();
row_reference m_i = *i_iter;
row_reference m_ii = *(i_iter + 1);
const N& m_i_ii = m_i[i + 1];
const N& m_ii_i = m_ii[i];
// We have the unary constraints.
const Variable x(i/2);
const Coefficient& g_coeff_x
= (x.space_dimension() > g_space_dim)
? Coefficient_zero()
: g.coefficient(x);
if (is_additive_inverse(m_i_ii, m_ii_i)) {
// The constraint has form ax = b.
// To satisfy the constraint it is necessary that the scalar product
// is not zero. The scalar product has the form
// 'denom * g_coeff_x - numer * g.divisor()'.
numer_denom(m_ii_i, numer, denom);
denom *= 2;
product = denom * g_coeff_x;
// Note that if the generator `g' is a line or a ray,
// its divisor is zero.
if (!is_line_or_ray) {
neg_assign(numer);
add_mul_assign(product, numer, g.divisor());
}
if (product != 0)
return Poly_Gen_Relation::nothing();
}
// We have 0, 1 or 2 inequality constraints.
else {
if (!is_plus_infinity(m_i_ii)) {
// The constraint has form -ax <= b.
// If the generator is a line it's necessary to check if
// the scalar product is not zero, if it is positive otherwise.
numer_denom(m_i_ii, numer, denom);
denom *= -2;
product = denom * g_coeff_x;
// Note that if the generator `g' is a line or a ray,
// its divisor is zero.
if (!is_line_or_ray) {
neg_assign(numer);
add_mul_assign(product, numer, g.divisor());
}
if (is_line && product != 0)
return Poly_Gen_Relation::nothing();
else
// If the generator is not a line it's necessary to check
// that the scalar product sign is not positive and the scalar
// product has the form
// '-denom * g.coeff_x - numer * g.divisor()'.
if (product > 0)
return Poly_Gen_Relation::nothing();
}
if (!is_plus_infinity(m_ii_i)) {
// The constraint has form ax <= b.
numer_denom(m_ii_i, numer, denom);
denom *= 2;
product = denom * g_coeff_x;
// Note that if the generator `g' is a line or a ray,
// its divisor is zero.
if (!is_line_or_ray) {
neg_assign(numer);
add_mul_assign(product, numer , g.divisor());
}
if (is_line && product != 0)
return Poly_Gen_Relation::nothing();
else
// If the generator is not a line it's necessary to check
// that the scalar product sign is not positive and the scalar
// product has the form
// 'denom * g_coeff_x - numer * g.divisor()'.
if (product > 0)
return Poly_Gen_Relation::nothing();
}
}
}
// We have the binary constraints.
for (row_iterator i_iter = m_begin ; i_iter != m_end; i_iter += 2) {
dimension_type i = i_iter.index();
row_reference m_i = *i_iter;
row_reference m_ii = *(i_iter + 1);
for (dimension_type j = 0; j < i; j += 2) {
const N& m_i_j = m_i[j];
const N& m_ii_jj = m_ii[j + 1];
const N& m_ii_j = m_ii[j];
const N& m_i_jj = m_i[j + 1];
const Variable x(j/2);
const Variable y(i/2);
const Coefficient& g_coeff_x
= (x.space_dimension() > g_space_dim)
? Coefficient_zero()
: g.coefficient(x);
const Coefficient& g_coeff_y
= (y.space_dimension() > g_space_dim)
? Coefficient_zero()
: g.coefficient(y);
const bool difference_is_equality = is_additive_inverse(m_ii_jj, m_i_j);
if (difference_is_equality) {
// The constraint has form a*x - a*y = b.
// The scalar product has the form
// 'denom * coeff_x - denom * coeff_y - numer * g.divisor()'.
// To satisfy the constraint it's necessary that the scalar product
// is not zero.
numer_denom(m_i_j, numer, denom);
product = denom * g_coeff_x;
neg_assign(denom);
add_mul_assign(product, denom, g_coeff_y);
// Note that if the generator `g' is a line or a ray,
// its divisor is zero.
if (!is_line_or_ray) {
neg_assign(numer);
add_mul_assign(product, numer, g.divisor());
}
if (product != 0)
return Poly_Gen_Relation::nothing();
}
else {
if (!is_plus_infinity(m_i_j)) {
// The constraint has form a*x - a*y <= b.
// The scalar product has the form
// 'denom * coeff_x - denom * coeff_y - numer * g.divisor()'.
// If the generator is not a line it's necessary to check
// that the scalar product sign is not positive.
numer_denom(m_i_j, numer, denom);
product = denom * g_coeff_x;
neg_assign(denom);
add_mul_assign(product, denom, g_coeff_y);
// Note that if the generator `g' is a line or a ray,
// its divisor is zero.
if (!is_line_or_ray) {
neg_assign(numer);
add_mul_assign(product, numer, g.divisor());
}
if (is_line && product != 0)
return Poly_Gen_Relation::nothing();
else if (product > 0)
return Poly_Gen_Relation::nothing();
}
if (!is_plus_infinity(m_ii_jj)) {
// The constraint has form -a*x + a*y <= b.
// The scalar product has the form
// '-denom * coeff_x + denom * coeff_y - numer * g.divisor()'.
// If the generator is not a line it's necessary to check
// that the scalar product sign is not positive.
numer_denom(m_ii_jj, numer, denom);
product = denom * g_coeff_y;
neg_assign(denom);
add_mul_assign(product, denom, g_coeff_x);
// Note that if the generator `g' is a line or a ray,
// its divisor is zero.
if (!is_line_or_ray) {
neg_assign(numer);
add_mul_assign(product, numer, g.divisor());
}
if (is_line && product != 0)
return Poly_Gen_Relation::nothing();
else if (product > 0)
return Poly_Gen_Relation::nothing();
}
}
const bool sum_is_equality = is_additive_inverse(m_i_jj, m_ii_j);
if (sum_is_equality) {
// The constraint has form a*x + a*y = b.
// The scalar product has the form
// 'denom * coeff_x + denom * coeff_y - numer * g.divisor()'.
// To satisfy the constraint it's necessary that the scalar product
// is not zero.
numer_denom(m_ii_j, numer, denom);
product = denom * g_coeff_x;
add_mul_assign(product, denom, g_coeff_y);
// Note that if the generator `g' is a line or a ray,
// its divisor is zero.
if (!is_line_or_ray) {
neg_assign(numer);
add_mul_assign(product, numer, g.divisor());
}
if (product != 0)
return Poly_Gen_Relation::nothing();
}
else {
if (!is_plus_infinity(m_i_jj)) {
// The constraint has form -a*x - a*y <= b.
// The scalar product has the form
// '-denom * coeff_x - denom * coeff_y - numer * g.divisor()'.
// If the generator is not a line it's necessary to check
// that the scalar product sign is not positive.
numer_denom(m_i_jj, numer, denom);
neg_assign(denom);
product = denom * g_coeff_x;
add_mul_assign(product, denom, g_coeff_y);
// Note that if the generator `g' is a line or a ray,
// its divisor is zero.
if (!is_line_or_ray) {
neg_assign(numer);
add_mul_assign(product, numer, g.divisor());
}
if (is_line && product != 0)
return Poly_Gen_Relation::nothing();
else if (product > 0)
return Poly_Gen_Relation::nothing();
}
if (!is_plus_infinity(m_ii_j)) {
// The constraint has form a*x + a*y <= b.
// The scalar product has the form
// 'denom * coeff_x + denom * coeff_y - numer * g.divisor()'.
// If the generator is not a line it's necessary to check
// that the scalar product sign is not positive.
numer_denom(m_ii_j, numer, denom);
product = denom * g_coeff_x;
add_mul_assign(product, denom, g_coeff_y);
// Note that if the generator `g' is a line or a ray,
// its divisor is zero.
if (!is_line_or_ray) {
neg_assign(numer);
add_mul_assign(product, numer, g.divisor());
}
if (is_line && product != 0)
return Poly_Gen_Relation::nothing();
else if (product > 0)
return Poly_Gen_Relation::nothing();
}
}
}
}
// If this point is reached the constraint 'g' satisfies
// all the constraints in the octagon.
return Poly_Gen_Relation::subsumes();
}
template <typename T>
void
Octagonal_Shape<T>::strong_closure_assign() const {
// Do something only if necessary (zero-dim implies strong closure).
if (marked_empty() || marked_strongly_closed() || space_dim == 0)
return;
// Even though the octagon will not change, its internal representation
// is going to be modified by the closure algorithm.
Octagonal_Shape& x = const_cast<Octagonal_Shape<T>&>(*this);
typedef typename OR_Matrix<N>::row_iterator row_iterator;
typedef typename OR_Matrix<N>::row_reference_type row_reference;
const dimension_type n_rows = x.matrix.num_rows();
const row_iterator m_begin = x.matrix.row_begin();
const row_iterator m_end = x.matrix.row_end();
// Fill the main diagonal with zeros.
for (row_iterator i = m_begin; i != m_end; ++i) {
PPL_ASSERT(is_plus_infinity((*i)[i.index()]));
assign_r((*i)[i.index()], 0, ROUND_NOT_NEEDED);
}
// This algorithm is given by two steps: the first one is a simple
// adaptation of the `shortest-path closure' using the Floyd-Warshall
// algorithm; the second one is the `strong-coherence' algorithm.
// It is important to note that after the strong-coherence,
// the octagon is still shortest-path closed and hence, strongly closed.
// Recall that, given an index `h', we indicate with `ch' the coherent
// index, i.e., the index such that:
// ch = h + 1, if h is an even number;
// ch = h - 1, if h is an odd number.
typename OR_Matrix<N>::element_iterator iter_ij;
std::vector<N> vec_k(n_rows);
std::vector<N> vec_ck(n_rows);
PPL_DIRTY_TEMP(N, sum1);
PPL_DIRTY_TEMP(N, sum2);
row_reference x_k;
row_reference x_ck;
row_reference x_i;
row_reference x_ci;
// Since the index `j' of the inner loop will go from 0 up to `i',
// the three nested loops have to be executed twice.
for (int twice = 0; twice < 2; ++twice) {
row_iterator x_k_iter = m_begin;
row_iterator x_i_iter = m_begin;
for (dimension_type k = 0; k < n_rows; k += 2) {
const dimension_type ck = k + 1;
// Re-initialize the element iterator.
iter_ij = x.matrix.element_begin();
// Compute the row references `x_k' and `x_ck'.
x_k = *x_k_iter;
++x_k_iter;
x_ck = *x_k_iter;
++x_k_iter;
for (dimension_type i = 0; i <= k; i += 2) {
const dimension_type ci = i + 1;
// Storing x_k_i == x_ci_ck.
vec_k[i] = x_k[i];
// Storing x_k_ci == x_i_ck.
vec_k[ci] = x_k[ci];
// Storing x_ck_i == x_ci_k.
vec_ck[i] = x_ck[i];
// Storing x_ck_ci == x_i_k.
vec_ck[ci] = x_ck[ci];
}
x_i_iter = x_k_iter;
for (dimension_type i = k + 2; i < n_rows; i += 2) {
const dimension_type ci = i + 1;
x_i = *x_i_iter;
++x_i_iter;
x_ci = *x_i_iter;
++x_i_iter;
// Storing x_k_i == x_ci_ck.
vec_k[i] = x_ci[ck];
// Storing x_k_ci == x_i_ck.
vec_k[ci] = x_i[ck];
// Storing x_ck_i == x_ci_k.
vec_ck[i] = x_ci[k];
// Storing x_ck_ci == x_i_k.
vec_ck[ci] = x_i[k];
}
for (dimension_type i = 0; i < n_rows; ++i) {
using namespace Implementation::Octagonal_Shapes;
const dimension_type ci = coherent_index(i);
const N& vec_k_ci = vec_k[ci];
const N& vec_ck_ci = vec_ck[ci];
// Unfolding two iterations on `j': this ensures that
// the loop exit condition `j <= i' is OK.
for (dimension_type j = 0; j <= i; ) {
// First iteration: compute
//
// <CODE>
// sum1 = x_i_k + x_k_j == x_ck_ci + x_k_j;
// sum2 = x_i_ck + x_ck_j == x_k_ci + x_ck_j;
// </CODE>
add_assign_r(sum1, vec_ck_ci, vec_k[j], ROUND_UP);
add_assign_r(sum2, vec_k_ci, vec_ck[j], ROUND_UP);
min_assign(sum1, sum2);
min_assign(*iter_ij, sum1);
// Exiting the first iteration: loop index control.
++j;
++iter_ij;
// Second iteration: ditto.
add_assign_r(sum1, vec_ck_ci, vec_k[j], ROUND_UP);
add_assign_r(sum2, vec_k_ci, vec_ck[j], ROUND_UP);
min_assign(sum1, sum2);
min_assign(*iter_ij, sum1);
// Exiting the second iteration: loop index control.
++j;
++iter_ij;
}
}
}
}
// Check for emptiness: the octagon is empty if and only if there is a
// negative value in the main diagonal.
for (row_iterator i = m_begin; i != m_end; ++i) {
N& x_i_i = (*i)[i.index()];
if (sgn(x_i_i) < 0) {
x.set_empty();
return;
}
else {
PPL_ASSERT(sgn(x_i_i) == 0);
// Restore PLUS_INFINITY on the main diagonal.
assign_r(x_i_i, PLUS_INFINITY, ROUND_NOT_NEEDED);
}
}
// Step 2: we enforce the strong coherence.
x.strong_coherence_assign();
// The octagon is not empty and it is now strongly closed.
x.set_strongly_closed();
}
template <typename T>
void
Octagonal_Shape<T>::strong_coherence_assign() {
// The strong-coherence is: for every indexes i and j
// m_i_j <= (m_i_ci + m_cj_j)/2
// where ci = i + 1, if i is even number or
// ci = i - 1, if i is odd.
// Ditto for cj.
PPL_DIRTY_TEMP(N, semi_sum);
for (typename OR_Matrix<N>::row_iterator i_iter = matrix.row_begin(),
i_end = matrix.row_end(); i_iter != i_end; ++i_iter) {
typename OR_Matrix<N>::row_reference_type x_i = *i_iter;
const dimension_type i = i_iter.index();
using namespace Implementation::Octagonal_Shapes;
const N& x_i_ci = x_i[coherent_index(i)];
// Avoid to do unnecessary sums.
if (!is_plus_infinity(x_i_ci))
for (dimension_type j = 0, rs_i = i_iter.row_size(); j < rs_i; ++j)
if (i != j) {
const N& x_cj_j = matrix[coherent_index(j)][j];
if (!is_plus_infinity(x_cj_j)) {
add_assign_r(semi_sum, x_i_ci, x_cj_j, ROUND_UP);
div_2exp_assign_r(semi_sum, semi_sum, 1, ROUND_UP);
min_assign(x_i[j], semi_sum);
}
}
}
}
template <typename T>
bool
Octagonal_Shape<T>::tight_coherence_would_make_empty() const {
PPL_ASSERT(std::numeric_limits<N>::is_integer);
PPL_ASSERT(marked_strongly_closed());
const dimension_type space_dim = space_dimension();
for (dimension_type i = 0; i < 2*space_dim; i += 2) {
const dimension_type ci = i + 1;
const N& mat_i_ci = matrix[i][ci];
if (!is_plus_infinity(mat_i_ci)
// Check for oddness of `mat_i_ci'.
&& !is_even(mat_i_ci)
// Check for zero-equivalence of `i' and `ci'.
&& is_additive_inverse(mat_i_ci, matrix[ci][i]))
return true;
}
return false;
}
template <typename T>
void
Octagonal_Shape<T>::tight_closure_assign() {
PPL_COMPILE_TIME_CHECK(std::numeric_limits<T>::is_integer,
"Octagonal_Shape<T>::tight_closure_assign():"
" T in not an integer datatype.");
// FIXME: this is just an executable specification.
// (The following call could be replaced by shortest-path closure.)
strong_closure_assign();
if (marked_empty())
return;
if (tight_coherence_would_make_empty())
set_empty();
else {
// Tighten the unary constraints.
PPL_DIRTY_TEMP(N, temp_one);
assign_r(temp_one, 1, ROUND_NOT_NEEDED);
const dimension_type space_dim = space_dimension();
for (dimension_type i = 0; i < 2*space_dim; i += 2) {
const dimension_type ci = i + 1;
N& mat_i_ci = matrix[i][ci];
if (!is_plus_infinity(mat_i_ci) && !is_even(mat_i_ci))
sub_assign_r(mat_i_ci, mat_i_ci, temp_one, ROUND_UP);
N& mat_ci_i = matrix[ci][i];
if (!is_plus_infinity(mat_ci_i) && !is_even(mat_ci_i))
sub_assign_r(mat_ci_i, mat_ci_i, temp_one, ROUND_UP);
}
// Propagate tightened unary constraints.
strong_coherence_assign();
}
PPL_ASSERT(OK());
}
template <typename T>
void
Octagonal_Shape<T>
::incremental_strong_closure_assign(const Variable var) const {
// `var' should be one of the dimensions of the octagon.
if (var.id() >= space_dim)
throw_dimension_incompatible("incremental_strong_closure_assign(v)",
var.id());
// Do something only if necessary.
if (marked_empty() || marked_strongly_closed())
return;
Octagonal_Shape& x = const_cast<Octagonal_Shape<T>&>(*this);
typedef typename OR_Matrix<N>::row_iterator row_iterator;
typedef typename OR_Matrix<N>::row_reference_type row_reference;
const row_iterator m_begin = x.matrix.row_begin();
const row_iterator m_end = x.matrix.row_end();
// Fill the main diagonal with zeros.
for (row_iterator i = m_begin; i != m_end; ++i) {
PPL_ASSERT(is_plus_infinity((*i)[i.index()]));
assign_r((*i)[i.index()], 0, ROUND_NOT_NEEDED);
}
// Using the incremental Floyd-Warshall algorithm.
// Step 1: Improve all constraints on variable `var'.
const dimension_type v = 2*var.id();
const dimension_type cv = v + 1;
row_iterator v_iter = m_begin + v;
row_iterator cv_iter = v_iter + 1;
row_reference x_v = *v_iter;
row_reference x_cv = *cv_iter;
const dimension_type rs_v = v_iter.row_size();
const dimension_type n_rows = x.matrix.num_rows();
PPL_DIRTY_TEMP(N, sum);
using namespace Implementation::Octagonal_Shapes;
for (row_iterator k_iter = m_begin; k_iter != m_end; ++k_iter) {
const dimension_type k = k_iter.index();
const dimension_type ck = coherent_index(k);
const dimension_type rs_k = k_iter.row_size();
row_reference x_k = *k_iter;
row_reference x_ck = (k % 2 != 0) ? *(k_iter-1) : *(k_iter + 1);
for (row_iterator i_iter = m_begin; i_iter != m_end; ++i_iter) {
const dimension_type i = i_iter.index();
const dimension_type ci = coherent_index(i);
const dimension_type rs_i = i_iter.row_size();
row_reference x_i = *i_iter;
row_reference x_ci = (i % 2 != 0) ? *(i_iter-1) : *(i_iter + 1);
const N& x_i_k = (k < rs_i) ? x_i[k] : x_ck[ci];
if (!is_plus_infinity(x_i_k)) {
const N& x_k_v = (v < rs_k) ? x_k[v] : x_cv[ck];
if (!is_plus_infinity(x_k_v)) {
add_assign_r(sum, x_i_k, x_k_v, ROUND_UP);
N& x_i_v = (v < rs_i) ? x_i[v] : x_cv[ci];
min_assign(x_i_v, sum);
}
const N& x_k_cv = (cv < rs_k) ? x_k[cv] : x_v[ck];
if (!is_plus_infinity(x_k_cv)) {
add_assign_r(sum, x_i_k, x_k_cv, ROUND_UP);
N& x_i_cv = (cv < rs_i) ? x_i[cv] : x_v[ci];
min_assign(x_i_cv, sum);
}
}
const N& x_k_i = (i < rs_k) ? x_k[i] : x_ci[ck];
if (!is_plus_infinity(x_k_i)) {
const N& x_v_k = (k < rs_v) ? x_v[k] : x_ck[cv];
if (!is_plus_infinity(x_v_k)) {
N& x_v_i = (i < rs_v) ? x_v[i] : x_ci[cv];
add_assign_r(sum, x_v_k, x_k_i, ROUND_UP);
min_assign(x_v_i, sum);
}
const N& x_cv_k = (k < rs_v) ? x_cv[k] : x_ck[v];
if (!is_plus_infinity(x_cv_k)) {
N& x_cv_i = (i < rs_v) ? x_cv[i] : x_ci[v];
add_assign_r(sum, x_cv_k, x_k_i, ROUND_UP);
min_assign(x_cv_i, sum);
}
}
}
}
// Step 2: improve the other bounds by using the precise bounds
// for the constraints on `var'.
for (row_iterator i_iter = m_begin; i_iter != m_end; ++i_iter) {
const dimension_type i = i_iter.index();
const dimension_type ci = coherent_index(i);
const dimension_type rs_i = i_iter.row_size();
row_reference x_i = *i_iter;
const N& x_i_v = (v < rs_i) ? x_i[v] : x_cv[ci];
// TODO: see if it is possible to optimize this inner loop
// by splitting it into several parts, so as to avoid
// conditional expressions.
for (dimension_type j = 0; j < n_rows; ++j) {
const dimension_type cj = coherent_index(j);
row_reference x_cj = *(m_begin + cj);
N& x_i_j = (j < rs_i) ? x_i[j] : x_cj[ci];
if (!is_plus_infinity(x_i_v)) {
const N& x_v_j = (j < rs_v) ? x_v[j] : x_cj[cv];
if (!is_plus_infinity(x_v_j)) {
add_assign_r(sum, x_i_v, x_v_j, ROUND_UP);
min_assign(x_i_j, sum);
}
}
const N& x_i_cv = (cv < rs_i) ? x_i[cv] : x_v[ci];
if (!is_plus_infinity(x_i_cv)) {
const N& x_cv_j = (j < rs_v) ? x_cv[j] : x_cj[v];
if (!is_plus_infinity(x_cv_j)) {
add_assign_r(sum, x_i_cv, x_cv_j, ROUND_UP);
min_assign(x_i_j, sum);
}
}
}
}
// Check for emptiness: the octagon is empty if and only if there is a
// negative value on the main diagonal.
for (row_iterator i = m_begin; i != m_end; ++i) {
N& x_i_i = (*i)[i.index()];
if (sgn(x_i_i) < 0) {
x.set_empty();
return;
}
else {
// Restore PLUS_INFINITY on the main diagonal.
PPL_ASSERT(sgn(x_i_i) == 0);
assign_r(x_i_i, PLUS_INFINITY, ROUND_NOT_NEEDED);
}
}
// Step 3: we enforce the strong coherence.
x.strong_coherence_assign();
// The octagon is not empty and it is now strongly closed.
x.set_strongly_closed();
}
template <typename T>
void
Octagonal_Shape<T>
::compute_successors(std::vector<dimension_type>& successor) const {
PPL_ASSERT(!marked_empty() && marked_strongly_closed());
PPL_ASSERT(successor.size() == 0);
// Variables are ordered according to their index.
// The vector `successor' is used to indicate which variable
// immediately follows a given one in the corresponding equivalence class.
const dimension_type successor_size = matrix.num_rows();
// Initially, each variable is successor of its own zero-equivalence class.
successor.reserve(successor_size);
for (dimension_type i = 0; i < successor_size; ++i)
successor.push_back(i);
// Now compute actual successors.
for (dimension_type i = successor_size; i-- > 0; ) {
typename OR_Matrix<N>::const_row_iterator i_iter = matrix.row_begin() + i;
typename OR_Matrix<N>::const_row_reference_type m_i = *i_iter;
typename OR_Matrix<N>::const_row_reference_type m_ci
= (i % 2 != 0) ? *(i_iter-1) : *(i_iter + 1);
for (dimension_type j = 0; j < i; ++j) {
// FIXME: what is the following, commented-out for?
//for (dimension_type j = i; j-- > 0; ) {
using namespace Implementation::Octagonal_Shapes;
dimension_type cj = coherent_index(j);
if (is_additive_inverse(m_ci[cj], m_i[j]))
// Choose as successor the variable having the greatest index.
successor[j] = i;
}
}
}
template <typename T>
void
Octagonal_Shape<T>
::compute_leaders(std::vector<dimension_type>& leaders) const {
PPL_ASSERT(!marked_empty() && marked_strongly_closed());
PPL_ASSERT(leaders.size() == 0);
// Variables are ordered according to their index.
// The vector `leaders' is used to indicate the smallest variable
// that belongs to the corresponding equivalence class.
const dimension_type leader_size = matrix.num_rows();
// Initially, each variable is leader of its own zero-equivalence class.
leaders.reserve(leader_size);
for (dimension_type i = 0; i < leader_size; ++i)
leaders.push_back(i);
// Now compute actual leaders.
for (typename OR_Matrix<N>::const_row_iterator i_iter = matrix.row_begin(),
matrix_row_end = matrix.row_end();
i_iter != matrix_row_end; ++i_iter) {
typename OR_Matrix<N>::const_row_reference_type m_i = *i_iter;
dimension_type i = i_iter.index();
typename OR_Matrix<N>::const_row_reference_type m_ci
= (i % 2 != 0) ? *(i_iter-1) : *(i_iter + 1);
for (dimension_type j = 0; j < i; ++j) {
using namespace Implementation::Octagonal_Shapes;
dimension_type cj = coherent_index(j);
if (is_additive_inverse(m_ci[cj], m_i[j]))
// Choose as leader the variable having the smaller index.
leaders[i] = leaders[j];
}
}
}
template <typename T>
void
Octagonal_Shape<T>
::compute_leaders(std::vector<dimension_type>& successor,
std::vector<dimension_type>& no_sing_leaders,
bool& exist_sing_class,
dimension_type& sing_leader) const {
PPL_ASSERT(!marked_empty() && marked_strongly_closed());
PPL_ASSERT(no_sing_leaders.size() == 0);
dimension_type successor_size = successor.size();
std::deque<bool> dealt_with(successor_size, false);
for (dimension_type i = 0; i < successor_size; ++i) {
dimension_type next_i = successor[i];
if (!dealt_with[i]) {
// The index is a leader.
// Now check if it is a leader of a singular class or not.
using namespace Implementation::Octagonal_Shapes;
if (next_i == coherent_index(i)) {
exist_sing_class = true;
sing_leader = i;
}
else
no_sing_leaders.push_back(i);
}
// The following index is not a leader.
dealt_with[next_i] = true;
}
}
template <typename T>
void
Octagonal_Shape<T>::strong_reduction_assign() const {
// Zero-dimensional octagonal shapes are necessarily reduced.
if (space_dim == 0)
return;
strong_closure_assign();
// If `*this' is empty, then there is nothing to reduce.
if (marked_empty())
return;
// Detect non-redundant constraints.
std::vector<Bit_Row> non_red;
non_redundant_matrix_entries(non_red);
// Throw away redundant constraints.
Octagonal_Shape<T>& x = const_cast<Octagonal_Shape<T>&>(*this);
#ifndef NDEBUG
const Octagonal_Shape x_copy_before(x);
#endif
typename OR_Matrix<N>::element_iterator x_i = x.matrix.element_begin();
for (dimension_type i = 0; i < 2 * space_dim; ++i) {
const Bit_Row& non_red_i = non_red[i];
for (dimension_type j = 0,
j_end = OR_Matrix<N>::row_size(i); j < j_end; ++j, ++x_i) {
if (!non_red_i[j])
assign_r(*x_i, PLUS_INFINITY, ROUND_NOT_NEEDED);
}
}
x.reset_strongly_closed();
#ifndef NDEBUG
const Octagonal_Shape x_copy_after(x);
PPL_ASSERT(x_copy_before == x_copy_after);
PPL_ASSERT(x.is_strongly_reduced());
PPL_ASSERT(x.OK());
#endif
}
template <typename T>
void
Octagonal_Shape<T>
::non_redundant_matrix_entries(std::vector<Bit_Row>& non_redundant) const {
// Private method: the caller has to ensure the following.
PPL_ASSERT(space_dim > 0 && !marked_empty() && marked_strongly_closed());
PPL_ASSERT(non_redundant.empty());
// Initialize `non_redundant' as if it was an OR_Matrix of booleans
// (initially set to false).
non_redundant.resize(2*space_dim);
// Step 1: compute zero-equivalence classes.
// Variables corresponding to indices `i' and `j' are zero-equivalent
// if they lie on a zero-weight loop; since the matrix is strongly
// closed, this happens if and only if matrix[i][j] == -matrix[ci][cj].
std::vector<dimension_type> no_sing_leaders;
dimension_type sing_leader = 0;
bool exist_sing_class = false;
std::vector<dimension_type> successor;
compute_successors(successor);
compute_leaders(successor, no_sing_leaders, exist_sing_class, sing_leader);
const dimension_type num_no_sing_leaders = no_sing_leaders.size();
// Step 2: flag redundant constraints in `redundancy'.
// Go through non-singular leaders first.
for (dimension_type li = 0; li < num_no_sing_leaders; ++li) {
const dimension_type i = no_sing_leaders[li];
using namespace Implementation::Octagonal_Shapes;
const dimension_type ci = coherent_index(i);
typename OR_Matrix<N>::const_row_reference_type
m_i = *(matrix.row_begin() + i);
if (i % 2 == 0) {
// Each positive equivalence class must have a single 0-cycle
// connecting all equivalent variables in increasing order.
// Note: by coherence assumption, the variables in the
// corresponding negative equivalence class are
// automatically connected.
if (i != successor[i]) {
dimension_type j = i;
dimension_type next_j = successor[j];
while (j != next_j) {
non_redundant[next_j].set(j);
j = next_j;
next_j = successor[j];
}
const dimension_type cj = coherent_index(j);
non_redundant[cj].set(ci);
}
}
dimension_type rs_li = (li % 2 != 0) ? li : (li + 1);
// Check if the constraint is redundant.
PPL_DIRTY_TEMP(N, tmp);
for (dimension_type lj = 0 ; lj <= rs_li; ++lj) {
const dimension_type j = no_sing_leaders[lj];
const dimension_type cj = coherent_index(j);
const N& m_i_j = m_i[j];
const N& m_i_ci = m_i[ci];
bool to_add = true;
// Control if the constraint is redundant by strong-coherence,
// that is:
// m_i_j >= (m_i_ci + m_cj_j)/2, where j != ci.
if (j != ci) {
add_assign_r(tmp, m_i_ci, matrix[cj][j], ROUND_UP);
div_2exp_assign_r(tmp, tmp, 1, ROUND_UP);
if (m_i_j >= tmp)
// The constraint is redundant.
continue;
}
// Control if the constraint is redundant by strong closure, that is
// if there is a path from i to j (i = i_0, ... , i_n = j), such that
// m_i_j = sum_{k=0}^{n-1} m_{i_k}_{i_(k + 1)}.
// Since the octagon is already strongly closed, the above relation
// is reduced to three case, in accordance with k, i, j inter-depend:
// exit k such that
// 1.) m_i_j >= m_i_k + m_cj_ck, if k < j < i; or
// 2.) m_i_j >= m_i_k + m_k,_j, if j < k < i; or
// 3.) m_i_j >= m_ck_ci + m_k_j, if j < i < k.
// Note: `i > j'.
for (dimension_type lk = 0; lk < num_no_sing_leaders; ++lk) {
const dimension_type k = no_sing_leaders[lk];
if (k != i && k != j) {
dimension_type ck = coherent_index(k);
if (k < j)
// Case 1.
add_assign_r(tmp, m_i[k], matrix[cj][ck], ROUND_UP);
else if (k < i)
// Case 2.
add_assign_r(tmp, m_i[k], matrix[k][j], ROUND_UP);
else
// Case 3.
add_assign_r(tmp, matrix[ck][ci], matrix[k][j], ROUND_UP);
// Checks if the constraint is redundant.
if (m_i_j >= tmp) {
to_add = false;
break;
}
}
}
if (to_add)
// The constraint is not redundant.
non_redundant[i].set(j);
}
}
// If there exist a singular equivalence class, then it must have a
// single 0-cycle connecting all the positive and negative equivalent
// variables.
// Note: the singular class is not connected with the other classes.
if (exist_sing_class) {
non_redundant[sing_leader].set(sing_leader + 1);
if (successor[sing_leader + 1] != sing_leader + 1) {
dimension_type j = sing_leader;
dimension_type next_j = successor[j + 1];
while (next_j != j + 1) {
non_redundant[next_j].set(j);
j = next_j;
next_j = successor[j + 1];
}
non_redundant[j + 1].set(j);
}
else
non_redundant[sing_leader + 1].set(sing_leader);
}
}
template <typename T>
void
Octagonal_Shape<T>::upper_bound_assign(const Octagonal_Shape& y) {
// Dimension-compatibility check.
if (space_dim != y.space_dim)
throw_dimension_incompatible("upper_bound_assign(y)", y);
// The hull of an octagon `x' with an empty octagon is `x'.
y.strong_closure_assign();
if (y.marked_empty())
return;
strong_closure_assign();
if (marked_empty()) {
*this = y;
return;
}
// The oct-hull is obtained by computing maxima.
typename OR_Matrix<N>::const_element_iterator j = y.matrix.element_begin();
for (typename OR_Matrix<N>::element_iterator i = matrix.element_begin(),
matrix_element_end = matrix.element_end();
i != matrix_element_end; ++i, ++j)
max_assign(*i, *j);
// The result is still closed.
PPL_ASSERT(OK());
}
template <typename T>
void
Octagonal_Shape<T>::difference_assign(const Octagonal_Shape& y) {
// Dimension-compatibility check.
if (space_dim != y.space_dim)
throw_dimension_incompatible("difference_assign(y)", y);
Octagonal_Shape& x = *this;
// Being lazy here is only harmful.
// We close.
x.strong_closure_assign();
// The difference of an empty octagon and of an octagon `p' is empty.
if (x.marked_empty())
return;
// The difference of a octagon `p' and an empty octagon is `p'.
if (y.marked_empty())
return;
// If both octagons are zero-dimensional,
// then at this point they are necessarily universe octagons,
// so that their difference is empty.
if (x.space_dim == 0) {
x.set_empty();
return;
}
// TODO: This is just an executable specification.
// Have to find a more efficient method.
if (y.contains(x)) {
x.set_empty();
return;
}
Octagonal_Shape new_oct(space_dim, EMPTY);
// We take a constraint of the octagon y at the time and we
// consider its complementary. Then we intersect the union
// of these complementary constraints with the octagon x.
const Constraint_System& y_cs = y.constraints();
for (Constraint_System::const_iterator i = y_cs.begin(),
y_cs_end = y_cs.end(); i != y_cs_end; ++i) {
const Constraint& c = *i;
// If the octagon `x' is included the octagon defined by `c',
// then `c' _must_ be skipped, as adding its complement to `x'
// would result in the empty octagon, and as we would obtain
// a result that is less precise than the difference.
if (x.relation_with(c).implies(Poly_Con_Relation::is_included()))
continue;
Octagonal_Shape z = x;
const Linear_Expression e(c.expression());
z.add_constraint(e <= 0);
if (!z.is_empty())
new_oct.upper_bound_assign(z);
if (c.is_equality()) {
z = x;
z.add_constraint(e >= 0);
if (!z.is_empty())
new_oct.upper_bound_assign(z);
}
}
*this = new_oct;
PPL_ASSERT(OK());
}
template <typename T>
bool
Octagonal_Shape<T>::simplify_using_context_assign(const Octagonal_Shape& y) {
Octagonal_Shape& x = *this;
const dimension_type dim = x.space_dimension();
// Dimension-compatibility check.
if (dim != y.space_dimension())
throw_dimension_incompatible("simplify_using_context_assign(y)", y);
// Filter away the zero-dimensional case.
if (dim == 0) {
if (y.marked_empty()) {
x.set_zero_dim_univ();
return false;
}
else
return !x.marked_empty();
}
// Filter away the case where `x' contains `y'
// (this subsumes the case when `y' is empty).
if (x.contains(y)) {
Octagonal_Shape<T> res(dim, UNIVERSE);
x.m_swap(res);
return false;
}
typedef typename OR_Matrix<N>::row_iterator Row_Iter;
typedef typename OR_Matrix<N>::const_row_iterator Row_CIter;
typedef typename OR_Matrix<N>::element_iterator Elem_Iter;
typedef typename OR_Matrix<N>::const_element_iterator Elem_CIter;
// Filter away the case where `x' is empty.
x.strong_closure_assign();
if (x.marked_empty()) {
// Search for a constraint of `y' that is not a tautology.
dimension_type i;
dimension_type j;
// Prefer unary constraints.
for (i = 0; i < 2*dim; i += 2) {
// FIXME: if N is a float or bounded integer type, then
// we also need to check that we are actually able to construct
// a constraint inconsistent with respect to this one.
// Use something like !is_maximal()?
if (!is_plus_infinity(y.matrix_at(i, i + 1))) {
j = i + 1;
goto found;
}
// Use something like !is_maximal()?
if (!is_plus_infinity(y.matrix_at(i + 1, i))) {
j = i;
++i;
goto found;
}
}
// Then search binary constraints.
// TODO: use better iteration scheme.
for (i = 2; i < 2*dim; ++i)
for (j = 0; j < i; ++j) {
// Use something like !is_maximal()?
if (!is_plus_infinity(y.matrix_at(i, j)))
goto found;
}
// Not found: we were not able to build a constraint contradicting
// one of the constraints in `y': `x' cannot be enlarged.
return false;
found:
// Found: build a new OS contradicting the constraint found.
PPL_ASSERT(i < dim && j < dim && i != j);
Octagonal_Shape<T> res(dim, UNIVERSE);
// FIXME: compute a proper contradicting constraint.
PPL_DIRTY_TEMP(N, tmp);
assign_r(tmp, 1, ROUND_UP);
add_assign_r(tmp, tmp, y.matrix_at(i, j), ROUND_UP);
// CHECKME: round down is really meant.
neg_assign_r(res.matrix_at(j, i), tmp, ROUND_DOWN);
PPL_ASSERT(!is_plus_infinity(res.matrix_at(j, i)));
x.m_swap(res);
return false;
}
// Here `x' and `y' are not empty and strongly closed;
// also, `x' does not contain `y'.
// Let `target' be the intersection of `x' and `y'.
Octagonal_Shape<T> target = x;
target.intersection_assign(y);
const bool bool_result = !target.is_empty();
// Compute redundancy information for x and ...
// TODO: provide a nicer data structure for redundancy.
std::vector<Bit_Row> x_non_redundant;
x.non_redundant_matrix_entries(x_non_redundant);
// ... count the non-redundant constraints.
dimension_type x_num_non_redundant = 0;
for (size_t i = x_non_redundant.size(); i-- > 0 ; )
x_num_non_redundant += x_non_redundant[i].count_ones();
PPL_ASSERT(x_num_non_redundant > 0);
// Let `yy' be a copy of `y': we will keep adding to `yy'
// the non-redundant constraints of `x',
// stopping as soon as `yy' becomes equal to `target'.
Octagonal_Shape<T> yy = y;
// The constraints added to `yy' will be recorded in `res' ...
Octagonal_Shape<T> res(dim, UNIVERSE);
// ... and we will count them too.
dimension_type res_num_non_redundant = 0;
// Compute leader information for `x'.
std::vector<dimension_type> x_leaders;
x.compute_leaders(x_leaders);
// First go through the unary equality constraints.
// Find the leader of the singular equivalence class (it is even!).
dimension_type sing_leader;
for (sing_leader = 0; sing_leader < 2*dim; sing_leader += 2) {
if (sing_leader == x_leaders[sing_leader]) {
const N& x_s_ss = x.matrix_at(sing_leader, sing_leader + 1);
const N& x_ss_s = x.matrix_at(sing_leader + 1, sing_leader);
if (is_additive_inverse(x_s_ss, x_ss_s))
// Singular leader found.
break;
}
}
// Unary equalities have `sing_leader' as a leader.
for (dimension_type i = sing_leader; i < 2*dim; i += 2) {
if (x_leaders[i] != sing_leader)
continue;
// Found a unary equality constraint:
// see if any of the two inequalities have to be added.
const N& x_i_ii = x.matrix_at(i, i + 1);
N& yy_i_ii = yy.matrix_at(i, i + 1);
if (x_i_ii < yy_i_ii) {
// The \leq inequality is not implied by context.
res.matrix_at(i, i + 1) = x_i_ii;
++res_num_non_redundant;
// Tighten context `yy' using the newly added constraint.
yy_i_ii = x_i_ii;
yy.reset_strongly_closed();
}
const N& x_ii_i = x.matrix_at(i + 1, i);
N& yy_ii_i = yy.matrix_at(i + 1, i);
if (x_ii_i < yy_ii_i) {
// The \geq inequality is not implied by context.
res.matrix_at(i + 1, i) = x_ii_i;
++res_num_non_redundant;
// Tighten context `yy' using the newly added constraint.
yy_ii_i = x_ii_i;
yy.reset_strongly_closed();
}
// Restore strong closure, if it was lost.
if (!yy.marked_strongly_closed()) {
Variable var_i(i/2);
yy.incremental_strong_closure_assign(var_i);
if (target.contains(yy)) {
// Target reached: swap `x' and `res' if needed.
if (res_num_non_redundant < x_num_non_redundant) {
res.reset_strongly_closed();
x.m_swap(res);
}
return bool_result;
}
}
}
// Go through the binary equality constraints.
for (dimension_type i = 0; i < 2*dim; ++i) {
const dimension_type j = x_leaders[i];
if (j == i || j == sing_leader)
continue;
const N& x_i_j = x.matrix_at(i, j);
PPL_ASSERT(!is_plus_infinity(x_i_j));
N& yy_i_j = yy.matrix_at(i, j);
if (x_i_j < yy_i_j) {
res.matrix_at(i, j) = x_i_j;
++res_num_non_redundant;
// Tighten context `yy' using the newly added constraint.
yy_i_j = x_i_j;
yy.reset_strongly_closed();
}
const N& x_j_i = x.matrix_at(j, i);
N& yy_j_i = yy.matrix_at(j, i);
PPL_ASSERT(!is_plus_infinity(x_j_i));
if (x_j_i < yy_j_i) {
res.matrix_at(j, i) = x_j_i;
++res_num_non_redundant;
// Tighten context `yy' using the newly added constraint.
yy_j_i = x_j_i;
yy.reset_strongly_closed();
}
// Restore strong closure, if it was lost.
if (!yy.marked_strongly_closed()) {
Variable var_j(j/2);
yy.incremental_strong_closure_assign(var_j);
if (target.contains(yy)) {
// Target reached: swap `x' and `res' if needed.
if (res_num_non_redundant < x_num_non_redundant) {
res.reset_strongly_closed();
x.m_swap(res);
}
return bool_result;
}
}
}
// Finally go through the (proper) inequality constraints:
// both indices i and j should be leaders.
// FIXME: improve iteration scheme (are we doing twice the work?)
for (dimension_type i = 0; i < 2*dim; ++i) {
if (i != x_leaders[i])
continue;
const Bit_Row& x_non_redundant_i = x_non_redundant[i];
for (dimension_type j = 0; j < 2*dim; ++j) {
if (j != x_leaders[j])
continue;
if (i >= j) {
if (!x_non_redundant_i[j])
continue;
}
else if (!x_non_redundant[j][i])
continue;
N& yy_i_j = yy.matrix_at(i, j);
const N& x_i_j = x.matrix_at(i, j);
if (x_i_j < yy_i_j) {
res.matrix_at(i, j) = x_i_j;
++res_num_non_redundant;
// Tighten context `yy' using the newly added constraint.
yy_i_j = x_i_j;
yy.reset_strongly_closed();
Variable var(i/2);
yy.incremental_strong_closure_assign(var);
if (target.contains(yy)) {
// Target reached: swap `x' and `res' if needed.
if (res_num_non_redundant < x_num_non_redundant) {
res.reset_strongly_closed();
x.m_swap(res);
}
return bool_result;
}
}
}
}
// This point should be unreachable.
PPL_UNREACHABLE;
return false;
}
template <typename T>
void
Octagonal_Shape<T>::add_space_dimensions_and_embed(dimension_type m) {
// Adding no dimensions is a no-op.
if (m == 0)
return;
const dimension_type new_dim = space_dim + m;
const bool was_zero_dim_univ = !marked_empty() && space_dim == 0;
// To embed an n-dimension space octagon in a (n + m)-dimension space,
// we just add `m' variables in the matrix of constraints.
matrix.grow(new_dim);
space_dim = new_dim;
// If `*this' was the zero-dim space universe octagon,
// then we can set the strongly closure flag.
if (was_zero_dim_univ)
set_strongly_closed();
PPL_ASSERT(OK());
}
template <typename T>
void
Octagonal_Shape<T>::add_space_dimensions_and_project(dimension_type m) {
// Adding no dimensions is a no-op.
if (m == 0)
return;
const dimension_type n = matrix.num_rows();
// To project an n-dimension space OS in a (space_dim + m)-dimension space,
// we just add `m' columns and rows in the matrix of constraints.
add_space_dimensions_and_embed(m);
// We insert 0 where it needs.
// Attention: now num_rows of matrix is update!
for (typename OR_Matrix<N>::row_iterator i = matrix.row_begin() + n,
matrix_row_end = matrix.row_end(); i != matrix_row_end; i += 2) {
typename OR_Matrix<N>::row_reference_type x_i = *i;
typename OR_Matrix<N>::row_reference_type x_ci = *(i + 1);
const dimension_type ind = i.index();
assign_r(x_i[ind + 1], 0, ROUND_NOT_NEEDED);
assign_r(x_ci[ind], 0, ROUND_NOT_NEEDED);
}
if (marked_strongly_closed())
reset_strongly_closed();
PPL_ASSERT(OK());
}
template <typename T>
void
Octagonal_Shape<T>::remove_space_dimensions(const Variables_Set& vars) {
// The removal of no dimensions from any octagon is a no-op.
// Note that this case also captures the only legal removal of
// dimensions from a octagon in a 0-dim space.
if (vars.empty()) {
PPL_ASSERT(OK());
return;
}
// Dimension-compatibility check.
const dimension_type min_space_dim = vars.space_dimension();
if (space_dim < min_space_dim)
throw_dimension_incompatible("remove_space_dimensions(vs)", min_space_dim);
const dimension_type new_space_dim = space_dim - vars.size();
strong_closure_assign();
// When removing _all_ dimensions from an octagon,
// we obtain the zero-dimensional octagon.
if (new_space_dim == 0) {
matrix.shrink(0);
if (!marked_empty())
// We set the zero_dim_univ flag.
set_zero_dim_univ();
space_dim = 0;
PPL_ASSERT(OK());
return;
}
// We consider each variable and we check if it has to be removed.
// If it has to be removed, we pass to the next one, then we will
// overwrite its representation in the matrix.
typedef typename OR_Matrix<N>::element_iterator Elem_Iter;
typedef typename std::iterator_traits<Elem_Iter>::difference_type diff_t;
dimension_type first = *vars.begin();
const dimension_type first_size = 2 * first * (first + 1);
Elem_Iter iter = matrix.element_begin() + static_cast<diff_t>(first_size);
for (dimension_type i = first + 1; i < space_dim; ++i) {
if (vars.count(i) == 0) {
typename OR_Matrix<N>::row_iterator row_iter = matrix.row_begin() + 2*i;
typename OR_Matrix<N>::row_reference_type row_ref = *row_iter;
typename OR_Matrix<N>::row_reference_type row_ref1 = *(++row_iter);
// Beware: first we shift the cells corresponding to the first
// row of variable(j), then we shift the cells corresponding to the
// second row. We recall that every variable is represented
// in the `matrix' by two rows and two columns.
for (dimension_type j = 0; j <= i; ++j)
if (vars.count(j) == 0) {
assign_or_swap(*(iter++), row_ref[2*j]);
assign_or_swap(*(iter++), row_ref[2*j + 1]);
}
for (dimension_type j = 0; j <= i; ++j)
if (vars.count(j) == 0) {
assign_or_swap(*(iter++), row_ref1[2*j]);
assign_or_swap(*(iter++), row_ref1[2*j + 1]);
}
}
}
// Update the space dimension.
matrix.shrink(new_space_dim);
space_dim = new_space_dim;
PPL_ASSERT(OK());
}
template <typename T>
template <typename Partial_Function>
void
Octagonal_Shape<T>::map_space_dimensions(const Partial_Function& pfunc) {
if (space_dim == 0)
return;
if (pfunc.has_empty_codomain()) {
// All dimensions vanish: the octagon becomes zero_dimensional.
remove_higher_space_dimensions(0);
return;
}
const dimension_type new_space_dim = pfunc.max_in_codomain() + 1;
// If we are going to actually reduce the space dimension,
// then shortest-path closure is required to keep precision.
if (new_space_dim < space_dim)
strong_closure_assign();
// If the octagon is empty, then it is sufficient to adjust
// the space dimension of the octagon.
if (marked_empty()) {
remove_higher_space_dimensions(new_space_dim);
return;
}
// We create a new matrix with the new space dimension.
OR_Matrix<N> x(new_space_dim);
typedef typename OR_Matrix<N>::row_iterator row_iterator;
typedef typename OR_Matrix<N>::row_reference_type row_reference;
row_iterator m_begin = x.row_begin();
for (row_iterator i_iter = matrix.row_begin(), i_end = matrix.row_end();
i_iter != i_end; i_iter += 2) {
dimension_type new_i;
dimension_type i = i_iter.index()/2;
// We copy and place in the position into `x' the only cells of
// the `matrix' that refer to both mapped variables,
// the variable `i' and `j'.
if (pfunc.maps(i, new_i)) {
row_reference r_i = *i_iter;
row_reference r_ii = *(i_iter + 1);
dimension_type double_new_i = 2*new_i;
row_iterator x_iter = m_begin + double_new_i;
row_reference x_i = *x_iter;
row_reference x_ii = *(x_iter + 1);
for (dimension_type j = 0; j <= i; ++j) {
dimension_type new_j;
// If also the second variable is mapped, we work.
if (pfunc.maps(j, new_j)) {
dimension_type dj = 2*j;
dimension_type double_new_j = 2*new_j;
// Mapped the constraints, exchanging the indexes.
// Attention: our matrix is pseudo-triangular.
// If new_j > new_i, we must consider, as rows, the rows of
// the variable new_j, and not of new_i ones.
if (new_i >= new_j) {
assign_or_swap(x_i[double_new_j], r_i[dj]);
assign_or_swap(x_ii[double_new_j], r_ii[dj]);
assign_or_swap(x_ii[double_new_j + 1], r_ii[dj + 1]);
assign_or_swap(x_i[double_new_j + 1], r_i[dj + 1]);
}
else {
row_iterator x_j_iter = m_begin + double_new_j;
row_reference x_j = *x_j_iter;
row_reference x_jj = *(x_j_iter + 1);
assign_or_swap(x_jj[double_new_i + 1], r_i[dj]);
assign_or_swap(x_jj[double_new_i], r_ii[dj]);
assign_or_swap(x_j[double_new_i + 1], r_i[dj + 1]);
assign_or_swap(x_j[double_new_i], r_ii[dj + 1]);
}
}
}
}
}
using std::swap;
swap(matrix, x);
space_dim = new_space_dim;
PPL_ASSERT(OK());
}
template <typename T>
void
Octagonal_Shape<T>::intersection_assign(const Octagonal_Shape& y) {
// Dimension-compatibility check.
if (space_dim != y.space_dim)
throw_dimension_incompatible("intersection_assign(y)", y);
// If one of the two octagons is empty, the intersection is empty.
if (marked_empty())
return;
if (y.marked_empty()) {
set_empty();
return;
}
// If both octagons are zero-dimensional,then at this point
// they are necessarily non-empty,
// so that their intersection is non-empty too.
if (space_dim == 0)
return;
// To intersect two octagons we compare the constraints
// and we choose the less values.
bool changed = false;
typename OR_Matrix<N>::const_element_iterator j = y.matrix.element_begin();
for (typename OR_Matrix<N>::element_iterator i = matrix.element_begin(),
matrix_element_end = matrix.element_end();
i != matrix_element_end;
++i, ++j) {
N& elem = *i;
const N& y_elem = *j;
if (y_elem < elem) {
elem = y_elem;
changed = true;
}
}
// This method not preserve the closure.
if (changed && marked_strongly_closed())
reset_strongly_closed();
PPL_ASSERT(OK());
}
template <typename T>
template <typename Iterator>
void
Octagonal_Shape<T>::CC76_extrapolation_assign(const Octagonal_Shape& y,
Iterator first, Iterator last,
unsigned* tp) {
// Dimension-compatibility check.
if (space_dim != y.space_dim)
throw_dimension_incompatible("CC76_extrapolation_assign(y)", y);
// Assume `y' is contained in or equal to `*this'.
PPL_EXPECT_HEAVY(copy_contains(*this, y));
// If both octagons are zero-dimensional,
// since `*this' contains `y', we simply return `*this'.
if (space_dim == 0)
return;
strong_closure_assign();
// If `*this' is empty, since `*this' contains `y', `y' is empty too.
if (marked_empty())
return;
y.strong_closure_assign();
// If `y' is empty, we return.
if (y.marked_empty())
return;
// If there are tokens available, work on a temporary copy.
if (tp != 0 && *tp > 0) {
Octagonal_Shape x_tmp(*this);
x_tmp.CC76_extrapolation_assign(y, first, last, 0);
// If the widening was not precise, use one of the available tokens.
if (!contains(x_tmp))
--(*tp);
return;
}
// Compare each constraint in `y' to the corresponding one in `*this'.
// The constraint in `*this' is kept as is if it is stronger than or
// equal to the constraint in `y'; otherwise, the inhomogeneous term
// of the constraint in `*this' is further compared with elements taken
// from a sorted container (the stop-points, provided by the user), and
// is replaced by the first entry, if any, which is greater than or equal
// to the inhomogeneous term. If no such entry exists, the constraint
// is removed altogether.
typename OR_Matrix<N>::const_element_iterator j = y.matrix.element_begin();
for (typename OR_Matrix<N>::element_iterator i = matrix.element_begin(),
matrix_element_end = matrix.element_end();
i != matrix_element_end;
++i, ++j) {
const N& y_elem = *j;
N& elem = *i;
if (y_elem < elem) {
Iterator k = std::lower_bound(first, last, elem);
if (k != last) {
if (elem < *k)
assign_r(elem, *k, ROUND_UP);
}
else
assign_r(elem, PLUS_INFINITY, ROUND_NOT_NEEDED);
}
}
reset_strongly_closed();
PPL_ASSERT(OK());
}
template <typename T>
void
Octagonal_Shape<T>
::get_limiting_octagon(const Constraint_System& cs,
Octagonal_Shape& limiting_octagon) const {
const dimension_type cs_space_dim = cs.space_dimension();
// Private method: the caller has to ensure the following.
PPL_ASSERT(cs_space_dim <= space_dim);
strong_closure_assign();
bool is_oct_changed = false;
// Allocate temporaries outside of the loop.
PPL_DIRTY_TEMP_COEFFICIENT(coeff);
PPL_DIRTY_TEMP_COEFFICIENT(term);
PPL_DIRTY_TEMP(N, d);
for (Constraint_System::const_iterator cs_i = cs.begin(),
cs_end = cs.end(); cs_i != cs_end; ++cs_i) {
const Constraint& c = *cs_i;
dimension_type num_vars = 0;
dimension_type i = 0;
dimension_type j = 0;
// Constraints that are not octagonal differences are ignored.
if (!Octagonal_Shape_Helper
::extract_octagonal_difference(c, cs_space_dim, num_vars, i, j,
coeff, term))
continue;
typedef typename OR_Matrix<N>::const_row_iterator Row_iterator;
typedef typename OR_Matrix<N>::const_row_reference_type Row_reference;
typedef typename OR_Matrix<N>::row_iterator row_iterator;
typedef typename OR_Matrix<N>::row_reference_type row_reference;
Row_iterator m_begin = matrix.row_begin();
// Select the cell to be modified for the "<=" part of the constraint.
Row_iterator i_iter = m_begin + i;
Row_reference m_i = *i_iter;
OR_Matrix<N>& lo_mat = limiting_octagon.matrix;
row_iterator lo_iter = lo_mat.row_begin() + i;
row_reference lo_m_i = *lo_iter;
N& lo_m_i_j = lo_m_i[j];
if (coeff < 0)
neg_assign(coeff);
// Compute the bound for `m_i_j', rounding towards plus infinity.
div_round_up(d, term, coeff);
if (m_i[j] <= d)
if (c.is_inequality()) {
if (lo_m_i_j > d) {
lo_m_i_j = d;
is_oct_changed = true;
}
else {
// Select the right row of the cell.
if (i % 2 == 0) {
++i_iter;
++lo_iter;
}
else {
--i_iter;
--lo_iter;
}
Row_reference m_ci = *i_iter;
row_reference lo_m_ci = *lo_iter;
// Select the right column of the cell.
using namespace Implementation::Octagonal_Shapes;
dimension_type cj = coherent_index(j);
N& lo_m_ci_cj = lo_m_ci[cj];
neg_assign(term);
div_round_up(d, term, coeff);
if (m_ci[cj] <= d && lo_m_ci_cj > d) {
lo_m_ci_cj = d;
is_oct_changed = true;
}
}
}
}
// In general, adding a constraint does not preserve the strongly
// closure of the octagon.
if (is_oct_changed && limiting_octagon.marked_strongly_closed())
limiting_octagon.reset_strongly_closed();
}
template <typename T>
void
Octagonal_Shape<T>
::limited_CC76_extrapolation_assign(const Octagonal_Shape& y,
const Constraint_System& cs,
unsigned* tp) {
// Dimension-compatibility check.
if (space_dim != y.space_dim)
throw_dimension_incompatible("limited_CC76_extrapolation_assign(y, cs)",
y);
// `cs' must be dimension-compatible with the two octagons.
const dimension_type cs_space_dim = cs.space_dimension();
if (space_dim < cs_space_dim)
throw_constraint_incompatible("limited_CC76_extrapolation_assign(y, cs)");
// Strict inequalities not allowed.
if (cs.has_strict_inequalities())
throw_constraint_incompatible("limited_CC76_extrapolation_assign(y, cs)");
// The limited CC76-extrapolation between two octagons in a
// zero-dimensional space is a octagon in a zero-dimensional
// space, too.
if (space_dim == 0)
return;
// Assume `y' is contained in or equal to `*this'.
PPL_EXPECT_HEAVY(copy_contains(*this, y));
// If `*this' is empty, since `*this' contains `y', `y' is empty too.
if (marked_empty())
return;
// If `y' is empty, we return.
if (y.marked_empty())
return;
Octagonal_Shape limiting_octagon(space_dim, UNIVERSE);
get_limiting_octagon(cs, limiting_octagon);
CC76_extrapolation_assign(y, tp);
intersection_assign(limiting_octagon);
}
template <typename T>
void
Octagonal_Shape<T>::BHMZ05_widening_assign(const Octagonal_Shape& y,
unsigned* tp) {
// Dimension-compatibility check.
if (space_dim != y.space_dim)
throw_dimension_incompatible("BHMZ05_widening_assign(y)", y);
// Assume `y' is contained in or equal to `*this'.
PPL_EXPECT_HEAVY(copy_contains(*this, y));
// Compute the affine dimension of `y'.
const dimension_type y_affine_dim = y.affine_dimension();
// If the affine dimension of `y' is zero, then either `y' is
// zero-dimensional, or it is empty, or it is a singleton.
// In all cases, due to the inclusion hypothesis, the result is `*this'.
if (y_affine_dim == 0)
return;
// If the affine dimension has changed, due to the inclusion hypothesis,
// the result is `*this'.
const dimension_type x_affine_dim = affine_dimension();
PPL_ASSERT(x_affine_dim >= y_affine_dim);
if (x_affine_dim != y_affine_dim)
return;
// If there are tokens available, work on a temporary copy.
if (tp != 0 && *tp > 0) {
Octagonal_Shape x_tmp(*this);
x_tmp.BHMZ05_widening_assign(y, 0);
// If the widening was not precise, use one of the available tokens.
if (!contains(x_tmp))
--(*tp);
return;
}
// Here no token is available.
PPL_ASSERT(marked_strongly_closed() && y.marked_strongly_closed());
// Minimize `y'.
y.strong_reduction_assign();
// Extrapolate unstable bounds.
typename OR_Matrix<N>::const_element_iterator j = y.matrix.element_begin();
for (typename OR_Matrix<N>::element_iterator i = matrix.element_begin(),
matrix_element_end = matrix.element_end();
i != matrix_element_end;
++i, ++j) {
N& elem = *i;
// Note: in the following line the use of `!=' (as opposed to
// the use of `<' that would seem -but is not- equivalent) is
// intentional.
if (*j != elem)
assign_r(elem, PLUS_INFINITY, ROUND_NOT_NEEDED);
}
reset_strongly_closed();
PPL_ASSERT(OK());
}
template <typename T>
void
Octagonal_Shape<T>
::limited_BHMZ05_extrapolation_assign(const Octagonal_Shape& y,
const Constraint_System& cs,
unsigned* tp) {
// Dimension-compatibility check.
if (space_dim != y.space_dim)
throw_dimension_incompatible("limited_BHMZ05_extrapolation_assign(y, cs)",
y);
// `cs' must be dimension-compatible with the two octagons.
const dimension_type cs_space_dim = cs.space_dimension();
if (space_dim < cs_space_dim)
throw_constraint_incompatible("limited_CH78_extrapolation_assign(y, cs)");
// Strict inequalities not allowed.
if (cs.has_strict_inequalities())
throw_constraint_incompatible("limited_CH78_extrapolation_assign(y, cs)");
// The limited BHMZ05-extrapolation between two octagons in a
// zero-dimensional space is a octagon in a zero-dimensional
// space, too.
if (space_dim == 0)
return;
// Assume `y' is contained in or equal to `*this'.
PPL_EXPECT_HEAVY(copy_contains(*this, y));
// If `*this' is empty, since `*this' contains `y', `y' is empty too.
if (marked_empty())
return;
// If `y' is empty, we return.
if (y.marked_empty())
return;
Octagonal_Shape limiting_octagon(space_dim, UNIVERSE);
get_limiting_octagon(cs, limiting_octagon);
BHMZ05_widening_assign(y, tp);
intersection_assign(limiting_octagon);
}
template <typename T>
void
Octagonal_Shape<T>::CC76_narrowing_assign(const Octagonal_Shape& y) {
// Dimension-compatibility check.
if (space_dim != y.space_dim)
throw_dimension_incompatible("CC76_narrowing_assign(y)", y);
// Assume `*this' is contained in or equal to `y'.
PPL_EXPECT_HEAVY(copy_contains(y, *this));
// If both octagons are zero-dimensional, since `*this' contains `y',
// we simply return '*this'.
if (space_dim == 0)
return;
y.strong_closure_assign();
// If `y' is empty, since `y' contains `*this', `*this' is empty too.
if (y.marked_empty())
return;
strong_closure_assign();
// If `*this' is empty, we return.
if (marked_empty())
return;
// We consider a constraint of `*this', if its value is `plus_infinity',
// we take the value of the corresponding constraint of `y'.
bool is_oct_changed = false;
typename OR_Matrix<N>::const_element_iterator j = y.matrix.element_begin();
for (typename OR_Matrix<N>::element_iterator i = matrix.element_begin(),
matrix_element_end = matrix.element_end();
i != matrix_element_end;
++i, ++j) {
if (!is_plus_infinity(*i)
&& !is_plus_infinity(*j)
&& *i != *j) {
*i = *j;
is_oct_changed = true;
}
}
if (is_oct_changed && marked_strongly_closed())
reset_strongly_closed();
PPL_ASSERT(OK());
}
template <typename T>
void
Octagonal_Shape<T>
::deduce_v_pm_u_bounds(const dimension_type v_id,
const dimension_type last_id,
const Linear_Expression& sc_expr,
Coefficient_traits::const_reference sc_denom,
const N& ub_v) {
// Private method: the caller has to ensure the following.
PPL_ASSERT(sc_denom > 0);
PPL_ASSERT(!is_plus_infinity(ub_v));
PPL_DIRTY_TEMP(mpq_class, mpq_sc_denom);
assign_r(mpq_sc_denom, sc_denom, ROUND_NOT_NEEDED);
// No need to consider indices greater than `last_id'.
const dimension_type n_v = 2*v_id;
typename OR_Matrix<N>::row_reference_type m_cv = matrix[n_v + 1];
// Speculatively allocate temporaries out of the loop.
PPL_DIRTY_TEMP(N, half);
PPL_DIRTY_TEMP(mpq_class, minus_lb_u);
PPL_DIRTY_TEMP(mpq_class, q);
PPL_DIRTY_TEMP(mpq_class, minus_q);
PPL_DIRTY_TEMP(mpq_class, ub_u);
PPL_DIRTY_TEMP(mpq_class, lb_u);
PPL_DIRTY_TEMP(N, up_approx);
PPL_DIRTY_TEMP_COEFFICIENT(minus_expr_u);
for (Linear_Expression::const_iterator u = sc_expr.begin(),
u_end = sc_expr.lower_bound(Variable(last_id + 1)); u != u_end; ++u) {
const dimension_type u_id = u.variable().id();
// Skip the case when `u_id == v_id'.
if (u_id == v_id)
continue;
const Coefficient& expr_u = *u;
const dimension_type n_u = u_id*2;
// If `expr_u' is positive, we can improve `v - u'.
if (expr_u > 0) {
if (expr_u >= sc_denom) {
// Here q >= 1: deducing `v - u <= ub_v - ub_u'.
// We avoid to check if `ub_u' is plus infinity, because
// it is used for the computation of `ub_v'.
// Let half = m_cu_u / 2.
div_2exp_assign_r(half, matrix[n_u + 1][n_u], 1, ROUND_UP);
N& m_v_minus_u = (n_v < n_u) ? matrix[n_u][n_v] : m_cv[n_u + 1];
sub_assign_r(m_v_minus_u, ub_v, half, ROUND_UP);
}
else {
// Here 0 < q < 1.
typename OR_Matrix<N>::row_reference_type m_u = matrix[n_u];
const N& m_u_cu = m_u[n_u + 1];
if (!is_plus_infinity(m_u_cu)) {
// Let `ub_u' and `lb_u' be the known upper and lower bound
// for `u', respectively. The upper bound for `v - u' is
// computed as `ub_v - (q * ub_u + (1-q) * lb_u)',
// i.e., `ub_v + (-lb_u) - q * (ub_u + (-lb_u))'.
assign_r(minus_lb_u, m_u_cu, ROUND_NOT_NEEDED);
div_2exp_assign_r(minus_lb_u, minus_lb_u, 1, ROUND_NOT_NEEDED);
assign_r(q, expr_u, ROUND_NOT_NEEDED);
div_assign_r(q, q, mpq_sc_denom, ROUND_NOT_NEEDED);
assign_r(ub_u, matrix[n_u + 1][n_u], ROUND_NOT_NEEDED);
div_2exp_assign_r(ub_u, ub_u, 1, ROUND_NOT_NEEDED);
// Compute `ub_u - lb_u'.
add_assign_r(ub_u, ub_u, minus_lb_u, ROUND_NOT_NEEDED);
// Compute `(-lb_u) - q * (ub_u - lb_u)'.
sub_mul_assign_r(minus_lb_u, q, ub_u, ROUND_NOT_NEEDED);
assign_r(up_approx, minus_lb_u, ROUND_UP);
// Deducing `v - u <= ub_v - (q * ub_u + (1-q) * lb_u)'.
N& m_v_minus_u = (n_v < n_u) ? m_u[n_v] : m_cv[n_u + 1];
add_assign_r(m_v_minus_u, ub_v, up_approx, ROUND_UP);
}
}
}
else {
PPL_ASSERT(expr_u < 0);
// If `expr_u' is negative, we can improve `v + u'.
neg_assign(minus_expr_u, expr_u);
if (minus_expr_u >= sc_denom) {
// Here q <= -1: Deducing `v + u <= ub_v + lb_u'.
// We avoid to check if `lb_u' is plus infinity, because
// it is used for the computation of `ub_v'.
// Let half = m_u_cu / 2.
div_2exp_assign_r(half, matrix[n_u][n_u + 1], 1, ROUND_UP);
N& m_v_plus_u = (n_v < n_u) ? matrix[n_u + 1][n_v] : m_cv[n_u];
sub_assign_r(m_v_plus_u, ub_v, half, ROUND_UP);
}
else {
// Here -1 < q < 0.
typename OR_Matrix<N>::row_reference_type m_cu = matrix[n_u + 1];
const N& m_cu_u = m_cu[n_u];
if (!is_plus_infinity(m_cu_u)) {
// Let `ub_u' and `lb_u' be the known upper and lower bound
// for `u', respectively. The upper bound for `v + u' is
// computed as `ub_v + ((-q) * lb_u + (1 + q) * ub_u)',
// i.e., `ub_v + ub_u + (-q) * (lb_u - ub_u)'.
assign_r(ub_u, m_cu[n_u], ROUND_NOT_NEEDED);
div_2exp_assign_r(ub_u, ub_u, 1, ROUND_NOT_NEEDED);
assign_r(minus_q, minus_expr_u, ROUND_NOT_NEEDED);
div_assign_r(minus_q, minus_q, mpq_sc_denom, ROUND_NOT_NEEDED);
assign_r(lb_u, matrix[n_u][n_u + 1], ROUND_NOT_NEEDED);
div_2exp_assign_r(lb_u, lb_u, 1, ROUND_NOT_NEEDED);
neg_assign_r(lb_u, lb_u, ROUND_NOT_NEEDED);
// Compute `lb_u - ub_u'.
sub_assign_r(lb_u, lb_u, ub_u, ROUND_NOT_NEEDED);
// Compute `ub_u + (-q) * (lb_u - ub_u)'.
add_mul_assign_r(ub_u, minus_q, lb_u, ROUND_NOT_NEEDED);
assign_r(up_approx, ub_u, ROUND_UP);
// Deducing `v + u <= ub_v + ((-q) * lb_u + (1 + q) * ub_u)'.
N& m_v_plus_u = (n_v < n_u) ? m_cu[n_v] : m_cv[n_u];
add_assign_r(m_v_plus_u, ub_v, up_approx, ROUND_UP);
}
}
}
}
}
template <typename T>
void
Octagonal_Shape<T>
::deduce_minus_v_pm_u_bounds(const dimension_type v_id,
const dimension_type last_id,
const Linear_Expression& sc_expr,
Coefficient_traits::const_reference sc_denom,
const N& minus_lb_v) {
// Private method: the caller has to ensure the following.
PPL_ASSERT(sc_denom > 0);
PPL_ASSERT(!is_plus_infinity(minus_lb_v));
PPL_DIRTY_TEMP(mpq_class, mpq_sc_denom);
assign_r(mpq_sc_denom, sc_denom, ROUND_NOT_NEEDED);
// No need to consider indices greater than `last_id'.
const dimension_type n_v = 2*v_id;
typename OR_Matrix<N>::row_reference_type m_v = matrix[n_v];
// Speculatively allocate temporaries out of the loop.
PPL_DIRTY_TEMP(N, half);
PPL_DIRTY_TEMP(mpq_class, ub_u);
PPL_DIRTY_TEMP(mpq_class, q);
PPL_DIRTY_TEMP(mpq_class, minus_lb_u);
PPL_DIRTY_TEMP(N, up_approx);
PPL_DIRTY_TEMP_COEFFICIENT(minus_expr_u);
for (Linear_Expression::const_iterator u = sc_expr.begin(),
u_end = sc_expr.lower_bound(Variable(last_id + 1)); u != u_end; ++u) {
const dimension_type u_id = u.variable().id();
// Skip the case when `u_id == v_id'.
if (u_id == v_id)
continue;
const Coefficient& expr_u = *u;
const dimension_type n_u = u_id*2;
// If `expr_u' is positive, we can improve `-v + u'.
if (expr_u > 0) {
if (expr_u >= sc_denom) {
// Here q >= 1: deducing `-v + u <= lb_u - lb_v',
// i.e., `u - v <= (-lb_v) - (-lb_u)'.
// We avoid to check if `lb_u' is plus infinity, because
// it is used for the computation of `lb_v'.
// Let half = m_u_cu / 2.
div_2exp_assign_r(half, matrix[n_u][n_u + 1], 1, ROUND_UP);
N& m_u_minus_v = (n_v < n_u) ? matrix[n_u + 1][n_v + 1] : m_v[n_u];
sub_assign_r(m_u_minus_v, minus_lb_v, half, ROUND_UP);
}
else {
// Here 0 < q < 1.
typename OR_Matrix<N>::row_reference_type m_cu = matrix[n_u + 1];
const N& m_cu_u = m_cu[n_u];
if (!is_plus_infinity(m_cu_u)) {
// Let `ub_u' and `lb_u' be the known upper and lower bound
// for `u', respectively. The upper bound for `u - v' is
// computed as `(q * lb_u + (1-q) * ub_u) - lb_v',
// i.e., `ub_u - q * (ub_u + (-lb_u)) + minus_lb_v'.
assign_r(ub_u, m_cu[n_u], ROUND_NOT_NEEDED);
div_2exp_assign_r(ub_u, ub_u, 1, ROUND_NOT_NEEDED);
assign_r(q, expr_u, ROUND_NOT_NEEDED);
div_assign_r(q, q, mpq_sc_denom, ROUND_NOT_NEEDED);
assign_r(minus_lb_u, matrix[n_u][n_u + 1], ROUND_NOT_NEEDED);
div_2exp_assign_r(minus_lb_u, minus_lb_u, 1, ROUND_NOT_NEEDED);
// Compute `ub_u - lb_u'.
add_assign_r(minus_lb_u, ub_u, minus_lb_u, ROUND_NOT_NEEDED);
// Compute `ub_u - q * (ub_u - lb_u)'.
sub_mul_assign_r(ub_u, q, minus_lb_u, ROUND_NOT_NEEDED);
assign_r(up_approx, ub_u, ROUND_UP);
// Deducing `u - v <= -lb_v - (q * lb_u + (1-q) * ub_u)'.
N& m_u_minus_v = (n_v < n_u) ? m_cu[n_v + 1] : m_v[n_u];
add_assign_r(m_u_minus_v, minus_lb_v, up_approx, ROUND_UP);
}
}
}
else {
PPL_ASSERT(expr_u < 0);
// If `expr_u' is negative, we can improve `-v - u'.
neg_assign(minus_expr_u, expr_u);
if (minus_expr_u >= sc_denom) {
// Here q <= -1: Deducing `-v - u <= -lb_v - ub_u'.
// We avoid to check if `ub_u' is plus infinity, because
// it is used for the computation of `lb_v'.
// Let half = m_cu_u / 2.
div_2exp_assign_r(half, matrix[n_u + 1][n_u], 1, ROUND_UP);
N& m_minus_v_minus_u = (n_v < n_u)
? matrix[n_u][n_v + 1]
: m_v[n_u + 1];
sub_assign_r(m_minus_v_minus_u, minus_lb_v, half, ROUND_UP);
}
else {
// Here -1 < q < 0.
typename OR_Matrix<N>::row_reference_type m_u = matrix[n_u];
const N& m_u_cu = m_u[n_u + 1];
if (!is_plus_infinity(m_u_cu)) {
// Let `ub_u' and `lb_u' be the known upper and lower bound
// for `u', respectively. The upper bound for `-v - u' is
// computed as `-lb_v - ((-q)*ub_u + (1 + q)*lb_u)',
// i.e., `minus_lb_v - lb_u + q*(ub_u - lb_u)'.
assign_r(ub_u, matrix[n_u + 1][n_u], ROUND_NOT_NEEDED);
div_2exp_assign_r(ub_u, ub_u, 1, ROUND_NOT_NEEDED);
assign_r(q, expr_u, ROUND_NOT_NEEDED);
div_assign_r(q, q, mpq_sc_denom, ROUND_NOT_NEEDED);
assign_r(minus_lb_u, m_u[n_u + 1], ROUND_NOT_NEEDED);
div_2exp_assign_r(minus_lb_u, minus_lb_u, 1, ROUND_NOT_NEEDED);
// Compute `ub_u - lb_u'.
add_assign_r(ub_u, ub_u, minus_lb_u, ROUND_NOT_NEEDED);
// Compute `-lb_u + q*(ub_u - lb_u)'.
add_mul_assign_r(minus_lb_u, q, ub_u, ROUND_NOT_NEEDED);
assign_r(up_approx, minus_lb_u, ROUND_UP);
// Deducing `-v - u <= -lb_v - ((-q) * ub_u + (1 + q) * lb_u)'.
N& m_minus_v_minus_u = (n_v < n_u) ? m_u[n_v + 1] : m_v[n_u + 1];
add_assign_r(m_minus_v_minus_u, minus_lb_v, up_approx, ROUND_UP);
}
}
}
}
}
template <typename T>
void
Octagonal_Shape<T>
::forget_all_octagonal_constraints(const dimension_type v_id) {
PPL_ASSERT(v_id < space_dim);
const dimension_type n_v = 2*v_id;
typename OR_Matrix<N>::row_iterator m_iter = matrix.row_begin() + n_v;
typename OR_Matrix<N>::row_reference_type r_v = *m_iter;
typename OR_Matrix<N>::row_reference_type r_cv = *(++m_iter);
for (dimension_type h = m_iter.row_size(); h-- > 0; ) {
assign_r(r_v[h], PLUS_INFINITY, ROUND_NOT_NEEDED);
assign_r(r_cv[h], PLUS_INFINITY, ROUND_NOT_NEEDED);
}
++m_iter;
for (typename OR_Matrix<N>::row_iterator m_end = matrix.row_end();
m_iter != m_end; ++m_iter) {
typename OR_Matrix<N>::row_reference_type r = *m_iter;
assign_r(r[n_v], PLUS_INFINITY, ROUND_NOT_NEEDED);
assign_r(r[n_v + 1], PLUS_INFINITY, ROUND_NOT_NEEDED);
}
}
template <typename T>
void
Octagonal_Shape<T>
::forget_binary_octagonal_constraints(const dimension_type v_id) {
PPL_ASSERT(v_id < space_dim);
const dimension_type n_v = 2*v_id;
typename OR_Matrix<N>::row_iterator m_iter = matrix.row_begin() + n_v;
typename OR_Matrix<N>::row_reference_type r_v = *m_iter;
typename OR_Matrix<N>::row_reference_type r_cv = *(++m_iter);
for (dimension_type k = n_v; k-- > 0; ) {
assign_r(r_v[k], PLUS_INFINITY, ROUND_NOT_NEEDED);
assign_r(r_cv[k], PLUS_INFINITY, ROUND_NOT_NEEDED);
}
++m_iter;
for (typename OR_Matrix<N>::row_iterator m_end = matrix.row_end();
m_iter != m_end; ++m_iter) {
typename OR_Matrix<N>::row_reference_type r = *m_iter;
assign_r(r[n_v], PLUS_INFINITY, ROUND_NOT_NEEDED);
assign_r(r[n_v + 1], PLUS_INFINITY, ROUND_NOT_NEEDED);
}
}
template <typename T>
void
Octagonal_Shape<T>::unconstrain(const Variable var) {
// Dimension-compatibility check.
const dimension_type var_id = var.id();
if (space_dimension() < var_id + 1)
throw_dimension_incompatible("unconstrain(var)", var_id + 1);
// Enforce strong closure for precision.
strong_closure_assign();
// If the shape is empty, this is a no-op.
if (marked_empty())
return;
forget_all_octagonal_constraints(var_id);
// Strong closure is preserved.
PPL_ASSERT(OK());
}
template <typename T>
void
Octagonal_Shape<T>::unconstrain(const Variables_Set& vars) {
// The cylindrification with respect to no dimensions is a no-op.
// This case captures the only legal cylindrification in a 0-dim space.
if (vars.empty())
return;
// Dimension-compatibility check.
const dimension_type min_space_dim = vars.space_dimension();
if (space_dimension() < min_space_dim)
throw_dimension_incompatible("unconstrain(vs)", min_space_dim);
// Enforce strong closure for precision.
strong_closure_assign();
// If the shape is empty, this is a no-op.
if (marked_empty())
return;
for (Variables_Set::const_iterator vsi = vars.begin(),
vsi_end = vars.end(); vsi != vsi_end; ++vsi)
forget_all_octagonal_constraints(*vsi);
// Strong closure is preserved.
PPL_ASSERT(OK());
}
template <typename T>
void
Octagonal_Shape<T>::refine(const Variable var,
const Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator) {
PPL_ASSERT(denominator != 0);
PPL_ASSERT(space_dim >= expr.space_dimension());
const dimension_type var_id = var.id();
PPL_ASSERT(var_id <= space_dim);
PPL_ASSERT(expr.coefficient(var) == 0);
PPL_ASSERT(relsym != LESS_THAN && relsym != GREATER_THAN);
const Coefficient& b = expr.inhomogeneous_term();
// Number of non-zero coefficients in `expr': will be set to
// 0, 1, or 2, the latter value meaning any value greater than 1.
dimension_type t = 0;
// Variable index of the last non-zero coefficient in `expr', if any.
dimension_type w_id = expr.last_nonzero();
if (w_id != 0) {
++t;
if (!expr.all_zeroes(1, w_id))
++t;
--w_id;
}
// Now we know the form of `expr':
// - If t == 0, then expr == b, with `b' a constant;
// - If t == 1, then expr == a*j + b, where `j != v';
// - If t == 2, then `expr' is of the general form.
typedef typename OR_Matrix<N>::row_iterator row_iterator;
typedef typename OR_Matrix<N>::row_reference_type row_reference;
typedef typename OR_Matrix<N>::const_row_iterator Row_iterator;
typedef typename OR_Matrix<N>::const_row_reference_type Row_reference;
const row_iterator m_begin = matrix.row_begin();
const dimension_type n_var = 2*var_id;
PPL_DIRTY_TEMP_COEFFICIENT(minus_denom);
neg_assign(minus_denom, denominator);
// Since we are only able to record octagonal differences, we can
// precisely deal with the case of a single variable only if its
// coefficient (taking into account the denominator) is 1.
// If this is not the case, we fall back to the general case
// so as to over-approximate the constraint.
if (t == 1 && expr.coefficient(Variable(w_id)) != denominator
&& expr.coefficient(Variable(w_id)) != minus_denom)
t = 2;
if (t == 0) {
// Case 1: expr == b.
PPL_DIRTY_TEMP_COEFFICIENT(two_b);
two_b = 2*b;
switch (relsym) {
case EQUAL:
// Add the constraint `var == b/denominator'.
add_octagonal_constraint(n_var + 1, n_var, two_b, denominator);
add_octagonal_constraint(n_var, n_var + 1, two_b, minus_denom);
break;
case LESS_OR_EQUAL:
// Add the constraint `var <= b/denominator'.
add_octagonal_constraint(n_var + 1, n_var, two_b, denominator);
break;
case GREATER_OR_EQUAL:
// Add the constraint `var >= b/denominator',
// i.e., `-var <= -b/denominator',
add_octagonal_constraint(n_var, n_var + 1, two_b, minus_denom);
break;
default:
// We already dealt with the other cases.
PPL_UNREACHABLE;
break;
}
}
else if (t == 1) {
// Value of the one and only non-zero coefficient in `expr'.
const Coefficient& w_coeff = expr.coefficient(Variable(w_id));
const dimension_type n_w = 2*w_id;
switch (relsym) {
case EQUAL:
if (w_coeff == denominator)
// Add the new constraint `var - w = b/denominator'.
if (var_id < w_id) {
add_octagonal_constraint(n_w, n_var, b, denominator);
add_octagonal_constraint(n_w + 1, n_var + 1, b, minus_denom);
}
else {
add_octagonal_constraint(n_var + 1, n_w + 1, b, denominator);
add_octagonal_constraint(n_var, n_w, b, minus_denom);
}
else
// Add the new constraint `var + w = b/denominator'.
if (var_id < w_id) {
add_octagonal_constraint(n_w + 1, n_var, b, denominator);
add_octagonal_constraint(n_w, n_var + 1, b, minus_denom);
}
else {
add_octagonal_constraint(n_var + 1, n_w, b, denominator);
add_octagonal_constraint(n_var, n_w + 1, b, minus_denom);
}
break;
case LESS_OR_EQUAL:
{
PPL_DIRTY_TEMP(N, d);
div_round_up(d, b, denominator);
// Note that: `w_id != v', so that `expr' is of the form
// w_coeff * w + b, with `w_id != v'.
if (w_coeff == denominator) {
// Add the new constraints `v - w <= b/denominator'.
if (var_id < w_id)
add_octagonal_constraint(n_w, n_var, d);
else
add_octagonal_constraint(n_var + 1, n_w + 1, d);
}
else if (w_coeff == minus_denom) {
// Add the new constraints `v + w <= b/denominator'.
if (var_id < w_id)
add_octagonal_constraint(n_w + 1, n_var, d);
else
add_octagonal_constraint(n_var + 1, n_w, d);
}
break;
}
case GREATER_OR_EQUAL:
{
PPL_DIRTY_TEMP(N, d);
div_round_up(d, b, minus_denom);
// Note that: `w_id != v', so that `expr' is of the form
// w_coeff * w + b, with `w_id != v'.
if (w_coeff == denominator) {
// Add the new constraint `v - w >= b/denominator',
// i.e., `-v + w <= -b/denominator'.
if (var_id < w_id)
add_octagonal_constraint(n_w + 1, n_var + 1, d);
else
add_octagonal_constraint(n_var, n_w, d);
}
else if (w_coeff == minus_denom) {
// Add the new constraints `v + w >= b/denominator',
// i.e., `-v - w <= -b/denominator'.
if (var_id < w_id)
add_octagonal_constraint(n_w, n_var + 1, d);
else
add_octagonal_constraint(n_var, n_w + 1, d);
}
break;
}
default:
// We already dealt with the other cases.
PPL_UNREACHABLE;
break;
}
}
else {
// Here t == 2, so that
// expr == a_1*x_1 + a_2*x_2 + ... + a_n*x_n + b, where n >= 2.
const bool is_sc = (denominator > 0);
PPL_DIRTY_TEMP_COEFFICIENT(minus_b);
neg_assign(minus_b, b);
const Coefficient& sc_b = is_sc ? b : minus_b;
const Coefficient& minus_sc_b = is_sc ? minus_b : b;
const Coefficient& sc_denom = is_sc ? denominator : minus_denom;
const Coefficient& minus_sc_denom = is_sc ? minus_denom : denominator;
// NOTE: here, for optimization purposes, `minus_expr' is only assigned
// when `denominator' is negative. Do not use it unless you are sure
// it has been correctly assigned.
Linear_Expression minus_expr;
if (!is_sc)
minus_expr = -expr;
const Linear_Expression& sc_expr = is_sc ? expr : minus_expr;
PPL_DIRTY_TEMP(N, sum);
// Index of variable that is unbounded in `this'.
PPL_UNINITIALIZED(dimension_type, pinf_index);
// Number of unbounded variables found.
dimension_type pinf_count = 0;
switch (relsym) {
case EQUAL:
{
PPL_DIRTY_TEMP(N, neg_sum);
// Index of variable that is unbounded in `this'.
PPL_UNINITIALIZED(dimension_type, neg_pinf_index);
// Number of unbounded variables found.
dimension_type neg_pinf_count = 0;
// Approximate the inhomogeneous term.
assign_r(sum, sc_b, ROUND_UP);
assign_r(neg_sum, minus_sc_b, ROUND_UP);
// Approximate the homogeneous part of `sc_expr'.
PPL_DIRTY_TEMP(N, coeff_i);
PPL_DIRTY_TEMP(N, half);
PPL_DIRTY_TEMP_COEFFICIENT(minus_sc_i);
PPL_DIRTY_TEMP(N, minus_coeff_i);
// Note: indices above `w' can be disregarded, as they all have
// a zero coefficient in `sc_expr'.
for (Row_iterator m_iter = m_begin,
m_iter_end = m_begin + (2 * w_id + 2);
m_iter != m_iter_end; ) {
const dimension_type n_i = m_iter.index();
const dimension_type id = n_i/2;
Row_reference m_i = *m_iter;
++m_iter;
Row_reference m_ci = *m_iter;
++m_iter;
const Coefficient& sc_i = sc_expr.coefficient(Variable(id));
const int sign_i = sgn(sc_i);
if (sign_i > 0) {
assign_r(coeff_i, sc_i, ROUND_UP);
// Approximating `sc_expr'.
if (pinf_count <= 1) {
const N& double_approx_i = m_ci[n_i];
if (!is_plus_infinity(double_approx_i)) {
// Let half = double_approx_i / 2.
div_2exp_assign_r(half, double_approx_i, 1, ROUND_UP);
add_mul_assign_r(sum, coeff_i, half, ROUND_UP);
}
else {
++pinf_count;
pinf_index = id;
}
}
// Approximating `-sc_expr'.
if (neg_pinf_count <= 1) {
const N& double_approx_minus_i = m_i[n_i + 1];
if (!is_plus_infinity(double_approx_minus_i)) {
// Let half = double_approx_minus_i / 2.
div_2exp_assign_r(half, double_approx_minus_i, 1, ROUND_UP);
add_mul_assign_r(neg_sum, coeff_i, half, ROUND_UP);
}
else {
++neg_pinf_count;
neg_pinf_index = id;
}
}
}
else if (sign_i < 0) {
neg_assign_r(minus_sc_i, sc_i, ROUND_NOT_NEEDED);
assign_r(minus_coeff_i, minus_sc_i, ROUND_UP);
// Approximating `sc_expr'.
if (pinf_count <= 1) {
const N& double_approx_minus_i = m_i[n_i + 1];
if (!is_plus_infinity(double_approx_minus_i)) {
// Let half = double_approx_minus_i / 2.
div_2exp_assign_r(half, double_approx_minus_i, 1, ROUND_UP);
add_mul_assign_r(sum, minus_coeff_i, half, ROUND_UP);
}
else {
++pinf_count;
pinf_index = id;
}
}
// Approximating `-sc_expr'.
if (neg_pinf_count <= 1) {
const N& double_approx_i = m_ci[n_i];
if (!is_plus_infinity(double_approx_i)) {
// Let half = double_approx_i / 2.
div_2exp_assign_r(half, double_approx_i, 1, ROUND_UP);
add_mul_assign_r(neg_sum, minus_coeff_i, half, ROUND_UP);
}
else {
++neg_pinf_count;
neg_pinf_index = id;
}
}
}
}
// Return immediately if no approximation could be computed.
if (pinf_count > 1 && neg_pinf_count > 1) {
PPL_ASSERT(OK());
return;
}
// In the following, strong closure will be definitely lost.
reset_strongly_closed();
// Exploit the upper approximation, if possible.
if (pinf_count <= 1) {
// Compute quotient (if needed).
if (sc_denom != 1) {
// Before computing quotients, the denominator should be
// approximated towards zero. Since `sc_denom' is known to be
// positive, this amounts to rounding downwards, which is
// achieved as usual by rounding upwards `minus_sc_denom'
// and negating again the result.
PPL_DIRTY_TEMP(N, down_sc_denom);
assign_r(down_sc_denom, minus_sc_denom, ROUND_UP);
neg_assign_r(down_sc_denom, down_sc_denom, ROUND_UP);
div_assign_r(sum, sum, down_sc_denom, ROUND_UP);
}
// Add the upper bound constraint, if meaningful.
if (pinf_count == 0) {
// Add the constraint `v <= sum'.
PPL_DIRTY_TEMP(N, double_sum);
mul_2exp_assign_r(double_sum, sum, 1, ROUND_UP);
matrix[n_var + 1][n_var] = double_sum;
// Deduce constraints of the form `v +/- u', where `u != v'.
deduce_v_pm_u_bounds(var_id, w_id, sc_expr, sc_denom, sum);
}
else
// Here `pinf_count == 1'.
if (pinf_index != var_id) {
const Coefficient& ppi
= sc_expr.coefficient(Variable(pinf_index));
if (ppi == sc_denom)
// Add the constraint `v - pinf_index <= sum'.
if (var_id < pinf_index)
matrix[2*pinf_index][n_var] = sum;
else
matrix[n_var + 1][2*pinf_index + 1] = sum;
else
if (ppi == minus_sc_denom) {
// Add the constraint `v + pinf_index <= sum'.
if (var_id < pinf_index)
matrix[2*pinf_index + 1][n_var] = sum;
else
matrix[n_var + 1][2*pinf_index] = sum;
}
}
}
// Exploit the lower approximation, if possible.
if (neg_pinf_count <= 1) {
// Compute quotient (if needed).
if (sc_denom != 1) {
// Before computing quotients, the denominator should be
// approximated towards zero. Since `sc_denom' is known to be
// positive, this amounts to rounding downwards, which is
// achieved as usual by rounding upwards `minus_sc_denom'
// and negating again the result.
PPL_DIRTY_TEMP(N, down_sc_denom);
assign_r(down_sc_denom, minus_sc_denom, ROUND_UP);
neg_assign_r(down_sc_denom, down_sc_denom, ROUND_UP);
div_assign_r(neg_sum, neg_sum, down_sc_denom, ROUND_UP);
}
// Add the lower bound constraint, if meaningful.
if (neg_pinf_count == 0) {
// Add the constraint `v >= -neg_sum', i.e., `-v <= neg_sum'.
PPL_DIRTY_TEMP(N, double_neg_sum);
mul_2exp_assign_r(double_neg_sum, neg_sum, 1, ROUND_UP);
matrix[n_var][n_var + 1] = double_neg_sum;
// Deduce constraints of the form `-v +/- u', where `u != v'.
deduce_minus_v_pm_u_bounds(var_id, w_id, sc_expr, sc_denom,
neg_sum);
}
else
// Here `neg_pinf_count == 1'.
if (neg_pinf_index != var_id) {
const Coefficient& npi
= sc_expr.coefficient(Variable(neg_pinf_index));
if (npi == sc_denom)
// Add the constraint `v - neg_pinf_index >= -neg_sum',
// i.e., `neg_pinf_index - v <= neg_sum'.
if (neg_pinf_index < var_id)
matrix[n_var][2*neg_pinf_index] = neg_sum;
else
matrix[2*neg_pinf_index + 1][n_var + 1] = neg_sum;
else
if (npi == minus_sc_denom) {
// Add the constraint `v + neg_pinf_index >= -neg_sum',
// i.e., `-neg_pinf_index - v <= neg_sum'.
if (neg_pinf_index < var_id)
matrix[n_var][2*neg_pinf_index + 1] = neg_sum;
else
matrix[2*neg_pinf_index][n_var + 1] = neg_sum;
}
}
}
break;
}
case LESS_OR_EQUAL:
{
// Compute an upper approximation for `expr' into `sum',
// taking into account the sign of `denominator'.
// Approximate the inhomogeneous term.
assign_r(sum, sc_b, ROUND_UP);
// Approximate the homogeneous part of `sc_expr'.
PPL_DIRTY_TEMP(N, coeff_i);
PPL_DIRTY_TEMP(N, approx_i);
PPL_DIRTY_TEMP_COEFFICIENT(minus_sc_i);
// Note: indices above `w_id' can be disregarded, as they all have
// a zero coefficient in `expr'.
for (row_iterator m_iter = m_begin,
m_iter_end = m_begin + (2 * w_id + 2);
m_iter != m_iter_end; ) {
const dimension_type n_i = m_iter.index();
const dimension_type id = n_i/2;
row_reference m_i = *m_iter;
++m_iter;
row_reference m_ci = *m_iter;
++m_iter;
const Coefficient& sc_i = sc_expr.coefficient(Variable(id));
const int sign_i = sgn(sc_i);
if (sign_i == 0)
continue;
// Choose carefully: we are approximating `sc_expr'.
const N& double_approx_i = (sign_i > 0) ? m_ci[n_i] : m_i[n_i + 1];
if (is_plus_infinity(double_approx_i)) {
if (++pinf_count > 1)
break;
pinf_index = id;
continue;
}
if (sign_i > 0)
assign_r(coeff_i, sc_i, ROUND_UP);
else {
neg_assign(minus_sc_i, sc_i);
assign_r(coeff_i, minus_sc_i, ROUND_UP);
}
div_2exp_assign_r(approx_i, double_approx_i, 1, ROUND_UP);
add_mul_assign_r(sum, coeff_i, approx_i, ROUND_UP);
}
// Divide by the (sign corrected) denominator (if needed).
if (sc_denom != 1) {
// Before computing the quotient, the denominator should be
// approximated towards zero. Since `sc_denom' is known to be
// positive, this amounts to rounding downwards, which is achieved
// by rounding upwards `minus_sc-denom' and negating again the result.
PPL_DIRTY_TEMP(N, down_sc_denom);
assign_r(down_sc_denom, minus_sc_denom, ROUND_UP);
neg_assign_r(down_sc_denom, down_sc_denom, ROUND_UP);
div_assign_r(sum, sum, down_sc_denom, ROUND_UP);
}
if (pinf_count == 0) {
// Add the constraint `v <= sum'.
PPL_DIRTY_TEMP(N, double_sum);
mul_2exp_assign_r(double_sum, sum, 1, ROUND_UP);
add_octagonal_constraint(n_var + 1, n_var, double_sum);
// Deduce constraints of the form `v +/- u', where `u != v'.
deduce_v_pm_u_bounds(var_id, w_id, sc_expr, sc_denom, sum);
}
else if (pinf_count == 1) {
dimension_type pinf_ind = 2*pinf_index;
if (expr.coefficient(Variable(pinf_index)) == denominator ) {
// Add the constraint `v - pinf_index <= sum'.
if (var_id < pinf_index)
add_octagonal_constraint(pinf_ind, n_var, sum);
else
add_octagonal_constraint(n_var + 1, pinf_ind + 1, sum);
}
else {
if (expr.coefficient(Variable(pinf_index)) == minus_denom) {
// Add the constraint `v + pinf_index <= sum'.
if (var_id < pinf_index)
add_octagonal_constraint(pinf_ind + 1, n_var, sum);
else
add_octagonal_constraint(n_var + 1, pinf_ind, sum);
}
}
}
break;
}
case GREATER_OR_EQUAL:
{
// Compute an upper approximation for `-sc_expr' into `sum'.
// Note: approximating `-sc_expr' from above and then negating the
// result is the same as approximating `sc_expr' from below.
// Approximate the inhomogeneous term.
assign_r(sum, minus_sc_b, ROUND_UP);
// Approximate the homogeneous part of `-sc_expr'.
PPL_DIRTY_TEMP(N, coeff_i);
PPL_DIRTY_TEMP(N, approx_i);
PPL_DIRTY_TEMP_COEFFICIENT(minus_sc_i);
for (row_iterator m_iter = m_begin,
m_iter_end = m_begin + (2 * w_id + 2);
m_iter != m_iter_end; ) {
const dimension_type n_i = m_iter.index();
const dimension_type id = n_i/2;
row_reference m_i = *m_iter;
++m_iter;
row_reference m_ci = *m_iter;
++m_iter;
const Coefficient& sc_i = sc_expr.coefficient(Variable(id));
const int sign_i = sgn(sc_i);
if (sign_i == 0)
continue;
// Choose carefully: we are approximating `-sc_expr'.
const N& double_approx_i = (sign_i > 0) ? m_i[n_i + 1] : m_ci[n_i];
if (is_plus_infinity(double_approx_i)) {
if (++pinf_count > 1)
break;
pinf_index = id;
continue;
}
if (sign_i > 0)
assign_r(coeff_i, sc_i, ROUND_UP);
else {
neg_assign(minus_sc_i, sc_i);
assign_r(coeff_i, minus_sc_i, ROUND_UP);
}
div_2exp_assign_r(approx_i, double_approx_i, 1, ROUND_UP);
add_mul_assign_r(sum, coeff_i, approx_i, ROUND_UP);
}
// Divide by the (sign corrected) denominator (if needed).
if (sc_denom != 1) {
// Before computing the quotient, the denominator should be
// approximated towards zero. Since `sc_denom' is known to be
// positive, this amounts to rounding downwards, which is
// achieved by rounding upwards `minus_sc_denom' and
// negating again the result.
PPL_DIRTY_TEMP(N, down_sc_denom);
assign_r(down_sc_denom, minus_sc_denom, ROUND_UP);
neg_assign_r(down_sc_denom, down_sc_denom, ROUND_UP);
div_assign_r(sum, sum, down_sc_denom, ROUND_UP);
}
if (pinf_count == 0) {
// Add the constraint `v >= -neg_sum', i.e., `-v <= neg_sum'.
PPL_DIRTY_TEMP(N, double_sum);
mul_2exp_assign_r(double_sum, sum, 1, ROUND_UP);
add_octagonal_constraint(n_var, n_var + 1, double_sum);
// Deduce constraints of the form `-v +/- u', where `u != v'.
deduce_minus_v_pm_u_bounds(var_id, pinf_index, sc_expr, sc_denom,
sum);
}
else if (pinf_count == 1) {
dimension_type pinf_ind = 2*pinf_index;
if (expr.coefficient(Variable(pinf_index)) == denominator) {
// Add the constraint `v - pinf_index >= -sum',
// i.e., `pinf_index - v <= sum'.
if (pinf_index < var_id)
add_octagonal_constraint(n_var, pinf_ind, sum);
else
add_octagonal_constraint(pinf_ind + 1, n_var, sum);
}
else {
if (expr.coefficient(Variable(pinf_index)) == minus_denom) {
// Add the constraint `v + pinf_index >= -sum',
// i.e., `-pinf_index - v <= sum'.
if (pinf_index < var_id)
add_octagonal_constraint(n_var, pinf_ind + 1, sum);
else
add_octagonal_constraint(pinf_ind, n_var + 1, sum);
}
}
}
break;
}
default:
// We already dealt with the other cases.
PPL_UNREACHABLE;
break;
}
}
}
template <typename T>
void
Octagonal_Shape<T>::affine_image(const Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference
denominator) {
// The denominator cannot be zero.
if (denominator == 0)
throw_invalid_argument("affine_image(v, e, d)", "d == 0");
// Dimension-compatibility checks.
// The dimension of `expr' should not be greater than the dimension
// of `*this'.
const dimension_type expr_space_dim = expr.space_dimension();
if (space_dim < expr_space_dim)
throw_dimension_incompatible("affine_image(v, e, d)", "e", expr);
// `var' should be one of the dimensions of the octagon.
const dimension_type var_id = var.id();
if (space_dim < var_id + 1)
throw_dimension_incompatible("affine_image(v, e, d)", var_id + 1);
strong_closure_assign();
// The image of an empty octagon is empty too.
if (marked_empty())
return;
// Number of non-zero coefficients in `expr': will be set to
// 0, 1, or 2, the latter value meaning any value greater than 1.
dimension_type t = 0;
// Variable-index of the last non-zero coefficient in `expr', if any.
dimension_type w_id = expr.last_nonzero();
if (w_id != 0) {
++t;
if (!expr.all_zeroes(1, w_id))
++t;
--w_id;
}
typedef typename OR_Matrix<N>::row_iterator row_iterator;
typedef typename OR_Matrix<N>::row_reference_type row_reference;
typedef typename OR_Matrix<N>::const_row_iterator Row_iterator;
typedef typename OR_Matrix<N>::const_row_reference_type Row_reference;
using std::swap;
const dimension_type n_var = 2*var_id;
const Coefficient& b = expr.inhomogeneous_term();
PPL_DIRTY_TEMP_COEFFICIENT(minus_denom);
neg_assign_r(minus_denom, denominator, ROUND_NOT_NEEDED);
// `w' is the variable with index `w_id'.
// Now we know the form of `expr':
// - If t == 0, then expr == b, with `b' a constant;
// - If t == 1, then expr == a*w + b, where `w' can be `v' or another
// variable; in this second case we have to check whether `a' is
// equal to `denominator' or `-denominator', since otherwise we have
// to fall back on the general form;
// - If t == 2, the `expr' is of the general form.
if (t == 0) {
// Case 1: expr == b.
// Remove all constraints on `var'.
forget_all_octagonal_constraints(var_id);
PPL_DIRTY_TEMP_COEFFICIENT(two_b);
two_b = 2*b;
// Add the constraint `var == b/denominator'.
add_octagonal_constraint(n_var + 1, n_var, two_b, denominator);
add_octagonal_constraint(n_var, n_var + 1, two_b, minus_denom);
PPL_ASSERT(OK());
return;
}
if (t == 1) {
// The one and only non-zero homogeneous coefficient in `expr'.
const Coefficient& w_coeff = expr.coefficient(Variable(w_id));
if (w_coeff == denominator || w_coeff == minus_denom) {
// Case 2: expr = w_coeff*w + b, with w_coeff = +/- denominator.
if (w_id == var_id) {
// Here `expr' is of the form: +/- denominator * v + b.
const bool sign_symmetry = (w_coeff != denominator);
if (!sign_symmetry && b == 0)
// The transformation is the identity function.
return;
// Translate all the constraints on `var' adding or
// subtracting the value `b/denominator'.
PPL_DIRTY_TEMP(N, d);
div_round_up(d, b, denominator);
PPL_DIRTY_TEMP(N, minus_d);
div_round_up(minus_d, b, minus_denom);
if (sign_symmetry)
swap(d, minus_d);
const row_iterator m_begin = matrix.row_begin();
const row_iterator m_end = matrix.row_end();
row_iterator m_iter = m_begin + n_var;
row_reference m_v = *m_iter;
++m_iter;
row_reference m_cv = *m_iter;
++m_iter;
// NOTE: delay update of unary constraints on `var'.
for (dimension_type j = n_var; j-- > 0; ) {
N& m_v_j = m_v[j];
add_assign_r(m_v_j, m_v_j, minus_d, ROUND_UP);
N& m_cv_j = m_cv[j];
add_assign_r(m_cv_j, m_cv_j, d, ROUND_UP);
if (sign_symmetry)
swap(m_v_j, m_cv_j);
}
for ( ; m_iter != m_end; ++m_iter) {
row_reference m_i = *m_iter;
N& m_i_v = m_i[n_var];
add_assign_r(m_i_v, m_i_v, d, ROUND_UP);
N& m_i_cv = m_i[n_var + 1];
add_assign_r(m_i_cv, m_i_cv, minus_d, ROUND_UP);
if (sign_symmetry)
swap(m_i_v, m_i_cv);
}
// Now update unary constraints on var.
mul_2exp_assign_r(d, d, 1, ROUND_UP);
N& m_cv_v = m_cv[n_var];
add_assign_r(m_cv_v, m_cv_v, d, ROUND_UP);
mul_2exp_assign_r(minus_d, minus_d, 1, ROUND_UP);
N& m_v_cv = m_v[n_var + 1];
add_assign_r(m_v_cv, m_v_cv, minus_d, ROUND_UP);
if (sign_symmetry)
swap(m_cv_v, m_v_cv);
// Note: strong closure is preserved.
}
else {
// Here `w != var', so that `expr' is of the form
// +/-denominator * w + b.
// Remove all constraints on `var'.
forget_all_octagonal_constraints(var_id);
const dimension_type n_w = 2*w_id;
// Add the new constraint `var - w = b/denominator'.
if (w_coeff == denominator) {
if (var_id < w_id) {
add_octagonal_constraint(n_w, n_var, b, denominator);
add_octagonal_constraint(n_w + 1, n_var + 1, b, minus_denom);
}
else {
add_octagonal_constraint(n_var + 1, n_w + 1, b, denominator);
add_octagonal_constraint(n_var, n_w, b, minus_denom);
}
}
else {
// Add the new constraint `var + w = b/denominator'.
if (var_id < w_id) {
add_octagonal_constraint(n_w + 1, n_var, b, denominator);
add_octagonal_constraint(n_w, n_var + 1, b, minus_denom);
}
else {
add_octagonal_constraint(n_var + 1, n_w, b, denominator);
add_octagonal_constraint(n_var, n_w + 1, b, minus_denom);
}
}
incremental_strong_closure_assign(var);
}
PPL_ASSERT(OK());
return;
}
}
// General case.
// Either t == 2, so that
// expr == a_1*x_1 + a_2*x_2 + ... + a_n*x_n + b, where n >= 2,
// or t == 1, expr == a*w + b, but a <> +/- denominator.
// We will remove all the constraints on `var' and add back
// constraints providing upper and lower bounds for `var'.
// Compute upper approximations for `expr' and `-expr'
// into `pos_sum' and `neg_sum', respectively, taking into account
// the sign of `denominator'.
// Note: approximating `-expr' from above and then negating the
// result is the same as approximating `expr' from below.
const bool is_sc = (denominator > 0);
PPL_DIRTY_TEMP_COEFFICIENT(minus_b);
neg_assign_r(minus_b, b, ROUND_NOT_NEEDED);
const Coefficient& sc_b = is_sc ? b : minus_b;
const Coefficient& minus_sc_b = is_sc ? minus_b : b;
const Coefficient& sc_denom = is_sc ? denominator : minus_denom;
const Coefficient& minus_sc_denom = is_sc ? minus_denom : denominator;
// NOTE: here, for optimization purposes, `minus_expr' is only assigned
// when `denominator' is negative. Do not use it unless you are sure
// it has been correctly assigned.
Linear_Expression minus_expr;
if (!is_sc)
minus_expr = -expr;
const Linear_Expression& sc_expr = is_sc ? expr : minus_expr;
PPL_DIRTY_TEMP(N, pos_sum);
PPL_DIRTY_TEMP(N, neg_sum);
// Indices of the variables that are unbounded in `this->matrix'.
PPL_UNINITIALIZED(dimension_type, pos_pinf_index);
PPL_UNINITIALIZED(dimension_type, neg_pinf_index);
// Number of unbounded variables found.
dimension_type pos_pinf_count = 0;
dimension_type neg_pinf_count = 0;
// Approximate the inhomogeneous term.
assign_r(pos_sum, sc_b, ROUND_UP);
assign_r(neg_sum, minus_sc_b, ROUND_UP);
// Approximate the homogeneous part of `sc_expr'.
PPL_DIRTY_TEMP(N, coeff_i);
PPL_DIRTY_TEMP(N, minus_coeff_i);
PPL_DIRTY_TEMP(N, half);
PPL_DIRTY_TEMP_COEFFICIENT(minus_sc_i);
// Note: indices above `w' can be disregarded, as they all have
// a zero coefficient in `sc_expr'.
const row_iterator m_begin = matrix.row_begin();
for (Row_iterator m_iter = m_begin, m_iter_end = m_begin + (2 * w_id + 2);
m_iter != m_iter_end; ) {
const dimension_type n_i = m_iter.index();
const dimension_type id = n_i/2;
Row_reference m_i = *m_iter;
++m_iter;
Row_reference m_ci = *m_iter;
++m_iter;
const Coefficient& sc_i = sc_expr.coefficient(Variable(id));
const int sign_i = sgn(sc_i);
if (sign_i > 0) {
assign_r(coeff_i, sc_i, ROUND_UP);
// Approximating `sc_expr'.
if (pos_pinf_count <= 1) {
const N& double_up_approx_i = m_ci[n_i];
if (!is_plus_infinity(double_up_approx_i)) {
// Let half = double_up_approx_i / 2.
div_2exp_assign_r(half, double_up_approx_i, 1, ROUND_UP);
add_mul_assign_r(pos_sum, coeff_i, half, ROUND_UP);
}
else {
++pos_pinf_count;
pos_pinf_index = id;
}
}
// Approximating `-sc_expr'.
if (neg_pinf_count <= 1) {
const N& double_up_approx_minus_i = m_i[n_i + 1];
if (!is_plus_infinity(double_up_approx_minus_i)) {
// Let half = double_up_approx_minus_i / 2.
div_2exp_assign_r(half, double_up_approx_minus_i, 1, ROUND_UP);
add_mul_assign_r(neg_sum, coeff_i, half, ROUND_UP);
}
else {
++neg_pinf_count;
neg_pinf_index = id;
}
}
}
else if (sign_i < 0) {
neg_assign_r(minus_sc_i, sc_i, ROUND_NOT_NEEDED);
assign_r(minus_coeff_i, minus_sc_i, ROUND_UP);
// Approximating `sc_expr'.
if (pos_pinf_count <= 1) {
const N& double_up_approx_minus_i = m_i[n_i + 1];
if (!is_plus_infinity(double_up_approx_minus_i)) {
// Let half = double_up_approx_minus_i / 2.
div_2exp_assign_r(half, double_up_approx_minus_i, 1, ROUND_UP);
add_mul_assign_r(pos_sum, minus_coeff_i, half, ROUND_UP);
}
else {
++pos_pinf_count;
pos_pinf_index = id;
}
}
// Approximating `-sc_expr'.
if (neg_pinf_count <= 1) {
const N& double_up_approx_i = m_ci[n_i];
if (!is_plus_infinity(double_up_approx_i)) {
// Let half = double_up_approx_i / 2.
div_2exp_assign_r(half, double_up_approx_i, 1, ROUND_UP);
add_mul_assign_r(neg_sum, minus_coeff_i, half, ROUND_UP);
}
else {
++neg_pinf_count;
neg_pinf_index = id;
}
}
}
}
// Remove all constraints on `var'.
forget_all_octagonal_constraints(var_id);
// Return immediately if no approximation could be computed.
if (pos_pinf_count > 1 && neg_pinf_count > 1) {
PPL_ASSERT(OK());
return;
}
// In the following, strong closure will be definitely lost.
reset_strongly_closed();
// Exploit the upper approximation, if possible.
if (pos_pinf_count <= 1) {
// Compute quotient (if needed).
if (sc_denom != 1) {
// Before computing quotients, the denominator should be approximated
// towards zero. Since `sc_denom' is known to be positive, this amounts to
// rounding downwards, which is achieved as usual by rounding upwards
// `minus_sc_denom' and negating again the result.
PPL_DIRTY_TEMP(N, down_sc_denom);
assign_r(down_sc_denom, minus_sc_denom, ROUND_UP);
neg_assign_r(down_sc_denom, down_sc_denom, ROUND_UP);
div_assign_r(pos_sum, pos_sum, down_sc_denom, ROUND_UP);
}
// Add the upper bound constraint, if meaningful.
if (pos_pinf_count == 0) {
// Add the constraint `v <= pos_sum'.
PPL_DIRTY_TEMP(N, double_pos_sum);
mul_2exp_assign_r(double_pos_sum, pos_sum, 1, ROUND_UP);
matrix[n_var + 1][n_var] = double_pos_sum;
// Deduce constraints of the form `v +/- u', where `u != v'.
deduce_v_pm_u_bounds(var_id, w_id, sc_expr, sc_denom, pos_sum);
}
else
// Here `pos_pinf_count == 1'.
if (pos_pinf_index != var_id) {
const Coefficient& ppi = sc_expr.coefficient(Variable(pos_pinf_index));
if (ppi == sc_denom)
// Add the constraint `v - pos_pinf_index <= pos_sum'.
if (var_id < pos_pinf_index)
matrix[2*pos_pinf_index][n_var] = pos_sum;
else
matrix[n_var + 1][2*pos_pinf_index + 1] = pos_sum;
else
if (ppi == minus_sc_denom) {
// Add the constraint `v + pos_pinf_index <= pos_sum'.
if (var_id < pos_pinf_index)
matrix[2*pos_pinf_index + 1][n_var] = pos_sum;
else
matrix[n_var + 1][2*pos_pinf_index] = pos_sum;
}
}
}
// Exploit the lower approximation, if possible.
if (neg_pinf_count <= 1) {
// Compute quotient (if needed).
if (sc_denom != 1) {
// Before computing quotients, the denominator should be approximated
// towards zero. Since `sc_denom' is known to be positive, this amounts to
// rounding downwards, which is achieved as usual by rounding upwards
// `minus_sc_denom' and negating again the result.
PPL_DIRTY_TEMP(N, down_sc_denom);
assign_r(down_sc_denom, minus_sc_denom, ROUND_UP);
neg_assign_r(down_sc_denom, down_sc_denom, ROUND_UP);
div_assign_r(neg_sum, neg_sum, down_sc_denom, ROUND_UP);
}
// Add the lower bound constraint, if meaningful.
if (neg_pinf_count == 0) {
// Add the constraint `v >= -neg_sum', i.e., `-v <= neg_sum'.
PPL_DIRTY_TEMP(N, double_neg_sum);
mul_2exp_assign_r(double_neg_sum, neg_sum, 1, ROUND_UP);
matrix[n_var][n_var + 1] = double_neg_sum;
// Deduce constraints of the form `-v +/- u', where `u != v'.
deduce_minus_v_pm_u_bounds(var_id, w_id, sc_expr, sc_denom, neg_sum);
}
else
// Here `neg_pinf_count == 1'.
if (neg_pinf_index != var_id) {
const Coefficient& npi = sc_expr.coefficient(Variable(neg_pinf_index));
if (npi == sc_denom)
// Add the constraint `v - neg_pinf_index >= -neg_sum',
// i.e., `neg_pinf_index - v <= neg_sum'.
if (neg_pinf_index < var_id)
matrix[n_var][2*neg_pinf_index] = neg_sum;
else
matrix[2*neg_pinf_index + 1][n_var + 1] = neg_sum;
else
if (npi == minus_sc_denom) {
// Add the constraint `v + neg_pinf_index >= -neg_sum',
// i.e., `-neg_pinf_index - v <= neg_sum'.
if (neg_pinf_index < var_id)
matrix[n_var][2*neg_pinf_index + 1] = neg_sum;
else
matrix[2*neg_pinf_index][n_var + 1] = neg_sum;
}
}
}
incremental_strong_closure_assign(var);
PPL_ASSERT(OK());
}
template <typename T>
template <typename Interval_Info>
void
Octagonal_Shape<T>::affine_form_image(const Variable var,
const Linear_Form< Interval<T, Interval_Info> >& lf) {
// Check that T is a floating point type.
PPL_COMPILE_TIME_CHECK(!std::numeric_limits<T>::is_exact,
"Octagonal_Shape<T>::affine_form_image(Variable, Linear_Form):"
" T is not a floating point type.");
// Dimension-compatibility checks.
// The dimension of `lf' should not be greater than the dimension
// of `*this'.
const dimension_type lf_space_dim = lf.space_dimension();
if (space_dim < lf_space_dim)
throw_dimension_incompatible("affine_form_image(v, l)", "l", lf);
// `var' should be one of the dimensions of the octagon.
const dimension_type var_id = var.id();
if (space_dim < var_id + 1)
throw_dimension_incompatible("affine_form_image(v, l)", var.id() + 1);
strong_closure_assign();
// The image of an empty octagon is empty too.
if (marked_empty())
return;
// Number of non-zero coefficients in `lf': will be set to
// 0, 1, or 2, the latter value meaning any value greater than 1.
dimension_type t = 0;
// Variable-index of the last non-zero coefficient in `lf', if any.
dimension_type w_id = 0;
// Get information about the number of non-zero coefficients in `lf'.
for (dimension_type i = lf_space_dim; i-- > 0; )
if (lf.coefficient(Variable(i)) != 0) {
if (t++ == 1)
break;
else
w_id = i;
}
typedef typename OR_Matrix<N>::row_iterator row_iterator;
typedef typename OR_Matrix<N>::row_reference_type row_reference;
typedef typename OR_Matrix<N>::const_row_iterator Row_iterator;
typedef typename OR_Matrix<N>::const_row_reference_type Row_reference;
typedef Interval<T, Interval_Info> FP_Interval_Type;
using std::swap;
const dimension_type n_var = 2*var_id;
const FP_Interval_Type& b = lf.inhomogeneous_term();
// `w' is the variable with index `w_id'.
// Now we know the form of `lf':
// - If t == 0, then lf == [lb, ub];
// - If t == 1, then lf == a*w + [lb, ub], where `w' can be `v' or another
// variable;
// - If t == 2, the `lf' is of the general form.
PPL_DIRTY_TEMP(N, b_ub);
assign_r(b_ub, b.upper(), ROUND_NOT_NEEDED);
PPL_DIRTY_TEMP(N, b_mlb);
neg_assign_r(b_mlb, b.lower(), ROUND_NOT_NEEDED);
if (t == 0) {
// Case 1: lf = [lb, ub].
forget_all_octagonal_constraints(var_id);
mul_2exp_assign_r(b_mlb, b_mlb, 1, ROUND_UP);
mul_2exp_assign_r(b_ub, b_ub, 1, ROUND_UP);
// Add the constraint `var >= lb && var <= ub'.
add_octagonal_constraint(n_var + 1, n_var, b_ub);
add_octagonal_constraint(n_var, n_var + 1, b_mlb);
PPL_ASSERT(OK());
return;
}
// True if `b' is in [0, 0].
bool is_b_zero = (b_mlb == 0 && b_ub == 0);
if (t == 1) {
// The one and only non-zero homogeneous coefficient in `lf'.
const FP_Interval_Type& w_coeff = lf.coefficient(Variable(w_id));
// True if `w_coeff' is in [1, 1].
bool is_w_coeff_one = (w_coeff == 1);
// True if `w_coeff' is in [-1, -1].
bool is_w_coeff_minus_one = (w_coeff == -1);
if (is_w_coeff_one || is_w_coeff_minus_one) {
// Case 2: lf = w_coeff*w + b, with w_coeff = [+/-1, +/-1].
if (w_id == var_id) {
// Here lf = w_coeff*v + b, with w_coeff = [+/-1, +/-1].
if (is_w_coeff_one && is_b_zero)
// The transformation is the identity function.
return;
// Translate all the constraints on `var' by adding the value
// `b_ub' or subtracting the value `b_lb'.
if (is_w_coeff_minus_one)
swap(b_ub, b_mlb);
const row_iterator m_begin = matrix.row_begin();
const row_iterator m_end = matrix.row_end();
row_iterator m_iter = m_begin + n_var;
row_reference m_v = *m_iter;
++m_iter;
row_reference m_cv = *m_iter;
++m_iter;
// NOTE: delay update of unary constraints on `var'.
for (dimension_type j = n_var; j-- > 0; ) {
N& m_v_j = m_v[j];
add_assign_r(m_v_j, m_v_j, b_mlb, ROUND_UP);
N& m_cv_j = m_cv[j];
add_assign_r(m_cv_j, m_cv_j, b_ub, ROUND_UP);
if (is_w_coeff_minus_one)
swap(m_v_j, m_cv_j);
}
for ( ; m_iter != m_end; ++m_iter) {
row_reference m_i = *m_iter;
N& m_i_v = m_i[n_var];
add_assign_r(m_i_v, m_i_v, b_ub, ROUND_UP);
N& m_i_cv = m_i[n_var + 1];
add_assign_r(m_i_cv, m_i_cv, b_mlb, ROUND_UP);
if (is_w_coeff_minus_one)
swap(m_i_v, m_i_cv);
}
// Now update unary constraints on var.
mul_2exp_assign_r(b_ub, b_ub, 1, ROUND_UP);
N& m_cv_v = m_cv[n_var];
add_assign_r(m_cv_v, m_cv_v, b_ub, ROUND_UP);
mul_2exp_assign_r(b_mlb, b_mlb, 1, ROUND_UP);
N& m_v_cv = m_v[n_var + 1];
add_assign_r(m_v_cv, m_v_cv, b_mlb, ROUND_UP);
if (is_w_coeff_minus_one)
swap(m_cv_v, m_v_cv);
// Note: strong closure is preserved.
}
else {
// Here `w != var', so that `lf' is of the form
// [+/-1, +/-1] * w + b.
// Remove all constraints on `var'.
forget_all_octagonal_constraints(var_id);
const dimension_type n_w = 2*w_id;
if (is_w_coeff_one)
// Add the new constraints `var - w >= b_lb'
// `and var - w <= b_ub'.
if (var_id < w_id) {
add_octagonal_constraint(n_w, n_var, b_ub);
add_octagonal_constraint(n_w + 1, n_var + 1, b_mlb);
}
else {
add_octagonal_constraint(n_var + 1, n_w + 1, b_ub);
add_octagonal_constraint(n_var, n_w, b_mlb);
}
else
// Add the new constraints `var + w >= b_lb'
// `and var + w <= b_ub'.
if (var_id < w_id) {
add_octagonal_constraint(n_w + 1, n_var, b_ub);
add_octagonal_constraint(n_w, n_var + 1, b_mlb);
}
else {
add_octagonal_constraint(n_var + 1, n_w, b_ub);
add_octagonal_constraint(n_var, n_w + 1, b_mlb);
}
incremental_strong_closure_assign(var);
}
PPL_ASSERT(OK());
return;
}
}
// General case.
// Either t == 2, so that
// expr == i_1*x_1 + i_2*x_2 + ... + i_n*x_n + b, where n >= 2,
// or t == 1, expr == i*w + b, but i <> [+/-1, +/-1].
// In the following, strong closure will be definitely lost.
reset_strongly_closed();
Linear_Form<FP_Interval_Type> minus_lf(lf);
minus_lf.negate();
// Declare temporaries outside the loop.
PPL_DIRTY_TEMP(N, upper_bound);
row_iterator m_iter = matrix.row_begin();
m_iter += n_var;
row_reference var_ite = *m_iter;
++m_iter;
row_reference var_cv_ite = *m_iter;
++m_iter;
row_iterator m_end = matrix.row_end();
// Update binary constraints on var FIRST.
for (dimension_type curr_var = var_id,
n_curr_var = n_var - 2; curr_var-- > 0; ) {
Variable current(curr_var);
linear_form_upper_bound(lf + current, upper_bound);
assign_r(var_cv_ite[n_curr_var], upper_bound, ROUND_NOT_NEEDED);
linear_form_upper_bound(lf - current, upper_bound);
assign_r(var_cv_ite[n_curr_var + 1], upper_bound, ROUND_NOT_NEEDED);
linear_form_upper_bound(minus_lf + current, upper_bound);
assign_r(var_ite[n_curr_var], upper_bound, ROUND_NOT_NEEDED);
linear_form_upper_bound(minus_lf - current, upper_bound);
assign_r(var_ite[n_curr_var + 1], upper_bound, ROUND_NOT_NEEDED);
n_curr_var -= 2;
}
for (dimension_type curr_var = var_id + 1; m_iter != m_end; ++m_iter) {
row_reference m_v_ite = *m_iter;
++m_iter;
row_reference m_cv_ite = *m_iter;
Variable current(curr_var);
linear_form_upper_bound(lf + current, upper_bound);
assign_r(m_cv_ite[n_var], upper_bound, ROUND_NOT_NEEDED);
linear_form_upper_bound(lf - current, upper_bound);
assign_r(m_v_ite[n_var], upper_bound, ROUND_NOT_NEEDED);
linear_form_upper_bound(minus_lf + current, upper_bound);
assign_r(m_cv_ite[n_var + 1], upper_bound, ROUND_NOT_NEEDED);
linear_form_upper_bound(minus_lf - current, upper_bound);
assign_r(m_v_ite[n_var + 1], upper_bound, ROUND_NOT_NEEDED);
++curr_var;
}
// Finally, update unary constraints on var.
PPL_DIRTY_TEMP(N, lf_ub);
linear_form_upper_bound(lf, lf_ub);
PPL_DIRTY_TEMP(N, minus_lf_ub);
linear_form_upper_bound(minus_lf, minus_lf_ub);
mul_2exp_assign_r(lf_ub, lf_ub, 1, ROUND_UP);
assign_r(matrix[n_var + 1][n_var], lf_ub, ROUND_NOT_NEEDED);
mul_2exp_assign_r(minus_lf_ub, minus_lf_ub, 1, ROUND_UP);
assign_r(matrix[n_var][n_var + 1], minus_lf_ub, ROUND_NOT_NEEDED);
PPL_ASSERT(OK());
}
template <typename T>
template <typename Interval_Info>
void
Octagonal_Shape<T>::
linear_form_upper_bound(const Linear_Form< Interval<T, Interval_Info> >& lf,
N& result) const {
// Check that T is a floating point type.
PPL_COMPILE_TIME_CHECK(!std::numeric_limits<T>::is_exact,
"Octagonal_Shape<T>::linear_form_upper_bound:"
" T not a floating point type.");
const dimension_type lf_space_dimension = lf.space_dimension();
PPL_ASSERT(lf_space_dimension <= space_dim);
typedef Interval<T, Interval_Info> FP_Interval_Type;
PPL_DIRTY_TEMP(N, curr_lb);
PPL_DIRTY_TEMP(N, curr_ub);
PPL_DIRTY_TEMP(N, curr_var_ub);
PPL_DIRTY_TEMP(N, curr_minus_var_ub);
PPL_DIRTY_TEMP(N, first_comparison_term);
PPL_DIRTY_TEMP(N, second_comparison_term);
PPL_DIRTY_TEMP(N, negator);
assign_r(result, lf.inhomogeneous_term().upper(), ROUND_NOT_NEEDED);
for (dimension_type curr_var = 0, n_var = 0; curr_var < lf_space_dimension;
++curr_var) {
const FP_Interval_Type& curr_coefficient =
lf.coefficient(Variable(curr_var));
assign_r(curr_lb, curr_coefficient.lower(), ROUND_NOT_NEEDED);
assign_r(curr_ub, curr_coefficient.upper(), ROUND_NOT_NEEDED);
if (curr_lb != 0 || curr_ub != 0) {
assign_r(curr_var_ub, matrix[n_var + 1][n_var], ROUND_NOT_NEEDED);
div_2exp_assign_r(curr_var_ub, curr_var_ub, 1, ROUND_UP);
neg_assign_r(curr_minus_var_ub, matrix[n_var][n_var + 1],
ROUND_NOT_NEEDED);
div_2exp_assign_r(curr_minus_var_ub, curr_minus_var_ub, 1, ROUND_DOWN);
// Optimize the most common case: curr = +/-[1, 1].
if (curr_lb == 1 && curr_ub == 1) {
add_assign_r(result, result, std::max(curr_var_ub, curr_minus_var_ub),
ROUND_UP);
}
else if (curr_lb == -1 && curr_ub == -1) {
neg_assign_r(negator, std::min(curr_var_ub, curr_minus_var_ub),
ROUND_NOT_NEEDED);
add_assign_r(result, result, negator, ROUND_UP);
}
else {
// Next addend will be the maximum of four quantities.
assign_r(first_comparison_term, 0, ROUND_NOT_NEEDED);
assign_r(second_comparison_term, 0, ROUND_NOT_NEEDED);
add_mul_assign_r(first_comparison_term, curr_var_ub, curr_ub,
ROUND_UP);
add_mul_assign_r(second_comparison_term, curr_var_ub, curr_lb,
ROUND_UP);
assign_r(first_comparison_term, std::max(first_comparison_term,
second_comparison_term),
ROUND_NOT_NEEDED);
assign_r(second_comparison_term, 0, ROUND_NOT_NEEDED);
add_mul_assign_r(second_comparison_term, curr_minus_var_ub, curr_ub,
ROUND_UP);
assign_r(first_comparison_term, std::max(first_comparison_term,
second_comparison_term),
ROUND_NOT_NEEDED);
assign_r(second_comparison_term, 0, ROUND_NOT_NEEDED);
add_mul_assign_r(second_comparison_term, curr_minus_var_ub, curr_lb,
ROUND_UP);
assign_r(first_comparison_term, std::max(first_comparison_term,
second_comparison_term),
ROUND_NOT_NEEDED);
add_assign_r(result, result, first_comparison_term, ROUND_UP);
}
}
n_var += 2;
}
}
template <typename T>
void
Octagonal_Shape<T>::
interval_coefficient_upper_bound(const N& var_ub, const N& minus_var_ub,
const N& int_ub, const N& int_lb,
N& result) {
// Check that T is a floating point type.
PPL_COMPILE_TIME_CHECK(!std::numeric_limits<T>::is_exact,
"Octagonal_Shape<T>::interval_coefficient_upper_bound:"
" T not a floating point type.");
// NOTE: we store the first comparison term directly into result.
PPL_DIRTY_TEMP(N, second_comparison_term);
PPL_DIRTY_TEMP(N, third_comparison_term);
PPL_DIRTY_TEMP(N, fourth_comparison_term);
assign_r(result, 0, ROUND_NOT_NEEDED);
assign_r(second_comparison_term, 0, ROUND_NOT_NEEDED);
assign_r(third_comparison_term, 0, ROUND_NOT_NEEDED);
assign_r(fourth_comparison_term, 0, ROUND_NOT_NEEDED);
add_mul_assign_r(result, var_ub, int_ub, ROUND_UP);
add_mul_assign_r(second_comparison_term, minus_var_ub, int_ub, ROUND_UP);
add_mul_assign_r(third_comparison_term, var_ub, int_lb, ROUND_UP);
add_mul_assign_r(fourth_comparison_term, minus_var_ub, int_lb, ROUND_UP);
assign_r(result, std::max(result, second_comparison_term), ROUND_NOT_NEEDED);
assign_r(result, std::max(result, third_comparison_term), ROUND_NOT_NEEDED);
assign_r(result, std::max(result, fourth_comparison_term), ROUND_NOT_NEEDED);
}
template <typename T>
void
Octagonal_Shape<T>::affine_preimage(const Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference
denominator) {
// The denominator cannot be zero.
if (denominator == 0)
throw_invalid_argument("affine_preimage(v, e, d)", "d == 0");
// Dimension-compatibility checks.
// The dimension of `expr' should not be greater than the dimension
// of `*this'.
const dimension_type expr_space_dim = expr.space_dimension();
if (space_dim < expr_space_dim)
throw_dimension_incompatible("affine_preimage(v, e, d)", "e", expr);
// `var' should be one of the dimensions of the octagon.
dimension_type var_id = var.id();
if (space_dim < var_id + 1)
throw_dimension_incompatible("affine_preimage(v, e, d)", var_id + 1);
strong_closure_assign();
// The image of an empty octagon is empty too.
if (marked_empty())
return;
const Coefficient& b = expr.inhomogeneous_term();
// Number of non-zero coefficients in `expr': will be set to
// 0, 1, or 2, the latter value meaning any value greater than 1.
dimension_type t = 0;
// Variable-index of the last non-zero coefficient in `expr', if any.
dimension_type w_id = expr.last_nonzero();
if (w_id != 0) {
++t;
if (!expr.all_zeroes(1, w_id))
++t;
--w_id;
}
// `w' is the variable with index `w_id'.
// Now we know the form of `expr':
// - If t == 0, then expr == b, with `b' a constant;
// - If t == 1, then expr == a*w + b, where `w' can be `v' or another
// variable; in this second case we have to check whether `a' is
// equal to `denominator' or `-denominator', since otherwise we have
// to fall back on the general form;
// - If t == 2, the `expr' is of the general form.
if (t == 0) {
// Case 1: expr = n; remove all constraints on `var'.
forget_all_octagonal_constraints(var_id);
PPL_ASSERT(OK());
return;
}
if (t == 1) {
// Value of the one and only non-zero coefficient in `expr'.
const Coefficient& w_coeff = expr.coefficient(Variable(w_id));
if (w_coeff == denominator || w_coeff == -denominator) {
// Case 2: expr = w_coeff*w + b, with w_coeff = +/- denominator.
if (w_id == var_id) {
// Apply affine_image() on the inverse of this transformation.
affine_image(var, denominator*var - b, w_coeff);
}
else {
// `expr == w_coeff*w + b', where `w != var'.
// Remove all constraints on `var'.
forget_all_octagonal_constraints(var_id);
PPL_ASSERT(OK());
}
return;
}
}
// General case.
// Either t == 2, so that
// expr = a_1*x_1 + a_2*x_2 + ... + a_n*x_n + b, where n >= 2,
// or t = 1, expr = a*w + b, but a <> +/- denominator.
const Coefficient& coeff_v = expr.coefficient(var);
if (coeff_v != 0) {
if (coeff_v > 0) {
// The transformation is invertible.
Linear_Expression inverse = ((coeff_v + denominator)*var);
inverse -= expr;
affine_image(var, inverse, coeff_v);
}
else {
// The transformation is invertible.
PPL_DIRTY_TEMP_COEFFICIENT(minus_coeff_v);
neg_assign(minus_coeff_v, coeff_v);
Linear_Expression inverse = ((minus_coeff_v - denominator)*var);
inverse += expr;
affine_image(var, inverse, minus_coeff_v);
}
}
else {
// The transformation is not invertible: all constraints on `var' are lost.
forget_all_octagonal_constraints(var_id);
PPL_ASSERT(OK());
}
}
template <typename T>
void
Octagonal_Shape<T>
::generalized_affine_image(const Variable var,
const Relation_Symbol relsym,
const Linear_Expression& expr ,
Coefficient_traits::const_reference denominator) {
// The denominator cannot be zero.
if (denominator == 0)
throw_invalid_argument("generalized_affine_image(v, r, e, d)", "d == 0");
// Dimension-compatibility checks.
// The dimension of `expr' should not be greater than the dimension
// of `*this'.
const dimension_type expr_space_dim = expr.space_dimension();
if (space_dim < expr_space_dim)
throw_dimension_incompatible("generalized_affine_image(v, r, e, d)", "e",
expr);
// `var' should be one of the dimensions of the octagon.
dimension_type var_id = var.id();
if (space_dim < var_id + 1)
throw_dimension_incompatible("generalized_affine_image(v, r, e, d)",
var_id + 1);
// The relation symbol cannot be a strict relation symbol.
if (relsym == LESS_THAN || relsym == GREATER_THAN)
throw_invalid_argument("generalized_affine_image(v, r, e, d)",
"r is a strict relation symbol");
// The relation symbol cannot be a disequality.
if (relsym == NOT_EQUAL)
throw_invalid_argument("generalized_affine_image(v, r, e, d)",
"r is the disequality relation symbol");
if (relsym == EQUAL) {
// The relation symbol is "=":
// this is just an affine image computation.
affine_image(var, expr, denominator);
return;
}
strong_closure_assign();
// The image of an empty octagon is empty too.
if (marked_empty())
return;
// Number of non-zero coefficients in `expr': will be set to
// 0, 1, or 2, the latter value meaning any value greater than 1.
dimension_type t = 0;
// Variable-index of the last non-zero coefficient in `expr', if any.
dimension_type w_id = expr.last_nonzero();
if (w_id != 0) {
++t;
if (!expr.all_zeroes(1, w_id))
++t;
--w_id;
}
typedef typename OR_Matrix<N>::row_iterator row_iterator;
typedef typename OR_Matrix<N>::row_reference_type row_reference;
typedef typename OR_Matrix<N>::const_row_iterator Row_iterator;
typedef typename OR_Matrix<N>::const_row_reference_type Row_reference;
const row_iterator m_begin = matrix.row_begin();
const row_iterator m_end = matrix.row_end();
const dimension_type n_var = 2*var_id;
const Coefficient& b = expr.inhomogeneous_term();
PPL_DIRTY_TEMP_COEFFICIENT(minus_denom);
neg_assign_r(minus_denom, denominator, ROUND_NOT_NEEDED);
// `w' is the variable with index `w_id'.
// Now we know the form of `expr':
// - If t == 0, then expr == b, with `b' a constant;
// - If t == 1, then expr == a*w + b, where `w' can be `v' or another
// variable; in this second case we have to check whether `a' is
// equal to `denominator' or `-denominator', since otherwise we have
// to fall back on the general form;
// - If t == 2, the `expr' is of the general form.
if (t == 0) {
// Case 1: expr = b.
PPL_DIRTY_TEMP_COEFFICIENT(two_b);
two_b = 2*b;
// Remove all constraints on `var'.
forget_all_octagonal_constraints(var_id);
// Strong closure is lost.
reset_strongly_closed();
switch (relsym) {
case LESS_OR_EQUAL:
// Add the constraint `var <= b/denominator'.
add_octagonal_constraint(n_var + 1, n_var, two_b, denominator);
break;
case GREATER_OR_EQUAL:
// Add the constraint `var >= n/denominator',
// i.e., `-var <= -b/denominator'.
add_octagonal_constraint(n_var, n_var + 1, two_b, minus_denom);
break;
default:
// We already dealt with the other cases.
PPL_UNREACHABLE;
break;
}
PPL_ASSERT(OK());
return;
}
if (t == 1) {
// The one and only non-zero homogeneous coefficient in `expr'.
const Coefficient& w_coeff = expr.coefficient(Variable(w_id));
if (w_coeff == denominator || w_coeff == minus_denom) {
// Case 2: expr == w_coeff*w + b, with w_coeff == +/- denominator.
switch (relsym) {
case LESS_OR_EQUAL:
{
PPL_DIRTY_TEMP(N, d);
div_round_up(d, b, denominator);
if (w_id == var_id) {
// Here `expr' is of the form: +/- denominator * v + b.
// Strong closure is not preserved.
reset_strongly_closed();
if (w_coeff == denominator) {
// Translate all the constraints of the form `v - w <= cost'
// into the constraint `v - w <= cost + b/denominator';
// forget each constraint `w - v <= cost1'.
row_iterator m_iter = m_begin + n_var;
row_reference m_v = *m_iter;
N& m_v_cv = m_v[n_var + 1];
++m_iter;
row_reference m_cv = *m_iter;
N& m_cv_v = m_cv[n_var];
++m_iter;
// NOTE: delay update of m_v_cv and m_cv_v.
for ( ; m_iter != m_end; ++m_iter) {
row_reference m_i = *m_iter;
N& m_i_v = m_i[n_var];
add_assign_r(m_i_v, m_i_v, d, ROUND_UP);
assign_r(m_i[n_var + 1], PLUS_INFINITY, ROUND_NOT_NEEDED);
}
for (dimension_type k = n_var; k-- > 0; ) {
assign_r(m_v[k], PLUS_INFINITY, ROUND_NOT_NEEDED);
add_assign_r(m_cv[k], m_cv[k], d, ROUND_UP);
}
mul_2exp_assign_r(d, d, 1, ROUND_UP);
add_assign_r(m_cv_v, m_cv_v, d, ROUND_UP);
assign_r(m_v_cv, PLUS_INFINITY, ROUND_NOT_NEEDED);
}
else {
// Here `w_coeff == -denominator'.
// `expr' is of the form: -a*var + b.
N& m_v_cv = matrix[n_var][n_var + 1];
mul_2exp_assign_r(d, d, 1, ROUND_UP);
add_assign_r(matrix[n_var + 1][n_var], m_v_cv, d, ROUND_UP);
assign_r(m_v_cv, PLUS_INFINITY, ROUND_NOT_NEEDED);
forget_binary_octagonal_constraints(var_id);
}
}
else {
// Here `w != v', so that `expr' is the form
// +/- denominator*w + b.
// Remove all constraints on `v'.
forget_all_octagonal_constraints(var_id);
const dimension_type n_w = 2*w_id;
if (w_coeff == denominator) {
// Add the new constraint `v - w <= b/denominator'.
if (var_id < w_id)
add_octagonal_constraint(n_w, n_var, b, denominator);
else
add_octagonal_constraint(n_var + 1, n_w + 1, b, denominator);
}
else {
// Add the new constraint `v + w <= b/denominator'.
if (var_id < w_id)
add_octagonal_constraint(n_w + 1, n_var, b, denominator);
else
add_octagonal_constraint(n_var + 1, n_w, b, denominator);
}
}
break;
}
case GREATER_OR_EQUAL:
{
PPL_DIRTY_TEMP(N, d);
div_round_up(d, b, minus_denom);
if (w_id == var_id) {
// Here `expr' is of the form: +/- denominator * v + b.
// Strong closure is not preserved.
reset_strongly_closed();
if (w_coeff == denominator) {
// Translate each constraint `w - v <= cost'
// into the constraint `w - v <= cost - b/denominator';
// forget each constraint `v - w <= cost1'.
row_iterator m_iter = m_begin + n_var;
row_reference m_v = *m_iter;
N& m_v_cv = m_v[n_var + 1];
++m_iter;
row_reference m_cv = *m_iter;
N& m_cv_v = m_cv[n_var];
++m_iter;
// NOTE: delay update of m_v_cv and m_cv_v.
for ( ; m_iter != m_end; ++m_iter) {
row_reference m_i = *m_iter;
assign_r(m_i[n_var], PLUS_INFINITY, ROUND_NOT_NEEDED);
add_assign_r(m_i[n_var + 1], m_i[n_var + 1], d, ROUND_UP);
}
for (dimension_type k = n_var; k-- > 0; ) {
add_assign_r(m_v[k], m_v[k], d, ROUND_UP);
assign_r(m_cv[k], PLUS_INFINITY, ROUND_NOT_NEEDED);
}
mul_2exp_assign_r(d, d, 1, ROUND_UP);
add_assign_r(m_v_cv, m_v_cv, d, ROUND_UP);
assign_r(m_cv_v, PLUS_INFINITY, ROUND_NOT_NEEDED);
}
else {
// Here `w_coeff == -denominator'.
// `expr' is of the form: -a*var + b.
N& m_cv_v = matrix[n_var + 1][n_var];
mul_2exp_assign_r(d, d, 1, ROUND_UP);
add_assign_r(matrix[n_var][n_var + 1], m_cv_v, d, ROUND_UP);
assign_r(m_cv_v, PLUS_INFINITY, ROUND_NOT_NEEDED);
forget_binary_octagonal_constraints(var_id);
}
}
else {
// Here `w != v', so that `expr' is of the form
// +/-denominator * w + b, with `w != v'.
// Remove all constraints on `v'.
forget_all_octagonal_constraints(var_id);
const dimension_type n_w = 2*w_id;
// We have got an expression of the following form:
// var1 + n, with `var1' != `var'.
// We remove all constraints of the form `var (+/- var1) >= const'
// and we add the new constraint `var +/- var1 >= n/denominator'.
if (w_coeff == denominator) {
// Add the new constraint `var - w >= b/denominator',
// i.e., `w - var <= -b/denominator'.
if (var_id < w_id)
add_octagonal_constraint(n_w + 1, n_var + 1, b, minus_denom);
else
add_octagonal_constraint(n_var, n_w, b, minus_denom);
}
else {
// Add the new constraint `var + w >= b/denominator',
// i.e., `-w - var <= -b/denominator'.
if (var_id < w_id)
add_octagonal_constraint(n_w, n_var + 1, b, minus_denom);
else
add_octagonal_constraint(n_var, n_w + 1, b, minus_denom);
}
}
break;
}
default:
// We already dealt with the other cases.
PPL_UNREACHABLE;
break;
}
PPL_ASSERT(OK());
return;
}
}
// General case.
// Either t == 2, so that
// expr == a_1*x_1 + a_2*x_2 + ... + a_n*x_n + b, where n >= 2,
// or t == 1, expr == a*w + b, but a <> +/- denominator.
// We will remove all the constraints on `v' and add back
// a constraint providing an upper or a lower bound for `v'
// (depending on `relsym').
const bool is_sc = (denominator > 0);
PPL_DIRTY_TEMP_COEFFICIENT(minus_b);
neg_assign(minus_b, b);
const Coefficient& sc_b = is_sc ? b : minus_b;
const Coefficient& minus_sc_b = is_sc ? minus_b : b;
const Coefficient& sc_denom = is_sc ? denominator : minus_denom;
const Coefficient& minus_sc_denom = is_sc ? minus_denom : denominator;
// NOTE: here, for optimization purposes, `minus_expr' is only assigned
// when `denominator' is negative. Do not use it unless you are sure
// it has been correctly assigned.
Linear_Expression minus_expr;
if (!is_sc)
minus_expr = -expr;
const Linear_Expression& sc_expr = is_sc ? expr : minus_expr;
PPL_DIRTY_TEMP(N, sum);
// Index of variable that is unbounded in `this->matrix'.
PPL_UNINITIALIZED(dimension_type, pinf_index);
// Number of unbounded variables found.
dimension_type pinf_count = 0;
switch (relsym) {
case LESS_OR_EQUAL:
{
// Compute an upper approximation for `sc_expr' into `sum'.
// Approximate the inhomogeneous term.
assign_r(sum, sc_b, ROUND_UP);
// Approximate the homogeneous part of `sc_expr'.
PPL_DIRTY_TEMP(N, coeff_i);
PPL_DIRTY_TEMP(N, approx_i);
PPL_DIRTY_TEMP_COEFFICIENT(minus_sc_i);
// Note: indices above `w' can be disregarded, as they all have
// a zero coefficient in `sc_expr'.
for (Row_iterator m_iter = m_begin, m_iter_end = m_begin + (2 * w_id + 2);
m_iter != m_iter_end; ) {
const dimension_type n_i = m_iter.index();
const dimension_type id = n_i/2;
Row_reference m_i = *m_iter;
++m_iter;
Row_reference m_ci = *m_iter;
++m_iter;
const Coefficient& sc_i = sc_expr.coefficient(Variable(id));
const int sign_i = sgn(sc_i);
if (sign_i == 0)
continue;
// Choose carefully: we are approximating `sc_expr'.
const N& double_approx_i = (sign_i > 0) ? m_ci[n_i] : m_i[n_i + 1];
if (is_plus_infinity(double_approx_i)) {
if (++pinf_count > 1)
break;
pinf_index = id;
continue;
}
if (sign_i > 0)
assign_r(coeff_i, sc_i, ROUND_UP);
else {
neg_assign(minus_sc_i, sc_i);
assign_r(coeff_i, minus_sc_i, ROUND_UP);
}
div_2exp_assign_r(approx_i, double_approx_i, 1, ROUND_UP);
add_mul_assign_r(sum, coeff_i, approx_i, ROUND_UP);
}
// Remove all constraints on `v'.
forget_all_octagonal_constraints(var_id);
reset_strongly_closed();
// Return immediately if no approximation could be computed.
if (pinf_count > 1) {
PPL_ASSERT(OK());
return;
}
// Divide by the (sign corrected) denominator (if needed).
if (sc_denom != 1) {
// Before computing the quotient, the denominator should be
// approximated towards zero. Since `sc_denom' is known to be
// positive, this amounts to rounding downwards, which is
// achieved as usual by rounding upwards
// `minus_sc_denom' and negating again the result.
PPL_DIRTY_TEMP(N, down_sc_denom);
assign_r(down_sc_denom, minus_sc_denom, ROUND_UP);
neg_assign_r(down_sc_denom, down_sc_denom, ROUND_UP);
div_assign_r(sum, sum, down_sc_denom, ROUND_UP);
}
if (pinf_count == 0) {
// Add the constraint `v <= pos_sum'.
PPL_DIRTY_TEMP(N, double_sum);
mul_2exp_assign_r(double_sum, sum, 1, ROUND_UP);
matrix[n_var + 1][n_var] = double_sum;
// Deduce constraints of the form `v +/- u', where `u != v'.
deduce_v_pm_u_bounds(var_id, w_id, sc_expr, sc_denom, sum);
}
else if (pinf_count == 1)
if (pinf_index != var_id) {
const Coefficient& pi = expr.coefficient(Variable(pinf_index));
if (pi == denominator ) {
// Add the constraint `v - pinf_index <= sum'.
if (var_id < pinf_index)
matrix[2*pinf_index][n_var] = sum;
else
matrix[n_var + 1][2*pinf_index + 1] = sum;
}
else {
if (pi == minus_denom) {
// Add the constraint `v + pinf_index <= sum'.
if (var_id < pinf_index)
matrix[2*pinf_index + 1][n_var] = sum;
else
matrix[n_var + 1][2*pinf_index] = sum;
}
}
}
break;
}
case GREATER_OR_EQUAL:
{
// Compute an upper approximation for `-sc_expr' into `sum'.
// Note: approximating `-sc_expr' from above and then negating the
// result is the same as approximating `sc_expr' from below.
// Approximate the inhomogeneous term.
assign_r(sum, minus_sc_b, ROUND_UP);
PPL_DIRTY_TEMP(N, coeff_i);
PPL_DIRTY_TEMP_COEFFICIENT(minus_sc_i);
PPL_DIRTY_TEMP(N, approx_i);
// Approximate the homogeneous part of `-sc_expr'.
for (Row_iterator m_iter = m_begin, m_iter_end = m_begin + (2 * w_id + 2);
m_iter != m_iter_end; ) {
const dimension_type n_i = m_iter.index();
const dimension_type id = n_i/2;
Row_reference m_i = *m_iter;
++m_iter;
Row_reference m_ci = *m_iter;
++m_iter;
const Coefficient& sc_i = sc_expr.coefficient(Variable(id));
const int sign_i = sgn(sc_i);
if (sign_i == 0)
continue;
// Choose carefully: we are approximating `-sc_expr'.
const N& double_approx_i = (sign_i > 0) ? m_i[n_i + 1] : m_ci[n_i];
if (is_plus_infinity(double_approx_i)) {
if (++pinf_count > 1)
break;
pinf_index = id;
continue;
}
if (sign_i > 0)
assign_r(coeff_i, sc_i, ROUND_UP);
else {
neg_assign(minus_sc_i, sc_i);
assign_r(coeff_i, minus_sc_i, ROUND_UP);
}
div_2exp_assign_r(approx_i, double_approx_i, 1, ROUND_UP);
add_mul_assign_r(sum, coeff_i, approx_i, ROUND_UP);
}
// Remove all constraints on `var'.
forget_all_octagonal_constraints(var_id);
reset_strongly_closed();
// Return immediately if no approximation could be computed.
if (pinf_count > 1) {
PPL_ASSERT(OK());
return;
}
// Divide by the (sign corrected) denominator (if needed).
if (sc_denom != 1) {
// Before computing the quotient, the denominator should be
// approximated towards zero. Since `sc_denom' is known to be
// positive, this amounts to rounding downwards, which is
// achieved as usual by rounding upwards
// `minus_sc_denom' and negating again the result.
PPL_DIRTY_TEMP(N, down_sc_denom);
assign_r(down_sc_denom, minus_sc_denom, ROUND_UP);
neg_assign_r(down_sc_denom, down_sc_denom, ROUND_UP);
div_assign_r(sum, sum, down_sc_denom, ROUND_UP);
}
if (pinf_count == 0) {
// Add the constraint `v >= -neg_sum', i.e., `-v <= neg_sum'.
PPL_DIRTY_TEMP(N, double_sum);
mul_2exp_assign_r(double_sum, sum, 1, ROUND_UP);
matrix[n_var][n_var + 1] = double_sum;
// Deduce constraints of the form `-v +/- u', where `u != v'.
deduce_minus_v_pm_u_bounds(var_id, pinf_index, sc_expr, sc_denom, sum);
}
else if (pinf_count == 1)
if (pinf_index != var_id) {
const Coefficient& pi = expr.coefficient(Variable(pinf_index));
if (pi == denominator) {
// Add the constraint `v - pinf_index >= -sum',
// i.e., `pinf_index - v <= sum'.
if (pinf_index < var_id)
matrix[n_var][2*pinf_index] = sum;
else
matrix[2*pinf_index + 1][n_var + 1] = sum;
}
else {
if (pi == minus_denom) {
// Add the constraint `v + pinf_index >= -sum',
// i.e., `-pinf_index - v <= sum'.
if (pinf_index < var_id)
matrix[n_var][2*pinf_index + 1] = sum;
else
matrix[2*pinf_index][n_var + 1] = sum;
}
}
}
break;
}
default:
// We already dealt with the other cases.
PPL_UNREACHABLE;
break;
}
incremental_strong_closure_assign(var);
PPL_ASSERT(OK());
}
template <typename T>
void
Octagonal_Shape<T>::generalized_affine_image(const Linear_Expression& lhs,
const Relation_Symbol relsym,
const Linear_Expression& rhs) {
// Dimension-compatibility checks.
// The dimension of `lhs' should not be greater than the dimension
// of `*this'.
dimension_type lhs_space_dim = lhs.space_dimension();
if (space_dim < lhs_space_dim)
throw_dimension_incompatible("generalized_affine_image(e1, r, e2)",
"e1", lhs);
// The dimension of `rhs' should not be greater than the dimension
// of `*this'.
const dimension_type rhs_space_dim = rhs.space_dimension();
if (space_dim < rhs_space_dim)
throw_dimension_incompatible("generalized_affine_image(e1, r, e2)",
"e2", rhs);
// Strict relation symbols are not admitted for octagons.
if (relsym == LESS_THAN || relsym == GREATER_THAN)
throw_invalid_argument("generalized_affine_image(e1, r, e2)",
"r is a strict relation symbol");
// The relation symbol cannot be a disequality.
if (relsym == NOT_EQUAL)
throw_invalid_argument("generalized_affine_image(e1, r, e2)",
"r is the disequality relation symbol");
strong_closure_assign();
// The image of an empty octagon is empty.
if (marked_empty())
return;
// Number of non-zero coefficients in `lhs': will be set to
// 0, 1, or 2, the latter value meaning any value greater than 1.
dimension_type t_lhs = 0;
// Index of the last non-zero coefficient in `lhs', if any.
dimension_type j_lhs = lhs.last_nonzero();
if (j_lhs != 0) {
++t_lhs;
if (!lhs.all_zeroes(1, j_lhs))
++t_lhs;
--j_lhs;
}
const Coefficient& b_lhs = lhs.inhomogeneous_term();
if (t_lhs == 0) {
// `lhs' is a constant.
// In principle, it is sufficient to add the constraint `lhs relsym rhs'.
// Note that this constraint is an octagonal difference if `t_rhs <= 1'
// or `t_rhs > 1' and `rhs == a*v - a*w + b_rhs' or
// `rhs == a*v + a*w + b_rhs'. If `rhs' is of a
// more general form, it will be simply ignored.
// TODO: if it is not an octagonal difference, should we compute
// approximations for this constraint?
switch (relsym) {
case LESS_OR_EQUAL:
refine_no_check(lhs <= rhs);
break;
case EQUAL:
refine_no_check(lhs == rhs);
break;
case GREATER_OR_EQUAL:
refine_no_check(lhs >= rhs);
break;
default:
// We already dealt with the other cases.
PPL_UNREACHABLE;
break;
}
}
else if (t_lhs == 1) {
// Here `lhs == a_lhs * v + b_lhs'.
// Independently from the form of `rhs', we can exploit the
// method computing generalized affine images for a single variable.
Variable v(j_lhs);
// Compute a sign-corrected relation symbol.
const Coefficient& denom = lhs.coefficient(v);
Relation_Symbol new_relsym = relsym;
if (denom < 0) {
if (relsym == LESS_OR_EQUAL)
new_relsym = GREATER_OR_EQUAL;
else if (relsym == GREATER_OR_EQUAL)
new_relsym = LESS_OR_EQUAL;
}
Linear_Expression expr = rhs - b_lhs;
generalized_affine_image(v, new_relsym, expr, denom);
}
else {
// Here `lhs' is of the general form, having at least two variables.
// Compute the set of variables occurring in `lhs'.
std::vector<Variable> lhs_vars;
for (Linear_Expression::const_iterator i = lhs.begin(), i_end = lhs.end();
i != i_end; ++i)
lhs_vars.push_back(i.variable());
const dimension_type num_common_dims = std::min(lhs_space_dim, rhs_space_dim);
if (!lhs.have_a_common_variable(rhs, Variable(0), Variable(num_common_dims))) {
// `lhs' and `rhs' variables are disjoint.
// Existentially quantify all variables in the lhs.
for (dimension_type i = lhs_vars.size(); i-- > 0; ) {
dimension_type lhs_vars_i = lhs_vars[i].id();
forget_all_octagonal_constraints(lhs_vars_i);
}
// Constrain the left hand side expression so that it is related to
// the right hand side expression as dictated by `relsym'.
// TODO: if the following constraint is NOT an octagonal difference,
// it will be simply ignored. Should we compute approximations for it?
switch (relsym) {
case LESS_OR_EQUAL:
refine_no_check(lhs <= rhs);
break;
case EQUAL:
refine_no_check(lhs == rhs);
break;
case GREATER_OR_EQUAL:
refine_no_check(lhs >= rhs);
break;
default:
// We already dealt with the other cases.
PPL_UNREACHABLE;
break;
}
}
else {
// Some variables in `lhs' also occur in `rhs'.
#if 1 // Simplified computation (see the TODO note below).
for (dimension_type i = lhs_vars.size(); i-- > 0; ) {
dimension_type lhs_vars_i = lhs_vars[i].id();
forget_all_octagonal_constraints(lhs_vars_i);
}
#else // Currently unnecessarily complex computation.
// More accurate computation that is worth doing only if
// the following TODO note is accurately dealt with.
// To ease the computation, we add an additional dimension.
const Variable new_var(space_dim);
add_space_dimensions_and_embed(1);
// Constrain the new dimension to be equal to `rhs'.
// NOTE: calling affine_image() instead of refine_no_check()
// ensures some approximation is tried even when the constraint
// is not an octagonal constraint.
affine_image(new_var, rhs);
// Existentially quantify all variables in the lhs.
// NOTE: enforce strong closure for precision.
strong_closure_assign();
PPL_ASSERT(!marked_empty());
for (dimension_type i = lhs_vars.size(); i-- > 0; ) {
dimension_type lhs_vars_i = lhs_vars[i].id();
forget_all_octagonal_constraints(lhs_vars_i);
}
// Constrain the new dimension so that it is related to
// the left hand side as dictated by `relsym'.
// TODO: each one of the following constraints is definitely NOT
// an octagonal difference (since it has 3 variables at least).
// Thus, the method refine_no_check() will simply ignore it.
// Should we compute approximations for this constraint?
switch (relsym) {
case LESS_OR_EQUAL:
refine_no_check(lhs <= new_var);
break;
case EQUAL:
refine_no_check(lhs == new_var);
break;
case GREATER_OR_EQUAL:
refine_no_check(lhs >= new_var);
break;
default:
// We already dealt with the other cases.
PPL_UNREACHABLE;
break;
}
// Remove the temporarily added dimension.
remove_higher_space_dimensions(space_dim-1);
#endif // Currently unnecessarily complex computation.
}
}
PPL_ASSERT(OK());
}
template <typename T>
void
Octagonal_Shape<T>::bounded_affine_image(const Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference
denominator) {
// The denominator cannot be zero.
if (denominator == 0)
throw_invalid_argument("bounded_affine_image(v, lb, ub, d)", "d == 0");
// `var' should be one of the dimensions of the octagon.
const dimension_type var_id = var.id();
if (space_dim < var_id + 1)
throw_dimension_incompatible("bounded_affine_image(v, lb, ub, d)",
var_id + 1);
// The dimension of `lb_expr' and `ub_expr' should not be
// greater than the dimension of `*this'.
const dimension_type lb_space_dim = lb_expr.space_dimension();
if (space_dim < lb_space_dim)
throw_dimension_incompatible("bounded_affine_image(v, lb, ub, d)",
"lb", lb_expr);
const dimension_type ub_space_dim = ub_expr.space_dimension();
if (space_dim < ub_space_dim)
throw_dimension_incompatible("bounded_affine_image(v, lb, ub, d)",
"ub", ub_expr);
strong_closure_assign();
// The image of an empty octagon is empty too.
if (marked_empty())
return;
// Number of non-zero coefficients in `lb_expr': will be set to
// 0, 1, or 2, the latter value meaning any value greater than 1.
dimension_type t = 0;
// Variable-index of the last non-zero coefficient in `lb_expr', if any.
dimension_type w_id = lb_expr.last_nonzero();
if (w_id != 0) {
++t;
if (!lb_expr.all_zeroes(1, w_id))
++t;
--w_id;
}
typedef typename OR_Matrix<N>::row_iterator row_iterator;
typedef typename OR_Matrix<N>::row_reference_type row_reference;
typedef typename OR_Matrix<N>::const_row_iterator Row_iterator;
typedef typename OR_Matrix<N>::const_row_reference_type Row_reference;
const row_iterator m_begin = matrix.row_begin();
const dimension_type n_var = 2*var_id;
const Coefficient& b = lb_expr.inhomogeneous_term();
PPL_DIRTY_TEMP_COEFFICIENT(minus_denom);
neg_assign_r(minus_denom, denominator, ROUND_NOT_NEEDED);
// `w' is the variable with index `w_id'.
// Now we know the form of `lb_expr':
// - If t == 0, then lb_expr == b, with `b' a constant;
// - If t == 1, then lb_expr == a*w + b, where `w' can be `v' or another
// variable; in this second case we have to check whether `a' is
// equal to `denominator' or `-denominator', since otherwise we have
// to fall back on the general form;
// - If t == 2, the `lb_expr' is of the general form.
if (t == 0) {
// Case 1: lb_expr == b.
generalized_affine_image(var,
LESS_OR_EQUAL,
ub_expr,
denominator);
PPL_DIRTY_TEMP_COEFFICIENT(two_b);
two_b = 2*b;
// Add the constraint `var >= b/denominator'.
add_octagonal_constraint(n_var, n_var + 1, two_b, minus_denom);
PPL_ASSERT(OK());
return;
}
if (t == 1) {
// The one and only non-zero homogeneous coefficient in `lb_expr'.
const Coefficient& w_coeff = lb_expr.coefficient(Variable(w_id));
if (w_coeff == denominator || w_coeff == minus_denom) {
// Case 2: lb_expr = w_coeff*w + b, with w_coeff = +/- denominator.
if (w_id == var_id) {
// Here `var' occurs in `lb_expr'.
// To ease the computation, we add an additional dimension.
const Variable new_var(space_dim);
add_space_dimensions_and_embed(1);
// Constrain the new dimension to be equal to `lb_expr'.
// Here `lb_expr' is of the form: +/- denominator * v + b.
affine_image(new_var, lb_expr, denominator);
// Enforce the strong closure for precision.
strong_closure_assign();
PPL_ASSERT(!marked_empty());
// Apply the affine upper bound.
generalized_affine_image(var,
LESS_OR_EQUAL,
ub_expr,
denominator);
// Now apply the affine lower bound, as recorded in `new_var'
refine_no_check(var >= new_var);
// Remove the temporarily added dimension.
remove_higher_space_dimensions(space_dim-1);
return;
}
else {
// Apply the affine upper bound.
generalized_affine_image(var,
LESS_OR_EQUAL,
ub_expr,
denominator);
// Here `w != var', so that `lb_expr' is of the form
// +/-denominator * w + b.
const dimension_type n_w = 2*w_id;
// Add the new constraint `var - w >= b/denominator'.
if (w_coeff == denominator)
if (var_id < w_id)
add_octagonal_constraint(n_w + 1, n_var + 1, b, minus_denom);
else
add_octagonal_constraint(n_var, n_w, b, minus_denom);
else {
// Add the new constraint `var + w >= b/denominator'.
if (var_id < w_id)
add_octagonal_constraint(n_w, n_var + 1, b, minus_denom);
else
add_octagonal_constraint(n_var, n_w + 1, b, minus_denom);
}
PPL_ASSERT(OK());
return;
}
}
}
// General case.
// Either t == 2, so that
// expr == a_1*x_1 + a_2*x_2 + ... + a_n*x_n + b, where n >= 2,
// or t == 1, expr == a*w + b, but a <> +/- denominator.
// We will remove all the constraints on `var' and add back
// constraints providing upper and lower bounds for `var'.
// Compute upper approximations for `expr' and `-expr'
// into `pos_sum' and `neg_sum', respectively, taking into account
// the sign of `denominator'.
// Note: approximating `-expr' from above and then negating the
// result is the same as approximating `expr' from below.
const bool is_sc = (denominator > 0);
PPL_DIRTY_TEMP_COEFFICIENT(minus_b);
neg_assign_r(minus_b, b, ROUND_NOT_NEEDED);
const Coefficient& minus_sc_b = is_sc ? minus_b : b;
const Coefficient& sc_denom = is_sc ? denominator : minus_denom;
const Coefficient& minus_sc_denom = is_sc ? minus_denom : denominator;
// NOTE: here, for optimization purposes, `minus_expr' is only assigned
// when `denominator' is negative. Do not use it unless you are sure
// it has been correctly assigned.
Linear_Expression minus_expr;
if (!is_sc)
minus_expr = -lb_expr;
const Linear_Expression& sc_expr = is_sc ? lb_expr : minus_expr;
PPL_DIRTY_TEMP(N, neg_sum);
// Indices of the variables that are unbounded in `this->matrix'.
PPL_UNINITIALIZED(dimension_type, neg_pinf_index);
// Number of unbounded variables found.
dimension_type neg_pinf_count = 0;
// Approximate the inhomogeneous term.
assign_r(neg_sum, minus_sc_b, ROUND_UP);
// Approximate the homogeneous part of `sc_expr'.
PPL_DIRTY_TEMP(N, coeff_i);
PPL_DIRTY_TEMP(N, minus_coeff_i);
PPL_DIRTY_TEMP(N, half);
PPL_DIRTY_TEMP_COEFFICIENT(minus_sc_i);
// Note: indices above `w' can be disregarded, as they all have
// a zero coefficient in `sc_expr'.
for (Row_iterator m_iter = m_begin, m_iter_end = m_begin + (2 * w_id + 2);
m_iter != m_iter_end; ) {
const dimension_type n_i = m_iter.index();
const dimension_type id = n_i/2;
Row_reference m_i = *m_iter;
++m_iter;
Row_reference m_ci = *m_iter;
++m_iter;
const Coefficient& sc_i = sc_expr.coefficient(Variable(id));
const int sign_i = sgn(sc_i);
if (sign_i > 0) {
assign_r(coeff_i, sc_i, ROUND_UP);
// Approximating `-sc_expr'.
if (neg_pinf_count <= 1) {
const N& double_up_approx_minus_i = m_i[n_i + 1];
if (!is_plus_infinity(double_up_approx_minus_i)) {
// Let half = double_up_approx_minus_i / 2.
div_2exp_assign_r(half, double_up_approx_minus_i, 1, ROUND_UP);
add_mul_assign_r(neg_sum, coeff_i, half, ROUND_UP);
}
else {
++neg_pinf_count;
neg_pinf_index = id;
}
}
}
else if (sign_i < 0) {
neg_assign_r(minus_sc_i, sc_i, ROUND_NOT_NEEDED);
assign_r(minus_coeff_i, minus_sc_i, ROUND_UP);
// Approximating `-sc_expr'.
if (neg_pinf_count <= 1) {
const N& double_up_approx_i = m_ci[n_i];
if (!is_plus_infinity(double_up_approx_i)) {
// Let half = double_up_approx_i / 2.
div_2exp_assign_r(half, double_up_approx_i, 1, ROUND_UP);
add_mul_assign_r(neg_sum, minus_coeff_i, half, ROUND_UP);
}
else {
++neg_pinf_count;
neg_pinf_index = id;
}
}
}
}
// Apply the affine upper bound.
generalized_affine_image(var,
LESS_OR_EQUAL,
ub_expr,
denominator);
// Return immediately if no approximation could be computed.
if (neg_pinf_count > 1) {
return;
}
// In the following, strong closure will be definitely lost.
reset_strongly_closed();
// Exploit the lower approximation, if possible.
if (neg_pinf_count <= 1) {
// Compute quotient (if needed).
if (sc_denom != 1) {
// Before computing quotients, the denominator should be approximated
// towards zero. Since `sc_denom' is known to be positive, this amounts to
// rounding downwards, which is achieved as usual by rounding upwards
// `minus_sc_denom' and negating again the result.
PPL_DIRTY_TEMP(N, down_sc_denom);
assign_r(down_sc_denom, minus_sc_denom, ROUND_UP);
neg_assign_r(down_sc_denom, down_sc_denom, ROUND_UP);
div_assign_r(neg_sum, neg_sum, down_sc_denom, ROUND_UP);
}
// Add the lower bound constraint, if meaningful.
if (neg_pinf_count == 0) {
// Add the constraint `v >= -neg_sum', i.e., `-v <= neg_sum'.
PPL_DIRTY_TEMP(N, double_neg_sum);
mul_2exp_assign_r(double_neg_sum, neg_sum, 1, ROUND_UP);
matrix[n_var][n_var + 1] = double_neg_sum;
// Deduce constraints of the form `-v +/- u', where `u != v'.
deduce_minus_v_pm_u_bounds(var_id, w_id, sc_expr, sc_denom, neg_sum);
}
else
// Here `neg_pinf_count == 1'.
if (neg_pinf_index != var_id) {
const Coefficient& npi = sc_expr.coefficient(Variable(neg_pinf_index));
if (npi == sc_denom)
// Add the constraint `v - neg_pinf_index >= -neg_sum',
// i.e., `neg_pinf_index - v <= neg_sum'.
if (neg_pinf_index < var_id)
matrix[n_var][2*neg_pinf_index] = neg_sum;
else
matrix[2*neg_pinf_index + 1][n_var + 1] = neg_sum;
else
if (npi == minus_sc_denom) {
// Add the constraint `v + neg_pinf_index >= -neg_sum',
// i.e., `-neg_pinf_index - v <= neg_sum'.
if (neg_pinf_index < var_id)
matrix[n_var][2*neg_pinf_index + 1] = neg_sum;
else
matrix[2*neg_pinf_index][n_var + 1] = neg_sum;
}
}
}
PPL_ASSERT(OK());
}
template <typename T>
void
Octagonal_Shape<T>
::generalized_affine_preimage(const Variable var,
const Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference
denominator) {
// The denominator cannot be zero.
if (denominator == 0)
throw_invalid_argument("generalized_affine_preimage(v, r, e, d)", "d == 0");
// Dimension-compatibility checks.
// The dimension of `expr' should not be greater than the dimension
// of `*this'.
const dimension_type expr_space_dim = expr.space_dimension();
if (space_dim < expr_space_dim)
throw_dimension_incompatible("generalized_affine_preimage(v, r, e, d)",
"e", expr);
// `var' should be one of the dimensions of the octagon.
const dimension_type var_id = var.id();
if (space_dim < var_id + 1)
throw_dimension_incompatible("generalized_affine_preimage(v, r, e, d)",
var_id + 1);
// The relation symbol cannot be a strict relation symbol.
if (relsym == LESS_THAN || relsym == GREATER_THAN)
throw_invalid_argument("generalized_affine_preimage(v, r, e, d)",
"r is a strict relation symbol");
// The relation symbol cannot be a disequality.
if (relsym == NOT_EQUAL)
throw_invalid_argument("generalized_affine_preimage(v, r, e, d)",
"r is the disequality relation symbol");
if (relsym == EQUAL) {
// The relation symbol is "=":
// this is just an affine preimage computation.
affine_preimage(var, expr, denominator);
return;
}
// The image of an empty octagon is empty too.
strong_closure_assign();
if (marked_empty())
return;
// Check whether the preimage of this affine relation can be easily
// computed as the image of its inverse relation.
const Coefficient& expr_v = expr.coefficient(var);
if (expr_v != 0) {
const Relation_Symbol reversed_relsym = (relsym == LESS_OR_EQUAL)
? GREATER_OR_EQUAL : LESS_OR_EQUAL;
const Linear_Expression inverse
= expr - (expr_v + denominator)*var;
PPL_DIRTY_TEMP_COEFFICIENT(inverse_denom);
neg_assign(inverse_denom, expr_v);
const Relation_Symbol inverse_relsym
= (sgn(denominator) == sgn(inverse_denom)) ? relsym : reversed_relsym;
generalized_affine_image(var, inverse_relsym, inverse, inverse_denom);
return;
}
// Here `var_coefficient == 0', so that the preimage cannot
// be easily computed by inverting the affine relation.
// Shrink the Octagonal_Shape by adding the constraint induced
// by the affine relation.
refine(var, relsym, expr, denominator);
// If the shrunk OS is empty, its preimage is empty too; ...
if (is_empty())
return;
// ... otherwise, since the relation was not invertible,
// we just forget all constraints on `var'.
forget_all_octagonal_constraints(var_id);
PPL_ASSERT(OK());
}
template <typename T>
void
Octagonal_Shape<T>
::generalized_affine_preimage(const Linear_Expression& lhs,
const Relation_Symbol relsym,
const Linear_Expression& rhs) {
// Dimension-compatibility checks.
// The dimension of `lhs' should not be greater than the dimension
// of `*this'.
dimension_type lhs_space_dim = lhs.space_dimension();
if (space_dim < lhs_space_dim)
throw_dimension_incompatible("generalized_affine_preimage(e1, r, e2)",
"e1", lhs);
// The dimension of `rhs' should not be greater than the dimension
// of `*this'.
const dimension_type rhs_space_dim = rhs.space_dimension();
if (space_dim < rhs_space_dim)
throw_dimension_incompatible("generalized_affine_preimage(e1, r, e2)",
"e2", rhs);
// Strict relation symbols are not admitted for octagons.
if (relsym == LESS_THAN || relsym == GREATER_THAN)
throw_invalid_argument("generalized_affine_preimage(e1, r, e2)",
"r is a strict relation symbol");
// The relation symbol cannot be a disequality.
if (relsym == NOT_EQUAL)
throw_invalid_argument("generalized_affine_preimage(e1, r, e2)",
"r is the disequality relation symbol");
strong_closure_assign();
// The image of an empty octagon is empty.
if (marked_empty())
return;
// Number of non-zero coefficients in `lhs': will be set to
// 0, 1, or 2, the latter value meaning any value greater than 1.
dimension_type t_lhs = 0;
// Index of the last non-zero coefficient in `lhs', if any.
dimension_type j_lhs = lhs.last_nonzero();
if (j_lhs != 0) {
++t_lhs;
if (!lhs.all_zeroes(1, j_lhs))
++t_lhs;
j_lhs--;
}
const Coefficient& b_lhs = lhs.inhomogeneous_term();
// If all variables have a zero coefficient, then `lhs' is a constant:
// in this case, preimage and image happen to be the same.
if (t_lhs == 0) {
generalized_affine_image(lhs, relsym, rhs);
return;
}
else if (t_lhs == 1) {
// Here `lhs == a_lhs * v + b_lhs'.
// Independently from the form of `rhs', we can exploit the
// method computing generalized affine preimages for a single variable.
Variable v(j_lhs);
// Compute a sign-corrected relation symbol.
const Coefficient& denom = lhs.coefficient(v);
Relation_Symbol new_relsym = relsym;
if (denom < 0) {
if (relsym == LESS_OR_EQUAL)
new_relsym = GREATER_OR_EQUAL;
else if (relsym == GREATER_OR_EQUAL)
new_relsym = LESS_OR_EQUAL;
}
Linear_Expression expr = rhs - b_lhs;
generalized_affine_preimage(v, new_relsym, expr, denom);
}
else {
// Here `lhs' is of the general form, having at least two variables.
// Compute the set of variables occurring in `lhs'.
std::vector<Variable> lhs_vars;
for (Linear_Expression::const_iterator i = lhs.begin(), i_end = lhs.end();
i != i_end; ++i)
lhs_vars.push_back(i.variable());
const dimension_type num_common_dims = std::min(lhs_space_dim, rhs_space_dim);
if (!lhs.have_a_common_variable(rhs, Variable(0), Variable(num_common_dims))) {
// `lhs' and `rhs' variables are disjoint.
// Constrain the left hand side expression so that it is related to
// the right hand side expression as dictated by `relsym'.
// TODO: if the following constraint is NOT an octagonal difference,
// it will be simply ignored. Should we compute approximations for it?
switch (relsym) {
case LESS_OR_EQUAL:
refine_no_check(lhs <= rhs);
break;
case EQUAL:
refine_no_check(lhs == rhs);
break;
case GREATER_OR_EQUAL:
refine_no_check(lhs >= rhs);
break;
default:
// We already dealt with the other cases.
PPL_UNREACHABLE;
break;
}
// Any image of an empty octagon is empty.
if (is_empty())
return;
// Existentially quantify all variables in the lhs.
for (dimension_type i = lhs_vars.size(); i-- > 0; ) {
dimension_type lhs_vars_i = lhs_vars[i].id();
forget_all_octagonal_constraints(lhs_vars_i);
}
}
else {
// Some variables in `lhs' also occur in `rhs'.
// More accurate computation that is worth doing only if
// the following TODO note is accurately dealt with.
// To ease the computation, we add an additional dimension.
const Variable new_var(space_dim);
add_space_dimensions_and_embed(1);
// Constrain the new dimension to be equal to `rhs'.
// NOTE: calling affine_image() instead of refine_no_check()
// ensures some approximation is tried even when the constraint
// is not an octagonal difference.
affine_image(new_var, lhs);
// Existentially quantify all variables in the lhs.
// NOTE: enforce strong closure for precision.
strong_closure_assign();
PPL_ASSERT(!marked_empty());
for (dimension_type i = lhs_vars.size(); i-- > 0; ) {
dimension_type lhs_vars_i = lhs_vars[i].id();
forget_all_octagonal_constraints(lhs_vars_i);
}
// Constrain the new dimension so that it is related to
// the left hand side as dictated by `relsym'.
// Note: if `rhs == v + b_rhs' or `rhs == -v + b_rhs' or `rhs == b_rhs',
// one of the following constraints will be added, because they
// are octagonal differences.
// Else the following constraints are NOT octagonal differences,
// so the method refine_no_check() will ignore them.
switch (relsym) {
case LESS_OR_EQUAL:
refine_no_check(new_var <= rhs);
break;
case EQUAL:
refine_no_check(new_var == rhs);
break;
case GREATER_OR_EQUAL:
refine_no_check(new_var >= rhs);
break;
default:
// We already dealt with the other cases.
PPL_UNREACHABLE;
break;
}
// Remove the temporarily added dimension.
remove_higher_space_dimensions(space_dim-1);
}
}
PPL_ASSERT(OK());
}
template <typename T>
void
Octagonal_Shape<T>::bounded_affine_preimage(const Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference
denominator) {
// The denominator cannot be zero.
if (denominator == 0)
throw_invalid_argument("bounded_affine_preimage(v, lb, ub, d)", "d == 0");
// `var' should be one of the dimensions of the octagon.
const dimension_type var_id = var.id();
if (space_dim < var_id + 1)
throw_dimension_incompatible("bounded_affine_preimage(v, lb, ub, d)",
var_id + 1);
// The dimension of `lb_expr' and `ub_expr' should not be
// greater than the dimension of `*this'.
const dimension_type lb_space_dim = lb_expr.space_dimension();
if (space_dim < lb_space_dim)
throw_dimension_incompatible("bounded_affine_preimage(v, lb, ub, d)",
"lb", lb_expr);
const dimension_type ub_space_dim = ub_expr.space_dimension();
if (space_dim < ub_space_dim)
throw_dimension_incompatible("bounded_affine_preimage(v, lb, ub, d)",
"ub", ub_expr);
strong_closure_assign();
// The image of an empty octagon is empty too.
if (marked_empty())
return;
if (ub_expr.coefficient(var) == 0) {
refine(var, LESS_OR_EQUAL, ub_expr, denominator);
generalized_affine_preimage(var, GREATER_OR_EQUAL,
lb_expr, denominator);
return;
}
if (lb_expr.coefficient(var) == 0) {
refine(var, GREATER_OR_EQUAL, lb_expr, denominator);
generalized_affine_preimage(var, LESS_OR_EQUAL,
ub_expr, denominator);
return;
}
const Coefficient& expr_v = lb_expr.coefficient(var);
// Here `var' occurs in `lb_expr' and `ub_expr'.
// To ease the computation, we add an additional dimension.
const Variable new_var(space_dim);
add_space_dimensions_and_embed(1);
const Linear_Expression lb_inverse
= lb_expr - (expr_v + denominator)*var;
PPL_DIRTY_TEMP_COEFFICIENT(inverse_denom);
neg_assign(inverse_denom, expr_v);
affine_image(new_var, lb_inverse, inverse_denom);
strong_closure_assign();
PPL_ASSERT(!marked_empty());
generalized_affine_preimage(var, LESS_OR_EQUAL,
ub_expr, denominator);
if (sgn(denominator) == sgn(inverse_denom))
refine_no_check(var >= new_var) ;
else
refine_no_check(var <= new_var);
// Remove the temporarily added dimension.
remove_higher_space_dimensions(space_dim-1);
}
template <typename T>
Constraint_System
Octagonal_Shape<T>::constraints() const {
const dimension_type space_dim = space_dimension();
Constraint_System cs;
cs.set_space_dimension(space_dim);
if (space_dim == 0) {
if (marked_empty())
cs = Constraint_System::zero_dim_empty();
return cs;
}
if (marked_empty()) {
cs.insert(Constraint::zero_dim_false());
return cs;
}
typedef typename OR_Matrix<N>::const_row_iterator row_iterator;
typedef typename OR_Matrix<N>::const_row_reference_type row_reference;
row_iterator m_begin = matrix.row_begin();
row_iterator m_end = matrix.row_end();
PPL_DIRTY_TEMP_COEFFICIENT(a);
PPL_DIRTY_TEMP_COEFFICIENT(b);
// Go through all the unary constraints in `matrix'.
for (row_iterator i_iter = m_begin; i_iter != m_end; ) {
const dimension_type i = i_iter.index();
const Variable x(i/2);
const N& c_i_ii = (*i_iter)[i + 1];
++i_iter;
const N& c_ii_i = (*i_iter)[i];
++i_iter;
// Go through unary constraints.
if (is_additive_inverse(c_i_ii, c_ii_i)) {
// We have a unary equality constraint.
numer_denom(c_ii_i, b, a);
a *= 2;
cs.insert(a*x == b);
}
else {
// We have 0, 1 or 2 inequality constraints.
if (!is_plus_infinity(c_i_ii)) {
numer_denom(c_i_ii, b, a);
a *= 2;
cs.insert(-a*x <= b);
}
if (!is_plus_infinity(c_ii_i)) {
numer_denom(c_ii_i, b, a);
a *= 2;
cs.insert(a*x <= b);
}
}
}
// Go through all the binary constraints in `matrix'.
for (row_iterator i_iter = m_begin; i_iter != m_end; ) {
const dimension_type i = i_iter.index();
row_reference r_i = *i_iter;
++i_iter;
row_reference r_ii = *i_iter;
++i_iter;
const Variable y(i/2);
for (dimension_type j = 0; j < i; j += 2) {
const N& c_i_j = r_i[j];
const N& c_ii_jj = r_ii[j + 1];
const Variable x(j/2);
if (is_additive_inverse(c_ii_jj, c_i_j)) {
// We have an equality constraint of the form a*x - a*y = b.
numer_denom(c_i_j, b, a);
cs.insert(a*x - a*y == b);
}
else {
// We have 0, 1 or 2 inequality constraints.
if (!is_plus_infinity(c_i_j)) {
numer_denom(c_i_j, b, a);
cs.insert(a*x - a*y <= b);
}
if (!is_plus_infinity(c_ii_jj)) {
numer_denom(c_ii_jj, b, a);
cs.insert(a*y - a*x <= b);
}
}
const N& c_ii_j = r_ii[j];
const N& c_i_jj = r_i[j + 1];
if (is_additive_inverse(c_i_jj, c_ii_j)) {
// We have an equality constraint of the form a*x + a*y = b.
numer_denom(c_ii_j, b, a);
cs.insert(a*x + a*y == b);
}
else {
// We have 0, 1 or 2 inequality constraints.
if (!is_plus_infinity(c_i_jj)) {
numer_denom(c_i_jj, b, a);
cs.insert(-a*x - a*y <= b);
}
if (!is_plus_infinity(c_ii_j)) {
numer_denom(c_ii_j, b, a);
cs.insert(a*x + a*y <= b);
}
}
}
}
return cs;
}
template <typename T>
void
Octagonal_Shape<T>::expand_space_dimension(Variable var, dimension_type m) {
// `var' should be one of the dimensions of the vector space.
const dimension_type var_id = var.id();
if (var_id + 1 > space_dim)
throw_dimension_incompatible("expand_space_dimension(v, m)", var_id + 1);
// The space dimension of the resulting octagon should not
// overflow the maximum allowed space dimension.
if (m > max_space_dimension() - space_dim)
throw_invalid_argument("expand_dimension(v, m)",
"adding m new space dimensions exceeds "
"the maximum allowed space dimension");
// Nothing to do, if no dimensions must be added.
if (m == 0)
return;
// Keep track of the dimension before adding the new ones.
const dimension_type old_num_rows = matrix.num_rows();
// Add the required new dimensions.
add_space_dimensions_and_embed(m);
// For each constraints involving variable `var', we add a
// similar constraint with the new variable substituted for
// variable `var'.
typedef typename OR_Matrix<N>::row_iterator row_iterator;
typedef typename OR_Matrix<N>::row_reference_type row_reference;
typedef typename OR_Matrix<N>::const_row_iterator Row_iterator;
typedef typename OR_Matrix<N>::const_row_reference_type Row_reference;
const row_iterator m_begin = matrix.row_begin();
const row_iterator m_end = matrix.row_end();
const dimension_type n_var = 2*var_id;
Row_iterator v_iter = m_begin + n_var;
Row_reference m_v = *v_iter;
Row_reference m_cv = *(v_iter + 1);
for (row_iterator i_iter = m_begin + old_num_rows; i_iter != m_end;
i_iter += 2) {
row_reference m_i = *i_iter;
row_reference m_ci = *(i_iter + 1);
const dimension_type i = i_iter.index();
const dimension_type ci = i + 1;
m_i[ci] = m_v[n_var + 1];
m_ci[i] = m_cv[n_var];
for (dimension_type j = 0; j < n_var; ++j) {
m_i[j] = m_v[j];
m_ci[j] = m_cv[j];
}
for (dimension_type j = n_var + 2; j < old_num_rows; ++j) {
row_iterator j_iter = m_begin + j;
row_reference m_cj = (j % 2 != 0) ? *(j_iter-1) : *(j_iter + 1);
m_i[j] = m_cj[n_var + 1];
m_ci[j] = m_cj[n_var];
}
}
// In general, adding a constraint does not preserve the strong closure
// of the octagon.
if (marked_strongly_closed())
reset_strongly_closed();
PPL_ASSERT(OK());
}
template <typename T>
void
Octagonal_Shape<T>::fold_space_dimensions(const Variables_Set& vars,
Variable dest) {
// `dest' should be one of the dimensions of the octagon.
if (dest.space_dimension() > space_dim)
throw_dimension_incompatible("fold_space_dimensions(vs, v)", "v", dest);
// The folding of no dimensions is a no-op.
if (vars.empty())
return;
// All variables in `vars' should be dimensions of the octagon.
if (vars.space_dimension() > space_dim)
throw_dimension_incompatible("fold_space_dimensions(vs, v)",
vars.space_dimension());
// Moreover, `dest.id()' should not occur in `vars'.
if (vars.find(dest.id()) != vars.end())
throw_invalid_argument("fold_space_dimensions(vs, v)",
"v should not occur in vs");
// Recompute the elements of the row and the column corresponding
// to variable `dest' by taking the join of their value with the
// value of the corresponding elements in the row and column of the
// variable `vars'.
typedef typename OR_Matrix<N>::row_iterator row_iterator;
typedef typename OR_Matrix<N>::row_reference_type row_reference;
const row_iterator m_begin = matrix.row_begin();
strong_closure_assign();
const dimension_type n_rows = matrix.num_rows();
const dimension_type n_dest = 2*dest.id();
row_iterator v_iter = m_begin + n_dest;
row_reference m_v = *v_iter;
row_reference m_cv = *(v_iter + 1);
for (Variables_Set::const_iterator i = vars.begin(),
vs_end = vars.end(); i != vs_end; ++i) {
const dimension_type tbf_id = *i;
const dimension_type tbf_var = 2*tbf_id;
row_iterator tbf_iter = m_begin + tbf_var;
row_reference m_tbf = *tbf_iter;
row_reference m_ctbf = *(tbf_iter + 1);
max_assign(m_v[n_dest + 1], m_tbf[tbf_var + 1]);
max_assign(m_cv[n_dest], m_ctbf[tbf_var]);
const dimension_type min_id = std::min(n_dest, tbf_var);
const dimension_type max_id = std::max(n_dest, tbf_var);
using namespace Implementation::Octagonal_Shapes;
for (dimension_type j = 0; j < min_id; ++j) {
const dimension_type cj = coherent_index(j);
max_assign(m_v[j], m_tbf[j]);
max_assign(m_cv[j], m_ctbf[j]);
max_assign(m_cv[cj], m_ctbf[cj]);
max_assign(m_v[cj], m_tbf[cj]);
}
for (dimension_type j = min_id + 2; j < max_id; ++j) {
const dimension_type cj = coherent_index(j);
row_iterator j_iter = m_begin + j;
row_reference m_j = *j_iter;
row_reference m_cj = (j % 2 != 0) ? *(j_iter-1) : *(j_iter + 1);
if (n_dest == min_id) {
max_assign(m_cj[n_dest + 1], m_tbf[j]);
max_assign(m_cj[n_dest], m_ctbf[j]);
max_assign(m_j[n_dest], m_ctbf[cj]);
max_assign(m_j[n_dest + 1], m_tbf[cj]);
}
else {
max_assign(m_v[j], m_cj[tbf_var + 1]);
max_assign(m_cv[j], m_cj[tbf_var]);
max_assign(m_cv[cj], m_j[tbf_var]);
max_assign(m_v[cj], m_j[tbf_var + 1]);
}
}
for (dimension_type j = max_id + 2; j < n_rows; ++j) {
row_iterator j_iter = m_begin + j;
row_reference m_j = *j_iter;
row_reference m_cj = (j % 2 != 0) ? *(j_iter-1) : *(j_iter + 1);
max_assign(m_cj[n_dest + 1], m_cj[tbf_var + 1]);
max_assign(m_cj[n_dest], m_cj[tbf_var]);
max_assign(m_j[n_dest], m_j[tbf_var]);
max_assign(m_j[n_dest + 1], m_j[tbf_var + 1]);
}
}
remove_space_dimensions(vars);
}
template <typename T>
bool
Octagonal_Shape<T>::upper_bound_assign_if_exact(const Octagonal_Shape& y) {
// FIXME, CHECKME: what about inexact computations?
// Declare a const reference to *this (to avoid accidental modifications).
const Octagonal_Shape& x = *this;
const dimension_type x_space_dim = x.space_dimension();
if (x_space_dim != y.space_dimension())
throw_dimension_incompatible("upper_bound_assign_if_exact(y)", y);
// The zero-dim case is trivial.
if (x_space_dim == 0) {
upper_bound_assign(y);
return true;
}
// If `x' or `y' is (known to be) empty, the upper bound is exact.
if (x.marked_empty()) {
*this = y;
return true;
}
else if (y.is_empty())
return true;
else if (x.is_empty()) {
*this = y;
return true;
}
// Here both `x' and `y' are known to be non-empty.
PPL_ASSERT(x.marked_strongly_closed());
PPL_ASSERT(y.marked_strongly_closed());
// Pre-compute the upper bound of `x' and `y'.
Octagonal_Shape<T> ub(x);
ub.upper_bound_assign(y);
// Compute redundancy information for x and y.
// TODO: provide a nicer data structure for redundancy.
std::vector<Bit_Row> x_non_red;
x.non_redundant_matrix_entries(x_non_red);
std::vector<Bit_Row> y_non_red;
y.non_redundant_matrix_entries(y_non_red);
PPL_DIRTY_TEMP(N, lhs);
PPL_DIRTY_TEMP(N, lhs_copy);
PPL_DIRTY_TEMP(N, rhs);
PPL_DIRTY_TEMP(N, temp_zero);
assign_r(temp_zero, 0, ROUND_NOT_NEEDED);
typedef typename OR_Matrix<N>::const_row_iterator row_iterator;
typedef typename OR_Matrix<N>::const_row_reference_type row_reference;
const dimension_type n_rows = x.matrix.num_rows();
const row_iterator x_m_begin = x.matrix.row_begin();
const row_iterator y_m_begin = y.matrix.row_begin();
const row_iterator ub_m_begin = ub.matrix.row_begin();
for (dimension_type i = n_rows; i-- > 0; ) {
const Bit_Row& x_non_red_i = x_non_red[i];
using namespace Implementation::Octagonal_Shapes;
const dimension_type ci = coherent_index(i);
const dimension_type row_size_i = OR_Matrix<N>::row_size(i);
row_reference x_i = *(x_m_begin + i);
row_reference y_i = *(y_m_begin + i);
row_reference ub_i = *(ub_m_begin + i);
const N& ub_i_ci = ub_i[ci];
for (dimension_type j = row_size_i; j-- > 0; ) {
// Check redundancy of x_i_j.
if (!x_non_red_i[j])
continue;
const N& x_i_j = x_i[j];
// Check 1st condition in BHZ09 theorem.
if (x_i_j >= y_i[j])
continue;
const dimension_type cj = coherent_index(j);
const dimension_type row_size_cj = OR_Matrix<N>::row_size(cj);
row_reference ub_cj = *(ub_m_begin + cj);
const N& ub_cj_j = ub_cj[j];
for (dimension_type k = 0; k < n_rows; ++k) {
const Bit_Row& y_non_red_k = y_non_red[k];
const dimension_type ck = coherent_index(k);
const dimension_type row_size_k = OR_Matrix<N>::row_size(k);
row_reference x_k = *(x_m_begin + k);
row_reference y_k = *(y_m_begin + k);
row_reference ub_k = *(ub_m_begin + k);
const N& ub_k_ck = ub_k[ck];
// Be careful: for each index h, the diagonal element m[h][h]
// is (by convention) +infty in our implementation; however,
// BHZ09 theorem assumes that it is equal to 0.
const N& ub_k_j
= (k == j)
? temp_zero
: ((j < row_size_k) ? ub_k[j] : ub_cj[ck]);
const N& ub_i_ck
= (i == ck)
? temp_zero
: ((ck < row_size_i) ? ub_i[ck] : ub_k[ci]);
for (dimension_type ell = row_size_k; ell-- > 0; ) {
// Check redundancy of y_k_ell.
if (!y_non_red_k[ell])
continue;
const N& y_k_ell = y_k[ell];
// Check 2nd condition in BHZ09 theorem.
if (y_k_ell >= x_k[ell])
continue;
const dimension_type cell = coherent_index(ell);
row_reference ub_cell = *(ub_m_begin + cell);
const N& ub_i_ell
= (i == ell)
? temp_zero
: ((ell < row_size_i) ? ub_i[ell] : ub_cell[ci]);
const N& ub_cj_ell
= (cj == ell)
? temp_zero
: ((ell < row_size_cj) ? ub_cj[ell] : ub_cell[j]);
// Check 3rd condition in BHZ09 theorem.
add_assign_r(lhs, x_i_j, y_k_ell, ROUND_UP);
add_assign_r(rhs, ub_i_ell, ub_k_j, ROUND_UP);
if (lhs >= rhs)
continue;
// Check 4th condition in BHZ09 theorem.
add_assign_r(rhs, ub_i_ck, ub_cj_ell, ROUND_UP);
if (lhs >= rhs)
continue;
// Check 5th condition in BHZ09 theorem.
assign_r(lhs_copy, lhs, ROUND_NOT_NEEDED);
add_assign_r(lhs, lhs_copy, x_i_j, ROUND_UP);
add_assign_r(rhs, ub_i_ell, ub_i_ck, ROUND_UP);
add_assign_r(rhs, rhs, ub_cj_j, ROUND_UP);
if (lhs >= rhs)
continue;
// Check 6th condition in BHZ09 theorem.
add_assign_r(rhs, ub_k_j, ub_cj_ell, ROUND_UP);
add_assign_r(rhs, rhs, ub_i_ci, ROUND_UP);
if (lhs >= rhs)
continue;
// Check 7th condition of BHZ09 theorem.
add_assign_r(lhs, lhs_copy, y_k_ell, ROUND_UP);
add_assign_r(rhs, ub_i_ell, ub_cj_ell, ROUND_UP);
add_assign_r(rhs, rhs, ub_k_ck, ROUND_UP);
if (lhs >= rhs)
continue;
// Check 8th (last) condition in BHZ09 theorem.
add_assign_r(rhs, ub_k_j, ub_i_ck, ROUND_UP);
add_assign_r(rhs, rhs, ub_cell[ell], ROUND_UP);
if (lhs < rhs)
// All 8 conditions are satisfied:
// upper bound is not exact.
return false;
}
}
}
}
// The upper bound of x and y is indeed exact.
m_swap(ub);
PPL_ASSERT(OK());
return true;
}
template <typename T>
bool
Octagonal_Shape<T>
::integer_upper_bound_assign_if_exact(const Octagonal_Shape& y) {
PPL_COMPILE_TIME_CHECK(std::numeric_limits<T>::is_integer,
"Octagonal_Shape<T>::"
"integer_upper_bound_assign_if_exact(y):"
" T in not an integer datatype.");
// Declare a const reference to *this (to avoid accidental modifications).
const Octagonal_Shape& x = *this;
const dimension_type x_space_dim = x.space_dimension();
if (x_space_dim != y.space_dimension())
throw_dimension_incompatible("integer_upper_bound_assign_if_exact(y)", y);
// The zero-dim case is trivial.
if (x_space_dim == 0) {
upper_bound_assign(y);
return true;
}
// If `x' or `y' is (known to) contain no integral point,
// then the integer upper bound can be computed exactly by tight closure.
if (x.marked_empty()) {
*this = y;
tight_closure_assign();
return true;
}
else if (y.marked_empty()) {
tight_closure_assign();
return true;
}
else if (x.is_empty() || x.tight_coherence_would_make_empty()) {
*this = y;
tight_closure_assign();
return true;
}
else if (y.is_empty() || y.tight_coherence_would_make_empty()) {
tight_closure_assign();
return true;
}
// Here both `x' and `y' are known to be non-empty (and Z-consistent).
PPL_ASSERT(x.marked_strongly_closed());
PPL_ASSERT(y.marked_strongly_closed());
// Pre-compute the integer upper bound of `x' and `y':
// have to take copies, since tight closure might modify the rational shape.
Octagonal_Shape<T> tx(x);
tx.tight_closure_assign();
Octagonal_Shape<T> ty(y);
ty.tight_closure_assign();
Octagonal_Shape<T> ub(tx);
ub.upper_bound_assign(ty);
// Compute redundancy information for tx and ty.
// TODO: provide a nicer data structure for redundancy.
// NOTE: there is no need to identify all redundancies, since this is
// an optimization; hence we reuse the strong-reduction helper methods.
std::vector<Bit_Row> tx_non_red;
tx.non_redundant_matrix_entries(tx_non_red);
std::vector<Bit_Row> ty_non_red;
ty.non_redundant_matrix_entries(ty_non_red);
PPL_DIRTY_TEMP(N, lhs_i_j);
PPL_DIRTY_TEMP(N, lhs_k_ell);
PPL_DIRTY_TEMP(N, lhs);
PPL_DIRTY_TEMP(N, lhs_copy);
PPL_DIRTY_TEMP(N, rhs);
PPL_DIRTY_TEMP(N, temp_zero);
assign_r(temp_zero, 0, ROUND_NOT_NEEDED);
PPL_DIRTY_TEMP(N, temp_one);
assign_r(temp_one, 1, ROUND_NOT_NEEDED);
PPL_DIRTY_TEMP(N, temp_two);
assign_r(temp_two, 2, ROUND_NOT_NEEDED);
typedef typename OR_Matrix<N>::const_row_iterator row_iterator;
typedef typename OR_Matrix<N>::const_row_reference_type row_reference;
const dimension_type n_rows = tx.matrix.num_rows();
const row_iterator tx_m_begin = tx.matrix.row_begin();
const row_iterator ty_m_begin = ty.matrix.row_begin();
const row_iterator ub_m_begin = ub.matrix.row_begin();
for (dimension_type i = n_rows; i-- > 0; ) {
const Bit_Row& tx_non_red_i = tx_non_red[i];
using namespace Implementation::Octagonal_Shapes;
const dimension_type ci = coherent_index(i);
const dimension_type row_size_i = OR_Matrix<N>::row_size(i);
row_reference tx_i = *(tx_m_begin + i);
row_reference ty_i = *(ty_m_begin + i);
row_reference ub_i = *(ub_m_begin + i);
const N& ub_i_ci = ub_i[ci];
for (dimension_type j = row_size_i; j-- > 0; ) {
// Check redundancy of tx_i_j.
if (!tx_non_red_i[j])
continue;
const N& tx_i_j = tx_i[j];
const dimension_type cj = coherent_index(j);
const N& eps_i_j = (i == cj) ? temp_two : temp_one;
// Check condition 1a in BHZ09 Theorem 6.8.
add_assign_r(lhs_i_j, tx_i_j, eps_i_j, ROUND_NOT_NEEDED);
if (lhs_i_j > ty_i[j])
continue;
const dimension_type row_size_cj = OR_Matrix<N>::row_size(cj);
row_reference ub_cj = *(ub_m_begin + cj);
const N& ub_cj_j = ub_cj[j];
for (dimension_type k = 0; k < n_rows; ++k) {
const Bit_Row& ty_non_red_k = ty_non_red[k];
const dimension_type ck = coherent_index(k);
const dimension_type row_size_k = OR_Matrix<N>::row_size(k);
row_reference tx_k = *(tx_m_begin + k);
row_reference ty_k = *(ty_m_begin + k);
row_reference ub_k = *(ub_m_begin + k);
const N& ub_k_ck = ub_k[ck];
// Be careful: for each index h, the diagonal element m[h][h]
// is (by convention) +infty in our implementation; however,
// BHZ09 theorem assumes that it is equal to 0.
const N& ub_k_j
= (k == j)
? temp_zero
: ((j < row_size_k) ? ub_k[j] : ub_cj[ck]);
const N& ub_i_ck
= (i == ck)
? temp_zero
: ((ck < row_size_i) ? ub_i[ck] : ub_k[ci]);
for (dimension_type ell = row_size_k; ell-- > 0; ) {
// Check redundancy of y_k_ell.
if (!ty_non_red_k[ell])
continue;
const N& ty_k_ell = ty_k[ell];
const dimension_type cell = coherent_index(ell);
const N& eps_k_ell = (k == cell) ? temp_two : temp_one;
// Check condition 1b in BHZ09 Theorem 6.8.
add_assign_r(lhs_k_ell, ty_k_ell, eps_k_ell, ROUND_NOT_NEEDED);
if (lhs_k_ell > tx_k[ell])
continue;
row_reference ub_cell = *(ub_m_begin + cell);
const N& ub_i_ell
= (i == ell)
? temp_zero
: ((ell < row_size_i) ? ub_i[ell] : ub_cell[ci]);
const N& ub_cj_ell
= (cj == ell)
? temp_zero
: ((ell < row_size_cj) ? ub_cj[ell] : ub_cell[j]);
// Check condition 2a in BHZ09 Theorem 6.8.
add_assign_r(lhs, lhs_i_j, lhs_k_ell, ROUND_NOT_NEEDED);
add_assign_r(rhs, ub_i_ell, ub_k_j, ROUND_NOT_NEEDED);
if (lhs > rhs)
continue;
// Check condition 2b in BHZ09 Theorem 6.8.
add_assign_r(rhs, ub_i_ck, ub_cj_ell, ROUND_NOT_NEEDED);
if (lhs > rhs)
continue;
// Check condition 3a in BHZ09 Theorem 6.8.
assign_r(lhs_copy, lhs, ROUND_NOT_NEEDED);
add_assign_r(lhs, lhs, lhs_i_j, ROUND_NOT_NEEDED);
add_assign_r(rhs, ub_i_ell, ub_i_ck, ROUND_NOT_NEEDED);
add_assign_r(rhs, rhs, ub_cj_j, ROUND_NOT_NEEDED);
if (lhs > rhs)
continue;
// Check condition 3b in BHZ09 Theorem 6.8.
add_assign_r(rhs, ub_k_j, ub_cj_ell, ROUND_NOT_NEEDED);
add_assign_r(rhs, rhs, ub_i_ci, ROUND_NOT_NEEDED);
if (lhs > rhs)
continue;
// Check condition 4a in BHZ09 Theorem 6.8.
add_assign_r(lhs, lhs_copy, lhs_k_ell, ROUND_NOT_NEEDED);
add_assign_r(rhs, ub_i_ell, ub_cj_ell, ROUND_NOT_NEEDED);
add_assign_r(rhs, rhs, ub_k_ck, ROUND_NOT_NEEDED);
if (lhs > rhs)
continue;
// Check condition 4b in BHZ09 Theorem 6.8.
add_assign_r(rhs, ub_k_j, ub_i_ck, ROUND_NOT_NEEDED);
add_assign_r(rhs, rhs, ub_cell[ell], ROUND_NOT_NEEDED);
if (lhs <= rhs)
// All 8 conditions are satisfied:
// integer upper bound is not exact.
return false;
}
}
}
}
// The upper bound of x and y is indeed exact.
m_swap(ub);
PPL_ASSERT(OK());
return true;
}
template <typename T>
void
Octagonal_Shape<T>::drop_some_non_integer_points(Complexity_Class) {
if (std::numeric_limits<T>::is_integer)
return;
const dimension_type space_dim = space_dimension();
strong_closure_assign();
if (space_dim == 0 || marked_empty())
return;
for (typename OR_Matrix<N>::element_iterator i = matrix.element_begin(),
i_end = matrix.element_end(); i != i_end; ++i)
drop_some_non_integer_points_helper(*i);
// Unary constraints should have an even integer boundary.
PPL_DIRTY_TEMP(N, temp_one);
assign_r(temp_one, 1, ROUND_NOT_NEEDED);
for (dimension_type i = 0; i < 2*space_dim; i += 2) {
const dimension_type ci = i + 1;
N& mat_i_ci = matrix[i][ci];
if (!is_plus_infinity(mat_i_ci) && !is_even(mat_i_ci)) {
sub_assign_r(mat_i_ci, mat_i_ci, temp_one, ROUND_UP);
reset_strongly_closed();
}
N& mat_ci_i = matrix[ci][i];
if (!is_plus_infinity(mat_ci_i) && !is_even(mat_ci_i)) {
sub_assign_r(mat_ci_i, mat_ci_i, temp_one, ROUND_UP);
reset_strongly_closed();
}
}
PPL_ASSERT(OK());
}
template <typename T>
void
Octagonal_Shape<T>
::drop_some_non_integer_points(const Variables_Set& vars,
Complexity_Class) {
// Dimension-compatibility check.
const dimension_type min_space_dim = vars.space_dimension();
if (space_dimension() < min_space_dim)
throw_dimension_incompatible("drop_some_non_integer_points(vs, cmpl)",
min_space_dim);
if (std::numeric_limits<T>::is_integer || min_space_dim == 0)
return;
strong_closure_assign();
if (marked_empty())
return;
PPL_DIRTY_TEMP(N, temp_one);
assign_r(temp_one, 1, ROUND_NOT_NEEDED);
const Variables_Set::const_iterator v_begin = vars.begin();
const Variables_Set::const_iterator v_end = vars.end();
PPL_ASSERT(v_begin != v_end);
typedef typename OR_Matrix<N>::row_reference_type row_reference;
for (Variables_Set::const_iterator v_i = v_begin; v_i != v_end; ++v_i) {
const dimension_type i = 2 * (*v_i);
const dimension_type ci = i + 1;
row_reference m_i = matrix[i];
row_reference m_ci = matrix[ci];
// Unary constraints: should be even integers.
N& m_i_ci = m_i[ci];
if (!is_plus_infinity(m_i_ci)) {
drop_some_non_integer_points_helper(m_i_ci);
if (!is_even(m_i_ci)) {
sub_assign_r(m_i_ci, m_i_ci, temp_one, ROUND_UP);
reset_strongly_closed();
}
}
N& m_ci_i = m_ci[i];
if (!is_plus_infinity(m_ci_i)) {
drop_some_non_integer_points_helper(m_ci_i);
if (!is_even(m_ci_i)) {
sub_assign_r(m_ci_i, m_ci_i, temp_one, ROUND_UP);
reset_strongly_closed();
}
}
// Binary constraints (note: only consider j < i).
for (Variables_Set::const_iterator v_j = v_begin; v_j != v_i; ++v_j) {
const dimension_type j = 2 * (*v_j);
const dimension_type cj = j + 1;
drop_some_non_integer_points_helper(m_i[j]);
drop_some_non_integer_points_helper(m_i[cj]);
drop_some_non_integer_points_helper(m_ci[j]);
drop_some_non_integer_points_helper(m_ci[cj]);
}
}
PPL_ASSERT(OK());
}
template <typename T>
template <typename U>
void
Octagonal_Shape<T>
::export_interval_constraints(U& dest) const {
if (space_dim > dest.space_dimension())
throw std::invalid_argument(
"Octagonal_Shape<T>::export_interval_constraints");
strong_closure_assign();
if (marked_empty()) {
dest.set_empty();
return;
}
PPL_DIRTY_TEMP(N, lb);
PPL_DIRTY_TEMP(N, ub);
for (dimension_type i = space_dim; i-- > 0; ) {
const dimension_type ii = 2*i;
const dimension_type cii = ii + 1;
// Set the upper bound.
const N& twice_ub = matrix[cii][ii];
if (!is_plus_infinity(twice_ub)) {
assign_r(ub, twice_ub, ROUND_NOT_NEEDED);
div_2exp_assign_r(ub, ub, 1, ROUND_UP);
// FIXME: passing a raw value may not be general enough.
if (!dest.restrict_upper(i, ub.raw_value()))
return;
}
// Set the lower bound.
const N& twice_lb = matrix[ii][cii];
if (!is_plus_infinity(twice_lb)) {
assign_r(lb, twice_lb, ROUND_NOT_NEEDED);
neg_assign_r(lb, lb, ROUND_NOT_NEEDED);
div_2exp_assign_r(lb, lb, 1, ROUND_DOWN);
// FIXME: passing a raw value may not be general enough.
if (!dest.restrict_lower(i, lb.raw_value()))
return;
}
}
}
/*! \relates Parma_Polyhedra_Library::Octagonal_Shape */
template <typename T>
std::ostream&
IO_Operators::operator<<(std::ostream& s, const Octagonal_Shape<T>& oct) {
// Handle special cases first.
if (oct.marked_empty()) {
s << "false";
return s;
}
if (oct.is_universe()) {
s << "true";
return s;
}
typedef typename Octagonal_Shape<T>::coefficient_type N;
typedef typename OR_Matrix<N>::const_row_iterator row_iterator;
typedef typename OR_Matrix<N>::const_row_reference_type row_reference;
// Records whether or not we still have to print the first constraint.
bool first = true;
row_iterator m_begin = oct.matrix.row_begin();
row_iterator m_end = oct.matrix.row_end();
// Temporaries.
PPL_DIRTY_TEMP(N, negation);
PPL_DIRTY_TEMP(N, half);
// Go through all the unary constraints.
// (Note: loop iterator is incremented in the loop body.)
for (row_iterator i_iter = m_begin; i_iter != m_end; ) {
const dimension_type i = i_iter.index();
const Variable v_i(i/2);
const N& c_i_ii = (*i_iter)[i + 1];
++i_iter;
const N& c_ii_i = (*i_iter)[i];
++i_iter;
// Check whether or not it is an equality constraint.
if (is_additive_inverse(c_i_ii, c_ii_i)) {
// It is an equality.
PPL_ASSERT(!is_plus_infinity(c_i_ii) && !is_plus_infinity(c_ii_i));
if (first)
first = false;
else
s << ", ";
// If the value bound can NOT be divided by 2 exactly,
// then we output the constraint `2*v_i = bound'.
if (div_2exp_assign_r(half, c_ii_i, 1,
ROUND_UP | ROUND_STRICT_RELATION)
== V_EQ)
s << v_i << " = " << half;
else
s << "2*" << v_i << " = " << c_ii_i;
}
else {
// We will print unary non-strict inequalities, if any.
if (!is_plus_infinity(c_i_ii)) {
if (first)
first = false;
else
s << ", ";
neg_assign_r(negation, c_i_ii, ROUND_NOT_NEEDED);
// If the value bound can NOT be divided by 2 exactly,
// then we output the constraint `2*v_i >= negation'.
if (div_2exp_assign_r(half, negation, 1,
ROUND_UP | ROUND_STRICT_RELATION)
== V_EQ)
s << v_i << " >= " << half;
else
s << "2*" << v_i << " >= " << negation;
}
if (!is_plus_infinity(c_ii_i)) {
if (first)
first = false;
else
s << ", ";
// If the value bound can NOT be divided by 2 exactly,
// then we output the constraint `2*v_i <= bound'.
if (div_2exp_assign_r(half, c_ii_i, 1,
ROUND_UP | ROUND_STRICT_RELATION)
== V_EQ)
s << v_i << " <= " << half;
else
s << "2*" << v_i << " <= " << c_ii_i;
}
}
}
// Go through all the binary constraints.
// (Note: loop iterator is incremented in the loop body.)
for (row_iterator i_iter = m_begin; i_iter != m_end; ) {
const dimension_type i = i_iter.index();
const Variable v_i(i/2);
row_reference r_i = *i_iter;
++i_iter;
row_reference r_ii = *i_iter;
++i_iter;
for (dimension_type j = 0; j < i; j += 2) {
const Variable v_j(j/2);
// Print binary differences.
const N& c_ii_jj = r_ii[j + 1];
const N& c_i_j = r_i[j];
// Check whether or not it is an equality constraint.
if (is_additive_inverse(c_ii_jj, c_i_j)) {
// It is an equality.
PPL_ASSERT(!is_plus_infinity(c_i_j) && !is_plus_infinity(c_ii_jj));
if (first)
first = false;
else
s << ", ";
if (sgn(c_i_j) >= 0)
s << v_j << " - " << v_i << " = " << c_i_j;
else
s << v_i << " - " << v_j << " = " << c_ii_jj;
}
else {
// We will print non-strict inequalities, if any.
if (!is_plus_infinity(c_i_j)) {
if (first)
first = false;
else
s << ", ";
if (sgn(c_i_j) >= 0)
s << v_j << " - " << v_i << " <= " << c_i_j;
else {
neg_assign_r(negation, c_i_j, ROUND_DOWN);
s << v_i << " - " << v_j << " >= " << negation;
}
}
if (!is_plus_infinity(c_ii_jj)) {
if (first)
first = false;
else
s << ", ";
if (sgn(c_ii_jj) >= 0)
s << v_i << " - " << v_j << " <= " << c_ii_jj;
else {
neg_assign_r(negation, c_ii_jj, ROUND_DOWN);
s << v_j << " - " << v_i << " >= " << negation;
}
}
}
// Print binary sums.
const N& c_i_jj = r_i[j + 1];
const N& c_ii_j = r_ii[j];
// Check whether or not it is an equality constraint.
if (is_additive_inverse(c_i_jj, c_ii_j)) {
// It is an equality.
PPL_ASSERT(!is_plus_infinity(c_i_jj) && !is_plus_infinity(c_ii_j));
if (first)
first = false;
else
s << ", ";
s << v_j << " + " << v_i << " = " << c_ii_j;
}
else {
// We will print non-strict inequalities, if any.
if (!is_plus_infinity(c_i_jj)) {
if (first)
first = false;
else
s << ", ";
neg_assign_r(negation, c_i_jj, ROUND_DOWN);
s << v_j << " + " << v_i << " >= " << negation;
}
if (!is_plus_infinity(c_ii_j)) {
if (first)
first = false;
else
s << ", ";
s << v_j << " + " << v_i << " <= " << c_ii_j;
}
}
}
}
return s;
}
template <typename T>
void
Octagonal_Shape<T>::ascii_dump(std::ostream& s) const {
s << "space_dim "
<< space_dim
<< "\n";
status.ascii_dump(s);
s << "\n";
matrix.ascii_dump(s);
}
PPL_OUTPUT_TEMPLATE_DEFINITIONS(T, Octagonal_Shape<T>)
template <typename T>
bool
Octagonal_Shape<T>::ascii_load(std::istream& s) {
std::string str;
if (!(s >> str) || str != "space_dim")
return false;
if (!(s >> space_dim))
return false;
if (!status.ascii_load(s))
return false;
if (!matrix.ascii_load(s))
return false;
PPL_ASSERT(OK());
return true;
}
template <typename T>
memory_size_type
Octagonal_Shape<T>::external_memory_in_bytes() const {
return matrix.external_memory_in_bytes();
}
template <typename T>
bool
Octagonal_Shape<T>::OK() const {
// Check whether the matrix is well-formed.
if (!matrix.OK())
return false;
// Check whether the status information is legal.
if (!status.OK())
return false;
// All empty octagons are OK.
if (marked_empty())
return true;
// 0-dim universe octagon is OK.
if (space_dim == 0)
return true;
// MINUS_INFINITY cannot occur at all.
for (typename OR_Matrix<N>::const_row_iterator i = matrix.row_begin(),
matrix_row_end = matrix.row_end(); i != matrix_row_end; ++i) {
typename OR_Matrix<N>::const_row_reference_type x_i = *i;
for (dimension_type j = i.row_size(); j-- > 0; )
if (is_minus_infinity(x_i[j])) {
#ifndef NDEBUG
using namespace Parma_Polyhedra_Library::IO_Operators;
std::cerr << "Octagonal_Shape::"
<< "matrix[" << i.index() << "][" << j << "] = "
<< x_i[j] << "!"
<< std::endl;
#endif
return false;
}
}
// On the main diagonal only PLUS_INFINITY can occur.
for (typename OR_Matrix<N>::const_row_iterator i = matrix.row_begin(),
m_end = matrix.row_end(); i != m_end; ++i) {
typename OR_Matrix<N>::const_row_reference_type r = *i;
const N& m_i_i = r[i.index()];
if (!is_plus_infinity(m_i_i)) {
#ifndef NDEBUG
const dimension_type j = i.index();
using namespace Parma_Polyhedra_Library::IO_Operators;
std::cerr << "Octagonal_Shape::matrix[" << j << "][" << j << "] = "
<< m_i_i << "! (+inf was expected.)\n";
#endif
return false;
}
}
// The following tests might result in false alarms when using floating
// point coefficients: they are only meaningful if the coefficient type
// base is exact (since otherwise strong closure is approximated).
if (std::numeric_limits<coefficient_type_base>::is_exact) {
// Check whether the closure information is legal.
if (marked_strongly_closed()) {
Octagonal_Shape x = *this;
x.reset_strongly_closed();
x.strong_closure_assign();
if (x.matrix != matrix) {
#ifndef NDEBUG
std::cerr << "Octagonal_Shape is marked as strongly closed "
<< "but it is not!\n";
#endif
return false;
}
}
// A closed octagon must be strong-coherent.
if (marked_strongly_closed())
if (!is_strong_coherent()) {
#ifndef NDEBUG
std::cerr << "Octagonal_Shape is not strong-coherent!\n";
#endif
return false;
}
}
// All checks passed.
return true;
}
template <typename T>
void
Octagonal_Shape<T>
::throw_dimension_incompatible(const char* method,
const Octagonal_Shape& y) const {
std::ostringstream s;
s << "PPL::Octagonal_Shape::" << method << ":\n"
<< "this->space_dimension() == " << space_dimension()
<< ", y->space_dimension() == " << y.space_dimension() << ".";
throw std::invalid_argument(s.str());
}
template <typename T>
void
Octagonal_Shape<T>
::throw_dimension_incompatible(const char* method,
dimension_type required_dim) const {
std::ostringstream s;
s << "PPL::Octagonal_Shape::" << method << ":\n"
<< "this->space_dimension() == " << space_dimension()
<< ", required dimension == " << required_dim << ".";
throw std::invalid_argument(s.str());
}
template <typename T>
void
Octagonal_Shape<T>::throw_dimension_incompatible(const char* method,
const Constraint& c) const {
std::ostringstream s;
s << "PPL::Octagonal_Shape::" << method << ":\n"
<< "this->space_dimension() == " << space_dimension()
<< ", c->space_dimension == " << c.space_dimension() << ".";
throw std::invalid_argument(s.str());
}
template <typename T>
void
Octagonal_Shape<T>::throw_dimension_incompatible(const char* method,
const Congruence& cg) const {
std::ostringstream s;
s << "PPL::Octagonal_Shape::" << method << ":\n"
<< "this->space_dimension() == " << space_dimension()
<< ", cg->space_dimension == " << cg.space_dimension() << ".";
throw std::invalid_argument(s.str());
}
template <typename T>
void
Octagonal_Shape<T>::throw_dimension_incompatible(const char* method,
const Generator& g) const {
std::ostringstream s;
s << "PPL::Octagonal_Shape::" << method << ":\n"
<< "this->space_dimension() == " << space_dimension()
<< ", g->space_dimension == " << g.space_dimension() << ".";
throw std::invalid_argument(s.str());
}
template <typename T>
void
Octagonal_Shape<T>::throw_constraint_incompatible(const char* method) {
std::ostringstream s;
s << "PPL::Octagonal_Shape::" << method << ":\n"
<< "the constraint is incompatible.";
throw std::invalid_argument(s.str());
}
template <typename T>
void
Octagonal_Shape<T>::throw_expression_too_complex(const char* method,
const Linear_Expression& le) {
using namespace IO_Operators;
std::ostringstream s;
s << "PPL::Octagonal_Shape::" << method << ":\n"
<< le << " is too complex.";
throw std::invalid_argument(s.str());
}
template <typename T>
void
Octagonal_Shape<T>
::throw_dimension_incompatible(const char* method,
const char* le_name,
const Linear_Expression& le) const {
std::ostringstream s;
s << "PPL::Octagonal_Shape::" << method << ":\n"
<< "this->space_dimension() == " << space_dimension()
<< ", " << le_name << "->space_dimension() == "
<< le.space_dimension() << ".";
throw std::invalid_argument(s.str());
}
template <typename T>
template <typename C>
void
Octagonal_Shape<T>
::throw_dimension_incompatible(const char* method,
const char* lf_name,
const Linear_Form<C>& lf) const {
std::ostringstream s;
s << "PPL::Octagonal_Shape::" << method << ":\n"
<< "this->space_dimension() == " << space_dimension()
<< ", " << lf_name << "->space_dimension() == "
<< lf.space_dimension() << ".";
throw std::invalid_argument(s.str());
}
template <typename T>
void
Octagonal_Shape<T>::throw_invalid_argument(const char* method,
const char* reason) {
std::ostringstream s;
s << "PPL::Octagonal_Shape::" << method << ":\n"
<< reason << ".";
throw std::invalid_argument(s.str());
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Octagonal_Shape_defs.hh line 2323. */
/* Automatically generated from PPL source file ../src/BD_Shape_inlines.hh line 38. */
#include <vector>
#include <iostream>
#include <algorithm>
namespace Parma_Polyhedra_Library {
template <typename T>
inline dimension_type
BD_Shape<T>::max_space_dimension() {
// One dimension is reserved to have a value of type dimension_type
// that does not represent a legal dimension.
return std::min(DB_Matrix<N>::max_num_rows() - 1,
DB_Matrix<N>::max_num_columns() - 1);
}
template <typename T>
inline bool
BD_Shape<T>::marked_zero_dim_univ() const {
return status.test_zero_dim_univ();
}
template <typename T>
inline bool
BD_Shape<T>::marked_empty() const {
return status.test_empty();
}
template <typename T>
inline bool
BD_Shape<T>::marked_shortest_path_closed() const {
return status.test_shortest_path_closed();
}
template <typename T>
inline bool
BD_Shape<T>::marked_shortest_path_reduced() const {
return status.test_shortest_path_reduced();
}
template <typename T>
inline void
BD_Shape<T>::set_zero_dim_univ() {
status.set_zero_dim_univ();
}
template <typename T>
inline void
BD_Shape<T>::set_empty() {
status.set_empty();
}
template <typename T>
inline void
BD_Shape<T>::set_shortest_path_closed() {
status.set_shortest_path_closed();
}
template <typename T>
inline void
BD_Shape<T>::set_shortest_path_reduced() {
status.set_shortest_path_reduced();
}
template <typename T>
inline void
BD_Shape<T>::reset_shortest_path_closed() {
status.reset_shortest_path_closed();
}
template <typename T>
inline void
BD_Shape<T>::reset_shortest_path_reduced() {
status.reset_shortest_path_reduced();
}
template <typename T>
inline
BD_Shape<T>::BD_Shape(const dimension_type num_dimensions,
const Degenerate_Element kind)
: dbm(num_dimensions + 1), status(), redundancy_dbm() {
if (kind == EMPTY)
set_empty();
else {
if (num_dimensions > 0)
// A (non zero-dim) universe BDS is closed.
set_shortest_path_closed();
}
PPL_ASSERT(OK());
}
template <typename T>
inline
BD_Shape<T>::BD_Shape(const BD_Shape& y, Complexity_Class)
: dbm(y.dbm), status(y.status), redundancy_dbm() {
if (y.marked_shortest_path_reduced())
redundancy_dbm = y.redundancy_dbm;
}
template <typename T>
template <typename U>
inline
BD_Shape<T>::BD_Shape(const BD_Shape<U>& y, Complexity_Class)
// For maximum precision, enforce shortest-path closure
// before copying the DB matrix.
: dbm((y.shortest_path_closure_assign(), y.dbm)),
status(),
redundancy_dbm() {
// TODO: handle flags properly, possibly taking special cases into account.
if (y.marked_empty())
set_empty();
else if (y.marked_zero_dim_univ())
set_zero_dim_univ();
}
template <typename T>
inline Congruence_System
BD_Shape<T>::congruences() const {
return minimized_congruences();
}
template <typename T>
inline void
BD_Shape<T>::add_constraints(const Constraint_System& cs) {
for (Constraint_System::const_iterator i = cs.begin(),
cs_end = cs.end(); i != cs_end; ++i)
add_constraint(*i);
}
template <typename T>
inline void
BD_Shape<T>::add_recycled_constraints(Constraint_System& cs) {
add_constraints(cs);
}
template <typename T>
inline void
BD_Shape<T>::add_congruences(const Congruence_System& cgs) {
for (Congruence_System::const_iterator i = cgs.begin(),
cgs_end = cgs.end(); i != cgs_end; ++i)
add_congruence(*i);
}
template <typename T>
inline void
BD_Shape<T>::add_recycled_congruences(Congruence_System& cgs) {
add_congruences(cgs);
}
template <typename T>
inline void
BD_Shape<T>::refine_with_constraint(const Constraint& c) {
const dimension_type c_space_dim = c.space_dimension();
// Dimension-compatibility check.
if (c_space_dim > space_dimension())
throw_dimension_incompatible("refine_with_constraint(c)", c);
if (!marked_empty())
refine_no_check(c);
}
template <typename T>
inline void
BD_Shape<T>::refine_with_constraints(const Constraint_System& cs) {
// Dimension-compatibility check.
if (cs.space_dimension() > space_dimension())
throw_invalid_argument("refine_with_constraints(cs)",
"cs and *this are space-dimension incompatible");
for (Constraint_System::const_iterator i = cs.begin(),
cs_end = cs.end(); !marked_empty() && i != cs_end; ++i)
refine_no_check(*i);
}
template <typename T>
inline void
BD_Shape<T>::refine_with_congruence(const Congruence& cg) {
const dimension_type cg_space_dim = cg.space_dimension();
// Dimension-compatibility check.
if (cg_space_dim > space_dimension())
throw_dimension_incompatible("refine_with_congruence(cg)", cg);
if (!marked_empty())
refine_no_check(cg);
}
template <typename T>
void
BD_Shape<T>::refine_with_congruences(const Congruence_System& cgs) {
// Dimension-compatibility check.
if (cgs.space_dimension() > space_dimension())
throw_invalid_argument("refine_with_congruences(cgs)",
"cgs and *this are space-dimension incompatible");
for (Congruence_System::const_iterator i = cgs.begin(),
cgs_end = cgs.end(); !marked_empty() && i != cgs_end; ++i)
refine_no_check(*i);
}
template <typename T>
inline void
BD_Shape<T>::refine_no_check(const Congruence& cg) {
PPL_ASSERT(!marked_empty());
PPL_ASSERT(cg.space_dimension() <= space_dimension());
if (cg.is_proper_congruence()) {
if (cg.is_inconsistent())
set_empty();
// Other proper congruences are just ignored.
return;
}
PPL_ASSERT(cg.is_equality());
Constraint c(cg);
refine_no_check(c);
}
template <typename T>
inline bool
BD_Shape<T>::can_recycle_constraint_systems() {
return false;
}
template <typename T>
inline bool
BD_Shape<T>::can_recycle_congruence_systems() {
return false;
}
template <typename T>
inline
BD_Shape<T>::BD_Shape(const Constraint_System& cs)
: dbm(cs.space_dimension() + 1), status(), redundancy_dbm() {
if (cs.space_dimension() > 0)
// A (non zero-dim) universe BDS is shortest-path closed.
set_shortest_path_closed();
add_constraints(cs);
}
template <typename T>
template <typename Interval>
inline
BD_Shape<T>::BD_Shape(const Box<Interval>& box,
Complexity_Class)
: dbm(box.space_dimension() + 1), status(), redundancy_dbm() {
// Check emptiness for maximum precision.
if (box.is_empty())
set_empty();
else if (box.space_dimension() > 0) {
// A (non zero-dim) universe BDS is shortest-path closed.
set_shortest_path_closed();
refine_with_constraints(box.constraints());
}
}
template <typename T>
inline
BD_Shape<T>::BD_Shape(const Grid& grid,
Complexity_Class)
: dbm(grid.space_dimension() + 1), status(), redundancy_dbm() {
if (grid.space_dimension() > 0)
// A (non zero-dim) universe BDS is shortest-path closed.
set_shortest_path_closed();
// Taking minimized congruences ensures maximum precision.
refine_with_congruences(grid.minimized_congruences());
}
template <typename T>
template <typename U>
inline
BD_Shape<T>::BD_Shape(const Octagonal_Shape<U>& os,
Complexity_Class)
: dbm(os.space_dimension() + 1), status(), redundancy_dbm() {
// Check for emptiness for maximum precision.
if (os.is_empty())
set_empty();
else if (os.space_dimension() > 0) {
// A (non zero-dim) universe BDS is shortest-path closed.
set_shortest_path_closed();
refine_with_constraints(os.constraints());
// After refining, shortest-path closure is possibly lost
// (even when `os' was strongly closed: recall that U
// is possibly different from T).
}
}
template <typename T>
inline BD_Shape<T>&
BD_Shape<T>::operator=(const BD_Shape& y) {
dbm = y.dbm;
status = y.status;
if (y.marked_shortest_path_reduced())
redundancy_dbm = y.redundancy_dbm;
return *this;
}
template <typename T>
inline
BD_Shape<T>::~BD_Shape() {
}
template <typename T>
inline void
BD_Shape<T>::m_swap(BD_Shape& y) {
using std::swap;
swap(dbm, y.dbm);
swap(status, y.status);
swap(redundancy_dbm, y.redundancy_dbm);
}
template <typename T>
inline dimension_type
BD_Shape<T>::space_dimension() const {
return dbm.num_rows() - 1;
}
template <typename T>
inline bool
BD_Shape<T>::is_empty() const {
shortest_path_closure_assign();
return marked_empty();
}
template <typename T>
inline bool
BD_Shape<T>::bounds_from_above(const Linear_Expression& expr) const {
return bounds(expr, true);
}
template <typename T>
inline bool
BD_Shape<T>::bounds_from_below(const Linear_Expression& expr) const {
return bounds(expr, false);
}
template <typename T>
inline bool
BD_Shape<T>::maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d,
bool& maximum) const {
return max_min(expr, true, sup_n, sup_d, maximum);
}
template <typename T>
inline bool
BD_Shape<T>::maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum,
Generator& g) const {
return max_min(expr, true, sup_n, sup_d, maximum, g);
}
template <typename T>
inline bool
BD_Shape<T>::minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d,
bool& minimum) const {
return max_min(expr, false, inf_n, inf_d, minimum);
}
template <typename T>
inline bool
BD_Shape<T>::minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum,
Generator& g) const {
return max_min(expr, false, inf_n, inf_d, minimum, g);
}
template <typename T>
inline bool
BD_Shape<T>::is_topologically_closed() const {
return true;
}
template <typename T>
inline bool
BD_Shape<T>::is_discrete() const {
return affine_dimension() == 0;
}
template <typename T>
inline void
BD_Shape<T>::topological_closure_assign() {
}
/*! \relates BD_Shape */
template <typename T>
inline bool
operator==(const BD_Shape<T>& x, const BD_Shape<T>& y) {
const dimension_type x_space_dim = x.space_dimension();
// Dimension-compatibility check.
if (x_space_dim != y.space_dimension())
return false;
// Zero-dim BDSs are equal if and only if they are both empty or universe.
if (x_space_dim == 0) {
if (x.marked_empty())
return y.marked_empty();
else
return !y.marked_empty();
}
// The exact equivalence test requires shortest-path closure.
x.shortest_path_closure_assign();
y.shortest_path_closure_assign();
// If one of two BDSs is empty, then they are equal
// if and only if the other BDS is empty too.
if (x.marked_empty())
return y.marked_empty();
if (y.marked_empty())
return false;
// Check for syntactic equivalence of the two (shortest-path closed)
// systems of bounded differences.
return x.dbm == y.dbm;
}
/*! \relates BD_Shape */
template <typename T>
inline bool
operator!=(const BD_Shape<T>& x, const BD_Shape<T>& y) {
return !(x == y);
}
/*! \relates BD_Shape */
template <typename Temp, typename To, typename T>
inline bool
rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
const dimension_type x_space_dim = x.space_dimension();
// Dimension-compatibility check.
if (x_space_dim != y.space_dimension())
return false;
// Zero-dim BDSs are equal if and only if they are both empty or universe.
if (x_space_dim == 0) {
if (x.marked_empty() == y.marked_empty())
assign_r(r, 0, ROUND_NOT_NEEDED);
else
assign_r(r, PLUS_INFINITY, ROUND_NOT_NEEDED);
return true;
}
// The distance computation requires shortest-path closure.
x.shortest_path_closure_assign();
y.shortest_path_closure_assign();
// If one of two BDSs is empty, then they are equal if and only if
// the other BDS is empty too.
if (x.marked_empty() || y.marked_empty()) {
if (x.marked_empty() == y.marked_empty())
assign_r(r, 0, ROUND_NOT_NEEDED);
else
assign_r(r, PLUS_INFINITY, ROUND_NOT_NEEDED);
return true;
}
return rectilinear_distance_assign(r, x.dbm, y.dbm, dir, tmp0, tmp1, tmp2);
}
/*! \relates BD_Shape */
template <typename Temp, typename To, typename T>
inline bool
rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
const Rounding_Dir dir) {
typedef Checked_Number<Temp, Extended_Number_Policy> Checked_Temp;
PPL_DIRTY_TEMP(Checked_Temp, tmp0);
PPL_DIRTY_TEMP(Checked_Temp, tmp1);
PPL_DIRTY_TEMP(Checked_Temp, tmp2);
return rectilinear_distance_assign(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates BD_Shape */
template <typename To, typename T>
inline bool
rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
const Rounding_Dir dir) {
return rectilinear_distance_assign<To, To, T>(r, x, y, dir);
}
/*! \relates BD_Shape */
template <typename Temp, typename To, typename T>
inline bool
euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
const dimension_type x_space_dim = x.space_dimension();
// Dimension-compatibility check.
if (x_space_dim != y.space_dimension())
return false;
// Zero-dim BDSs are equal if and only if they are both empty or universe.
if (x_space_dim == 0) {
if (x.marked_empty() == y.marked_empty())
assign_r(r, 0, ROUND_NOT_NEEDED);
else
assign_r(r, PLUS_INFINITY, ROUND_NOT_NEEDED);
return true;
}
// The distance computation requires shortest-path closure.
x.shortest_path_closure_assign();
y.shortest_path_closure_assign();
// If one of two BDSs is empty, then they are equal if and only if
// the other BDS is empty too.
if (x.marked_empty() || y.marked_empty()) {
if (x.marked_empty() == y.marked_empty())
assign_r(r, 0, ROUND_NOT_NEEDED);
else
assign_r(r, PLUS_INFINITY, ROUND_NOT_NEEDED);
return true;
}
return euclidean_distance_assign(r, x.dbm, y.dbm, dir, tmp0, tmp1, tmp2);
}
/*! \relates BD_Shape */
template <typename Temp, typename To, typename T>
inline bool
euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
const Rounding_Dir dir) {
typedef Checked_Number<Temp, Extended_Number_Policy> Checked_Temp;
PPL_DIRTY_TEMP(Checked_Temp, tmp0);
PPL_DIRTY_TEMP(Checked_Temp, tmp1);
PPL_DIRTY_TEMP(Checked_Temp, tmp2);
return euclidean_distance_assign(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates BD_Shape */
template <typename To, typename T>
inline bool
euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
const Rounding_Dir dir) {
return euclidean_distance_assign<To, To, T>(r, x, y, dir);
}
/*! \relates BD_Shape */
template <typename Temp, typename To, typename T>
inline bool
l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
const dimension_type x_space_dim = x.space_dimension();
// Dimension-compatibility check.
if (x_space_dim != y.space_dimension())
return false;
// Zero-dim BDSs are equal if and only if they are both empty or universe.
if (x_space_dim == 0) {
if (x.marked_empty() == y.marked_empty())
assign_r(r, 0, ROUND_NOT_NEEDED);
else
assign_r(r, PLUS_INFINITY, ROUND_NOT_NEEDED);
return true;
}
// The distance computation requires shortest-path closure.
x.shortest_path_closure_assign();
y.shortest_path_closure_assign();
// If one of two BDSs is empty, then they are equal if and only if
// the other BDS is empty too.
if (x.marked_empty() || y.marked_empty()) {
if (x.marked_empty() == y.marked_empty())
assign_r(r, 0, ROUND_NOT_NEEDED);
else
assign_r(r, PLUS_INFINITY, ROUND_NOT_NEEDED);
return true;
}
return l_infinity_distance_assign(r, x.dbm, y.dbm, dir, tmp0, tmp1, tmp2);
}
/*! \relates BD_Shape */
template <typename Temp, typename To, typename T>
inline bool
l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
const Rounding_Dir dir) {
typedef Checked_Number<Temp, Extended_Number_Policy> Checked_Temp;
PPL_DIRTY_TEMP(Checked_Temp, tmp0);
PPL_DIRTY_TEMP(Checked_Temp, tmp1);
PPL_DIRTY_TEMP(Checked_Temp, tmp2);
return l_infinity_distance_assign(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates BD_Shape */
template <typename To, typename T>
inline bool
l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
const Rounding_Dir dir) {
return l_infinity_distance_assign<To, To, T>(r, x, y, dir);
}
template <typename T>
inline void
BD_Shape<T>::add_dbm_constraint(const dimension_type i,
const dimension_type j,
const N& k) {
// Private method: the caller has to ensure the following.
PPL_ASSERT(i <= space_dimension() && j <= space_dimension() && i != j);
N& dbm_ij = dbm[i][j];
if (dbm_ij > k) {
dbm_ij = k;
if (marked_shortest_path_closed())
reset_shortest_path_closed();
}
}
template <typename T>
inline void
BD_Shape<T>::add_dbm_constraint(const dimension_type i,
const dimension_type j,
Coefficient_traits::const_reference numer,
Coefficient_traits::const_reference denom) {
// Private method: the caller has to ensure the following.
PPL_ASSERT(i <= space_dimension() && j <= space_dimension() && i != j);
PPL_ASSERT(denom != 0);
PPL_DIRTY_TEMP(N, k);
div_round_up(k, numer, denom);
add_dbm_constraint(i, j, k);
}
template <typename T>
inline void
BD_Shape<T>::time_elapse_assign(const BD_Shape& y) {
// Dimension-compatibility check.
if (space_dimension() != y.space_dimension())
throw_dimension_incompatible("time_elapse_assign(y)", y);
// Compute time-elapse on polyhedra.
// TODO: provide a direct implementation.
C_Polyhedron ph_x(constraints());
C_Polyhedron ph_y(y.constraints());
ph_x.time_elapse_assign(ph_y);
BD_Shape<T> x(ph_x);
m_swap(x);
PPL_ASSERT(OK());
}
template <typename T>
inline bool
BD_Shape<T>::strictly_contains(const BD_Shape& y) const {
const BD_Shape<T>& x = *this;
return x.contains(y) && !y.contains(x);
}
template <typename T>
inline bool
BD_Shape<T>::upper_bound_assign_if_exact(const BD_Shape& y) {
if (space_dimension() != y.space_dimension())
throw_dimension_incompatible("upper_bound_assign_if_exact(y)", y);
#if 0
return BFT00_upper_bound_assign_if_exact(y);
#else
const bool integer_upper_bound = false;
return BHZ09_upper_bound_assign_if_exact<integer_upper_bound>(y);
#endif
}
template <typename T>
inline bool
BD_Shape<T>::integer_upper_bound_assign_if_exact(const BD_Shape& y) {
PPL_COMPILE_TIME_CHECK(std::numeric_limits<T>::is_integer,
"BD_Shape<T>::integer_upper_bound_assign_if_exact(y):"
" T in not an integer datatype.");
if (space_dimension() != y.space_dimension())
throw_dimension_incompatible("integer_upper_bound_assign_if_exact(y)", y);
const bool integer_upper_bound = true;
return BHZ09_upper_bound_assign_if_exact<integer_upper_bound>(y);
}
template <typename T>
inline void
BD_Shape<T>
::remove_higher_space_dimensions(const dimension_type new_dimension) {
// Dimension-compatibility check: the variable having
// maximum index is the one occurring last in the set.
const dimension_type space_dim = space_dimension();
if (new_dimension > space_dim)
throw_dimension_incompatible("remove_higher_space_dimensions(nd)",
new_dimension);
// The removal of no dimensions from any BDS is a no-op.
// Note that this case also captures the only legal removal of
// dimensions from a zero-dim space BDS.
if (new_dimension == space_dim) {
PPL_ASSERT(OK());
return;
}
// Shortest-path closure is necessary as in remove_space_dimensions().
shortest_path_closure_assign();
dbm.resize_no_copy(new_dimension + 1);
// Shortest-path closure is maintained.
// TODO: see whether or not reduction can be (efficiently!) maintained too.
if (marked_shortest_path_reduced())
reset_shortest_path_reduced();
// If we removed _all_ dimensions from a non-empty BDS,
// the zero-dim universe BDS has been obtained.
if (new_dimension == 0 && !marked_empty())
set_zero_dim_univ();
PPL_ASSERT(OK());
}
template <typename T>
void
BD_Shape<T>::wrap_assign(const Variables_Set& vars,
Bounded_Integer_Type_Width w,
Bounded_Integer_Type_Representation r,
Bounded_Integer_Type_Overflow o,
const Constraint_System* cs_p,
unsigned complexity_threshold,
bool wrap_individually) {
Implementation::wrap_assign(*this,
vars, w, r, o, cs_p,
complexity_threshold, wrap_individually,
"BD_Shape");
}
template <typename T>
inline void
BD_Shape<T>::CC76_extrapolation_assign(const BD_Shape& y, unsigned* tp) {
static N stop_points[] = {
N(-2, ROUND_UP),
N(-1, ROUND_UP),
N( 0, ROUND_UP),
N( 1, ROUND_UP),
N( 2, ROUND_UP)
};
CC76_extrapolation_assign(y,
stop_points,
stop_points
+ sizeof(stop_points)/sizeof(stop_points[0]),
tp);
}
template <typename T>
inline void
BD_Shape<T>::H79_widening_assign(const BD_Shape& y, unsigned* tp) {
// Compute the H79 widening on polyhedra.
// TODO: provide a direct implementation.
C_Polyhedron ph_x(constraints());
C_Polyhedron ph_y(y.constraints());
ph_x.H79_widening_assign(ph_y, tp);
BD_Shape x(ph_x);
m_swap(x);
PPL_ASSERT(OK());
}
template <typename T>
inline void
BD_Shape<T>::widening_assign(const BD_Shape& y, unsigned* tp) {
H79_widening_assign(y, tp);
}
template <typename T>
inline void
BD_Shape<T>::limited_H79_extrapolation_assign(const BD_Shape& y,
const Constraint_System& cs,
unsigned* tp) {
// Compute the limited H79 extrapolation on polyhedra.
// TODO: provide a direct implementation.
C_Polyhedron ph_x(constraints());
C_Polyhedron ph_y(y.constraints());
ph_x.limited_H79_extrapolation_assign(ph_y, cs, tp);
BD_Shape x(ph_x);
m_swap(x);
PPL_ASSERT(OK());
}
template <typename T>
inline memory_size_type
BD_Shape<T>::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
template <typename T>
inline int32_t
BD_Shape<T>::hash_code() const {
return hash_code_from_dimension(space_dimension());
}
template <typename T>
template <typename Interval_Info>
inline void
BD_Shape<T>::generalized_refine_with_linear_form_inequality(
const Linear_Form<Interval<T, Interval_Info> >& left,
const Linear_Form<Interval<T, Interval_Info> >& right,
const Relation_Symbol relsym) {
switch (relsym) {
case EQUAL:
// TODO: see if we can handle this case more efficiently.
refine_with_linear_form_inequality(left, right);
refine_with_linear_form_inequality(right, left);
break;
case LESS_THAN:
case LESS_OR_EQUAL:
refine_with_linear_form_inequality(left, right);
break;
case GREATER_THAN:
case GREATER_OR_EQUAL:
refine_with_linear_form_inequality(right, left);
break;
case NOT_EQUAL:
break;
default:
PPL_UNREACHABLE;
}
}
template <typename T>
template <typename Interval_Info>
inline void
BD_Shape<T>
::refine_fp_interval_abstract_store(Box<Interval<T, Interval_Info> >&
store) const {
// Check that T is a floating point type.
PPL_COMPILE_TIME_CHECK(!std::numeric_limits<T>::is_exact,
"BD_Shape<T>::refine_fp_interval_abstract_store:"
" T not a floating point type.");
typedef Interval<T, Interval_Info> FP_Interval_Type;
store.intersection_assign(Box<FP_Interval_Type>(*this));
}
template <typename T>
inline void
BD_Shape<T>::drop_some_non_integer_points_helper(N& elem) {
if (!is_integer(elem)) {
Result r = floor_assign_r(elem, elem, ROUND_DOWN);
PPL_USED(r);
PPL_ASSERT(r == V_EQ);
reset_shortest_path_closed();
}
}
/*! \relates BD_Shape */
template <typename T>
inline void
swap(BD_Shape<T>& x, BD_Shape<T>& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/BD_Shape_templates.hh line 1. */
/* BD_Shape class implementation: non-inline template functions.
*/
/* Automatically generated from PPL source file ../src/BD_Shape_templates.hh line 40. */
#include <vector>
#include <deque>
#include <iostream>
#include <sstream>
#include <stdexcept>
#include <algorithm>
namespace Parma_Polyhedra_Library {
template <typename T>
BD_Shape<T>::BD_Shape(const Congruence_System& cgs)
: dbm(cgs.space_dimension() + 1),
status(),
redundancy_dbm() {
add_congruences(cgs);
}
template <typename T>
BD_Shape<T>::BD_Shape(const Generator_System& gs)
: dbm(gs.space_dimension() + 1), status(), redundancy_dbm() {
const Generator_System::const_iterator gs_begin = gs.begin();
const Generator_System::const_iterator gs_end = gs.end();
if (gs_begin == gs_end) {
// An empty generator system defines the empty BD shape.
set_empty();
return;
}
const dimension_type space_dim = space_dimension();
DB_Row<N>& dbm_0 = dbm[0];
PPL_DIRTY_TEMP(N, tmp);
bool dbm_initialized = false;
bool point_seen = false;
// Going through all the points and closure points.
for (Generator_System::const_iterator gs_i = gs_begin;
gs_i != gs_end; ++gs_i) {
const Generator& g = *gs_i;
switch (g.type()) {
case Generator::POINT:
point_seen = true;
// Intentionally fall through.
case Generator::CLOSURE_POINT:
if (!dbm_initialized) {
// When handling the first (closure) point, we initialize the DBM.
dbm_initialized = true;
const Coefficient& d = g.divisor();
// TODO: Check if the following loop can be optimized used
// Generator::expr_type::const_iterator.
for (dimension_type i = space_dim; i > 0; --i) {
const Coefficient& g_i = g.expression().get(Variable(i - 1));
DB_Row<N>& dbm_i = dbm[i];
for (dimension_type j = space_dim; j > 0; --j)
if (i != j) {
const Coefficient& g_j = g.expression().get(Variable(j - 1));
div_round_up(dbm_i[j], g_j - g_i, d);
}
div_round_up(dbm_i[0], -g_i, d);
}
for (dimension_type j = space_dim; j > 0; --j) {
const Coefficient& g_j = g.expression().get(Variable(j - 1));
div_round_up(dbm_0[j], g_j, d);
}
// Note: no need to initialize the first element of the main diagonal.
}
else {
// This is not the first point: the DBM already contains
// valid values and we must compute maxima.
const Coefficient& d = g.divisor();
// TODO: Check if the following loop can be optimized used
// Generator::expr_type::const_iterator.
for (dimension_type i = space_dim; i > 0; --i) {
const Coefficient& g_i = g.expression().get(Variable(i - 1));
DB_Row<N>& dbm_i = dbm[i];
// The loop correctly handles the case when i == j.
for (dimension_type j = space_dim; j > 0; --j) {
const Coefficient& g_j = g.expression().get(Variable(j - 1));
div_round_up(tmp, g_j - g_i, d);
max_assign(dbm_i[j], tmp);
}
div_round_up(tmp, -g_i, d);
max_assign(dbm_i[0], tmp);
}
for (dimension_type j = space_dim; j > 0; --j) {
const Coefficient& g_j = g.expression().get(Variable(j - 1));
div_round_up(tmp, g_j, d);
max_assign(dbm_0[j], tmp);
}
}
break;
default:
// Lines and rays temporarily ignored.
break;
}
}
if (!point_seen)
// The generator system is not empty, but contains no points.
throw_invalid_argument("BD_Shape(gs)",
"the non-empty generator system gs "
"contains no points.");
// Going through all the lines and rays.
for (Generator_System::const_iterator gs_i = gs_begin;
gs_i != gs_end; ++gs_i) {
const Generator& g = *gs_i;
switch (g.type()) {
case Generator::LINE:
// TODO: Check if the following loop can be optimized used
// Generator::expr_type::const_iterator.
for (dimension_type i = space_dim; i > 0; --i) {
const Coefficient& g_i = g.expression().get(Variable(i - 1));
DB_Row<N>& dbm_i = dbm[i];
// The loop correctly handles the case when i == j.
for (dimension_type j = space_dim; j > 0; --j)
if (g_i != g.expression().get(Variable(j - 1)))
assign_r(dbm_i[j], PLUS_INFINITY, ROUND_NOT_NEEDED);
if (g_i != 0)
assign_r(dbm_i[0], PLUS_INFINITY, ROUND_NOT_NEEDED);
}
for (Generator::expr_type::const_iterator i = g.expression().begin(),
i_end = g.expression().end(); i != i_end; ++i)
assign_r(dbm_0[i.variable().space_dimension()],
PLUS_INFINITY, ROUND_NOT_NEEDED);
break;
case Generator::RAY:
// TODO: Check if the following loop can be optimized used
// Generator::expr_type::const_iterator.
for (dimension_type i = space_dim; i > 0; --i) {
const Coefficient& g_i = g.expression().get(Variable(i - 1));
DB_Row<N>& dbm_i = dbm[i];
// The loop correctly handles the case when i == j.
for (dimension_type j = space_dim; j > 0; --j)
if (g_i < g.expression().get(Variable(j - 1)))
assign_r(dbm_i[j], PLUS_INFINITY, ROUND_NOT_NEEDED);
if (g_i < 0)
assign_r(dbm_i[0], PLUS_INFINITY, ROUND_NOT_NEEDED);
}
for (Generator::expr_type::const_iterator i = g.expression().begin(),
i_end = g.expression().end(); i != i_end; ++i)
if (*i > 0)
assign_r(dbm_0[i.variable().space_dimension()],
PLUS_INFINITY, ROUND_NOT_NEEDED);
break;
default:
// Points and closure points already dealt with.
break;
}
}
set_shortest_path_closed();
PPL_ASSERT(OK());
}
template <typename T>
BD_Shape<T>::BD_Shape(const Polyhedron& ph, const Complexity_Class complexity)
: dbm(), status(), redundancy_dbm() {
const dimension_type num_dimensions = ph.space_dimension();
if (ph.marked_empty()) {
*this = BD_Shape<T>(num_dimensions, EMPTY);
return;
}
if (num_dimensions == 0) {
*this = BD_Shape<T>(num_dimensions, UNIVERSE);
return;
}
// Build from generators when we do not care about complexity
// or when the process has polynomial complexity.
if (complexity == ANY_COMPLEXITY
|| (!ph.has_pending_constraints() && ph.generators_are_up_to_date())) {
*this = BD_Shape<T>(ph.generators());
return;
}
// We cannot afford exponential complexity, we do not have a complete set
// of generators for the polyhedron, and the polyhedron is not trivially
// empty or zero-dimensional. Constraints, however, are up to date.
PPL_ASSERT(ph.constraints_are_up_to_date());
if (!ph.has_something_pending() && ph.constraints_are_minimized()) {
// If the constraint system of the polyhedron is minimized,
// the test `is_universe()' has polynomial complexity.
if (ph.is_universe()) {
*this = BD_Shape<T>(num_dimensions, UNIVERSE);
return;
}
}
// See if there is at least one inconsistent constraint in `ph.con_sys'.
for (Constraint_System::const_iterator i = ph.con_sys.begin(),
cs_end = ph.con_sys.end(); i != cs_end; ++i)
if (i->is_inconsistent()) {
*this = BD_Shape<T>(num_dimensions, EMPTY);
return;
}
// If `complexity' allows it, use simplex to derive the exact (modulo
// the fact that our BDSs are topologically closed) variable bounds.
if (complexity == SIMPLEX_COMPLEXITY) {
MIP_Problem lp(num_dimensions);
lp.set_optimization_mode(MAXIMIZATION);
const Constraint_System& ph_cs = ph.constraints();
if (!ph_cs.has_strict_inequalities())
lp.add_constraints(ph_cs);
else
// Adding to `lp' a topologically closed version of `ph_cs'.
for (Constraint_System::const_iterator i = ph_cs.begin(),
ph_cs_end = ph_cs.end(); i != ph_cs_end; ++i) {
const Constraint& c = *i;
if (c.is_strict_inequality()) {
Linear_Expression expr(c.expression());
lp.add_constraint(expr >= 0);
}
else
lp.add_constraint(c);
}
// Check for unsatisfiability.
if (!lp.is_satisfiable()) {
*this = BD_Shape<T>(num_dimensions, EMPTY);
return;
}
// Start with a universe BDS that will be refined by the simplex.
*this = BD_Shape<T>(num_dimensions, UNIVERSE);
// Get all the upper bounds.
Generator g(point());
PPL_DIRTY_TEMP_COEFFICIENT(numer);
PPL_DIRTY_TEMP_COEFFICIENT(denom);
for (dimension_type i = 1; i <= num_dimensions; ++i) {
Variable x(i-1);
// Evaluate optimal upper bound for `x <= ub'.
lp.set_objective_function(x);
if (lp.solve() == OPTIMIZED_MIP_PROBLEM) {
g = lp.optimizing_point();
lp.evaluate_objective_function(g, numer, denom);
div_round_up(dbm[0][i], numer, denom);
}
// Evaluate optimal upper bound for `x - y <= ub'.
for (dimension_type j = 1; j <= num_dimensions; ++j) {
if (i == j)
continue;
Variable y(j-1);
lp.set_objective_function(x - y);
if (lp.solve() == OPTIMIZED_MIP_PROBLEM) {
g = lp.optimizing_point();
lp.evaluate_objective_function(g, numer, denom);
div_round_up(dbm[j][i], numer, denom);
}
}
// Evaluate optimal upper bound for `-x <= ub'.
lp.set_objective_function(-x);
if (lp.solve() == OPTIMIZED_MIP_PROBLEM) {
g = lp.optimizing_point();
lp.evaluate_objective_function(g, numer, denom);
div_round_up(dbm[i][0], numer, denom);
}
}
set_shortest_path_closed();
PPL_ASSERT(OK());
return;
}
// Extract easy-to-find bounds from constraints.
PPL_ASSERT(complexity == POLYNOMIAL_COMPLEXITY);
*this = BD_Shape<T>(num_dimensions, UNIVERSE);
refine_with_constraints(ph.constraints());
}
template <typename T>
dimension_type
BD_Shape<T>::affine_dimension() const {
const dimension_type space_dim = space_dimension();
// A zero-space-dim shape always has affine dimension zero.
if (space_dim == 0)
return 0;
// Shortest-path closure is necessary to detect emptiness
// and all (possibly implicit) equalities.
shortest_path_closure_assign();
if (marked_empty())
return 0;
// The vector `predecessor' is used to represent equivalence classes:
// `predecessor[i] == i' if and only if `i' is the leader of its
// equivalence class (i.e., the minimum index in the class).
std::vector<dimension_type> predecessor;
compute_predecessors(predecessor);
// Due to the fictitious variable `0', the affine dimension is one
// less the number of equivalence classes.
dimension_type affine_dim = 0;
// Note: disregard the first equivalence class.
for (dimension_type i = 1; i <= space_dim; ++i)
if (predecessor[i] == i)
++affine_dim;
return affine_dim;
}
template <typename T>
Congruence_System
BD_Shape<T>::minimized_congruences() const {
// Shortest-path closure is necessary to detect emptiness
// and all (possibly implicit) equalities.
shortest_path_closure_assign();
const dimension_type space_dim = space_dimension();
Congruence_System cgs(space_dim);
if (space_dim == 0) {
if (marked_empty())
cgs = Congruence_System::zero_dim_empty();
return cgs;
}
if (marked_empty()) {
cgs.insert(Congruence::zero_dim_false());
return cgs;
}
PPL_DIRTY_TEMP_COEFFICIENT(numer);
PPL_DIRTY_TEMP_COEFFICIENT(denom);
// Compute leader information.
std::vector<dimension_type> leaders;
compute_leaders(leaders);
// Go through the non-leaders to generate equality constraints.
const DB_Row<N>& dbm_0 = dbm[0];
for (dimension_type i = 1; i <= space_dim; ++i) {
const dimension_type leader = leaders[i];
if (i != leader) {
// Generate the constraint relating `i' and its leader.
if (leader == 0) {
// A unary equality has to be generated.
PPL_ASSERT(!is_plus_infinity(dbm_0[i]));
numer_denom(dbm_0[i], numer, denom);
cgs.insert(denom*Variable(i-1) == numer);
}
else {
// A binary equality has to be generated.
PPL_ASSERT(!is_plus_infinity(dbm[i][leader]));
numer_denom(dbm[i][leader], numer, denom);
cgs.insert(denom*Variable(leader-1) - denom*Variable(i-1) == numer);
}
}
}
return cgs;
}
template <typename T>
void
BD_Shape<T>::add_constraint(const Constraint& c) {
// Dimension-compatibility check.
if (c.space_dimension() > space_dimension())
throw_dimension_incompatible("add_constraint(c)", c);
// Get rid of strict inequalities.
if (c.is_strict_inequality()) {
if (c.is_inconsistent()) {
set_empty();
return;
}
if (c.is_tautological())
return;
// Nontrivial strict inequalities are not allowed.
throw_invalid_argument("add_constraint(c)",
"strict inequalities are not allowed");
}
dimension_type num_vars = 0;
dimension_type i = 0;
dimension_type j = 0;
PPL_DIRTY_TEMP_COEFFICIENT(coeff);
// Constraints that are not bounded differences are not allowed.
if (!BD_Shape_Helpers::extract_bounded_difference(c, num_vars, i, j, coeff))
throw_invalid_argument("add_constraint(c)",
"c is not a bounded difference constraint");
const Coefficient& inhomo = c.inhomogeneous_term();
if (num_vars == 0) {
// Dealing with a trivial constraint (not a strict inequality).
if (inhomo < 0
|| (inhomo != 0 && c.is_equality()))
set_empty();
return;
}
// Select the cell to be modified for the "<=" part of the constraint,
// and set `coeff' to the absolute value of itself.
const bool negative = (coeff < 0);
if (negative)
neg_assign(coeff);
bool changed = false;
N& x = negative ? dbm[i][j] : dbm[j][i];
// Compute the bound for `x', rounding towards plus infinity.
PPL_DIRTY_TEMP(N, d);
div_round_up(d, inhomo, coeff);
if (x > d) {
x = d;
changed = true;
}
if (c.is_equality()) {
N& y = negative ? dbm[j][i] : dbm[i][j];
// Also compute the bound for `y', rounding towards plus infinity.
PPL_DIRTY_TEMP_COEFFICIENT(minus_c_term);
neg_assign(minus_c_term, inhomo);
div_round_up(d, minus_c_term, coeff);
if (y > d) {
y = d;
changed = true;
}
}
// In general, adding a constraint does not preserve the shortest-path
// closure or reduction of the bounded difference shape.
if (changed && marked_shortest_path_closed())
reset_shortest_path_closed();
PPL_ASSERT(OK());
}
template <typename T>
void
BD_Shape<T>::add_congruence(const Congruence& cg) {
const dimension_type cg_space_dim = cg.space_dimension();
// Dimension-compatibility check:
// the dimension of `cg' can not be greater than space_dim.
if (space_dimension() < cg_space_dim)
throw_dimension_incompatible("add_congruence(cg)", cg);
// Handle the case of proper congruences first.
if (cg.is_proper_congruence()) {
if (cg.is_tautological())
return;
if (cg.is_inconsistent()) {
set_empty();
return;
}
// Non-trivial and proper congruences are not allowed.
throw_invalid_argument("add_congruence(cg)",
"cg is a non-trivial, proper congruence");
}
PPL_ASSERT(cg.is_equality());
Constraint c(cg);
add_constraint(c);
}
template <typename T>
void
BD_Shape<T>::refine_no_check(const Constraint& c) {
PPL_ASSERT(!marked_empty());
PPL_ASSERT(c.space_dimension() <= space_dimension());
dimension_type num_vars = 0;
dimension_type i = 0;
dimension_type j = 0;
PPL_DIRTY_TEMP_COEFFICIENT(coeff);
// Constraints that are not bounded differences are ignored.
if (!BD_Shape_Helpers::extract_bounded_difference(c, num_vars, i, j, coeff))
return;
const Coefficient& inhomo = c.inhomogeneous_term();
if (num_vars == 0) {
// Dealing with a trivial constraint (might be a strict inequality).
if (inhomo < 0
|| (c.is_equality() && inhomo != 0)
|| (c.is_strict_inequality() && inhomo == 0))
set_empty();
return;
}
// Select the cell to be modified for the "<=" part of the constraint,
// and set `coeff' to the absolute value of itself.
const bool negative = (coeff < 0);
N& x = negative ? dbm[i][j] : dbm[j][i];
N& y = negative ? dbm[j][i] : dbm[i][j];
if (negative)
neg_assign(coeff);
bool changed = false;
// Compute the bound for `x', rounding towards plus infinity.
PPL_DIRTY_TEMP(N, d);
div_round_up(d, inhomo, coeff);
if (x > d) {
x = d;
changed = true;
}
if (c.is_equality()) {
// Also compute the bound for `y', rounding towards plus infinity.
PPL_DIRTY_TEMP_COEFFICIENT(minus_c_term);
neg_assign(minus_c_term, inhomo);
div_round_up(d, minus_c_term, coeff);
if (y > d) {
y = d;
changed = true;
}
}
// In general, adding a constraint does not preserve the shortest-path
// closure or reduction of the bounded difference shape.
if (changed && marked_shortest_path_closed())
reset_shortest_path_closed();
PPL_ASSERT(OK());
}
template <typename T>
void
BD_Shape<T>::concatenate_assign(const BD_Shape& y) {
BD_Shape& x = *this;
const dimension_type x_space_dim = x.space_dimension();
const dimension_type y_space_dim = y.space_dimension();
// If `y' is an empty 0-dim space bounded difference shape,
// let `*this' become empty.
if (y_space_dim == 0 && y.marked_empty()) {
set_empty();
return;
}
// If `x' is an empty 0-dim space BDS, then it is sufficient to adjust
// the dimension of the vector space.
if (x_space_dim == 0 && marked_empty()) {
dbm.grow(y_space_dim + 1);
PPL_ASSERT(OK());
return;
}
// First we increase the space dimension of `x' by adding
// `y.space_dimension()' new dimensions.
// The matrix for the new system of constraints is obtained
// by leaving the old system of constraints in the upper left-hand side
// and placing the constraints of `y' in the lower right-hand side,
// except the constraints as `y(i) >= cost' or `y(i) <= cost', that are
// placed in the right position on the new matrix.
add_space_dimensions_and_embed(y_space_dim);
const dimension_type new_space_dim = x_space_dim + y_space_dim;
for (dimension_type i = x_space_dim + 1; i <= new_space_dim; ++i) {
DB_Row<N>& dbm_i = dbm[i];
dbm_i[0] = y.dbm[i - x_space_dim][0];
dbm[0][i] = y.dbm[0][i - x_space_dim];
for (dimension_type j = x_space_dim + 1; j <= new_space_dim; ++j)
dbm_i[j] = y.dbm[i - x_space_dim][j - x_space_dim];
}
if (marked_shortest_path_closed())
reset_shortest_path_closed();
PPL_ASSERT(OK());
}
template <typename T>
bool
BD_Shape<T>::contains(const BD_Shape& y) const {
const BD_Shape<T>& x = *this;
const dimension_type x_space_dim = x.space_dimension();
// Dimension-compatibility check.
if (x_space_dim != y.space_dimension())
throw_dimension_incompatible("contains(y)", y);
if (x_space_dim == 0) {
// The zero-dimensional empty shape only contains another
// zero-dimensional empty shape.
// The zero-dimensional universe shape contains any other
// zero-dimensional shape.
return marked_empty() ? y.marked_empty() : true;
}
/*
The `y' bounded difference shape must be closed. As an example,
consider the case where in `*this' we have the constraints
x1 - x2 <= 1,
x1 <= 3,
x2 <= 2,
and in `y' the constraints are
x1 - x2 <= 0,
x2 <= 1.
Without closure the (erroneous) analysis of the inhomogeneous terms
would conclude containment does not hold. Closing `y' results into
the "discovery" of the implicit constraint
x1 <= 1,
at which point the inhomogeneous terms can be examined to determine
that containment does hold.
*/
y.shortest_path_closure_assign();
// An empty shape is contained in any other dimension-compatible shapes.
if (y.marked_empty())
return true;
// If `x' is empty it can not contain `y' (which is not empty).
if (x.is_empty())
return false;
// `*this' contains `y' if and only if every cell of `dbm'
// is greater than or equal to the correspondent one of `y.dbm'.
for (dimension_type i = x_space_dim + 1; i-- > 0; ) {
const DB_Row<N>& x_dbm_i = x.dbm[i];
const DB_Row<N>& y_dbm_i = y.dbm[i];
for (dimension_type j = x_space_dim + 1; j-- > 0; )
if (x_dbm_i[j] < y_dbm_i[j])
return false;
}
return true;
}
template <typename T>
bool
BD_Shape<T>::is_disjoint_from(const BD_Shape& y) const {
const dimension_type space_dim = space_dimension();
// Dimension-compatibility check.
if (space_dim != y.space_dimension())
throw_dimension_incompatible("is_disjoint_from(y)", y);
// If one of the two bounded difference shape is empty,
// then the two bounded difference shape are disjoint.
shortest_path_closure_assign();
if (marked_empty())
return true;
y.shortest_path_closure_assign();
if (y.marked_empty())
return true;
// Two BDSs are disjoint when their intersection is empty.
// That is if and only if there exists at least a bounded difference
// such that the upper bound of the bounded difference in the first
// BD_Shape is strictly less than the lower bound of
// the corresponding bounded difference in the second BD_Shape
// or vice versa.
// For example: let be
// in `*this': -a_j_i <= v_j - v_i <= a_i_j;
// and in `y': -b_j_i <= v_j - v_i <= b_i_j;
// `*this' and `y' are disjoint if
// 1.) a_i_j < -b_j_i or
// 2.) b_i_j < -a_j_i.
PPL_DIRTY_TEMP(N, tmp);
for (dimension_type i = space_dim+1; i-- > 0; ) {
const DB_Row<N>& x_i = dbm[i];
for (dimension_type j = space_dim+1; j-- > 0; ) {
neg_assign_r(tmp, y.dbm[j][i], ROUND_UP);
if (x_i[j] < tmp)
return true;
}
}
return false;
}
template <typename T>
bool
BD_Shape<T>::is_universe() const {
if (marked_empty())
return false;
const dimension_type space_dim = space_dimension();
// If the BDS is non-empty and zero-dimensional,
// then it is necessarily the universe BDS.
if (space_dim == 0)
return true;
// A bounded difference shape defining the universe BDS can only
// contain trivial constraints.
for (dimension_type i = space_dim + 1; i-- > 0; ) {
const DB_Row<N>& dbm_i = dbm[i];
for (dimension_type j = space_dim + 1; j-- > 0; )
if (!is_plus_infinity(dbm_i[j]))
return false;
}
return true;
}
template <typename T>
bool
BD_Shape<T>::is_bounded() const {
shortest_path_closure_assign();
const dimension_type space_dim = space_dimension();
// A zero-dimensional or empty BDS is bounded.
if (marked_empty() || space_dim == 0)
return true;
// A bounded difference shape defining the bounded BDS never can
// contain trivial constraints.
for (dimension_type i = space_dim + 1; i-- > 0; ) {
const DB_Row<N>& dbm_i = dbm[i];
for (dimension_type j = space_dim + 1; j-- > 0; )
if (i != j)
if (is_plus_infinity(dbm_i[j]))
return false;
}
return true;
}
template <typename T>
bool
BD_Shape<T>::contains_integer_point() const {
// Force shortest-path closure.
if (is_empty())
return false;
const dimension_type space_dim = space_dimension();
if (space_dim == 0)
return true;
// A non-empty BD_Shape defined by integer constraints
// necessarily contains an integer point.
if (std::numeric_limits<T>::is_integer)
return true;
// Build an integer BD_Shape z with bounds at least as tight as
// those in *this and then recheck for emptiness.
BD_Shape<mpz_class> bds_z(space_dim);
typedef BD_Shape<mpz_class>::N Z;
bds_z.reset_shortest_path_closed();
PPL_DIRTY_TEMP(N, tmp);
bool all_integers = true;
for (dimension_type i = space_dim + 1; i-- > 0; ) {
DB_Row<Z>& z_i = bds_z.dbm[i];
const DB_Row<N>& dbm_i = dbm[i];
for (dimension_type j = space_dim + 1; j-- > 0; ) {
const N& dbm_i_j = dbm_i[j];
if (is_plus_infinity(dbm_i_j))
continue;
if (is_integer(dbm_i_j))
assign_r(z_i[j], dbm_i_j, ROUND_NOT_NEEDED);
else {
all_integers = false;
Z& z_i_j = z_i[j];
// Copy dbm_i_j into z_i_j, but rounding downwards.
neg_assign_r(tmp, dbm_i_j, ROUND_NOT_NEEDED);
assign_r(z_i_j, tmp, ROUND_UP);
neg_assign_r(z_i_j, z_i_j, ROUND_NOT_NEEDED);
}
}
}
return all_integers || !bds_z.is_empty();
}
template <typename T>
bool
BD_Shape<T>::frequency(const Linear_Expression& expr,
Coefficient& freq_n, Coefficient& freq_d,
Coefficient& val_n, Coefficient& val_d) const {
dimension_type space_dim = space_dimension();
// The dimension of `expr' must be at most the dimension of *this.
if (space_dim < expr.space_dimension())
throw_dimension_incompatible("frequency(e, ...)", "e", expr);
// Check if `expr' has a constant value.
// If it is constant, set the frequency `freq_n' to 0
// and return true. Otherwise the values for \p expr
// are not discrete so return false.
// Space dimension is 0: if empty, then return false;
// otherwise the frequency is 0 and the value is the inhomogeneous term.
if (space_dim == 0) {
if (is_empty())
return false;
freq_n = 0;
freq_d = 1;
val_n = expr.inhomogeneous_term();
val_d = 1;
return true;
}
shortest_path_closure_assign();
// For an empty BD shape, we simply return false.
if (marked_empty())
return false;
// The BD shape has at least 1 dimension and is not empty.
PPL_DIRTY_TEMP_COEFFICIENT(coeff);
PPL_DIRTY_TEMP_COEFFICIENT(numer);
PPL_DIRTY_TEMP_COEFFICIENT(denom);
PPL_DIRTY_TEMP(N, tmp);
Linear_Expression le = expr;
// Boolean to keep track of a variable `v' in expression `le'.
// If we can replace `v' by an expression using variables other
// than `v' and are already in `le', then this is set to true.
PPL_DIRTY_TEMP_COEFFICIENT(val_denom);
val_denom = 1;
// TODO: This loop can be optimized more, if needed, exploiting the
// (possible) sparseness of le.
for (dimension_type i = dbm.num_rows(); i-- > 1; ) {
const Variable v(i-1);
coeff = le.coefficient(v);
if (coeff == 0)
continue;
const DB_Row<N>& dbm_i = dbm[i];
// Check if `v' is constant in the BD shape.
assign_r(tmp, dbm_i[0], ROUND_NOT_NEEDED);
if (is_additive_inverse(dbm[0][i], tmp)) {
// If `v' is constant, replace it in `le' by the value.
numer_denom(tmp, numer, denom);
sub_mul_assign(le, coeff, v);
le *= denom;
le -= numer*coeff;
val_denom *= denom;
continue;
}
// Check the bounded differences with the other dimensions that
// have non-zero coefficient in `le'.
else {
bool constant_v = false;
for (Linear_Expression::const_iterator j = le.begin(),
j_end = le.lower_bound(Variable(i - 1)); j != j_end; ++j) {
const Variable vj = j.variable();
const dimension_type j_dim = vj.space_dimension();
assign_r(tmp, dbm_i[j_dim], ROUND_NOT_NEEDED);
if (is_additive_inverse(dbm[j_dim][i], tmp)) {
// The coefficient for `vj' in `le' is not 0
// and the difference with `v' in the BD shape is constant.
// So apply this equality to eliminate `v' in `le'.
numer_denom(tmp, numer, denom);
// Modifying le invalidates the iterators, but it's not a problem
// since we are going to exit the loop.
sub_mul_assign(le, coeff, v);
add_mul_assign(le, coeff, vj);
le *= denom;
le -= numer*coeff;
val_denom *= denom;
constant_v = true;
break;
}
}
if (!constant_v)
// The expression `expr' is not constant.
return false;
}
}
// The expression `expr' is constant.
freq_n = 0;
freq_d = 1;
// Reduce `val_n' and `val_d'.
normalize2(le.inhomogeneous_term(), val_denom, val_n, val_d);
return true;
}
template <typename T>
bool
BD_Shape<T>::constrains(const Variable var) const {
// `var' should be one of the dimensions of the BD shape.
const dimension_type var_space_dim = var.space_dimension();
if (space_dimension() < var_space_dim)
throw_dimension_incompatible("constrains(v)", "v", var);
shortest_path_closure_assign();
// A BD shape known to be empty constrains all variables.
// (Note: do not force emptiness check _yet_)
if (marked_empty())
return true;
// Check whether `var' is syntactically constrained.
const DB_Row<N>& dbm_v = dbm[var_space_dim];
for (dimension_type i = dbm.num_rows(); i-- > 0; ) {
if (!is_plus_infinity(dbm_v[i])
|| !is_plus_infinity(dbm[i][var_space_dim]))
return true;
}
// `var' is not syntactically constrained:
// now force an emptiness check.
return is_empty();
}
template <typename T>
void
BD_Shape<T>
::compute_predecessors(std::vector<dimension_type>& predecessor) const {
PPL_ASSERT(!marked_empty() && marked_shortest_path_closed());
PPL_ASSERT(predecessor.size() == 0);
// Variables are ordered according to their index.
// The vector `predecessor' is used to indicate which variable
// immediately precedes a given one in the corresponding equivalence class.
// The `leader' of an equivalence class is the element having minimum
// index: leaders are their own predecessors.
const dimension_type predecessor_size = dbm.num_rows();
// Initially, each variable is leader of its own zero-equivalence class.
predecessor.reserve(predecessor_size);
for (dimension_type i = 0; i < predecessor_size; ++i)
predecessor.push_back(i);
// Now compute actual predecessors.
for (dimension_type i = predecessor_size; i-- > 1; )
if (i == predecessor[i]) {
const DB_Row<N>& dbm_i = dbm[i];
for (dimension_type j = i; j-- > 0; )
if (j == predecessor[j]
&& is_additive_inverse(dbm[j][i], dbm_i[j])) {
// Choose as predecessor the variable having the smaller index.
predecessor[i] = j;
break;
}
}
}
template <typename T>
void
BD_Shape<T>::compute_leaders(std::vector<dimension_type>& leaders) const {
PPL_ASSERT(!marked_empty() && marked_shortest_path_closed());
PPL_ASSERT(leaders.size() == 0);
// Compute predecessor information.
compute_predecessors(leaders);
// Flatten the predecessor chains so as to obtain leaders.
PPL_ASSERT(leaders[0] == 0);
for (dimension_type i = 1, l_size = leaders.size(); i != l_size; ++i) {
const dimension_type leaders_i = leaders[i];
PPL_ASSERT(leaders_i <= i);
if (leaders_i != i) {
const dimension_type leaders_leaders_i = leaders[leaders_i];
PPL_ASSERT(leaders_leaders_i == leaders[leaders_leaders_i]);
leaders[i] = leaders_leaders_i;
}
}
}
template <typename T>
bool
BD_Shape<T>::is_shortest_path_reduced() const {
// If the BDS is empty, it is also reduced.
if (marked_empty())
return true;
const dimension_type space_dim = space_dimension();
// Zero-dimensional BDSs are necessarily reduced.
if (space_dim == 0)
return true;
// A shortest-path reduced dbm is just a dbm with an indication of
// those constraints that are redundant. If there is no indication
// of the redundant constraints, then it cannot be reduced.
if (!marked_shortest_path_reduced())
return false;
const BD_Shape x_copy = *this;
x_copy.shortest_path_closure_assign();
// If we just discovered emptiness, it cannot be reduced.
if (x_copy.marked_empty())
return false;
// The vector `leader' is used to indicate which variables are equivalent.
std::vector<dimension_type> leader(space_dim + 1);
// We store the leader.
for (dimension_type i = space_dim + 1; i-- > 0; )
leader[i] = i;
// Step 1: we store really the leader with the corrected value.
// We search for the equivalent or zero-equivalent variables.
// The variable(i-1) and variable(j-1) are equivalent if and only if
// m_i_j == -(m_j_i).
for (dimension_type i = 0; i < space_dim; ++i) {
const DB_Row<N>& x_copy_dbm_i = x_copy.dbm[i];
for (dimension_type j = i + 1; j <= space_dim; ++j)
if (is_additive_inverse(x_copy.dbm[j][i], x_copy_dbm_i[j]))
// Two equivalent variables have got the same leader
// (the smaller variable).
leader[j] = leader[i];
}
// Step 2: we check if there are redundant constraints in the zero_cycle
// free bounded difference shape, considering only the leaders.
// A constraint `c' is redundant, when there are two constraints such that
// their sum is the same constraint with the inhomogeneous term
// less than or equal to the `c' one.
PPL_DIRTY_TEMP(N, c);
for (dimension_type k = 0; k <= space_dim; ++k)
if (leader[k] == k) {
const DB_Row<N>& x_k = x_copy.dbm[k];
for (dimension_type i = 0; i <= space_dim; ++i)
if (leader[i] == i) {
const DB_Row<N>& x_i = x_copy.dbm[i];
const Bit_Row& redundancy_i = redundancy_dbm[i];
const N& x_i_k = x_i[k];
for (dimension_type j = 0; j <= space_dim; ++j)
if (leader[j] == j) {
const N& x_i_j = x_i[j];
if (!is_plus_infinity(x_i_j)) {
add_assign_r(c, x_i_k, x_k[j], ROUND_UP);
if (x_i_j >= c && !redundancy_i[j])
return false;
}
}
}
}
// The vector `var_conn' is used to check if there is a single cycle
// that connected all zero-equivalent variables between them.
// The value `space_dim + 1' is used to indicate that the equivalence
// class contains a single variable.
std::vector<dimension_type> var_conn(space_dim + 1);
for (dimension_type i = space_dim + 1; i-- > 0; )
var_conn[i] = space_dim + 1;
// Step 3: we store really the `var_conn' with the right value, putting
// the variable with the selected variable is connected:
// we check the row of each variable:
// a- each leader could be connected with only zero-equivalent one,
// b- each non-leader with only another zero-equivalent one.
for (dimension_type i = 0; i <= space_dim; ++i) {
// It count with how many variables the selected variable is
// connected.
dimension_type t = 0;
dimension_type leader_i = leader[i];
// Case a: leader.
if (leader_i == i) {
for (dimension_type j = 0; j <= space_dim; ++j) {
dimension_type leader_j = leader[j];
// Only the connectedness with equivalent variables
// is considered.
if (j != leader_j)
if (!redundancy_dbm[i][j]) {
if (t == 1)
// Two non-leaders cannot be connected with the same leader.
return false;
else
if (leader_j != i)
// The variables are not in the same equivalence class.
return false;
else {
++t;
var_conn[i] = j;
}
}
}
}
// Case b: non-leader.
else {
for (dimension_type j = 0; j <= space_dim; ++j) {
if (!redundancy_dbm[i][j]) {
dimension_type leader_j = leader[j];
if (leader_i != leader_j)
// The variables are not in the same equivalence class.
return false;
else {
if (t == 1)
// The variables cannot be connected with the same leader.
return false;
else {
++t;
var_conn[i] = j;
}
}
// A non-leader must be connected with
// another variable.
if (t == 0)
return false;
}
}
}
}
// The vector `just_checked' is used to check if
// a variable is already checked.
std::vector<bool> just_checked(space_dim + 1);
for (dimension_type i = space_dim + 1; i-- > 0; )
just_checked[i] = false;
// Step 4: we check if there are single cycles that
// connected all the zero-equivalent variables between them.
for (dimension_type i = 0; i <= space_dim; ++i) {
// We do not re-check the already considered single cycles.
if (!just_checked[i]) {
dimension_type v_con = var_conn[i];
// We consider only the equivalence classes with
// 2 or plus variables.
if (v_con != space_dim + 1) {
// There is a single cycle if taken a variable,
// we return to this same variable.
while (v_con != i) {
just_checked[v_con] = true;
v_con = var_conn[v_con];
// If we re-pass to an already considered variable,
// then we haven't a single cycle.
if (just_checked[v_con])
return false;
}
}
}
just_checked[i] = true;
}
// The system bounded differences is just reduced.
return true;
}
template <typename T>
bool
BD_Shape<T>::bounds(const Linear_Expression& expr,
const bool from_above) const {
// The dimension of `expr' should not be greater than the dimension
// of `*this'.
const dimension_type expr_space_dim = expr.space_dimension();
const dimension_type space_dim = space_dimension();
if (space_dim < expr_space_dim)
throw_dimension_incompatible((from_above
? "bounds_from_above(e)"
: "bounds_from_below(e)"), "e", expr);
shortest_path_closure_assign();
// A zero-dimensional or empty BDS bounds everything.
if (space_dim == 0 || marked_empty())
return true;
// The constraint `c' is used to check if `expr' is a difference
// bounded and, in this case, to select the cell.
const Constraint& c = from_above ? expr <= 0 : expr >= 0;
dimension_type num_vars = 0;
dimension_type i = 0;
dimension_type j = 0;
PPL_DIRTY_TEMP_COEFFICIENT(coeff);
// Check if `c' is a BD constraint.
if (BD_Shape_Helpers::extract_bounded_difference(c, num_vars, i, j, coeff)) {
if (num_vars == 0)
// Dealing with a trivial constraint.
return true;
// Select the cell to be checked.
const N& x = (coeff < 0) ? dbm[i][j] : dbm[j][i];
return !is_plus_infinity(x);
}
else {
// Not a DB constraint: use the MIP solver.
Optimization_Mode mode_bounds
= from_above ? MAXIMIZATION : MINIMIZATION;
MIP_Problem mip(space_dim, constraints(), expr, mode_bounds);
// Problem is known to be feasible.
return mip.solve() == OPTIMIZED_MIP_PROBLEM;
}
}
template <typename T>
bool
BD_Shape<T>::max_min(const Linear_Expression& expr,
const bool maximize,
Coefficient& ext_n, Coefficient& ext_d,
bool& included) const {
// The dimension of `expr' should not be greater than the dimension
// of `*this'.
const dimension_type space_dim = space_dimension();
const dimension_type expr_space_dim = expr.space_dimension();
if (space_dim < expr_space_dim)
throw_dimension_incompatible((maximize
? "maximize(e, ...)"
: "minimize(e, ...)"), "e", expr);
// Deal with zero-dim BDS first.
if (space_dim == 0) {
if (marked_empty())
return false;
else {
ext_n = expr.inhomogeneous_term();
ext_d = 1;
included = true;
return true;
}
}
shortest_path_closure_assign();
// For an empty BDS we simply return false.
if (marked_empty())
return false;
// The constraint `c' is used to check if `expr' is a difference
// bounded and, in this case, to select the cell.
const Constraint& c = maximize ? expr <= 0 : expr >= 0;
dimension_type num_vars = 0;
dimension_type i = 0;
dimension_type j = 0;
PPL_DIRTY_TEMP_COEFFICIENT(coeff);
// Check if `c' is a BD constraint.
if (!BD_Shape_Helpers::extract_bounded_difference(c, num_vars, i, j, coeff)) {
Optimization_Mode mode_max_min
= maximize ? MAXIMIZATION : MINIMIZATION;
MIP_Problem mip(space_dim, constraints(), expr, mode_max_min);
if (mip.solve() == OPTIMIZED_MIP_PROBLEM) {
mip.optimal_value(ext_n, ext_d);
included = true;
return true;
}
else
// Here`expr' is unbounded in `*this'.
return false;
}
else {
// Here `expr' is a bounded difference.
if (num_vars == 0) {
// Dealing with a trivial expression.
ext_n = expr.inhomogeneous_term();
ext_d = 1;
included = true;
return true;
}
// Select the cell to be checked.
const N& x = (coeff < 0) ? dbm[i][j] : dbm[j][i];
if (!is_plus_infinity(x)) {
// Compute the maximize/minimize of `expr'.
PPL_DIRTY_TEMP(N, d);
const Coefficient& b = expr.inhomogeneous_term();
PPL_DIRTY_TEMP_COEFFICIENT(minus_b);
neg_assign(minus_b, b);
const Coefficient& sc_b = maximize ? b : minus_b;
assign_r(d, sc_b, ROUND_UP);
// Set `coeff_expr' to the absolute value of coefficient of
// a variable in `expr'.
PPL_DIRTY_TEMP(N, coeff_expr);
PPL_ASSERT(i != 0);
const Coefficient& coeff_i = expr.get(Variable(i - 1));
const int sign_i = sgn(coeff_i);
if (sign_i > 0)
assign_r(coeff_expr, coeff_i, ROUND_UP);
else {
PPL_DIRTY_TEMP_COEFFICIENT(minus_coeff_i);
neg_assign(minus_coeff_i, coeff_i);
assign_r(coeff_expr, minus_coeff_i, ROUND_UP);
}
// Approximating the maximum/minimum of `expr'.
add_mul_assign_r(d, coeff_expr, x, ROUND_UP);
numer_denom(d, ext_n, ext_d);
if (!maximize)
neg_assign(ext_n);
included = true;
return true;
}
// `expr' is unbounded.
return false;
}
}
template <typename T>
bool
BD_Shape<T>::max_min(const Linear_Expression& expr,
const bool maximize,
Coefficient& ext_n, Coefficient& ext_d,
bool& included,
Generator& g) const {
// The dimension of `expr' should not be greater than the dimension
// of `*this'.
const dimension_type space_dim = space_dimension();
const dimension_type expr_space_dim = expr.space_dimension();
if (space_dim < expr_space_dim)
throw_dimension_incompatible((maximize
? "maximize(e, ...)"
: "minimize(e, ...)"), "e", expr);
// Deal with zero-dim BDS first.
if (space_dim == 0) {
if (marked_empty())
return false;
else {
ext_n = expr.inhomogeneous_term();
ext_d = 1;
included = true;
g = point();
return true;
}
}
shortest_path_closure_assign();
// For an empty BDS we simply return false.
if (marked_empty())
return false;
Optimization_Mode mode_max_min
= maximize ? MAXIMIZATION : MINIMIZATION;
MIP_Problem mip(space_dim, constraints(), expr, mode_max_min);
if (mip.solve() == OPTIMIZED_MIP_PROBLEM) {
g = mip.optimizing_point();
mip.evaluate_objective_function(g, ext_n, ext_d);
included = true;
return true;
}
// Here `expr' is unbounded in `*this'.
return false;
}
template <typename T>
Poly_Con_Relation
BD_Shape<T>::relation_with(const Congruence& cg) const {
const dimension_type space_dim = space_dimension();
// Dimension-compatibility check.
if (cg.space_dimension() > space_dim)
throw_dimension_incompatible("relation_with(cg)", cg);
// If the congruence is an equality, find the relation with
// the equivalent equality constraint.
if (cg.is_equality()) {
Constraint c(cg);
return relation_with(c);
}
shortest_path_closure_assign();
if (marked_empty())
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_included()
&& Poly_Con_Relation::is_disjoint();
if (space_dim == 0) {
if (cg.is_inconsistent())
return Poly_Con_Relation::is_disjoint();
else
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_included();
}
// Find the lower bound for a hyperplane with direction
// defined by the congruence.
Linear_Expression le = Linear_Expression(cg.expression());
PPL_DIRTY_TEMP_COEFFICIENT(min_numer);
PPL_DIRTY_TEMP_COEFFICIENT(min_denom);
bool min_included;
bool bounded_below = minimize(le, min_numer, min_denom, min_included);
// If there is no lower bound, then some of the hyperplanes defined by
// the congruence will strictly intersect the shape.
if (!bounded_below)
return Poly_Con_Relation::strictly_intersects();
// TODO: Consider adding a max_and_min() method, performing both
// maximization and minimization so as to possibly exploit
// incrementality of the MIP solver.
// Find the upper bound for a hyperplane with direction
// defined by the congruence.
PPL_DIRTY_TEMP_COEFFICIENT(max_numer);
PPL_DIRTY_TEMP_COEFFICIENT(max_denom);
bool max_included;
bool bounded_above = maximize(le, max_numer, max_denom, max_included);
// If there is no upper bound, then some of the hyperplanes defined by
// the congruence will strictly intersect the shape.
if (!bounded_above)
return Poly_Con_Relation::strictly_intersects();
PPL_DIRTY_TEMP_COEFFICIENT(signed_distance);
// Find the position value for the hyperplane that satisfies the congruence
// and is above the lower bound for the shape.
PPL_DIRTY_TEMP_COEFFICIENT(min_value);
min_value = min_numer / min_denom;
const Coefficient& modulus = cg.modulus();
signed_distance = min_value % modulus;
min_value -= signed_distance;
if (min_value * min_denom < min_numer)
min_value += modulus;
// Find the position value for the hyperplane that satisfies the congruence
// and is below the upper bound for the shape.
PPL_DIRTY_TEMP_COEFFICIENT(max_value);
max_value = max_numer / max_denom;
signed_distance = max_value % modulus;
max_value += signed_distance;
if (max_value * max_denom > max_numer)
max_value -= modulus;
// If the upper bound value is less than the lower bound value,
// then there is an empty intersection with the congruence;
// otherwise it will strictly intersect.
if (max_value < min_value)
return Poly_Con_Relation::is_disjoint();
else
return Poly_Con_Relation::strictly_intersects();
}
template <typename T>
Poly_Con_Relation
BD_Shape<T>::relation_with(const Constraint& c) const {
const dimension_type c_space_dim = c.space_dimension();
const dimension_type space_dim = space_dimension();
// Dimension-compatibility check.
if (c_space_dim > space_dim)
throw_dimension_incompatible("relation_with(c)", c);
shortest_path_closure_assign();
if (marked_empty())
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_included()
&& Poly_Con_Relation::is_disjoint();
if (space_dim == 0) {
if ((c.is_equality() && c.inhomogeneous_term() != 0)
|| (c.is_inequality() && c.inhomogeneous_term() < 0))
return Poly_Con_Relation::is_disjoint();
else if (c.is_strict_inequality() && c.inhomogeneous_term() == 0)
// The constraint 0 > 0 implicitly defines the hyperplane 0 = 0;
// thus, the zero-dimensional point also saturates it.
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_disjoint();
else if (c.is_equality() || c.inhomogeneous_term() == 0)
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_included();
else
// The zero-dimensional point saturates
// neither the positivity constraint 1 >= 0,
// nor the strict positivity constraint 1 > 0.
return Poly_Con_Relation::is_included();
}
dimension_type num_vars = 0;
dimension_type i = 0;
dimension_type j = 0;
PPL_DIRTY_TEMP_COEFFICIENT(coeff);
if (!BD_Shape_Helpers::extract_bounded_difference(c, num_vars, i, j, coeff)) {
// Constraints that are not bounded differences.
// Use maximize() and minimize() to do much of the work.
// Find the linear expression for the constraint and use that to
// find if the expression is bounded from above or below and if it
// is, find the maximum and minimum values.
Linear_Expression le(c.expression());
le.set_inhomogeneous_term(Coefficient_zero());
PPL_DIRTY_TEMP(Coefficient, max_numer);
PPL_DIRTY_TEMP(Coefficient, max_denom);
bool max_included;
PPL_DIRTY_TEMP(Coefficient, min_numer);
PPL_DIRTY_TEMP(Coefficient, min_denom);
bool min_included;
bool bounded_above = maximize(le, max_numer, max_denom, max_included);
bool bounded_below = minimize(le, min_numer, min_denom, min_included);
if (!bounded_above) {
if (!bounded_below)
return Poly_Con_Relation::strictly_intersects();
min_numer += c.inhomogeneous_term() * min_denom;
switch (sgn(min_numer)) {
case 1:
if (c.is_equality())
return Poly_Con_Relation::is_disjoint();
return Poly_Con_Relation::is_included();
case 0:
if (c.is_strict_inequality() || c.is_equality())
return Poly_Con_Relation::strictly_intersects();
return Poly_Con_Relation::is_included();
case -1:
return Poly_Con_Relation::strictly_intersects();
}
}
if (!bounded_below) {
max_numer += c.inhomogeneous_term() * max_denom;
switch (sgn(max_numer)) {
case 1:
return Poly_Con_Relation::strictly_intersects();
case 0:
if (c.is_strict_inequality())
return Poly_Con_Relation::is_disjoint();
return Poly_Con_Relation::strictly_intersects();
case -1:
return Poly_Con_Relation::is_disjoint();
}
}
else {
max_numer += c.inhomogeneous_term() * max_denom;
min_numer += c.inhomogeneous_term() * min_denom;
switch (sgn(max_numer)) {
case 1:
switch (sgn(min_numer)) {
case 1:
if (c.is_equality())
return Poly_Con_Relation::is_disjoint();
return Poly_Con_Relation::is_included();
case 0:
if (c.is_equality())
return Poly_Con_Relation::strictly_intersects();
if (c.is_strict_inequality())
return Poly_Con_Relation::strictly_intersects();
return Poly_Con_Relation::is_included();
case -1:
return Poly_Con_Relation::strictly_intersects();
}
PPL_UNREACHABLE;
break;
case 0:
if (min_numer == 0) {
if (c.is_strict_inequality())
return Poly_Con_Relation::is_disjoint()
&& Poly_Con_Relation::saturates();
return Poly_Con_Relation::is_included()
&& Poly_Con_Relation::saturates();
}
if (c.is_strict_inequality())
return Poly_Con_Relation::is_disjoint();
return Poly_Con_Relation::strictly_intersects();
case -1:
return Poly_Con_Relation::is_disjoint();
}
}
}
// Constraints that are bounded differences.
if (num_vars == 0) {
// Dealing with a trivial constraint.
switch (sgn(c.inhomogeneous_term())) {
case -1:
return Poly_Con_Relation::is_disjoint();
case 0:
if (c.is_strict_inequality())
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_disjoint();
else
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_included();
case 1:
if (c.is_equality())
return Poly_Con_Relation::is_disjoint();
else
return Poly_Con_Relation::is_included();
}
}
// Select the cell to be checked for the "<=" part of the constraint,
// and set `coeff' to the absolute value of itself.
const bool negative = (coeff < 0);
const N& x = negative ? dbm[i][j] : dbm[j][i];
const N& y = negative ? dbm[j][i] : dbm[i][j];
if (negative)
neg_assign(coeff);
// Deduce the relation/s of the constraint `c' of the form
// `coeff*v - coeff*u </<=/== c.inhomogeneous_term()'
// with the respectively constraints in `*this'
// `-y <= v - u <= x'.
// Let `d == c.inhomogeneous_term()/coeff'
// and `d1 == -c.inhomogeneous_term()/coeff'.
// The following variables of mpq_class type are used to be precise
// when the bds is defined by integer constraints.
PPL_DIRTY_TEMP(mpq_class, q_x);
PPL_DIRTY_TEMP(mpq_class, q_y);
PPL_DIRTY_TEMP(mpq_class, d);
PPL_DIRTY_TEMP(mpq_class, d1);
PPL_DIRTY_TEMP(mpq_class, c_denom);
PPL_DIRTY_TEMP(mpq_class, q_denom);
assign_r(c_denom, coeff, ROUND_NOT_NEEDED);
assign_r(d, c.inhomogeneous_term(), ROUND_NOT_NEEDED);
neg_assign_r(d1, d, ROUND_NOT_NEEDED);
div_assign_r(d, d, c_denom, ROUND_NOT_NEEDED);
div_assign_r(d1, d1, c_denom, ROUND_NOT_NEEDED);
if (is_plus_infinity(x)) {
if (!is_plus_infinity(y)) {
// `*this' is in the following form:
// `-y <= v - u'.
// In this case `*this' is disjoint from `c' if
// `-y > d' (`-y >= d' if c is a strict equality), i.e. if
// `y < d1' (`y <= d1' if c is a strict equality).
PPL_DIRTY_TEMP_COEFFICIENT(numer);
PPL_DIRTY_TEMP_COEFFICIENT(denom);
numer_denom(y, numer, denom);
assign_r(q_denom, denom, ROUND_NOT_NEEDED);
assign_r(q_y, numer, ROUND_NOT_NEEDED);
div_assign_r(q_y, q_y, q_denom, ROUND_NOT_NEEDED);
if (q_y < d1)
return Poly_Con_Relation::is_disjoint();
if (q_y == d1 && c.is_strict_inequality())
return Poly_Con_Relation::is_disjoint();
}
// In all other cases `*this' intersects `c'.
return Poly_Con_Relation::strictly_intersects();
}
// Here `x' is not plus-infinity.
PPL_DIRTY_TEMP_COEFFICIENT(numer);
PPL_DIRTY_TEMP_COEFFICIENT(denom);
numer_denom(x, numer, denom);
assign_r(q_denom, denom, ROUND_NOT_NEEDED);
assign_r(q_x, numer, ROUND_NOT_NEEDED);
div_assign_r(q_x, q_x, q_denom, ROUND_NOT_NEEDED);
if (!is_plus_infinity(y)) {
numer_denom(y, numer, denom);
assign_r(q_denom, denom, ROUND_NOT_NEEDED);
assign_r(q_y, numer, ROUND_NOT_NEEDED);
div_assign_r(q_y, q_y, q_denom, ROUND_NOT_NEEDED);
if (q_x == d && q_y == d1) {
if (c.is_strict_inequality())
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_disjoint();
else
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_included();
}
// `*this' is disjoint from `c' when
// `-y > d' (`-y >= d' if c is a strict equality), i.e. if
// `y < d1' (`y <= d1' if c is a strict equality).
if (q_y < d1)
return Poly_Con_Relation::is_disjoint();
if (q_y == d1 && c.is_strict_inequality())
return Poly_Con_Relation::is_disjoint();
}
// Here `y' can be also plus-infinity.
// If `c' is an equality, `*this' is disjoint from `c' if
// `x < d'.
if (d > q_x) {
if (c.is_equality())
return Poly_Con_Relation::is_disjoint();
else
return Poly_Con_Relation::is_included();
}
if (d == q_x && c.is_nonstrict_inequality())
return Poly_Con_Relation::is_included();
// In all other cases `*this' intersects `c'.
return Poly_Con_Relation::strictly_intersects();
}
template <typename T>
Poly_Gen_Relation
BD_Shape<T>::relation_with(const Generator& g) const {
const dimension_type space_dim = space_dimension();
const dimension_type g_space_dim = g.space_dimension();
// Dimension-compatibility check.
if (space_dim < g_space_dim)
throw_dimension_incompatible("relation_with(g)", g);
shortest_path_closure_assign();
// The empty BDS cannot subsume a generator.
if (marked_empty())
return Poly_Gen_Relation::nothing();
// A universe BDS in a zero-dimensional space subsumes
// all the generators of a zero-dimensional space.
if (space_dim == 0)
return Poly_Gen_Relation::subsumes();
const bool is_line = g.is_line();
const bool is_line_or_ray = g.is_line_or_ray();
// The relation between the BDS and the given generator is obtained
// checking if the generator satisfies all the constraints in the BDS.
// To check if the generator satisfies all the constraints it's enough
// studying the sign of the scalar product between the generator and
// all the constraints in the BDS.
// Allocation of temporaries done once and for all.
PPL_DIRTY_TEMP_COEFFICIENT(numer);
PPL_DIRTY_TEMP_COEFFICIENT(denom);
PPL_DIRTY_TEMP_COEFFICIENT(product);
// We find in `*this' all the constraints.
// TODO: This loop can be optimized more, if needed.
for (dimension_type i = 0; i <= space_dim; ++i) {
const Coefficient& g_coeff_y = (i > g_space_dim || i == 0)
? Coefficient_zero() : g.coefficient(Variable(i-1));
const DB_Row<N>& dbm_i = dbm[i];
for (dimension_type j = i + 1; j <= space_dim; ++j) {
const Coefficient& g_coeff_x = (j > g_space_dim)
? Coefficient_zero() : g.coefficient(Variable(j-1));
const N& dbm_ij = dbm_i[j];
const N& dbm_ji = dbm[j][i];
if (is_additive_inverse(dbm_ji, dbm_ij)) {
// We have one equality constraint: denom*x - denom*y = numer.
// Compute the scalar product.
numer_denom(dbm_ij, numer, denom);
product = g_coeff_y;
product -= g_coeff_x;
product *= denom;
if (!is_line_or_ray)
add_mul_assign(product, numer, g.divisor());
if (product != 0)
return Poly_Gen_Relation::nothing();
}
else {
// We have 0, 1 or 2 binary inequality constraint/s.
if (!is_plus_infinity(dbm_ij)) {
// We have the binary inequality constraint:
// denom*x - denom*y <= numer.
// Compute the scalar product.
numer_denom(dbm_ij, numer, denom);
product = g_coeff_y;
product -= g_coeff_x;
product *= denom;
if (!is_line_or_ray)
add_mul_assign(product, numer, g.divisor());
if (is_line) {
if (product != 0)
// Lines must saturate all constraints.
return Poly_Gen_Relation::nothing();
}
else
// `g' is either a ray, a point or a closure point.
if (product < 0)
return Poly_Gen_Relation::nothing();
}
if (!is_plus_infinity(dbm_ji)) {
// We have the binary inequality constraint: denom*y - denom*x <= b.
// Compute the scalar product.
numer_denom(dbm_ji, numer, denom);
product = 0;
add_mul_assign(product, denom, g_coeff_x);
add_mul_assign(product, -denom, g_coeff_y);
if (!is_line_or_ray)
add_mul_assign(product, numer, g.divisor());
if (is_line) {
if (product != 0)
// Lines must saturate all constraints.
return Poly_Gen_Relation::nothing();
}
else
// `g' is either a ray, a point or a closure point.
if (product < 0)
return Poly_Gen_Relation::nothing();
}
}
}
}
// The generator satisfies all the constraints.
return Poly_Gen_Relation::subsumes();
}
template <typename T>
void
BD_Shape<T>::shortest_path_closure_assign() const {
// Do something only if necessary.
if (marked_empty() || marked_shortest_path_closed())
return;
const dimension_type num_dimensions = space_dimension();
// Zero-dimensional BDSs are necessarily shortest-path closed.
if (num_dimensions == 0)
return;
// Even though the BDS will not change, its internal representation
// is going to be modified by the Floyd-Warshall algorithm.
BD_Shape& x = const_cast<BD_Shape<T>&>(*this);
// Fill the main diagonal with zeros.
for (dimension_type h = num_dimensions + 1; h-- > 0; ) {
PPL_ASSERT(is_plus_infinity(x.dbm[h][h]));
assign_r(x.dbm[h][h], 0, ROUND_NOT_NEEDED);
}
PPL_DIRTY_TEMP(N, sum);
for (dimension_type k = num_dimensions + 1; k-- > 0; ) {
const DB_Row<N>& x_dbm_k = x.dbm[k];
for (dimension_type i = num_dimensions + 1; i-- > 0; ) {
DB_Row<N>& x_dbm_i = x.dbm[i];
const N& x_dbm_i_k = x_dbm_i[k];
if (!is_plus_infinity(x_dbm_i_k))
for (dimension_type j = num_dimensions + 1; j-- > 0; ) {
const N& x_dbm_k_j = x_dbm_k[j];
if (!is_plus_infinity(x_dbm_k_j)) {
// Rounding upward for correctness.
add_assign_r(sum, x_dbm_i_k, x_dbm_k_j, ROUND_UP);
min_assign(x_dbm_i[j], sum);
}
}
}
}
// Check for emptiness: the BDS is empty if and only if there is a
// negative value on the main diagonal of `dbm'.
for (dimension_type h = num_dimensions + 1; h-- > 0; ) {
N& x_dbm_hh = x.dbm[h][h];
if (sgn(x_dbm_hh) < 0) {
x.set_empty();
return;
}
else {
PPL_ASSERT(sgn(x_dbm_hh) == 0);
// Restore PLUS_INFINITY on the main diagonal.
assign_r(x_dbm_hh, PLUS_INFINITY, ROUND_NOT_NEEDED);
}
}
// The BDS is not empty and it is now shortest-path closed.
x.set_shortest_path_closed();
}
template <typename T>
void
BD_Shape<T>::incremental_shortest_path_closure_assign(Variable var) const {
// Do something only if necessary.
if (marked_empty() || marked_shortest_path_closed())
return;
const dimension_type num_dimensions = space_dimension();
PPL_ASSERT(var.id() < num_dimensions);
// Even though the BDS will not change, its internal representation
// is going to be modified by the incremental Floyd-Warshall algorithm.
BD_Shape& x = const_cast<BD_Shape&>(*this);
// Fill the main diagonal with zeros.
for (dimension_type h = num_dimensions + 1; h-- > 0; ) {
PPL_ASSERT(is_plus_infinity(x.dbm[h][h]));
assign_r(x.dbm[h][h], 0, ROUND_NOT_NEEDED);
}
// Using the incremental Floyd-Warshall algorithm.
PPL_DIRTY_TEMP(N, sum);
const dimension_type v = var.id() + 1;
DB_Row<N>& x_v = x.dbm[v];
// Step 1: Improve all constraints on variable `var'.
for (dimension_type k = num_dimensions + 1; k-- > 0; ) {
DB_Row<N>& x_k = x.dbm[k];
const N& x_v_k = x_v[k];
const N& x_k_v = x_k[v];
const bool x_v_k_finite = !is_plus_infinity(x_v_k);
const bool x_k_v_finite = !is_plus_infinity(x_k_v);
// Specialize inner loop based on finiteness info.
if (x_v_k_finite) {
if (x_k_v_finite) {
// Here both x_v_k and x_k_v are finite.
for (dimension_type i = num_dimensions + 1; i-- > 0; ) {
DB_Row<N>& x_i = x.dbm[i];
const N& x_i_k = x_i[k];
if (!is_plus_infinity(x_i_k)) {
add_assign_r(sum, x_i_k, x_k_v, ROUND_UP);
min_assign(x_i[v], sum);
}
const N& x_k_i = x_k[i];
if (!is_plus_infinity(x_k_i)) {
add_assign_r(sum, x_v_k, x_k_i, ROUND_UP);
min_assign(x_v[i], sum);
}
}
}
else {
// Here x_v_k is finite, but x_k_v is not.
for (dimension_type i = num_dimensions + 1; i-- > 0; ) {
const N& x_k_i = x_k[i];
if (!is_plus_infinity(x_k_i)) {
add_assign_r(sum, x_v_k, x_k_i, ROUND_UP);
min_assign(x_v[i], sum);
}
}
}
}
else if (x_k_v_finite) {
// Here x_v_k is infinite, but x_k_v is finite.
for (dimension_type i = num_dimensions + 1; i-- > 0; ) {
DB_Row<N>& x_i = x.dbm[i];
const N& x_i_k = x_i[k];
if (!is_plus_infinity(x_i_k)) {
add_assign_r(sum, x_i_k, x_k_v, ROUND_UP);
min_assign(x_i[v], sum);
}
}
}
else
// Here both x_v_k and x_k_v are infinite.
continue;
}
// Step 2: improve the other bounds by using the precise bounds
// for the constraints on `var'.
for (dimension_type i = num_dimensions + 1; i-- > 0; ) {
DB_Row<N>& x_i = x.dbm[i];
const N& x_i_v = x_i[v];
if (!is_plus_infinity(x_i_v)) {
for (dimension_type j = num_dimensions + 1; j-- > 0; ) {
const N& x_v_j = x_v[j];
if (!is_plus_infinity(x_v_j)) {
add_assign_r(sum, x_i_v, x_v_j, ROUND_UP);
min_assign(x_i[j], sum);
}
}
}
}
// Check for emptiness: the BDS is empty if and only if there is a
// negative value on the main diagonal of `dbm'.
for (dimension_type h = num_dimensions + 1; h-- > 0; ) {
N& x_dbm_hh = x.dbm[h][h];
if (sgn(x_dbm_hh) < 0) {
x.set_empty();
return;
}
else {
PPL_ASSERT(sgn(x_dbm_hh) == 0);
// Restore PLUS_INFINITY on the main diagonal.
assign_r(x_dbm_hh, PLUS_INFINITY, ROUND_NOT_NEEDED);
}
}
// The BDS is not empty and it is now shortest-path closed.
x.set_shortest_path_closed();
}
template <typename T>
void
BD_Shape<T>::shortest_path_reduction_assign() const {
// Do something only if necessary.
if (marked_shortest_path_reduced())
return;
const dimension_type space_dim = space_dimension();
// Zero-dimensional BDSs are necessarily reduced.
if (space_dim == 0)
return;
// First find the tightest constraints for this BDS.
shortest_path_closure_assign();
// If `*this' is empty, then there is nothing to reduce.
if (marked_empty())
return;
// Step 1: compute zero-equivalence classes.
// Variables corresponding to indices `i' and `j' are zero-equivalent
// if they lie on a zero-weight loop; since the matrix is shortest-path
// closed, this happens if and only if dbm[i][j] == -dbm[j][i].
std::vector<dimension_type> predecessor;
compute_predecessors(predecessor);
std::vector<dimension_type> leaders;
compute_leader_indices(predecessor, leaders);
const dimension_type num_leaders = leaders.size();
Bit_Matrix redundancy(space_dim + 1, space_dim + 1);
// Init all constraints to be redundant.
// TODO: provide an appropriate method to set multiple bits.
Bit_Row& red_0 = redundancy[0];
for (dimension_type j = space_dim + 1; j-- > 0; )
red_0.set(j);
for (dimension_type i = space_dim + 1; i-- > 0; )
redundancy[i] = red_0;
// Step 2: flag non-redundant constraints in the (zero-cycle-free)
// subsystem of bounded differences having only leaders as variables.
PPL_DIRTY_TEMP(N, c);
for (dimension_type l_i = 0; l_i < num_leaders; ++l_i) {
const dimension_type i = leaders[l_i];
const DB_Row<N>& dbm_i = dbm[i];
Bit_Row& redundancy_i = redundancy[i];
for (dimension_type l_j = 0; l_j < num_leaders; ++l_j) {
const dimension_type j = leaders[l_j];
if (redundancy_i[j]) {
const N& dbm_i_j = dbm_i[j];
redundancy_i.clear(j);
for (dimension_type l_k = 0; l_k < num_leaders; ++l_k) {
const dimension_type k = leaders[l_k];
add_assign_r(c, dbm_i[k], dbm[k][j], ROUND_UP);
if (dbm_i_j >= c) {
redundancy_i.set(j);
break;
}
}
}
}
}
// Step 3: flag non-redundant constraints in zero-equivalence classes.
// Each equivalence class must have a single 0-cycle connecting
// all the equivalent variables in increasing order.
std::deque<bool> dealt_with(space_dim + 1, false);
for (dimension_type i = space_dim + 1; i-- > 0; )
// We only need to deal with non-singleton zero-equivalence classes
// that haven't already been dealt with.
if (i != predecessor[i] && !dealt_with[i]) {
dimension_type j = i;
while (true) {
const dimension_type predecessor_j = predecessor[j];
if (j == predecessor_j) {
// We finally found the leader of `i'.
PPL_ASSERT(redundancy[i][j]);
redundancy[i].clear(j);
// Here we dealt with `j' (i.e., `predecessor_j'), but it is useless
// to update `dealt_with' because `j' is a leader.
break;
}
// We haven't found the leader of `i' yet.
PPL_ASSERT(redundancy[predecessor_j][j]);
redundancy[predecessor_j].clear(j);
dealt_with[predecessor_j] = true;
j = predecessor_j;
}
}
// Even though shortest-path reduction is not going to change the BDS,
// it might change its internal representation.
BD_Shape<T>& x = const_cast<BD_Shape<T>&>(*this);
using std::swap;
swap(x.redundancy_dbm, redundancy);
x.set_shortest_path_reduced();
PPL_ASSERT(is_shortest_path_reduced());
}
template <typename T>
void
BD_Shape<T>::upper_bound_assign(const BD_Shape& y) {
const dimension_type space_dim = space_dimension();
// Dimension-compatibility check.
if (space_dim != y.space_dimension())
throw_dimension_incompatible("upper_bound_assign(y)", y);
// The upper bound of a BD shape `bd' with an empty shape is `bd'.
y.shortest_path_closure_assign();
if (y.marked_empty())
return;
shortest_path_closure_assign();
if (marked_empty()) {
*this = y;
return;
}
// The bds-hull consists in constructing `*this' with the maximum
// elements selected from `*this' and `y'.
PPL_ASSERT(space_dim == 0 || marked_shortest_path_closed());
for (dimension_type i = space_dim + 1; i-- > 0; ) {
DB_Row<N>& dbm_i = dbm[i];
const DB_Row<N>& y_dbm_i = y.dbm[i];
for (dimension_type j = space_dim + 1; j-- > 0; ) {
N& dbm_ij = dbm_i[j];
const N& y_dbm_ij = y_dbm_i[j];
if (dbm_ij < y_dbm_ij)
dbm_ij = y_dbm_ij;
}
}
// Shortest-path closure is maintained (if it was holding).
// TODO: see whether reduction can be (efficiently!) maintained too.
if (marked_shortest_path_reduced())
reset_shortest_path_reduced();
PPL_ASSERT(OK());
}
template <typename T>
bool
BD_Shape<T>::BFT00_upper_bound_assign_if_exact(const BD_Shape& y) {
// Declare a const reference to *this (to avoid accidental modifications).
const BD_Shape& x = *this;
const dimension_type x_space_dim = x.space_dimension();
// Private method: the caller must ensure the following.
PPL_ASSERT(x_space_dim == y.space_dimension());
// The zero-dim case is trivial.
if (x_space_dim == 0) {
upper_bound_assign(y);
return true;
}
// If `x' or `y' is (known to be) empty, the upper bound is exact.
if (x.marked_empty()) {
*this = y;
return true;
}
else if (y.is_empty())
return true;
else if (x.is_empty()) {
*this = y;
return true;
}
// Here both `x' and `y' are known to be non-empty.
// Implementation based on Algorithm 4.1 (page 6) in [BemporadFT00TR],
// tailored to the special case of BD shapes.
Variable epsilon(x_space_dim);
Linear_Expression zero_expr;
zero_expr.set_space_dimension(x_space_dim + 1);
Linear_Expression db_expr;
PPL_DIRTY_TEMP_COEFFICIENT(numer);
PPL_DIRTY_TEMP_COEFFICIENT(denom);
// Step 1: compute the constraint system for the envelope env(x,y)
// and put into x_cs_removed and y_cs_removed those non-redundant
// constraints that are not in the constraint system for env(x,y).
// While at it, also add the additional space dimension (epsilon).
Constraint_System env_cs;
Constraint_System x_cs_removed;
Constraint_System y_cs_removed;
x.shortest_path_reduction_assign();
y.shortest_path_reduction_assign();
for (dimension_type i = x_space_dim + 1; i-- > 0; ) {
const Bit_Row& x_red_i = x.redundancy_dbm[i];
const Bit_Row& y_red_i = y.redundancy_dbm[i];
const DB_Row<N>& x_dbm_i = x.dbm[i];
const DB_Row<N>& y_dbm_i = y.dbm[i];
for (dimension_type j = x_space_dim + 1; j-- > 0; ) {
if (x_red_i[j] && y_red_i[j])
continue;
if (!x_red_i[j]) {
const N& x_dbm_ij = x_dbm_i[j];
PPL_ASSERT(!is_plus_infinity(x_dbm_ij));
numer_denom(x_dbm_ij, numer, denom);
// Build skeleton DB constraint (having the right space dimension).
db_expr = zero_expr;
if (i > 0)
db_expr += Variable(i-1);
if (j > 0)
db_expr -= Variable(j-1);
if (denom != 1)
db_expr *= denom;
db_expr += numer;
if (x_dbm_ij >= y_dbm_i[j])
env_cs.insert(db_expr >= 0);
else {
db_expr += epsilon;
x_cs_removed.insert(db_expr == 0);
}
}
if (!y_red_i[j]) {
const N& y_dbm_ij = y_dbm_i[j];
const N& x_dbm_ij = x_dbm_i[j];
PPL_ASSERT(!is_plus_infinity(y_dbm_ij));
numer_denom(y_dbm_ij, numer, denom);
// Build skeleton DB constraint (having the right space dimension).
db_expr = zero_expr;
if (i > 0)
db_expr += Variable(i-1);
if (j > 0)
db_expr -= Variable(j-1);
if (denom != 1)
db_expr *= denom;
db_expr += numer;
if (y_dbm_ij >= x_dbm_ij) {
// Check if same constraint was added when considering x_dbm_ij.
if (!x_red_i[j] && x_dbm_ij == y_dbm_ij)
continue;
env_cs.insert(db_expr >= 0);
}
else {
db_expr += epsilon;
y_cs_removed.insert(db_expr == 0);
}
}
}
}
if (x_cs_removed.empty())
// No constraint of x was removed: y is included in x.
return true;
if (y_cs_removed.empty()) {
// No constraint of y was removed: x is included in y.
*this = y;
return true;
}
// In preparation to Step 4: build the common part of LP problems,
// i.e., the constraints corresponding to env(x,y),
// where the additional space dimension (epsilon) has to be maximized.
MIP_Problem env_lp(x_space_dim + 1, env_cs, epsilon, MAXIMIZATION);
// Pre-solve `env_lp' to later exploit incrementality.
env_lp.solve();
PPL_ASSERT(env_lp.solve() != UNFEASIBLE_MIP_PROBLEM);
// Implementing loop in Steps 3-6.
for (Constraint_System::const_iterator i = x_cs_removed.begin(),
i_end = x_cs_removed.end(); i != i_end; ++i) {
MIP_Problem lp_i(env_lp);
lp_i.add_constraint(*i);
// Pre-solve to exploit incrementality.
if (lp_i.solve() == UNFEASIBLE_MIP_PROBLEM)
continue;
for (Constraint_System::const_iterator j = y_cs_removed.begin(),
j_end = y_cs_removed.end(); j != j_end; ++j) {
MIP_Problem lp_ij(lp_i);
lp_ij.add_constraint(*j);
// Solve and check for a positive optimal value.
switch (lp_ij.solve()) {
case UNFEASIBLE_MIP_PROBLEM:
// CHECKME: is the following actually impossible?
PPL_UNREACHABLE;
return false;
case UNBOUNDED_MIP_PROBLEM:
return false;
case OPTIMIZED_MIP_PROBLEM:
lp_ij.optimal_value(numer, denom);
if (numer > 0)
return false;
break;
}
}
}
// The upper bound of x and y is indeed exact.
upper_bound_assign(y);
PPL_ASSERT(OK());
return true;
}
template <typename T>
template <bool integer_upper_bound>
bool
BD_Shape<T>::BHZ09_upper_bound_assign_if_exact(const BD_Shape& y) {
PPL_COMPILE_TIME_CHECK(!integer_upper_bound
|| std::numeric_limits<T>::is_integer,
"BD_Shape<T>::BHZ09_upper_bound_assign_if_exact(y):"
" instantiating for integer upper bound,"
" but T in not an integer datatype.");
// FIXME, CHECKME: what about inexact computations?
// Declare a const reference to *this (to avoid accidental modifications).
const BD_Shape& x = *this;
const dimension_type x_space_dim = x.space_dimension();
// Private method: the caller must ensure the following.
PPL_ASSERT(x_space_dim == y.space_dimension());
// The zero-dim case is trivial.
if (x_space_dim == 0) {
upper_bound_assign(y);
return true;
}
// If `x' or `y' is (known to be) empty, the upper bound is exact.
if (x.marked_empty()) {
*this = y;
return true;
}
else if (y.is_empty())
return true;
else if (x.is_empty()) {
*this = y;
return true;
}
// Here both `x' and `y' are known to be non-empty.
x.shortest_path_reduction_assign();
y.shortest_path_reduction_assign();
PPL_ASSERT(x.marked_shortest_path_closed());
PPL_ASSERT(y.marked_shortest_path_closed());
// Pre-compute the upper bound of `x' and `y'.
BD_Shape<T> ub(x);
ub.upper_bound_assign(y);
PPL_DIRTY_TEMP(N, lhs);
PPL_DIRTY_TEMP(N, rhs);
PPL_DIRTY_TEMP(N, temp_zero);
assign_r(temp_zero, 0, ROUND_NOT_NEEDED);
PPL_DIRTY_TEMP(N, temp_one);
if (integer_upper_bound)
assign_r(temp_one, 1, ROUND_NOT_NEEDED);
for (dimension_type i = x_space_dim + 1; i-- > 0; ) {
const DB_Row<N>& x_i = x.dbm[i];
const Bit_Row& x_red_i = x.redundancy_dbm[i];
const DB_Row<N>& y_i = y.dbm[i];
const DB_Row<N>& ub_i = ub.dbm[i];
for (dimension_type j = x_space_dim + 1; j-- > 0; ) {
// Check redundancy of x_i_j.
if (x_red_i[j])
continue;
// By non-redundancy, we know that i != j.
PPL_ASSERT(i != j);
const N& x_i_j = x_i[j];
if (x_i_j < y_i[j]) {
for (dimension_type k = x_space_dim + 1; k-- > 0; ) {
const DB_Row<N>& x_k = x.dbm[k];
const DB_Row<N>& y_k = y.dbm[k];
const Bit_Row& y_red_k = y.redundancy_dbm[k];
const DB_Row<N>& ub_k = ub.dbm[k];
const N& ub_k_j = (k == j) ? temp_zero : ub_k[j];
for (dimension_type ell = x_space_dim + 1; ell-- > 0; ) {
// Check redundancy of y_k_ell.
if (y_red_k[ell])
continue;
// By non-redundancy, we know that k != ell.
PPL_ASSERT(k != ell);
const N& y_k_ell = y_k[ell];
if (y_k_ell < x_k[ell]) {
// The first condition in BHZ09 theorem holds;
// now check for the second condition.
add_assign_r(lhs, x_i_j, y_k_ell, ROUND_UP);
const N& ub_i_ell = (i == ell) ? temp_zero : ub_i[ell];
add_assign_r(rhs, ub_i_ell, ub_k_j, ROUND_UP);
if (integer_upper_bound) {
// Note: adding 1 rather than 2 (as in Theorem 5.3)
// so as to later test for < rather than <=.
add_assign_r(lhs, lhs, temp_one, ROUND_NOT_NEEDED);
}
// Testing for < in both the rational and integer case.
if (lhs < rhs)
return false;
}
}
}
}
}
}
// The upper bound of x and y is indeed exact.
m_swap(ub);
PPL_ASSERT(OK());
return true;
}
template <typename T>
void
BD_Shape<T>::difference_assign(const BD_Shape& y) {
const dimension_type space_dim = space_dimension();
// Dimension-compatibility check.
if (space_dim != y.space_dimension())
throw_dimension_incompatible("difference_assign(y)", y);
BD_Shape new_bd_shape(space_dim, EMPTY);
BD_Shape& x = *this;
x.shortest_path_closure_assign();
// The difference of an empty bounded difference shape
// and of a bounded difference shape `p' is empty.
if (x.marked_empty())
return;
y.shortest_path_closure_assign();
// The difference of a bounded difference shape `p'
// and an empty bounded difference shape is `p'.
if (y.marked_empty())
return;
// If both bounded difference shapes are zero-dimensional,
// then at this point they are necessarily universe system of
// bounded differences, so that their difference is empty.
if (space_dim == 0) {
x.set_empty();
return;
}
// TODO: This is just an executable specification.
// Have to find a more efficient method.
if (y.contains(x)) {
x.set_empty();
return;
}
// We take a constraint of the system y at the time and we
// consider its complementary. Then we intersect the union
// of these complementary constraints with the system x.
const Constraint_System& y_cs = y.constraints();
for (Constraint_System::const_iterator i = y_cs.begin(),
y_cs_end = y_cs.end(); i != y_cs_end; ++i) {
const Constraint& c = *i;
// If the bounded difference shape `x' is included
// in the bounded difference shape defined by `c',
// then `c' _must_ be skipped, as adding its complement to `x'
// would result in the empty bounded difference shape,
// and as we would obtain a result that is less precise
// than the bds-difference.
if (x.relation_with(c).implies(Poly_Con_Relation::is_included()))
continue;
BD_Shape z = x;
const Linear_Expression e(c.expression());
z.add_constraint(e <= 0);
if (!z.is_empty())
new_bd_shape.upper_bound_assign(z);
if (c.is_equality()) {
z = x;
z.add_constraint(e >= 0);
if (!z.is_empty())
new_bd_shape.upper_bound_assign(z);
}
}
*this = new_bd_shape;
PPL_ASSERT(OK());
}
template <typename T>
bool
BD_Shape<T>::simplify_using_context_assign(const BD_Shape& y) {
BD_Shape& x = *this;
const dimension_type dim = x.space_dimension();
// Dimension-compatibility check.
if (dim != y.space_dimension())
throw_dimension_incompatible("simplify_using_context_assign(y)", y);
// Filter away the zero-dimensional case.
if (dim == 0) {
if (y.marked_empty()) {
x.set_zero_dim_univ();
return false;
}
else
return !x.marked_empty();
}
// Filter away the case where `x' contains `y'
// (this subsumes the case when `y' is empty).
y.shortest_path_closure_assign();
if (x.contains(y)) {
BD_Shape<T> res(dim, UNIVERSE);
x.m_swap(res);
return false;
}
// Filter away the case where `x' is empty.
x.shortest_path_closure_assign();
if (x.marked_empty()) {
// Search for a constraint of `y' that is not a tautology.
dimension_type i;
dimension_type j;
// Prefer unary constraints.
i = 0;
const DB_Row<N>& y_dbm_0 = y.dbm[0];
for (j = 1; j <= dim; ++j) {
if (!is_plus_infinity(y_dbm_0[j]))
// FIXME: if N is a float or bounded integer type, then
// we also need to check that we are actually able to construct
// a constraint inconsistent with respect to this one.
goto found;
}
j = 0;
for (i = 1; i <= dim; ++i) {
if (!is_plus_infinity(y.dbm[i][0]))
// FIXME: if N is a float or bounded integer type, then
// we also need to check that we are actually able to construct
// a constraint inconsistent with respect to this one.
goto found;
}
// Then search binary constraints.
for (i = 1; i <= dim; ++i) {
const DB_Row<N>& y_dbm_i = y.dbm[i];
for (j = 1; j <= dim; ++j)
if (!is_plus_infinity(y_dbm_i[j]))
// FIXME: if N is a float or bounded integer type, then
// we also need to check that we are actually able to construct
// a constraint inconsistent with respect to this one.
goto found;
}
// Not found: we were not able to build a constraint contradicting
// one of the constraints in `y': `x' cannot be enlarged.
return false;
found:
// Found: build a new BDS contradicting the constraint found.
PPL_ASSERT(i <= dim && j <= dim && (i > 0 || j > 0));
BD_Shape<T> res(dim, UNIVERSE);
PPL_DIRTY_TEMP(N, tmp);
assign_r(tmp, 1, ROUND_UP);
add_assign_r(tmp, tmp, y.dbm[i][j], ROUND_UP);
PPL_ASSERT(!is_plus_infinity(tmp));
// CHECKME: round down is really meant.
neg_assign_r(res.dbm[j][i], tmp, ROUND_DOWN);
x.m_swap(res);
return false;
}
// Here `x' and `y' are not empty and shortest-path closed;
// also, `x' does not contain `y'.
// Let `target' be the intersection of `x' and `y'.
BD_Shape<T> target = x;
target.intersection_assign(y);
const bool bool_result = !target.is_empty();
// Compute a reduced dbm for `x' and ...
x.shortest_path_reduction_assign();
// ... count the non-redundant constraints.
dimension_type x_num_non_redundant = (dim+1)*(dim+1);
for (dimension_type i = dim + 1; i-- > 0; )
x_num_non_redundant -= x.redundancy_dbm[i].count_ones();
PPL_ASSERT(x_num_non_redundant > 0);
// Let `yy' be a copy of `y': we will keep adding to `yy'
// the non-redundant constraints of `x',
// stopping as soon as `yy' becomes equal to `target'.
BD_Shape<T> yy = y;
// The constraints added to `yy' will be recorded in `res' ...
BD_Shape<T> res(dim, UNIVERSE);
// ... and we will count them too.
dimension_type res_num_non_redundant = 0;
// Compute leader information for `x'.
std::vector<dimension_type> x_leaders;
x.compute_leaders(x_leaders);
// First go through the unary equality constraints.
const DB_Row<N>& x_dbm_0 = x.dbm[0];
DB_Row<N>& yy_dbm_0 = yy.dbm[0];
DB_Row<N>& res_dbm_0 = res.dbm[0];
for (dimension_type j = 1; j <= dim; ++j) {
// Unary equality constraints are encoded in entries dbm_0j and dbm_j0
// provided index j has special variable index 0 as its leader.
if (x_leaders[j] != 0)
continue;
PPL_ASSERT(!is_plus_infinity(x_dbm_0[j]));
if (x_dbm_0[j] < yy_dbm_0[j]) {
res_dbm_0[j] = x_dbm_0[j];
++res_num_non_redundant;
// Tighten context `yy' using the newly added constraint.
yy_dbm_0[j] = x_dbm_0[j];
yy.reset_shortest_path_closed();
}
PPL_ASSERT(!is_plus_infinity(x.dbm[j][0]));
if (x.dbm[j][0] < yy.dbm[j][0]) {
res.dbm[j][0] = x.dbm[j][0];
++res_num_non_redundant;
// Tighten context `yy' using the newly added constraint.
yy.dbm[j][0] = x.dbm[j][0];
yy.reset_shortest_path_closed();
}
// Restore shortest-path closure, if it was lost.
if (!yy.marked_shortest_path_closed()) {
Variable var_j(j-1);
yy.incremental_shortest_path_closure_assign(var_j);
if (target.contains(yy)) {
// Target reached: swap `x' and `res' if needed.
if (res_num_non_redundant < x_num_non_redundant) {
res.reset_shortest_path_closed();
x.m_swap(res);
}
return bool_result;
}
}
}
// Go through the binary equality constraints.
// Note: no need to consider the case i == 1.
for (dimension_type i = 2; i <= dim; ++i) {
const dimension_type j = x_leaders[i];
if (j == i || j == 0)
continue;
PPL_ASSERT(!is_plus_infinity(x.dbm[i][j]));
if (x.dbm[i][j] < yy.dbm[i][j]) {
res.dbm[i][j] = x.dbm[i][j];
++res_num_non_redundant;
// Tighten context `yy' using the newly added constraint.
yy.dbm[i][j] = x.dbm[i][j];
yy.reset_shortest_path_closed();
}
PPL_ASSERT(!is_plus_infinity(x.dbm[j][i]));
if (x.dbm[j][i] < yy.dbm[j][i]) {
res.dbm[j][i] = x.dbm[j][i];
++res_num_non_redundant;
// Tighten context `yy' using the newly added constraint.
yy.dbm[j][i] = x.dbm[j][i];
yy.reset_shortest_path_closed();
}
// Restore shortest-path closure, if it was lost.
if (!yy.marked_shortest_path_closed()) {
Variable var_j(j-1);
yy.incremental_shortest_path_closure_assign(var_j);
if (target.contains(yy)) {
// Target reached: swap `x' and `res' if needed.
if (res_num_non_redundant < x_num_non_redundant) {
res.reset_shortest_path_closed();
x.m_swap(res);
}
return bool_result;
}
}
}
// Finally go through the (proper) inequality constraints:
// both indices i and j should be leaders.
for (dimension_type i = 0; i <= dim; ++i) {
if (i != x_leaders[i])
continue;
const DB_Row<N>& x_dbm_i = x.dbm[i];
const Bit_Row& x_redundancy_dbm_i = x.redundancy_dbm[i];
DB_Row<N>& yy_dbm_i = yy.dbm[i];
DB_Row<N>& res_dbm_i = res.dbm[i];
for (dimension_type j = 0; j <= dim; ++j) {
if (j != x_leaders[j] || x_redundancy_dbm_i[j])
continue;
N& yy_dbm_ij = yy_dbm_i[j];
const N& x_dbm_ij = x_dbm_i[j];
if (x_dbm_ij < yy_dbm_ij) {
res_dbm_i[j] = x_dbm_ij;
++res_num_non_redundant;
// Tighten context `yy' using the newly added constraint.
yy_dbm_ij = x_dbm_ij;
yy.reset_shortest_path_closed();
PPL_ASSERT(i > 0 || j > 0);
Variable var(((i > 0) ? i : j) - 1);
yy.incremental_shortest_path_closure_assign(var);
if (target.contains(yy)) {
// Target reached: swap `x' and `res' if needed.
if (res_num_non_redundant < x_num_non_redundant) {
res.reset_shortest_path_closed();
x.m_swap(res);
}
return bool_result;
}
}
}
}
// This point should be unreachable.
PPL_UNREACHABLE;
return false;
}
template <typename T>
void
BD_Shape<T>::add_space_dimensions_and_embed(const dimension_type m) {
// Adding no dimensions is a no-op.
if (m == 0)
return;
const dimension_type space_dim = space_dimension();
const dimension_type new_space_dim = space_dim + m;
const bool was_zero_dim_univ = (!marked_empty() && space_dim == 0);
// To embed an n-dimension space BDS in a (n+m)-dimension space,
// we just add `m' rows and columns in the bounded difference shape,
// initialized to PLUS_INFINITY.
dbm.grow(new_space_dim + 1);
// Shortest-path closure is maintained (if it was holding).
// TODO: see whether reduction can be (efficiently!) maintained too.
if (marked_shortest_path_reduced())
reset_shortest_path_reduced();
// If `*this' was the zero-dim space universe BDS,
// the we can set the shortest-path closure flag.
if (was_zero_dim_univ)
set_shortest_path_closed();
PPL_ASSERT(OK());
}
template <typename T>
void
BD_Shape<T>::add_space_dimensions_and_project(const dimension_type m) {
// Adding no dimensions is a no-op.
if (m == 0)
return;
const dimension_type space_dim = space_dimension();
// If `*this' was zero-dimensional, then we add `m' rows and columns.
// If it also was non-empty, then we zero all the added elements
// and set the flag for shortest-path closure.
if (space_dim == 0) {
dbm.grow(m + 1);
if (!marked_empty()) {
for (dimension_type i = m + 1; i-- > 0; ) {
DB_Row<N>& dbm_i = dbm[i];
for (dimension_type j = m + 1; j-- > 0; )
if (i != j)
assign_r(dbm_i[j], 0, ROUND_NOT_NEEDED);
}
set_shortest_path_closed();
}
PPL_ASSERT(OK());
return;
}
// To project an n-dimension space bounded difference shape
// in a (n+m)-dimension space, we add `m' rows and columns.
// In the first row and column of the matrix we add `zero' from
// the (n+1)-th position to the end.
const dimension_type new_space_dim = space_dim + m;
dbm.grow(new_space_dim + 1);
// Bottom of the matrix and first row.
DB_Row<N>& dbm_0 = dbm[0];
for (dimension_type i = space_dim + 1; i <= new_space_dim; ++i) {
assign_r(dbm[i][0], 0, ROUND_NOT_NEEDED);
assign_r(dbm_0[i], 0, ROUND_NOT_NEEDED);
}
if (marked_shortest_path_closed())
reset_shortest_path_closed();
PPL_ASSERT(OK());
}
template <typename T>
void
BD_Shape<T>::remove_space_dimensions(const Variables_Set& vars) {
// The removal of no dimensions from any BDS is a no-op.
// Note that this case also captures the only legal removal of
// space dimensions from a BDS in a 0-dim space.
if (vars.empty()) {
PPL_ASSERT(OK());
return;
}
const dimension_type old_space_dim = space_dimension();
// Dimension-compatibility check.
const dimension_type min_space_dim = vars.space_dimension();
if (old_space_dim < min_space_dim)
throw_dimension_incompatible("remove_space_dimensions(vs)", min_space_dim);
// Shortest-path closure is necessary to keep precision.
shortest_path_closure_assign();
// When removing _all_ dimensions from a BDS, we obtain the
// zero-dimensional BDS.
const dimension_type new_space_dim = old_space_dim - vars.size();
if (new_space_dim == 0) {
dbm.resize_no_copy(1);
if (!marked_empty())
// We set the zero_dim_univ flag.
set_zero_dim_univ();
PPL_ASSERT(OK());
return;
}
// Handle the case of an empty BD_Shape.
if (marked_empty()) {
dbm.resize_no_copy(new_space_dim + 1);
PPL_ASSERT(OK());
return;
}
// Shortest-path closure is maintained.
// TODO: see whether reduction can be (efficiently!) maintained too.
if (marked_shortest_path_reduced())
reset_shortest_path_reduced();
// For each variable to remove, we fill the corresponding column and
// row by shifting respectively left and above those
// columns and rows, that will not be removed.
Variables_Set::const_iterator vsi = vars.begin();
Variables_Set::const_iterator vsi_end = vars.end();
dimension_type dst = *vsi + 1;
dimension_type src = dst + 1;
for (++vsi; vsi != vsi_end; ++vsi) {
const dimension_type vsi_next = *vsi + 1;
// All other columns and rows are moved respectively to the left
// and above.
while (src < vsi_next) {
using std::swap;
swap(dbm[dst], dbm[src]);
for (dimension_type i = old_space_dim + 1; i-- > 0; ) {
DB_Row<N>& dbm_i = dbm[i];
assign_or_swap(dbm_i[dst], dbm_i[src]);
}
++dst;
++src;
}
++src;
}
// Moving the remaining rows and columns.
while (src <= old_space_dim) {
using std::swap;
swap(dbm[dst], dbm[src]);
for (dimension_type i = old_space_dim + 1; i-- > 0; ) {
DB_Row<N>& dbm_i = dbm[i];
assign_or_swap(dbm_i[dst], dbm_i[src]);
}
++src;
++dst;
}
// Update the space dimension.
dbm.resize_no_copy(new_space_dim + 1);
PPL_ASSERT(OK());
}
template <typename T>
template <typename Partial_Function>
void
BD_Shape<T>::map_space_dimensions(const Partial_Function& pfunc) {
const dimension_type space_dim = space_dimension();
// TODO: this implementation is just an executable specification.
if (space_dim == 0)
return;
if (pfunc.has_empty_codomain()) {
// All dimensions vanish: the BDS becomes zero_dimensional.
remove_higher_space_dimensions(0);
return;
}
const dimension_type new_space_dim = pfunc.max_in_codomain() + 1;
// If we are going to actually reduce the space dimension,
// then shortest-path closure is required to keep precision.
if (new_space_dim < space_dim)
shortest_path_closure_assign();
// If the BDS is empty, then it is sufficient to adjust the
// space dimension of the bounded difference shape.
if (marked_empty()) {
remove_higher_space_dimensions(new_space_dim);
return;
}
// Shortest-path closure is maintained (if it was holding).
// TODO: see whether reduction can be (efficiently!) maintained too.
if (marked_shortest_path_reduced())
reset_shortest_path_reduced();
// We create a new matrix with the new space dimension.
DB_Matrix<N> x(new_space_dim+1);
// First of all we must map the unary constraints, because
// there is the fictitious variable `zero', that can't be mapped
// at all.
DB_Row<N>& dbm_0 = dbm[0];
DB_Row<N>& x_0 = x[0];
for (dimension_type j = 1; j <= space_dim; ++j) {
dimension_type new_j;
if (pfunc.maps(j - 1, new_j)) {
assign_or_swap(x_0[new_j + 1], dbm_0[j]);
assign_or_swap(x[new_j + 1][0], dbm[j][0]);
}
}
// Now we map the binary constraints, exchanging the indexes.
for (dimension_type i = 1; i <= space_dim; ++i) {
dimension_type new_i;
if (pfunc.maps(i - 1, new_i)) {
DB_Row<N>& dbm_i = dbm[i];
++new_i;
DB_Row<N>& x_new_i = x[new_i];
for (dimension_type j = i+1; j <= space_dim; ++j) {
dimension_type new_j;
if (pfunc.maps(j - 1, new_j)) {
++new_j;
assign_or_swap(x_new_i[new_j], dbm_i[j]);
assign_or_swap(x[new_j][new_i], dbm[j][i]);
}
}
}
}
using std::swap;
swap(dbm, x);
PPL_ASSERT(OK());
}
template <typename T>
void
BD_Shape<T>::intersection_assign(const BD_Shape& y) {
const dimension_type space_dim = space_dimension();
// Dimension-compatibility check.
if (space_dim != y.space_dimension())
throw_dimension_incompatible("intersection_assign(y)", y);
// If one of the two bounded difference shapes is empty,
// the intersection is empty.
if (marked_empty())
return;
if (y.marked_empty()) {
set_empty();
return;
}
// If both bounded difference shapes are zero-dimensional,
// then at this point they are necessarily non-empty,
// so that their intersection is non-empty too.
if (space_dim == 0)
return;
// To intersect two bounded difference shapes we compare
// the constraints and we choose the less values.
bool changed = false;
for (dimension_type i = space_dim + 1; i-- > 0; ) {
DB_Row<N>& dbm_i = dbm[i];
const DB_Row<N>& y_dbm_i = y.dbm[i];
for (dimension_type j = space_dim + 1; j-- > 0; ) {
N& dbm_ij = dbm_i[j];
const N& y_dbm_ij = y_dbm_i[j];
if (dbm_ij > y_dbm_ij) {
dbm_ij = y_dbm_ij;
changed = true;
}
}
}
if (changed && marked_shortest_path_closed())
reset_shortest_path_closed();
PPL_ASSERT(OK());
}
template <typename T>
template <typename Iterator>
void
BD_Shape<T>::CC76_extrapolation_assign(const BD_Shape& y,
Iterator first, Iterator last,
unsigned* tp) {
const dimension_type space_dim = space_dimension();
// Dimension-compatibility check.
if (space_dim != y.space_dimension())
throw_dimension_incompatible("CC76_extrapolation_assign(y)", y);
// We assume that `y' is contained in or equal to `*this'.
PPL_EXPECT_HEAVY(copy_contains(*this, y));
// If both bounded difference shapes are zero-dimensional,
// since `*this' contains `y', we simply return `*this'.
if (space_dim == 0)
return;
shortest_path_closure_assign();
// If `*this' is empty, since `*this' contains `y', `y' is empty too.
if (marked_empty())
return;
y.shortest_path_closure_assign();
// If `y' is empty, we return.
if (y.marked_empty())
return;
// If there are tokens available, work on a temporary copy.
if (tp != 0 && *tp > 0) {
BD_Shape<T> x_tmp(*this);
x_tmp.CC76_extrapolation_assign(y, first, last, 0);
// If the widening was not precise, use one of the available tokens.
if (!contains(x_tmp))
--(*tp);
return;
}
// Compare each constraint in `y' to the corresponding one in `*this'.
// The constraint in `*this' is kept as is if it is stronger than or
// equal to the constraint in `y'; otherwise, the inhomogeneous term
// of the constraint in `*this' is further compared with elements taken
// from a sorted container (the stop-points, provided by the user), and
// is replaced by the first entry, if any, which is greater than or equal
// to the inhomogeneous term. If no such entry exists, the constraint
// is removed altogether.
for (dimension_type i = space_dim + 1; i-- > 0; ) {
DB_Row<N>& dbm_i = dbm[i];
const DB_Row<N>& y_dbm_i = y.dbm[i];
for (dimension_type j = space_dim + 1; j-- > 0; ) {
N& dbm_ij = dbm_i[j];
const N& y_dbm_ij = y_dbm_i[j];
if (y_dbm_ij < dbm_ij) {
Iterator k = std::lower_bound(first, last, dbm_ij);
if (k != last) {
if (dbm_ij < *k)
assign_r(dbm_ij, *k, ROUND_UP);
}
else
assign_r(dbm_ij, PLUS_INFINITY, ROUND_NOT_NEEDED);
}
}
}
reset_shortest_path_closed();
PPL_ASSERT(OK());
}
template <typename T>
void
BD_Shape<T>::get_limiting_shape(const Constraint_System& cs,
BD_Shape& limiting_shape) const {
// Private method: the caller has to ensure the following.
PPL_ASSERT(cs.space_dimension() <= space_dimension());
shortest_path_closure_assign();
bool changed = false;
PPL_DIRTY_TEMP_COEFFICIENT(coeff);
PPL_DIRTY_TEMP_COEFFICIENT(minus_c_term);
PPL_DIRTY_TEMP(N, d);
PPL_DIRTY_TEMP(N, d1);
for (Constraint_System::const_iterator cs_i = cs.begin(),
cs_end = cs.end(); cs_i != cs_end; ++cs_i) {
const Constraint& c = *cs_i;
dimension_type num_vars = 0;
dimension_type i = 0;
dimension_type j = 0;
// Constraints that are not bounded differences are ignored.
if (BD_Shape_Helpers::extract_bounded_difference(c, num_vars, i, j, coeff)) {
// Select the cell to be modified for the "<=" part of the constraint,
// and set `coeff' to the absolute value of itself.
const bool negative = (coeff < 0);
const N& x = negative ? dbm[i][j] : dbm[j][i];
const N& y = negative ? dbm[j][i] : dbm[i][j];
DB_Matrix<N>& ls_dbm = limiting_shape.dbm;
if (negative)
neg_assign(coeff);
// Compute the bound for `x', rounding towards plus infinity.
div_round_up(d, c.inhomogeneous_term(), coeff);
if (x <= d) {
if (c.is_inequality()) {
N& ls_x = negative ? ls_dbm[i][j] : ls_dbm[j][i];
if (ls_x > d) {
ls_x = d;
changed = true;
}
}
else {
// Compute the bound for `y', rounding towards plus infinity.
neg_assign(minus_c_term, c.inhomogeneous_term());
div_round_up(d1, minus_c_term, coeff);
if (y <= d1) {
N& ls_x = negative ? ls_dbm[i][j] : ls_dbm[j][i];
N& ls_y = negative ? ls_dbm[j][i] : ls_dbm[i][j];
if ((ls_x >= d && ls_y > d1) || (ls_x > d && ls_y >= d1)) {
ls_x = d;
ls_y = d1;
changed = true;
}
}
}
}
}
}
// In general, adding a constraint does not preserve the shortest-path
// closure of the bounded difference shape.
if (changed && limiting_shape.marked_shortest_path_closed())
limiting_shape.reset_shortest_path_closed();
}
template <typename T>
void
BD_Shape<T>::limited_CC76_extrapolation_assign(const BD_Shape& y,
const Constraint_System& cs,
unsigned* tp) {
// Dimension-compatibility check.
const dimension_type space_dim = space_dimension();
if (space_dim != y.space_dimension())
throw_dimension_incompatible("limited_CC76_extrapolation_assign(y, cs)",
y);
// `cs' must be dimension-compatible with the two systems
// of bounded differences.
const dimension_type cs_space_dim = cs.space_dimension();
if (space_dim < cs_space_dim)
throw_invalid_argument("limited_CC76_extrapolation_assign(y, cs)",
"cs is space_dimension incompatible");
// Strict inequalities not allowed.
if (cs.has_strict_inequalities())
throw_invalid_argument("limited_CC76_extrapolation_assign(y, cs)",
"cs has strict inequalities");
// The limited CC76-extrapolation between two systems of bounded
// differences in a zero-dimensional space is a system of bounded
// differences in a zero-dimensional space, too.
if (space_dim == 0)
return;
// We assume that `y' is contained in or equal to `*this'.
PPL_EXPECT_HEAVY(copy_contains(*this, y));
// If `*this' is empty, since `*this' contains `y', `y' is empty too.
if (marked_empty())
return;
// If `y' is empty, we return.
if (y.marked_empty())
return;
BD_Shape<T> limiting_shape(space_dim, UNIVERSE);
get_limiting_shape(cs, limiting_shape);
CC76_extrapolation_assign(y, tp);
intersection_assign(limiting_shape);
}
template <typename T>
void
BD_Shape<T>::BHMZ05_widening_assign(const BD_Shape& y, unsigned* tp) {
const dimension_type space_dim = space_dimension();
// Dimension-compatibility check.
if (space_dim != y.space_dimension())
throw_dimension_incompatible("BHMZ05_widening_assign(y)", y);
// We assume that `y' is contained in or equal to `*this'.
PPL_EXPECT_HEAVY(copy_contains(*this, y));
// Compute the affine dimension of `y'.
const dimension_type y_affine_dim = y.affine_dimension();
// If the affine dimension of `y' is zero, then either `y' is
// zero-dimensional, or it is empty, or it is a singleton.
// In all cases, due to the inclusion hypothesis, the result is `*this'.
if (y_affine_dim == 0)
return;
// If the affine dimension has changed, due to the inclusion hypothesis,
// the result is `*this'.
const dimension_type x_affine_dim = affine_dimension();
PPL_ASSERT(x_affine_dim >= y_affine_dim);
if (x_affine_dim != y_affine_dim)
return;
// If there are tokens available, work on a temporary copy.
if (tp != 0 && *tp > 0) {
BD_Shape<T> x_tmp(*this);
x_tmp.BHMZ05_widening_assign(y, 0);
// If the widening was not precise, use one of the available tokens.
if (!contains(x_tmp))
--(*tp);
return;
}
// Here no token is available.
PPL_ASSERT(marked_shortest_path_closed() && y.marked_shortest_path_closed());
// Minimize `y'.
y.shortest_path_reduction_assign();
// Extrapolate unstable bounds, taking into account redundancy in `y'.
for (dimension_type i = space_dim + 1; i-- > 0; ) {
DB_Row<N>& dbm_i = dbm[i];
const DB_Row<N>& y_dbm_i = y.dbm[i];
const Bit_Row& y_redundancy_i = y.redundancy_dbm[i];
for (dimension_type j = space_dim + 1; j-- > 0; ) {
N& dbm_ij = dbm_i[j];
// Note: in the following line the use of `!=' (as opposed to
// the use of `<' that would seem -but is not- equivalent) is
// intentional.
if (y_redundancy_i[j] || y_dbm_i[j] != dbm_ij)
assign_r(dbm_ij, PLUS_INFINITY, ROUND_NOT_NEEDED);
}
}
// NOTE: this will also reset the shortest-path reduction flag,
// even though the dbm is still in reduced form. However, the
// current implementation invariant requires that any reduced dbm
// is closed too.
reset_shortest_path_closed();
PPL_ASSERT(OK());
}
template <typename T>
void
BD_Shape<T>::limited_BHMZ05_extrapolation_assign(const BD_Shape& y,
const Constraint_System& cs,
unsigned* tp) {
// Dimension-compatibility check.
const dimension_type space_dim = space_dimension();
if (space_dim != y.space_dimension())
throw_dimension_incompatible("limited_BHMZ05_extrapolation_assign(y, cs)",
y);
// `cs' must be dimension-compatible with the two systems
// of bounded differences.
const dimension_type cs_space_dim = cs.space_dimension();
if (space_dim < cs_space_dim)
throw_invalid_argument("limited_BHMZ05_extrapolation_assign(y, cs)",
"cs is space-dimension incompatible");
// Strict inequalities are not allowed.
if (cs.has_strict_inequalities())
throw_invalid_argument("limited_BHMZ05_extrapolation_assign(y, cs)",
"cs has strict inequalities");
// The limited BHMZ05-extrapolation between two systems of bounded
// differences in a zero-dimensional space is a system of bounded
// differences in a zero-dimensional space, too.
if (space_dim == 0)
return;
// We assume that `y' is contained in or equal to `*this'.
PPL_EXPECT_HEAVY(copy_contains(*this, y));
// If `*this' is empty, since `*this' contains `y', `y' is empty too.
if (marked_empty())
return;
// If `y' is empty, we return.
if (y.marked_empty())
return;
BD_Shape<T> limiting_shape(space_dim, UNIVERSE);
get_limiting_shape(cs, limiting_shape);
BHMZ05_widening_assign(y, tp);
intersection_assign(limiting_shape);
}
template <typename T>
void
BD_Shape<T>::CC76_narrowing_assign(const BD_Shape& y) {
const dimension_type space_dim = space_dimension();
// Dimension-compatibility check.
if (space_dim != y.space_dimension())
throw_dimension_incompatible("CC76_narrowing_assign(y)", y);
// We assume that `*this' is contained in or equal to `y'.
PPL_EXPECT_HEAVY(copy_contains(y, *this));
// If both bounded difference shapes are zero-dimensional,
// since `y' contains `*this', we simply return `*this'.
if (space_dim == 0)
return;
y.shortest_path_closure_assign();
// If `y' is empty, since `y' contains `this', `*this' is empty too.
if (y.marked_empty())
return;
shortest_path_closure_assign();
// If `*this' is empty, we return.
if (marked_empty())
return;
// Replace each constraint in `*this' by the corresponding constraint
// in `y' if the corresponding inhomogeneous terms are both finite.
bool changed = false;
for (dimension_type i = space_dim + 1; i-- > 0; ) {
DB_Row<N>& dbm_i = dbm[i];
const DB_Row<N>& y_dbm_i = y.dbm[i];
for (dimension_type j = space_dim + 1; j-- > 0; ) {
N& dbm_ij = dbm_i[j];
const N& y_dbm_ij = y_dbm_i[j];
if (!is_plus_infinity(dbm_ij)
&& !is_plus_infinity(y_dbm_ij)
&& dbm_ij != y_dbm_ij) {
dbm_ij = y_dbm_ij;
changed = true;
}
}
}
if (changed && marked_shortest_path_closed())
reset_shortest_path_closed();
PPL_ASSERT(OK());
}
template <typename T>
void
BD_Shape<T>
::deduce_v_minus_u_bounds(const dimension_type v,
const dimension_type last_v,
const Linear_Expression& sc_expr,
Coefficient_traits::const_reference sc_denom,
const N& ub_v) {
PPL_ASSERT(sc_denom > 0);
PPL_ASSERT(!is_plus_infinity(ub_v));
// Deduce constraints of the form `v - u', where `u != v'.
// Note: the shortest-path closure is able to deduce the constraint
// `v - u <= ub_v - lb_u'. We can be more precise if variable `u'
// played an active role in the computation of the upper bound for `v',
// i.e., if the corresponding coefficient `q == expr_u/denom' is
// greater than zero. In particular:
// if `q >= 1', then `v - u <= ub_v - ub_u';
// if `0 < q < 1', then `v - u <= ub_v - (q*ub_u + (1-q)*lb_u)'.
PPL_DIRTY_TEMP(mpq_class, mpq_sc_denom);
assign_r(mpq_sc_denom, sc_denom, ROUND_NOT_NEEDED);
const DB_Row<N>& dbm_0 = dbm[0];
// Speculative allocation of temporaries to be used in the following loop.
PPL_DIRTY_TEMP(mpq_class, minus_lb_u);
PPL_DIRTY_TEMP(mpq_class, q);
PPL_DIRTY_TEMP(mpq_class, ub_u);
PPL_DIRTY_TEMP(N, up_approx);
for (Linear_Expression::const_iterator u = sc_expr.begin(),
u_end = sc_expr.lower_bound(Variable(last_v)); u != u_end; ++u) {
const dimension_type u_dim = u.variable().space_dimension();
if (u_dim == v)
continue;
const Coefficient& expr_u = *u;
if (expr_u < 0)
continue;
PPL_ASSERT(expr_u > 0);
if (expr_u >= sc_denom)
// Deducing `v - u <= ub_v - ub_u'.
sub_assign_r(dbm[u_dim][v], ub_v, dbm_0[u_dim], ROUND_UP);
else {
DB_Row<N>& dbm_u = dbm[u_dim];
const N& dbm_u0 = dbm_u[0];
if (!is_plus_infinity(dbm_u0)) {
// Let `ub_u' and `lb_u' be the known upper and lower bound
// for `u', respectively. Letting `q = expr_u/sc_denom' be the
// rational coefficient of `u' in `sc_expr/sc_denom',
// the upper bound for `v - u' is computed as
// `ub_v - (q * ub_u + (1-q) * lb_u)', i.e.,
// `ub_v + (-lb_u) - q * (ub_u + (-lb_u))'.
assign_r(minus_lb_u, dbm_u0, ROUND_NOT_NEEDED);
assign_r(q, expr_u, ROUND_NOT_NEEDED);
div_assign_r(q, q, mpq_sc_denom, ROUND_NOT_NEEDED);
assign_r(ub_u, dbm_0[u_dim], ROUND_NOT_NEEDED);
// Compute `ub_u - lb_u'.
add_assign_r(ub_u, ub_u, minus_lb_u, ROUND_NOT_NEEDED);
// Compute `(-lb_u) - q * (ub_u - lb_u)'.
sub_mul_assign_r(minus_lb_u, q, ub_u, ROUND_NOT_NEEDED);
assign_r(up_approx, minus_lb_u, ROUND_UP);
// Deducing `v - u <= ub_v - (q * ub_u + (1-q) * lb_u)'.
add_assign_r(dbm_u[v], ub_v, up_approx, ROUND_UP);
}
}
}
}
template <typename T>
void
BD_Shape<T>
::deduce_u_minus_v_bounds(const dimension_type v,
const dimension_type last_v,
const Linear_Expression& sc_expr,
Coefficient_traits::const_reference sc_denom,
const N& minus_lb_v) {
PPL_ASSERT(sc_denom > 0);
PPL_ASSERT(!is_plus_infinity(minus_lb_v));
// Deduce constraints of the form `u - v', where `u != v'.
// Note: the shortest-path closure is able to deduce the constraint
// `u - v <= ub_u - lb_v'. We can be more precise if variable `u'
// played an active role in the computation of the lower bound for `v',
// i.e., if the corresponding coefficient `q == expr_u/denom' is
// greater than zero. In particular:
// if `q >= 1', then `u - v <= lb_u - lb_v';
// if `0 < q < 1', then `u - v <= (q*lb_u + (1-q)*ub_u) - lb_v'.
PPL_DIRTY_TEMP(mpq_class, mpq_sc_denom);
assign_r(mpq_sc_denom, sc_denom, ROUND_NOT_NEEDED);
DB_Row<N>& dbm_0 = dbm[0];
DB_Row<N>& dbm_v = dbm[v];
// Speculative allocation of temporaries to be used in the following loop.
PPL_DIRTY_TEMP(mpq_class, ub_u);
PPL_DIRTY_TEMP(mpq_class, q);
PPL_DIRTY_TEMP(mpq_class, minus_lb_u);
PPL_DIRTY_TEMP(N, up_approx);
// No need to consider indices greater than `last_v'.
for (Linear_Expression::const_iterator u = sc_expr.begin(),
u_end = sc_expr.lower_bound(Variable(last_v)); u != u_end; ++u) {
const Variable u_var = u.variable();
const dimension_type u_dim = u_var.space_dimension();
if (u_var.space_dimension() == v)
continue;
const Coefficient& expr_u = *u;
if (expr_u < 0)
continue;
PPL_ASSERT(expr_u > 0);
if (expr_u >= sc_denom)
// Deducing `u - v <= lb_u - lb_v',
// i.e., `u - v <= (-lb_v) - (-lb_u)'.
sub_assign_r(dbm_v[u_dim], minus_lb_v, dbm[u_dim][0], ROUND_UP);
else {
const N& dbm_0u = dbm_0[u_dim];
if (!is_plus_infinity(dbm_0u)) {
// Let `ub_u' and `lb_u' be the known upper and lower bound
// for `u', respectively. Letting `q = expr_u/sc_denom' be the
// rational coefficient of `u' in `sc_expr/sc_denom',
// the upper bound for `u - v' is computed as
// `(q * lb_u + (1-q) * ub_u) - lb_v', i.e.,
// `ub_u - q * (ub_u + (-lb_u)) + minus_lb_v'.
assign_r(ub_u, dbm_0u, ROUND_NOT_NEEDED);
assign_r(q, expr_u, ROUND_NOT_NEEDED);
div_assign_r(q, q, mpq_sc_denom, ROUND_NOT_NEEDED);
assign_r(minus_lb_u, dbm[u_dim][0], ROUND_NOT_NEEDED);
// Compute `ub_u - lb_u'.
add_assign_r(minus_lb_u, minus_lb_u, ub_u, ROUND_NOT_NEEDED);
// Compute `ub_u - q * (ub_u - lb_u)'.
sub_mul_assign_r(ub_u, q, minus_lb_u, ROUND_NOT_NEEDED);
assign_r(up_approx, ub_u, ROUND_UP);
// Deducing `u - v <= (q*lb_u + (1-q)*ub_u) - lb_v'.
add_assign_r(dbm_v[u_dim], up_approx, minus_lb_v, ROUND_UP);
}
}
}
}
template <typename T>
void
BD_Shape<T>::forget_all_dbm_constraints(const dimension_type v) {
PPL_ASSERT(0 < v && v <= dbm.num_rows());
DB_Row<N>& dbm_v = dbm[v];
for (dimension_type i = dbm.num_rows(); i-- > 0; ) {
assign_r(dbm_v[i], PLUS_INFINITY, ROUND_NOT_NEEDED);
assign_r(dbm[i][v], PLUS_INFINITY, ROUND_NOT_NEEDED);
}
}
template <typename T>
void
BD_Shape<T>::forget_binary_dbm_constraints(const dimension_type v) {
PPL_ASSERT(0 < v && v <= dbm.num_rows());
DB_Row<N>& dbm_v = dbm[v];
for (dimension_type i = dbm.num_rows()-1; i > 0; --i) {
assign_r(dbm_v[i], PLUS_INFINITY, ROUND_NOT_NEEDED);
assign_r(dbm[i][v], PLUS_INFINITY, ROUND_NOT_NEEDED);
}
}
template <typename T>
void
BD_Shape<T>::unconstrain(const Variable var) {
// Dimension-compatibility check.
const dimension_type var_space_dim = var.space_dimension();
if (space_dimension() < var_space_dim)
throw_dimension_incompatible("unconstrain(var)", var_space_dim);
// Shortest-path closure is necessary to detect emptiness
// and all (possibly implicit) constraints.
shortest_path_closure_assign();
// If the shape is empty, this is a no-op.
if (marked_empty())
return;
forget_all_dbm_constraints(var_space_dim);
// Shortest-path closure is preserved, but not reduction.
reset_shortest_path_reduced();
PPL_ASSERT(OK());
}
template <typename T>
void
BD_Shape<T>::unconstrain(const Variables_Set& vars) {
// The cylindrification with respect to no dimensions is a no-op.
// This case captures the only legal cylindrification in a 0-dim space.
if (vars.empty())
return;
// Dimension-compatibility check.
const dimension_type min_space_dim = vars.space_dimension();
if (space_dimension() < min_space_dim)
throw_dimension_incompatible("unconstrain(vs)", min_space_dim);
// Shortest-path closure is necessary to detect emptiness
// and all (possibly implicit) constraints.
shortest_path_closure_assign();
// If the shape is empty, this is a no-op.
if (marked_empty())
return;
for (Variables_Set::const_iterator vsi = vars.begin(),
vsi_end = vars.end(); vsi != vsi_end; ++vsi)
forget_all_dbm_constraints(*vsi + 1);
// Shortest-path closure is preserved, but not reduction.
reset_shortest_path_reduced();
PPL_ASSERT(OK());
}
template <typename T>
void
BD_Shape<T>::refine(const Variable var,
const Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator) {
PPL_ASSERT(denominator != 0);
PPL_ASSERT(space_dimension() >= expr.space_dimension());
const dimension_type v = var.id() + 1;
PPL_ASSERT(v <= space_dimension());
PPL_ASSERT(expr.coefficient(var) == 0);
PPL_ASSERT(relsym != LESS_THAN && relsym != GREATER_THAN);
const Coefficient& b = expr.inhomogeneous_term();
// Number of non-zero coefficients in `expr': will be set to
// 0, 1, or 2, the latter value meaning any value greater than 1.
dimension_type t = 0;
// Index of the last non-zero coefficient in `expr', if any.
dimension_type w = expr.last_nonzero();
if (w != 0) {
++t;
if (!expr.all_zeroes(1, w))
++t;
}
// Since we are only able to record bounded differences, we can
// precisely deal with the case of a single variable only if its
// coefficient (taking into account the denominator) is 1.
// If this is not the case, we fall back to the general case
// so as to over-approximate the constraint.
if (t == 1 && expr.get(Variable(w - 1)) != denominator)
t = 2;
// Now we know the form of `expr':
// - If t == 0, then expr == b, with `b' a constant;
// - If t == 1, then expr == a*w + b, where `w != v' and `a == denominator';
// - If t == 2, the `expr' is of the general form.
const DB_Row<N>& dbm_0 = dbm[0];
PPL_DIRTY_TEMP_COEFFICIENT(minus_denom);
neg_assign(minus_denom, denominator);
if (t == 0) {
// Case 1: expr == b.
switch (relsym) {
case EQUAL:
// Add the constraint `var == b/denominator'.
add_dbm_constraint(0, v, b, denominator);
add_dbm_constraint(v, 0, b, minus_denom);
break;
case LESS_OR_EQUAL:
// Add the constraint `var <= b/denominator'.
add_dbm_constraint(0, v, b, denominator);
break;
case GREATER_OR_EQUAL:
// Add the constraint `var >= b/denominator',
// i.e., `-var <= -b/denominator',
add_dbm_constraint(v, 0, b, minus_denom);
break;
default:
// We already dealt with the other cases.
PPL_UNREACHABLE;
break;
}
return;
}
if (t == 1) {
// Case 2: expr == a*w + b, w != v, a == denominator.
PPL_ASSERT(expr.get(Variable(w - 1)) == denominator);
PPL_DIRTY_TEMP(N, d);
switch (relsym) {
case EQUAL:
// Add the new constraint `v - w <= b/denominator'.
div_round_up(d, b, denominator);
add_dbm_constraint(w, v, d);
// Add the new constraint `v - w >= b/denominator',
// i.e., `w - v <= -b/denominator'.
div_round_up(d, b, minus_denom);
add_dbm_constraint(v, w, d);
break;
case LESS_OR_EQUAL:
// Add the new constraint `v - w <= b/denominator'.
div_round_up(d, b, denominator);
add_dbm_constraint(w, v, d);
break;
case GREATER_OR_EQUAL:
// Add the new constraint `v - w >= b/denominator',
// i.e., `w - v <= -b/denominator'.
div_round_up(d, b, minus_denom);
add_dbm_constraint(v, w, d);
break;
default:
// We already dealt with the other cases.
PPL_UNREACHABLE;
break;
}
return;
}
// Here t == 2, so that either
// expr == a_1*x_1 + a_2*x_2 + ... + a_n*x_n + b, where n >= 2, or
// expr == a*w + b, w != v and a != denominator.
const bool is_sc = (denominator > 0);
PPL_DIRTY_TEMP_COEFFICIENT(minus_b);
neg_assign(minus_b, b);
const Coefficient& sc_b = is_sc ? b : minus_b;
const Coefficient& minus_sc_b = is_sc ? minus_b : b;
const Coefficient& sc_denom = is_sc ? denominator : minus_denom;
const Coefficient& minus_sc_denom = is_sc ? minus_denom : denominator;
// NOTE: here, for optimization purposes, `minus_expr' is only assigned
// when `denominator' is negative. Do not use it unless you are sure
// it has been correctly assigned.
Linear_Expression minus_expr;
if (!is_sc)
minus_expr = -expr;
const Linear_Expression& sc_expr = is_sc ? expr : minus_expr;
PPL_DIRTY_TEMP(N, sum);
// Indices of the variables that are unbounded in `this->dbm'.
PPL_UNINITIALIZED(dimension_type, pinf_index);
// Number of unbounded variables found.
dimension_type pinf_count = 0;
// Speculative allocation of temporaries that are used in most
// of the computational traces starting from this point (also loops).
PPL_DIRTY_TEMP_COEFFICIENT(minus_sc_i);
PPL_DIRTY_TEMP(N, coeff_i);
switch (relsym) {
case EQUAL:
{
PPL_DIRTY_TEMP(N, neg_sum);
// Indices of the variables that are unbounded in `this->dbm'.
PPL_UNINITIALIZED(dimension_type, neg_pinf_index);
// Number of unbounded variables found.
dimension_type neg_pinf_count = 0;
// Compute an upper approximation for `expr' into `sum',
// taking into account the sign of `denominator'.
// Approximate the inhomogeneous term.
assign_r(sum, sc_b, ROUND_UP);
assign_r(neg_sum, minus_sc_b, ROUND_UP);
// Approximate the homogeneous part of `sc_expr'.
// Note: indices above `w' can be disregarded, as they all have
// a zero coefficient in `expr'.
for (Linear_Expression::const_iterator i = sc_expr.begin(),
i_end = sc_expr.lower_bound(Variable(w)); i != i_end; ++i) {
const dimension_type i_dim = i.variable().space_dimension();
const Coefficient& sc_i = *i;
const int sign_i = sgn(sc_i);
PPL_ASSERT(sign_i != 0);
if (sign_i > 0) {
assign_r(coeff_i, sc_i, ROUND_UP);
// Approximating `sc_expr'.
if (pinf_count <= 1) {
const N& approx_i = dbm_0[i_dim];
if (!is_plus_infinity(approx_i))
add_mul_assign_r(sum, coeff_i, approx_i, ROUND_UP);
else {
++pinf_count;
pinf_index = i_dim;
}
}
// Approximating `-sc_expr'.
if (neg_pinf_count <= 1) {
const N& approx_minus_i = dbm[i_dim][0];
if (!is_plus_infinity(approx_minus_i))
add_mul_assign_r(neg_sum, coeff_i, approx_minus_i, ROUND_UP);
else {
++neg_pinf_count;
neg_pinf_index = i_dim;
}
}
}
else {
PPL_ASSERT(sign_i < 0);
neg_assign(minus_sc_i, sc_i);
// Note: using temporary named `coeff_i' to store -coeff_i.
assign_r(coeff_i, minus_sc_i, ROUND_UP);
// Approximating `sc_expr'.
if (pinf_count <= 1) {
const N& approx_minus_i = dbm[i_dim][0];
if (!is_plus_infinity(approx_minus_i))
add_mul_assign_r(sum, coeff_i, approx_minus_i, ROUND_UP);
else {
++pinf_count;
pinf_index = i_dim;
}
}
// Approximating `-sc_expr'.
if (neg_pinf_count <= 1) {
const N& approx_i = dbm_0[i_dim];
if (!is_plus_infinity(approx_i))
add_mul_assign_r(neg_sum, coeff_i, approx_i, ROUND_UP);
else {
++neg_pinf_count;
neg_pinf_index = i_dim;
}
}
}
}
// Return immediately if no approximation could be computed.
if (pinf_count > 1 && neg_pinf_count > 1) {
PPL_ASSERT(OK());
return;
}
// In the following, shortest-path closure will be definitely lost.
reset_shortest_path_closed();
// Before computing quotients, the denominator should be approximated
// towards zero. Since `sc_denom' is known to be positive, this amounts to
// rounding downwards, which is achieved as usual by rounding upwards
// `minus_sc_denom' and negating again the result.
PPL_DIRTY_TEMP(N, down_sc_denom);
assign_r(down_sc_denom, minus_sc_denom, ROUND_UP);
neg_assign_r(down_sc_denom, down_sc_denom, ROUND_UP);
// Exploit the upper approximation, if possible.
if (pinf_count <= 1) {
// Compute quotient (if needed).
if (down_sc_denom != 1)
div_assign_r(sum, sum, down_sc_denom, ROUND_UP);
// Add the upper bound constraint, if meaningful.
if (pinf_count == 0) {
// Add the constraint `v <= sum'.
dbm[0][v] = sum;
// Deduce constraints of the form `v - u', where `u != v'.
deduce_v_minus_u_bounds(v, w, sc_expr, sc_denom, sum);
}
else
// Here `pinf_count == 1'.
if (pinf_index != v
&& sc_expr.get(Variable(pinf_index - 1)) == sc_denom)
// Add the constraint `v - pinf_index <= sum'.
dbm[pinf_index][v] = sum;
}
// Exploit the lower approximation, if possible.
if (neg_pinf_count <= 1) {
// Compute quotient (if needed).
if (down_sc_denom != 1)
div_assign_r(neg_sum, neg_sum, down_sc_denom, ROUND_UP);
// Add the lower bound constraint, if meaningful.
if (neg_pinf_count == 0) {
// Add the constraint `v >= -neg_sum', i.e., `-v <= neg_sum'.
DB_Row<N>& dbm_v = dbm[v];
dbm_v[0] = neg_sum;
// Deduce constraints of the form `u - v', where `u != v'.
deduce_u_minus_v_bounds(v, w, sc_expr, sc_denom, neg_sum);
}
else
// Here `neg_pinf_count == 1'.
if (neg_pinf_index != v
&& sc_expr.get(Variable(neg_pinf_index - 1)) == sc_denom)
// Add the constraint `v - neg_pinf_index >= -neg_sum',
// i.e., `neg_pinf_index - v <= neg_sum'.
dbm[v][neg_pinf_index] = neg_sum;
}
}
break;
case LESS_OR_EQUAL:
// Compute an upper approximation for `expr' into `sum',
// taking into account the sign of `denominator'.
// Approximate the inhomogeneous term.
assign_r(sum, sc_b, ROUND_UP);
// Approximate the homogeneous part of `sc_expr'.
// Note: indices above `w' can be disregarded, as they all have
// a zero coefficient in `expr'.
for (Linear_Expression::const_iterator i = sc_expr.begin(),
i_end = sc_expr.lower_bound(Variable(w)); i != i_end; ++i) {
const Coefficient& sc_i = *i;
const dimension_type i_dim = i.variable().space_dimension();
const int sign_i = sgn(sc_i);
PPL_ASSERT(sign_i != 0);
// Choose carefully: we are approximating `sc_expr'.
const N& approx_i = (sign_i > 0) ? dbm_0[i_dim] : dbm[i_dim][0];
if (is_plus_infinity(approx_i)) {
if (++pinf_count > 1)
break;
pinf_index = i_dim;
continue;
}
if (sign_i > 0)
assign_r(coeff_i, sc_i, ROUND_UP);
else {
neg_assign(minus_sc_i, sc_i);
assign_r(coeff_i, minus_sc_i, ROUND_UP);
}
add_mul_assign_r(sum, coeff_i, approx_i, ROUND_UP);
}
// Divide by the (sign corrected) denominator (if needed).
if (sc_denom != 1) {
// Before computing the quotient, the denominator should be
// approximated towards zero. Since `sc_denom' is known to be
// positive, this amounts to rounding downwards, which is achieved
// by rounding upwards `minus_sc - denom' and negating again the result.
PPL_DIRTY_TEMP(N, down_sc_denom);
assign_r(down_sc_denom, minus_sc_denom, ROUND_UP);
neg_assign_r(down_sc_denom, down_sc_denom, ROUND_UP);
div_assign_r(sum, sum, down_sc_denom, ROUND_UP);
}
if (pinf_count == 0) {
// Add the constraint `v <= sum'.
add_dbm_constraint(0, v, sum);
// Deduce constraints of the form `v - u', where `u != v'.
deduce_v_minus_u_bounds(v, w, sc_expr, sc_denom, sum);
}
else if (pinf_count == 1)
if (expr.get(Variable(pinf_index - 1)) == denominator)
// Add the constraint `v - pinf_index <= sum'.
add_dbm_constraint(pinf_index, v, sum);
break;
case GREATER_OR_EQUAL:
// Compute an upper approximation for `-sc_expr' into `sum'.
// Note: approximating `-sc_expr' from above and then negating the
// result is the same as approximating `sc_expr' from below.
// Approximate the inhomogeneous term.
assign_r(sum, minus_sc_b, ROUND_UP);
// Approximate the homogeneous part of `-sc_expr'.
for (Linear_Expression::const_iterator i = sc_expr.begin(),
i_end = sc_expr.lower_bound(Variable(w)); i != i_end; ++i) {
const Coefficient& sc_i = *i;
const dimension_type i_dim = i.variable().space_dimension();
const int sign_i = sgn(sc_i);
PPL_ASSERT(sign_i != 0);
// Choose carefully: we are approximating `-sc_expr'.
const N& approx_i = (sign_i > 0) ? dbm[i_dim][0] : dbm_0[i_dim];
if (is_plus_infinity(approx_i)) {
if (++pinf_count > 1)
break;
pinf_index = i_dim;
continue;
}
if (sign_i > 0)
assign_r(coeff_i, sc_i, ROUND_UP);
else {
neg_assign(minus_sc_i, sc_i);
assign_r(coeff_i, minus_sc_i, ROUND_UP);
}
add_mul_assign_r(sum, coeff_i, approx_i, ROUND_UP);
}
// Divide by the (sign corrected) denominator (if needed).
if (sc_denom != 1) {
// Before computing the quotient, the denominator should be
// approximated towards zero. Since `sc_denom' is known to be positive,
// this amounts to rounding downwards, which is achieved by rounding
// upwards `minus_sc_denom' and negating again the result.
PPL_DIRTY_TEMP(N, down_sc_denom);
assign_r(down_sc_denom, minus_sc_denom, ROUND_UP);
neg_assign_r(down_sc_denom, down_sc_denom, ROUND_UP);
div_assign_r(sum, sum, down_sc_denom, ROUND_UP);
}
if (pinf_count == 0) {
// Add the constraint `v >= -sum', i.e., `-v <= sum'.
add_dbm_constraint(v, 0, sum);
// Deduce constraints of the form `u - v', where `u != v'.
deduce_u_minus_v_bounds(v, w, sc_expr, sc_denom, sum);
}
else if (pinf_count == 1)
if (pinf_index != v
&& expr.get(Variable(pinf_index - 1)) == denominator)
// Add the constraint `v - pinf_index >= -sum',
// i.e., `pinf_index - v <= sum'.
add_dbm_constraint(v, pinf_index, sum);
break;
default:
// We already dealt with the other cases.
PPL_UNREACHABLE;
break;
}
PPL_ASSERT(OK());
}
template <typename T>
void
BD_Shape<T>::affine_image(const Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator) {
// The denominator cannot be zero.
if (denominator == 0)
throw_invalid_argument("affine_image(v, e, d)", "d == 0");
// Dimension-compatibility checks.
// The dimension of `expr' should not be greater than the dimension
// of `*this'.
const dimension_type space_dim = space_dimension();
const dimension_type expr_space_dim = expr.space_dimension();
if (space_dim < expr_space_dim)
throw_dimension_incompatible("affine_image(v, e, d)", "e", expr);
// `var' should be one of the dimensions of the shape.
const dimension_type v = var.id() + 1;
if (v > space_dim)
throw_dimension_incompatible("affine_image(v, e, d)", var.id());
// The image of an empty BDS is empty too.
shortest_path_closure_assign();
if (marked_empty())
return;
const Coefficient& b = expr.inhomogeneous_term();
// Number of non-zero coefficients in `expr': will be set to
// 0, 1, or 2, the latter value meaning any value greater than 1.
dimension_type t = 0;
// Index of the last non-zero coefficient in `expr', if any.
dimension_type w = expr.last_nonzero();
if (w != 0) {
++t;
if (!expr.all_zeroes(1, w))
++t;
}
// Now we know the form of `expr':
// - If t == 0, then expr == b, with `b' a constant;
// - If t == 1, then expr == a*w + b, where `w' can be `v' or another
// variable; in this second case we have to check whether `a' is
// equal to `denominator' or `-denominator', since otherwise we have
// to fall back on the general form;
// - If t == 2, the `expr' is of the general form.
PPL_DIRTY_TEMP_COEFFICIENT(minus_denom);
neg_assign(minus_denom, denominator);
if (t == 0) {
// Case 1: expr == b.
// Remove all constraints on `var'.
forget_all_dbm_constraints(v);
// Shortest-path closure is preserved, but not reduction.
if (marked_shortest_path_reduced())
reset_shortest_path_reduced();
// Add the constraint `var == b/denominator'.
add_dbm_constraint(0, v, b, denominator);
add_dbm_constraint(v, 0, b, minus_denom);
PPL_ASSERT(OK());
return;
}
if (t == 1) {
// Value of the one and only non-zero coefficient in `expr'.
const Coefficient& a = expr.get(Variable(w - 1));
if (a == denominator || a == minus_denom) {
// Case 2: expr == a*w + b, with a == +/- denominator.
if (w == v) {
// `expr' is of the form: a*v + b.
if (a == denominator) {
if (b == 0)
// The transformation is the identity function.
return;
else {
// Translate all the constraints on `var',
// adding or subtracting the value `b/denominator'.
PPL_DIRTY_TEMP(N, d);
div_round_up(d, b, denominator);
PPL_DIRTY_TEMP(N, c);
div_round_up(c, b, minus_denom);
DB_Row<N>& dbm_v = dbm[v];
for (dimension_type i = space_dim + 1; i-- > 0; ) {
N& dbm_vi = dbm_v[i];
add_assign_r(dbm_vi, dbm_vi, c, ROUND_UP);
N& dbm_iv = dbm[i][v];
add_assign_r(dbm_iv, dbm_iv, d, ROUND_UP);
}
// Both shortest-path closure and reduction are preserved.
}
}
else {
// Here `a == -denominator'.
// Remove the binary constraints on `var'.
forget_binary_dbm_constraints(v);
// Swap the unary constraints on `var'.
using std::swap;
swap(dbm[v][0], dbm[0][v]);
// Shortest-path closure is not preserved.
reset_shortest_path_closed();
if (b != 0) {
// Translate the unary constraints on `var',
// adding or subtracting the value `b/denominator'.
PPL_DIRTY_TEMP(N, c);
div_round_up(c, b, minus_denom);
N& dbm_v0 = dbm[v][0];
add_assign_r(dbm_v0, dbm_v0, c, ROUND_UP);
PPL_DIRTY_TEMP(N, d);
div_round_up(d, b, denominator);
N& dbm_0v = dbm[0][v];
add_assign_r(dbm_0v, dbm_0v, d, ROUND_UP);
}
}
}
else {
// Here `w != v', so that `expr' is of the form
// +/-denominator * w + b.
// Remove all constraints on `var'.
forget_all_dbm_constraints(v);
// Shortest-path closure is preserved, but not reduction.
if (marked_shortest_path_reduced())
reset_shortest_path_reduced();
if (a == denominator) {
// Add the new constraint `v - w == b/denominator'.
add_dbm_constraint(w, v, b, denominator);
add_dbm_constraint(v, w, b, minus_denom);
}
else {
// Here a == -denominator, so that we should be adding
// the constraint `v + w == b/denominator'.
// Approximate it by computing lower and upper bounds for `w'.
const N& dbm_w0 = dbm[w][0];
if (!is_plus_infinity(dbm_w0)) {
// Add the constraint `v <= b/denominator - lower_w'.
PPL_DIRTY_TEMP(N, d);
div_round_up(d, b, denominator);
add_assign_r(dbm[0][v], d, dbm_w0, ROUND_UP);
reset_shortest_path_closed();
}
const N& dbm_0w = dbm[0][w];
if (!is_plus_infinity(dbm_0w)) {
// Add the constraint `v >= b/denominator - upper_w'.
PPL_DIRTY_TEMP(N, c);
div_round_up(c, b, minus_denom);
add_assign_r(dbm[v][0], dbm_0w, c, ROUND_UP);
reset_shortest_path_closed();
}
}
}
PPL_ASSERT(OK());
return;
}
}
// General case.
// Either t == 2, so that
// expr == a_1*x_1 + a_2*x_2 + ... + a_n*x_n + b, where n >= 2,
// or t == 1, expr == a*w + b, but a <> +/- denominator.
// We will remove all the constraints on `var' and add back
// constraints providing upper and lower bounds for `var'.
// Compute upper approximations for `expr' and `-expr'
// into `pos_sum' and `neg_sum', respectively, taking into account
// the sign of `denominator'.
// Note: approximating `-expr' from above and then negating the
// result is the same as approximating `expr' from below.
const bool is_sc = (denominator > 0);
PPL_DIRTY_TEMP_COEFFICIENT(minus_b);
neg_assign(minus_b, b);
const Coefficient& sc_b = is_sc ? b : minus_b;
const Coefficient& minus_sc_b = is_sc ? minus_b : b;
const Coefficient& sc_denom = is_sc ? denominator : minus_denom;
const Coefficient& minus_sc_denom = is_sc ? minus_denom : denominator;
// NOTE: here, for optimization purposes, `minus_expr' is only assigned
// when `denominator' is negative. Do not use it unless you are sure
// it has been correctly assigned.
Linear_Expression minus_expr;
if (!is_sc)
minus_expr = -expr;
const Linear_Expression& sc_expr = is_sc ? expr : minus_expr;
PPL_DIRTY_TEMP(N, pos_sum);
PPL_DIRTY_TEMP(N, neg_sum);
// Indices of the variables that are unbounded in `this->dbm'.
PPL_UNINITIALIZED(dimension_type, pos_pinf_index);
PPL_UNINITIALIZED(dimension_type, neg_pinf_index);
// Number of unbounded variables found.
dimension_type pos_pinf_count = 0;
dimension_type neg_pinf_count = 0;
// Approximate the inhomogeneous term.
assign_r(pos_sum, sc_b, ROUND_UP);
assign_r(neg_sum, minus_sc_b, ROUND_UP);
// Approximate the homogeneous part of `sc_expr'.
const DB_Row<N>& dbm_0 = dbm[0];
// Speculative allocation of temporaries to be used in the following loop.
PPL_DIRTY_TEMP(N, coeff_i);
PPL_DIRTY_TEMP_COEFFICIENT(minus_sc_i);
// Note: indices above `w' can be disregarded, as they all have
// a zero coefficient in `sc_expr'.
for (Linear_Expression::const_iterator i = sc_expr.begin(),
i_end = sc_expr.lower_bound(Variable(w)); i != i_end; ++i) {
const Coefficient& sc_i = *i;
const dimension_type i_dim = i.variable().space_dimension();
const int sign_i = sgn(sc_i);
if (sign_i > 0) {
assign_r(coeff_i, sc_i, ROUND_UP);
// Approximating `sc_expr'.
if (pos_pinf_count <= 1) {
const N& up_approx_i = dbm_0[i_dim];
if (!is_plus_infinity(up_approx_i))
add_mul_assign_r(pos_sum, coeff_i, up_approx_i, ROUND_UP);
else {
++pos_pinf_count;
pos_pinf_index = i_dim;
}
}
// Approximating `-sc_expr'.
if (neg_pinf_count <= 1) {
const N& up_approx_minus_i = dbm[i_dim][0];
if (!is_plus_infinity(up_approx_minus_i))
add_mul_assign_r(neg_sum, coeff_i, up_approx_minus_i, ROUND_UP);
else {
++neg_pinf_count;
neg_pinf_index = i_dim;
}
}
}
else {
PPL_ASSERT(sign_i < 0);
neg_assign(minus_sc_i, sc_i);
// Note: using temporary named `coeff_i' to store -coeff_i.
assign_r(coeff_i, minus_sc_i, ROUND_UP);
// Approximating `sc_expr'.
if (pos_pinf_count <= 1) {
const N& up_approx_minus_i = dbm[i_dim][0];
if (!is_plus_infinity(up_approx_minus_i))
add_mul_assign_r(pos_sum, coeff_i, up_approx_minus_i, ROUND_UP);
else {
++pos_pinf_count;
pos_pinf_index = i_dim;
}
}
// Approximating `-sc_expr'.
if (neg_pinf_count <= 1) {
const N& up_approx_i = dbm_0[i_dim];
if (!is_plus_infinity(up_approx_i))
add_mul_assign_r(neg_sum, coeff_i, up_approx_i, ROUND_UP);
else {
++neg_pinf_count;
neg_pinf_index = i_dim;
}
}
}
}
// Remove all constraints on 'v'.
forget_all_dbm_constraints(v);
// Shortest-path closure is maintained, but not reduction.
if (marked_shortest_path_reduced())
reset_shortest_path_reduced();
// Return immediately if no approximation could be computed.
if (pos_pinf_count > 1 && neg_pinf_count > 1) {
PPL_ASSERT(OK());
return;
}
// In the following, shortest-path closure will be definitely lost.
reset_shortest_path_closed();
// Exploit the upper approximation, if possible.
if (pos_pinf_count <= 1) {
// Compute quotient (if needed).
if (sc_denom != 1) {
// Before computing quotients, the denominator should be approximated
// towards zero. Since `sc_denom' is known to be positive, this amounts to
// rounding downwards, which is achieved as usual by rounding upwards
// `minus_sc_denom' and negating again the result.
PPL_DIRTY_TEMP(N, down_sc_denom);
assign_r(down_sc_denom, minus_sc_denom, ROUND_UP);
neg_assign_r(down_sc_denom, down_sc_denom, ROUND_UP);
div_assign_r(pos_sum, pos_sum, down_sc_denom, ROUND_UP);
}
// Add the upper bound constraint, if meaningful.
if (pos_pinf_count == 0) {
// Add the constraint `v <= pos_sum'.
dbm[0][v] = pos_sum;
// Deduce constraints of the form `v - u', where `u != v'.
deduce_v_minus_u_bounds(v, w, sc_expr, sc_denom, pos_sum);
}
else
// Here `pos_pinf_count == 1'.
if (pos_pinf_index != v
&& sc_expr.get(Variable(pos_pinf_index - 1)) == sc_denom)
// Add the constraint `v - pos_pinf_index <= pos_sum'.
dbm[pos_pinf_index][v] = pos_sum;
}
// Exploit the lower approximation, if possible.
if (neg_pinf_count <= 1) {
// Compute quotient (if needed).
if (sc_denom != 1) {
// Before computing quotients, the denominator should be approximated
// towards zero. Since `sc_denom' is known to be positive, this amounts to
// rounding downwards, which is achieved as usual by rounding upwards
// `minus_sc_denom' and negating again the result.
PPL_DIRTY_TEMP(N, down_sc_denom);
assign_r(down_sc_denom, minus_sc_denom, ROUND_UP);
neg_assign_r(down_sc_denom, down_sc_denom, ROUND_UP);
div_assign_r(neg_sum, neg_sum, down_sc_denom, ROUND_UP);
}
// Add the lower bound constraint, if meaningful.
if (neg_pinf_count == 0) {
// Add the constraint `v >= -neg_sum', i.e., `-v <= neg_sum'.
DB_Row<N>& dbm_v = dbm[v];
dbm_v[0] = neg_sum;
// Deduce constraints of the form `u - v', where `u != v'.
deduce_u_minus_v_bounds(v, w, sc_expr, sc_denom, neg_sum);
}
else
// Here `neg_pinf_count == 1'.
if (neg_pinf_index != v
&& sc_expr.get(Variable(neg_pinf_index - 1)) == sc_denom)
// Add the constraint `v - neg_pinf_index >= -neg_sum',
// i.e., `neg_pinf_index - v <= neg_sum'.
dbm[v][neg_pinf_index] = neg_sum;
}
PPL_ASSERT(OK());
}
template <typename T>
template <typename Interval_Info>
void
BD_Shape<T>::affine_form_image(const Variable var,
const Linear_Form< Interval<T, Interval_Info> >& lf) {
// Check that T is a floating point type.
PPL_COMPILE_TIME_CHECK(!std::numeric_limits<T>::is_exact,
"BD_Shape<T>::affine_form_image(Variable, Linear_Form):"
" T not a floating point type.");
// Dimension-compatibility checks.
// The dimension of `lf' should not be greater than the dimension
// of `*this'.
const dimension_type space_dim = space_dimension();
const dimension_type lf_space_dim = lf.space_dimension();
if (space_dim < lf_space_dim)
throw_dimension_incompatible("affine_form_image(var_id, l)", "l", lf);
// `var' should be one of the dimensions of the shape.
const dimension_type var_id = var.id() + 1;
if (space_dim < var_id)
throw_dimension_incompatible("affine_form_image(var_id, l)", var.id());
// The image of an empty BDS is empty too.
shortest_path_closure_assign();
if (marked_empty())
return;
// Number of non-zero coefficients in `lf': will be set to
// 0, 1, or 2, the latter value meaning any value greater than 1.
dimension_type t = 0;
// Index of the last non-zero coefficient in `lf', if any.
dimension_type w_id = 0;
// Get information about the number of non-zero coefficients in `lf'.
for (dimension_type i = lf_space_dim; i-- > 0; )
if (lf.coefficient(Variable(i)) != 0) {
if (t++ == 1)
break;
else
w_id = i + 1;
}
typedef Interval<T, Interval_Info> FP_Interval_Type;
const FP_Interval_Type& b = lf.inhomogeneous_term();
// Now we know the form of `lf':
// - If t == 0, then lf == b, with `b' a constant;
// - If t == 1, then lf == a*w + b, where `w' can be `v' or another
// variable;
// - If t == 2, the linear form 'lf' is of the general form.
if (t == 0) {
inhomogeneous_affine_form_image(var_id, b);
PPL_ASSERT(OK());
return;
}
else if (t == 1) {
const FP_Interval_Type& w_coeff = lf.coefficient(Variable(w_id - 1));
if (w_coeff == 1 || w_coeff == -1) {
one_variable_affine_form_image(var_id, b, w_coeff, w_id, space_dim);
PPL_ASSERT(OK());
return;
}
}
two_variables_affine_form_image(var_id, lf, space_dim);
PPL_ASSERT(OK());
}
// Case 1: var = b, where b = [-b_mlb, b_ub]
template <typename T>
template <typename Interval_Info>
void
BD_Shape<T>
::inhomogeneous_affine_form_image(const dimension_type& var_id,
const Interval<T, Interval_Info>& b) {
PPL_DIRTY_TEMP(N, b_ub);
assign_r(b_ub, b.upper(), ROUND_NOT_NEEDED);
PPL_DIRTY_TEMP(N, b_mlb);
neg_assign_r(b_mlb, b.lower(), ROUND_NOT_NEEDED);
// Remove all constraints on `var'.
forget_all_dbm_constraints(var_id);
// Shortest-path closure is preserved, but not reduction.
if (marked_shortest_path_reduced())
reset_shortest_path_reduced();
// Add the constraint `var >= lb && var <= ub'.
add_dbm_constraint(0, var_id, b_ub);
add_dbm_constraint(var_id, 0, b_mlb);
return;
}
// case 2: var = (+/-1) * w + [-b_mlb, b_ub], where `w' can be `var'
// or another variable.
template <typename T>
template <typename Interval_Info>
void BD_Shape<T>
::one_variable_affine_form_image(const dimension_type& var_id,
const Interval<T, Interval_Info>& b,
const Interval<T, Interval_Info>& w_coeff,
const dimension_type& w_id,
const dimension_type& space_dim) {
PPL_DIRTY_TEMP(N, b_ub);
assign_r(b_ub, b.upper(), ROUND_NOT_NEEDED);
PPL_DIRTY_TEMP(N, b_mlb);
neg_assign_r(b_mlb, b.lower(), ROUND_NOT_NEEDED);
// True if `w_coeff' is in [1, 1].
bool is_w_coeff_one = (w_coeff == 1);
if (w_id == var_id) {
// True if `b' is in [b_mlb, b_ub] and that is [0, 0].
bool is_b_zero = (b_mlb == 0 && b_ub == 0);
// Here `lf' is of the form: [+/-1, +/-1] * v + b.
if (is_w_coeff_one) {
if (is_b_zero)
// The transformation is the identity function.
return;
else {
// Translate all the constraints on `var' by adding the value
// `b_ub' or subtracting the value `b_mlb'.
DB_Row<N>& dbm_v = dbm[var_id];
for (dimension_type i = space_dim + 1; i-- > 0; ) {
N& dbm_vi = dbm_v[i];
add_assign_r(dbm_vi, dbm_vi, b_mlb, ROUND_UP);
N& dbm_iv = dbm[i][var_id];
add_assign_r(dbm_iv, dbm_iv, b_ub, ROUND_UP);
}
// Both shortest-path closure and reduction are preserved.
}
}
else {
// Here `w_coeff = [-1, -1].
// Remove the binary constraints on `var'.
forget_binary_dbm_constraints(var_id);
using std::swap;
swap(dbm[var_id][0], dbm[0][var_id]);
// Shortest-path closure is not preserved.
reset_shortest_path_closed();
if (!is_b_zero) {
// Translate the unary constraints on `var' by adding the value
// `b_ub' or subtracting the value `b_mlb'.
N& dbm_v0 = dbm[var_id][0];
add_assign_r(dbm_v0, dbm_v0, b_mlb, ROUND_UP);
N& dbm_0v = dbm[0][var_id];
add_assign_r(dbm_0v, dbm_0v, b_ub, ROUND_UP);
}
}
}
else {
// Here `w != var', so that `lf' is of the form
// [+/-1, +/-1] * w + b.
// Remove all constraints on `var'.
forget_all_dbm_constraints(var_id);
// Shortest-path closure is preserved, but not reduction.
if (marked_shortest_path_reduced())
reset_shortest_path_reduced();
if (is_w_coeff_one) {
// Add the new constraints `var - w >= b_mlb'
// `and var - w <= b_ub'.
add_dbm_constraint(w_id, var_id, b_ub);
add_dbm_constraint(var_id, w_id, b_mlb);
}
else {
// We have to add the constraint `v + w == b', over-approximating it
// by computing lower and upper bounds for `w'.
const N& mlb_w = dbm[w_id][0];
if (!is_plus_infinity(mlb_w)) {
// Add the constraint `v <= ub - lb_w'.
add_assign_r(dbm[0][var_id], b_ub, mlb_w, ROUND_UP);
reset_shortest_path_closed();
}
const N& ub_w = dbm[0][w_id];
if (!is_plus_infinity(ub_w)) {
// Add the constraint `v >= lb - ub_w'.
add_assign_r(dbm[var_id][0], ub_w, b_mlb, ROUND_UP);
reset_shortest_path_closed();
}
}
}
return;
}
// General case.
// Either t == 2, so that
// lf == i_1*x_1 + i_2*x_2 + ... + i_n*x_n + b, where n >= 2,
// or t == 1, lf == i*w + b, but i <> [+/-1, +/-1].
template <typename T>
template <typename Interval_Info>
void BD_Shape<T>
::two_variables_affine_form_image(const dimension_type& var_id,
const Linear_Form< Interval<T, Interval_Info> >& lf,
const dimension_type& space_dim) {
// Shortest-path closure is maintained, but not reduction.
if (marked_shortest_path_reduced())
reset_shortest_path_reduced();
reset_shortest_path_closed();
Linear_Form< Interval<T, Interval_Info> > minus_lf(lf);
minus_lf.negate();
// Declare temporaries outside the loop.
PPL_DIRTY_TEMP(N, upper_bound);
// Update binary constraints on var FIRST.
for (dimension_type curr_var = 1; curr_var < var_id; ++curr_var) {
Variable current(curr_var - 1);
linear_form_upper_bound(lf - current, upper_bound);
assign_r(dbm[curr_var][var_id], upper_bound, ROUND_NOT_NEEDED);
linear_form_upper_bound(minus_lf + current, upper_bound);
assign_r(dbm[var_id][curr_var], upper_bound, ROUND_NOT_NEEDED);
}
for (dimension_type curr_var = var_id + 1; curr_var <= space_dim;
++curr_var) {
Variable current(curr_var - 1);
linear_form_upper_bound(lf - current, upper_bound);
assign_r(dbm[curr_var][var_id], upper_bound, ROUND_NOT_NEEDED);
linear_form_upper_bound(minus_lf + current, upper_bound);
assign_r(dbm[var_id][curr_var], upper_bound, ROUND_NOT_NEEDED);
}
// Finally, update unary constraints on var.
PPL_DIRTY_TEMP(N, lf_ub);
linear_form_upper_bound(lf, lf_ub);
PPL_DIRTY_TEMP(N, minus_lf_ub);
linear_form_upper_bound(minus_lf, minus_lf_ub);
assign_r(dbm[0][var_id], lf_ub, ROUND_NOT_NEEDED);
assign_r(dbm[var_id][0], minus_lf_ub, ROUND_NOT_NEEDED);
}
template <typename T>
template <typename Interval_Info>
void BD_Shape<T>::refine_with_linear_form_inequality(
const Linear_Form< Interval<T, Interval_Info> >& left,
const Linear_Form< Interval<T, Interval_Info> >& right) {
// Check that T is a floating point type.
PPL_COMPILE_TIME_CHECK(!std::numeric_limits<T>::is_exact,
"Octagonal_Shape<T>::refine_with_linear_form_inequality:"
" T not a floating point type.");
//We assume that the analyzer will not try to apply an unreachable filter.
PPL_ASSERT(!marked_empty());
// Dimension-compatibility checks.
// The dimensions of `left' and `right' should not be greater than the
// dimension of `*this'.
const dimension_type left_space_dim = left.space_dimension();
const dimension_type space_dim = space_dimension();
if (space_dim < left_space_dim)
throw_dimension_incompatible(
"refine_with_linear_form_inequality(left, right)", "left", left);
const dimension_type right_space_dim = right.space_dimension();
if (space_dim < right_space_dim)
throw_dimension_incompatible(
"refine_with_linear_form_inequality(left, right)", "right", right);
// Number of non-zero coefficients in `left': will be set to
// 0, 1, or 2, the latter value meaning any value greater than 1.
dimension_type left_t = 0;
// Variable-index of the last non-zero coefficient in `left', if any.
dimension_type left_w_id = 0;
// Number of non-zero coefficients in `right': will be set to
// 0, 1, or 2, the latter value meaning any value greater than 1.
dimension_type right_t = 0;
// Variable-index of the last non-zero coefficient in `right', if any.
dimension_type right_w_id = 0;
typedef Interval<T, Interval_Info> FP_Interval_Type;
// Get information about the number of non-zero coefficients in `left'.
for (dimension_type i = left_space_dim; i-- > 0; )
if (left.coefficient(Variable(i)) != 0) {
if (left_t++ == 1)
break;
else
left_w_id = i;
}
// Get information about the number of non-zero coefficients in `right'.
for (dimension_type i = right_space_dim; i-- > 0; )
if (right.coefficient(Variable(i)) != 0) {
if (right_t++ == 1)
break;
else
right_w_id = i;
}
const FP_Interval_Type& left_w_coeff =
left.coefficient(Variable(left_w_id));
const FP_Interval_Type& right_w_coeff =
right.coefficient(Variable(right_w_id));
if (left_t == 0) {
if (right_t == 0) {
// The constraint involves constants only. Ignore it: it is up to
// the analyzer to handle it.
PPL_ASSERT(OK());
return;
}
else if (right_w_coeff == 1 || right_w_coeff == -1) {
left_inhomogeneous_refine(right_t, right_w_id, left, right);
PPL_ASSERT(OK());
return;
}
}
else if (left_t == 1) {
if (left_w_coeff == 1 || left_w_coeff == -1) {
if (right_t == 0 || (right_w_coeff == 1 || right_w_coeff == -1)) {
left_one_var_refine(left_w_id, right_t, right_w_id, left, right);
PPL_ASSERT(OK());
return;
}
}
}
// General case.
general_refine(left_w_id, right_w_id, left, right);
PPL_ASSERT(OK());
} // end of refine_with_linear_form_inequality
template <typename T>
template <typename U>
void
BD_Shape<T>
::export_interval_constraints(U& dest) const {
const dimension_type space_dim = space_dimension();
if (space_dim > dest.space_dimension())
throw std::invalid_argument(
"BD_Shape<T>::export_interval_constraints");
// Expose all the interval constraints.
shortest_path_closure_assign();
if (marked_empty()) {
dest.set_empty();
PPL_ASSERT(OK());
return;
}
PPL_DIRTY_TEMP(N, tmp);
const DB_Row<N>& dbm_0 = dbm[0];
for (dimension_type i = space_dim; i-- > 0; ) {
// Set the upper bound.
const N& u = dbm_0[i+1];
if (!is_plus_infinity(u))
if (!dest.restrict_upper(i, u.raw_value()))
return;
// Set the lower bound.
const N& negated_l = dbm[i+1][0];
if (!is_plus_infinity(negated_l)) {
neg_assign_r(tmp, negated_l, ROUND_DOWN);
if (!dest.restrict_lower(i, tmp.raw_value()))
return;
}
}
PPL_ASSERT(OK());
}
template <typename T>
template <typename Interval_Info>
void
BD_Shape<T>::left_inhomogeneous_refine(const dimension_type& right_t,
const dimension_type& right_w_id,
const Linear_Form< Interval<T, Interval_Info> >& left,
const Linear_Form< Interval<T, Interval_Info> >& right) {
typedef Interval<T, Interval_Info> FP_Interval_Type;
if (right_t == 1) {
// The constraint has the form [a-, a+] <= [b-, b+] + [c-, c+] * x.
// Reduce it to the constraint +/-x <= b+ - a- if [c-, c+] = +/-[1, 1].
const FP_Interval_Type& right_w_coeff =
right.coefficient(Variable(right_w_id));
if (right_w_coeff == 1) {
PPL_DIRTY_TEMP(N, b_plus_minus_a_minus);
const FP_Interval_Type& left_a = left.inhomogeneous_term();
const FP_Interval_Type& right_b = right.inhomogeneous_term();
sub_assign_r(b_plus_minus_a_minus, right_b.upper(), left_a.lower(),
ROUND_UP);
add_dbm_constraint(right_w_id+1, 0, b_plus_minus_a_minus);
return;
}
if (right_w_coeff == -1) {
PPL_DIRTY_TEMP(N, b_plus_minus_a_minus);
const FP_Interval_Type& left_a = left.inhomogeneous_term();
const FP_Interval_Type& right_b = right.inhomogeneous_term();
sub_assign_r(b_plus_minus_a_minus, right_b.upper(), left_a.lower(),
ROUND_UP);
add_dbm_constraint(0, right_w_id+1, b_plus_minus_a_minus);
return;
}
}
} // end of left_inhomogeneous_refine
template <typename T>
template <typename Interval_Info>
void
BD_Shape<T>
::left_one_var_refine(const dimension_type& left_w_id,
const dimension_type& right_t,
const dimension_type& right_w_id,
const Linear_Form< Interval<T, Interval_Info> >& left,
const Linear_Form< Interval<T, Interval_Info> >& right) {
typedef Interval<T, Interval_Info> FP_Interval_Type;
if (right_t == 0) {
// The constraint has the form [b-, b+] + [c-, c+] * x <= [a-, a+]
// Reduce it to the constraint +/-x <= a+ - b- if [c-, c+] = +/-[1, 1].
const FP_Interval_Type& left_w_coeff =
left.coefficient(Variable(left_w_id));
if (left_w_coeff == 1) {
PPL_DIRTY_TEMP(N, a_plus_minus_b_minus);
const FP_Interval_Type& left_b = left.inhomogeneous_term();
const FP_Interval_Type& right_a = right.inhomogeneous_term();
sub_assign_r(a_plus_minus_b_minus, right_a.upper(), left_b.lower(),
ROUND_UP);
add_dbm_constraint(0, left_w_id+1, a_plus_minus_b_minus);
return;
}
if (left_w_coeff == -1) {
PPL_DIRTY_TEMP(N, a_plus_minus_b_minus);
const FP_Interval_Type& left_b = left.inhomogeneous_term();
const FP_Interval_Type& right_a = right.inhomogeneous_term();
sub_assign_r(a_plus_minus_b_minus, right_a.upper(), left_b.lower(),
ROUND_UP);
add_dbm_constraint(left_w_id+1, 0, a_plus_minus_b_minus);
return;
}
}
else if (right_t == 1) {
// The constraint has the form
// [a-, a+] + [b-, b+] * x <= [c-, c+] + [d-, d+] * y.
// Reduce it to the constraint +/-x +/-y <= c+ - a-
// if [b-, b+] = +/-[1, 1] and [d-, d+] = +/-[1, 1].
const FP_Interval_Type& left_w_coeff =
left.coefficient(Variable(left_w_id));
const FP_Interval_Type& right_w_coeff =
right.coefficient(Variable(right_w_id));
bool is_left_coeff_one = (left_w_coeff == 1);
bool is_left_coeff_minus_one = (left_w_coeff == -1);
bool is_right_coeff_one = (right_w_coeff == 1);
bool is_right_coeff_minus_one = (right_w_coeff == -1);
if (left_w_id == right_w_id) {
if ((is_left_coeff_one && is_right_coeff_one)
||
(is_left_coeff_minus_one && is_right_coeff_minus_one)) {
// Here we have an identity or a constants-only constraint.
return;
}
if (is_left_coeff_one && is_right_coeff_minus_one) {
// We fall back to a previous case.
PPL_DIRTY_TEMP(N, a_plus_minus_b_minus);
const FP_Interval_Type& left_b = left.inhomogeneous_term();
const FP_Interval_Type& right_a = right.inhomogeneous_term();
sub_assign_r(a_plus_minus_b_minus, right_a.upper(), left_b.lower(),
ROUND_UP);
div_2exp_assign_r(a_plus_minus_b_minus, a_plus_minus_b_minus, 1,
ROUND_UP);
add_dbm_constraint(0, left_w_id + 1, a_plus_minus_b_minus);
return;
}
if (is_left_coeff_minus_one && is_right_coeff_one) {
// We fall back to a previous case.
PPL_DIRTY_TEMP(N, a_plus_minus_b_minus);
const FP_Interval_Type& left_b = left.inhomogeneous_term();
const FP_Interval_Type& right_a = right.inhomogeneous_term();
sub_assign_r(a_plus_minus_b_minus, right_a.upper(), left_b.lower(),
ROUND_UP);
div_2exp_assign_r(a_plus_minus_b_minus, a_plus_minus_b_minus, 1,
ROUND_UP);
add_dbm_constraint(right_w_id + 1, 0, a_plus_minus_b_minus);
return;
}
}
else if (is_left_coeff_minus_one && is_right_coeff_one) {
// over-approximate (if is it possible) the inequality
// -B + [b1, b2] <= A + [a1, a2] by adding the constraints
// -B <= upper_bound(A) + (a2 - b1) and
// -A <= upper_bound(B) + (a2 - b1)
PPL_DIRTY_TEMP(N, a_plus_minus_b_minus);
const FP_Interval_Type& left_b = left.inhomogeneous_term();
const FP_Interval_Type& right_a = right.inhomogeneous_term();
sub_assign_r(a_plus_minus_b_minus, right_a.upper(), left_b.lower(),
ROUND_UP);
PPL_DIRTY_TEMP(N, ub);
ub = dbm[0][right_w_id + 1];
if (!is_plus_infinity(ub)) {
add_assign_r(ub, ub, a_plus_minus_b_minus, ROUND_UP);
add_dbm_constraint(left_w_id + 1, 0, ub);
}
ub = dbm[0][left_w_id + 1];
if (!is_plus_infinity(ub)) {
add_assign_r(ub, ub, a_plus_minus_b_minus, ROUND_UP);
add_dbm_constraint(right_w_id + 1, 0, ub);
}
return;
}
if (is_left_coeff_one && is_right_coeff_minus_one) {
// over-approximate (if is it possible) the inequality
// B + [b1, b2] <= -A + [a1, a2] by adding the constraints
// B <= upper_bound(-A) + (a2 - b1) and
// A <= upper_bound(-B) + (a2 - b1)
PPL_DIRTY_TEMP(N, a_plus_minus_b_minus);
const FP_Interval_Type& left_b = left.inhomogeneous_term();
const FP_Interval_Type& right_a = right.inhomogeneous_term();
sub_assign_r(a_plus_minus_b_minus, right_a.upper(), left_b.lower(),
ROUND_UP);
PPL_DIRTY_TEMP(N, ub);
ub = dbm[right_w_id + 1][0];
if (!is_plus_infinity(ub)) {
add_assign_r(ub, ub, a_plus_minus_b_minus, ROUND_UP);
add_dbm_constraint(0, left_w_id + 1, ub);
}
ub = dbm[left_w_id + 1][0];
if (!is_plus_infinity(ub)) {
add_assign_r(ub, ub, a_plus_minus_b_minus, ROUND_UP);
add_dbm_constraint(0, right_w_id + 1, ub);
}
return;
}
if (is_left_coeff_one && is_right_coeff_one) {
PPL_DIRTY_TEMP(N, c_plus_minus_a_minus);
const FP_Interval_Type& left_a = left.inhomogeneous_term();
const FP_Interval_Type& right_c = right.inhomogeneous_term();
sub_assign_r(c_plus_minus_a_minus, right_c.upper(), left_a.lower(),
ROUND_UP);
add_dbm_constraint(right_w_id+1, left_w_id+1, c_plus_minus_a_minus);
return;
}
if (is_left_coeff_minus_one && is_right_coeff_minus_one) {
PPL_DIRTY_TEMP(N, c_plus_minus_a_minus);
const FP_Interval_Type& left_a = left.inhomogeneous_term();
const FP_Interval_Type& right_c = right.inhomogeneous_term();
sub_assign_r(c_plus_minus_a_minus, right_c.upper(), left_a.lower(),
ROUND_UP);
add_dbm_constraint(left_w_id+1, right_w_id+1, c_plus_minus_a_minus);
return;
}
}
}
template <typename T>
template <typename Interval_Info>
void
BD_Shape<T>
::general_refine(const dimension_type& left_w_id,
const dimension_type& right_w_id,
const Linear_Form< Interval<T, Interval_Info> >& left,
const Linear_Form< Interval<T, Interval_Info> >& right) {
typedef Interval<T, Interval_Info> FP_Interval_Type;
Linear_Form<FP_Interval_Type> right_minus_left(right);
right_minus_left -= left;
// Declare temporaries outside of the loop.
PPL_DIRTY_TEMP(N, low_coeff);
PPL_DIRTY_TEMP(N, high_coeff);
PPL_DIRTY_TEMP(N, upper_bound);
dimension_type max_w_id = std::max(left_w_id, right_w_id);
for (dimension_type first_v = 0; first_v < max_w_id; ++first_v) {
for (dimension_type second_v = first_v+1;
second_v <= max_w_id; ++second_v) {
const FP_Interval_Type& lfv_coefficient =
left.coefficient(Variable(first_v));
const FP_Interval_Type& lsv_coefficient =
left.coefficient(Variable(second_v));
const FP_Interval_Type& rfv_coefficient =
right.coefficient(Variable(first_v));
const FP_Interval_Type& rsv_coefficient =
right.coefficient(Variable(second_v));
// We update the constraints only when both variables appear in at
// least one argument.
bool do_update = false;
assign_r(low_coeff, lfv_coefficient.lower(), ROUND_NOT_NEEDED);
assign_r(high_coeff, lfv_coefficient.upper(), ROUND_NOT_NEEDED);
if (low_coeff != 0 || high_coeff != 0) {
assign_r(low_coeff, lsv_coefficient.lower(), ROUND_NOT_NEEDED);
assign_r(high_coeff, lsv_coefficient.upper(), ROUND_NOT_NEEDED);
if (low_coeff != 0 || high_coeff != 0)
do_update = true;
else {
assign_r(low_coeff, rsv_coefficient.lower(), ROUND_NOT_NEEDED);
assign_r(high_coeff, rsv_coefficient.upper(), ROUND_NOT_NEEDED);
if (low_coeff != 0 || high_coeff != 0)
do_update = true;
}
}
else {
assign_r(low_coeff, rfv_coefficient.lower(), ROUND_NOT_NEEDED);
assign_r(high_coeff, rfv_coefficient.upper(), ROUND_NOT_NEEDED);
if (low_coeff != 0 || high_coeff != 0) {
assign_r(low_coeff, lsv_coefficient.lower(), ROUND_NOT_NEEDED);
assign_r(high_coeff, lsv_coefficient.upper(), ROUND_NOT_NEEDED);
if (low_coeff != 0 || high_coeff != 0)
do_update = true;
else {
assign_r(low_coeff, rsv_coefficient.lower(), ROUND_NOT_NEEDED);
assign_r(high_coeff, rsv_coefficient.upper(), ROUND_NOT_NEEDED);
if (low_coeff != 0 || high_coeff != 0)
do_update = true;
}
}
}
if (do_update) {
Variable first(first_v);
Variable second(second_v);
dimension_type n_first_var = first_v +1 ;
dimension_type n_second_var = second_v + 1;
linear_form_upper_bound(right_minus_left - first + second,
upper_bound);
add_dbm_constraint(n_first_var, n_second_var, upper_bound);
linear_form_upper_bound(right_minus_left + first - second,
upper_bound);
add_dbm_constraint(n_second_var, n_first_var, upper_bound);
}
}
}
// Finally, update the unary constraints.
for (dimension_type v = 0; v < max_w_id; ++v) {
const FP_Interval_Type& lv_coefficient =
left.coefficient(Variable(v));
const FP_Interval_Type& rv_coefficient =
right.coefficient(Variable(v));
// We update the constraints only if v appears in at least one of the
// two arguments.
bool do_update = false;
assign_r(low_coeff, lv_coefficient.lower(), ROUND_NOT_NEEDED);
assign_r(high_coeff, lv_coefficient.upper(), ROUND_NOT_NEEDED);
if (low_coeff != 0 || high_coeff != 0)
do_update = true;
else {
assign_r(low_coeff, rv_coefficient.lower(), ROUND_NOT_NEEDED);
assign_r(high_coeff, rv_coefficient.upper(), ROUND_NOT_NEEDED);
if (low_coeff != 0 || high_coeff != 0)
do_update = true;
}
if (do_update) {
Variable var(v);
dimension_type n_var = v + 1;
linear_form_upper_bound(right_minus_left + var, upper_bound);
add_dbm_constraint(0, n_var, upper_bound);
linear_form_upper_bound(right_minus_left - var, upper_bound);
add_dbm_constraint(n_var, 0, upper_bound);
}
}
}
template <typename T>
template <typename Interval_Info>
void
BD_Shape<T>::
linear_form_upper_bound(const Linear_Form< Interval<T, Interval_Info> >& lf,
N& result) const {
// Check that T is a floating point type.
PPL_COMPILE_TIME_CHECK(!std::numeric_limits<T>::is_exact,
"BD_Shape<T>::linear_form_upper_bound:"
" T not a floating point type.");
const dimension_type lf_space_dimension = lf.space_dimension();
PPL_ASSERT(lf_space_dimension <= space_dimension());
typedef Interval<T, Interval_Info> FP_Interval_Type;
PPL_DIRTY_TEMP(N, curr_lb);
PPL_DIRTY_TEMP(N, curr_ub);
PPL_DIRTY_TEMP(N, curr_var_ub);
PPL_DIRTY_TEMP(N, curr_minus_var_ub);
PPL_DIRTY_TEMP(N, first_comparison_term);
PPL_DIRTY_TEMP(N, second_comparison_term);
PPL_DIRTY_TEMP(N, negator);
assign_r(result, lf.inhomogeneous_term().upper(), ROUND_NOT_NEEDED);
for (dimension_type curr_var = 0, n_var = 0; curr_var < lf_space_dimension;
++curr_var) {
n_var = curr_var + 1;
const FP_Interval_Type&
curr_coefficient = lf.coefficient(Variable(curr_var));
assign_r(curr_lb, curr_coefficient.lower(), ROUND_NOT_NEEDED);
assign_r(curr_ub, curr_coefficient.upper(), ROUND_NOT_NEEDED);
if (curr_lb != 0 || curr_ub != 0) {
assign_r(curr_var_ub, dbm[0][n_var], ROUND_NOT_NEEDED);
neg_assign_r(curr_minus_var_ub, dbm[n_var][0], ROUND_NOT_NEEDED);
// Optimize the most commons cases: curr = +/-[1, 1].
if (curr_lb == 1 && curr_ub == 1) {
add_assign_r(result, result, std::max(curr_var_ub, curr_minus_var_ub),
ROUND_UP);
}
else if (curr_lb == -1 && curr_ub == -1) {
neg_assign_r(negator, std::min(curr_var_ub, curr_minus_var_ub),
ROUND_NOT_NEEDED);
add_assign_r(result, result, negator, ROUND_UP);
}
else {
// Next addend will be the maximum of four quantities.
assign_r(first_comparison_term, 0, ROUND_NOT_NEEDED);
assign_r(second_comparison_term, 0, ROUND_NOT_NEEDED);
add_mul_assign_r(first_comparison_term, curr_var_ub, curr_ub,
ROUND_UP);
add_mul_assign_r(second_comparison_term, curr_var_ub, curr_lb,
ROUND_UP);
assign_r(first_comparison_term, std::max(first_comparison_term,
second_comparison_term),
ROUND_NOT_NEEDED);
assign_r(second_comparison_term, 0, ROUND_NOT_NEEDED);
add_mul_assign_r(second_comparison_term, curr_minus_var_ub, curr_ub,
ROUND_UP);
assign_r(first_comparison_term, std::max(first_comparison_term,
second_comparison_term),
ROUND_NOT_NEEDED);
assign_r(second_comparison_term, 0, ROUND_NOT_NEEDED);
add_mul_assign_r(second_comparison_term, curr_minus_var_ub, curr_lb,
ROUND_UP);
assign_r(first_comparison_term, std::max(first_comparison_term,
second_comparison_term),
ROUND_NOT_NEEDED);
add_assign_r(result, result, first_comparison_term, ROUND_UP);
}
}
}
}
template <typename T>
void
BD_Shape<T>::affine_preimage(const Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator) {
// The denominator cannot be zero.
if (denominator == 0)
throw_invalid_argument("affine_preimage(v, e, d)", "d == 0");
// Dimension-compatibility checks.
// The dimension of `expr' should not be greater than the dimension
// of `*this'.
const dimension_type space_dim = space_dimension();
const dimension_type expr_space_dim = expr.space_dimension();
if (space_dim < expr_space_dim)
throw_dimension_incompatible("affine_preimage(v, e, d)", "e", expr);
// `var' should be one of the dimensions of
// the bounded difference shapes.
const dimension_type v = var.id() + 1;
if (v > space_dim)
throw_dimension_incompatible("affine_preimage(v, e, d)", var.id());
// The image of an empty BDS is empty too.
shortest_path_closure_assign();
if (marked_empty())
return;
const Coefficient& b = expr.inhomogeneous_term();
// Number of non-zero coefficients in `expr': will be set to
// 0, 1, or 2, the latter value meaning any value greater than 1.
dimension_type t = 0;
// Index of the last non-zero coefficient in `expr', if any.
dimension_type j = expr.last_nonzero();
if (j != 0) {
++t;
if (!expr.all_zeroes(1, j))
++t;
}
// Now we know the form of `expr':
// - If t == 0, then expr = b, with `b' a constant;
// - If t == 1, then expr = a*w + b, where `w' can be `v' or another
// variable; in this second case we have to check whether `a' is
// equal to `denominator' or `-denominator', since otherwise we have
// to fall back on the general form;
// - If t > 1, the `expr' is of the general form.
if (t == 0) {
// Case 1: expr = n; remove all constraints on `var'.
forget_all_dbm_constraints(v);
// Shortest-path closure is preserved, but not reduction.
if (marked_shortest_path_reduced())
reset_shortest_path_reduced();
PPL_ASSERT(OK());
return;
}
if (t == 1) {
// Value of the one and only non-zero coefficient in `expr'.
const Coefficient& a = expr.get(Variable(j - 1));
if (a == denominator || a == -denominator) {
// Case 2: expr = a*w + b, with a = +/- denominator.
if (j == var.space_dimension())
// Apply affine_image() on the inverse of this transformation.
affine_image(var, denominator*var - b, a);
else {
// `expr == a*w + b', where `w != v'.
// Remove all constraints on `var'.
forget_all_dbm_constraints(v);
// Shortest-path closure is preserved, but not reduction.
if (marked_shortest_path_reduced())
reset_shortest_path_reduced();
PPL_ASSERT(OK());
}
return;
}
}
// General case.
// Either t == 2, so that
// expr = a_1*x_1 + a_2*x_2 + ... + a_n*x_n + b, where n >= 2,
// or t = 1, expr = a*w + b, but a <> +/- denominator.
const Coefficient& expr_v = expr.coefficient(var);
if (expr_v != 0) {
// The transformation is invertible.
Linear_Expression inverse((expr_v + denominator)*var);
inverse -= expr;
affine_image(var, inverse, expr_v);
}
else {
// Transformation not invertible: all constraints on `var' are lost.
forget_all_dbm_constraints(v);
// Shortest-path closure is preserved, but not reduction.
if (marked_shortest_path_reduced())
reset_shortest_path_reduced();
}
PPL_ASSERT(OK());
}
template <typename T>
void
BD_Shape<T>
::bounded_affine_image(const Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator) {
// The denominator cannot be zero.
if (denominator == 0)
throw_invalid_argument("bounded_affine_image(v, lb, ub, d)", "d == 0");
// Dimension-compatibility checks.
// `var' should be one of the dimensions of the BD_Shape.
const dimension_type bds_space_dim = space_dimension();
const dimension_type v = var.id() + 1;
if (v > bds_space_dim)
throw_dimension_incompatible("bounded_affine_image(v, lb, ub, d)",
"v", var);
// The dimension of `lb_expr' and `ub_expr' should not be
// greater than the dimension of `*this'.
const dimension_type lb_space_dim = lb_expr.space_dimension();
if (bds_space_dim < lb_space_dim)
throw_dimension_incompatible("bounded_affine_image(v, lb, ub, d)",
"lb", lb_expr);
const dimension_type ub_space_dim = ub_expr.space_dimension();
if (bds_space_dim < ub_space_dim)
throw_dimension_incompatible("bounded_affine_image(v, lb, ub, d)",
"ub", ub_expr);
// Any image of an empty BDS is empty.
shortest_path_closure_assign();
if (marked_empty())
return;
const Coefficient& b = ub_expr.inhomogeneous_term();
// Number of non-zero coefficients in `ub_expr': will be set to
// 0, 1, or 2, the latter value meaning any value greater than 1.
dimension_type t = 0;
// Index of the last non-zero coefficient in `ub_expr', if any.
dimension_type w = ub_expr.last_nonzero();
if (w != 0) {
++t;
if (!ub_expr.all_zeroes(1, w))
++t;
}
// Now we know the form of `ub_expr':
// - If t == 0, then ub_expr == b, with `b' a constant;
// - If t == 1, then ub_expr == a*w + b, where `w' can be `v' or another
// variable; in this second case we have to check whether `a' is
// equal to `denominator' or `-denominator', since otherwise we have
// to fall back on the general form;
// - If t == 2, the `ub_expr' is of the general form.
PPL_DIRTY_TEMP_COEFFICIENT(minus_denom);
neg_assign(minus_denom, denominator);
if (t == 0) {
// Case 1: ub_expr == b.
generalized_affine_image(var,
GREATER_OR_EQUAL,
lb_expr,
denominator);
// Add the constraint `var <= b/denominator'.
add_dbm_constraint(0, v, b, denominator);
PPL_ASSERT(OK());
return;
}
if (t == 1) {
// Value of the one and only non-zero coefficient in `ub_expr'.
const Coefficient& a = ub_expr.get(Variable(w - 1));
if (a == denominator || a == minus_denom) {
// Case 2: expr == a*w + b, with a == +/- denominator.
if (w == v) {
// Here `var' occurs in `ub_expr'.
// To ease the computation, we add an additional dimension.
const Variable new_var(bds_space_dim);
add_space_dimensions_and_embed(1);
// Constrain the new dimension to be equal to `ub_expr'.
affine_image(new_var, ub_expr, denominator);
// NOTE: enforce shortest-path closure for precision.
shortest_path_closure_assign();
PPL_ASSERT(!marked_empty());
// Apply the affine lower bound.
generalized_affine_image(var,
GREATER_OR_EQUAL,
lb_expr,
denominator);
// Now apply the affine upper bound, as recorded in `new_var'.
add_constraint(var <= new_var);
// Remove the temporarily added dimension.
remove_higher_space_dimensions(bds_space_dim);
return;
}
else {
// Here `w != v', so that `expr' is of the form
// +/-denominator * w + b.
// Apply the affine lower bound.
generalized_affine_image(var,
GREATER_OR_EQUAL,
lb_expr,
denominator);
if (a == denominator) {
// Add the new constraint `v - w == b/denominator'.
add_dbm_constraint(w, v, b, denominator);
}
else {
// Here a == -denominator, so that we should be adding
// the constraint `v + w == b/denominator'.
// Approximate it by computing lower and upper bounds for `w'.
const N& dbm_w0 = dbm[w][0];
if (!is_plus_infinity(dbm_w0)) {
// Add the constraint `v <= b/denominator - lower_w'.
PPL_DIRTY_TEMP(N, d);
div_round_up(d, b, denominator);
add_assign_r(dbm[0][v], d, dbm_w0, ROUND_UP);
reset_shortest_path_closed();
}
}
PPL_ASSERT(OK());
return;
}
}
}
// General case.
// Either t == 2, so that
// ub_expr == a_1*x_1 + a_2*x_2 + ... + a_n*x_n + b, where n >= 2,
// or t == 1, ub_expr == a*w + b, but a <> +/- denominator.
// We will remove all the constraints on `var' and add back
// constraints providing upper and lower bounds for `var'.
// Compute upper approximations for `ub_expr' into `pos_sum'
// taking into account the sign of `denominator'.
const bool is_sc = (denominator > 0);
PPL_DIRTY_TEMP_COEFFICIENT(minus_b);
neg_assign(minus_b, b);
const Coefficient& sc_b = is_sc ? b : minus_b;
const Coefficient& sc_denom = is_sc ? denominator : minus_denom;
const Coefficient& minus_sc_denom = is_sc ? minus_denom : denominator;
// NOTE: here, for optimization purposes, `minus_expr' is only assigned
// when `denominator' is negative. Do not use it unless you are sure
// it has been correctly assigned.
Linear_Expression minus_expr;
if (!is_sc)
minus_expr = -ub_expr;
const Linear_Expression& sc_expr = is_sc ? ub_expr : minus_expr;
PPL_DIRTY_TEMP(N, pos_sum);
// Index of the variable that are unbounded in `this->dbm'.
PPL_UNINITIALIZED(dimension_type, pos_pinf_index);
// Number of unbounded variables found.
dimension_type pos_pinf_count = 0;
// Approximate the inhomogeneous term.
assign_r(pos_sum, sc_b, ROUND_UP);
// Approximate the homogeneous part of `sc_expr'.
const DB_Row<N>& dbm_0 = dbm[0];
// Speculative allocation of temporaries to be used in the following loop.
PPL_DIRTY_TEMP(N, coeff_i);
PPL_DIRTY_TEMP_COEFFICIENT(minus_sc_i);
// Note: indices above `w' can be disregarded, as they all have
// a zero coefficient in `sc_expr'.
for (Linear_Expression::const_iterator i = sc_expr.begin(),
i_end = sc_expr.lower_bound(Variable(w)); i != i_end; ++i) {
const Coefficient& sc_i = *i;
const dimension_type i_dim = i.variable().space_dimension();
const int sign_i = sgn(sc_i);
if (sign_i > 0) {
assign_r(coeff_i, sc_i, ROUND_UP);
// Approximating `sc_expr'.
if (pos_pinf_count <= 1) {
const N& up_approx_i = dbm_0[i_dim];
if (!is_plus_infinity(up_approx_i))
add_mul_assign_r(pos_sum, coeff_i, up_approx_i, ROUND_UP);
else {
++pos_pinf_count;
pos_pinf_index = i_dim;
}
}
}
else {
PPL_ASSERT(sign_i < 0);
neg_assign(minus_sc_i, sc_i);
// Note: using temporary named `coeff_i' to store -coeff_i.
assign_r(coeff_i, minus_sc_i, ROUND_UP);
// Approximating `sc_expr'.
if (pos_pinf_count <= 1) {
const N& up_approx_minus_i = dbm[i_dim][0];
if (!is_plus_infinity(up_approx_minus_i))
add_mul_assign_r(pos_sum, coeff_i, up_approx_minus_i, ROUND_UP);
else {
++pos_pinf_count;
pos_pinf_index = i_dim;
}
}
}
}
// Apply the affine lower bound.
generalized_affine_image(var,
GREATER_OR_EQUAL,
lb_expr,
denominator);
// Return immediately if no approximation could be computed.
if (pos_pinf_count > 1) {
return;
}
// In the following, shortest-path closure will be definitely lost.
reset_shortest_path_closed();
// Exploit the upper approximation, if possible.
if (pos_pinf_count <= 1) {
// Compute quotient (if needed).
if (sc_denom != 1) {
// Before computing quotients, the denominator should be approximated
// towards zero. Since `sc_denom' is known to be positive, this amounts to
// rounding downwards, which is achieved as usual by rounding upwards
// `minus_sc_denom' and negating again the result.
PPL_DIRTY_TEMP(N, down_sc_denom);
assign_r(down_sc_denom, minus_sc_denom, ROUND_UP);
neg_assign_r(down_sc_denom, down_sc_denom, ROUND_UP);
div_assign_r(pos_sum, pos_sum, down_sc_denom, ROUND_UP);
}
// Add the upper bound constraint, if meaningful.
if (pos_pinf_count == 0) {
// Add the constraint `v <= pos_sum'.
dbm[0][v] = pos_sum;
// Deduce constraints of the form `v - u', where `u != v'.
deduce_v_minus_u_bounds(v, w, sc_expr, sc_denom, pos_sum);
}
else
// Here `pos_pinf_count == 1'.
if (pos_pinf_index != v
&& sc_expr.get(Variable(pos_pinf_index - 1)) == sc_denom)
// Add the constraint `v - pos_pinf_index <= pos_sum'.
dbm[pos_pinf_index][v] = pos_sum;
}
PPL_ASSERT(OK());
}
template <typename T>
void
BD_Shape<T>
::bounded_affine_preimage(const Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator) {
// The denominator cannot be zero.
if (denominator == 0)
throw_invalid_argument("bounded_affine_preimage(v, lb, ub, d)", "d == 0");
// Dimension-compatibility checks.
// `var' should be one of the dimensions of the BD_Shape.
const dimension_type space_dim = space_dimension();
const dimension_type v = var.id() + 1;
if (v > space_dim)
throw_dimension_incompatible("bounded_affine_preimage(v, lb, ub, d)",
"v", var);
// The dimension of `lb_expr' and `ub_expr' should not be
// greater than the dimension of `*this'.
const dimension_type lb_space_dim = lb_expr.space_dimension();
if (space_dim < lb_space_dim)
throw_dimension_incompatible("bounded_affine_preimage(v, lb, ub, d)",
"lb", lb_expr);
const dimension_type ub_space_dim = ub_expr.space_dimension();
if (space_dim < ub_space_dim)
throw_dimension_incompatible("bounded_affine_preimage(v, lb, ub, d)",
"ub", ub_expr);
// Any preimage of an empty BDS is empty.
shortest_path_closure_assign();
if (marked_empty())
return;
if (ub_expr.coefficient(var) == 0) {
refine(var, LESS_OR_EQUAL, ub_expr, denominator);
generalized_affine_preimage(var, GREATER_OR_EQUAL,
lb_expr, denominator);
return;
}
if (lb_expr.coefficient(var) == 0) {
refine(var, GREATER_OR_EQUAL, lb_expr, denominator);
generalized_affine_preimage(var, LESS_OR_EQUAL,
ub_expr, denominator);
return;
}
const Coefficient& lb_expr_v = lb_expr.coefficient(var);
// Here `var' occurs in `lb_expr' and `ub_expr'.
// To ease the computation, we add an additional dimension.
const Variable new_var(space_dim);
add_space_dimensions_and_embed(1);
const Linear_Expression lb_inverse
= lb_expr - (lb_expr_v + denominator)*var;
PPL_DIRTY_TEMP_COEFFICIENT(lb_inverse_denom);
neg_assign(lb_inverse_denom, lb_expr_v);
affine_image(new_var, lb_inverse, lb_inverse_denom);
shortest_path_closure_assign();
PPL_ASSERT(!marked_empty());
generalized_affine_preimage(var, LESS_OR_EQUAL,
ub_expr, denominator);
if (sgn(denominator) == sgn(lb_inverse_denom))
add_constraint(var >= new_var);
else
add_constraint(var <= new_var);
// Remove the temporarily added dimension.
remove_higher_space_dimensions(space_dim);
}
template <typename T>
void
BD_Shape<T>::generalized_affine_image(const Variable var,
const Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference
denominator) {
// The denominator cannot be zero.
if (denominator == 0)
throw_invalid_argument("generalized_affine_image(v, r, e, d)", "d == 0");
// Dimension-compatibility checks.
// The dimension of `expr' should not be greater than the dimension
// of `*this'.
const dimension_type space_dim = space_dimension();
const dimension_type expr_space_dim = expr.space_dimension();
if (space_dim < expr_space_dim)
throw_dimension_incompatible("generalized_affine_image(v, r, e, d)",
"e", expr);
// `var' should be one of the dimensions of the BDS.
const dimension_type v = var.id() + 1;
if (v > space_dim)
throw_dimension_incompatible("generalized_affine_image(v, r, e, d)",
var.id());
// The relation symbol cannot be a strict relation symbol.
if (relsym == LESS_THAN || relsym == GREATER_THAN)
throw_invalid_argument("generalized_affine_image(v, r, e, d)",
"r is a strict relation symbol");
// The relation symbol cannot be a disequality.
if (relsym == NOT_EQUAL)
throw_invalid_argument("generalized_affine_image(v, r, e, d)",
"r is the disequality relation symbol");
if (relsym == EQUAL) {
// The relation symbol is "=":
// this is just an affine image computation.
affine_image(var, expr, denominator);
return;
}
// The image of an empty BDS is empty too.
shortest_path_closure_assign();
if (marked_empty())
return;
const Coefficient& b = expr.inhomogeneous_term();
// Number of non-zero coefficients in `expr': will be set to
// 0, 1, or 2, the latter value meaning any value greater than 1.
dimension_type t = 0;
// Index of the last non-zero coefficient in `expr', if any.
dimension_type w = expr.last_nonzero();
if (w != 0) {
++t;
if (!expr.all_zeroes(1, w))
++t;
}
// Now we know the form of `expr':
// - If t == 0, then expr == b, with `b' a constant;
// - If t == 1, then expr == a*w + b, where `w' can be `v' or another
// variable; in this second case we have to check whether `a' is
// equal to `denominator' or `-denominator', since otherwise we have
// to fall back on the general form;
// - If t == 2, the `expr' is of the general form.
DB_Row<N>& dbm_0 = dbm[0];
DB_Row<N>& dbm_v = dbm[v];
PPL_DIRTY_TEMP_COEFFICIENT(minus_denom);
neg_assign(minus_denom, denominator);
if (t == 0) {
// Case 1: expr == b.
// Remove all constraints on `var'.
forget_all_dbm_constraints(v);
// Both shortest-path closure and reduction are lost.
reset_shortest_path_closed();
switch (relsym) {
case LESS_OR_EQUAL:
// Add the constraint `var <= b/denominator'.
add_dbm_constraint(0, v, b, denominator);
break;
case GREATER_OR_EQUAL:
// Add the constraint `var >= b/denominator',
// i.e., `-var <= -b/denominator',
add_dbm_constraint(v, 0, b, minus_denom);
break;
default:
// We already dealt with the other cases.
PPL_UNREACHABLE;
break;
}
PPL_ASSERT(OK());
return;
}
if (t == 1) {
// Value of the one and only non-zero coefficient in `expr'.
const Coefficient& a = expr.get(Variable(w - 1));
if (a == denominator || a == minus_denom) {
// Case 2: expr == a*w + b, with a == +/- denominator.
PPL_DIRTY_TEMP(N, d);
switch (relsym) {
case LESS_OR_EQUAL:
div_round_up(d, b, denominator);
if (w == v) {
// `expr' is of the form: a*v + b.
// Shortest-path closure and reduction are not preserved.
reset_shortest_path_closed();
if (a == denominator) {
// Translate each constraint `v - w <= dbm_wv'
// into the constraint `v - w <= dbm_wv + b/denominator';
// forget each constraint `w - v <= dbm_vw'.
for (dimension_type i = space_dim + 1; i-- > 0; ) {
N& dbm_iv = dbm[i][v];
add_assign_r(dbm_iv, dbm_iv, d, ROUND_UP);
assign_r(dbm_v[i], PLUS_INFINITY, ROUND_NOT_NEEDED);
}
}
else {
// Here `a == -denominator'.
// Translate the constraint `0 - v <= dbm_v0'
// into the constraint `0 - v <= dbm_v0 + b/denominator'.
N& dbm_v0 = dbm_v[0];
add_assign_r(dbm_0[v], dbm_v0, d, ROUND_UP);
// Forget all the other constraints on `v'.
assign_r(dbm_v0, PLUS_INFINITY, ROUND_NOT_NEEDED);
forget_binary_dbm_constraints(v);
}
}
else {
// Here `w != v', so that `expr' is of the form
// +/-denominator * w + b, with `w != v'.
// Remove all constraints on `v'.
forget_all_dbm_constraints(v);
// Shortest-path closure is preserved, but not reduction.
if (marked_shortest_path_reduced())
reset_shortest_path_reduced();
if (a == denominator)
// Add the new constraint `v - w <= b/denominator'.
add_dbm_constraint(w, v, d);
else {
// Here a == -denominator, so that we should be adding
// the constraint `v <= b/denominator - w'.
// Approximate it by computing a lower bound for `w'.
const N& dbm_w0 = dbm[w][0];
if (!is_plus_infinity(dbm_w0)) {
// Add the constraint `v <= b/denominator - lb_w'.
add_assign_r(dbm_0[v], d, dbm_w0, ROUND_UP);
// Shortest-path closure is not preserved.
reset_shortest_path_closed();
}
}
}
break;
case GREATER_OR_EQUAL:
div_round_up(d, b, minus_denom);
if (w == v) {
// `expr' is of the form: a*w + b.
// Shortest-path closure and reduction are not preserved.
reset_shortest_path_closed();
if (a == denominator) {
// Translate each constraint `w - v <= dbm_vw'
// into the constraint `w - v <= dbm_vw - b/denominator';
// forget each constraint `v - w <= dbm_wv'.
for (dimension_type i = space_dim + 1; i-- > 0; ) {
N& dbm_vi = dbm_v[i];
add_assign_r(dbm_vi, dbm_vi, d, ROUND_UP);
assign_r(dbm[i][v], PLUS_INFINITY, ROUND_NOT_NEEDED);
}
}
else {
// Here `a == -denominator'.
// Translate the constraint `0 - v <= dbm_v0'
// into the constraint `0 - v <= dbm_0v - b/denominator'.
N& dbm_0v = dbm_0[v];
add_assign_r(dbm_v[0], dbm_0v, d, ROUND_UP);
// Forget all the other constraints on `v'.
assign_r(dbm_0v, PLUS_INFINITY, ROUND_NOT_NEEDED);
forget_binary_dbm_constraints(v);
}
}
else {
// Here `w != v', so that `expr' is of the form
// +/-denominator * w + b, with `w != v'.
// Remove all constraints on `v'.
forget_all_dbm_constraints(v);
// Shortest-path closure is preserved, but not reduction.
if (marked_shortest_path_reduced())
reset_shortest_path_reduced();
if (a == denominator)
// Add the new constraint `v - w >= b/denominator',
// i.e., `w - v <= -b/denominator'.
add_dbm_constraint(v, w, d);
else {
// Here a == -denominator, so that we should be adding
// the constraint `v >= -w + b/denominator',
// i.e., `-v <= w - b/denominator'.
// Approximate it by computing an upper bound for `w'.
const N& dbm_0w = dbm_0[w];
if (!is_plus_infinity(dbm_0w)) {
// Add the constraint `-v <= ub_w - b/denominator'.
add_assign_r(dbm_v[0], dbm_0w, d, ROUND_UP);
// Shortest-path closure is not preserved.
reset_shortest_path_closed();
}
}
}
break;
default:
// We already dealt with the other cases.
PPL_UNREACHABLE;
break;
}
PPL_ASSERT(OK());
return;
}
}
// General case.
// Either t == 2, so that
// expr == a_1*x_1 + a_2*x_2 + ... + a_n*x_n + b, where n >= 2,
// or t == 1, expr == a*w + b, but a <> +/- denominator.
// We will remove all the constraints on `v' and add back
// a constraint providing an upper or a lower bound for `v'
// (depending on `relsym').
const bool is_sc = (denominator > 0);
PPL_DIRTY_TEMP_COEFFICIENT(minus_b);
neg_assign(minus_b, b);
const Coefficient& sc_b = is_sc ? b : minus_b;
const Coefficient& minus_sc_b = is_sc ? minus_b : b;
const Coefficient& sc_denom = is_sc ? denominator : minus_denom;
const Coefficient& minus_sc_denom = is_sc ? minus_denom : denominator;
// NOTE: here, for optimization purposes, `minus_expr' is only assigned
// when `denominator' is negative. Do not use it unless you are sure
// it has been correctly assigned.
Linear_Expression minus_expr;
if (!is_sc)
minus_expr = -expr;
const Linear_Expression& sc_expr = is_sc ? expr : minus_expr;
PPL_DIRTY_TEMP(N, sum);
// Index of variable that is unbounded in `this->dbm'.
PPL_UNINITIALIZED(dimension_type, pinf_index);
// Number of unbounded variables found.
dimension_type pinf_count = 0;
// Speculative allocation of temporaries to be used in the following loops.
PPL_DIRTY_TEMP(N, coeff_i);
PPL_DIRTY_TEMP_COEFFICIENT(minus_sc_i);
switch (relsym) {
case LESS_OR_EQUAL:
// Compute an upper approximation for `sc_expr' into `sum'.
// Approximate the inhomogeneous term.
assign_r(sum, sc_b, ROUND_UP);
// Approximate the homogeneous part of `sc_expr'.
// Note: indices above `w' can be disregarded, as they all have
// a zero coefficient in `sc_expr'.
PPL_ASSERT(w != 0);
for (Linear_Expression::const_iterator i = sc_expr.begin(),
i_end = sc_expr.lower_bound(Variable(w)); i != i_end; ++i) {
const Coefficient& sc_i = *i;
const dimension_type i_dim = i.variable().space_dimension();
const int sign_i = sgn(sc_i);
PPL_ASSERT(sign_i != 0);
// Choose carefully: we are approximating `sc_expr'.
const N& approx_i = (sign_i > 0) ? dbm_0[i_dim] : dbm[i_dim][0];
if (is_plus_infinity(approx_i)) {
if (++pinf_count > 1)
break;
pinf_index = i_dim;
continue;
}
if (sign_i > 0)
assign_r(coeff_i, sc_i, ROUND_UP);
else {
neg_assign(minus_sc_i, sc_i);
assign_r(coeff_i, minus_sc_i, ROUND_UP);
}
add_mul_assign_r(sum, coeff_i, approx_i, ROUND_UP);
}
// Remove all constraints on `v'.
forget_all_dbm_constraints(v);
// Shortest-path closure is preserved, but not reduction.
if (marked_shortest_path_reduced())
reset_shortest_path_reduced();
// Return immediately if no approximation could be computed.
if (pinf_count > 1) {
PPL_ASSERT(OK());
return;
}
// Divide by the (sign corrected) denominator (if needed).
if (sc_denom != 1) {
// Before computing the quotient, the denominator should be approximated
// towards zero. Since `sc_denom' is known to be positive, this amounts to
// rounding downwards, which is achieved as usual by rounding upwards
// `minus_sc_denom' and negating again the result.
PPL_DIRTY_TEMP(N, down_sc_denom);
assign_r(down_sc_denom, minus_sc_denom, ROUND_UP);
neg_assign_r(down_sc_denom, down_sc_denom, ROUND_UP);
div_assign_r(sum, sum, down_sc_denom, ROUND_UP);
}
if (pinf_count == 0) {
// Add the constraint `v <= sum'.
add_dbm_constraint(0, v, sum);
// Deduce constraints of the form `v - u', where `u != v'.
deduce_v_minus_u_bounds(v, w, sc_expr, sc_denom, sum);
}
else if (pinf_count == 1)
if (pinf_index != v && expr.get(Variable(pinf_index - 1)) == denominator)
// Add the constraint `v - pinf_index <= sum'.
add_dbm_constraint(pinf_index, v, sum);
break;
case GREATER_OR_EQUAL:
// Compute an upper approximation for `-sc_expr' into `sum'.
// Note: approximating `-sc_expr' from above and then negating the
// result is the same as approximating `sc_expr' from below.
// Approximate the inhomogeneous term.
assign_r(sum, minus_sc_b, ROUND_UP);
// Approximate the homogeneous part of `-sc_expr'.
for (Linear_Expression::const_iterator i = sc_expr.begin(),
i_end = sc_expr.lower_bound(Variable(w)); i != i_end; ++i) {
const Coefficient& sc_i = *i;
const int sign_i = sgn(sc_i);
PPL_ASSERT(sign_i != 0);
const dimension_type i_dim = i.variable().space_dimension();
// Choose carefully: we are approximating `-sc_expr'.
const N& approx_i = (sign_i > 0) ? dbm[i_dim][0] : dbm_0[i_dim];
if (is_plus_infinity(approx_i)) {
if (++pinf_count > 1)
break;
pinf_index = i_dim;
continue;
}
if (sign_i > 0)
assign_r(coeff_i, sc_i, ROUND_UP);
else {
neg_assign(minus_sc_i, sc_i);
assign_r(coeff_i, minus_sc_i, ROUND_UP);
}
add_mul_assign_r(sum, coeff_i, approx_i, ROUND_UP);
}
// Remove all constraints on `var'.
forget_all_dbm_constraints(v);
// Shortest-path closure is preserved, but not reduction.
if (marked_shortest_path_reduced())
reset_shortest_path_reduced();
// Return immediately if no approximation could be computed.
if (pinf_count > 1) {
PPL_ASSERT(OK());
return;
}
// Divide by the (sign corrected) denominator (if needed).
if (sc_denom != 1) {
// Before computing the quotient, the denominator should be approximated
// towards zero. Since `sc_denom' is known to be positive, this amounts to
// rounding downwards, which is achieved as usual by rounding upwards
// `minus_sc_denom' and negating again the result.
PPL_DIRTY_TEMP(N, down_sc_denom);
assign_r(down_sc_denom, minus_sc_denom, ROUND_UP);
neg_assign_r(down_sc_denom, down_sc_denom, ROUND_UP);
div_assign_r(sum, sum, down_sc_denom, ROUND_UP);
}
if (pinf_count == 0) {
// Add the constraint `v >= -sum', i.e., `-v <= sum'.
add_dbm_constraint(v, 0, sum);
// Deduce constraints of the form `u - v', where `u != v'.
deduce_u_minus_v_bounds(v, w, sc_expr, sc_denom, sum);
}
else if (pinf_count == 1)
if (pinf_index != v && expr.get(Variable(pinf_index - 1)) == denominator)
// Add the constraint `v - pinf_index >= -sum',
// i.e., `pinf_index - v <= sum'.
add_dbm_constraint(v, pinf_index, sum);
break;
default:
// We already dealt with the other cases.
PPL_UNREACHABLE;
break;
}
PPL_ASSERT(OK());
}
template <typename T>
void
BD_Shape<T>::generalized_affine_image(const Linear_Expression& lhs,
const Relation_Symbol relsym,
const Linear_Expression& rhs) {
// Dimension-compatibility checks.
// The dimension of `lhs' should not be greater than the dimension
// of `*this'.
const dimension_type space_dim = space_dimension();
const dimension_type lhs_space_dim = lhs.space_dimension();
if (space_dim < lhs_space_dim)
throw_dimension_incompatible("generalized_affine_image(e1, r, e2)",
"e1", lhs);
// The dimension of `rhs' should not be greater than the dimension
// of `*this'.
const dimension_type rhs_space_dim = rhs.space_dimension();
if (space_dim < rhs_space_dim)
throw_dimension_incompatible("generalized_affine_image(e1, r, e2)",
"e2", rhs);
// Strict relation symbols are not admitted for BDSs.
if (relsym == LESS_THAN || relsym == GREATER_THAN)
throw_invalid_argument("generalized_affine_image(e1, r, e2)",
"r is a strict relation symbol");
// The relation symbol cannot be a disequality.
if (relsym == NOT_EQUAL)
throw_invalid_argument("generalized_affine_image(e1, r, e2)",
"r is the disequality relation symbol");
// The image of an empty BDS is empty.
shortest_path_closure_assign();
if (marked_empty())
return;
// Number of non-zero coefficients in `lhs': will be set to
// 0, 1, or 2, the latter value meaning any value greater than 1.
dimension_type t_lhs = 0;
// Index of the last non-zero coefficient in `lhs', if any.
dimension_type j_lhs = lhs.last_nonzero();
if (j_lhs != 0) {
++t_lhs;
if (!lhs.all_zeroes(1, j_lhs))
++t_lhs;
--j_lhs;
}
const Coefficient& b_lhs = lhs.inhomogeneous_term();
if (t_lhs == 0) {
// `lhs' is a constant.
// In principle, it is sufficient to add the constraint `lhs relsym rhs'.
// Note that this constraint is a bounded difference if `t_rhs <= 1'
// or `t_rhs > 1' and `rhs == a*v - a*w + b_rhs'. If `rhs' is of a
// more general form, it will be simply ignored.
// TODO: if it is not a bounded difference, should we compute
// approximations for this constraint?
switch (relsym) {
case LESS_OR_EQUAL:
refine_no_check(lhs <= rhs);
break;
case EQUAL:
refine_no_check(lhs == rhs);
break;
case GREATER_OR_EQUAL:
refine_no_check(lhs >= rhs);
break;
default:
// We already dealt with the other cases.
PPL_UNREACHABLE;
break;
}
}
else if (t_lhs == 1) {
// Here `lhs == a_lhs * v + b_lhs'.
// Independently from the form of `rhs', we can exploit the
// method computing generalized affine images for a single variable.
Variable v(j_lhs);
// Compute a sign-corrected relation symbol.
const Coefficient& denom = lhs.coefficient(v);
Relation_Symbol new_relsym = relsym;
if (denom < 0) {
if (relsym == LESS_OR_EQUAL)
new_relsym = GREATER_OR_EQUAL;
else if (relsym == GREATER_OR_EQUAL)
new_relsym = LESS_OR_EQUAL;
}
Linear_Expression expr = rhs - b_lhs;
generalized_affine_image(v, new_relsym, expr, denom);
}
else {
// Here `lhs' is of the general form, having at least two variables.
// Compute the set of variables occurring in `lhs'.
std::vector<Variable> lhs_vars;
for (Linear_Expression::const_iterator i = lhs.begin(), i_end = lhs.end();
i != i_end; ++i)
lhs_vars.push_back(i.variable());
const dimension_type num_common_dims = std::min(lhs_space_dim, rhs_space_dim);
if (!lhs.have_a_common_variable(rhs, Variable(0), Variable(num_common_dims))) {
// `lhs' and `rhs' variables are disjoint.
// Existentially quantify all variables in the lhs.
for (dimension_type i = lhs_vars.size(); i-- > 0; )
forget_all_dbm_constraints(lhs_vars[i].id() + 1);
// Constrain the left hand side expression so that it is related to
// the right hand side expression as dictated by `relsym'.
// TODO: if the following constraint is NOT a bounded difference,
// it will be simply ignored. Should we compute approximations for it?
switch (relsym) {
case LESS_OR_EQUAL:
refine_no_check(lhs <= rhs);
break;
case EQUAL:
refine_no_check(lhs == rhs);
break;
case GREATER_OR_EQUAL:
refine_no_check(lhs >= rhs);
break;
default:
// We already dealt with the other cases.
PPL_UNREACHABLE;
break;
}
}
else {
// Some variables in `lhs' also occur in `rhs'.
#if 1 // Simplified computation (see the TODO note below).
for (dimension_type i = lhs_vars.size(); i-- > 0; )
forget_all_dbm_constraints(lhs_vars[i].id() + 1);
#else // Currently unnecessarily complex computation.
// More accurate computation that is worth doing only if
// the following TODO note is accurately dealt with.
// To ease the computation, we add an additional dimension.
const Variable new_var(space_dim);
add_space_dimensions_and_embed(1);
// Constrain the new dimension to be equal to `rhs'.
// NOTE: calling affine_image() instead of refine_no_check()
// ensures some approximation is tried even when the constraint
// is not a bounded difference.
affine_image(new_var, rhs);
// Existentially quantify all variables in the lhs.
// NOTE: enforce shortest-path closure for precision.
shortest_path_closure_assign();
PPL_ASSERT(!marked_empty());
for (dimension_type i = lhs_vars.size(); i-- > 0; )
forget_all_dbm_constraints(lhs_vars[i].id() + 1);
// Constrain the new dimension so that it is related to
// the left hand side as dictated by `relsym'.
// TODO: each one of the following constraints is definitely NOT
// a bounded differences (since it has 3 variables at least).
// Thus, the method refine_no_check() will simply ignore it.
// Should we compute approximations for this constraint?
switch (relsym) {
case LESS_OR_EQUAL:
refine_no_check(lhs <= new_var);
break;
case EQUAL:
refine_no_check(lhs == new_var);
break;
case GREATER_OR_EQUAL:
refine_no_check(lhs >= new_var);
break;
default:
// We already dealt with the other cases.
PPL_UNREACHABLE;
break;
}
// Remove the temporarily added dimension.
remove_higher_space_dimensions(space_dim-1);
#endif // Currently unnecessarily complex computation.
}
}
PPL_ASSERT(OK());
}
template <typename T>
void
BD_Shape<T>::generalized_affine_preimage(const Variable var,
const Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference
denominator) {
// The denominator cannot be zero.
if (denominator == 0)
throw_invalid_argument("generalized_affine_preimage(v, r, e, d)",
"d == 0");
// Dimension-compatibility checks.
// The dimension of `expr' should not be greater than the dimension
// of `*this'.
const dimension_type space_dim = space_dimension();
const dimension_type expr_space_dim = expr.space_dimension();
if (space_dim < expr_space_dim)
throw_dimension_incompatible("generalized_affine_preimage(v, r, e, d)",
"e", expr);
// `var' should be one of the dimensions of the BDS.
const dimension_type v = var.id() + 1;
if (v > space_dim)
throw_dimension_incompatible("generalized_affine_preimage(v, r, e, d)",
var.id());
// The relation symbol cannot be a strict relation symbol.
if (relsym == LESS_THAN || relsym == GREATER_THAN)
throw_invalid_argument("generalized_affine_preimage(v, r, e, d)",
"r is a strict relation symbol");
// The relation symbol cannot be a disequality.
if (relsym == NOT_EQUAL)
throw_invalid_argument("generalized_affine_preimage(v, r, e, d)",
"r is the disequality relation symbol");
if (relsym == EQUAL) {
// The relation symbol is "=":
// this is just an affine preimage computation.
affine_preimage(var, expr, denominator);
return;
}
// The preimage of an empty BDS is empty too.
shortest_path_closure_assign();
if (marked_empty())
return;
// Check whether the preimage of this affine relation can be easily
// computed as the image of its inverse relation.
const Coefficient& expr_v = expr.coefficient(var);
if (expr_v != 0) {
const Relation_Symbol reversed_relsym = (relsym == LESS_OR_EQUAL)
? GREATER_OR_EQUAL : LESS_OR_EQUAL;
const Linear_Expression inverse
= expr - (expr_v + denominator)*var;
PPL_DIRTY_TEMP_COEFFICIENT(inverse_denom);
neg_assign(inverse_denom, expr_v);
const Relation_Symbol inverse_relsym
= (sgn(denominator) == sgn(inverse_denom)) ? relsym : reversed_relsym;
generalized_affine_image(var, inverse_relsym, inverse, inverse_denom);
return;
}
refine(var, relsym, expr, denominator);
// If the shrunk BD_Shape is empty, its preimage is empty too; ...
if (is_empty())
return;
// ... otherwise, since the relation was not invertible,
// we just forget all constraints on `v'.
forget_all_dbm_constraints(v);
// Shortest-path closure is preserved, but not reduction.
if (marked_shortest_path_reduced())
reset_shortest_path_reduced();
PPL_ASSERT(OK());
}
template <typename T>
void
BD_Shape<T>::generalized_affine_preimage(const Linear_Expression& lhs,
const Relation_Symbol relsym,
const Linear_Expression& rhs) {
// Dimension-compatibility checks.
// The dimension of `lhs' should not be greater than the dimension
// of `*this'.
const dimension_type bds_space_dim = space_dimension();
const dimension_type lhs_space_dim = lhs.space_dimension();
if (bds_space_dim < lhs_space_dim)
throw_dimension_incompatible("generalized_affine_preimage(e1, r, e2)",
"e1", lhs);
// The dimension of `rhs' should not be greater than the dimension
// of `*this'.
const dimension_type rhs_space_dim = rhs.space_dimension();
if (bds_space_dim < rhs_space_dim)
throw_dimension_incompatible("generalized_affine_preimage(e1, r, e2)",
"e2", rhs);
// Strict relation symbols are not admitted for BDSs.
if (relsym == LESS_THAN || relsym == GREATER_THAN)
throw_invalid_argument("generalized_affine_preimage(e1, r, e2)",
"r is a strict relation symbol");
// The relation symbol cannot be a disequality.
if (relsym == NOT_EQUAL)
throw_invalid_argument("generalized_affine_preimage(e1, r, e2)",
"r is the disequality relation symbol");
// The preimage of an empty BDS is empty.
shortest_path_closure_assign();
if (marked_empty())
return;
// Number of non-zero coefficients in `lhs': will be set to
// 0, 1, or 2, the latter value meaning any value greater than 1.
dimension_type t_lhs = 0;
// Index of the last non-zero coefficient in `lhs', if any.
dimension_type j_lhs = lhs.last_nonzero();
if (j_lhs != 0) {
++t_lhs;
if (!lhs.all_zeroes(1, j_lhs))
++t_lhs;
--j_lhs;
}
const Coefficient& b_lhs = lhs.inhomogeneous_term();
if (t_lhs == 0) {
// `lhs' is a constant.
// In this case, preimage and image happen to be the same.
generalized_affine_image(lhs, relsym, rhs);
return;
}
else if (t_lhs == 1) {
// Here `lhs == a_lhs * v + b_lhs'.
// Independently from the form of `rhs', we can exploit the
// method computing generalized affine preimages for a single variable.
Variable v(j_lhs);
// Compute a sign-corrected relation symbol.
const Coefficient& denom = lhs.coefficient(v);
Relation_Symbol new_relsym = relsym;
if (denom < 0) {
if (relsym == LESS_OR_EQUAL)
new_relsym = GREATER_OR_EQUAL;
else if (relsym == GREATER_OR_EQUAL)
new_relsym = LESS_OR_EQUAL;
}
Linear_Expression expr = rhs - b_lhs;
generalized_affine_preimage(v, new_relsym, expr, denom);
}
else {
// Here `lhs' is of the general form, having at least two variables.
// Compute the set of variables occurring in `lhs'.
std::vector<Variable> lhs_vars;
for (Linear_Expression::const_iterator i = lhs.begin(), i_end = lhs.end();
i != i_end; ++i)
lhs_vars.push_back(i.variable());
const dimension_type num_common_dims = std::min(lhs_space_dim, rhs_space_dim);
if (!lhs.have_a_common_variable(rhs, Variable(0), Variable(num_common_dims))) {
// `lhs' and `rhs' variables are disjoint.
// Constrain the left hand side expression so that it is related to
// the right hand side expression as dictated by `relsym'.
// TODO: if the following constraint is NOT a bounded difference,
// it will be simply ignored. Should we compute approximations for it?
switch (relsym) {
case LESS_OR_EQUAL:
refine_no_check(lhs <= rhs);
break;
case EQUAL:
refine_no_check(lhs == rhs);
break;
case GREATER_OR_EQUAL:
refine_no_check(lhs >= rhs);
break;
default:
// We already dealt with the other cases.
PPL_UNREACHABLE;
break;
}
// If the shrunk BD_Shape is empty, its preimage is empty too; ...
if (is_empty())
return;
// Existentially quantify all variables in the lhs.
for (dimension_type i = lhs_vars.size(); i-- > 0; )
forget_all_dbm_constraints(lhs_vars[i].id() + 1);
}
else {
// Some variables in `lhs' also occur in `rhs'.
// To ease the computation, we add an additional dimension.
const Variable new_var(bds_space_dim);
add_space_dimensions_and_embed(1);
// Constrain the new dimension to be equal to `lhs'.
// NOTE: calling affine_image() instead of refine_no_check()
// ensures some approximation is tried even when the constraint
// is not a bounded difference.
affine_image(new_var, lhs);
// Existentiallly quantify all variables in the lhs.
// NOTE: enforce shortest-path closure for precision.
shortest_path_closure_assign();
PPL_ASSERT(!marked_empty());
for (dimension_type i = lhs_vars.size(); i-- > 0; )
forget_all_dbm_constraints(lhs_vars[i].id() + 1);
// Constrain the new dimension so that it is related to
// the left hand side as dictated by `relsym'.
// Note: if `rhs == a_rhs*v + b_rhs' where `a_rhs' is in {0, 1},
// then one of the following constraints will be added,
// since it is a bounded difference. Else the method
// refine_no_check() will ignore it, because the
// constraint is NOT a bounded difference.
switch (relsym) {
case LESS_OR_EQUAL:
refine_no_check(new_var <= rhs);
break;
case EQUAL:
refine_no_check(new_var == rhs);
break;
case GREATER_OR_EQUAL:
refine_no_check(new_var >= rhs);
break;
default:
// We already dealt with the other cases.
PPL_UNREACHABLE;
break;
}
// Remove the temporarily added dimension.
remove_higher_space_dimensions(bds_space_dim);
}
}
PPL_ASSERT(OK());
}
template <typename T>
Constraint_System
BD_Shape<T>::constraints() const {
const dimension_type space_dim = space_dimension();
Constraint_System cs;
cs.set_space_dimension(space_dim);
if (space_dim == 0) {
if (marked_empty())
cs = Constraint_System::zero_dim_empty();
return cs;
}
if (marked_empty()) {
cs.insert(Constraint::zero_dim_false());
return cs;
}
if (marked_shortest_path_reduced()) {
// Disregard redundant constraints.
cs = minimized_constraints();
return cs;
}
PPL_DIRTY_TEMP_COEFFICIENT(a);
PPL_DIRTY_TEMP_COEFFICIENT(b);
// Go through all the unary constraints in `dbm'.
const DB_Row<N>& dbm_0 = dbm[0];
for (dimension_type j = 1; j <= space_dim; ++j) {
const Variable x(j-1);
const N& dbm_0j = dbm_0[j];
const N& dbm_j0 = dbm[j][0];
if (is_additive_inverse(dbm_j0, dbm_0j)) {
// We have a unary equality constraint.
numer_denom(dbm_0j, b, a);
cs.insert(a*x == b);
}
else {
// We have 0, 1 or 2 unary inequality constraints.
if (!is_plus_infinity(dbm_0j)) {
numer_denom(dbm_0j, b, a);
cs.insert(a*x <= b);
}
if (!is_plus_infinity(dbm_j0)) {
numer_denom(dbm_j0, b, a);
cs.insert(-a*x <= b);
}
}
}
// Go through all the binary constraints in `dbm'.
for (dimension_type i = 1; i <= space_dim; ++i) {
const Variable y(i-1);
const DB_Row<N>& dbm_i = dbm[i];
for (dimension_type j = i + 1; j <= space_dim; ++j) {
const Variable x(j-1);
const N& dbm_ij = dbm_i[j];
const N& dbm_ji = dbm[j][i];
if (is_additive_inverse(dbm_ji, dbm_ij)) {
// We have a binary equality constraint.
numer_denom(dbm_ij, b, a);
cs.insert(a*x - a*y == b);
}
else {
// We have 0, 1 or 2 binary inequality constraints.
if (!is_plus_infinity(dbm_ij)) {
numer_denom(dbm_ij, b, a);
cs.insert(a*x - a*y <= b);
}
if (!is_plus_infinity(dbm_ji)) {
numer_denom(dbm_ji, b, a);
cs.insert(a*y - a*x <= b);
}
}
}
}
return cs;
}
template <typename T>
Constraint_System
BD_Shape<T>::minimized_constraints() const {
shortest_path_reduction_assign();
const dimension_type space_dim = space_dimension();
Constraint_System cs;
cs.set_space_dimension(space_dim);
if (space_dim == 0) {
if (marked_empty())
cs = Constraint_System::zero_dim_empty();
return cs;
}
if (marked_empty()) {
cs.insert(Constraint::zero_dim_false());
return cs;
}
PPL_DIRTY_TEMP_COEFFICIENT(numer);
PPL_DIRTY_TEMP_COEFFICIENT(denom);
// Compute leader information.
std::vector<dimension_type> leaders;
compute_leaders(leaders);
std::vector<dimension_type> leader_indices;
compute_leader_indices(leaders, leader_indices);
const dimension_type num_leaders = leader_indices.size();
// Go through the non-leaders to generate equality constraints.
const DB_Row<N>& dbm_0 = dbm[0];
for (dimension_type i = 1; i <= space_dim; ++i) {
const dimension_type leader = leaders[i];
if (i != leader) {
// Generate the constraint relating `i' and its leader.
if (leader == 0) {
// A unary equality has to be generated.
PPL_ASSERT(!is_plus_infinity(dbm_0[i]));
numer_denom(dbm_0[i], numer, denom);
cs.insert(denom*Variable(i-1) == numer);
}
else {
// A binary equality has to be generated.
PPL_ASSERT(!is_plus_infinity(dbm[i][leader]));
numer_denom(dbm[i][leader], numer, denom);
cs.insert(denom*Variable(leader-1) - denom*Variable(i-1) == numer);
}
}
}
// Go through the leaders to generate inequality constraints.
// First generate all the unary inequalities.
const Bit_Row& red_0 = redundancy_dbm[0];
for (dimension_type l_i = 1; l_i < num_leaders; ++l_i) {
const dimension_type i = leader_indices[l_i];
if (!red_0[i]) {
numer_denom(dbm_0[i], numer, denom);
cs.insert(denom*Variable(i-1) <= numer);
}
if (!redundancy_dbm[i][0]) {
numer_denom(dbm[i][0], numer, denom);
cs.insert(-denom*Variable(i-1) <= numer);
}
}
// Then generate all the binary inequalities.
for (dimension_type l_i = 1; l_i < num_leaders; ++l_i) {
const dimension_type i = leader_indices[l_i];
const DB_Row<N>& dbm_i = dbm[i];
const Bit_Row& red_i = redundancy_dbm[i];
for (dimension_type l_j = l_i + 1; l_j < num_leaders; ++l_j) {
const dimension_type j = leader_indices[l_j];
if (!red_i[j]) {
numer_denom(dbm_i[j], numer, denom);
cs.insert(denom*Variable(j-1) - denom*Variable(i-1) <= numer);
}
if (!redundancy_dbm[j][i]) {
numer_denom(dbm[j][i], numer, denom);
cs.insert(denom*Variable(i-1) - denom*Variable(j-1) <= numer);
}
}
}
return cs;
}
template <typename T>
void
BD_Shape<T>::expand_space_dimension(Variable var, dimension_type m) {
dimension_type old_dim = space_dimension();
// `var' should be one of the dimensions of the vector space.
if (var.space_dimension() > old_dim)
throw_dimension_incompatible("expand_space_dimension(v, m)", "v", var);
// The space dimension of the resulting BDS should not
// overflow the maximum allowed space dimension.
if (m > max_space_dimension() - space_dimension())
throw_invalid_argument("expand_dimension(v, m)",
"adding m new space dimensions exceeds "
"the maximum allowed space dimension");
// Nothing to do, if no dimensions must be added.
if (m == 0)
return;
// Add the required new dimensions.
add_space_dimensions_and_embed(m);
// For each constraints involving variable `var', we add a
// similar constraint with the new variable substituted for
// variable `var'.
const dimension_type v_id = var.id() + 1;
const DB_Row<N>& dbm_v = dbm[v_id];
for (dimension_type i = old_dim + 1; i-- > 0; ) {
DB_Row<N>& dbm_i = dbm[i];
const N& dbm_i_v = dbm[i][v_id];
const N& dbm_v_i = dbm_v[i];
for (dimension_type j = old_dim+1; j < old_dim+m+1; ++j) {
dbm_i[j] = dbm_i_v;
dbm[j][i] = dbm_v_i;
}
}
// In general, adding a constraint does not preserve the shortest-path
// closure or reduction of the bounded difference shape.
if (marked_shortest_path_closed())
reset_shortest_path_closed();
PPL_ASSERT(OK());
}
template <typename T>
void
BD_Shape<T>::fold_space_dimensions(const Variables_Set& vars,
Variable dest) {
const dimension_type space_dim = space_dimension();
// `dest' should be one of the dimensions of the BDS.
if (dest.space_dimension() > space_dim)
throw_dimension_incompatible("fold_space_dimensions(vs, v)",
"v", dest);
// The folding of no dimensions is a no-op.
if (vars.empty())
return;
// All variables in `vars' should be dimensions of the BDS.
if (vars.space_dimension() > space_dim)
throw_dimension_incompatible("fold_space_dimensions(vs, v)",
vars.space_dimension());
// Moreover, `dest.id()' should not occur in `vars'.
if (vars.find(dest.id()) != vars.end())
throw_invalid_argument("fold_space_dimensions(vs, v)",
"v should not occur in vs");
shortest_path_closure_assign();
if (!marked_empty()) {
// Recompute the elements of the row and the column corresponding
// to variable `dest' by taking the join of their value with the
// value of the corresponding elements in the row and column of the
// variable `vars'.
const dimension_type v_id = dest.id() + 1;
DB_Row<N>& dbm_v = dbm[v_id];
for (Variables_Set::const_iterator i = vars.begin(),
vs_end = vars.end(); i != vs_end; ++i) {
const dimension_type to_be_folded_id = *i + 1;
const DB_Row<N>& dbm_to_be_folded_id = dbm[to_be_folded_id];
for (dimension_type j = space_dim + 1; j-- > 0; ) {
max_assign(dbm[j][v_id], dbm[j][to_be_folded_id]);
max_assign(dbm_v[j], dbm_to_be_folded_id[j]);
}
}
}
remove_space_dimensions(vars);
}
template <typename T>
void
BD_Shape<T>::drop_some_non_integer_points(Complexity_Class) {
if (std::numeric_limits<T>::is_integer)
return;
const dimension_type space_dim = space_dimension();
shortest_path_closure_assign();
if (space_dim == 0 || marked_empty())
return;
for (dimension_type i = space_dim + 1; i-- > 0; ) {
DB_Row<N>& dbm_i = dbm[i];
for (dimension_type j = space_dim + 1; j-- > 0; )
if (i != j)
drop_some_non_integer_points_helper(dbm_i[j]);
}
PPL_ASSERT(OK());
}
template <typename T>
void
BD_Shape<T>::drop_some_non_integer_points(const Variables_Set& vars,
Complexity_Class) {
// Dimension-compatibility check.
const dimension_type space_dim = space_dimension();
const dimension_type min_space_dim = vars.space_dimension();
if (space_dim < min_space_dim)
throw_dimension_incompatible("drop_some_non_integer_points(vs, cmpl)",
min_space_dim);
if (std::numeric_limits<T>::is_integer || min_space_dim == 0)
return;
shortest_path_closure_assign();
if (marked_empty())
return;
const Variables_Set::const_iterator v_begin = vars.begin();
const Variables_Set::const_iterator v_end = vars.end();
PPL_ASSERT(v_begin != v_end);
// Unary constraints on a variable occurring in `vars'.
DB_Row<N>& dbm_0 = dbm[0];
for (Variables_Set::const_iterator v_i = v_begin; v_i != v_end; ++v_i) {
const dimension_type i = *v_i + 1;
drop_some_non_integer_points_helper(dbm_0[i]);
drop_some_non_integer_points_helper(dbm[i][0]);
}
// Binary constraints where both variables occur in `vars'.
for (Variables_Set::const_iterator v_i = v_begin; v_i != v_end; ++v_i) {
const dimension_type i = *v_i + 1;
DB_Row<N>& dbm_i = dbm[i];
for (Variables_Set::const_iterator v_j = v_begin; v_j != v_end; ++v_j) {
const dimension_type j = *v_j + 1;
if (i != j)
drop_some_non_integer_points_helper(dbm_i[j]);
}
}
PPL_ASSERT(OK());
}
/*! \relates Parma_Polyhedra_Library::BD_Shape */
template <typename T>
std::ostream&
IO_Operators::operator<<(std::ostream& s, const BD_Shape<T>& bds) {
typedef typename BD_Shape<T>::coefficient_type N;
if (bds.is_universe())
s << "true";
else {
// We control empty bounded difference shape.
dimension_type n = bds.space_dimension();
if (bds.marked_empty())
s << "false";
else {
PPL_DIRTY_TEMP(N, v);
bool first = true;
for (dimension_type i = 0; i <= n; ++i)
for (dimension_type j = i + 1; j <= n; ++j) {
const N& c_i_j = bds.dbm[i][j];
const N& c_j_i = bds.dbm[j][i];
if (is_additive_inverse(c_j_i, c_i_j)) {
// We will print an equality.
if (first)
first = false;
else
s << ", ";
if (i == 0) {
// We have got a equality constraint with one variable.
s << Variable(j - 1);
s << " = " << c_i_j;
}
else {
// We have got a equality constraint with two variables.
if (sgn(c_i_j) >= 0) {
s << Variable(j - 1);
s << " - ";
s << Variable(i - 1);
s << " = " << c_i_j;
}
else {
s << Variable(i - 1);
s << " - ";
s << Variable(j - 1);
s << " = " << c_j_i;
}
}
}
else {
// We will print a non-strict inequality.
if (!is_plus_infinity(c_j_i)) {
if (first)
first = false;
else
s << ", ";
if (i == 0) {
// We have got a constraint with only one variable.
s << Variable(j - 1);
neg_assign_r(v, c_j_i, ROUND_DOWN);
s << " >= " << v;
}
else {
// We have got a constraint with two variables.
if (sgn(c_j_i) >= 0) {
s << Variable(i - 1);
s << " - ";
s << Variable(j - 1);
s << " <= " << c_j_i;
}
else {
s << Variable(j - 1);
s << " - ";
s << Variable(i - 1);
neg_assign_r(v, c_j_i, ROUND_DOWN);
s << " >= " << v;
}
}
}
if (!is_plus_infinity(c_i_j)) {
if (first)
first = false;
else
s << ", ";
if (i == 0) {
// We have got a constraint with only one variable.
s << Variable(j - 1);
s << " <= " << c_i_j;
}
else {
// We have got a constraint with two variables.
if (sgn(c_i_j) >= 0) {
s << Variable(j - 1);
s << " - ";
s << Variable(i - 1);
s << " <= " << c_i_j;
}
else {
s << Variable(i - 1);
s << " - ";
s << Variable(j - 1);
neg_assign_r(v, c_i_j, ROUND_DOWN);
s << " >= " << v;
}
}
}
}
}
}
}
return s;
}
template <typename T>
void
BD_Shape<T>::ascii_dump(std::ostream& s) const {
status.ascii_dump(s);
s << "\n";
dbm.ascii_dump(s);
s << "\n";
redundancy_dbm.ascii_dump(s);
}
PPL_OUTPUT_TEMPLATE_DEFINITIONS(T, BD_Shape<T>)
template <typename T>
bool
BD_Shape<T>::ascii_load(std::istream& s) {
if (!status.ascii_load(s))
return false;
if (!dbm.ascii_load(s))
return false;
if (!redundancy_dbm.ascii_load(s))
return false;
return true;
}
template <typename T>
memory_size_type
BD_Shape<T>::external_memory_in_bytes() const {
return dbm.external_memory_in_bytes()
+ redundancy_dbm.external_memory_in_bytes();
}
template <typename T>
bool
BD_Shape<T>::OK() const {
// Check whether the difference-bound matrix is well-formed.
if (!dbm.OK())
return false;
// Check whether the status information is legal.
if (!status.OK())
return false;
// An empty BDS is OK.
if (marked_empty())
return true;
// MINUS_INFINITY cannot occur at all.
for (dimension_type i = dbm.num_rows(); i-- > 0; )
for (dimension_type j = dbm.num_rows(); j-- > 0; )
if (is_minus_infinity(dbm[i][j])) {
#ifndef NDEBUG
using namespace Parma_Polyhedra_Library::IO_Operators;
std::cerr << "BD_Shape::dbm[" << i << "][" << j << "] = "
<< dbm[i][j] << "!"
<< std::endl;
#endif
return false;
}
// On the main diagonal only PLUS_INFINITY can occur.
for (dimension_type i = dbm.num_rows(); i-- > 0; )
if (!is_plus_infinity(dbm[i][i])) {
#ifndef NDEBUG
using namespace Parma_Polyhedra_Library::IO_Operators;
std::cerr << "BD_Shape::dbm[" << i << "][" << i << "] = "
<< dbm[i][i] << "! (+inf was expected.)"
<< std::endl;
#endif
return false;
}
// Check whether the shortest-path closure information is legal.
if (marked_shortest_path_closed()) {
BD_Shape x = *this;
x.reset_shortest_path_closed();
x.shortest_path_closure_assign();
if (x.dbm != dbm) {
#ifndef NDEBUG
std::cerr << "BD_Shape is marked as closed but it is not!"
<< std::endl;
#endif
return false;
}
}
// The following tests might result in false alarms when using floating
// point coefficients: they are only meaningful if the coefficient type
// base is exact (since otherwise shortest-path closure is approximated).
if (std::numeric_limits<coefficient_type_base>::is_exact) {
// Check whether the shortest-path reduction information is legal.
if (marked_shortest_path_reduced()) {
// A non-redundant constraint cannot be equal to PLUS_INFINITY.
for (dimension_type i = dbm.num_rows(); i-- > 0; )
for (dimension_type j = dbm.num_rows(); j-- > 0; )
if (!redundancy_dbm[i][j] && is_plus_infinity(dbm[i][j])) {
#ifndef NDEBUG
using namespace Parma_Polyhedra_Library::IO_Operators;
std::cerr << "BD_Shape::dbm[" << i << "][" << j << "] = "
<< dbm[i][j] << " is marked as non-redundant!"
<< std::endl;
#endif
return false;
}
BD_Shape x = *this;
x.reset_shortest_path_reduced();
x.shortest_path_reduction_assign();
if (x.redundancy_dbm != redundancy_dbm) {
#ifndef NDEBUG
std::cerr << "BD_Shape is marked as reduced but it is not!"
<< std::endl;
#endif
return false;
}
}
}
// All checks passed.
return true;
}
template <typename T>
void
BD_Shape<T>::throw_dimension_incompatible(const char* method,
const BD_Shape& y) const {
std::ostringstream s;
s << "PPL::BD_Shape::" << method << ":" << std::endl
<< "this->space_dimension() == " << space_dimension()
<< ", y->space_dimension() == " << y.space_dimension() << ".";
throw std::invalid_argument(s.str());
}
template <typename T>
void
BD_Shape<T>::throw_dimension_incompatible(const char* method,
dimension_type required_dim) const {
std::ostringstream s;
s << "PPL::BD_Shape::" << method << ":" << std::endl
<< "this->space_dimension() == " << space_dimension()
<< ", required dimension == " << required_dim << ".";
throw std::invalid_argument(s.str());
}
template <typename T>
void
BD_Shape<T>::throw_dimension_incompatible(const char* method,
const Constraint& c) const {
std::ostringstream s;
s << "PPL::BD_Shape::" << method << ":" << std::endl
<< "this->space_dimension() == " << space_dimension()
<< ", c->space_dimension == " << c.space_dimension() << ".";
throw std::invalid_argument(s.str());
}
template <typename T>
void
BD_Shape<T>::throw_dimension_incompatible(const char* method,
const Congruence& cg) const {
std::ostringstream s;
s << "PPL::BD_Shape::" << method << ":" << std::endl
<< "this->space_dimension() == " << space_dimension()
<< ", cg->space_dimension == " << cg.space_dimension() << ".";
throw std::invalid_argument(s.str());
}
template <typename T>
void
BD_Shape<T>::throw_dimension_incompatible(const char* method,
const Generator& g) const {
std::ostringstream s;
s << "PPL::BD_Shape::" << method << ":" << std::endl
<< "this->space_dimension() == " << space_dimension()
<< ", g->space_dimension == " << g.space_dimension() << ".";
throw std::invalid_argument(s.str());
}
template <typename T>
void
BD_Shape<T>::throw_expression_too_complex(const char* method,
const Linear_Expression& le) {
using namespace IO_Operators;
std::ostringstream s;
s << "PPL::BD_Shape::" << method << ":" << std::endl
<< le << " is too complex.";
throw std::invalid_argument(s.str());
}
template <typename T>
void
BD_Shape<T>::throw_dimension_incompatible(const char* method,
const char* le_name,
const Linear_Expression& le) const {
std::ostringstream s;
s << "PPL::BD_Shape::" << method << ":" << std::endl
<< "this->space_dimension() == " << space_dimension()
<< ", " << le_name << "->space_dimension() == "
<< le.space_dimension() << ".";
throw std::invalid_argument(s.str());
}
template <typename T>
template<typename Interval_Info>
void
BD_Shape<T>::throw_dimension_incompatible(const char* method,
const char* lf_name,
const Linear_Form< Interval<T,
Interval_Info> >& lf) const {
std::ostringstream s;
s << "PPL::BD_Shape::" << method << ":" << std::endl
<< "this->space_dimension() == " << space_dimension()
<< ", " << lf_name << "->space_dimension() == "
<< lf.space_dimension() << ".";
throw std::invalid_argument(s.str());
}
template <typename T>
void
BD_Shape<T>::throw_invalid_argument(const char* method, const char* reason) {
std::ostringstream s;
s << "PPL::BD_Shape::" << method << ":" << std::endl
<< reason << ".";
throw std::invalid_argument(s.str());
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/BD_Shape_defs.hh line 2370. */
/* Automatically generated from PPL source file ../src/Rational_Interval.hh line 1. */
/* Rational_Interval class declaration and implementation.
*/
/* Automatically generated from PPL source file ../src/Rational_Interval.hh line 28. */
#include <gmpxx.h>
namespace Parma_Polyhedra_Library {
struct Rational_Interval_Info_Policy {
const_bool_nodef(store_special, true);
const_bool_nodef(store_open, true);
const_bool_nodef(cache_empty, true);
const_bool_nodef(cache_singleton, true);
const_bool_nodef(cache_normalized, false);
const_int_nodef(next_bit, 0);
const_bool_nodef(may_be_empty, true);
const_bool_nodef(may_contain_infinity, false);
const_bool_nodef(check_inexact, false);
};
typedef Interval_Info_Bitset<unsigned int,
Rational_Interval_Info_Policy> Rational_Interval_Info;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! An interval with rational, possibly open boundaries.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
typedef Interval<mpq_class, Rational_Interval_Info> Rational_Interval;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Box_templates.hh line 42. */
#include <vector>
#include <map>
#include <iostream>
namespace Parma_Polyhedra_Library {
template <typename ITV>
inline
Box<ITV>::Box(dimension_type num_dimensions, Degenerate_Element kind)
: seq(check_space_dimension_overflow(num_dimensions,
max_space_dimension(),
"PPL::Box::",
"Box(n, k)",
"n exceeds the maximum "
"allowed space dimension")),
status() {
// In a box that is marked empty the intervals are completely
// meaningless: we exploit this by avoiding their initialization.
if (kind == UNIVERSE) {
for (dimension_type i = num_dimensions; i-- > 0; )
seq[i].assign(UNIVERSE);
set_empty_up_to_date();
}
else
set_empty();
PPL_ASSERT(OK());
}
template <typename ITV>
inline
Box<ITV>::Box(const Constraint_System& cs)
: seq(check_space_dimension_overflow(cs.space_dimension(),
max_space_dimension(),
"PPL::Box::",
"Box(cs)",
"cs exceeds the maximum "
"allowed space dimension")),
status() {
// FIXME: check whether we can avoid the double initialization.
for (dimension_type i = cs.space_dimension(); i-- > 0; )
seq[i].assign(UNIVERSE);
add_constraints_no_check(cs);
}
template <typename ITV>
inline
Box<ITV>::Box(const Congruence_System& cgs)
: seq(check_space_dimension_overflow(cgs.space_dimension(),
max_space_dimension(),
"PPL::Box::",
"Box(cgs)",
"cgs exceeds the maximum "
"allowed space dimension")),
status() {
// FIXME: check whether we can avoid the double initialization.
for (dimension_type i = cgs.space_dimension(); i-- > 0; )
seq[i].assign(UNIVERSE);
add_congruences_no_check(cgs);
}
template <typename ITV>
template <typename Other_ITV>
inline
Box<ITV>::Box(const Box<Other_ITV>& y, Complexity_Class)
: seq(y.space_dimension()),
// FIXME: why the following does not work?
// status(y.status) {
status() {
// FIXME: remove when the above is fixed.
if (y.marked_empty())
set_empty();
if (!y.marked_empty())
for (dimension_type k = y.space_dimension(); k-- > 0; )
seq[k].assign(y.seq[k]);
PPL_ASSERT(OK());
}
template <typename ITV>
Box<ITV>::Box(const Generator_System& gs)
: seq(check_space_dimension_overflow(gs.space_dimension(),
max_space_dimension(),
"PPL::Box::",
"Box(gs)",
"gs exceeds the maximum "
"allowed space dimension")),
status() {
const Generator_System::const_iterator gs_begin = gs.begin();
const Generator_System::const_iterator gs_end = gs.end();
if (gs_begin == gs_end) {
// An empty generator system defines the empty box.
set_empty();
return;
}
// The empty flag will be meaningful, whatever happens from now on.
set_empty_up_to_date();
const dimension_type space_dim = space_dimension();
PPL_DIRTY_TEMP(mpq_class, q);
bool point_seen = false;
// Going through all the points.
for (Generator_System::const_iterator
gs_i = gs_begin; gs_i != gs_end; ++gs_i) {
const Generator& g = *gs_i;
if (g.is_point()) {
const Coefficient& d = g.divisor();
if (point_seen) {
// This is not the first point: `seq' already contains valid values.
// TODO: If the variables in the expression that have coefficient 0
// have no effect on seq[i], this loop can be optimized using
// Generator::expr_type::const_iterator.
for (dimension_type i = space_dim; i-- > 0; ) {
assign_r(q.get_num(), g.coefficient(Variable(i)), ROUND_NOT_NEEDED);
assign_r(q.get_den(), d, ROUND_NOT_NEEDED);
q.canonicalize();
PPL_DIRTY_TEMP(ITV, iq);
iq.build(i_constraint(EQUAL, q));
seq[i].join_assign(iq);
}
}
else {
// This is the first point seen: initialize `seq'.
point_seen = true;
// TODO: If the variables in the expression that have coefficient 0
// have no effect on seq[i], this loop can be optimized using
// Generator::expr_type::const_iterator.
for (dimension_type i = space_dim; i-- > 0; ) {
assign_r(q.get_num(), g.coefficient(Variable(i)), ROUND_NOT_NEEDED);
assign_r(q.get_den(), d, ROUND_NOT_NEEDED);
q.canonicalize();
seq[i].build(i_constraint(EQUAL, q));
}
}
}
}
if (!point_seen)
// The generator system is not empty, but contains no points.
throw std::invalid_argument("PPL::Box<ITV>::Box(gs):\n"
"the non-empty generator system gs "
"contains no points.");
// Going through all the lines, rays and closure points.
for (Generator_System::const_iterator gs_i = gs_begin;
gs_i != gs_end; ++gs_i) {
const Generator& g = *gs_i;
switch (g.type()) {
case Generator::LINE:
for (Generator::expr_type::const_iterator i = g.expression().begin(),
i_end = g.expression().end();
i != i_end; ++i)
seq[i.variable().id()].assign(UNIVERSE);
break;
case Generator::RAY:
for (Generator::expr_type::const_iterator i = g.expression().begin(),
i_end = g.expression().end();
i != i_end; ++i)
switch (sgn(*i)) {
case 1:
seq[i.variable().id()].upper_extend();
break;
case -1:
seq[i.variable().id()].lower_extend();
break;
default:
PPL_UNREACHABLE;
break;
}
break;
case Generator::CLOSURE_POINT:
{
const Coefficient& d = g.divisor();
// TODO: If the variables in the expression that have coefficient 0
// have no effect on seq[i], this loop can be optimized using
// Generator::expr_type::const_iterator.
for (dimension_type i = space_dim; i-- > 0; ) {
assign_r(q.get_num(), g.coefficient(Variable(i)), ROUND_NOT_NEEDED);
assign_r(q.get_den(), d, ROUND_NOT_NEEDED);
q.canonicalize();
ITV& seq_i = seq[i];
seq_i.lower_extend(i_constraint(GREATER_THAN, q));
seq_i.upper_extend(i_constraint(LESS_THAN, q));
}
}
break;
default:
// Points already dealt with.
break;
}
}
PPL_ASSERT(OK());
}
template <typename ITV>
template <typename T>
Box<ITV>::Box(const BD_Shape<T>& bds, Complexity_Class)
: seq(check_space_dimension_overflow(bds.space_dimension(),
max_space_dimension(),
"PPL::Box::",
"Box(bds)",
"bds exceeds the maximum "
"allowed space dimension")),
status() {
// Expose all the interval constraints.
bds.shortest_path_closure_assign();
if (bds.marked_empty()) {
set_empty();
PPL_ASSERT(OK());
return;
}
// The empty flag will be meaningful, whatever happens from now on.
set_empty_up_to_date();
const dimension_type space_dim = space_dimension();
if (space_dim == 0) {
PPL_ASSERT(OK());
return;
}
typedef typename BD_Shape<T>::coefficient_type Coeff;
PPL_DIRTY_TEMP(Coeff, tmp);
const DB_Row<Coeff>& dbm_0 = bds.dbm[0];
for (dimension_type i = space_dim; i-- > 0; ) {
I_Constraint<Coeff> lower;
I_Constraint<Coeff> upper;
ITV& seq_i = seq[i];
// Set the upper bound.
const Coeff& u = dbm_0[i+1];
if (!is_plus_infinity(u))
upper.set(LESS_OR_EQUAL, u, true);
// Set the lower bound.
const Coeff& negated_l = bds.dbm[i+1][0];
if (!is_plus_infinity(negated_l)) {
neg_assign_r(tmp, negated_l, ROUND_DOWN);
lower.set(GREATER_OR_EQUAL, tmp);
}
seq_i.build(lower, upper);
}
PPL_ASSERT(OK());
}
template <typename ITV>
template <typename T>
Box<ITV>::Box(const Octagonal_Shape<T>& oct, Complexity_Class)
: seq(check_space_dimension_overflow(oct.space_dimension(),
max_space_dimension(),
"PPL::Box::",
"Box(oct)",
"oct exceeds the maximum "
"allowed space dimension")),
status() {
// Expose all the interval constraints.
oct.strong_closure_assign();
if (oct.marked_empty()) {
set_empty();
return;
}
// The empty flag will be meaningful, whatever happens from now on.
set_empty_up_to_date();
const dimension_type space_dim = space_dimension();
if (space_dim == 0)
return;
PPL_DIRTY_TEMP(mpq_class, lower_bound);
PPL_DIRTY_TEMP(mpq_class, upper_bound);
for (dimension_type i = space_dim; i-- > 0; ) {
typedef typename Octagonal_Shape<T>::coefficient_type Coeff;
I_Constraint<mpq_class> lower;
I_Constraint<mpq_class> upper;
ITV& seq_i = seq[i];
const dimension_type ii = 2*i;
const dimension_type cii = ii + 1;
// Set the upper bound.
const Coeff& twice_ub = oct.matrix[cii][ii];
if (!is_plus_infinity(twice_ub)) {
assign_r(upper_bound, twice_ub, ROUND_NOT_NEEDED);
div_2exp_assign_r(upper_bound, upper_bound, 1, ROUND_NOT_NEEDED);
upper.set(LESS_OR_EQUAL, upper_bound);
}
// Set the lower bound.
const Coeff& twice_lb = oct.matrix[ii][cii];
if (!is_plus_infinity(twice_lb)) {
assign_r(lower_bound, twice_lb, ROUND_NOT_NEEDED);
neg_assign_r(lower_bound, lower_bound, ROUND_NOT_NEEDED);
div_2exp_assign_r(lower_bound, lower_bound, 1, ROUND_NOT_NEEDED);
lower.set(GREATER_OR_EQUAL, lower_bound);
}
seq_i.build(lower, upper);
}
}
template <typename ITV>
Box<ITV>::Box(const Polyhedron& ph, Complexity_Class complexity)
: seq(check_space_dimension_overflow(ph.space_dimension(),
max_space_dimension(),
"PPL::Box::",
"Box(ph)",
"ph exceeds the maximum "
"allowed space dimension")),
status() {
// The empty flag will be meaningful, whatever happens from now on.
set_empty_up_to_date();
// We do not need to bother about `complexity' if:
// a) the polyhedron is already marked empty; or ...
if (ph.marked_empty()) {
set_empty();
return;
}
// b) the polyhedron is zero-dimensional; or ...
const dimension_type space_dim = ph.space_dimension();
if (space_dim == 0)
return;
// c) the polyhedron is already described by a generator system.
if (ph.generators_are_up_to_date() && !ph.has_pending_constraints()) {
Box tmp(ph.generators());
m_swap(tmp);
return;
}
// Here generators are not up-to-date or there are pending constraints.
PPL_ASSERT(ph.constraints_are_up_to_date());
if (complexity == POLYNOMIAL_COMPLEXITY) {
// FIXME: is there a way to avoid this initialization?
for (dimension_type i = space_dim; i-- > 0; )
seq[i].assign(UNIVERSE);
// Get a simplified version of the constraints.
const Constraint_System cs = ph.simplified_constraints();
// Propagate easy-to-find bounds from the constraints,
// allowing for a limited number of iterations.
// FIXME: 20 is just a wild guess.
const dimension_type max_iterations = 20;
propagate_constraints_no_check(cs, max_iterations);
}
else if (complexity == SIMPLEX_COMPLEXITY) {
MIP_Problem lp(space_dim);
const Constraint_System& ph_cs = ph.constraints();
if (!ph_cs.has_strict_inequalities())
lp.add_constraints(ph_cs);
else
// Adding to `lp' a topologically closed version of `ph_cs'.
for (Constraint_System::const_iterator i = ph_cs.begin(),
ph_cs_end = ph_cs.end(); i != ph_cs_end; ++i) {
const Constraint& c = *i;
if (c.is_strict_inequality()) {
const Linear_Expression expr(c.expression());
lp.add_constraint(expr >= 0);
}
else
lp.add_constraint(c);
}
// Check for unsatisfiability.
if (!lp.is_satisfiable()) {
set_empty();
return;
}
// Get all the bounds for the space dimensions.
Generator g(point());
PPL_DIRTY_TEMP(mpq_class, lower_bound);
PPL_DIRTY_TEMP(mpq_class, upper_bound);
PPL_DIRTY_TEMP(Coefficient, bound_numer);
PPL_DIRTY_TEMP(Coefficient, bound_denom);
for (dimension_type i = space_dim; i-- > 0; ) {
I_Constraint<mpq_class> lower;
I_Constraint<mpq_class> upper;
ITV& seq_i = seq[i];
lp.set_objective_function(Variable(i));
// Evaluate upper bound.
lp.set_optimization_mode(MAXIMIZATION);
if (lp.solve() == OPTIMIZED_MIP_PROBLEM) {
g = lp.optimizing_point();
lp.evaluate_objective_function(g, bound_numer, bound_denom);
assign_r(upper_bound.get_num(), bound_numer, ROUND_NOT_NEEDED);
assign_r(upper_bound.get_den(), bound_denom, ROUND_NOT_NEEDED);
PPL_ASSERT(is_canonical(upper_bound));
upper.set(LESS_OR_EQUAL, upper_bound);
}
// Evaluate optimal lower bound.
lp.set_optimization_mode(MINIMIZATION);
if (lp.solve() == OPTIMIZED_MIP_PROBLEM) {
g = lp.optimizing_point();
lp.evaluate_objective_function(g, bound_numer, bound_denom);
assign_r(lower_bound.get_num(), bound_numer, ROUND_NOT_NEEDED);
assign_r(lower_bound.get_den(), bound_denom, ROUND_NOT_NEEDED);
PPL_ASSERT(is_canonical(lower_bound));
lower.set(GREATER_OR_EQUAL, lower_bound);
}
seq_i.build(lower, upper);
}
}
else {
PPL_ASSERT(complexity == ANY_COMPLEXITY);
if (ph.is_empty())
set_empty();
else {
Box tmp(ph.generators());
m_swap(tmp);
}
}
}
template <typename ITV>
Box<ITV>::Box(const Grid& gr, Complexity_Class)
: seq(check_space_dimension_overflow(gr.space_dimension(),
max_space_dimension(),
"PPL::Box::",
"Box(gr)",
"gr exceeds the maximum "
"allowed space dimension")),
status() {
if (gr.marked_empty()) {
set_empty();
return;
}
// The empty flag will be meaningful, whatever happens from now on.
set_empty_up_to_date();
const dimension_type space_dim = gr.space_dimension();
if (space_dim == 0)
return;
if (!gr.generators_are_up_to_date() && !gr.update_generators()) {
// Updating found the grid empty.
set_empty();
return;
}
PPL_ASSERT(!gr.gen_sys.empty());
// For each dimension that is bounded by the grid, set both bounds
// of the interval to the value of the associated coefficient in a
// generator point.
PPL_DIRTY_TEMP(mpq_class, bound);
PPL_DIRTY_TEMP(Coefficient, bound_numer);
PPL_DIRTY_TEMP(Coefficient, bound_denom);
for (dimension_type i = space_dim; i-- > 0; ) {
ITV& seq_i = seq[i];
Variable var(i);
bool max;
if (gr.maximize(var, bound_numer, bound_denom, max)) {
assign_r(bound.get_num(), bound_numer, ROUND_NOT_NEEDED);
assign_r(bound.get_den(), bound_denom, ROUND_NOT_NEEDED);
bound.canonicalize();
seq_i.build(i_constraint(EQUAL, bound));
}
else
seq_i.assign(UNIVERSE);
}
}
template <typename ITV>
template <typename D1, typename D2, typename R>
Box<ITV>::Box(const Partially_Reduced_Product<D1, D2, R>& dp,
Complexity_Class complexity)
: seq(), status() {
check_space_dimension_overflow(dp.space_dimension(),
max_space_dimension(),
"PPL::Box::",
"Box(dp)",
"dp exceeds the maximum "
"allowed space dimension");
Box tmp1(dp.domain1(), complexity);
Box tmp2(dp.domain2(), complexity);
tmp1.intersection_assign(tmp2);
m_swap(tmp1);
}
template <typename ITV>
inline void
Box<ITV>::add_space_dimensions_and_embed(const dimension_type m) {
// Adding no dimensions is a no-op.
if (m == 0)
return;
check_space_dimension_overflow(m, max_space_dimension() - space_dimension(),
"PPL::Box::",
"add_space_dimensions_and_embed(m)",
"adding m new space dimensions exceeds "
"the maximum allowed space dimension");
// To embed an n-dimension space box in a (n+m)-dimension space,
// we just add `m' new universe elements to the sequence.
seq.insert(seq.end(), m, ITV(UNIVERSE));
PPL_ASSERT(OK());
}
template <typename ITV>
inline void
Box<ITV>::add_space_dimensions_and_project(const dimension_type m) {
// Adding no dimensions is a no-op.
if (m == 0)
return;
check_space_dimension_overflow(m, max_space_dimension() - space_dimension(),
"PPL::Box::",
"add_space_dimensions_and_project(m)",
"adding m new space dimensions exceeds "
"the maximum allowed space dimension");
// Add `m' new zero elements to the sequence.
seq.insert(seq.end(), m, ITV(0));
PPL_ASSERT(OK());
}
template <typename ITV>
bool
operator==(const Box<ITV>& x, const Box<ITV>& y) {
const dimension_type x_space_dim = x.space_dimension();
if (x_space_dim != y.space_dimension())
return false;
if (x.is_empty())
return y.is_empty();
if (y.is_empty())
return x.is_empty();
for (dimension_type k = x_space_dim; k-- > 0; )
if (x.seq[k] != y.seq[k])
return false;
return true;
}
template <typename ITV>
bool
Box<ITV>::bounds(const Linear_Expression& expr, const bool from_above) const {
// `expr' should be dimension-compatible with `*this'.
const dimension_type expr_space_dim = expr.space_dimension();
const dimension_type space_dim = space_dimension();
if (space_dim < expr_space_dim)
throw_dimension_incompatible((from_above
? "bounds_from_above(e)"
: "bounds_from_below(e)"), "e", expr);
// A zero-dimensional or empty Box bounds everything.
if (space_dim == 0 || is_empty())
return true;
const int from_above_sign = from_above ? 1 : -1;
// TODO: This loop can be optimized more, if needed, exploiting the
// (possible) sparseness of expr.
for (Linear_Expression::const_iterator i = expr.begin(),
i_end = expr.end(); i != i_end; ++i) {
const Variable v = i.variable();
switch (sgn(*i) * from_above_sign) {
case 1:
if (seq[v.id()].upper_is_boundary_infinity())
return false;
break;
case 0:
PPL_UNREACHABLE;
break;
case -1:
if (seq[v.id()].lower_is_boundary_infinity())
return false;
break;
}
}
return true;
}
template <typename ITV>
Poly_Con_Relation
interval_relation(const ITV& i,
const Constraint::Type constraint_type,
Coefficient_traits::const_reference numer,
Coefficient_traits::const_reference denom) {
if (i.is_universe())
return Poly_Con_Relation::strictly_intersects();
PPL_DIRTY_TEMP(mpq_class, bound);
assign_r(bound.get_num(), numer, ROUND_NOT_NEEDED);
assign_r(bound.get_den(), denom, ROUND_NOT_NEEDED);
bound.canonicalize();
neg_assign_r(bound, bound, ROUND_NOT_NEEDED);
const bool is_lower_bound = (denom > 0);
PPL_DIRTY_TEMP(mpq_class, bound_diff);
if (constraint_type == Constraint::EQUALITY) {
if (i.lower_is_boundary_infinity()) {
PPL_ASSERT(!i.upper_is_boundary_infinity());
assign_r(bound_diff, i.upper(), ROUND_NOT_NEEDED);
sub_assign_r(bound_diff, bound_diff, bound, ROUND_NOT_NEEDED);
switch (sgn(bound_diff)) {
case 1:
return Poly_Con_Relation::strictly_intersects();
case 0:
return i.upper_is_open()
? Poly_Con_Relation::is_disjoint()
: Poly_Con_Relation::strictly_intersects();
case -1:
return Poly_Con_Relation::is_disjoint();
}
}
else {
assign_r(bound_diff, i.lower(), ROUND_NOT_NEEDED);
sub_assign_r(bound_diff, bound_diff, bound, ROUND_NOT_NEEDED);
switch (sgn(bound_diff)) {
case 1:
return Poly_Con_Relation::is_disjoint();
case 0:
if (i.lower_is_open())
return Poly_Con_Relation::is_disjoint();
if (i.is_singleton())
return Poly_Con_Relation::is_included()
&& Poly_Con_Relation::saturates();
return Poly_Con_Relation::strictly_intersects();
case -1:
if (i.upper_is_boundary_infinity())
return Poly_Con_Relation::strictly_intersects();
else {
assign_r(bound_diff, i.upper(), ROUND_NOT_NEEDED);
sub_assign_r(bound_diff, bound_diff, bound, ROUND_NOT_NEEDED);
switch (sgn(bound_diff)) {
case 1:
return Poly_Con_Relation::strictly_intersects();
case 0:
if (i.upper_is_open())
return Poly_Con_Relation::is_disjoint();
else
return Poly_Con_Relation::strictly_intersects();
case -1:
return Poly_Con_Relation::is_disjoint();
}
}
}
}
}
PPL_ASSERT(constraint_type != Constraint::EQUALITY);
if (is_lower_bound) {
if (i.lower_is_boundary_infinity()) {
PPL_ASSERT(!i.upper_is_boundary_infinity());
assign_r(bound_diff, i.upper(), ROUND_NOT_NEEDED);
sub_assign_r(bound_diff, bound_diff, bound, ROUND_NOT_NEEDED);
switch (sgn(bound_diff)) {
case 1:
return Poly_Con_Relation::strictly_intersects();
case 0:
if (constraint_type == Constraint::STRICT_INEQUALITY
|| i.upper_is_open())
return Poly_Con_Relation::is_disjoint();
else
return Poly_Con_Relation::strictly_intersects();
case -1:
return Poly_Con_Relation::is_disjoint();
}
}
else {
assign_r(bound_diff, i.lower(), ROUND_NOT_NEEDED);
sub_assign_r(bound_diff, bound_diff, bound, ROUND_NOT_NEEDED);
switch (sgn(bound_diff)) {
case 1:
return Poly_Con_Relation::is_included();
case 0:
if (constraint_type == Constraint::NONSTRICT_INEQUALITY
|| i.lower_is_open()) {
Poly_Con_Relation result = Poly_Con_Relation::is_included();
if (i.is_singleton())
result = result && Poly_Con_Relation::saturates();
return result;
}
else {
PPL_ASSERT(constraint_type == Constraint::STRICT_INEQUALITY
&& !i.lower_is_open());
if (i.is_singleton())
return Poly_Con_Relation::is_disjoint()
&& Poly_Con_Relation::saturates();
else
return Poly_Con_Relation::strictly_intersects();
}
case -1:
if (i.upper_is_boundary_infinity())
return Poly_Con_Relation::strictly_intersects();
else {
assign_r(bound_diff, i.upper(), ROUND_NOT_NEEDED);
sub_assign_r(bound_diff, bound_diff, bound, ROUND_NOT_NEEDED);
switch (sgn(bound_diff)) {
case 1:
return Poly_Con_Relation::strictly_intersects();
case 0:
if (constraint_type == Constraint::STRICT_INEQUALITY
|| i.upper_is_open())
return Poly_Con_Relation::is_disjoint();
else
return Poly_Con_Relation::strictly_intersects();
case -1:
return Poly_Con_Relation::is_disjoint();
}
}
}
}
}
else {
// `c' is an upper bound.
if (i.upper_is_boundary_infinity())
return Poly_Con_Relation::strictly_intersects();
else {
assign_r(bound_diff, i.upper(), ROUND_NOT_NEEDED);
sub_assign_r(bound_diff, bound_diff, bound, ROUND_NOT_NEEDED);
switch (sgn(bound_diff)) {
case -1:
return Poly_Con_Relation::is_included();
case 0:
if (constraint_type == Constraint::NONSTRICT_INEQUALITY
|| i.upper_is_open()) {
Poly_Con_Relation result = Poly_Con_Relation::is_included();
if (i.is_singleton())
result = result && Poly_Con_Relation::saturates();
return result;
}
else {
PPL_ASSERT(constraint_type == Constraint::STRICT_INEQUALITY
&& !i.upper_is_open());
if (i.is_singleton())
return Poly_Con_Relation::is_disjoint()
&& Poly_Con_Relation::saturates();
else
return Poly_Con_Relation::strictly_intersects();
}
case 1:
if (i.lower_is_boundary_infinity())
return Poly_Con_Relation::strictly_intersects();
else {
assign_r(bound_diff, i.lower(), ROUND_NOT_NEEDED);
sub_assign_r(bound_diff, bound_diff, bound, ROUND_NOT_NEEDED);
switch (sgn(bound_diff)) {
case -1:
return Poly_Con_Relation::strictly_intersects();
case 0:
if (constraint_type == Constraint::STRICT_INEQUALITY
|| i.lower_is_open())
return Poly_Con_Relation::is_disjoint();
else
return Poly_Con_Relation::strictly_intersects();
case 1:
return Poly_Con_Relation::is_disjoint();
}
}
}
}
}
// Quiet a compiler warning: this program point is unreachable.
PPL_UNREACHABLE;
return Poly_Con_Relation::nothing();
}
template <typename ITV>
Poly_Con_Relation
Box<ITV>::relation_with(const Congruence& cg) const {
const dimension_type cg_space_dim = cg.space_dimension();
const dimension_type space_dim = space_dimension();
// Dimension-compatibility check.
if (cg_space_dim > space_dim)
throw_dimension_incompatible("relation_with(cg)", cg);
if (is_empty())
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_included()
&& Poly_Con_Relation::is_disjoint();
if (space_dim == 0) {
if (cg.is_inconsistent())
return Poly_Con_Relation::is_disjoint();
else
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_included();
}
if (cg.is_equality()) {
const Constraint c(cg);
return relation_with(c);
}
PPL_DIRTY_TEMP(Rational_Interval, r);
PPL_DIRTY_TEMP(Rational_Interval, t);
PPL_DIRTY_TEMP(mpq_class, m);
r = 0;
for (Congruence::expr_type::const_iterator i = cg.expression().begin(),
i_end = cg.expression().end(); i != i_end; ++i) {
const Coefficient& cg_i = *i;
const Variable v = i.variable();
assign_r(m, cg_i, ROUND_NOT_NEEDED);
// FIXME: an add_mul_assign() method would come handy here.
t.build(seq[v.id()].lower_constraint(), seq[v.id()].upper_constraint());
t *= m;
r += t;
}
if (r.lower_is_boundary_infinity() || r.upper_is_boundary_infinity())
return Poly_Con_Relation::strictly_intersects();
// Find the value that satisfies the congruence and is
// nearest to the lower bound such that the point lies on or above it.
PPL_DIRTY_TEMP_COEFFICIENT(lower);
PPL_DIRTY_TEMP_COEFFICIENT(mod);
PPL_DIRTY_TEMP_COEFFICIENT(v);
mod = cg.modulus();
v = cg.inhomogeneous_term() % mod;
assign_r(lower, r.lower(), ROUND_DOWN);
v -= ((lower / mod) * mod);
if (v + lower > 0)
v -= mod;
return interval_relation(r, Constraint::EQUALITY, v);
}
template <typename ITV>
Poly_Con_Relation
Box<ITV>::relation_with(const Constraint& c) const {
const dimension_type c_space_dim = c.space_dimension();
const dimension_type space_dim = space_dimension();
// Dimension-compatibility check.
if (c_space_dim > space_dim)
throw_dimension_incompatible("relation_with(c)", c);
if (is_empty())
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_included()
&& Poly_Con_Relation::is_disjoint();
if (space_dim == 0) {
if ((c.is_equality() && c.inhomogeneous_term() != 0)
|| (c.is_inequality() && c.inhomogeneous_term() < 0))
return Poly_Con_Relation::is_disjoint();
else if (c.is_strict_inequality() && c.inhomogeneous_term() == 0)
// The constraint 0 > 0 implicitly defines the hyperplane 0 = 0;
// thus, the zero-dimensional point also saturates it.
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_disjoint();
else if (c.is_equality() || c.inhomogeneous_term() == 0)
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_included();
else
// The zero-dimensional point saturates
// neither the positivity constraint 1 >= 0,
// nor the strict positivity constraint 1 > 0.
return Poly_Con_Relation::is_included();
}
dimension_type c_num_vars = 0;
dimension_type c_only_var = 0;
if (Box_Helpers::extract_interval_constraint(c, c_num_vars, c_only_var))
if (c_num_vars == 0)
// c is a trivial constraint.
switch (sgn(c.inhomogeneous_term())) {
case -1:
return Poly_Con_Relation::is_disjoint();
case 0:
if (c.is_strict_inequality())
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_disjoint();
else
return Poly_Con_Relation::saturates()
&& Poly_Con_Relation::is_included();
case 1:
return Poly_Con_Relation::is_included();
}
else {
// c is an interval constraint.
return interval_relation(seq[c_only_var],
c.type(),
c.inhomogeneous_term(),
c.coefficient(Variable(c_only_var)));
}
else {
// Deal with a non-trivial and non-interval constraint.
PPL_DIRTY_TEMP(Rational_Interval, r);
PPL_DIRTY_TEMP(Rational_Interval, t);
PPL_DIRTY_TEMP(mpq_class, m);
r = 0;
const Constraint::expr_type& e = c.expression();
for (Constraint::expr_type::const_iterator i = e.begin(), i_end = e.end();
i != i_end; ++i) {
assign_r(m, *i, ROUND_NOT_NEEDED);
const Variable v = i.variable();
// FIXME: an add_mul_assign() method would come handy here.
t.build(seq[v.id()].lower_constraint(), seq[v.id()].upper_constraint());
t *= m;
r += t;
}
return interval_relation(r,
c.type(),
c.inhomogeneous_term());
}
// Quiet a compiler warning: this program point is unreachable.
PPL_UNREACHABLE;
return Poly_Con_Relation::nothing();
}
template <typename ITV>
Poly_Gen_Relation
Box<ITV>::relation_with(const Generator& g) const {
const dimension_type space_dim = space_dimension();
const dimension_type g_space_dim = g.space_dimension();
// Dimension-compatibility check.
if (space_dim < g_space_dim)
throw_dimension_incompatible("relation_with(g)", g);
// The empty box cannot subsume a generator.
if (is_empty())
return Poly_Gen_Relation::nothing();
// A universe box in a zero-dimensional space subsumes
// all the generators of a zero-dimensional space.
if (space_dim == 0)
return Poly_Gen_Relation::subsumes();
if (g.is_line_or_ray()) {
if (g.is_line()) {
const Generator::expr_type& e = g.expression();
for (Generator::expr_type::const_iterator i = e.begin(), i_end = e.end();
i != i_end; ++i)
if (!seq[i.variable().id()].is_universe())
return Poly_Gen_Relation::nothing();
return Poly_Gen_Relation::subsumes();
}
else {
PPL_ASSERT(g.is_ray());
const Generator::expr_type& e = g.expression();
for (Generator::expr_type::const_iterator i = e.begin(), i_end = e.end();
i != i_end; ++i) {
const Variable v = i.variable();
switch (sgn(*i)) {
case 1:
if (!seq[v.id()].upper_is_boundary_infinity())
return Poly_Gen_Relation::nothing();
break;
case 0:
PPL_UNREACHABLE;
break;
case -1:
if (!seq[v.id()].lower_is_boundary_infinity())
return Poly_Gen_Relation::nothing();
break;
}
}
return Poly_Gen_Relation::subsumes();
}
}
// Here `g' is a point or closure point.
const Coefficient& g_divisor = g.divisor();
PPL_DIRTY_TEMP(mpq_class, g_coord);
PPL_DIRTY_TEMP(mpq_class, bound);
// TODO: If the variables in the expression that have coefficient 0
// have no effect on seq[i], this loop can be optimized using
// Generator::expr_type::const_iterator.
for (dimension_type i = g_space_dim; i-- > 0; ) {
const ITV& seq_i = seq[i];
if (seq_i.is_universe())
continue;
assign_r(g_coord.get_num(), g.coefficient(Variable(i)), ROUND_NOT_NEEDED);
assign_r(g_coord.get_den(), g_divisor, ROUND_NOT_NEEDED);
g_coord.canonicalize();
// Check lower bound.
if (!seq_i.lower_is_boundary_infinity()) {
assign_r(bound, seq_i.lower(), ROUND_NOT_NEEDED);
if (g_coord <= bound) {
if (seq_i.lower_is_open()) {
if (g.is_point() || g_coord != bound)
return Poly_Gen_Relation::nothing();
}
else if (g_coord != bound)
return Poly_Gen_Relation::nothing();
}
}
// Check upper bound.
if (!seq_i.upper_is_boundary_infinity()) {
assign_r(bound, seq_i.upper(), ROUND_NOT_NEEDED);
if (g_coord >= bound) {
if (seq_i.upper_is_open()) {
if (g.is_point() || g_coord != bound)
return Poly_Gen_Relation::nothing();
}
else if (g_coord != bound)
return Poly_Gen_Relation::nothing();
}
}
}
return Poly_Gen_Relation::subsumes();
}
template <typename ITV>
bool
Box<ITV>::max_min(const Linear_Expression& expr,
const bool maximize,
Coefficient& ext_n, Coefficient& ext_d,
bool& included) const {
// `expr' should be dimension-compatible with `*this'.
const dimension_type space_dim = space_dimension();
const dimension_type expr_space_dim = expr.space_dimension();
if (space_dim < expr_space_dim)
throw_dimension_incompatible((maximize
? "maximize(e, ...)"
: "minimize(e, ...)"), "e", expr);
// Deal with zero-dim Box first.
if (space_dim == 0) {
if (marked_empty())
return false;
else {
ext_n = expr.inhomogeneous_term();
ext_d = 1;
included = true;
return true;
}
}
// For an empty Box we simply return false.
if (is_empty())
return false;
PPL_DIRTY_TEMP(mpq_class, result);
assign_r(result, expr.inhomogeneous_term(), ROUND_NOT_NEEDED);
bool is_included = true;
const int maximize_sign = maximize ? 1 : -1;
PPL_DIRTY_TEMP(mpq_class, bound_i);
PPL_DIRTY_TEMP(mpq_class, expr_i);
for (Linear_Expression::const_iterator i = expr.begin(),
i_end = expr.end(); i != i_end; ++i) {
const ITV& seq_i = seq[i.variable().id()];
assign_r(expr_i, *i, ROUND_NOT_NEEDED);
switch (sgn(expr_i) * maximize_sign) {
case 1:
if (seq_i.upper_is_boundary_infinity())
return false;
assign_r(bound_i, seq_i.upper(), ROUND_NOT_NEEDED);
add_mul_assign_r(result, bound_i, expr_i, ROUND_NOT_NEEDED);
if (seq_i.upper_is_open())
is_included = false;
break;
case 0:
PPL_UNREACHABLE;
break;
case -1:
if (seq_i.lower_is_boundary_infinity())
return false;
assign_r(bound_i, seq_i.lower(), ROUND_NOT_NEEDED);
add_mul_assign_r(result, bound_i, expr_i, ROUND_NOT_NEEDED);
if (seq_i.lower_is_open())
is_included = false;
break;
}
}
// Extract output info.
PPL_ASSERT(is_canonical(result));
ext_n = result.get_num();
ext_d = result.get_den();
included = is_included;
return true;
}
template <typename ITV>
bool
Box<ITV>::max_min(const Linear_Expression& expr,
const bool maximize,
Coefficient& ext_n, Coefficient& ext_d,
bool& included,
Generator& g) const {
if (!max_min(expr, maximize, ext_n, ext_d, included))
return false;
// Compute generator `g'.
Linear_Expression g_expr;
PPL_DIRTY_TEMP(Coefficient, g_divisor);
g_divisor = 1;
const int maximize_sign = maximize ? 1 : -1;
PPL_DIRTY_TEMP(mpq_class, g_coord);
PPL_DIRTY_TEMP(Coefficient, numer);
PPL_DIRTY_TEMP(Coefficient, denom);
PPL_DIRTY_TEMP(Coefficient, lcm);
PPL_DIRTY_TEMP(Coefficient, factor);
// TODO: Check if the following loop can be optimized to exploit the
// (possible) sparseness of expr.
for (dimension_type i = space_dimension(); i-- > 0; ) {
const ITV& seq_i = seq[i];
switch (sgn(expr.coefficient(Variable(i))) * maximize_sign) {
case 1:
assign_r(g_coord, seq_i.upper(), ROUND_NOT_NEEDED);
break;
case 0:
// If 0 belongs to the interval, choose it
// (and directly proceed to the next iteration).
// FIXME: name qualification issue.
if (seq_i.contains(0))
continue;
if (!seq_i.lower_is_boundary_infinity())
if (seq_i.lower_is_open())
if (!seq_i.upper_is_boundary_infinity())
if (seq_i.upper_is_open()) {
// Bounded and open interval: compute middle point.
assign_r(g_coord, seq_i.lower(), ROUND_NOT_NEEDED);
PPL_DIRTY_TEMP(mpq_class, q_seq_i_upper);
assign_r(q_seq_i_upper, seq_i.upper(), ROUND_NOT_NEEDED);
g_coord += q_seq_i_upper;
g_coord /= 2;
}
else
// The upper bound is in the interval.
assign_r(g_coord, seq_i.upper(), ROUND_NOT_NEEDED);
else {
// Lower is open, upper is unbounded.
assign_r(g_coord, seq_i.lower(), ROUND_NOT_NEEDED);
++g_coord;
}
else
// The lower bound is in the interval.
assign_r(g_coord, seq_i.lower(), ROUND_NOT_NEEDED);
else {
// Lower is unbounded, hence upper is bounded
// (since we know that 0 does not belong to the interval).
PPL_ASSERT(!seq_i.upper_is_boundary_infinity());
assign_r(g_coord, seq_i.upper(), ROUND_NOT_NEEDED);
if (seq_i.upper_is_open())
--g_coord;
}
break;
case -1:
assign_r(g_coord, seq_i.lower(), ROUND_NOT_NEEDED);
break;
}
// Add g_coord * Variable(i) to the generator.
assign_r(denom, g_coord.get_den(), ROUND_NOT_NEEDED);
lcm_assign(lcm, g_divisor, denom);
exact_div_assign(factor, lcm, g_divisor);
g_expr *= factor;
exact_div_assign(factor, lcm, denom);
assign_r(numer, g_coord.get_num(), ROUND_NOT_NEEDED);
numer *= factor;
g_expr += numer * Variable(i);
g_divisor = lcm;
}
g = Generator::point(g_expr, g_divisor);
return true;
}
template <typename ITV>
bool
Box<ITV>::contains(const Box& y) const {
const Box& x = *this;
// Dimension-compatibility check.
if (x.space_dimension() != y.space_dimension())
x.throw_dimension_incompatible("contains(y)", y);
// If `y' is empty, then `x' contains `y'.
if (y.is_empty())
return true;
// If `x' is empty, then `x' cannot contain `y'.
if (x.is_empty())
return false;
for (dimension_type k = x.seq.size(); k-- > 0; )
// FIXME: fix this name qualification issue.
if (!x.seq[k].contains(y.seq[k]))
return false;
return true;
}
template <typename ITV>
bool
Box<ITV>::is_disjoint_from(const Box& y) const {
const Box& x = *this;
// Dimension-compatibility check.
if (x.space_dimension() != y.space_dimension())
x.throw_dimension_incompatible("is_disjoint_from(y)", y);
// If any of `x' or `y' is marked empty, then they are disjoint.
// Note: no need to use `is_empty', as the following loop is anyway correct.
if (x.marked_empty() || y.marked_empty())
return true;
for (dimension_type k = x.seq.size(); k-- > 0; )
// FIXME: fix this name qualification issue.
if (x.seq[k].is_disjoint_from(y.seq[k]))
return true;
return false;
}
template <typename ITV>
inline bool
Box<ITV>::upper_bound_assign_if_exact(const Box& y) {
Box& x = *this;
// Dimension-compatibility check.
if (x.space_dimension() != y.space_dimension())
x.throw_dimension_incompatible("upper_bound_assign_if_exact(y)", y);
// The lub of a box with an empty box is equal to the first box.
if (y.is_empty())
return true;
if (x.is_empty()) {
x = y;
return true;
}
bool x_j_does_not_contain_y_j = false;
bool y_j_does_not_contain_x_j = false;
for (dimension_type i = x.seq.size(); i-- > 0; ) {
const ITV& x_seq_i = x.seq[i];
const ITV& y_seq_i = y.seq[i];
if (!x_seq_i.can_be_exactly_joined_to(y_seq_i))
return false;
// Note: the use of `y_i_does_not_contain_x_i' is needed
// because we want to temporarily preserve the old value
// of `y_j_does_not_contain_x_j'.
bool y_i_does_not_contain_x_i = !y_seq_i.contains(x_seq_i);
if (y_i_does_not_contain_x_i && x_j_does_not_contain_y_j)
return false;
if (!x_seq_i.contains(y_seq_i)) {
if (y_j_does_not_contain_x_j)
return false;
else
x_j_does_not_contain_y_j = true;
}
if (y_i_does_not_contain_x_i)
y_j_does_not_contain_x_j = true;
}
// The upper bound is exact: compute it into *this.
for (dimension_type k = x.seq.size(); k-- > 0; )
x.seq[k].join_assign(y.seq[k]);
return true;
}
template <typename ITV>
bool
Box<ITV>::OK() const {
if (status.test_empty_up_to_date() && !status.test_empty()) {
Box tmp = *this;
tmp.reset_empty_up_to_date();
if (tmp.check_empty()) {
#ifndef NDEBUG
std::cerr << "The box is empty, but it is marked as non-empty."
<< std::endl;
#endif // NDEBUG
return false;
}
}
// A box that is not marked empty must have meaningful intervals.
if (!marked_empty()) {
for (dimension_type k = seq.size(); k-- > 0; )
if (!seq[k].OK())
return false;
}
return true;
}
template <typename ITV>
dimension_type
Box<ITV>::affine_dimension() const {
dimension_type d = space_dimension();
// A zero-space-dim box always has affine dimension zero.
if (d == 0)
return 0;
// An empty box has affine dimension zero.
if (is_empty())
return 0;
for (dimension_type k = d; k-- > 0; )
if (seq[k].is_singleton())
--d;
return d;
}
template <typename ITV>
bool
Box<ITV>::check_empty() const {
PPL_ASSERT(!marked_empty());
Box<ITV>& x = const_cast<Box<ITV>&>(*this);
for (dimension_type k = seq.size(); k-- > 0; )
if (seq[k].is_empty()) {
x.set_empty();
return true;
}
x.set_nonempty();
return false;
}
template <typename ITV>
bool
Box<ITV>::is_universe() const {
if (marked_empty())
return false;
for (dimension_type k = seq.size(); k-- > 0; )
if (!seq[k].is_universe())
return false;
return true;
}
template <typename ITV>
bool
Box<ITV>::is_topologically_closed() const {
if (ITV::is_always_topologically_closed() || is_empty())
return true;
for (dimension_type k = seq.size(); k-- > 0; )
if (!seq[k].is_topologically_closed())
return false;
return true;
}
template <typename ITV>
bool
Box<ITV>::is_discrete() const {
if (is_empty())
return true;
for (dimension_type k = seq.size(); k-- > 0; )
if (!seq[k].is_singleton())
return false;
return true;
}
template <typename ITV>
bool
Box<ITV>::is_bounded() const {
if (is_empty())
return true;
for (dimension_type k = seq.size(); k-- > 0; )
if (!seq[k].is_bounded())
return false;
return true;
}
template <typename ITV>
bool
Box<ITV>::contains_integer_point() const {
if (marked_empty())
return false;
for (dimension_type k = seq.size(); k-- > 0; )
if (!seq[k].contains_integer_point())
return false;
return true;
}
template <typename ITV>
bool
Box<ITV>::frequency(const Linear_Expression& expr,
Coefficient& freq_n, Coefficient& freq_d,
Coefficient& val_n, Coefficient& val_d) const {
dimension_type space_dim = space_dimension();
// The dimension of `expr' must be at most the dimension of *this.
if (space_dim < expr.space_dimension())
throw_dimension_incompatible("frequency(e, ...)", "e", expr);
// Check if `expr' has a constant value.
// If it is constant, set the frequency `freq_n' to 0
// and return true. Otherwise the values for \p expr
// are not discrete so return false.
// Space dimension is 0: if empty, then return false;
// otherwise the frequency is 0 and the value is the inhomogeneous term.
if (space_dim == 0) {
if (is_empty())
return false;
freq_n = 0;
freq_d = 1;
val_n = expr.inhomogeneous_term();
val_d = 1;
return true;
}
// For an empty Box, we simply return false.
if (is_empty())
return false;
// The Box has at least 1 dimension and is not empty.
PPL_DIRTY_TEMP_COEFFICIENT(numer);
PPL_DIRTY_TEMP_COEFFICIENT(denom);
PPL_DIRTY_TEMP(mpq_class, tmp);
Coefficient c = expr.inhomogeneous_term();
PPL_DIRTY_TEMP_COEFFICIENT(val_denom);
val_denom = 1;
for (Linear_Expression::const_iterator i = expr.begin(), i_end = expr.end();
i != i_end; ++i) {
const ITV& seq_i = seq[i.variable().id()];
// Check if `v' is constant in the BD shape.
if (seq_i.is_singleton()) {
// If `v' is constant, replace it in `le' by the value.
assign_r(tmp, seq_i.lower(), ROUND_NOT_NEEDED);
numer = tmp.get_num();
denom = tmp.get_den();
c *= denom;
c += numer * val_denom * (*i);
val_denom *= denom;
continue;
}
// The expression `expr' is not constant.
return false;
}
// The expression `expr' is constant.
freq_n = 0;
freq_d = 1;
// Reduce `val_n' and `val_d'.
normalize2(c, val_denom, val_n, val_d);
return true;
}
template <typename ITV>
bool
Box<ITV>::constrains(Variable var) const {
// `var' should be one of the dimensions of the polyhedron.
const dimension_type var_space_dim = var.space_dimension();
if (space_dimension() < var_space_dim)
throw_dimension_incompatible("constrains(v)", "v", var);
if (marked_empty() || !seq[var_space_dim-1].is_universe())
return true;
// Now force an emptiness check.
return is_empty();
}
template <typename ITV>
void
Box<ITV>::unconstrain(const Variables_Set& vars) {
// The cylindrification with respect to no dimensions is a no-op.
// This case also captures the only legal cylindrification
// of a box in a 0-dim space.
if (vars.empty())
return;
// Dimension-compatibility check.
const dimension_type min_space_dim = vars.space_dimension();
if (space_dimension() < min_space_dim)
throw_dimension_incompatible("unconstrain(vs)", min_space_dim);
// If the box is already empty, there is nothing left to do.
if (marked_empty())
return;
// Here the box might still be empty (but we haven't detected it yet):
// check emptiness of the interval for each of the variables in
// `vars' before cylindrification.
for (Variables_Set::const_iterator vsi = vars.begin(),
vsi_end = vars.end(); vsi != vsi_end; ++vsi) {
ITV& seq_vsi = seq[*vsi];
if (!seq_vsi.is_empty())
seq_vsi.assign(UNIVERSE);
else {
set_empty();
break;
}
}
PPL_ASSERT(OK());
}
template <typename ITV>
void
Box<ITV>::topological_closure_assign() {
if (ITV::is_always_topologically_closed() || is_empty())
return;
for (dimension_type k = seq.size(); k-- > 0; )
seq[k].topological_closure_assign();
}
template <typename ITV>
void
Box<ITV>::wrap_assign(const Variables_Set& vars,
Bounded_Integer_Type_Width w,
Bounded_Integer_Type_Representation r,
Bounded_Integer_Type_Overflow o,
const Constraint_System* cs_p,
unsigned complexity_threshold,
bool wrap_individually) {
#if 0 // Generic implementation commented out.
Implementation::wrap_assign(*this,
vars, w, r, o, cs_p,
complexity_threshold, wrap_individually,
"Box");
#else // Specialized implementation.
PPL_USED(wrap_individually);
PPL_USED(complexity_threshold);
Box& x = *this;
// Dimension-compatibility check for `*cs_p', if any.
const dimension_type vars_space_dim = vars.space_dimension();
if (cs_p != 0 && cs_p->space_dimension() > vars_space_dim) {
std::ostringstream s;
s << "PPL::Box<ITV>::wrap_assign(vars, w, r, o, cs_p, ...):"
<< std::endl
<< "vars.space_dimension() == " << vars_space_dim
<< ", cs_p->space_dimension() == " << cs_p->space_dimension() << ".";
throw std::invalid_argument(s.str());
}
// Wrapping no variable only requires refining with *cs_p, if any.
if (vars.empty()) {
if (cs_p != 0)
refine_with_constraints(*cs_p);
return;
}
// Dimension-compatibility check for `vars'.
const dimension_type space_dim = x.space_dimension();
if (space_dim < vars_space_dim) {
std::ostringstream s;
s << "PPL::Box<ITV>::wrap_assign(vars, ...):"
<< std::endl
<< "this->space_dimension() == " << space_dim
<< ", required space dimension == " << vars_space_dim << ".";
throw std::invalid_argument(s.str());
}
// Wrapping an empty polyhedron is a no-op.
if (x.is_empty())
return;
// FIXME: temporarily (ab-) using Coefficient.
// Set `min_value' and `max_value' to the minimum and maximum values
// a variable of width `w' and signedness `s' can take.
PPL_DIRTY_TEMP_COEFFICIENT(min_value);
PPL_DIRTY_TEMP_COEFFICIENT(max_value);
if (r == UNSIGNED) {
min_value = 0;
mul_2exp_assign(max_value, Coefficient_one(), w);
--max_value;
}
else {
PPL_ASSERT(r == SIGNED_2_COMPLEMENT);
mul_2exp_assign(max_value, Coefficient_one(), w-1);
neg_assign(min_value, max_value);
--max_value;
}
// FIXME: Build the (integer) quadrant interval.
PPL_DIRTY_TEMP(ITV, integer_quadrant_itv);
PPL_DIRTY_TEMP(ITV, rational_quadrant_itv);
{
I_Constraint<Coefficient> lower = i_constraint(GREATER_OR_EQUAL, min_value);
I_Constraint<Coefficient> upper = i_constraint(LESS_OR_EQUAL, max_value);
integer_quadrant_itv.build(lower, upper);
// The rational quadrant is only needed if overflow is undefined.
if (o == OVERFLOW_UNDEFINED) {
++max_value;
upper = i_constraint(LESS_THAN, max_value);
rational_quadrant_itv.build(lower, upper);
}
}
const Variables_Set::const_iterator vs_end = vars.end();
if (cs_p == 0) {
// No constraint refinement is needed here.
switch (o) {
case OVERFLOW_WRAPS:
for (Variables_Set::const_iterator i = vars.begin(); i != vs_end; ++i)
x.seq[*i].wrap_assign(w, r, integer_quadrant_itv);
reset_empty_up_to_date();
break;
case OVERFLOW_UNDEFINED:
for (Variables_Set::const_iterator i = vars.begin(); i != vs_end; ++i) {
ITV& x_seq_v = x.seq[*i];
if (!rational_quadrant_itv.contains(x_seq_v)) {
x_seq_v.assign(integer_quadrant_itv);
}
}
break;
case OVERFLOW_IMPOSSIBLE:
for (Variables_Set::const_iterator i = vars.begin(); i != vs_end; ++i)
x.seq[*i].intersect_assign(integer_quadrant_itv);
reset_empty_up_to_date();
break;
}
PPL_ASSERT(x.OK());
return;
}
PPL_ASSERT(cs_p != 0);
const Constraint_System& cs = *cs_p;
// A map associating interval constraints to variable indexes.
typedef std::map<dimension_type, std::vector<const Constraint*> > map_type;
map_type var_cs_map;
for (Constraint_System::const_iterator i = cs.begin(),
i_end = cs.end(); i != i_end; ++i) {
const Constraint& c = *i;
dimension_type c_num_vars = 0;
dimension_type c_only_var = 0;
if (Box_Helpers::extract_interval_constraint(c, c_num_vars, c_only_var)) {
if (c_num_vars == 1) {
// An interval constraint on variable index `c_only_var'.
PPL_ASSERT(c_only_var < space_dim);
// We do care about c if c_only_var is going to be wrapped.
if (vars.find(c_only_var) != vs_end)
var_cs_map[c_only_var].push_back(&c);
}
else {
PPL_ASSERT(c_num_vars == 0);
// Note: tautologies have been filtered out by iterators.
PPL_ASSERT(c.is_inconsistent());
x.set_empty();
return;
}
}
}
PPL_DIRTY_TEMP(ITV, refinement_itv);
const map_type::const_iterator var_cs_map_end = var_cs_map.end();
// Loop through the variable indexes in `vars'.
for (Variables_Set::const_iterator i = vars.begin(); i != vs_end; ++i) {
const dimension_type v = *i;
refinement_itv = integer_quadrant_itv;
// Look for the refinement constraints for space dimension index `v'.
map_type::const_iterator var_cs_map_iter = var_cs_map.find(v);
if (var_cs_map_iter != var_cs_map_end) {
// Refine interval for variable `v'.
const map_type::mapped_type& var_cs = var_cs_map_iter->second;
for (dimension_type j = var_cs.size(); j-- > 0; ) {
const Constraint& c = *var_cs[j];
refine_interval_no_check(refinement_itv,
c.type(),
c.inhomogeneous_term(),
c.coefficient(Variable(v)));
}
}
// Wrap space dimension index `v'.
ITV& x_seq_v = x.seq[v];
switch (o) {
case OVERFLOW_WRAPS:
x_seq_v.wrap_assign(w, r, refinement_itv);
break;
case OVERFLOW_UNDEFINED:
if (!rational_quadrant_itv.contains(x_seq_v))
x_seq_v.assign(UNIVERSE);
break;
case OVERFLOW_IMPOSSIBLE:
x_seq_v.intersect_assign(refinement_itv);
break;
}
}
PPL_ASSERT(x.OK());
#endif
}
template <typename ITV>
void
Box<ITV>::drop_some_non_integer_points(Complexity_Class) {
if (std::numeric_limits<typename ITV::boundary_type>::is_integer
&& !ITV::info_type::store_open)
return;
if (marked_empty())
return;
for (dimension_type k = seq.size(); k-- > 0; )
seq[k].drop_some_non_integer_points();
PPL_ASSERT(OK());
}
template <typename ITV>
void
Box<ITV>::drop_some_non_integer_points(const Variables_Set& vars,
Complexity_Class) {
// Dimension-compatibility check.
const dimension_type min_space_dim = vars.space_dimension();
if (space_dimension() < min_space_dim)
throw_dimension_incompatible("drop_some_non_integer_points(vs, cmpl)",
min_space_dim);
if (std::numeric_limits<typename ITV::boundary_type>::is_integer
&& !ITV::info_type::store_open)
return;
if (marked_empty())
return;
for (Variables_Set::const_iterator v_i = vars.begin(),
v_end = vars.end(); v_i != v_end; ++v_i)
seq[*v_i].drop_some_non_integer_points();
PPL_ASSERT(OK());
}
template <typename ITV>
void
Box<ITV>::intersection_assign(const Box& y) {
Box& x = *this;
const dimension_type space_dim = space_dimension();
// Dimension-compatibility check.
if (space_dim != y.space_dimension())
x.throw_dimension_incompatible("intersection_assign(y)", y);
// If one of the two boxes is empty, the intersection is empty.
if (x.marked_empty())
return;
if (y.marked_empty()) {
x.set_empty();
return;
}
// If both boxes are zero-dimensional, then at this point they are
// necessarily non-empty, so that their intersection is non-empty too.
if (space_dim == 0)
return;
// FIXME: here we may conditionally exploit a capability of the
// underlying interval to eagerly detect empty results.
reset_empty_up_to_date();
for (dimension_type k = space_dim; k-- > 0; )
x.seq[k].intersect_assign(y.seq[k]);
PPL_ASSERT(x.OK());
}
template <typename ITV>
void
Box<ITV>::upper_bound_assign(const Box& y) {
Box& x = *this;
// Dimension-compatibility check.
if (x.space_dimension() != y.space_dimension())
x.throw_dimension_incompatible("upper_bound_assign(y)", y);
// The lub of a box with an empty box is equal to the first box.
if (y.is_empty())
return;
if (x.is_empty()) {
x = y;
return;
}
for (dimension_type k = x.seq.size(); k-- > 0; )
x.seq[k].join_assign(y.seq[k]);
PPL_ASSERT(x.OK());
}
template <typename ITV>
void
Box<ITV>::concatenate_assign(const Box& y) {
Box& x = *this;
const dimension_type x_space_dim = x.space_dimension();
const dimension_type y_space_dim = y.space_dimension();
// If `y' is marked empty, the result will be empty too.
if (y.marked_empty())
x.set_empty();
// If `y' is a 0-dim space box, there is nothing left to do.
if (y_space_dim == 0)
return;
// The resulting space dimension must be at most the maximum.
check_space_dimension_overflow(y.space_dimension(),
max_space_dimension() - space_dimension(),
"PPL::Box::",
"concatenate_assign(y)",
"concatenation exceeds the maximum "
"allowed space dimension");
// Here `y_space_dim > 0', so that a non-trivial concatenation will occur:
// make sure that reallocation will occur once at most.
x.seq.reserve(x_space_dim + y_space_dim);
// If `x' is marked empty, then it is sufficient to adjust
// the dimension of the vector space.
if (x.marked_empty()) {
x.seq.insert(x.seq.end(), y_space_dim, ITV(EMPTY));
PPL_ASSERT(x.OK());
return;
}
// Here neither `x' nor `y' are marked empty: concatenate them.
std::copy(y.seq.begin(), y.seq.end(),
std::back_insert_iterator<Sequence>(x.seq));
// Update the `empty_up_to_date' flag.
if (!y.status.test_empty_up_to_date())
reset_empty_up_to_date();
PPL_ASSERT(x.OK());
}
template <typename ITV>
void
Box<ITV>::difference_assign(const Box& y) {
const dimension_type space_dim = space_dimension();
// Dimension-compatibility check.
if (space_dim != y.space_dimension())
throw_dimension_incompatible("difference_assign(y)", y);
Box& x = *this;
if (x.is_empty() || y.is_empty())
return;
switch (space_dim) {
case 0:
// If `x' is zero-dimensional, then at this point both `x' and `y'
// are the universe box, so that their difference is empty.
x.set_empty();
break;
case 1:
x.seq[0].difference_assign(y.seq[0]);
if (x.seq[0].is_empty())
x.set_empty();
break;
default:
{
dimension_type index_non_contained = space_dim;
dimension_type number_non_contained = 0;
for (dimension_type i = space_dim; i-- > 0; )
if (!y.seq[i].contains(x.seq[i])) {
if (++number_non_contained == 1)
index_non_contained = i;
else
break;
}
switch (number_non_contained) {
case 0:
// `y' covers `x': the difference is empty.
x.set_empty();
break;
case 1:
x.seq[index_non_contained]
.difference_assign(y.seq[index_non_contained]);
if (x.seq[index_non_contained].is_empty())
x.set_empty();
break;
default:
// Nothing to do: the difference is `x'.
break;
}
}
break;
}
PPL_ASSERT(OK());
}
template <typename ITV>
bool
Box<ITV>::simplify_using_context_assign(const Box& y) {
Box& x = *this;
const dimension_type num_dims = x.space_dimension();
// Dimension-compatibility check.
if (num_dims != y.space_dimension())
x.throw_dimension_incompatible("simplify_using_context_assign(y)", y);
// Filter away the zero-dimensional case.
if (num_dims == 0) {
if (y.marked_empty()) {
x.set_nonempty();
return false;
}
else
return !x.marked_empty();
}
// Filter away the case when `y' is empty.
if (y.is_empty()) {
for (dimension_type i = num_dims; i-- > 0; )
x.seq[i].assign(UNIVERSE);
x.set_nonempty();
return false;
}
if (x.is_empty()) {
// Find in `y' a non-universe interval, if any.
for (dimension_type i = 0; i < num_dims; ++i) {
if (y.seq[i].is_universe())
x.seq[i].assign(UNIVERSE);
else {
// Set x.seq[i] so as to contradict y.seq[i], if possible.
ITV& seq_i = x.seq[i];
seq_i.empty_intersection_assign(y.seq[i]);
if (seq_i.is_empty()) {
// We were not able to assign to `seq_i' a non-empty interval:
// reset `seq_i' to the universe interval and keep searching.
seq_i.assign(UNIVERSE);
continue;
}
// We assigned to `seq_i' a non-empty interval:
// set the other intervals to universe and return.
for (++i; i < num_dims; ++i)
x.seq[i].assign(UNIVERSE);
x.set_nonempty();
PPL_ASSERT(x.OK());
return false;
}
}
// All intervals in `y' are universe or could not be contradicted:
// simplification can leave the empty box `x' as is.
PPL_ASSERT(x.OK() && x.is_empty());
return false;
}
// Loop index `i' is intentionally going upwards.
for (dimension_type i = 0; i < num_dims; ++i) {
if (!x.seq[i].simplify_using_context_assign(y.seq[i])) {
PPL_ASSERT(!x.seq[i].is_empty());
// The intersection of `x' and `y' is empty due to the i-th interval:
// reset other intervals to UNIVERSE.
for (dimension_type j = num_dims; j-- > i; )
x.seq[j].assign(UNIVERSE);
for (dimension_type j = i; j-- > 0; )
x.seq[j].assign(UNIVERSE);
PPL_ASSERT(x.OK());
return false;
}
}
PPL_ASSERT(x.OK());
return true;
}
template <typename ITV>
void
Box<ITV>::time_elapse_assign(const Box& y) {
Box& x = *this;
const dimension_type x_space_dim = x.space_dimension();
// Dimension-compatibility check.
if (x_space_dim != y.space_dimension())
x.throw_dimension_incompatible("time_elapse_assign(y)", y);
// Dealing with the zero-dimensional case.
if (x_space_dim == 0) {
if (y.marked_empty())
x.set_empty();
return;
}
// If either one of `x' or `y' is empty, the result is empty too.
// Note: if possible, avoid cost of checking for emptiness.
if (x.marked_empty() || y.marked_empty()
|| x.is_empty() || y.is_empty()) {
x.set_empty();
return;
}
for (dimension_type i = x_space_dim; i-- > 0; ) {
ITV& x_seq_i = x.seq[i];
const ITV& y_seq_i = y.seq[i];
if (!x_seq_i.lower_is_boundary_infinity())
if (y_seq_i.lower_is_boundary_infinity() || y_seq_i.lower() < 0)
x_seq_i.lower_extend();
if (!x_seq_i.upper_is_boundary_infinity())
if (y_seq_i.upper_is_boundary_infinity() || y_seq_i.upper() > 0)
x_seq_i.upper_extend();
}
PPL_ASSERT(x.OK());
}
template <typename ITV>
inline void
Box<ITV>::remove_space_dimensions(const Variables_Set& vars) {
// The removal of no dimensions from any box is a no-op.
// Note that this case also captures the only legal removal of
// space dimensions from a box in a zero-dimensional space.
if (vars.empty()) {
PPL_ASSERT(OK());
return;
}
const dimension_type old_space_dim = space_dimension();
// Dimension-compatibility check.
const dimension_type vsi_space_dim = vars.space_dimension();
if (old_space_dim < vsi_space_dim)
throw_dimension_incompatible("remove_space_dimensions(vs)",
vsi_space_dim);
const dimension_type new_space_dim = old_space_dim - vars.size();
// If the box is empty (this must be detected), then resizing is all
// what is needed. If it is not empty and we are removing _all_ the
// dimensions then, again, resizing suffices.
if (is_empty() || new_space_dim == 0) {
seq.resize(new_space_dim);
PPL_ASSERT(OK());
return;
}
// For each variable to be removed, we fill the corresponding interval
// by shifting left those intervals that will not be removed.
Variables_Set::const_iterator vsi = vars.begin();
Variables_Set::const_iterator vsi_end = vars.end();
dimension_type dst = *vsi;
dimension_type src = dst + 1;
for (++vsi; vsi != vsi_end; ++vsi) {
const dimension_type vsi_next = *vsi;
// All intervals in between are moved to the left.
while (src < vsi_next)
swap(seq[dst++], seq[src++]);
++src;
}
// Moving the remaining intervals.
while (src < old_space_dim)
swap(seq[dst++], seq[src++]);
PPL_ASSERT(dst == new_space_dim);
seq.resize(new_space_dim);
PPL_ASSERT(OK());
}
template <typename ITV>
void
Box<ITV>::remove_higher_space_dimensions(const dimension_type new_dimension) {
// Dimension-compatibility check: the variable having
// maximum index is the one occurring last in the set.
const dimension_type space_dim = space_dimension();
if (new_dimension > space_dim)
throw_dimension_incompatible("remove_higher_space_dimensions(nd)",
new_dimension);
// The removal of no dimensions from any box is a no-op.
// Note that this case also captures the only legal removal of
// dimensions from a zero-dim space box.
if (new_dimension == space_dim) {
PPL_ASSERT(OK());
return;
}
seq.resize(new_dimension);
PPL_ASSERT(OK());
}
template <typename ITV>
template <typename Partial_Function>
void
Box<ITV>::map_space_dimensions(const Partial_Function& pfunc) {
const dimension_type space_dim = space_dimension();
if (space_dim == 0)
return;
if (pfunc.has_empty_codomain()) {
// All dimensions vanish: the box becomes zero_dimensional.
remove_higher_space_dimensions(0);
return;
}
const dimension_type new_space_dim = pfunc.max_in_codomain() + 1;
// If the box is empty, then simply adjust the space dimension.
if (is_empty()) {
remove_higher_space_dimensions(new_space_dim);
return;
}
// We create a new Box with the new space dimension.
Box<ITV> tmp(new_space_dim);
// Map the intervals, exchanging the indexes.
for (dimension_type i = 0; i < space_dim; ++i) {
dimension_type new_i;
if (pfunc.maps(i, new_i))
swap(seq[i], tmp.seq[new_i]);
}
m_swap(tmp);
PPL_ASSERT(OK());
}
template <typename ITV>
void
Box<ITV>::fold_space_dimensions(const Variables_Set& vars,
const Variable dest) {
const dimension_type space_dim = space_dimension();
// `dest' should be one of the dimensions of the box.
if (dest.space_dimension() > space_dim)
throw_dimension_incompatible("fold_space_dimensions(vs, v)", "v", dest);
// The folding of no dimensions is a no-op.
if (vars.empty())
return;
// All variables in `vars' should be dimensions of the box.
if (vars.space_dimension() > space_dim)
throw_dimension_incompatible("fold_space_dimensions(vs, v)",
vars.space_dimension());
// Moreover, `dest.id()' should not occur in `vars'.
if (vars.find(dest.id()) != vars.end())
throw_invalid_argument("fold_space_dimensions(vs, v)",
"v should not occur in vs");
// Note: the check for emptiness is needed for correctness.
if (!is_empty()) {
// Join the interval corresponding to variable `dest' with the intervals
// corresponding to the variables in `vars'.
ITV& seq_v = seq[dest.id()];
for (Variables_Set::const_iterator i = vars.begin(),
vs_end = vars.end(); i != vs_end; ++i)
seq_v.join_assign(seq[*i]);
}
remove_space_dimensions(vars);
}
template <typename ITV>
void
Box<ITV>::add_constraint_no_check(const Constraint& c) {
PPL_ASSERT(c.space_dimension() <= space_dimension());
dimension_type c_num_vars = 0;
dimension_type c_only_var = 0;
// Throw an exception if c is not an interval constraints.
if (!Box_Helpers::extract_interval_constraint(c, c_num_vars, c_only_var))
throw_invalid_argument("add_constraint(c)",
"c is not an interval constraint");
// Throw an exception if c is a nontrivial strict constraint
// and ITV does not support open boundaries.
if (c.is_strict_inequality() && c_num_vars != 0
&& ITV::is_always_topologically_closed())
throw_invalid_argument("add_constraint(c)",
"c is a nontrivial strict constraint");
// Avoid doing useless work if the box is known to be empty.
if (marked_empty())
return;
const Coefficient& n = c.inhomogeneous_term();
if (c_num_vars == 0) {
// Dealing with a trivial constraint.
if (n < 0
|| (c.is_equality() && n != 0)
|| (c.is_strict_inequality() && n == 0))
set_empty();
return;
}
PPL_ASSERT(c_num_vars == 1);
const Coefficient& d = c.coefficient(Variable(c_only_var));
add_interval_constraint_no_check(c_only_var, c.type(), n, d);
}
template <typename ITV>
void
Box<ITV>::add_constraints_no_check(const Constraint_System& cs) {
PPL_ASSERT(cs.space_dimension() <= space_dimension());
// Note: even when the box is known to be empty, we need to go
// through all the constraints to fulfill the method's contract
// for what concerns exception throwing.
for (Constraint_System::const_iterator i = cs.begin(),
cs_end = cs.end(); i != cs_end; ++i)
add_constraint_no_check(*i);
PPL_ASSERT(OK());
}
template <typename ITV>
void
Box<ITV>::add_congruence_no_check(const Congruence& cg) {
PPL_ASSERT(cg.space_dimension() <= space_dimension());
// Set aside the case of proper congruences.
if (cg.is_proper_congruence()) {
if (cg.is_inconsistent()) {
set_empty();
return;
}
else if (cg.is_tautological())
return;
else
throw_invalid_argument("add_congruence(cg)",
"cg is a nontrivial proper congruence");
}
PPL_ASSERT(cg.is_equality());
dimension_type cg_num_vars = 0;
dimension_type cg_only_var = 0;
// Throw an exception if c is not an interval congruence.
if (!Box_Helpers::extract_interval_congruence(cg, cg_num_vars, cg_only_var))
throw_invalid_argument("add_congruence(cg)",
"cg is not an interval congruence");
// Avoid doing useless work if the box is known to be empty.
if (marked_empty())
return;
const Coefficient& n = cg.inhomogeneous_term();
if (cg_num_vars == 0) {
// Dealing with a trivial equality congruence.
if (n != 0)
set_empty();
return;
}
PPL_ASSERT(cg_num_vars == 1);
const Coefficient& d = cg.coefficient(Variable(cg_only_var));
add_interval_constraint_no_check(cg_only_var, Constraint::EQUALITY, n, d);
}
template <typename ITV>
void
Box<ITV>::add_congruences_no_check(const Congruence_System& cgs) {
PPL_ASSERT(cgs.space_dimension() <= space_dimension());
// Note: even when the box is known to be empty, we need to go
// through all the congruences to fulfill the method's contract
// for what concerns exception throwing.
for (Congruence_System::const_iterator i = cgs.begin(),
cgs_end = cgs.end(); i != cgs_end; ++i)
add_congruence_no_check(*i);
PPL_ASSERT(OK());
}
template <typename ITV>
void
Box<ITV>::refine_no_check(const Constraint& c) {
PPL_ASSERT(c.space_dimension() <= space_dimension());
PPL_ASSERT(!marked_empty());
dimension_type c_num_vars = 0;
dimension_type c_only_var = 0;
// Non-interval constraints are approximated.
if (!Box_Helpers::extract_interval_constraint(c, c_num_vars, c_only_var)) {
propagate_constraint_no_check(c);
return;
}
const Coefficient& n = c.inhomogeneous_term();
if (c_num_vars == 0) {
// Dealing with a trivial constraint.
if (n < 0
|| (c.is_equality() && n != 0)
|| (c.is_strict_inequality() && n == 0))
set_empty();
return;
}
PPL_ASSERT(c_num_vars == 1);
const Coefficient& d = c.coefficient(Variable(c_only_var));
add_interval_constraint_no_check(c_only_var, c.type(), n, d);
}
template <typename ITV>
void
Box<ITV>::refine_no_check(const Constraint_System& cs) {
PPL_ASSERT(cs.space_dimension() <= space_dimension());
for (Constraint_System::const_iterator i = cs.begin(),
cs_end = cs.end(); !marked_empty() && i != cs_end; ++i)
refine_no_check(*i);
PPL_ASSERT(OK());
}
template <typename ITV>
void
Box<ITV>::refine_no_check(const Congruence& cg) {
PPL_ASSERT(!marked_empty());
PPL_ASSERT(cg.space_dimension() <= space_dimension());
if (cg.is_proper_congruence()) {
// A proper congruences is also an interval constraint
// if and only if it is trivial.
if (cg.is_inconsistent())
set_empty();
return;
}
PPL_ASSERT(cg.is_equality());
Constraint c(cg);
refine_no_check(c);
}
template <typename ITV>
void
Box<ITV>::refine_no_check(const Congruence_System& cgs) {
PPL_ASSERT(cgs.space_dimension() <= space_dimension());
for (Congruence_System::const_iterator i = cgs.begin(),
cgs_end = cgs.end(); !marked_empty() && i != cgs_end; ++i)
refine_no_check(*i);
PPL_ASSERT(OK());
}
#if 1 // Alternative implementations for propagate_constraint_no_check.
namespace Implementation {
namespace Boxes {
inline bool
propagate_constraint_check_result(Result r, Ternary& open) {
r = result_relation_class(r);
switch (r) {
case V_GT_MINUS_INFINITY:
case V_LT_PLUS_INFINITY:
return true;
case V_LT:
case V_GT:
open = T_YES;
return false;
case V_LE:
case V_GE:
if (open == T_NO)
open = T_MAYBE;
return false;
case V_EQ:
return false;
default:
PPL_UNREACHABLE;
return true;
}
}
} // namespace Boxes
} // namespace Implementation
template <typename ITV>
void
Box<ITV>::propagate_constraint_no_check(const Constraint& c) {
using namespace Implementation::Boxes;
PPL_ASSERT(c.space_dimension() <= space_dimension());
typedef
typename Select_Temp_Boundary_Type<typename ITV::boundary_type>::type
Temp_Boundary_Type;
const dimension_type c_space_dim = c.space_dimension();
const Constraint::Type c_type = c.type();
const Coefficient& c_inhomogeneous_term = c.inhomogeneous_term();
// Find a space dimension having a non-zero coefficient (if any).
const dimension_type last_k
= c.expression().last_nonzero(1, c_space_dim + 1);
if (last_k == c_space_dim + 1) {
// Constraint c is trivial: check if it is inconsistent.
if (c_inhomogeneous_term < 0
|| (c_inhomogeneous_term == 0
&& c_type != Constraint::NONSTRICT_INEQUALITY))
set_empty();
return;
}
// Here constraint c is non-trivial.
PPL_ASSERT(last_k <= c_space_dim);
Temp_Boundary_Type t_bound;
Temp_Boundary_Type t_a;
Temp_Boundary_Type t_x;
Ternary open;
const Constraint::expr_type c_e = c.expression();
for (Constraint::expr_type::const_iterator k = c_e.begin(),
k_end = c_e.lower_bound(Variable(last_k)); k != k_end; ++k) {
const Coefficient& a_k = *k;
const Variable k_var = k.variable();
const int sgn_a_k = sgn(a_k);
if (sgn_a_k == 0)
continue;
Result r;
if (sgn_a_k > 0) {
open = (c_type == Constraint::STRICT_INEQUALITY) ? T_YES : T_NO;
if (open == T_NO)
maybe_reset_fpu_inexact<Temp_Boundary_Type>();
r = assign_r(t_bound, c_inhomogeneous_term, ROUND_UP);
if (propagate_constraint_check_result(r, open))
goto maybe_refine_upper_1;
r = neg_assign_r(t_bound, t_bound, ROUND_DOWN);
if (propagate_constraint_check_result(r, open))
goto maybe_refine_upper_1;
for (Constraint::expr_type::const_iterator i = c_e.begin(),
i_end = c_e.lower_bound(Variable(last_k)); i != i_end; ++i) {
const Variable i_var = i.variable();
if (i_var.id() == k_var.id())
continue;
const Coefficient& a_i = *i;
const int sgn_a_i = sgn(a_i);
ITV& x_i = seq[i_var.id()];
if (sgn_a_i < 0) {
if (x_i.lower_is_boundary_infinity())
goto maybe_refine_upper_1;
r = assign_r(t_a, a_i, ROUND_DOWN);
if (propagate_constraint_check_result(r, open))
goto maybe_refine_upper_1;
r = assign_r(t_x, x_i.lower(), ROUND_DOWN);
if (propagate_constraint_check_result(r, open))
goto maybe_refine_upper_1;
if (x_i.lower_is_open())
open = T_YES;
r = sub_mul_assign_r(t_bound, t_a, t_x, ROUND_DOWN);
if (propagate_constraint_check_result(r, open))
goto maybe_refine_upper_1;
}
else {
PPL_ASSERT(sgn_a_i > 0);
if (x_i.upper_is_boundary_infinity())
goto maybe_refine_upper_1;
r = assign_r(t_a, a_i, ROUND_UP);
if (propagate_constraint_check_result(r, open))
goto maybe_refine_upper_1;
r = assign_r(t_x, x_i.upper(), ROUND_UP);
if (propagate_constraint_check_result(r, open))
goto maybe_refine_upper_1;
if (x_i.upper_is_open())
open = T_YES;
r = sub_mul_assign_r(t_bound, t_a, t_x, ROUND_DOWN);
if (propagate_constraint_check_result(r, open))
goto maybe_refine_upper_1;
}
}
r = assign_r(t_a, a_k, ROUND_UP);
if (propagate_constraint_check_result(r, open))
goto maybe_refine_upper_1;
r = div_assign_r(t_bound, t_bound, t_a, ROUND_DOWN);
if (propagate_constraint_check_result(r, open))
goto maybe_refine_upper_1;
// Refine the lower bound of `seq[k]' with `t_bound'.
if (open == T_MAYBE
&& maybe_check_fpu_inexact<Temp_Boundary_Type>() == 1)
open = T_YES;
{
const Relation_Symbol rel
= (open == T_YES) ? GREATER_THAN : GREATER_OR_EQUAL;
seq[k_var.id()].add_constraint(i_constraint(rel, t_bound));
}
reset_empty_up_to_date();
maybe_refine_upper_1:
if (c_type != Constraint::EQUALITY)
continue;
open = T_NO;
maybe_reset_fpu_inexact<Temp_Boundary_Type>();
r = assign_r(t_bound, c_inhomogeneous_term, ROUND_DOWN);
if (propagate_constraint_check_result(r, open))
goto next_k;
r = neg_assign_r(t_bound, t_bound, ROUND_UP);
if (propagate_constraint_check_result(r, open))
goto next_k;
for (Constraint::expr_type::const_iterator i = c_e.begin(),
i_end = c_e.lower_bound(Variable(c_space_dim)); i != i_end; ++i) {
const Variable i_var = i.variable();
if (i_var.id() == k_var.id())
continue;
const Coefficient& a_i = *i;
const int sgn_a_i = sgn(a_i);
ITV& x_i = seq[i_var.id()];
if (sgn_a_i < 0) {
if (x_i.upper_is_boundary_infinity())
goto next_k;
r = assign_r(t_a, a_i, ROUND_UP);
if (propagate_constraint_check_result(r, open))
goto next_k;
r = assign_r(t_x, x_i.upper(), ROUND_UP);
if (propagate_constraint_check_result(r, open))
goto next_k;
if (x_i.upper_is_open())
open = T_YES;
r = sub_mul_assign_r(t_bound, t_a, t_x, ROUND_UP);
if (propagate_constraint_check_result(r, open))
goto next_k;
}
else {
PPL_ASSERT(sgn_a_i > 0);
if (x_i.lower_is_boundary_infinity())
goto next_k;
r = assign_r(t_a, a_i, ROUND_DOWN);
if (propagate_constraint_check_result(r, open))
goto next_k;
r = assign_r(t_x, x_i.lower(), ROUND_DOWN);
if (propagate_constraint_check_result(r, open))
goto next_k;
if (x_i.lower_is_open())
open = T_YES;
r = sub_mul_assign_r(t_bound, t_a, t_x, ROUND_UP);
if (propagate_constraint_check_result(r, open))
goto next_k;
}
}
r = assign_r(t_a, a_k, ROUND_DOWN);
if (propagate_constraint_check_result(r, open))
goto next_k;
r = div_assign_r(t_bound, t_bound, t_a, ROUND_UP);
if (propagate_constraint_check_result(r, open))
goto next_k;
// Refine the upper bound of seq[k] with t_bound.
if (open == T_MAYBE
&& maybe_check_fpu_inexact<Temp_Boundary_Type>() == 1)
open = T_YES;
const Relation_Symbol rel
= (open == T_YES) ? LESS_THAN : LESS_OR_EQUAL;
seq[k_var.id()].add_constraint(i_constraint(rel, t_bound));
reset_empty_up_to_date();
}
else {
PPL_ASSERT(sgn_a_k < 0);
open = (c_type == Constraint::STRICT_INEQUALITY) ? T_YES : T_NO;
if (open == T_NO)
maybe_reset_fpu_inexact<Temp_Boundary_Type>();
r = assign_r(t_bound, c_inhomogeneous_term, ROUND_UP);
if (propagate_constraint_check_result(r, open))
goto maybe_refine_upper_2;
r = neg_assign_r(t_bound, t_bound, ROUND_DOWN);
if (propagate_constraint_check_result(r, open))
goto maybe_refine_upper_2;
for (Constraint::expr_type::const_iterator i = c_e.begin(),
i_end = c_e.lower_bound(Variable(c_space_dim)); i != i_end; ++i) {
const Variable i_var = i.variable();
if (i_var.id() == k_var.id())
continue;
const Coefficient& a_i = *i;
const int sgn_a_i = sgn(a_i);
ITV& x_i = seq[i_var.id()];
if (sgn_a_i < 0) {
if (x_i.lower_is_boundary_infinity())
goto maybe_refine_upper_2;
r = assign_r(t_a, a_i, ROUND_DOWN);
if (propagate_constraint_check_result(r, open))
goto maybe_refine_upper_2;
r = assign_r(t_x, x_i.lower(), ROUND_DOWN);
if (propagate_constraint_check_result(r, open))
goto maybe_refine_upper_2;
if (x_i.lower_is_open())
open = T_YES;
r = sub_mul_assign_r(t_bound, t_a, t_x, ROUND_UP);
if (propagate_constraint_check_result(r, open))
goto maybe_refine_upper_2;
}
else {
PPL_ASSERT(sgn_a_i > 0);
if (x_i.upper_is_boundary_infinity())
goto maybe_refine_upper_2;
r = assign_r(t_a, a_i, ROUND_UP);
if (propagate_constraint_check_result(r, open))
goto maybe_refine_upper_2;
r = assign_r(t_x, x_i.upper(), ROUND_UP);
if (propagate_constraint_check_result(r, open))
goto maybe_refine_upper_2;
if (x_i.upper_is_open())
open = T_YES;
r = sub_mul_assign_r(t_bound, t_a, t_x, ROUND_DOWN);
if (propagate_constraint_check_result(r, open))
goto maybe_refine_upper_2;
}
}
r = assign_r(t_a, a_k, ROUND_UP);
if (propagate_constraint_check_result(r, open))
goto maybe_refine_upper_2;
r = div_assign_r(t_bound, t_bound, t_a, ROUND_UP);
if (propagate_constraint_check_result(r, open))
goto maybe_refine_upper_2;
// Refine the upper bound of seq[k] with t_bound.
if (open == T_MAYBE
&& maybe_check_fpu_inexact<Temp_Boundary_Type>() == 1)
open = T_YES;
{
const Relation_Symbol rel
= (open == T_YES) ? LESS_THAN : LESS_OR_EQUAL;
seq[k_var.id()].add_constraint(i_constraint(rel, t_bound));
}
reset_empty_up_to_date();
maybe_refine_upper_2:
if (c_type != Constraint::EQUALITY)
continue;
open = T_NO;
maybe_reset_fpu_inexact<Temp_Boundary_Type>();
r = assign_r(t_bound, c_inhomogeneous_term, ROUND_DOWN);
if (propagate_constraint_check_result(r, open))
goto next_k;
r = neg_assign_r(t_bound, t_bound, ROUND_UP);
if (propagate_constraint_check_result(r, open))
goto next_k;
for (Constraint::expr_type::const_iterator i = c_e.begin(),
i_end = c_e.lower_bound(Variable(c_space_dim)); i != i_end; ++i) {
const Variable i_var = i.variable();
if (i_var.id() == k_var.id())
continue;
const Coefficient& a_i = *i;
const int sgn_a_i = sgn(a_i);
ITV& x_i = seq[i_var.id()];
if (sgn_a_i < 0) {
if (x_i.upper_is_boundary_infinity())
goto next_k;
r = assign_r(t_a, a_i, ROUND_UP);
if (propagate_constraint_check_result(r, open))
goto next_k;
r = assign_r(t_x, x_i.upper(), ROUND_UP);
if (propagate_constraint_check_result(r, open))
goto next_k;
if (x_i.upper_is_open())
open = T_YES;
r = sub_mul_assign_r(t_bound, t_a, t_x, ROUND_UP);
if (propagate_constraint_check_result(r, open))
goto next_k;
}
else {
PPL_ASSERT(sgn_a_i > 0);
if (x_i.lower_is_boundary_infinity())
goto next_k;
r = assign_r(t_a, a_i, ROUND_DOWN);
if (propagate_constraint_check_result(r, open))
goto next_k;
r = assign_r(t_x, x_i.lower(), ROUND_DOWN);
if (propagate_constraint_check_result(r, open))
goto next_k;
if (x_i.lower_is_open())
open = T_YES;
r = sub_mul_assign_r(t_bound, t_a, t_x, ROUND_UP);
if (propagate_constraint_check_result(r, open))
goto next_k;
}
}
r = assign_r(t_a, a_k, ROUND_DOWN);
if (propagate_constraint_check_result(r, open))
goto next_k;
r = div_assign_r(t_bound, t_bound, t_a, ROUND_DOWN);
if (propagate_constraint_check_result(r, open))
goto next_k;
// Refine the lower bound of seq[k] with t_bound.
if (open == T_MAYBE
&& maybe_check_fpu_inexact<Temp_Boundary_Type>() == 1)
open = T_YES;
const Relation_Symbol rel
= (open == T_YES) ? GREATER_THAN : GREATER_OR_EQUAL;
seq[k_var.id()].add_constraint(i_constraint(rel, t_bound));
reset_empty_up_to_date();
}
next_k:
;
}
}
#else // Alternative implementations for propagate_constraint_no_check.
template <typename ITV>
void
Box<ITV>::propagate_constraint_no_check(const Constraint& c) {
PPL_ASSERT(c.space_dimension() <= space_dimension());
dimension_type c_space_dim = c.space_dimension();
ITV k[c_space_dim];
ITV p[c_space_dim];
for (Constraint::expr_type::const_iterator i = c_e.begin(),
i_end = c_e.lower_bound(Variable(c_space_dim)); i != i_end; ++i) {
const Variable i_var = i.variable();
k[i_var.id()] = *i;
ITV& p_i = p[i_var.id()];
p_i = seq[i_var.id()];
p_i.mul_assign(p_i, k[i_var.id()]);
}
const Coefficient& inhomogeneous_term = c.inhomogeneous_term();
for (Constraint::expr_type::const_iterator i = c_e.begin(),
i_end = c_e.lower_bound(Variable(c_space_dim)); i != i_end; ++i) {
const Variable i_var = i.variable();
int sgn_coefficient_i = sgn(*i);
ITV q(inhomogeneous_term);
for (Constraint::expr_type::const_iterator j = c_e.begin(),
j_end = c_e.lower_bound(Variable(c_space_dim)); j != j_end; ++j) {
const Variable j_var = j.variable();
if (i_var == j_var)
continue;
q.add_assign(q, p[j_var.id()]);
}
q.div_assign(q, k[i_var.id()]);
q.neg_assign(q);
Relation_Symbol rel;
switch (c.type()) {
case Constraint::EQUALITY:
rel = EQUAL;
break;
case Constraint::NONSTRICT_INEQUALITY:
rel = (sgn_coefficient_i > 0) ? GREATER_OR_EQUAL : LESS_OR_EQUAL;
break;
case Constraint::STRICT_INEQUALITY:
rel = (sgn_coefficient_i > 0) ? GREATER_THAN : LESS_THAN;
break;
}
seq[i_var.id()].add_constraint(i_constraint(rel, q));
// FIXME: could/should we exploit the return value of add_constraint
// in case it is available?
// FIXME: should we instead be lazy and do not even bother about
// the possibility the interval becomes empty apart from setting
// empty_up_to_date = false?
if (seq[i_var.id()].is_empty()) {
set_empty();
break;
}
}
PPL_ASSERT(OK());
}
#endif // Alternative implementations for propagate_constraint_no_check.
template <typename ITV>
void
Box<ITV>
::propagate_constraints_no_check(const Constraint_System& cs,
const dimension_type max_iterations) {
const dimension_type space_dim = space_dimension();
PPL_ASSERT(cs.space_dimension() <= space_dim);
const Constraint_System::const_iterator cs_begin = cs.begin();
const Constraint_System::const_iterator cs_end = cs.end();
const dimension_type propagation_weight
= Implementation::num_constraints(cs) * space_dim;
Sequence copy;
bool changed;
dimension_type num_iterations = 0;
do {
WEIGHT_BEGIN();
++num_iterations;
copy = seq;
for (Constraint_System::const_iterator i = cs_begin; i != cs_end; ++i)
propagate_constraint_no_check(*i);
WEIGHT_ADD_MUL(40, propagation_weight);
// Check if the client has requested abandoning all expensive
// computations. If so, the exception specified by the client
// is thrown now.
maybe_abandon();
// NOTE: if max_iterations == 0 (i.e., no iteration limit is set)
// the following test will anyway trigger on wrap around.
if (num_iterations == max_iterations)
break;
changed = (copy != seq);
} while (changed);
}
template <typename ITV>
void
Box<ITV>::affine_image(const Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator) {
// The denominator cannot be zero.
if (denominator == 0)
throw_invalid_argument("affine_image(v, e, d)", "d == 0");
// Dimension-compatibility checks.
const dimension_type space_dim = space_dimension();
const dimension_type expr_space_dim = expr.space_dimension();
if (space_dim < expr_space_dim)
throw_dimension_incompatible("affine_image(v, e, d)", "e", expr);
// `var' should be one of the dimensions of the polyhedron.
const dimension_type var_space_dim = var.space_dimension();
if (space_dim < var_space_dim)
throw_dimension_incompatible("affine_image(v, e, d)", "v", var);
if (is_empty())
return;
Tmp_Interval_Type expr_value;
Tmp_Interval_Type temp0;
Tmp_Interval_Type temp1;
expr_value.assign(expr.inhomogeneous_term());
for (Linear_Expression::const_iterator i = expr.begin(),
i_end = expr.end(); i != i_end; ++i) {
temp0.assign(*i);
temp1.assign(seq[i.variable().id()]);
temp0.mul_assign(temp0, temp1);
expr_value.add_assign(expr_value, temp0);
}
if (denominator != 1) {
temp0.assign(denominator);
expr_value.div_assign(expr_value, temp0);
}
seq[var.id()].assign(expr_value);
PPL_ASSERT(OK());
}
template <typename ITV>
void
Box<ITV>::affine_form_image(const Variable var,
const Linear_Form<ITV>& lf) {
// Check that ITV has a floating point boundary type.
PPL_COMPILE_TIME_CHECK(!std::numeric_limits<typename ITV::boundary_type>
::is_exact, "Box<ITV>::affine_form_image(Variable, Linear_Form):"
"ITV has not a floating point boundary type.");
// Dimension-compatibility checks.
const dimension_type space_dim = space_dimension();
const dimension_type lf_space_dim = lf.space_dimension();
if (space_dim < lf_space_dim)
throw_dimension_incompatible("affine_form_image(var, lf)", "lf", lf);
// `var' should be one of the dimensions of the polyhedron.
const dimension_type var_space_dim = var.space_dimension();
if (space_dim < var_space_dim)
throw_dimension_incompatible("affine_form_image(var, lf)", "var", var);
if (is_empty())
return;
// Intervalization of 'lf'.
ITV result = lf.inhomogeneous_term();
for (dimension_type i = 0; i < lf_space_dim; ++i) {
ITV current_addend = lf.coefficient(Variable(i));
const ITV& curr_int = seq[i];
current_addend *= curr_int;
result += current_addend;
}
seq[var.id()].assign(result);
PPL_ASSERT(OK());
}
template <typename ITV>
void
Box<ITV>::affine_preimage(const Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference
denominator) {
// The denominator cannot be zero.
if (denominator == 0)
throw_invalid_argument("affine_preimage(v, e, d)", "d == 0");
// Dimension-compatibility checks.
const dimension_type x_space_dim = space_dimension();
const dimension_type expr_space_dim = expr.space_dimension();
if (x_space_dim < expr_space_dim)
throw_dimension_incompatible("affine_preimage(v, e, d)", "e", expr);
// `var' should be one of the dimensions of the polyhedron.
const dimension_type var_space_dim = var.space_dimension();
if (x_space_dim < var_space_dim)
throw_dimension_incompatible("affine_preimage(v, e, d)", "v", var);
if (is_empty())
return;
const Coefficient& expr_v = expr.coefficient(var);
const bool invertible = (expr_v != 0);
if (!invertible) {
Tmp_Interval_Type expr_value;
Tmp_Interval_Type temp0;
Tmp_Interval_Type temp1;
expr_value.assign(expr.inhomogeneous_term());
for (Linear_Expression::const_iterator i = expr.begin(),
i_end = expr.end(); i != i_end; ++i) {
temp0.assign(*i);
temp1.assign(seq[i.variable().id()]);
temp0.mul_assign(temp0, temp1);
expr_value.add_assign(expr_value, temp0);
}
if (denominator != 1) {
temp0.assign(denominator);
expr_value.div_assign(expr_value, temp0);
}
ITV& x_seq_v = seq[var.id()];
expr_value.intersect_assign(x_seq_v);
if (expr_value.is_empty())
set_empty();
else
x_seq_v.assign(UNIVERSE);
}
else {
// The affine transformation is invertible.
// CHECKME: for efficiency, would it be meaningful to avoid
// the computation of inverse by partially evaluating the call
// to affine_image?
Linear_Expression inverse;
inverse -= expr;
inverse += (expr_v + denominator) * var;
affine_image(var, inverse, expr_v);
}
PPL_ASSERT(OK());
}
template <typename ITV>
void
Box<ITV>
::bounded_affine_image(const Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator) {
// The denominator cannot be zero.
if (denominator == 0)
throw_invalid_argument("bounded_affine_image(v, lb, ub, d)", "d == 0");
// Dimension-compatibility checks.
const dimension_type space_dim = space_dimension();
// The dimension of `lb_expr' and `ub_expr' should not be
// greater than the dimension of `*this'.
const dimension_type lb_space_dim = lb_expr.space_dimension();
if (space_dim < lb_space_dim)
throw_dimension_incompatible("bounded_affine_image(v, lb, ub, d)",
"lb", lb_expr);
const dimension_type ub_space_dim = ub_expr.space_dimension();
if (space_dim < ub_space_dim)
throw_dimension_incompatible("bounded_affine_image(v, lb, ub, d)",
"ub", ub_expr);
// `var' should be one of the dimensions of the box.
const dimension_type var_space_dim = var.space_dimension();
if (space_dim < var_space_dim)
throw_dimension_incompatible("affine_image(v, e, d)", "v", var);
// Any image of an empty box is empty.
if (is_empty())
return;
// Add the constraint implied by the `lb_expr' and `ub_expr'.
if (denominator > 0)
refine_with_constraint(lb_expr <= ub_expr);
else
refine_with_constraint(lb_expr >= ub_expr);
// Check whether `var' occurs in `lb_expr' and/or `ub_expr'.
if (lb_expr.coefficient(var) == 0) {
// Here `var' can only occur in `ub_expr'.
generalized_affine_image(var,
LESS_OR_EQUAL,
ub_expr,
denominator);
if (denominator > 0)
refine_with_constraint(lb_expr <= denominator*var);
else
refine_with_constraint(denominator*var <= lb_expr);
}
else if (ub_expr.coefficient(var) == 0) {
// Here `var' can only occur in `lb_expr'.
generalized_affine_image(var,
GREATER_OR_EQUAL,
lb_expr,
denominator);
if (denominator > 0)
refine_with_constraint(denominator*var <= ub_expr);
else
refine_with_constraint(ub_expr <= denominator*var);
}
else {
// Here `var' occurs in both `lb_expr' and `ub_expr'. As boxes
// can only use the non-relational constraints, we find the
// maximum/minimum values `ub_expr' and `lb_expr' obtain with the
// box and use these instead of the `ub-expr' and `lb-expr'.
PPL_DIRTY_TEMP(Coefficient, max_numer);
PPL_DIRTY_TEMP(Coefficient, max_denom);
bool max_included;
PPL_DIRTY_TEMP(Coefficient, min_numer);
PPL_DIRTY_TEMP(Coefficient, min_denom);
bool min_included;
ITV& seq_v = seq[var.id()];
if (maximize(ub_expr, max_numer, max_denom, max_included)) {
if (minimize(lb_expr, min_numer, min_denom, min_included)) {
// The `ub_expr' has a maximum value and the `lb_expr'
// has a minimum value for the box.
// Set the bounds for `var' using the minimum for `lb_expr'.
min_denom *= denominator;
PPL_DIRTY_TEMP(mpq_class, q1);
PPL_DIRTY_TEMP(mpq_class, q2);
assign_r(q1.get_num(), min_numer, ROUND_NOT_NEEDED);
assign_r(q1.get_den(), min_denom, ROUND_NOT_NEEDED);
q1.canonicalize();
// Now make the maximum of lb_expr the upper bound. If the
// maximum is not at a box point, then inequality is strict.
max_denom *= denominator;
assign_r(q2.get_num(), max_numer, ROUND_NOT_NEEDED);
assign_r(q2.get_den(), max_denom, ROUND_NOT_NEEDED);
q2.canonicalize();
if (denominator > 0) {
Relation_Symbol gr = min_included ? GREATER_OR_EQUAL : GREATER_THAN;
Relation_Symbol lr = max_included ? LESS_OR_EQUAL : LESS_THAN;
seq_v.build(i_constraint(gr, q1), i_constraint(lr, q2));
}
else {
Relation_Symbol gr = max_included ? GREATER_OR_EQUAL : GREATER_THAN;
Relation_Symbol lr = min_included ? LESS_OR_EQUAL : LESS_THAN;
seq_v.build(i_constraint(gr, q2), i_constraint(lr, q1));
}
}
else {
// The `ub_expr' has a maximum value but the `lb_expr'
// has no minimum value for the box.
// Set the bounds for `var' using the maximum for `lb_expr'.
PPL_DIRTY_TEMP(mpq_class, q);
max_denom *= denominator;
assign_r(q.get_num(), max_numer, ROUND_NOT_NEEDED);
assign_r(q.get_den(), max_denom, ROUND_NOT_NEEDED);
q.canonicalize();
Relation_Symbol rel = (denominator > 0)
? (max_included ? LESS_OR_EQUAL : LESS_THAN)
: (max_included ? GREATER_OR_EQUAL : GREATER_THAN);
seq_v.build(i_constraint(rel, q));
}
}
else if (minimize(lb_expr, min_numer, min_denom, min_included)) {
// The `ub_expr' has no maximum value but the `lb_expr'
// has a minimum value for the box.
// Set the bounds for `var' using the minimum for `lb_expr'.
min_denom *= denominator;
PPL_DIRTY_TEMP(mpq_class, q);
assign_r(q.get_num(), min_numer, ROUND_NOT_NEEDED);
assign_r(q.get_den(), min_denom, ROUND_NOT_NEEDED);
q.canonicalize();
Relation_Symbol rel = (denominator > 0)
? (min_included ? GREATER_OR_EQUAL : GREATER_THAN)
: (min_included ? LESS_OR_EQUAL : LESS_THAN);
seq_v.build(i_constraint(rel, q));
}
else {
// The `ub_expr' has no maximum value and the `lb_expr'
// has no minimum value for the box.
// So we set the bounds to be unbounded.
seq_v.assign(UNIVERSE);
}
}
PPL_ASSERT(OK());
}
template <typename ITV>
void
Box<ITV>
::bounded_affine_preimage(const Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator) {
// The denominator cannot be zero.
const dimension_type space_dim = space_dimension();
if (denominator == 0)
throw_invalid_argument("bounded_affine_preimage(v, lb, ub, d)", "d == 0");
// Dimension-compatibility checks.
// `var' should be one of the dimensions of the polyhedron.
const dimension_type var_space_dim = var.space_dimension();
if (space_dim < var_space_dim)
throw_dimension_incompatible("bounded_affine_preimage(v, lb, ub, d)",
"v", var);
// The dimension of `lb_expr' and `ub_expr' should not be
// greater than the dimension of `*this'.
const dimension_type lb_space_dim = lb_expr.space_dimension();
if (space_dim < lb_space_dim)
throw_dimension_incompatible("bounded_affine_preimage(v, lb, ub, d)",
"lb", lb_expr);
const dimension_type ub_space_dim = ub_expr.space_dimension();
if (space_dim < ub_space_dim)
throw_dimension_incompatible("bounded_affine_preimage(v, lb, ub, d)",
"ub", ub_expr);
// Any preimage of an empty polyhedron is empty.
if (marked_empty())
return;
const bool negative_denom = (denominator < 0);
const Coefficient& lb_var_coeff = lb_expr.coefficient(var);
const Coefficient& ub_var_coeff = ub_expr.coefficient(var);
// If the implied constraint between `ub_expr and `lb_expr' is
// independent of `var', then impose it now.
if (lb_var_coeff == ub_var_coeff) {
if (negative_denom)
refine_with_constraint(lb_expr >= ub_expr);
else
refine_with_constraint(lb_expr <= ub_expr);
}
ITV& seq_var = seq[var.id()];
if (!seq_var.is_universe()) {
// We want to work with a positive denominator,
// so the sign and its (unsigned) value are separated.
PPL_DIRTY_TEMP_COEFFICIENT(pos_denominator);
pos_denominator = denominator;
if (negative_denom)
neg_assign(pos_denominator, pos_denominator);
// Store all the information about the upper and lower bounds
// for `var' before making this interval unbounded.
bool open_lower = seq_var.lower_is_open();
bool unbounded_lower = seq_var.lower_is_boundary_infinity();
PPL_DIRTY_TEMP(mpq_class, q_seq_var_lower);
PPL_DIRTY_TEMP(Coefficient, numer_lower);
PPL_DIRTY_TEMP(Coefficient, denom_lower);
if (!unbounded_lower) {
assign_r(q_seq_var_lower, seq_var.lower(), ROUND_NOT_NEEDED);
assign_r(numer_lower, q_seq_var_lower.get_num(), ROUND_NOT_NEEDED);
assign_r(denom_lower, q_seq_var_lower.get_den(), ROUND_NOT_NEEDED);
if (negative_denom)
neg_assign(denom_lower, denom_lower);
numer_lower *= pos_denominator;
seq_var.lower_extend();
}
bool open_upper = seq_var.upper_is_open();
bool unbounded_upper = seq_var.upper_is_boundary_infinity();
PPL_DIRTY_TEMP(mpq_class, q_seq_var_upper);
PPL_DIRTY_TEMP(Coefficient, numer_upper);
PPL_DIRTY_TEMP(Coefficient, denom_upper);
if (!unbounded_upper) {
assign_r(q_seq_var_upper, seq_var.upper(), ROUND_NOT_NEEDED);
assign_r(numer_upper, q_seq_var_upper.get_num(), ROUND_NOT_NEEDED);
assign_r(denom_upper, q_seq_var_upper.get_den(), ROUND_NOT_NEEDED);
if (negative_denom)
neg_assign(denom_upper, denom_upper);
numer_upper *= pos_denominator;
seq_var.upper_extend();
}
if (!unbounded_lower) {
// `lb_expr' is revised by removing the `var' component,
// multiplying by `-' denominator of the lower bound for `var',
// and adding the lower bound for `var' to the inhomogeneous term.
Linear_Expression revised_lb_expr(ub_expr);
revised_lb_expr -= ub_var_coeff * var;
PPL_DIRTY_TEMP(Coefficient, d);
neg_assign(d, denom_lower);
revised_lb_expr *= d;
revised_lb_expr += numer_lower;
// Find the minimum value for the revised lower bound expression
// and use this to refine the appropriate bound.
bool included;
PPL_DIRTY_TEMP(Coefficient, denom);
if (minimize(revised_lb_expr, numer_lower, denom, included)) {
denom_lower *= (denom * ub_var_coeff);
PPL_DIRTY_TEMP(mpq_class, q);
assign_r(q.get_num(), numer_lower, ROUND_NOT_NEEDED);
assign_r(q.get_den(), denom_lower, ROUND_NOT_NEEDED);
q.canonicalize();
if (!included)
open_lower = true;
Relation_Symbol rel;
if ((ub_var_coeff >= 0) ? !negative_denom : negative_denom)
rel = open_lower ? GREATER_THAN : GREATER_OR_EQUAL;
else
rel = open_lower ? LESS_THAN : LESS_OR_EQUAL;
seq_var.add_constraint(i_constraint(rel, q));
if (seq_var.is_empty()) {
set_empty();
return;
}
}
}
if (!unbounded_upper) {
// `ub_expr' is revised by removing the `var' component,
// multiplying by `-' denominator of the upper bound for `var',
// and adding the upper bound for `var' to the inhomogeneous term.
Linear_Expression revised_ub_expr(lb_expr);
revised_ub_expr -= lb_var_coeff * var;
PPL_DIRTY_TEMP(Coefficient, d);
neg_assign(d, denom_upper);
revised_ub_expr *= d;
revised_ub_expr += numer_upper;
// Find the maximum value for the revised upper bound expression
// and use this to refine the appropriate bound.
bool included;
PPL_DIRTY_TEMP(Coefficient, denom);
if (maximize(revised_ub_expr, numer_upper, denom, included)) {
denom_upper *= (denom * lb_var_coeff);
PPL_DIRTY_TEMP(mpq_class, q);
assign_r(q.get_num(), numer_upper, ROUND_NOT_NEEDED);
assign_r(q.get_den(), denom_upper, ROUND_NOT_NEEDED);
q.canonicalize();
if (!included)
open_upper = true;
Relation_Symbol rel;
if ((lb_var_coeff >= 0) ? !negative_denom : negative_denom)
rel = open_upper ? LESS_THAN : LESS_OR_EQUAL;
else
rel = open_upper ? GREATER_THAN : GREATER_OR_EQUAL;
seq_var.add_constraint(i_constraint(rel, q));
if (seq_var.is_empty()) {
set_empty();
return;
}
}
}
}
// If the implied constraint between `ub_expr and `lb_expr' is
// dependent on `var', then impose on the new box.
if (lb_var_coeff != ub_var_coeff) {
if (denominator > 0)
refine_with_constraint(lb_expr <= ub_expr);
else
refine_with_constraint(lb_expr >= ub_expr);
}
PPL_ASSERT(OK());
}
template <typename ITV>
void
Box<ITV>
::generalized_affine_image(const Variable var,
const Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator) {
// The denominator cannot be zero.
if (denominator == 0)
throw_invalid_argument("generalized_affine_image(v, r, e, d)", "d == 0");
// Dimension-compatibility checks.
const dimension_type space_dim = space_dimension();
// The dimension of `expr' should not be greater than the dimension
// of `*this'.
if (space_dim < expr.space_dimension())
throw_dimension_incompatible("generalized_affine_image(v, r, e, d)",
"e", expr);
// `var' should be one of the dimensions of the box.
const dimension_type var_space_dim = var.space_dimension();
if (space_dim < var_space_dim)
throw_dimension_incompatible("generalized_affine_image(v, r, e, d)",
"v", var);
// The relation symbol cannot be a disequality.
if (relsym == NOT_EQUAL)
throw_invalid_argument("generalized_affine_image(v, r, e, d)",
"r is the disequality relation symbol");
// First compute the affine image.
affine_image(var, expr, denominator);
if (relsym == EQUAL)
// The affine relation is indeed an affine function.
return;
// Any image of an empty box is empty.
if (is_empty())
return;
ITV& seq_var = seq[var.id()];
switch (relsym) {
case LESS_OR_EQUAL:
seq_var.lower_extend();
break;
case LESS_THAN:
seq_var.lower_extend();
if (!seq_var.upper_is_boundary_infinity())
seq_var.remove_sup();
break;
case GREATER_OR_EQUAL:
seq_var.upper_extend();
break;
case GREATER_THAN:
seq_var.upper_extend();
if (!seq_var.lower_is_boundary_infinity())
seq_var.remove_inf();
break;
default:
// The EQUAL and NOT_EQUAL cases have been already dealt with.
PPL_UNREACHABLE;
break;
}
PPL_ASSERT(OK());
}
template <typename ITV>
void
Box<ITV>
::generalized_affine_preimage(const Variable var,
const Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator)
{
// The denominator cannot be zero.
if (denominator == 0)
throw_invalid_argument("generalized_affine_preimage(v, r, e, d)",
"d == 0");
// Dimension-compatibility checks.
const dimension_type space_dim = space_dimension();
// The dimension of `expr' should not be greater than the dimension
// of `*this'.
if (space_dim < expr.space_dimension())
throw_dimension_incompatible("generalized_affine_preimage(v, r, e, d)",
"e", expr);
// `var' should be one of the dimensions of the box.
const dimension_type var_space_dim = var.space_dimension();
if (space_dim < var_space_dim)
throw_dimension_incompatible("generalized_affine_preimage(v, r, e, d)",
"v", var);
// The relation symbol cannot be a disequality.
if (relsym == NOT_EQUAL)
throw_invalid_argument("generalized_affine_preimage(v, r, e, d)",
"r is the disequality relation symbol");
// Check whether the affine relation is indeed an affine function.
if (relsym == EQUAL) {
affine_preimage(var, expr, denominator);
return;
}
// Compute the reversed relation symbol to simplify later coding.
Relation_Symbol reversed_relsym;
switch (relsym) {
case LESS_THAN:
reversed_relsym = GREATER_THAN;
break;
case LESS_OR_EQUAL:
reversed_relsym = GREATER_OR_EQUAL;
break;
case GREATER_OR_EQUAL:
reversed_relsym = LESS_OR_EQUAL;
break;
case GREATER_THAN:
reversed_relsym = LESS_THAN;
break;
default:
// The EQUAL and NOT_EQUAL cases have been already dealt with.
PPL_UNREACHABLE;
break;
}
// Check whether the preimage of this affine relation can be easily
// computed as the image of its inverse relation.
const Coefficient& var_coefficient = expr.coefficient(var);
if (var_coefficient != 0) {
Linear_Expression inverse_expr
= expr - (denominator + var_coefficient) * var;
PPL_DIRTY_TEMP_COEFFICIENT(inverse_denominator);
neg_assign(inverse_denominator, var_coefficient);
Relation_Symbol inverse_relsym
= (sgn(denominator) == sgn(inverse_denominator))
? relsym
: reversed_relsym;
generalized_affine_image(var, inverse_relsym, inverse_expr,
inverse_denominator);
return;
}
// Here `var_coefficient == 0', so that the preimage cannot
// be easily computed by inverting the affine relation.
// Shrink the box by adding the constraint induced
// by the affine relation.
// First, compute the maximum and minimum value reached by
// `denominator*var' on the box as we need to use non-relational
// expressions.
PPL_DIRTY_TEMP(Coefficient, max_numer);
PPL_DIRTY_TEMP(Coefficient, max_denom);
bool max_included;
bool bound_above = maximize(denominator*var, max_numer, max_denom, max_included);
PPL_DIRTY_TEMP(Coefficient, min_numer);
PPL_DIRTY_TEMP(Coefficient, min_denom);
bool min_included;
bool bound_below = minimize(denominator*var, min_numer, min_denom, min_included);
// Use the correct relation symbol
const Relation_Symbol corrected_relsym
= (denominator > 0) ? relsym : reversed_relsym;
// Revise the expression to take into account the denominator of the
// maximum/minimum value for `var'.
Linear_Expression revised_expr;
PPL_DIRTY_TEMP_COEFFICIENT(d);
if (corrected_relsym == LESS_THAN || corrected_relsym == LESS_OR_EQUAL) {
if (bound_below) {
revised_expr = expr;
revised_expr.set_inhomogeneous_term(Coefficient_zero());
revised_expr *= d;
}
}
else {
if (bound_above) {
revised_expr = expr;
revised_expr.set_inhomogeneous_term(Coefficient_zero());
revised_expr *= max_denom;
}
}
switch (corrected_relsym) {
case LESS_THAN:
if (bound_below)
refine_with_constraint(min_numer < revised_expr);
break;
case LESS_OR_EQUAL:
if (bound_below)
(min_included)
? refine_with_constraint(min_numer <= revised_expr)
: refine_with_constraint(min_numer < revised_expr);
break;
case GREATER_OR_EQUAL:
if (bound_above)
(max_included)
? refine_with_constraint(max_numer >= revised_expr)
: refine_with_constraint(max_numer > revised_expr);
break;
case GREATER_THAN:
if (bound_above)
refine_with_constraint(max_numer > revised_expr);
break;
default:
// The EQUAL and NOT_EQUAL cases have been already dealt with.
PPL_UNREACHABLE;
break;
}
// If the shrunk box is empty, its preimage is empty too.
if (is_empty())
return;
ITV& seq_v = seq[var.id()];
seq_v.assign(UNIVERSE);
PPL_ASSERT(OK());
}
template <typename ITV>
void
Box<ITV>
::generalized_affine_image(const Linear_Expression& lhs,
const Relation_Symbol relsym,
const Linear_Expression& rhs) {
// Dimension-compatibility checks.
// The dimension of `lhs' should not be greater than the dimension
// of `*this'.
dimension_type lhs_space_dim = lhs.space_dimension();
const dimension_type space_dim = space_dimension();
if (space_dim < lhs_space_dim)
throw_dimension_incompatible("generalized_affine_image(e1, r, e2)",
"e1", lhs);
// The dimension of `rhs' should not be greater than the dimension
// of `*this'.
const dimension_type rhs_space_dim = rhs.space_dimension();
if (space_dim < rhs_space_dim)
throw_dimension_incompatible("generalized_affine_image(e1, r, e2)",
"e2", rhs);
// The relation symbol cannot be a disequality.
if (relsym == NOT_EQUAL)
throw_invalid_argument("generalized_affine_image(e1, r, e2)",
"r is the disequality relation symbol");
// Any image of an empty box is empty.
if (marked_empty())
return;
// Compute the maximum and minimum value reached by the rhs on the box.
PPL_DIRTY_TEMP(Coefficient, max_numer);
PPL_DIRTY_TEMP(Coefficient, max_denom);
bool max_included;
bool max_rhs = maximize(rhs, max_numer, max_denom, max_included);
PPL_DIRTY_TEMP(Coefficient, min_numer);
PPL_DIRTY_TEMP(Coefficient, min_denom);
bool min_included;
bool min_rhs = minimize(rhs, min_numer, min_denom, min_included);
// Check whether there is 0, 1 or more than one variable in the lhs
// and record the variable with the highest dimension; set the box
// intervals to be unbounded for all other dimensions with non-zero
// coefficients in the lhs.
bool has_var = false;
dimension_type has_var_id = lhs.last_nonzero();
if (has_var_id != 0) {
has_var = true;
--has_var_id;
dimension_type other_var = lhs.first_nonzero(1, has_var_id + 1);
--other_var;
if (other_var != has_var_id) {
// There is more than one dimension with non-zero coefficient, so
// we cannot have any information about the dimensions in the lhs.
ITV& seq_var = seq[has_var_id];
seq_var.assign(UNIVERSE);
// Since all but the highest dimension with non-zero coefficient
// in the lhs have been set unbounded, it remains to set the
// highest dimension in the lhs unbounded.
ITV& seq_i = seq[other_var];
seq_i.assign(UNIVERSE);
PPL_ASSERT(OK());
return;
}
}
if (has_var) {
// There is exactly one dimension with non-zero coefficient.
ITV& seq_var = seq[has_var_id];
// Compute the new bounds for this dimension defined by the rhs
// expression.
const Coefficient& inhomo = lhs.inhomogeneous_term();
const Coefficient& coeff = lhs.coefficient(Variable(has_var_id));
PPL_DIRTY_TEMP(mpq_class, q_max);
PPL_DIRTY_TEMP(mpq_class, q_min);
if (max_rhs) {
max_numer -= inhomo * max_denom;
max_denom *= coeff;
assign_r(q_max.get_num(), max_numer, ROUND_NOT_NEEDED);
assign_r(q_max.get_den(), max_denom, ROUND_NOT_NEEDED);
q_max.canonicalize();
}
if (min_rhs) {
min_numer -= inhomo * min_denom;
min_denom *= coeff;
assign_r(q_min.get_num(), min_numer, ROUND_NOT_NEEDED);
assign_r(q_min.get_den(), min_denom, ROUND_NOT_NEEDED);
q_min.canonicalize();
}
// The choice as to which bounds should be set depends on the sign
// of the coefficient of the dimension `has_var_id' in the lhs.
if (coeff > 0)
// The coefficient of the dimension in the lhs is positive.
switch (relsym) {
case LESS_OR_EQUAL:
if (max_rhs) {
Relation_Symbol rel = max_included ? LESS_OR_EQUAL : LESS_THAN;
seq_var.build(i_constraint(rel, q_max));
}
else
seq_var.assign(UNIVERSE);
break;
case LESS_THAN:
if (max_rhs)
seq_var.build(i_constraint(LESS_THAN, q_max));
else
seq_var.assign(UNIVERSE);
break;
case EQUAL:
{
I_Constraint<mpq_class> l;
I_Constraint<mpq_class> u;
if (max_rhs)
u.set(max_included ? LESS_OR_EQUAL : LESS_THAN, q_max);
if (min_rhs)
l.set(min_included ? GREATER_OR_EQUAL : GREATER_THAN, q_min);
seq_var.build(l, u);
break;
}
case GREATER_OR_EQUAL:
if (min_rhs) {
Relation_Symbol rel = min_included ? GREATER_OR_EQUAL : GREATER_THAN;
seq_var.build(i_constraint(rel, q_min));
}
else
seq_var.assign(UNIVERSE);
break;
case GREATER_THAN:
if (min_rhs)
seq_var.build(i_constraint(GREATER_THAN, q_min));
else
seq_var.assign(UNIVERSE);
break;
default:
// The NOT_EQUAL case has been already dealt with.
PPL_UNREACHABLE;
break;
}
else
// The coefficient of the dimension in the lhs is negative.
switch (relsym) {
case GREATER_OR_EQUAL:
if (min_rhs) {
Relation_Symbol rel = min_included ? LESS_OR_EQUAL : LESS_THAN;
seq_var.build(i_constraint(rel, q_min));
}
else
seq_var.assign(UNIVERSE);
break;
case GREATER_THAN:
if (min_rhs)
seq_var.build(i_constraint(LESS_THAN, q_min));
else
seq_var.assign(UNIVERSE);
break;
case EQUAL:
{
I_Constraint<mpq_class> l;
I_Constraint<mpq_class> u;
if (max_rhs)
l.set(max_included ? GREATER_OR_EQUAL : GREATER_THAN, q_max);
if (min_rhs)
u.set(min_included ? LESS_OR_EQUAL : LESS_THAN, q_min);
seq_var.build(l, u);
break;
}
case LESS_OR_EQUAL:
if (max_rhs) {
Relation_Symbol rel = max_included ? GREATER_OR_EQUAL : GREATER_THAN;
seq_var.build(i_constraint(rel, q_max));
}
else
seq_var.assign(UNIVERSE);
break;
case LESS_THAN:
if (max_rhs)
seq_var.build(i_constraint(GREATER_THAN, q_max));
else
seq_var.assign(UNIVERSE);
break;
default:
// The NOT_EQUAL case has been already dealt with.
PPL_UNREACHABLE;
break;
}
}
else {
// The lhs is a constant value, so we just need to add the
// appropriate constraint.
const Coefficient& inhomo = lhs.inhomogeneous_term();
switch (relsym) {
case LESS_THAN:
refine_with_constraint(inhomo < rhs);
break;
case LESS_OR_EQUAL:
refine_with_constraint(inhomo <= rhs);
break;
case EQUAL:
refine_with_constraint(inhomo == rhs);
break;
case GREATER_OR_EQUAL:
refine_with_constraint(inhomo >= rhs);
break;
case GREATER_THAN:
refine_with_constraint(inhomo > rhs);
break;
default:
// The NOT_EQUAL case has been already dealt with.
PPL_UNREACHABLE;
break;
}
}
PPL_ASSERT(OK());
}
template <typename ITV>
void
Box<ITV>::generalized_affine_preimage(const Linear_Expression& lhs,
const Relation_Symbol relsym,
const Linear_Expression& rhs) {
// Dimension-compatibility checks.
// The dimension of `lhs' should not be greater than the dimension
// of `*this'.
dimension_type lhs_space_dim = lhs.space_dimension();
const dimension_type space_dim = space_dimension();
if (space_dim < lhs_space_dim)
throw_dimension_incompatible("generalized_affine_image(e1, r, e2)",
"e1", lhs);
// The dimension of `rhs' should not be greater than the dimension
// of `*this'.
const dimension_type rhs_space_dim = rhs.space_dimension();
if (space_dim < rhs_space_dim)
throw_dimension_incompatible("generalized_affine_image(e1, r, e2)",
"e2", rhs);
// The relation symbol cannot be a disequality.
if (relsym == NOT_EQUAL)
throw_invalid_argument("generalized_affine_image(e1, r, e2)",
"r is the disequality relation symbol");
// Any image of an empty box is empty.
if (marked_empty())
return;
// For any dimension occurring in the lhs, swap and change the sign
// of this component for the rhs and lhs. Then use these in a call
// to generalized_affine_image/3.
Linear_Expression revised_lhs = lhs;
Linear_Expression revised_rhs = rhs;
for (Linear_Expression::const_iterator i = lhs.begin(),
i_end = lhs.end(); i != i_end; ++i) {
const Variable var = i.variable();
PPL_DIRTY_TEMP_COEFFICIENT(tmp);
tmp = *i;
tmp += rhs.coefficient(var);
sub_mul_assign(revised_rhs, tmp, var);
sub_mul_assign(revised_lhs, tmp, var);
}
generalized_affine_image(revised_lhs, relsym, revised_rhs);
PPL_ASSERT(OK());
}
template <typename ITV>
template <typename T, typename Iterator>
typename Enable_If<Is_Same<T, Box<ITV> >::value
&& Is_Same_Or_Derived<Interval_Base, ITV>::value,
void>::type
Box<ITV>::CC76_widening_assign(const T& y, Iterator first, Iterator last) {
if (y.is_empty())
return;
for (dimension_type i = seq.size(); i-- > 0; )
seq[i].CC76_widening_assign(y.seq[i], first, last);
PPL_ASSERT(OK());
}
template <typename ITV>
template <typename T>
typename Enable_If<Is_Same<T, Box<ITV> >::value
&& Is_Same_Or_Derived<Interval_Base, ITV>::value,
void>::type
Box<ITV>::CC76_widening_assign(const T& y, unsigned* tp) {
static typename ITV::boundary_type stop_points[] = {
typename ITV::boundary_type(-2),
typename ITV::boundary_type(-1),
typename ITV::boundary_type(0),
typename ITV::boundary_type(1),
typename ITV::boundary_type(2)
};
Box& x = *this;
// If there are tokens available, work on a temporary copy.
if (tp != 0 && *tp > 0) {
Box<ITV> x_tmp(x);
x_tmp.CC76_widening_assign(y, 0);
// If the widening was not precise, use one of the available tokens.
if (!x.contains(x_tmp))
--(*tp);
return;
}
x.CC76_widening_assign(y,
stop_points,
stop_points
+ sizeof(stop_points)/sizeof(stop_points[0]));
}
template <typename ITV>
void
Box<ITV>::get_limiting_box(const Constraint_System& cs,
Box& limiting_box) const {
// Private method: the caller has to ensure the following.
PPL_ASSERT(cs.space_dimension() <= space_dimension());
for (Constraint_System::const_iterator cs_i = cs.begin(),
cs_end = cs.end(); cs_i != cs_end; ++cs_i) {
const Constraint& c = *cs_i;
dimension_type c_num_vars = 0;
dimension_type c_only_var = 0;
// Constraints that are not interval constraints are ignored.
if (!Box_Helpers::extract_interval_constraint(c, c_num_vars, c_only_var))
continue;
// Trivial constraints are ignored.
if (c_num_vars != 0) {
// c is a non-trivial interval constraint.
// add interval constraint to limiting box
const Coefficient& n = c.inhomogeneous_term();
const Coefficient& d = c.coefficient(Variable(c_only_var));
if (interval_relation(seq[c_only_var], c.type(), n, d)
== Poly_Con_Relation::is_included())
limiting_box.add_interval_constraint_no_check(c_only_var, c.type(),
n, d);
}
}
}
template <typename ITV>
void
Box<ITV>::limited_CC76_extrapolation_assign(const Box& y,
const Constraint_System& cs,
unsigned* tp) {
Box& x = *this;
const dimension_type space_dim = x.space_dimension();
// Dimension-compatibility check.
if (space_dim != y.space_dimension())
throw_dimension_incompatible("limited_CC76_extrapolation_assign(y, cs)",
y);
// `cs' must be dimension-compatible with the two boxes.
const dimension_type cs_space_dim = cs.space_dimension();
if (space_dim < cs_space_dim)
throw_constraint_incompatible("limited_CC76_extrapolation_assign(y, cs)");
// The limited CC76-extrapolation between two boxes in a
// zero-dimensional space is also a zero-dimensional box
if (space_dim == 0)
return;
// Assume `y' is contained in or equal to `*this'.
PPL_EXPECT_HEAVY(copy_contains(*this, y));
// If `*this' is empty, since `*this' contains `y', `y' is empty too.
if (marked_empty())
return;
// If `y' is empty, we return.
if (y.marked_empty())
return;
// Build a limiting box using all the constraints in cs
// that are satisfied by *this.
Box limiting_box(space_dim, UNIVERSE);
get_limiting_box(cs, limiting_box);
x.CC76_widening_assign(y, tp);
// Intersect the widened box with the limiting box.
intersection_assign(limiting_box);
}
template <typename ITV>
template <typename T>
typename Enable_If<Is_Same<T, Box<ITV> >::value
&& Is_Same_Or_Derived<Interval_Base, ITV>::value,
void>::type
Box<ITV>::CC76_narrowing_assign(const T& y) {
const dimension_type space_dim = space_dimension();
// Dimension-compatibility check.
if (space_dim != y.space_dimension())
throw_dimension_incompatible("CC76_narrowing_assign(y)", y);
// Assume `*this' is contained in or equal to `y'.
PPL_EXPECT_HEAVY(copy_contains(y, *this));
// If both boxes are zero-dimensional,
// since `y' contains `*this', we simply return `*this'.
if (space_dim == 0)
return;
// If `y' is empty, since `y' contains `this', `*this' is empty too.
if (y.is_empty())
return;
// If `*this' is empty, we return.
if (is_empty())
return;
// Replace each constraint in `*this' by the corresponding constraint
// in `y' if the corresponding inhomogeneous terms are both finite.
for (dimension_type i = space_dim; i-- > 0; ) {
ITV& x_i = seq[i];
const ITV& y_i = y.seq[i];
if (!x_i.lower_is_boundary_infinity()
&& !y_i.lower_is_boundary_infinity()
&& x_i.lower() != y_i.lower())
x_i.lower() = y_i.lower();
if (!x_i.upper_is_boundary_infinity()
&& !y_i.upper_is_boundary_infinity()
&& x_i.upper() != y_i.upper())
x_i.upper() = y_i.upper();
}
PPL_ASSERT(OK());
}
template <typename ITV>
Constraint_System
Box<ITV>::constraints() const {
const dimension_type space_dim = space_dimension();
Constraint_System cs;
cs.set_space_dimension(space_dim);
if (space_dim == 0) {
if (marked_empty())
cs = Constraint_System::zero_dim_empty();
return cs;
}
if (marked_empty()) {
cs.insert(Constraint::zero_dim_false());
return cs;
}
for (dimension_type k = 0; k < space_dim; ++k) {
const Variable v_k = Variable(k);
PPL_DIRTY_TEMP(Coefficient, n);
PPL_DIRTY_TEMP(Coefficient, d);
bool closed = false;
if (has_lower_bound(v_k, n, d, closed)) {
if (closed)
cs.insert(d * v_k >= n);
else
cs.insert(d * v_k > n);
}
if (has_upper_bound(v_k, n, d, closed)) {
if (closed)
cs.insert(d * v_k <= n);
else
cs.insert(d * v_k < n);
}
}
return cs;
}
template <typename ITV>
Constraint_System
Box<ITV>::minimized_constraints() const {
const dimension_type space_dim = space_dimension();
Constraint_System cs;
cs.set_space_dimension(space_dim);
if (space_dim == 0) {
if (marked_empty())
cs = Constraint_System::zero_dim_empty();
return cs;
}
// Make sure emptiness is detected.
if (is_empty()) {
cs.insert(Constraint::zero_dim_false());
return cs;
}
for (dimension_type k = 0; k < space_dim; ++k) {
const Variable v_k = Variable(k);
PPL_DIRTY_TEMP(Coefficient, n);
PPL_DIRTY_TEMP(Coefficient, d);
bool closed = false;
if (has_lower_bound(v_k, n, d, closed)) {
if (closed)
// Make sure equality constraints are detected.
if (seq[k].is_singleton()) {
cs.insert(d * v_k == n);
continue;
}
else
cs.insert(d * v_k >= n);
else
cs.insert(d * v_k > n);
}
if (has_upper_bound(v_k, n, d, closed)) {
if (closed)
cs.insert(d * v_k <= n);
else
cs.insert(d * v_k < n);
}
}
return cs;
}
template <typename ITV>
Congruence_System
Box<ITV>::congruences() const {
const dimension_type space_dim = space_dimension();
Congruence_System cgs(space_dim);
if (space_dim == 0) {
if (marked_empty())
cgs = Congruence_System::zero_dim_empty();
return cgs;
}
// Make sure emptiness is detected.
if (is_empty()) {
cgs.insert(Congruence::zero_dim_false());
return cgs;
}
for (dimension_type k = 0; k < space_dim; ++k) {
const Variable v_k = Variable(k);
PPL_DIRTY_TEMP(Coefficient, n);
PPL_DIRTY_TEMP(Coefficient, d);
bool closed = false;
if (has_lower_bound(v_k, n, d, closed) && closed)
// Make sure equality congruences are detected.
if (seq[k].is_singleton())
cgs.insert((d * v_k %= n) / 0);
}
return cgs;
}
template <typename ITV>
memory_size_type
Box<ITV>::external_memory_in_bytes() const {
memory_size_type n = seq.capacity() * sizeof(ITV);
for (dimension_type k = seq.size(); k-- > 0; )
n += seq[k].external_memory_in_bytes();
return n;
}
/*! \relates Parma_Polyhedra_Library::Box */
template <typename ITV>
std::ostream&
IO_Operators::operator<<(std::ostream& s, const Box<ITV>& box) {
if (box.is_empty())
s << "false";
else if (box.is_universe())
s << "true";
else
for (dimension_type k = 0,
space_dim = box.space_dimension(); k < space_dim; ) {
s << Variable(k) << " in " << box[k];
++k;
if (k < space_dim)
s << ", ";
else
break;
}
return s;
}
template <typename ITV>
void
Box<ITV>::ascii_dump(std::ostream& s) const {
const char separator = ' ';
status.ascii_dump(s);
const dimension_type space_dim = space_dimension();
s << "space_dim" << separator << space_dim;
s << "\n";
for (dimension_type i = 0; i < space_dim; ++i)
seq[i].ascii_dump(s);
}
PPL_OUTPUT_TEMPLATE_DEFINITIONS(ITV, Box<ITV>)
template <typename ITV>
bool
Box<ITV>::ascii_load(std::istream& s) {
if (!status.ascii_load(s))
return false;
std::string str;
dimension_type space_dim;
if (!(s >> str) || str != "space_dim")
return false;
if (!(s >> space_dim))
return false;
seq.clear();
ITV seq_i;
for (dimension_type i = 0; i < space_dim; ++i) {
if (seq_i.ascii_load(s))
seq.push_back(seq_i);
else
return false;
}
// Check invariants.
PPL_ASSERT(OK());
return true;
}
template <typename ITV>
void
Box<ITV>::throw_dimension_incompatible(const char* method,
const Box& y) const {
std::ostringstream s;
s << "PPL::Box::" << method << ":" << std::endl
<< "this->space_dimension() == " << this->space_dimension()
<< ", y->space_dimension() == " << y.space_dimension() << ".";
throw std::invalid_argument(s.str());
}
template <typename ITV>
void
Box<ITV>
::throw_dimension_incompatible(const char* method,
dimension_type required_dim) const {
std::ostringstream s;
s << "PPL::Box::" << method << ":" << std::endl
<< "this->space_dimension() == " << space_dimension()
<< ", required dimension == " << required_dim << ".";
throw std::invalid_argument(s.str());
}
template <typename ITV>
void
Box<ITV>::throw_dimension_incompatible(const char* method,
const Constraint& c) const {
std::ostringstream s;
s << "PPL::Box::" << method << ":" << std::endl
<< "this->space_dimension() == " << space_dimension()
<< ", c->space_dimension == " << c.space_dimension() << ".";
throw std::invalid_argument(s.str());
}
template <typename ITV>
void
Box<ITV>::throw_dimension_incompatible(const char* method,
const Congruence& cg) const {
std::ostringstream s;
s << "PPL::Box::" << method << ":" << std::endl
<< "this->space_dimension() == " << space_dimension()
<< ", cg->space_dimension == " << cg.space_dimension() << ".";
throw std::invalid_argument(s.str());
}
template <typename ITV>
void
Box<ITV>::throw_dimension_incompatible(const char* method,
const Constraint_System& cs) const {
std::ostringstream s;
s << "PPL::Box::" << method << ":" << std::endl
<< "this->space_dimension() == " << space_dimension()
<< ", cs->space_dimension == " << cs.space_dimension() << ".";
throw std::invalid_argument(s.str());
}
template <typename ITV>
void
Box<ITV>::throw_dimension_incompatible(const char* method,
const Congruence_System& cgs) const {
std::ostringstream s;
s << "PPL::Box::" << method << ":" << std::endl
<< "this->space_dimension() == " << space_dimension()
<< ", cgs->space_dimension == " << cgs.space_dimension() << ".";
throw std::invalid_argument(s.str());
}
template <typename ITV>
void
Box<ITV>::throw_dimension_incompatible(const char* method,
const Generator& g) const {
std::ostringstream s;
s << "PPL::Box::" << method << ":" << std::endl
<< "this->space_dimension() == " << space_dimension()
<< ", g->space_dimension == " << g.space_dimension() << ".";
throw std::invalid_argument(s.str());
}
template <typename ITV>
void
Box<ITV>::throw_constraint_incompatible(const char* method) {
std::ostringstream s;
s << "PPL::Box::" << method << ":" << std::endl
<< "the constraint is incompatible.";
throw std::invalid_argument(s.str());
}
template <typename ITV>
void
Box<ITV>::throw_expression_too_complex(const char* method,
const Linear_Expression& le) {
using namespace IO_Operators;
std::ostringstream s;
s << "PPL::Box::" << method << ":" << std::endl
<< le << " is too complex.";
throw std::invalid_argument(s.str());
}
template <typename ITV>
void
Box<ITV>::throw_dimension_incompatible(const char* method,
const char* le_name,
const Linear_Expression& le) const {
std::ostringstream s;
s << "PPL::Box::" << method << ":" << std::endl
<< "this->space_dimension() == " << space_dimension()
<< ", " << le_name << "->space_dimension() == "
<< le.space_dimension() << ".";
throw std::invalid_argument(s.str());
}
template <typename ITV>
template <typename C>
void
Box<ITV>::throw_dimension_incompatible(const char* method,
const char* lf_name,
const Linear_Form<C>& lf) const {
std::ostringstream s;
s << "PPL::Box::" << method << ":\n"
<< "this->space_dimension() == " << space_dimension()
<< ", " << lf_name << "->space_dimension() == "
<< lf.space_dimension() << ".";
throw std::invalid_argument(s.str());
}
template <typename ITV>
void
Box<ITV>::throw_invalid_argument(const char* method, const char* reason) {
std::ostringstream s;
s << "PPL::Box::" << method << ":" << std::endl
<< reason;
throw std::invalid_argument(s.str());
}
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates Box */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Specialization,
typename Temp, typename To, typename ITV>
bool
l_m_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x, const Box<ITV>& y,
const Rounding_Dir dir,
Temp& tmp0, Temp& tmp1, Temp& tmp2) {
const dimension_type x_space_dim = x.space_dimension();
// Dimension-compatibility check.
if (x_space_dim != y.space_dimension())
return false;
// Zero-dim boxes are equal if and only if they are both empty or universe.
if (x_space_dim == 0) {
if (x.marked_empty() == y.marked_empty())
assign_r(r, 0, ROUND_NOT_NEEDED);
else
assign_r(r, PLUS_INFINITY, ROUND_NOT_NEEDED);
return true;
}
// The distance computation requires a check for emptiness.
(void) x.is_empty();
(void) y.is_empty();
// If one of two boxes is empty, then they are equal if and only if
// the other box is empty too.
if (x.marked_empty() || y.marked_empty()) {
if (x.marked_empty() == y.marked_empty()) {
assign_r(r, 0, ROUND_NOT_NEEDED);
return true;
}
else
goto pinf;
}
assign_r(tmp0, 0, ROUND_NOT_NEEDED);
for (dimension_type i = x_space_dim; i-- > 0; ) {
const ITV& x_i = x.seq[i];
const ITV& y_i = y.seq[i];
// Dealing with the lower bounds.
if (x_i.lower_is_boundary_infinity()) {
if (!y_i.lower_is_boundary_infinity())
goto pinf;
}
else if (y_i.lower_is_boundary_infinity())
goto pinf;
else {
const Temp* tmp1p;
const Temp* tmp2p;
if (x_i.lower() > y_i.lower()) {
maybe_assign(tmp1p, tmp1, x_i.lower(), dir);
maybe_assign(tmp2p, tmp2, y_i.lower(), inverse(dir));
}
else {
maybe_assign(tmp1p, tmp1, y_i.lower(), dir);
maybe_assign(tmp2p, tmp2, x_i.lower(), inverse(dir));
}
sub_assign_r(tmp1, *tmp1p, *tmp2p, dir);
PPL_ASSERT(sgn(tmp1) >= 0);
Specialization::combine(tmp0, tmp1, dir);
}
// Dealing with the lower bounds.
if (x_i.upper_is_boundary_infinity())
if (y_i.upper_is_boundary_infinity())
continue;
else
goto pinf;
else if (y_i.upper_is_boundary_infinity())
goto pinf;
else {
const Temp* tmp1p;
const Temp* tmp2p;
if (x_i.upper() > y_i.upper()) {
maybe_assign(tmp1p, tmp1, x_i.upper(), dir);
maybe_assign(tmp2p, tmp2, y_i.upper(), inverse(dir));
}
else {
maybe_assign(tmp1p, tmp1, y_i.upper(), dir);
maybe_assign(tmp2p, tmp2, x_i.upper(), inverse(dir));
}
sub_assign_r(tmp1, *tmp1p, *tmp2p, dir);
PPL_ASSERT(sgn(tmp1) >= 0);
Specialization::combine(tmp0, tmp1, dir);
}
}
Specialization::finalize(tmp0, dir);
assign_r(r, tmp0, dir);
return true;
pinf:
assign_r(r, PLUS_INFINITY, ROUND_NOT_NEEDED);
return true;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Box_defs.hh line 2285. */
/* Automatically generated from PPL source file ../src/Linear_Form_templates.hh line 30. */
#include <stdexcept>
#include <iostream>
#include <cmath>
namespace Parma_Polyhedra_Library {
template <typename C>
Linear_Form<C>::Linear_Form(const Variable v)
: vec() {
const dimension_type space_dim = v.space_dimension();
if (space_dim > max_space_dimension())
throw std::length_error("Linear_Form<C>::"
"Linear_Form(v):\n"
"v exceeds the maximum allowed "
"space dimension.");
vec.reserve(compute_capacity(space_dim+1, vec_type().max_size()));
vec.resize(space_dim+1, zero);
vec[v.space_dimension()] = C(typename C::boundary_type(1));
}
template <typename C>
Linear_Form<C>::Linear_Form(const Variable v, const Variable w)
: vec() {
const dimension_type v_space_dim = v.space_dimension();
const dimension_type w_space_dim = w.space_dimension();
const dimension_type space_dim = std::max(v_space_dim, w_space_dim);
if (space_dim > max_space_dimension())
throw std::length_error("Linear_Form<C>::"
"Linear_Form(v, w):\n"
"v or w exceed the maximum allowed "
"space dimension.");
vec.reserve(compute_capacity(space_dim+1, vec_type().max_size()));
vec.resize(space_dim+1, zero);
if (v_space_dim != w_space_dim) {
vec[v_space_dim] = C(typename C::boundary_type(1));
vec[w_space_dim] = C(typename C::boundary_type(-1));
}
}
template <typename C>
Linear_Form<C>::Linear_Form(const Linear_Expression& e)
: vec() {
const dimension_type space_dim = e.space_dimension();
if (space_dim > max_space_dimension())
throw std::length_error("Linear_Form<C>::"
"Linear_Form(e):\n"
"e exceeds the maximum allowed "
"space dimension.");
vec.reserve(compute_capacity(space_dim+1, vec_type().max_size()));
vec.resize(space_dim+1);
for (dimension_type i = space_dim; i-- > 0; )
vec[i+1] = e.coefficient(Variable(i));
vec[0] = e.inhomogeneous_term();
}
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>
operator+(const Linear_Form<C>& f1, const Linear_Form<C>& f2) {
dimension_type f1_size = f1.size();
dimension_type f2_size = f2.size();
dimension_type min_size;
dimension_type max_size;
const Linear_Form<C>* p_e_max;
if (f1_size > f2_size) {
min_size = f2_size;
max_size = f1_size;
p_e_max = &f1;
}
else {
min_size = f1_size;
max_size = f2_size;
p_e_max = &f2;
}
Linear_Form<C> r(max_size, false);
dimension_type i = max_size;
while (i > min_size) {
--i;
r[i] = p_e_max->vec[i];
}
while (i > 0) {
--i;
r[i] = f1[i];
r[i] += f2[i];
}
return r;
}
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>
operator+(const Variable v, const Linear_Form<C>& f) {
const dimension_type v_space_dim = v.space_dimension();
if (v_space_dim > Linear_Form<C>::max_space_dimension())
throw std::length_error("Linear_Form "
"operator+(v, f):\n"
"v exceeds the maximum allowed "
"space dimension.");
Linear_Form<C> r(f);
if (v_space_dim > f.space_dimension())
r.extend(v_space_dim+1);
r[v_space_dim] += C(typename C::boundary_type(1));
return r;
}
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>
operator+(const C& n, const Linear_Form<C>& f) {
Linear_Form<C> r(f);
r[0] += n;
return r;
}
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>
operator-(const Linear_Form<C>& f) {
Linear_Form<C> r(f);
for (dimension_type i = f.size(); i-- > 0; )
r[i].neg_assign(r[i]);
return r;
}
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>
operator-(const Linear_Form<C>& f1, const Linear_Form<C>& f2) {
dimension_type f1_size = f1.size();
dimension_type f2_size = f2.size();
if (f1_size > f2_size) {
Linear_Form<C> r(f1_size, false);
dimension_type i = f1_size;
while (i > f2_size) {
--i;
r[i] = f1[i];
}
while (i > 0) {
--i;
r[i] = f1[i];
r[i] -= f2[i];
}
return r;
}
else {
Linear_Form<C> r(f2_size, false);
dimension_type i = f2_size;
while (i > f1_size) {
--i;
r[i].neg_assign(f2[i]);
}
while (i > 0) {
--i;
r[i] = f1[i];
r[i] -= f2[i];
}
return r;
}
}
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>
operator-(const Variable v, const Linear_Form<C>& f) {
const dimension_type v_space_dim = v.space_dimension();
if (v_space_dim > Linear_Form<C>::max_space_dimension())
throw std::length_error("Linear_Form "
"operator-(v, e):\n"
"v exceeds the maximum allowed "
"space dimension.");
Linear_Form<C> r(f);
if (v_space_dim > f.space_dimension())
r.extend(v_space_dim+1);
for (dimension_type i = f.size(); i-- > 0; )
r[i].neg_assign(r[i]);
r[v_space_dim] += C(typename C::boundary_type(1));
return r;
}
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>
operator-(const Linear_Form<C>& f, const Variable v) {
const dimension_type v_space_dim = v.space_dimension();
if (v_space_dim > Linear_Form<C>::max_space_dimension())
throw std::length_error("Linear_Form "
"operator-(e, v):\n"
"v exceeds the maximum allowed "
"space dimension.");
Linear_Form<C> r(f);
if (v_space_dim > f.space_dimension())
r.extend(v_space_dim+1);
r[v_space_dim] -= C(typename C::boundary_type(1));
return r;
}
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>
operator-(const C& n, const Linear_Form<C>& f) {
Linear_Form<C> r(f);
for (dimension_type i = f.size(); i-- > 0; )
r[i].neg_assign(r[i]);
r[0] += n;
return r;
}
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>
operator*(const C& n, const Linear_Form<C>& f) {
Linear_Form<C> r(f);
for (dimension_type i = f.size(); i-- > 0; )
r[i] *= n;
return r;
}
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>&
operator+=(Linear_Form<C>& f1, const Linear_Form<C>& f2) {
dimension_type f1_size = f1.size();
dimension_type f2_size = f2.size();
if (f1_size < f2_size)
f1.extend(f2_size);
for (dimension_type i = f2_size; i-- > 0; )
f1[i] += f2[i];
return f1;
}
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>&
operator+=(Linear_Form<C>& f, const Variable v) {
const dimension_type v_space_dim = v.space_dimension();
if (v_space_dim > Linear_Form<C>::max_space_dimension())
throw std::length_error("Linear_Form<C>& "
"operator+=(e, v):\n"
"v exceeds the maximum allowed space dimension.");
if (v_space_dim > f.space_dimension())
f.extend(v_space_dim+1);
f[v_space_dim] += C(typename C::boundary_type(1));
return f;
}
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>&
operator-=(Linear_Form<C>& f1, const Linear_Form<C>& f2) {
dimension_type f1_size = f1.size();
dimension_type f2_size = f2.size();
if (f1_size < f2_size)
f1.extend(f2_size);
for (dimension_type i = f2_size; i-- > 0; )
f1[i] -= f2[i];
return f1;
}
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>&
operator-=(Linear_Form<C>& f, const Variable v) {
const dimension_type v_space_dim = v.space_dimension();
if (v_space_dim > Linear_Form<C>::max_space_dimension())
throw std::length_error("Linear_Form<C>& "
"operator-=(e, v):\n"
"v exceeds the maximum allowed space dimension.");
if (v_space_dim > f.space_dimension())
f.extend(v_space_dim+1);
f[v_space_dim] -= C(typename C::boundary_type(1));
return f;
}
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>&
operator*=(Linear_Form<C>& f, const C& n) {
dimension_type f_size = f.size();
for (dimension_type i = f_size; i-- > 0; )
f[i] *= n;
return f;
}
/*! \relates Linear_Form */
template <typename C>
Linear_Form<C>&
operator/=(Linear_Form<C>& f, const C& n) {
dimension_type f_size = f.size();
for (dimension_type i = f_size; i-- > 0; )
f[i] /= n;
return f;
}
/*! \relates Linear_Form */
template <typename C>
inline bool
operator==(const Linear_Form<C>& x, const Linear_Form<C>& y) {
const dimension_type x_size = x.size();
const dimension_type y_size = y.size();
if (x_size >= y_size) {
for (dimension_type i = y_size; i-- > 0; )
if (x[i] != y[i])
return false;
for (dimension_type i = x_size; --i >= y_size; )
if (x[i] != x.zero)
return false;
}
else {
for (dimension_type i = x_size; i-- > 0; )
if (x[i] != y[i])
return false;
for (dimension_type i = y_size; --i >= x_size; )
if (y[i] != x.zero)
return false;
}
return true;
}
template <typename C>
void
Linear_Form<C>::negate() {
for (dimension_type i = vec.size(); i-- > 0; )
vec[i].neg_assign(vec[i]);
return;
}
template <typename C>
inline memory_size_type
Linear_Form<C>::external_memory_in_bytes() const {
memory_size_type n = 0;
for (dimension_type i = size(); i-- > 0; )
n += vec[i].external_memory_in_bytes();
n += vec.capacity()*sizeof(C);
return n;
}
template <typename C>
bool
Linear_Form<C>::OK() const {
for (dimension_type i = size(); i-- > 0; )
if (!vec[i].OK())
return false;
return true;
}
// Floating point analysis related methods.
template <typename C>
void
Linear_Form<C>::relative_error(
const Floating_Point_Format analyzed_format,
Linear_Form& result) const {
typedef typename C::boundary_type analyzer_format;
// Get the necessary information on the analyzed's format.
unsigned int f_base;
unsigned int f_mantissa_bits;
switch (analyzed_format) {
case IEEE754_HALF:
f_base = float_ieee754_half::BASE;
f_mantissa_bits = float_ieee754_half::MANTISSA_BITS;
break;
case IEEE754_SINGLE:
f_base = float_ieee754_single::BASE;
f_mantissa_bits = float_ieee754_single::MANTISSA_BITS;
break;
case IEEE754_DOUBLE:
f_base = float_ieee754_double::BASE;
f_mantissa_bits = float_ieee754_double::MANTISSA_BITS;
break;
case IBM_SINGLE:
f_base = float_ibm_single::BASE;
f_mantissa_bits = float_ibm_single::MANTISSA_BITS;
break;
case IEEE754_QUAD:
f_base = float_ieee754_quad::BASE;
f_mantissa_bits = float_ieee754_quad::MANTISSA_BITS;
break;
case INTEL_DOUBLE_EXTENDED:
f_base = float_intel_double_extended::BASE;
f_mantissa_bits = float_intel_double_extended::MANTISSA_BITS;
break;
default:
PPL_UNREACHABLE;
break;
}
C error_propagator;
// We assume that f_base is a power of 2.
unsigned int u_power = msb_position(f_base) * f_mantissa_bits;
int neg_power = -static_cast<int>(u_power);
analyzer_format lb = static_cast<analyzer_format>(ldexp(1.0, neg_power));
error_propagator.build(i_constraint(GREATER_OR_EQUAL, -lb),
i_constraint(LESS_OR_EQUAL, lb));
// Handle the inhomogeneous term.
const C* current_term = &inhomogeneous_term();
assert(current_term->is_bounded());
C current_multiplier(std::max(std::abs(current_term->lower()),
std::abs(current_term->upper())));
Linear_Form current_result_term(current_multiplier);
current_result_term *= error_propagator;
result = Linear_Form(current_result_term);
// Handle the other terms.
dimension_type dimension = space_dimension();
for (dimension_type i = 0; i < dimension; ++i) {
current_term = &coefficient(Variable(i));
assert(current_term->is_bounded());
current_multiplier = C(std::max(std::abs(current_term->lower()),
std::abs(current_term->upper())));
current_result_term = Linear_Form(Variable(i));
current_result_term *= current_multiplier;
current_result_term *= error_propagator;
result += current_result_term;
}
return;
}
template <typename C>
template <typename Target>
bool
Linear_Form<C>::intervalize(const FP_Oracle<Target,C>& oracle,
C& result) const {
result = C(inhomogeneous_term());
dimension_type dimension = space_dimension();
for (dimension_type i = 0; i < dimension; ++i) {
C current_addend = coefficient(Variable(i));
C curr_int;
if (!oracle.get_interval(i, curr_int))
return false;
current_addend *= curr_int;
result += current_addend;
}
return true;
}
/*! \relates Parma_Polyhedra_Library::Linear_Form */
template <typename C>
std::ostream&
IO_Operators::operator<<(std::ostream& s, const Linear_Form<C>& f) {
const dimension_type num_variables = f.space_dimension();
bool first = true;
for (dimension_type v = 0; v < num_variables; ++v) {
const C& fv = f[v+1];
if (fv != typename C::boundary_type(0)) {
if (first) {
if (fv == typename C::boundary_type(-1))
s << "-";
else if (fv != typename C::boundary_type(1))
s << fv << "*";
first = false;
}
else {
if (fv == typename C::boundary_type(-1))
s << " - ";
else {
s << " + ";
if (fv != typename C::boundary_type(1))
s << fv << "*";
}
}
s << Variable(v);
}
}
// Inhomogeneous term.
const C& it = f[0];
if (it != 0) {
if (!first)
s << " + ";
else
first = false;
s << it;
}
if (first)
// The null linear form.
s << Linear_Form<C>::zero;
return s;
}
PPL_OUTPUT_TEMPLATE_DEFINITIONS(C, Linear_Form<C>)
template <typename C>
C Linear_Form<C>::zero(typename C::boundary_type(0));
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/linearize.hh line 1. */
/* Linearization function implementation.
*/
/* Automatically generated from PPL source file ../src/Concrete_Expression_defs.hh line 1. */
/* Concrete_Expression class declaration.
*/
/* Automatically generated from PPL source file ../src/Concrete_Expression_defs.hh line 30. */
namespace Parma_Polyhedra_Library {
//! The type of a concrete expression.
class Concrete_Expression_Type {
public:
/*! \brief
Returns the bounded integer type corresponding to \p width,
\p representation and \p overflow.
*/
static Concrete_Expression_Type
bounded_integer(Bounded_Integer_Type_Width width,
Bounded_Integer_Type_Representation representation,
Bounded_Integer_Type_Overflow overflow);
/*! \brief
Returns the floating point type corresponding to \p format.
*/
static Concrete_Expression_Type
floating_point(Floating_Point_Format format);
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is a bounded
integer type.
*/
bool is_bounded_integer() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is a floating
point type.
*/
bool is_floating_point() const;
/*! \brief
Returns the width in bits of the bounded integer type encoded by
\p *this.
The behavior is undefined if \p *this does not encode a bounded
integer type.
*/
Bounded_Integer_Type_Width bounded_integer_type_width() const;
/*! \brief
Returns the representation of the bounded integer type encoded by
\p *this.
The behavior is undefined if \p *this does not encode a bounded
integer type.
*/
Bounded_Integer_Type_Representation
bounded_integer_type_representation() const;
/*! \brief
Returns the overflow behavior of the bounded integer type encoded by
\p *this.
The behavior is undefined if \p *this does not encode a bounded
integer type.
*/
Bounded_Integer_Type_Overflow
bounded_integer_type_overflow() const;
/*! \brief
Returns the format of the floating point type encoded by \p *this.
The behavior is undefined if \p *this does not encode a floating
point type.
*/
Floating_Point_Format floating_point_format() const;
//! Checks if all the invariants are satisfied.
bool OK() const;
private:
//! A 32-bit word encoding the type.
struct Implementation {
bool bounded_integer:1;
unsigned int bounded_integer_type_width:23;
unsigned int bounded_integer_type_representation:2;
unsigned int bounded_integer_type_overflow:2;
unsigned int floating_point_format:4;
};
//! Constructor from \p implementation.
Concrete_Expression_Type(Implementation implementation);
//! The encoding of \p *this.
Implementation impl;
};
//! Base class for all concrete expressions.
template <typename Target>
class Concrete_Expression_Common {
public:
//! Returns the type of \* this.
Concrete_Expression_Type type() const;
//! Returns the kind of \* this.
Concrete_Expression_Kind kind() const;
//! Tests if \p *this has the same kind as <CODE>Derived\<Target\></CODE>.
template <template <typename T> class Derived>
bool is() const;
/*! \brief
Returns a pointer to \p *this converted to type
<CODE>Derived\<Target\>*</CODE>.
*/
template <template <typename T> class Derived>
Derived<Target>* as();
/*! \brief
Returns a pointer to \p *this converted to type
<CODE>const Derived\<Target\>*</CODE>.
*/
template <template <typename T> class Derived>
const Derived<Target>* as() const;
};
//! Base class for binary operator applied to two concrete expressions.
template <typename Target>
class Binary_Operator_Common {
public:
//! Returns a constant identifying the operator of \p *this.
Concrete_Expression_BOP binary_operator() const;
//! Returns the left-hand side of \p *this.
const Concrete_Expression<Target>* left_hand_side() const;
//! Returns the right-hand side of \p *this.
const Concrete_Expression<Target>* right_hand_side() const;
};
//! Base class for unary operator applied to one concrete expression.
template <typename Target>
class Unary_Operator_Common {
public:
//! Returns a constant identifying the operator of \p *this.
Concrete_Expression_UOP unary_operator() const;
//! Returns the argument \p *this.
const Concrete_Expression<Target>* argument() const;
};
//! Base class for cast operator concrete expressions.
template <typename Target>
class Cast_Operator_Common {
//! Returns the casted expression.
const Concrete_Expression<Target>* argument() const;
};
//! Base class for integer constant concrete expressions.
template <typename Target>
class Integer_Constant_Common {
};
//! Base class for floating-point constant concrete expression.
template <typename Target>
class Floating_Point_Constant_Common {
};
//! Base class for references to some approximable.
template <typename Target>
class Approximable_Reference_Common {
};
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Concrete_Expression_inlines.hh line 1. */
/* Concrete_Expression class implementation: inline functions.
*/
namespace Parma_Polyhedra_Library {
inline
Concrete_Expression_Type
::Concrete_Expression_Type(Implementation implementation)
: impl(implementation) {
}
inline Concrete_Expression_Type
Concrete_Expression_Type
::bounded_integer(const Bounded_Integer_Type_Width width,
const Bounded_Integer_Type_Representation representation,
const Bounded_Integer_Type_Overflow overflow) {
Implementation impl;
impl.bounded_integer = true;
impl.bounded_integer_type_width = width;
impl.bounded_integer_type_representation = representation;
impl.bounded_integer_type_overflow = overflow;
// Arbitrary choice to ensure determinism.
impl.floating_point_format = IEEE754_HALF;
return Concrete_Expression_Type(impl);
}
inline Concrete_Expression_Type
Concrete_Expression_Type
::floating_point(const Floating_Point_Format format) {
Implementation impl;
impl.bounded_integer = false;
impl.floating_point_format = format;
// Arbitrary choices to ensure determinism.
impl.bounded_integer_type_width = BITS_128;
impl.bounded_integer_type_representation = SIGNED_2_COMPLEMENT;
impl.bounded_integer_type_overflow = OVERFLOW_IMPOSSIBLE;
return Concrete_Expression_Type(impl);
}
inline bool
Concrete_Expression_Type::is_bounded_integer() const {
return impl.bounded_integer;
}
inline bool
Concrete_Expression_Type::is_floating_point() const {
return !impl.bounded_integer;
}
inline Bounded_Integer_Type_Width
Concrete_Expression_Type::bounded_integer_type_width() const {
const unsigned int u = impl.bounded_integer_type_width;
return static_cast<Bounded_Integer_Type_Width>(u);
}
inline Bounded_Integer_Type_Representation
Concrete_Expression_Type::bounded_integer_type_representation() const {
const unsigned int u = impl.bounded_integer_type_representation;
return static_cast<Bounded_Integer_Type_Representation>(u);
}
inline Bounded_Integer_Type_Overflow
Concrete_Expression_Type::bounded_integer_type_overflow() const {
const unsigned int u = impl.bounded_integer_type_overflow;
return static_cast<Bounded_Integer_Type_Overflow>(u);
}
inline Floating_Point_Format
Concrete_Expression_Type::floating_point_format() const {
const unsigned int u = impl.floating_point_format;
return static_cast<Floating_Point_Format>(u);
}
template <typename Target>
template <template <typename T> class Derived>
inline bool
Concrete_Expression_Common<Target>::is() const {
return static_cast<const Concrete_Expression<Target>*>(this)->kind() ==
Derived<Target>::KIND;
}
template <typename Target>
template <template <typename T> class Derived>
inline Derived<Target>*
Concrete_Expression_Common<Target>::as() {
PPL_ASSERT(is<Derived>());
return static_cast<Derived<Target>*>(this);
}
template <typename Target>
template <template <typename T> class Derived>
inline const Derived<Target>*
Concrete_Expression_Common<Target>::as() const {
PPL_ASSERT(is<Derived>());
return static_cast<const Derived<Target>*>(this);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Concrete_Expression_defs.hh line 200. */
/* Automatically generated from PPL source file ../src/linearize.hh line 31. */
#include <map>
namespace Parma_Polyhedra_Library {
/*! \brief \relates Parma_Polyhedra_Library::Concrete_Expression
Helper function used by <CODE>linearize</CODE> to linearize a
sum of floating point expressions.
Makes \p result become the linearization of \p *this in the given
composite abstract store.
\tparam Target
A type template parameter specifying the instantiation of
Concrete_Expression to be used.
\tparam FP_Interval_Type
A type template parameter for the intervals used in the abstract domain.
The interval bounds should have a floating point type.
\return
<CODE>true</CODE> if the linearization succeeded,
<CODE>false</CODE> otherwise.
\param bop_expr
The binary operator concrete expression to linearize.
Its binary operator type must be <CODE>ADD</CODE>.
\param oracle
The FP_Oracle to be queried.
\param lf_store
The linear form abstract store.
\param result
The modified linear form.
\par Linearization of sum floating-point expressions
Let \f$i + \sum_{v \in \cV}i_{v}v \f$ and
\f$i' + \sum_{v \in \cV}i'_{v}v \f$
be two linear forms and \f$\aslf\f$ a sound abstract operator on linear
forms such that:
\f[
\left(i + \sum_{v \in \cV}i_{v}v \right)
\aslf
\left(i' + \sum_{v \in \cV}i'_{v}v \right)
=
\left(i \asifp i'\right)
+ \sum_{v \in \cV}\left(i_{v} \asifp i'_{v} \right)v.
\f]
Given an expression \f$e_{1} \oplus e_{2}\f$ and a composite
abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right
\rrbracket\f$, we construct the interval linear form
\f$\linexprenv{e_{1} \oplus e_{2}}{\rho^{\#}}{\rho^{\#}_l}\f$
as follows:
\f[
\linexprenv{e_{1} \oplus e_{2}}{\rho^{\#}}{\rho^{\#}_l}
=
\linexprenv{e_{1}}{\rho^{\#}}{\rho^{\#}_l}
\aslf
\linexprenv{e_{2}}{\rho^{\#}}{\rho^{\#}_l}
\aslf
\varepsilon_{\mathbf{f}}\left(\linexprenv{e_{1}}{\rho^{\#}}{\rho^{\#}_l}
\right)
\aslf
\varepsilon_{\mathbf{f}}\left(\linexprenv{e_{2}}{\rho^{\#}}{\rho^{\#}_l}
\right)
\aslf
mf_{\mathbf{f}}[-1, 1]
\f]
where \f$\varepsilon_{\mathbf{f}}(l)\f$ is the relative error
associated to \f$l\f$ (see method <CODE>relative_error</CODE> of
class Linear_Form) and \f$mf_{\mathbf{f}}\f$ is a rounding
error computed by function <CODE>compute_absolute_error</CODE>.
*/
template <typename Target, typename FP_Interval_Type>
static bool
add_linearize(const Binary_Operator<Target>& bop_expr,
const FP_Oracle<Target,FP_Interval_Type>& oracle,
const std::map<dimension_type, Linear_Form<FP_Interval_Type> >& lf_store,
Linear_Form<FP_Interval_Type>& result) {
PPL_ASSERT(bop_expr.binary_operator() == Binary_Operator<Target>::ADD);
typedef typename FP_Interval_Type::boundary_type analyzer_format;
typedef Linear_Form<FP_Interval_Type> FP_Linear_Form;
typedef Box<FP_Interval_Type> FP_Interval_Abstract_Store;
typedef std::map<dimension_type, FP_Linear_Form> FP_Linear_Form_Abstract_Store;
if (!linearize(*(bop_expr.left_hand_side()), oracle, lf_store, result))
return false;
Floating_Point_Format analyzed_format =
bop_expr.type().floating_point_format();
FP_Linear_Form rel_error;
result.relative_error(analyzed_format, rel_error);
result += rel_error;
FP_Linear_Form linearized_second_operand;
if (!linearize(*(bop_expr.right_hand_side()), oracle, lf_store,
linearized_second_operand))
return false;
result += linearized_second_operand;
linearized_second_operand.relative_error(analyzed_format, rel_error);
result += rel_error;
FP_Interval_Type absolute_error =
compute_absolute_error<FP_Interval_Type>(analyzed_format);
result += absolute_error;
return !result.overflows();
}
/*! \brief \relates Parma_Polyhedra_Library::Concrete_Expression
Helper function used by <CODE>linearize</CODE> to linearize a
difference of floating point expressions.
Makes \p result become the linearization of \p *this in the given
composite abstract store.
\tparam Target
A type template parameter specifying the instantiation of
Concrete_Expression to be used.
\tparam FP_Interval_Type
A type template parameter for the intervals used in the abstract domain.
The interval bounds should have a floating point type.
\return
<CODE>true</CODE> if the linearization succeeded,
<CODE>false</CODE> otherwise.
\param bop_expr
The binary operator concrete expression to linearize.
Its binary operator type must be <CODE>SUB</CODE>.
\param oracle
The FP_Oracle to be queried.
\param lf_store
The linear form abstract store.
\param result
The modified linear form.
\par Linearization of difference floating-point expressions
Let \f$i + \sum_{v \in \cV}i_{v}v \f$ and
\f$i' + \sum_{v \in \cV}i'_{v}v \f$
be two linear forms, \f$\aslf\f$ and \f$\adlf\f$ two sound abstract
operators on linear form such that:
\f[
\left(i + \sum_{v \in \cV}i_{v}v\right)
\aslf
\left(i' + \sum_{v \in \cV}i'_{v}v\right)
=
\left(i \asifp i'\right)
+ \sum_{v \in \cV}\left(i_{v} \asifp i'_{v}\right)v,
\f]
\f[
\left(i + \sum_{v \in \cV}i_{v}v\right)
\adlf
\left(i' + \sum_{v \in \cV}i'_{v}v\right)
=
\left(i \adifp i'\right)
+ \sum_{v \in \cV}\left(i_{v} \adifp i'_{v}\right)v.
\f]
Given an expression \f$e_{1} \ominus e_{2}\f$ and a composite
abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right
\rrbracket\f$, we construct the interval linear form
\f$\linexprenv{e_{1} \ominus e_{2}}{\rho^{\#}}{\rho^{\#}_l}\f$
on \f$\cV\f$ as follows:
\f[
\linexprenv{e_{1} \ominus e_{2}}{\rho^{\#}}{\rho^{\#}_l}
=
\linexprenv{e_{1}}{\rho^{\#}}{\rho^{\#}_l}
\adlf
\linexprenv{e_{2}}{\rho^{\#}}{\rho^{\#}_l}
\aslf
\varepsilon_{\mathbf{f}}\left(\linexprenv{e_{1}}{\rho^{\#}}{\rho^{\#}_l}
\right)
\aslf
\varepsilon_{\mathbf{f}}\left(\linexprenv{e_{2}}{\rho^{\#}}{\rho^{\#}_l}
\right)
\aslf
mf_{\mathbf{f}}[-1, 1]
\f]
where \f$\varepsilon_{\mathbf{f}}(l)\f$ is the relative error
associated to \f$l\f$ (see method <CODE>relative_error</CODE> of
class Linear_Form) and \f$mf_{\mathbf{f}}\f$ is a rounding
error computed by function <CODE>compute_absolute_error</CODE>.
*/
template <typename Target, typename FP_Interval_Type>
static bool
sub_linearize(const Binary_Operator<Target>& bop_expr,
const FP_Oracle<Target,FP_Interval_Type>& oracle,
const std::map<dimension_type, Linear_Form<FP_Interval_Type> >& lf_store,
Linear_Form<FP_Interval_Type>& result) {
PPL_ASSERT(bop_expr.binary_operator() == Binary_Operator<Target>::SUB);
typedef typename FP_Interval_Type::boundary_type analyzer_format;
typedef Linear_Form<FP_Interval_Type> FP_Linear_Form;
typedef Box<FP_Interval_Type> FP_Interval_Abstract_Store;
typedef std::map<dimension_type, FP_Linear_Form> FP_Linear_Form_Abstract_Store;
if (!linearize(*(bop_expr.left_hand_side()), oracle, lf_store, result))
return false;
Floating_Point_Format analyzed_format =
bop_expr.type().floating_point_format();
FP_Linear_Form rel_error;
result.relative_error(analyzed_format, rel_error);
result += rel_error;
FP_Linear_Form linearized_second_operand;
if (!linearize(*(bop_expr.right_hand_side()), oracle, lf_store,
linearized_second_operand))
return false;
result -= linearized_second_operand;
linearized_second_operand.relative_error(analyzed_format, rel_error);
result += rel_error;
FP_Interval_Type absolute_error =
compute_absolute_error<FP_Interval_Type>(analyzed_format);
result += absolute_error;
return !result.overflows();
}
/*! \brief \relates Parma_Polyhedra_Library::Concrete_Expression
Helper function used by <CODE>linearize</CODE> to linearize a
product of floating point expressions.
Makes \p result become the linearization of \p *this in the given
composite abstract store.
\tparam Target
A type template parameter specifying the instantiation of
Concrete_Expression to be used.
\tparam FP_Interval_Type
A type template parameter for the intervals used in the abstract domain.
The interval bounds should have a floating point type.
\return
<CODE>true</CODE> if the linearization succeeded,
<CODE>false</CODE> otherwise.
\param bop_expr
The binary operator concrete expression to linearize.
Its binary operator type must be <CODE>MUL</CODE>.
\param oracle
The FP_Oracle to be queried.
\param lf_store
The linear form abstract store.
\param result
The modified linear form.
\par Linearization of multiplication floating-point expressions
Let \f$i + \sum_{v \in \cV}i_{v}v \f$ and
\f$i' + \sum_{v \in \cV}i'_{v}v \f$
be two linear forms, \f$\aslf\f$ and \f$\amlf\f$ two sound abstract
operators on linear forms such that:
\f[
\left(i + \sum_{v \in \cV}i_{v}v\right)
\aslf
\left(i' + \sum_{v \in \cV}i'_{v}v\right)
=
\left(i \asifp i'\right)
+ \sum_{v \in \cV}\left(i_{v} \asifp i'_{v}\right)v,
\f]
\f[
i
\amlf
\left(i' + \sum_{v \in \cV}i'_{v}v\right)
=
\left(i \amifp i'\right)
+ \sum_{v \in \cV}\left(i \amifp i'_{v}\right)v.
\f]
Given an expression \f$[a, b] \otimes e_{2}\f$ and a composite
abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right
\rrbracket\f$, we construct the interval linear form
\f$\linexprenv{[a, b] \otimes e_{2}}{\rho^{\#}}{\rho^{\#}_l}\f$
as follows:
\f[
\linexprenv{[a, b] \otimes e_{2}}{\rho^{\#}}{\rho^{\#}_l}
=
\left([a, b]
\amlf
\linexprenv{e_{2}}{\rho^{\#}}{\rho^{\#}_l}\right)
\aslf
\left([a, b]
\amlf
\varepsilon_{\mathbf{f}}\left(\linexprenv{e_{2}}{\rho^{\#}}{\rho^{\#}_l}
\right)\right)
\aslf
mf_{\mathbf{f}}[-1, 1].
\f].
Given an expression \f$e_{1} \otimes [a, b]\f$ and a composite
abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right
\rrbracket\f$, we construct the interval linear form
\f$\linexprenv{e_{1} \otimes [a, b]}{\rho^{\#}}{\rho^{\#}_l}\f$
as follows:
\f[
\linexprenv{e_{1} \otimes [a, b]}{\rho^{\#}}{\rho^{\#}_l}
=
\linexprenv{[a, b] \otimes e_{1}}{\rho^{\#}}{\rho^{\#}_l}.
\f]
Given an expression \f$e_{1} \otimes e_{2}\f$ and a composite
abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right
\rrbracket\f$, we construct the interval linear form
\f$\linexprenv{e_{1} \otimes e_{2}}{\rho^{\#}}{\rho^{\#}_l}\f$
as follows:
\f[
\linexprenv{e_{1} \otimes e_{2}}{\rho^{\#}}{\rho^{\#}_l}
=
\linexprenv{\iota\left(\linexprenv{e_{1}}{\rho^{\#}}{\rho^{\#}_l}
\right)\rho^{\#}
\otimes e_{2}}{\rho^{\#}}{\rho^{\#}_l},
\f]
where \f$\varepsilon_{\mathbf{f}}(l)\f$ is the relative error
associated to \f$l\f$ (see method <CODE>relative_error</CODE> of
class Linear_Form), \f$\iota(l)\rho^{\#}\f$ is the intervalization
of \f$l\f$ (see method <CODE>intervalize</CODE> of class Linear_Form),
and \f$mf_{\mathbf{f}}\f$ is a rounding error computed by function
<CODE>compute_absolute_error</CODE>.
Even though we intervalize the first operand in the above example, the
actual implementation utilizes an heuristics for choosing which of the two
operands must be intervalized in order to obtain the most precise result.
*/
template <typename Target, typename FP_Interval_Type>
static bool
mul_linearize(const Binary_Operator<Target>& bop_expr,
const FP_Oracle<Target,FP_Interval_Type>& oracle,
const std::map<dimension_type, Linear_Form<FP_Interval_Type> >& lf_store,
Linear_Form<FP_Interval_Type>& result) {
PPL_ASSERT(bop_expr.binary_operator() == Binary_Operator<Target>::MUL);
typedef typename FP_Interval_Type::boundary_type analyzer_format;
typedef Linear_Form<FP_Interval_Type> FP_Linear_Form;
typedef Box<FP_Interval_Type> FP_Interval_Abstract_Store;
typedef std::map<dimension_type, FP_Linear_Form> FP_Linear_Form_Abstract_Store;
/*
FIXME: We currently adopt the "Interval-Size Local" strategy in order to
decide which of the two linear forms must be intervalized, as described
in Section 6.2.4 ("Multiplication Strategies") of Antoine Mine's Ph.D.
thesis "Weakly Relational Numerical Abstract Domains".
In this Section are also described other multiplication strategies, such
as All-Cases, Relative-Size Local, Simplification-Driven Global and
Homogeneity Global.
*/
// Here we choose which of the two linear forms must be intervalized.
// true if we intervalize the first form, false if we intervalize the second.
bool intervalize_first;
FP_Linear_Form linearized_first_operand;
if (!linearize(*(bop_expr.left_hand_side()), oracle, lf_store,
linearized_first_operand))
return false;
FP_Interval_Type intervalized_first_operand;
if (!linearized_first_operand.intervalize(oracle, intervalized_first_operand))
return false;
FP_Linear_Form linearized_second_operand;
if (!linearize(*(bop_expr.right_hand_side()), oracle, lf_store,
linearized_second_operand))
return false;
FP_Interval_Type intervalized_second_operand;
if (!linearized_second_operand.intervalize(oracle,
intervalized_second_operand))
return false;
// FIXME: we are not sure that what we do here is policy-proof.
if (intervalized_first_operand.is_bounded()) {
if (intervalized_second_operand.is_bounded()) {
analyzer_format first_interval_size
= intervalized_first_operand.upper()
- intervalized_first_operand.lower();
analyzer_format second_interval_size
= intervalized_second_operand.upper()
- intervalized_second_operand.lower();
if (first_interval_size <= second_interval_size)
intervalize_first = true;
else
intervalize_first = false;
}
else
intervalize_first = true;
}
else {
if (intervalized_second_operand.is_bounded())
intervalize_first = false;
else
return false;
}
// Here we do the actual computation.
// For optimizing, we store the relative error directly into result.
Floating_Point_Format analyzed_format =
bop_expr.type().floating_point_format();
if (intervalize_first) {
linearized_second_operand.relative_error(analyzed_format, result);
linearized_second_operand *= intervalized_first_operand;
result *= intervalized_first_operand;
result += linearized_second_operand;
}
else {
linearized_first_operand.relative_error(analyzed_format, result);
linearized_first_operand *= intervalized_second_operand;
result *= intervalized_second_operand;
result += linearized_first_operand;
}
FP_Interval_Type absolute_error =
compute_absolute_error<FP_Interval_Type>(analyzed_format);
result += absolute_error;
return !result.overflows();
}
/*! \brief \relates Parma_Polyhedra_Library::Concrete_Expression
Helper function used by <CODE>linearize</CODE> to linearize a
division of floating point expressions.
Makes \p result become the linearization of \p *this in the given
composite abstract store.
\tparam Target
A type template parameter specifying the instantiation of
Concrete_Expression to be used.
\tparam FP_Interval_Type
A type template parameter for the intervals used in the abstract domain.
The interval bounds should have a floating point type.
\return
<CODE>true</CODE> if the linearization succeeded,
<CODE>false</CODE> otherwise.
\param bop_expr
The binary operator concrete expression to linearize.
Its binary operator type must be <CODE>DIV</CODE>.
\param oracle
The FP_Oracle to be queried.
\param lf_store
The linear form abstract store.
\param result
The modified linear form.
\par Linearization of division floating-point expressions
Let \f$i + \sum_{v \in \cV}i_{v}v \f$ and
\f$i' + \sum_{v \in \cV}i'_{v}v \f$
be two linear forms, \f$\aslf\f$ and \f$\adivlf\f$ two sound abstract
operator on linear forms such that:
\f[
\left(i + \sum_{v \in \cV}i_{v}v\right)
\aslf
\left(i' + \sum_{v \in \cV}i'_{v}v\right)
=
\left(i \asifp i'\right)
+ \sum_{v \in \cV}\left(i_{v} \asifp i'_{v}\right)v,
\f]
\f[
\left(i + \sum_{v \in \cV}i_{v}v\right)
\adivlf
i'
=
\left(i \adivifp i'\right)
+ \sum_{v \in \cV}\left(i_{v} \adivifp i'\right)v.
\f]
Given an expression \f$e_{1} \oslash [a, b]\f$ and a composite
abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right
\rrbracket\f$,
we construct the interval linear form
\f$
\linexprenv{e_{1} \oslash [a, b]}{\rho^{\#}}{\rho^{\#}_l}
\f$
as follows:
\f[
\linexprenv{e_{1} \oslash [a, b]}{\rho^{\#}}{\rho^{\#}_l}
=
\left(\linexprenv{e_{1}}{\rho^{\#}}{\rho^{\#}_l}
\adivlf
[a, b]\right)
\aslf
\left(\varepsilon_{\mathbf{f}}\left(
\linexprenv{e_{1}}{\rho^{\#}}{\rho^{\#}_l}
\right)
\adivlf
[a, b]\right)
\aslf
mf_{\mathbf{f}}[-1, 1],
\f]
given an expression \f$e_{1} \oslash e_{2}\f$ and a composite
abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right
\rrbracket\f$, we construct the interval linear form
\f$\linexprenv{e_{1} \oslash e_{2}}{\rho^{\#}}{\rho^{\#}_l}\f$
as follows:
\f[
\linexprenv{e_{1} \oslash e_{2}}{\rho^{\#}}{\rho^{\#}_l}
=
\linexprenv{e_{1} \oslash \iota\left(
\linexprenv{e_{2}}{\rho^{\#}}{\rho^{\#}_l}
\right)\rho^{\#}}{\rho^{\#}}{\rho^{\#}_l},
\f]
where \f$\varepsilon_{\mathbf{f}}(l)\f$ is the relative error
associated to \f$l\f$ (see method <CODE>relative_error</CODE> of
class Linear_Form), \f$\iota(l)\rho^{\#}\f$ is the intervalization
of \f$l\f$ (see method <CODE>intervalize</CODE> of class Linear_Form),
and \f$mf_{\mathbf{f}}\f$ is a rounding error computed by function
<CODE>compute_absolute_error</CODE>.
*/
template <typename Target, typename FP_Interval_Type>
static bool
div_linearize(const Binary_Operator<Target>& bop_expr,
const FP_Oracle<Target,FP_Interval_Type>& oracle,
const std::map<dimension_type, Linear_Form<FP_Interval_Type> >& lf_store,
Linear_Form<FP_Interval_Type>& result) {
PPL_ASSERT(bop_expr.binary_operator() == Binary_Operator<Target>::DIV);
typedef typename FP_Interval_Type::boundary_type analyzer_format;
typedef Linear_Form<FP_Interval_Type> FP_Linear_Form;
typedef Box<FP_Interval_Type> FP_Interval_Abstract_Store;
typedef std::map<dimension_type, FP_Linear_Form> FP_Linear_Form_Abstract_Store;
FP_Linear_Form linearized_second_operand;
if (!linearize(*(bop_expr.right_hand_side()), oracle, lf_store,
linearized_second_operand))
return false;
FP_Interval_Type intervalized_second_operand;
if (!linearized_second_operand.intervalize(oracle,
intervalized_second_operand))
return false;
// Check if we may divide by zero.
if ((intervalized_second_operand.lower_is_boundary_infinity() ||
intervalized_second_operand.lower() <= 0) &&
(intervalized_second_operand.upper_is_boundary_infinity() ||
intervalized_second_operand.upper() >= 0))
return false;
if (!linearize(*(bop_expr.left_hand_side()), oracle, lf_store, result))
return false;
Floating_Point_Format analyzed_format =
bop_expr.type().floating_point_format();
FP_Linear_Form rel_error;
result.relative_error(analyzed_format, rel_error);
result /= intervalized_second_operand;
rel_error /= intervalized_second_operand;
result += rel_error;
FP_Interval_Type absolute_error =
compute_absolute_error<FP_Interval_Type>(analyzed_format);
result += absolute_error;
return !result.overflows();
}
/*! \brief \relates Parma_Polyhedra_Library::Concrete_Expression
Helper function used by <CODE>linearize</CODE> to linearize a cast
floating point expression.
Makes \p result become the linearization of \p *this in the given
composite abstract store.
\tparam Target
A type template parameter specifying the instantiation of
Concrete_Expression to be used.
\tparam FP_Interval_Type
A type template parameter for the intervals used in the abstract domain.
The interval bounds should have a floating point type.
\return
<CODE>true</CODE> if the linearization succeeded,
<CODE>false</CODE> otherwise.
\param cast_expr
The cast operator concrete expression to linearize.
\param oracle
The FP_Oracle to be queried.
\param lf_store
The linear form abstract store.
\param result
The modified linear form.
*/
template <typename Target, typename FP_Interval_Type>
static bool
cast_linearize(const Cast_Operator<Target>& cast_expr,
const FP_Oracle<Target,FP_Interval_Type>& oracle,
const std::map<dimension_type, Linear_Form<FP_Interval_Type> >& lf_store,
Linear_Form<FP_Interval_Type>& result) {
typedef typename FP_Interval_Type::boundary_type analyzer_format;
typedef Linear_Form<FP_Interval_Type> FP_Linear_Form;
typedef Box<FP_Interval_Type> FP_Interval_Abstract_Store;
typedef std::map<dimension_type, FP_Linear_Form> FP_Linear_Form_Abstract_Store;
Floating_Point_Format analyzed_format =
cast_expr.type().floating_point_format();
const Concrete_Expression<Target>* cast_arg = cast_expr.argument();
if (cast_arg->type().is_floating_point()) {
if (!linearize(*cast_arg, oracle, lf_store, result))
return false;
if (!is_less_precise_than(analyzed_format,
cast_arg->type().floating_point_format()) ||
result == FP_Linear_Form(FP_Interval_Type(0)) ||
result == FP_Linear_Form(FP_Interval_Type(1)))
/*
FIXME: find a general way to check if the casted constant
is exactly representable in the less precise format.
*/
/*
We are casting to a more precise format or casting
a definitely safe value: do not add errors.
*/
return true;
}
else {
FP_Interval_Type expr_value;
if (!oracle.get_integer_expr_value(*cast_arg, expr_value))
return false;
result = FP_Linear_Form(expr_value);
if (is_less_precise_than(Float<analyzer_format>::Binary::floating_point_format, analyzed_format) ||
result == FP_Linear_Form(FP_Interval_Type(0)) ||
result == FP_Linear_Form(FP_Interval_Type(1)))
/*
FIXME: find a general way to check if the casted constant
is exactly representable in the less precise format.
*/
/*
We are casting to a more precise format or casting
a definitely safe value: do not add errors.
*/
return true;
}
FP_Linear_Form rel_error;
result.relative_error(analyzed_format, rel_error);
result += rel_error;
FP_Interval_Type absolute_error =
compute_absolute_error<FP_Interval_Type>(analyzed_format);
result += absolute_error;
return !result.overflows();
}
//! Linearizes a floating point expression.
/*! \relates Parma_Polyhedra_Library::Concrete_Expression
Makes \p result become a linear form that correctly approximates the
value of \p expr in the given composite abstract store.
\tparam Target
A type template parameter specifying the instantiation of
Concrete_Expression to be used.
\tparam FP_Interval_Type
A type template parameter for the intervals used in the abstract domain.
The interval bounds should have a floating point type.
\return
<CODE>true</CODE> if the linearization succeeded,
<CODE>false</CODE> otherwise.
\param expr
The concrete expression to linearize.
\param oracle
The FP_Oracle to be queried.
\param lf_store
The linear form abstract store.
\param result
Becomes the linearized expression.
Formally, if \p expr represents the expression \f$e\f$ and
\p lf_store represents the linear form abstract store \f$\rho^{\#}_l\f$,
then \p result will become \f$\linexprenv{e}{\rho^{\#}}{\rho^{\#}_l}\f$
if the linearization succeeds.
*/
template <typename Target, typename FP_Interval_Type>
bool
linearize(const Concrete_Expression<Target>& expr,
const FP_Oracle<Target,FP_Interval_Type>& oracle,
const std::map<dimension_type, Linear_Form<FP_Interval_Type> >& lf_store,
Linear_Form<FP_Interval_Type>& result) {
typedef typename FP_Interval_Type::boundary_type analyzer_format;
typedef Linear_Form<FP_Interval_Type> FP_Linear_Form;
typedef Box<FP_Interval_Type> FP_Interval_Abstract_Store;
typedef std::map<dimension_type, FP_Linear_Form> FP_Linear_Form_Abstract_Store;
PPL_ASSERT(expr.type().is_floating_point());
// Check that analyzer_format is a floating point type.
PPL_COMPILE_TIME_CHECK(!std::numeric_limits<analyzer_format>::is_exact,
"linearize<Target, FP_Interval_Type>:"
" FP_Interval_Type is not the type of an interval with floating point boundaries.");
switch(expr.kind()) {
case Integer_Constant<Target>::KIND:
PPL_UNREACHABLE;
break;
case Floating_Point_Constant<Target>::KIND:
{
const Floating_Point_Constant<Target>* fpc_expr =
expr.template as<Floating_Point_Constant>();
FP_Interval_Type constant_value;
if (!oracle.get_fp_constant_value(*fpc_expr, constant_value))
return false;
result = FP_Linear_Form(constant_value);
return true;
}
case Unary_Operator<Target>::KIND:
{
const Unary_Operator<Target>* uop_expr =
expr.template as<Unary_Operator>();
switch (uop_expr->unary_operator()) {
case Unary_Operator<Target>::UPLUS:
return linearize(*(uop_expr->argument()), oracle, lf_store, result);
case Unary_Operator<Target>::UMINUS:
if (!linearize(*(uop_expr->argument()), oracle, lf_store, result))
return false;
result.negate();
return true;
case Unary_Operator<Target>::BNOT:
throw std::runtime_error("PPL internal error: unimplemented");
break;
default:
PPL_UNREACHABLE;
break;
}
break;
}
case Binary_Operator<Target>::KIND:
{
const Binary_Operator<Target>* bop_expr =
expr.template as<Binary_Operator>();
switch (bop_expr->binary_operator()) {
case Binary_Operator<Target>::ADD:
return add_linearize(*bop_expr, oracle, lf_store, result);
case Binary_Operator<Target>::SUB:
return sub_linearize(*bop_expr, oracle, lf_store, result);
case Binary_Operator<Target>::MUL:
return mul_linearize(*bop_expr, oracle, lf_store, result);
case Binary_Operator<Target>::DIV:
return div_linearize(*bop_expr, oracle, lf_store, result);
case Binary_Operator<Target>::REM:
case Binary_Operator<Target>::BAND:
case Binary_Operator<Target>::BOR:
case Binary_Operator<Target>::BXOR:
case Binary_Operator<Target>::LSHIFT:
case Binary_Operator<Target>::RSHIFT:
// FIXME: can we do better?
return false;
default:
PPL_UNREACHABLE;
return false;
}
break;
}
case Approximable_Reference<Target>::KIND:
{
const Approximable_Reference<Target>* ref_expr =
expr.template as<Approximable_Reference>();
std::set<dimension_type> associated_dimensions;
if (!oracle.get_associated_dimensions(*ref_expr, associated_dimensions)
|| associated_dimensions.empty())
/*
We were unable to find any associated space dimension:
linearization fails.
*/
return false;
if (associated_dimensions.size() == 1) {
/* If a linear form associated to the only referenced
space dimension exists in lf_store, return that form.
Otherwise, return the simplest linear form. */
dimension_type variable_index = *associated_dimensions.begin();
PPL_ASSERT(variable_index != not_a_dimension());
typename FP_Linear_Form_Abstract_Store::const_iterator
variable_value = lf_store.find(variable_index);
if (variable_value == lf_store.end()) {
result = FP_Linear_Form(Variable(variable_index));
return true;
}
result = FP_Linear_Form(variable_value->second);
/* FIXME: do we really need to contemplate the possibility
that an unbounded linear form was saved into lf_store? */
return !result.overflows();
}
/*
Here associated_dimensions.size() > 1. Try to return the LUB
of all intervals associated to each space dimension.
*/
PPL_ASSERT(associated_dimensions.size() > 1);
std::set<dimension_type>::const_iterator i = associated_dimensions.begin();
std::set<dimension_type>::const_iterator i_end =
associated_dimensions.end();
FP_Interval_Type lub(EMPTY);
for (; i != i_end; ++i) {
FP_Interval_Type curr_int;
PPL_ASSERT(*i != not_a_dimension());
if (!oracle.get_interval(*i, curr_int))
return false;
lub.join_assign(curr_int);
}
result = FP_Linear_Form(lub);
return !result.overflows();
}
case Cast_Operator<Target>::KIND:
{
const Cast_Operator<Target>* cast_expr =
expr.template as<Cast_Operator>();
return cast_linearize(*cast_expr, oracle, lf_store, result);
}
default:
PPL_UNREACHABLE;
break;
}
PPL_UNREACHABLE;
return false;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/PIP_Tree_defs.hh line 1. */
/* PIP_Tree_Node class declaration.
*/
/* Automatically generated from PPL source file ../src/PIP_Tree_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class PIP_Tree_Node;
class PIP_Solution_Node;
class PIP_Decision_Node;
typedef const PIP_Tree_Node* PIP_Tree;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/PIP_Problem_defs.hh line 1. */
/* PIP_Problem class declaration.
*/
/* Automatically generated from PPL source file ../src/PIP_Problem_defs.hh line 35. */
#include <vector>
#include <deque>
#include <iosfwd>
/* Automatically generated from PPL source file ../src/PIP_Problem_defs.hh line 40. */
namespace Parma_Polyhedra_Library {
namespace IO_Operators {
//! Output operator.
/*! \relates Parma_Polyhedra_Library::PIP_Problem */
std::ostream&
operator<<(std::ostream& s, const PIP_Problem& pip);
} // namespace IO_Operators
//! Swaps \p x with \p y.
/*! \relates PIP_Problem */
void swap(PIP_Problem& x, PIP_Problem& y);
} // namespace Parma_Polyhedra_Library
//! A Parametric Integer (linear) Programming problem.
/*! \ingroup PPL_CXX_interface
An object of this class encodes a parametric integer (linear)
programming problem. The PIP problem is specified by providing:
- the dimension of the vector space;
- the subset of those dimensions of the vector space that are
interpreted as integer parameters (the other space dimensions
are interpreted as non-parameter integer variables);
- a finite set of linear equality and (strict or non-strict)
inequality constraints involving variables and/or parameters;
these constraints are used to define:
- the <EM>feasible region</EM>, if they involve one or more
problem variable (and maybe some parameters);
- the <EM>initial context</EM>, if they only involve the
parameters;
- optionally, the so-called <EM>big parameter</EM>,
i.e., a problem parameter to be considered arbitrarily big.
Note that all problem variables and problem parameters are assumed
to take non-negative integer values, so that there is no need
to specify non-negativity constraints.
The class provides support for the (incremental) solution of the
PIP problem based on variations of the revised simplex method and
on Gomory cut generation techniques.
The solution for a PIP problem is the lexicographic minimum of the
integer points of the feasible region, expressed in terms of the
parameters. As the problem to be solved only involves non-negative
variables and parameters, the problem will always be either unfeasible
or optimizable.
As the feasibility and the solution value of a PIP problem depend on the
values of the parameters, the solution is a binary decision tree,
dividing the context parameter set into subsets.
The tree nodes are of two kinds:
- \e Decision nodes.
These are internal tree nodes encoding one or more linear tests
on the parameters; if all the tests are satisfied, then the solution
is the node's \e true child; otherwise, the solution is the node's
\e false child;
- \e Solution nodes.
These are leaf nodes in the tree, encoding the solution of the problem
in the current context subset, where each variable is defined in terms
of a linear expression of the parameters.
Solution nodes also optionally embed a set of parameter constraints:
if all these constraints are satisfied, the solution is described by
the node, otherwise the problem has no solution.
It may happen that a decision node has no \e false child. This means
that there is no solution if at least one of the corresponding
constraints is not satisfied. Decision nodes having two or more linear
tests on the parameters cannot have a \e false child. Decision nodes
always have a \e true child.
Both kinds of tree nodes may also contain the definition of extra
parameters which are artificially introduced by the solver to enforce
an integral solution. Such artificial parameters are defined by
the integer division of a linear expression on the parameters
by an integer coefficient.
By exploiting the incremental nature of the solver, it is possible
to reuse part of the computational work already done when solving
variants of a given PIP_Problem: currently, incremental resolution
supports the addition of space dimensions, the addition of parameters
and the addition of constraints.
\par Example problem
An example PIP problem can be defined the following:
\code
3*j >= -2*i+8
j <= 4*i - 4
i <= n
j <= m
\endcode
where \c i and \c j are the problem variables
and \c n and \c m are the problem parameters.
This problem can be optimized; the resulting solution tree may be
represented as follows:
\verbatim
if 7*n >= 10 then
if 7*m >= 12 then
{i = 2 ; j = 2}
else
Parameter P = (m) div 2
if 2*n + 3*m >= 8 then
{i = -m - P + 4 ; j = m}
else
_|_
else
_|_
\endverbatim
The solution tree starts with a decision node depending on the
context constraint <code>7*n >= 10</code>.
If this constraint is satisfied by the values assigned to the
problem parameters, then the (textually first) \c then branch is taken,
reaching the \e true child of the root node (which in this case
is another decision node); otherwise, the (textually last) \c else
branch is taken, for which there is no corresponding \e false child.
\par
The \f$\perp\f$ notation, also called \e bottom, denotes the
lexicographic minimum of an empty set of solutions,
here meaning the corresponding subproblem is unfeasible.
\par
Notice that a tree node may introduce new (non-problem) parameters,
as is the case for parameter \c P in the (textually first) \c else
branch above. These \e artificial parameters are only meaningful
inside the subtree where they are defined and are used to define
the parametric values of the problem variables in solution nodes
(e.g., the <CODE>{i,j}</CODE> vector in the textually third \c then branch).
\par Context restriction
The above solution is correct in an unrestricted initial context,
meaning all possible values are allowed for the parameters. If we
restrict the context with the following parameter inequalities:
\code
m >= n
n >= 5
\endcode
then the resulting optimizing tree will be a simple solution node:
\verbatim
{i = 2 ; j = 2}
\endverbatim
\par Creating the PIP_Problem object
The PIP_Problem object corresponding to the above example can be
created as follows:
\code
Variable i(0);
Variable j(1);
Variable n(2);
Variable m(3);
Variables_Set params(n, m);
Constraint_System cs;
cs.insert(3*j >= -2*i+8);
cs.insert(j <= 4*i - 4);
cs.insert(j <= m);
cs.insert(i <= n);
PIP_Problem pip(cs.space_dimension(), cs.begin(), cs.end(), params);
\endcode
If you want to restrict the initial context, simply add the parameter
constraints the same way as for normal constraints.
\code
cs.insert(m >= n);
cs.insert(n >= 5);
\endcode
\par Solving the problem
Once the PIP_Problem object has been created, you can start the
resolution of the problem by calling the solve() method:
\code
PIP_Problem_Status status = pip.solve();
\endcode
where the returned \c status indicates if the problem has been optimized
or if it is unfeasible for any possible configuration of the parameter
values. The resolution process is also started if an attempt is made
to get its solution, as follows:
\code
const PIP_Tree_Node* node = pip.solution();
\endcode
In this case, an unfeasible problem will result in an empty solution
tree, i.e., assigning a null pointer to \c node.
\par Printing the solution tree
A previously computed solution tree may be printed as follows:
\code
pip.print_solution(std::cout);
\endcode
This will produce the following output (note: variables and parameters
are printed according to the default output function; see
<code>Variable::set_output_function</code>):
\verbatim
if 7*C >= 10 then
if 7*D >= 12 then
{2 ; 2}
else
Parameter E = (D) div 2
if 2*C + 3*D >= 8 then
{-D - E + 4 ; D}
else
_|_
else
_|_
\endverbatim
\par Spanning the solution tree
A parameter assignment for a PIP problem binds each of the problem
parameters to a non-negative integer value. After fixing a parameter
assignment, the ``spanning'' of the PIP problem solution tree refers
to the process whereby the solution tree is navigated, starting from
the root node: the value of artificial parameters is computed according
to the parameter assignment and the node's constraints are evaluated,
thereby descending in either the true or the false subtree of decision
nodes and eventually reaching a solution node or a bottom node.
If a solution node is found, each of the problem variables is provided
with a parametric expression, which can be evaluated to a fixed value
using the given parameter assignment and the computed values for
artificial parameters.
\par
The coding of the spanning process can be done as follows.
First, the root of the PIP solution tree is retrieved:
\code
const PIP_Tree_Node* node = pip.solution();
\endcode
If \c node represents an unfeasible solution (i.e., \f$\perp\f$),
its value will be \c 0. For a non-null tree node, the virtual methods
\c PIP_Tree_Node::as_decision() and \c PIP_Tree_Node::as_solution()
can be used to check whether the node is a decision or a solution node:
\code
const PIP_Solution_Node* sol = node->as_solution();
if (sol != 0) {
// The node is a solution node
...
}
else {
// The node is a decision node
const PIP_Decision_Node* dec = node->as_decision();
...
}
\endcode
\par
The true (resp., false) child node of a Decision Node may be accessed by
using method \c PIP_Decision_Node::child_node(bool), passing \c true
(resp., \c false) as the input argument.
\par Artificial parameters
A PIP_Tree_Node::Artificial_Parameter object represents the result
of the integer division of a Linear_Expression (on the other
parameters, including the previously-defined artificials)
by an integer denominator (a Coefficient object).
The dimensions of the artificial parameters (if any) in a tree node
have consecutive indices starting from <code>dim+1</code>, where the value
of \c dim is computed as follows:
- for the tree root node, \c dim is the space dimension of the PIP_Problem;
- for any other node of the tree, it is recursively obtained by adding
the value of \c dim computed for the parent node to the number of
artificial parameters defined in the parent node.
\par
Since the numbering of dimensions for artificial parameters follows
the rule above, the addition of new problem variables and/or new problem
parameters to an already solved PIP_Problem object (as done when
incrementally solving a problem) will result in the systematic
renumbering of all the existing artificial parameters.
\par Node constraints
All kind of tree nodes can contain context constraints.
Decision nodes always contain at least one of them.
The node's local constraint system can be obtained using method
PIP_Tree_Node::constraints.
These constraints only involve parameters, including both the problem
parameters and the artificial parameters that have been defined
in nodes occurring on the path from the root node to the current node.
The meaning of these constraints is as follows:
- On a decision node, if all tests in the constraints are true, then the
solution is the \e true child; otherwise it is the \e false child.
- On a solution node, if the (possibly empty) system of constraints
evaluates to true for a given parameter assignment, then the solution
is described by the node; otherwise the solution is \f$\perp\f$
(i.e., the problem is unfeasible for that parameter assignment).
\par Getting the optimal values for the variables
After spanning the solution tree using the given parameter assignment,
if a solution node has been reached, then it is possible to retrieve
the parametric expression for each of the problem variables using
method PIP_Solution_Node::parametric_values. The retrieved expression
will be defined in terms of all the parameters (problem parameters
and artificial parameters defined along the path).
\par Solving maximization problems
You can solve a lexicographic maximization problem by reformulating its
constraints using variable substitution. Proceed the following steps:
- Create a big parameter (see PIP_Problem::set_big_parameter_dimension),
which we will call \f$M\f$.
- Reformulate each of the maximization problem constraints by
substituting each \f$x_i\f$ variable with an expression of the form
\f$M-x'_i\f$, where the \f$x'_i\f$ variables are positive variables to
be minimized.
- Solve the lexicographic minimum for the \f$x'\f$ variable vector.
- In the solution expressions, the values of the \f$x'\f$ variables will
be expressed in the form: \f$x'_i = M-x_i\f$. To get back the value of
the expression of each \f$x_i\f$ variable, just apply the
formula: \f$x_i = M-x'_i\f$.
\par
Note that if the resulting expression of one of the \f$x'_i\f$ variables
is not in the \f$x'_i = M-x_i\f$ form, this means that the
sign-unrestricted problem is unbounded.
\par
You can choose to maximize only a subset of the variables while minimizing
the other variables. In that case, just apply the variable substitution
method on the variables you want to be maximized. The variable
optimization priority will still be in lexicographic order.
\par
\b Example: consider you want to find the lexicographic maximum of the
\f$(x,y)\f$ vector, under the constraints:
\f[\left\{\begin{array}{l}
y \geq 2x - 4\\
y \leq -x + p
\end{array}\right.\f]
\par
where \f$p\f$ is a parameter.
\par
After variable substitution, the constraints become:
\f[\left\{\begin{array}{l}
M - y \geq 2M - 2x - 4\\
M - y \leq -M + x + p
\end{array}\right.\f]
\par
The code for creating the corresponding problem object is the following:
\code
Variable x(0);
Variable y(1);
Variable p(2);
Variable M(3);
Variables_Set params(p, M);
Constraint_System cs;
cs.insert(M - y >= 2*M - 2*x - 4);
cs.insert(M - y <= -M + x + p);
PIP_Problem pip(cs.space_dimension(), cs.begin(), cs.end(), params);
pip.set_big_parameter_dimension(3); // M is the big parameter
\endcode
Solving the problem provides the following solution:
\verbatim
Parameter E = (C + 1) div 3
{D - E - 1 ; -C + D + E + 1}
\endverbatim
Under the notations above, the solution is:
\f[ \left\{\begin{array}{l}
x' = M - \left\lfloor\frac{p+1}{3}\right\rfloor - 1 \\
y' = M - p + \left\lfloor\frac{p+1}{3}\right\rfloor + 1
\end{array}\right.
\f]
\par
Performing substitution again provides us with the values of the original
variables:
\f[ \left\{\begin{array}{l}
x = \left\lfloor\frac{p+1}{3}\right\rfloor + 1 \\
y = p - \left\lfloor\frac{p+1}{3}\right\rfloor - 1
\end{array}\right.
\f]
\par Allowing variables to be arbitrarily signed
You can deal with arbitrarily signed variables by reformulating the
constraints using variable substitution. Proceed the following steps:
- Create a big parameter (see PIP_Problem::set_big_parameter_dimension),
which we will call \f$M\f$.
- Reformulate each of the maximization problem constraints by
substituting each \f$x_i\f$ variable with an expression of the form
\f$x'_i-M\f$, where the \f$x'_i\f$ variables are positive.
- Solve the lexicographic minimum for the \f$x'\f$ variable vector.
- The solution expression can be read in the form:
- In the solution expressions, the values of the \f$x'\f$ variables will
be expressed in the form: \f$x'_i = x_i+M\f$. To get back the value of
the expression of each signed \f$x_i\f$ variable, just apply the
formula: \f$x_i = x'_i-M\f$.
\par
Note that if the resulting expression of one of the \f$x'_i\f$ variables
is not in the \f$x'_i = x_i+M\f$ form, this means that the
sign-unrestricted problem is unbounded.
\par
You can choose to define only a subset of the variables to be
sign-unrestricted. In that case, just apply the variable substitution
method on the variables you want to be sign-unrestricted.
\par
\b Example: consider you want to find the lexicographic minimum of the
\f$(x,y)\f$ vector, where the \f$x\f$ and \f$y\f$ variables are
sign-unrestricted, under the constraints:
\f[\left\{\begin{array}{l}
y \geq -2x - 4\\
2y \leq x + 2p
\end{array}\right.\f]
\par
where \f$p\f$ is a parameter.
\par
After variable substitution, the constraints become:
\f[\left\{\begin{array}{l}
y' - M \geq -2x' + 2M - 4\\
2y' - 2M \leq x' - M + 2p
\end{array}\right.\f]
\par
The code for creating the corresponding problem object is the following:
\code
Variable x(0);
Variable y(1);
Variable p(2);
Variable M(3);
Variables_Set params(p, M);
Constraint_System cs;
cs.insert(y - M >= -2*x + 2*M - 4);
cs.insert(2*y - 2*M <= x - M + 2*p);
PIP_Problem pip(cs.space_dimension(), cs.begin(), cs.end(), params);
pip.set_big_parameter_dimension(3); // M is the big parameter
\endcode
\par
Solving the problem provides the following solution:
\verbatim
Parameter E = (2*C + 3) div 5
{D - E - 1 ; D + 2*E - 2}
\endverbatim
Under the notations above, the solution is:
\f[ \left\{\begin{array}{l}
x' = M - \left\lfloor\frac{2p+3}{5}\right\rfloor - 1 \\
y' = M + 2\left\lfloor\frac{2p+3}{5}\right\rfloor - 2
\end{array}\right.
\f]
\par
Performing substitution again provides us with the values of the original
variables:
\f[ \left\{\begin{array}{l}
x = -\left\lfloor\frac{2p+3}{5}\right\rfloor - 1 \\
y = 2\left\lfloor\frac{2p+3}{5}\right\rfloor - 2
\end{array}\right.
\f]
\par Allowing parameters to be arbitrarily signed
You can consider a parameter \f$p\f$ arbitrarily signed by replacing
\f$p\f$ with \f$p^+-p^-\f$, where both \f$p^+\f$ and \f$p^-\f$ are
positive parameters. To represent a set of arbitrarily signed parameters,
replace each parameter \f$p_i\f$ with \f$p^+_i-p^-\f$, where \f$-p^-\f$ is
the minimum negative value of all parameters.
\par Minimizing a linear cost function
Lexicographic solving can be used to find the parametric minimum of a
linear cost function.
\par
Suppose the variables are named \f$x_1, x_2, \dots, x_n\f$, and the
parameters \f$p_1, p_2, \dots, p_m\f$. You can minimize a linear cost
function \f$f(x_2, \dots, x_n, p_1, \dots, p_m)\f$ by simply adding the
constraint \f$x_1 \geq f(x_2, \dots, x_n, p_1, \dots, p_m)\f$ to the
constraint system. As lexicographic minimization ensures \f$x_1\f$ is
minimized in priority, and because \f$x_1\f$ is forced by a constraint to
be superior or equal to the cost function, optimal solutions of the
problem necessarily ensure that the solution value of \f$x_1\f$ is the
optimal value of the cost function.
*/
class Parma_Polyhedra_Library::PIP_Problem {
public:
//! Builds a trivial PIP problem.
/*!
A trivial PIP problem requires to compute the lexicographic minimum
on a vector space under no constraints and with no parameters:
due to the implicit non-negativity constraints, the origin of the
vector space is an optimal solution.
\param dim
The dimension of the vector space enclosing \p *this
(optional argument with default value \f$0\f$).
\exception std::length_error
Thrown if \p dim exceeds <CODE>max_space_dimension()</CODE>.
*/
explicit PIP_Problem(dimension_type dim = 0);
/*! \brief
Builds a PIP problem having space dimension \p dim
from the sequence of constraints in the range
\f$[\mathrm{first}, \mathrm{last})\f$;
those dimensions whose indices occur in \p p_vars are
interpreted as parameters.
\param dim
The dimension of the vector space (variables and parameters) enclosing
\p *this.
\param first
An input iterator to the start of the sequence of constraints.
\param last
A past-the-end input iterator to the sequence of constraints.
\param p_vars
The set of variables' indexes that are interpreted as parameters.
\exception std::length_error
Thrown if \p dim exceeds <CODE>max_space_dimension()</CODE>.
\exception std::invalid_argument
Thrown if the space dimension of a constraint in the sequence
(resp., the parameter variables) is strictly greater than \p dim.
*/
template <typename In>
PIP_Problem(dimension_type dim, In first, In last,
const Variables_Set& p_vars);
//! Ordinary copy-constructor.
PIP_Problem(const PIP_Problem& y);
//! Destructor.
~PIP_Problem();
//! Assignment operator.
PIP_Problem& operator=(const PIP_Problem& y);
//! Returns the maximum space dimension a PIP_Problem can handle.
static dimension_type max_space_dimension();
//! Returns the space dimension of the PIP problem.
dimension_type space_dimension() const;
/*! \brief
Returns a set containing all the variables' indexes representing
the parameters of the PIP problem.
*/
const Variables_Set& parameter_space_dimensions() const;
private:
//! A type alias for a sequence of constraints.
typedef std::vector<Constraint> Constraint_Sequence;
public:
/*! \brief
A type alias for the read-only iterator on the constraints
defining the feasible region.
*/
typedef Constraint_Sequence::const_iterator const_iterator;
/*! \brief
Returns a read-only iterator to the first constraint defining
the feasible region.
*/
const_iterator constraints_begin() const;
/*! \brief
Returns a past-the-end read-only iterator to the sequence of
constraints defining the feasible region.
*/
const_iterator constraints_end() const;
//! Resets \p *this to be equal to the trivial PIP problem.
/*!
The space dimension is reset to \f$0\f$.
*/
void clear();
/*! \brief
Adds <CODE>m_vars + m_params</CODE> new space dimensions
and embeds the old PIP problem in the new vector space.
\param m_vars
The number of space dimensions to add that are interpreted as
PIP problem variables (i.e., non parameters). These are added
\e before adding the \p m_params parameters.
\param m_params
The number of space dimensions to add that are interpreted as
PIP problem parameters. These are added \e after having added the
\p m_vars problem variables.
\exception std::length_error
Thrown if adding <CODE>m_vars + m_params</CODE> new space
dimensions would cause the vector space to exceed dimension
<CODE>max_space_dimension()</CODE>.
The new space dimensions will be those having the highest indexes
in the new PIP problem; they are initially unconstrained.
*/
void add_space_dimensions_and_embed(dimension_type m_vars,
dimension_type m_params);
/*! \brief
Sets the space dimensions whose indexes which are in set \p p_vars
to be parameter space dimensions.
\exception std::invalid_argument
Thrown if some index in \p p_vars does not correspond to
a space dimension in \p *this.
*/
void add_to_parameter_space_dimensions(const Variables_Set& p_vars);
/*! \brief
Adds a copy of constraint \p c to the PIP problem.
\exception std::invalid_argument
Thrown if the space dimension of \p c is strictly greater than
the space dimension of \p *this.
*/
void add_constraint(const Constraint& c);
/*! \brief
Adds a copy of the constraints in \p cs to the PIP problem.
\exception std::invalid_argument
Thrown if the space dimension of constraint system \p cs is strictly
greater than the space dimension of \p *this.
*/
void add_constraints(const Constraint_System& cs);
//! Checks satisfiability of \p *this.
/*!
\return
\c true if and only if the PIP problem is satisfiable.
*/
bool is_satisfiable() const;
//! Optimizes the PIP problem.
/*!
\return
A PIP_Problem_Status flag indicating the outcome of the optimization
attempt (unfeasible or optimized problem).
*/
PIP_Problem_Status solve() const;
//! Returns a feasible solution for \p *this, if it exists.
/*!
A null pointer is returned for an unfeasible PIP problem.
*/
PIP_Tree solution() const;
//! Returns an optimizing solution for \p *this, if it exists.
/*!
A null pointer is returned for an unfeasible PIP problem.
*/
PIP_Tree optimizing_solution() const;
//! Checks if all the invariants are satisfied.
bool OK() const;
//! Prints on \p s the solution computed for \p *this.
/*!
\param s
The output stream.
\param indent
An indentation parameter (default value 0).
\exception std::logic_error
Thrown if trying to print the solution when the PIP problem
still has to be solved.
*/
void print_solution(std::ostream& s, int indent = 0) const;
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
//! Swaps \p *this with \p y.
void m_swap(PIP_Problem& y);
//! Possible names for PIP_Problem control parameters.
enum Control_Parameter_Name {
//! Cutting strategy
CUTTING_STRATEGY,
//! Pivot row strategy
PIVOT_ROW_STRATEGY,
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Number of different enumeration values.
#endif // PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
CONTROL_PARAMETER_NAME_SIZE
};
//! Possible values for PIP_Problem control parameters.
enum Control_Parameter_Value {
//! Choose the first non-integer row.
CUTTING_STRATEGY_FIRST,
//! Choose row which generates the deepest cut.
CUTTING_STRATEGY_DEEPEST,
//! Always generate all possible cuts.
CUTTING_STRATEGY_ALL,
//! Choose the first row with negative parameter sign.
PIVOT_ROW_STRATEGY_FIRST,
//! Choose a row that generates a lexicographically maximal pivot column.
PIVOT_ROW_STRATEGY_MAX_COLUMN,
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Number of different enumeration values.
#endif // PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
CONTROL_PARAMETER_VALUE_SIZE
};
//! Returns the value of control parameter \p name.
Control_Parameter_Value
get_control_parameter(Control_Parameter_Name name) const;
//! Sets control parameter \p value.
void set_control_parameter(Control_Parameter_Value value);
//! Sets the dimension for the big parameter to \p big_dim.
void set_big_parameter_dimension(dimension_type big_dim);
/*! \brief
Returns the space dimension for the big parameter.
If a big parameter was not set, returns \c not_a_dimension().
*/
dimension_type get_big_parameter_dimension() const;
private:
//! Initializes the control parameters with default values.
void control_parameters_init();
//! Copies the control parameters from problem object \p y.
void control_parameters_copy(const PIP_Problem& y);
//! The dimension of the vector space.
dimension_type external_space_dim;
/*! \brief
The space dimension of the current (partial) solution of the
PIP problem; it may be smaller than \p external_space_dim.
*/
dimension_type internal_space_dim;
//! An enumerated type describing the internal status of the PIP problem.
enum Status {
//! The PIP problem is unsatisfiable.
UNSATISFIABLE,
//! The PIP problem is optimized; the solution tree has been computed.
OPTIMIZED,
/*! \brief
The feasible region of the PIP problem has been changed by adding
new variables, parameters or constraints; a feasible solution for
the old feasible region is still available.
*/
PARTIALLY_SATISFIABLE
};
//! The internal state of the MIP problem.
Status status;
//! The current solution decision tree
PIP_Tree_Node* current_solution;
//! The sequence of constraints describing the feasible region.
Constraint_Sequence input_cs;
//! The first index of `input_cs' containing a pending constraint.
dimension_type first_pending_constraint;
/*! \brief
A set containing all the indices of space dimensions that are
interpreted as problem parameters.
*/
Variables_Set parameters;
#if PPL_USE_SPARSE_MATRIX
typedef Sparse_Row Row;
#else
typedef Dense_Row Row;
#endif
/*! \brief
The initial context
Contains problem constraints on parameters only
*/
Matrix<Row> initial_context;
//! The control parameters for the problem object.
Control_Parameter_Value
control_parameters[CONTROL_PARAMETER_NAME_SIZE];
/*! \brief
The dimension for the big parameter, or \c not_a_dimension()
if not set.
*/
dimension_type big_parameter_dimension;
friend class PIP_Solution_Node;
};
/* Automatically generated from PPL source file ../src/PIP_Problem_inlines.hh line 1. */
/* PIP_Problem class implementation: inline functions.
*/
namespace Parma_Polyhedra_Library {
inline dimension_type
PIP_Problem::space_dimension() const {
return external_space_dim;
}
inline dimension_type
PIP_Problem::max_space_dimension() {
return Constraint::max_space_dimension();
}
inline PIP_Problem::const_iterator
PIP_Problem::constraints_begin() const {
return input_cs.begin();
}
inline PIP_Problem::const_iterator
PIP_Problem::constraints_end() const {
return input_cs.end();
}
inline const Variables_Set&
PIP_Problem::parameter_space_dimensions() const {
return parameters;
}
inline void
PIP_Problem::m_swap(PIP_Problem& y) {
using std::swap;
swap(external_space_dim, y.external_space_dim);
swap(internal_space_dim, y.internal_space_dim);
swap(status, y.status);
swap(current_solution, y.current_solution);
swap(input_cs, y.input_cs);
swap(first_pending_constraint, y.first_pending_constraint);
swap(parameters, y.parameters);
swap(initial_context, y.initial_context);
for (dimension_type i = CONTROL_PARAMETER_NAME_SIZE; i-- > 0; )
swap(control_parameters[i], y.control_parameters[i]);
swap(big_parameter_dimension, y.big_parameter_dimension);
}
inline PIP_Problem&
PIP_Problem::operator=(const PIP_Problem& y) {
PIP_Problem tmp(y);
m_swap(tmp);
return *this;
}
inline PIP_Problem::Control_Parameter_Value
PIP_Problem::get_control_parameter(Control_Parameter_Name name) const {
PPL_ASSERT(name >= 0 && name < CONTROL_PARAMETER_NAME_SIZE);
return control_parameters[name];
}
inline dimension_type
PIP_Problem::get_big_parameter_dimension() const {
return big_parameter_dimension;
}
/*! \relates PIP_Problem */
inline void
swap(PIP_Problem& x, PIP_Problem& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/PIP_Problem_templates.hh line 1. */
/* PIP_Problem class implementation: non-inline template functions.
*/
/* Automatically generated from PPL source file ../src/PIP_Problem_templates.hh line 28. */
namespace Parma_Polyhedra_Library {
template <typename In>
PIP_Problem::PIP_Problem(dimension_type dim,
In first, In last,
const Variables_Set& p_vars)
: external_space_dim(dim),
internal_space_dim(0),
status(PARTIALLY_SATISFIABLE),
current_solution(0),
input_cs(),
first_pending_constraint(0),
parameters(p_vars),
initial_context(),
big_parameter_dimension(not_a_dimension()) {
// Check that integer Variables_Set does not exceed the space dimension
// of the problem.
if (p_vars.space_dimension() > external_space_dim) {
std::ostringstream s;
s << "PPL::PIP_Problem::PIP_Problem(dim, first, last, p_vars):\n"
<< "dim == " << external_space_dim
<< " and p_vars.space_dimension() == "
<< p_vars.space_dimension()
<< " are dimension incompatible.";
throw std::invalid_argument(s.str());
}
// Check for space dimension overflow.
if (dim > max_space_dimension())
throw std::length_error("PPL::PIP_Problem::"
"PIP_Problem(dim, first, last, p_vars):\n"
"dim exceeds the maximum allowed "
"space dimension.");
// Check the constraints.
for (In i = first; i != last; ++i) {
if (i->space_dimension() > dim) {
std::ostringstream s;
s << "PPL::PIP_Problem::"
<< "PIP_Problem(dim, first, last, p_vars):\n"
<< "range [first, last) contains a constraint having space "
<< "dimension == " << i->space_dimension()
<< " that exceeds this->space_dimension == " << dim << ".";
throw std::invalid_argument(s.str());
}
input_cs.push_back(*i);
}
control_parameters_init();
PPL_ASSERT(OK());
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/PIP_Problem_defs.hh line 833. */
/* Automatically generated from PPL source file ../src/PIP_Tree_defs.hh line 36. */
/* Automatically generated from PPL source file ../src/PIP_Tree_defs.hh line 40. */
namespace Parma_Polyhedra_Library {
//! A node of the PIP solution tree.
/*!
This is the base class for the nodes of the binary trees representing
the solutions of PIP problems. From this one, two classes are derived:
- PIP_Decision_Node, for the internal nodes of the tree;
- PIP_Solution_Node, for the leaves of the tree.
*/
class PIP_Tree_Node {
protected:
//! Constructor: builds a node owned by \p *owner.
explicit PIP_Tree_Node(const PIP_Problem* owner);
//! Copy constructor.
PIP_Tree_Node(const PIP_Tree_Node& y);
//! Returns a pointer to the PIP_Problem owning object.
const PIP_Problem* get_owner() const;
//! Sets the pointer to the PIP_Problem owning object.
virtual void set_owner(const PIP_Problem* owner) = 0;
/*! \brief
Returns \c true if and only if all the nodes in the subtree
rooted in \p *this are owned by \p *owner.
*/
virtual bool check_ownership(const PIP_Problem* owner) const = 0;
public:
#if PPL_USE_SPARSE_MATRIX
typedef Sparse_Row Row;
#else
typedef Dense_Row Row;
#endif
//! Returns a pointer to a dynamically-allocated copy of \p *this.
virtual PIP_Tree_Node* clone() const = 0;
//! Destructor.
virtual ~PIP_Tree_Node();
//! Returns \c true if and only if \p *this is well formed.
virtual bool OK() const = 0;
//! Returns \p this if \p *this is a solution node, 0 otherwise.
virtual const PIP_Solution_Node* as_solution() const = 0;
//! Returns \p this if \p *this is a decision node, 0 otherwise.
virtual const PIP_Decision_Node* as_decision() const = 0;
/*! \brief
Returns the system of parameter constraints controlling \p *this.
The indices in the constraints are the same as the original variables and
parameters. Coefficients in indices corresponding to variables always are
zero.
*/
const Constraint_System& constraints() const;
class Artificial_Parameter;
//! A type alias for a sequence of Artificial_Parameter's.
typedef std::vector<Artificial_Parameter> Artificial_Parameter_Sequence;
//! Returns a const_iterator to the beginning of local artificial parameters.
Artificial_Parameter_Sequence::const_iterator art_parameter_begin() const;
//! Returns a const_iterator to the end of local artificial parameters.
Artificial_Parameter_Sequence::const_iterator art_parameter_end() const;
//! Returns the number of local artificial parameters.
dimension_type art_parameter_count() const;
//! Prints on \p s the tree rooted in \p *this.
/*!
\param s
The output stream.
\param indent
The amount of indentation.
*/
void print(std::ostream& s, int indent = 0) const;
//! Dumps to \p s an ASCII representation of \p *this.
void ascii_dump(std::ostream& s) const;
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Returns the total size in bytes of the memory occupied by \p *this.
virtual memory_size_type total_memory_in_bytes() const = 0;
//! Returns the size in bytes of the memory managed by \p *this.
virtual memory_size_type external_memory_in_bytes() const = 0;
protected:
//! A type alias for a sequence of constraints.
typedef std::vector<Constraint> Constraint_Sequence;
// Only PIP_Problem and PIP_Decision_Node are allowed to use the
// constructor and methods.
friend class PIP_Problem;
friend class PIP_Decision_Node;
friend class PIP_Solution_Node;
//! A pointer to the PIP_Problem object owning this node.
const PIP_Problem* owner_;
//! A pointer to the parent of \p *this, null if \p *this is the root.
const PIP_Decision_Node* parent_;
//! The local system of parameter constraints.
Constraint_System constraints_;
//! The local sequence of expressions for local artificial parameters.
Artificial_Parameter_Sequence artificial_parameters;
//! Returns a pointer to this node's parent.
const PIP_Decision_Node* parent() const;
//! Set this node's parent to \p *p.
void set_parent(const PIP_Decision_Node* p);
/*! \brief
Populates the parametric simplex tableau using external data.
\param pip
The PIP_Problem object containing this node.
\param external_space_dim
The number of all problem variables and problem parameters
(excluding artificial parameters).
\param first_pending_constraint
The first element in \p input_cs to be added to the tableau,
which already contains the previous elements.
\param input_cs
All the constraints of the PIP problem.
\param parameters
The set of indices of the problem parameters.
*/
virtual void update_tableau(const PIP_Problem& pip,
dimension_type external_space_dim,
dimension_type first_pending_constraint,
const Constraint_Sequence& input_cs,
const Variables_Set& parameters) = 0;
/*! \brief
Executes a parametric simplex on the tableau, under specified context.
\return
The root of the PIP tree solution, or 0 if unfeasible.
\param pip
The PIP_Problem object containing this node.
\param check_feasible_context
Whether the resolution process should (re-)check feasibility of
context (since the initial context may have been modified).
\param context
The context, being a set of constraints on the parameters.
\param params
The local parameter set, including parent's artificial parameters.
\param space_dim
The space dimension of parent, including artificial parameters.
\param indent_level
The indentation level (for debugging output only).
*/
virtual PIP_Tree_Node* solve(const PIP_Problem& pip,
bool check_feasible_context,
const Matrix<Row>& context,
const Variables_Set& params,
dimension_type space_dim,
int indent_level) = 0;
//! Inserts a new parametric constraint in internal row format.
void add_constraint(const Row& row, const Variables_Set& parameters);
//! Merges parent's artificial parameters into \p *this.
void parent_merge();
//! Prints on \p s the tree rooted in \p *this.
/*!
\param s
The output stream.
\param indent
The amount of indentation.
\param pip_dim_is_param
A vector of Boolean flags telling which PIP problem dimensions are
problem parameters. The size of the vector is equal to the PIP
problem internal space dimension (i.e., no artificial parameters).
\param first_art_dim
The first space dimension corresponding to an artificial parameter
that was created in this node (if any).
*/
virtual void print_tree(std::ostream& s,
int indent,
const std::vector<bool>& pip_dim_is_param,
dimension_type first_art_dim) const = 0;
//! A helper function used when printing PIP trees.
static void
indent_and_print(std::ostream& s, int indent, const char* str);
/*! \brief
Checks whether a context matrix is satisfiable.
The satisfiability check is implemented by the revised dual simplex
algorithm on the context matrix. The algorithm ensures the feasible
solution is integer by applying a cut generation method when
intermediate non-integer solutions are found.
*/
static bool compatibility_check(Matrix<Row>& s);
/*! \brief
Helper method: checks for satisfiability of the restricted context
obtained by adding \p row to \p context.
*/
static bool compatibility_check(const Matrix<Row>& context, const Row& row);
}; // class PIP_Tree_Node
/*! \brief
Artificial parameters in PIP solution trees.
These parameters are built from a linear expression combining other
parameters (constant term included) divided by a positive integer
denominator. Coefficients at variables indices corresponding to
PIP problem variables are always zero.
*/
class PIP_Tree_Node::Artificial_Parameter
: public Linear_Expression {
public:
//! Default constructor: builds a zero artificial parameter.
Artificial_Parameter();
//! Constructor.
/*!
Builds artificial parameter \f$\frac{\mathtt{expr}}{\mathtt{d}}\f$.
\param expr
The expression that, after normalization, will form the numerator of
the artificial parameter.
\param d
The integer constant that, after normalization, will form the
denominator of the artificial parameter.
\exception std::invalid_argument
Thrown if \p d is zero.
Normalization will ensure that the denominator is positive.
*/
Artificial_Parameter(const Linear_Expression& expr,
Coefficient_traits::const_reference d);
//! Copy constructor.
Artificial_Parameter(const Artificial_Parameter& y);
//! Returns the normalized (i.e., positive) denominator.
Coefficient_traits::const_reference denominator() const;
//! Swaps \p *this with \p y.
void m_swap(Artificial_Parameter& y);
//! Returns \c true if and only if \p *this and \p y are equal.
/*!
Note that two artificial parameters having different space dimensions
are considered to be different.
*/
bool operator==(const Artificial_Parameter& y) const;
//! Returns \c true if and only if \p *this and \p y are different.
bool operator!=(const Artificial_Parameter& y) const;
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
//! Returns \c true if and only if the parameter is well-formed.
bool OK() const;
private:
//! The normalized (i.e., positive) denominator.
Coefficient denom;
}; // class PIP_Tree_Node::Artificial_Parameter
//! Swaps \p x with \p y.
/*! \relates PIP_Tree_Node::Artificial_Parameter */
void
swap(PIP_Tree_Node::Artificial_Parameter& x,
PIP_Tree_Node::Artificial_Parameter& y);
//! A tree node representing part of the space of solutions.
class PIP_Solution_Node : public PIP_Tree_Node {
public:
//! Constructor: builds a solution node owned by \p *owner.
explicit PIP_Solution_Node(const PIP_Problem* owner);
//! Returns a pointer to a dynamically-allocated copy of \p *this.
virtual PIP_Tree_Node* clone() const;
//! Destructor.
virtual ~PIP_Solution_Node();
//! Returns \c true if and only if \p *this is well formed.
virtual bool OK() const;
//! Returns \p this.
virtual const PIP_Solution_Node* as_solution() const;
//! Returns 0, since \p this is not a decision node.
virtual const PIP_Decision_Node* as_decision() const;
/*! \brief
Returns a parametric expression for the values of problem variable \p var.
The returned linear expression may involve problem parameters
as well as artificial parameters.
\param var
The problem variable which is queried about.
\exception std::invalid_argument
Thrown if \p var is dimension-incompatible with the PIP_Problem
owning this solution node, or if \p var is a problem parameter.
*/
const Linear_Expression& parametric_values(Variable var) const;
//! Dumps to \p os an ASCII representation of \p *this.
void ascii_dump(std::ostream& os) const;
/*! \brief
Loads from \p is an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& is);
//! Returns the total size in bytes of the memory occupied by \p *this.
virtual memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
virtual memory_size_type external_memory_in_bytes() const;
private:
//! The type for parametric simplex tableau.
struct Tableau {
//! The matrix of simplex coefficients.
Matrix<Row> s;
//! The matrix of parameter coefficients.
Matrix<Row> t;
//! A common denominator for all matrix elements
Coefficient denom;
//! Default constructor.
Tableau();
//! Copy constructor.
Tableau(const Tableau& y);
//! Destructor.
~Tableau();
//! Tests whether the matrix is integer, i.e., the denominator is 1.
bool is_integer() const;
//! Multiplies all coefficients and denominator with ratio.
void scale(Coefficient_traits::const_reference ratio);
//! Normalizes the modulo of coefficients so that they are mutually prime.
/*!
Computes the Greatest Common Divisor (GCD) among the elements of
the matrices and normalizes them and the denominator by the GCD itself.
*/
void normalize();
/*! \brief
Compares two pivot row and column pairs before pivoting.
The algorithm searches the first (ie, leftmost) column \f$k\f$ in
parameter matrix for which the \f$c=s_{*j}\frac{t_{ik}}{s_{ij}}\f$
and \f$c'=s_{*j'}\frac{t_{i'k}}{s_{i'j'}}\f$ columns are different,
where \f$s_{*j}\f$ denotes the \f$j\f$<sup>th</sup> column from the
\f$s\f$ matrix and \f$s_{*j'}\f$ is the \f$j'\f$<sup>th</sup> column
of \f$s\f$.
\f$c\f$ is the computed column that would be subtracted to column
\f$k\f$ in parameter matrix if pivoting is done using the \f$(i,j)\f$
row and column pair.
\f$c'\f$ is the computed column that would be subtracted to column
\f$k\f$ in parameter matrix if pivoting is done using the
\f$(i',j')\f$ row and column pair.
The test is true if the computed \f$-c\f$ column is lexicographically
bigger than the \f$-c'\f$ column. Due to the column ordering in the
parameter matrix of the tableau, leftmost search will enforce solution
increase with respect to the following priority order:
- the constant term
- the coefficients for the original parameters
- the coefficients for the oldest artificial parameters.
\return
\c true if pivot row and column pair \f$(i,j)\f$ is more
suitable for pivoting than the \f$(i',j')\f$ pair
\param mapping
The PIP_Solution_Node::mapping vector for the tableau.
\param basis
The PIP_Solution_Node::basis vector for the tableau.
\param row_0
The row number for the first pivot row and column pair to be compared.
\param col_0
The column number for the first pivot row and column pair to be
compared.
\param row_1
The row number for the second pivot row and column pair to be compared.
\param col_1
The column number for the second pivot row and column pair to be
compared.
*/
bool is_better_pivot(const std::vector<dimension_type>& mapping,
const std::vector<bool>& basis,
const dimension_type row_0,
const dimension_type col_0,
const dimension_type row_1,
const dimension_type col_1) const;
//! Returns the value of the denominator.
Coefficient_traits::const_reference denominator() const;
//! Dumps to \p os an ASCII representation of \p *this.
void ascii_dump(std::ostream& os) const;
/*! \brief
Loads from \p is an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns \c true if successful, \c false otherwise.
*/
bool ascii_load(std::istream& is);
//! Returns the size in bytes of the memory managed by \p *this.
/*!
\note
No need for a \c total_memory_in_bytes() method, since
class Tableau is a private inner class of PIP_Solution_Node.
*/
memory_size_type external_memory_in_bytes() const;
//! Returns \c true if and only if \p *this is well formed.
bool OK() const;
}; // struct Tableau
//! The parametric simplex tableau.
Tableau tableau;
/*! \brief
A boolean vector for identifying the basic variables.
Variable identifiers are numbered from 0 to <CODE>n+m-1</CODE>, where \p n
is the number of columns in the simplex tableau corresponding to variables,
and \p m is the number of rows.
Indices from 0 to <CODE>n-1</CODE> correspond to the original variables.
Indices from \p n to <CODE>n+m-1</CODE> correspond to the slack variables
associated to the internal constraints, which do not strictly correspond
to original constraints, since these may have been transformed to fit the
standard form of the dual simplex.
The value for <CODE>basis[i]</CODE> is:
- \b true if variable \p i is basic,
- \b false if variable \p i is nonbasic.
*/
std::vector<bool> basis;
/*! \brief
A mapping between the tableau rows/columns and the original variables.
The value of <CODE>mapping[i]</CODE> depends of the value of <CODE>basis[i]</CODE>.
- If <CODE>basis[i]</CODE> is \b true, <CODE>mapping[i]</CODE> encodes the column
index of variable \p i in the \p s matrix of the tableau.
- If <CODE>basis[i]</CODE> is \b false, <CODE>mapping[i]</CODE> encodes the row
index of variable \p i in the tableau.
*/
std::vector<dimension_type> mapping;
/*! \brief
The variable identifiers associated to the rows of the simplex tableau.
*/
std::vector<dimension_type> var_row;
/*! \brief
The variable identifiers associated to the columns of the simplex tableau.
*/
std::vector<dimension_type> var_column;
/*! \brief
The variable number of the special inequality used for modeling
equality constraints.
The subset of equality constraints in a specific problem can be expressed
as: \f$f_i(x,p) = 0 ; 1 \leq i \leq n\f$. As the dual simplex standard form
requires constraints to be inequalities, the following constraints can be
modeled as follows:
- \f$f_i(x,p) \geq 0 ; 1 \leq i \leq n\f$
- \f$\sum\limits_{i=1}^n f_i(x,p) \leq 0\f$
The \p special_equality_row value stores the variable number of the
specific constraint which is used to model the latter sum of
constraints. If no such constraint exists, the value is set to \p 0.
*/
dimension_type special_equality_row;
/*! \brief
The column index in the parametric part of the simplex tableau
corresponding to the big parameter; \c not_a_dimension() if not set.
*/
dimension_type big_dimension;
//! The possible values for the sign of a parametric linear expression.
enum Row_Sign {
//! Not computed yet (default).
UNKNOWN,
//! All row coefficients are zero.
ZERO,
//! All nonzero row coefficients are positive.
POSITIVE,
//! All nonzero row coefficients are negative.
NEGATIVE,
//! The row contains both positive and negative coefficients.
MIXED
};
//! A cache for computed sign values of constraint parametric RHS.
std::vector<Row_Sign> sign;
//! Parametric values for the solution.
std::vector<Linear_Expression> solution;
//! An indicator for solution validity.
bool solution_valid;
//! Returns the sign of row \p x.
static Row_Sign row_sign(const Row& x,
dimension_type big_dimension);
protected:
//! Copy constructor.
PIP_Solution_Node(const PIP_Solution_Node& y);
//! A tag type to select the alternative copy constructor.
struct No_Constraints {};
//! Alternative copy constructor.
/*!
This constructor differs from the default copy constructor in that
it will not copy the constraint system, nor the artificial parameters.
*/
PIP_Solution_Node(const PIP_Solution_Node& y, No_Constraints);
// PIP_Problem::ascii load() method needs access set_owner().
friend bool PIP_Problem::ascii_load(std::istream& s);
//! Sets the pointer to the PIP_Problem owning object.
virtual void set_owner(const PIP_Problem* owner);
/*! \brief
Returns \c true if and only if all the nodes in the subtree
rooted in \p *this is owned by \p *pip.
*/
virtual bool check_ownership(const PIP_Problem* owner) const;
//! Implements pure virtual method PIP_Tree_Node::update_tableau.
virtual void update_tableau(const PIP_Problem& pip,
dimension_type external_space_dim,
dimension_type first_pending_constraint,
const Constraint_Sequence& input_cs,
const Variables_Set& parameters);
/*! \brief
Update the solution values.
\param pip_dim_is_param
A vector of Boolean flags telling which PIP problem dimensions are
problem parameters. The size of the vector is equal to the PIP
problem internal space dimension (i.e., no artificial parameters).
*/
void update_solution(const std::vector<bool>& pip_dim_is_param) const;
//! Helper method.
void update_solution() const;
//! Implements pure virtual method PIP_Tree_Node::solve.
virtual PIP_Tree_Node* solve(const PIP_Problem& pip,
bool check_feasible_context,
const Matrix<Row>& context,
const Variables_Set& params,
dimension_type space_dim,
int indent_level);
/*! \brief
Generate a Gomory cut using non-integer tableau row \p index.
\param index
Row index in simplex tableau from which the cut is generated.
\param parameters
A std::set of the current parameter dimensions (including artificials);
to be updated if a new artificial parameter is to be created.
\param context
A set of linear inequalities on the parameters, in matrix form; to be
updated if a new artificial parameter is to be created.
\param space_dimension
The current space dimension, including variables and all parameters; to
be updated if an extra parameter is to be created.
\param indent_level
The indentation level (for debugging output only).
*/
void generate_cut(dimension_type index, Variables_Set& parameters,
Matrix<Row>& context, dimension_type& space_dimension,
int indent_level);
//! Prints on \p s the tree rooted in \p *this.
virtual void print_tree(std::ostream& s, int indent,
const std::vector<bool>& pip_dim_is_param,
dimension_type first_art_dim) const;
}; // class PIP_Solution_Node
//! A tree node representing a decision in the space of solutions.
class PIP_Decision_Node : public PIP_Tree_Node {
public:
//! Returns a pointer to a dynamically-allocated copy of \p *this.
virtual PIP_Tree_Node* clone() const;
//! Destructor.
virtual ~PIP_Decision_Node();
//! Returns \c true if and only if \p *this is well formed.
virtual bool OK() const;
//! Returns \p this.
virtual const PIP_Decision_Node* as_decision() const;
//! Returns 0, since \p this is not a solution node.
virtual const PIP_Solution_Node* as_solution() const;
//! Returns a const pointer to the \p b (true or false) branch of \p *this.
const PIP_Tree_Node* child_node(bool b) const;
//! Returns a pointer to the \p b (true or false) branch of \p *this.
PIP_Tree_Node* child_node(bool b);
//! Dumps to \p s an ASCII representation of \p *this.
void ascii_dump(std::ostream& s) const;
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Returns the total size in bytes of the memory occupied by \p *this.
virtual memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
virtual memory_size_type external_memory_in_bytes() const;
private:
// PIP_Solution_Node is allowed to use the constructor and methods.
friend class PIP_Solution_Node;
// PIP_Problem ascii load method needs access to private constructors.
friend bool PIP_Problem::ascii_load(std::istream& s);
//! Pointer to the "false" child of \p *this.
PIP_Tree_Node* false_child;
//! Pointer to the "true" child of \p *this.
PIP_Tree_Node* true_child;
/*! \brief
Builds a decision node having \p fcp and \p tcp as child.
The decision node will encode the structure
"if \c cs then \p tcp else \p fcp",
where the system of constraints \c cs is initially empty.
\param owner
Pointer to the owning PIP_Problem object; it may be null if and
only if both children are null.
\param fcp
Pointer to "false" child; it may be null.
\param tcp
Pointer to "true" child; it may be null.
\note
If any of \p fcp or \p tcp is not null, then \p owner is required
to be not null and equal to the owner of its non-null children;
otherwise the behavior is undefined.
*/
explicit PIP_Decision_Node(const PIP_Problem* owner,
PIP_Tree_Node* fcp,
PIP_Tree_Node* tcp);
//! Sets the pointer to the PIP_Problem owning object.
virtual void set_owner(const PIP_Problem* owner);
/*! \brief
Returns \c true if and only if all the nodes in the subtree
rooted in \p *this is owned by \p *pip.
*/
virtual bool check_ownership(const PIP_Problem* owner) const;
protected:
//! Copy constructor.
PIP_Decision_Node(const PIP_Decision_Node& y);
//! Implements pure virtual method PIP_Tree_Node::update_tableau.
virtual void update_tableau(const PIP_Problem& pip,
dimension_type external_space_dim,
dimension_type first_pending_constraint,
const Constraint_Sequence& input_cs,
const Variables_Set& parameters);
//! Implements pure virtual method PIP_Tree_Node::solve.
virtual PIP_Tree_Node* solve(const PIP_Problem& pip,
bool check_feasible_context,
const Matrix<Row>& context,
const Variables_Set& params,
dimension_type space_dim,
int indent_level);
//! Prints on \p s the tree rooted in \p *this.
virtual void print_tree(std::ostream& s, int indent,
const std::vector<bool>& pip_dim_is_param,
dimension_type first_art_dim) const;
}; // class PIP_Decision_Node
namespace IO_Operators {
//! Output operator: prints the solution tree rooted in \p x.
/*! \relates Parma_Polyhedra_Library::PIP_Tree_Node */
std::ostream& operator<<(std::ostream& os, const PIP_Tree_Node& x);
//! Output operator.
/*! \relates Parma_Polyhedra_Library::PIP_Tree_Node::Artificial_Parameter */
std::ostream& operator<<(std::ostream& os,
const PIP_Tree_Node::Artificial_Parameter& x);
} // namespace IO_Operators
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/PIP_Tree_inlines.hh line 1. */
/* PIP_Tree related class implementation: inline functions.
*/
namespace Parma_Polyhedra_Library {
inline
PIP_Solution_Node::Tableau::Tableau()
: s(), t(), denom(1) {
PPL_ASSERT(OK());
}
inline
PIP_Solution_Node::Tableau::Tableau(const Tableau& y)
: s(y.s), t(y.t), denom(y.denom) {
PPL_ASSERT(OK());
}
inline
PIP_Solution_Node::Tableau::~Tableau() {
}
inline bool
PIP_Solution_Node::Tableau::is_integer() const {
return denom == 1;
}
inline Coefficient_traits::const_reference
PIP_Solution_Node::Tableau::denominator() const {
return denom;
}
inline
PIP_Tree_Node::~PIP_Tree_Node() {
}
inline void
PIP_Tree_Node::set_parent(const PIP_Decision_Node* p) {
parent_ = p;
}
inline const PIP_Decision_Node*
PIP_Tree_Node::parent() const {
return parent_;
}
inline const PIP_Problem*
PIP_Tree_Node::get_owner() const {
return owner_;
}
inline const Constraint_System&
PIP_Tree_Node::constraints() const {
return constraints_;
}
inline PIP_Tree_Node::Artificial_Parameter_Sequence::const_iterator
PIP_Tree_Node::art_parameter_begin() const {
return artificial_parameters.begin();
}
inline PIP_Tree_Node::Artificial_Parameter_Sequence::const_iterator
PIP_Tree_Node::art_parameter_end() const {
return artificial_parameters.end();
}
inline dimension_type
PIP_Tree_Node::art_parameter_count() const {
return artificial_parameters.size();
}
inline
const PIP_Tree_Node*
PIP_Decision_Node::child_node(bool b) const {
return b ? true_child : false_child;
}
inline
PIP_Tree_Node*
PIP_Decision_Node::child_node(bool b) {
return b ? true_child : false_child;
}
inline
PIP_Tree_Node::Artificial_Parameter::Artificial_Parameter()
: Linear_Expression(), denom(1) {
PPL_ASSERT(OK());
}
inline
PIP_Tree_Node::Artificial_Parameter
::Artificial_Parameter(const Artificial_Parameter& y)
: Linear_Expression(y), denom(y.denom) {
PPL_ASSERT(OK());
}
inline Coefficient_traits::const_reference
PIP_Tree_Node::Artificial_Parameter::denominator() const {
return denom;
}
inline void
PIP_Tree_Node::Artificial_Parameter::m_swap(Artificial_Parameter& y) {
Linear_Expression::m_swap(y);
using std::swap;
swap(denom, y.denom);
}
/*! \relates PIP_Tree_Node::Artificial_Parameter */
inline void
swap(PIP_Tree_Node::Artificial_Parameter& x,
PIP_Tree_Node::Artificial_Parameter& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/PIP_Tree_defs.hh line 835. */
/* Automatically generated from PPL source file ../src/BHRZ03_Certificate_defs.hh line 1. */
/* BHRZ03_Certificate class declaration.
*/
/* Automatically generated from PPL source file ../src/BHRZ03_Certificate_defs.hh line 31. */
#include <vector>
//! The convergence certificate for the BHRZ03 widening operator.
/*! \ingroup PPL_CXX_interface
Convergence certificates are used to instantiate the BHZ03 framework
so as to define widening operators for the finite powerset domain.
\note
Each convergence certificate has to be used together with a
compatible widening operator. In particular, BHRZ03_Certificate
can certify the convergence of both the BHRZ03 and the H79 widenings.
*/
class Parma_Polyhedra_Library::BHRZ03_Certificate {
public:
//! Default constructor.
BHRZ03_Certificate();
//! Constructor: computes the certificate for \p ph.
BHRZ03_Certificate(const Polyhedron& ph);
//! Copy constructor.
BHRZ03_Certificate(const BHRZ03_Certificate& y);
//! Destructor.
~BHRZ03_Certificate();
//! The comparison function for certificates.
/*!
\return
\f$-1\f$, \f$0\f$ or \f$1\f$ depending on whether \p *this
is smaller than, equal to, or greater than \p y, respectively.
Compares \p *this with \p y, using a total ordering which is a
refinement of the limited growth ordering relation for the
BHRZ03 widening.
*/
int compare(const BHRZ03_Certificate& y) const;
//! Compares \p *this with the certificate for polyhedron \p ph.
int compare(const Polyhedron& ph) const;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Returns <CODE>true</CODE> if and only if the certificate for
polyhedron \p ph is strictly smaller than \p *this.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool is_stabilizing(const Polyhedron& ph) const;
//! A total ordering on BHRZ03 certificates.
/*! \ingroup PPL_CXX_interface
This binary predicate defines a total ordering on BHRZ03 certificates
which is used when storing information about sets of polyhedra.
*/
struct Compare {
//! Returns <CODE>true</CODE> if and only if \p x comes before \p y.
bool operator()(const BHRZ03_Certificate& x,
const BHRZ03_Certificate& y) const;
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Check if gathered information is meaningful.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool OK() const;
private:
//! Affine dimension of the polyhedron.
dimension_type affine_dim;
//! Dimension of the lineality space of the polyhedron.
dimension_type lin_space_dim;
//! Cardinality of a non-redundant constraint system for the polyhedron.
dimension_type num_constraints;
/*! \brief
Number of non-redundant points in a generator system
for the polyhedron.
*/
dimension_type num_points;
/*! \brief
A vector containing, for each index `0 <= i < space_dim',
the number of non-redundant rays in a generator system of the
polyhedron having exactly `i' null coordinates.
*/
std::vector<dimension_type> num_rays_null_coord;
};
/* Automatically generated from PPL source file ../src/BHRZ03_Certificate_inlines.hh line 1. */
/* BHRZ03_Certificate class implementation: inline functions.
*/
namespace Parma_Polyhedra_Library {
inline
BHRZ03_Certificate::BHRZ03_Certificate()
: affine_dim(0), lin_space_dim(0), num_constraints(0), num_points(1),
num_rays_null_coord() {
// This is the certificate for a zero-dim universe polyhedron.
PPL_ASSERT(OK());
}
inline
BHRZ03_Certificate::BHRZ03_Certificate(const BHRZ03_Certificate& y)
: affine_dim(y.affine_dim), lin_space_dim(y.lin_space_dim),
num_constraints(y.num_constraints), num_points(y.num_points),
num_rays_null_coord(y.num_rays_null_coord) {
}
inline
BHRZ03_Certificate::~BHRZ03_Certificate() {
}
inline bool
BHRZ03_Certificate::is_stabilizing(const Polyhedron& ph) const {
return compare(ph) == 1;
}
inline bool
BHRZ03_Certificate::Compare::operator()(const BHRZ03_Certificate& x,
const BHRZ03_Certificate& y) const {
// For an efficient evaluation of the multiset ordering based
// on this LGO relation, we want larger elements to come first.
return x.compare(y) == 1;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/BHRZ03_Certificate_defs.hh line 117. */
/* Automatically generated from PPL source file ../src/H79_Certificate_defs.hh line 1. */
/* H79_Certificate class declaration.
*/
/* Automatically generated from PPL source file ../src/H79_Certificate_defs.hh line 31. */
#include <vector>
//! A convergence certificate for the H79 widening operator.
/*! \ingroup PPL_CXX_interface
Convergence certificates are used to instantiate the BHZ03 framework
so as to define widening operators for the finite powerset domain.
\note
The convergence of the H79 widening can also be certified by
BHRZ03_Certificate.
*/
class Parma_Polyhedra_Library::H79_Certificate {
public:
//! Default constructor.
H79_Certificate();
//! Constructor: computes the certificate for \p ph.
template <typename PH>
H79_Certificate(const PH& ph);
//! Constructor: computes the certificate for \p ph.
H79_Certificate(const Polyhedron& ph);
//! Copy constructor.
H79_Certificate(const H79_Certificate& y);
//! Destructor.
~H79_Certificate();
//! The comparison function for certificates.
/*!
\return
\f$-1\f$, \f$0\f$ or \f$1\f$ depending on whether \p *this
is smaller than, equal to, or greater than \p y, respectively.
Compares \p *this with \p y, using a total ordering which is a
refinement of the limited growth ordering relation for the
H79 widening.
*/
int compare(const H79_Certificate& y) const;
//! Compares \p *this with the certificate for polyhedron \p ph.
template <typename PH>
int compare(const PH& ph) const;
//! Compares \p *this with the certificate for polyhedron \p ph.
int compare(const Polyhedron& ph) const;
//! A total ordering on H79 certificates.
/*! \ingroup PPL_CXX_interface
This binary predicate defines a total ordering on H79 certificates
which is used when storing information about sets of polyhedra.
*/
struct Compare {
//! Returns <CODE>true</CODE> if and only if \p x comes before \p y.
bool operator()(const H79_Certificate& x,
const H79_Certificate& y) const;
};
private:
//! Affine dimension of the polyhedron.
dimension_type affine_dim;
//! Cardinality of a non-redundant constraint system for the polyhedron.
dimension_type num_constraints;
};
/* Automatically generated from PPL source file ../src/H79_Certificate_inlines.hh line 1. */
/* H79_Certificate class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/H79_Certificate_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
inline
H79_Certificate::H79_Certificate()
: affine_dim(0), num_constraints(0) {
// This is the certificate for a zero-dim universe polyhedron.
}
inline
H79_Certificate::H79_Certificate(const H79_Certificate& y)
: affine_dim(y.affine_dim), num_constraints(y.num_constraints) {
}
inline
H79_Certificate::~H79_Certificate() {
}
inline bool
H79_Certificate::Compare::operator()(const H79_Certificate& x,
const H79_Certificate& y) const {
// For an efficient evaluation of the multiset ordering based
// on this LGO relation, we want larger elements to come first.
return x.compare(y) == 1;
}
template <typename PH>
inline
H79_Certificate::H79_Certificate(const PH& ph)
: affine_dim(0), num_constraints(0) {
H79_Certificate cert(Polyhedron(NECESSARILY_CLOSED, ph.constraints()));
affine_dim = cert.affine_dim;
num_constraints = cert.num_constraints;
}
template <typename PH>
inline int
H79_Certificate::compare(const PH& ph) const {
return this->compare(Polyhedron(NECESSARILY_CLOSED, ph.constraints()));
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/H79_Certificate_defs.hh line 97. */
/* Automatically generated from PPL source file ../src/Grid_Certificate_defs.hh line 1. */
/* Grid_Certificate class declaration.
*/
/* Automatically generated from PPL source file ../src/Grid_Certificate_defs.hh line 28. */
/* Automatically generated from PPL source file ../src/Grid_Certificate_defs.hh line 32. */
#include <vector>
//! The convergence certificate for the Grid widening operator.
/*! \ingroup PPL_CXX_interface
Convergence certificates are used to instantiate the BHZ03 framework
so as to define widening operators for the finite powerset domain.
\note
Each convergence certificate has to be used together with a
compatible widening operator. In particular, Grid_Certificate can
certify the Grid widening.
*/
class Parma_Polyhedra_Library::Grid_Certificate {
public:
//! Default constructor.
Grid_Certificate();
//! Constructor: computes the certificate for \p gr.
Grid_Certificate(const Grid& gr);
//! Copy constructor.
Grid_Certificate(const Grid_Certificate& y);
//! Destructor.
~Grid_Certificate();
//! The comparison function for certificates.
/*!
\return
\f$-1\f$, \f$0\f$ or \f$1\f$ depending on whether \p *this
is smaller than, equal to, or greater than \p y, respectively.
*/
int compare(const Grid_Certificate& y) const;
//! Compares \p *this with the certificate for grid \p gr.
int compare(const Grid& gr) const;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Returns <CODE>true</CODE> if and only if the certificate for grid
\p gr is strictly smaller than \p *this.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool is_stabilizing(const Grid& gr) const;
//! A total ordering on Grid certificates.
/*!
This binary predicate defines a total ordering on Grid certificates
which is used when storing information about sets of grids.
*/
struct Compare {
//! Returns <CODE>true</CODE> if and only if \p x comes before \p y.
bool operator()(const Grid_Certificate& x,
const Grid_Certificate& y) const;
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Check if gathered information is meaningful.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool OK() const;
private:
//! Number of a equalities in a minimized congruence system for the
//! grid.
dimension_type num_equalities;
//! Number of a proper congruences in a minimized congruence system
//! for the grid.
dimension_type num_proper_congruences;
};
/* Automatically generated from PPL source file ../src/Grid_Certificate_inlines.hh line 1. */
/* Grid_Certificate class implementation: inline functions.
*/
namespace Parma_Polyhedra_Library {
inline
Grid_Certificate::Grid_Certificate()
: num_equalities(0), num_proper_congruences(0) {
// This is the certificate for a zero-dim universe grid.
PPL_ASSERT(OK());
}
inline
Grid_Certificate::Grid_Certificate(const Grid_Certificate& y)
: num_equalities(y.num_equalities),
num_proper_congruences(y.num_proper_congruences) {
}
inline
Grid_Certificate::~Grid_Certificate() {
}
inline bool
Grid_Certificate::is_stabilizing(const Grid& gr) const {
return compare(gr) == 1;
}
inline bool
Grid_Certificate::Compare::operator()(const Grid_Certificate& x,
const Grid_Certificate& y) const {
// For an efficient evaluation of the multiset ordering based
// on this LGO relation, we want larger elements to come first.
return x.compare(y) == 1;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Grid_Certificate_defs.hh line 103. */
/* Automatically generated from PPL source file ../src/Partial_Function_defs.hh line 1. */
/* Partial_Function class declaration.
*/
/* Automatically generated from PPL source file ../src/Partial_Function_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Partial_Function;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Partial_Function_defs.hh line 29. */
#include <vector>
#ifndef NDEBUG
#include <set>
#endif
#include <iosfwd>
namespace Parma_Polyhedra_Library {
class Partial_Function {
public:
/*! \brief
Default constructor: builds a function with empty codomain
(i.e., always undefined).
*/
Partial_Function();
/*! \brief
Returns \c true if and only if the represented partial function
has an empty codomain (i.e., it is always undefined).
*/
bool has_empty_codomain() const;
/*! \brief
If the codomain is \e not empty, returns the maximum value in it.
\exception std::runtime_error
Thrown if called when \p *this has an empty codomain.
*/
dimension_type max_in_codomain() const;
/*! \brief
If \p *this maps \p i to a value \c k, assigns \c k to \p j and
returns \c true; otherwise, \p j is unchanged and \c false is returned.
*/
bool maps(dimension_type i, dimension_type& j) const;
void print(std::ostream& s) const;
/*! \brief
Modifies \p *this so that \p i is mapped to \p j.
\exception std::runtime_error
Thrown if \p *this is already mapping \p j.
*/
void insert(dimension_type i, dimension_type j);
private:
std::vector<dimension_type> vec;
dimension_type max;
#ifndef NDEBUG
std::set<dimension_type> codomain;
#endif
}; // class Partial_Function
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Partial_Function_inlines.hh line 1. */
/* Partial_Function class implementation: inline functions.
*/
#include <stdexcept>
/* Automatically generated from PPL source file ../src/Partial_Function_inlines.hh line 29. */
namespace Parma_Polyhedra_Library {
inline
Partial_Function::Partial_Function()
: max(0) {
}
inline bool
Partial_Function::has_empty_codomain() const {
PPL_ASSERT(vec.empty() == codomain.empty());
return vec.empty();
}
inline dimension_type
Partial_Function::max_in_codomain() const {
if (has_empty_codomain())
throw std::runtime_error("Partial_Function::max_in_codomain() called"
" when has_empty_codomain()");
PPL_ASSERT(codomain.begin() != codomain.end()
&& max == *codomain.rbegin());
return max;
}
inline void
Partial_Function::insert(dimension_type i, dimension_type j) {
#ifndef NDEBUG
// The partial function has to be an injective map.
std::pair<std::set<dimension_type>::iterator, bool> s = codomain.insert(j);
PPL_ASSERT(s.second);
#endif // #ifndef NDEBUG
// Expand `vec' if needed.
const dimension_type sz = vec.size();
if (i >= sz)
vec.insert(vec.end(), i - sz + 1, not_a_dimension());
// We cannot remap the same index to another one.
PPL_ASSERT(i < vec.size() && vec[i] == not_a_dimension());
vec[i] = j;
// Maybe update `max'.
if (j > max)
max = j;
PPL_ASSERT(codomain.begin() != codomain.end()
&& max == *codomain.rbegin());
}
inline bool
Partial_Function::maps(dimension_type i, dimension_type& j) const {
if (i >= vec.size())
return false;
const dimension_type vec_i = vec[i];
if (vec_i == not_a_dimension())
return false;
j = vec_i;
return true;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Partial_Function_defs.hh line 86. */
/* Automatically generated from PPL source file ../src/Widening_Function_defs.hh line 1. */
/* Widening_Function class declaration.
*/
/* Automatically generated from PPL source file ../src/Widening_Function_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename PSET>
class Widening_Function;
template <typename PSET, typename CSYS>
class Limited_Widening_Function;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Widening_Function_defs.hh line 29. */
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Wraps a widening method into a function object.
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename PSET>
class Parma_Polyhedra_Library::Widening_Function {
public:
//! The (parametric) type of a widening method.
typedef void (PSET::* Widening_Method)(const PSET&, unsigned*);
//! Explicit unary constructor.
explicit
Widening_Function(Widening_Method wm);
//! Function-application operator.
/*!
Computes <CODE>(x.*wm)(y, tp)</CODE>, where \p wm is the widening
method stored at construction time.
*/
void operator()(PSET& x, const PSET& y, unsigned* tp = 0) const;
private:
//! The widening method.
Widening_Method w_method;
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Wraps a limited widening method into a function object.
/*! \ingroup PPL_CXX_interface */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename PSET, typename CSYS>
class Parma_Polyhedra_Library::Limited_Widening_Function {
public:
//! The (parametric) type of a limited widening method.
typedef void (PSET::* Limited_Widening_Method)(const PSET&,
const CSYS&,
unsigned*);
//! Constructor.
/*!
\param lwm
The limited widening method.
\param cs
The constraint system limiting the widening.
*/
Limited_Widening_Function(Limited_Widening_Method lwm,
const CSYS& cs);
//! Function-application operator.
/*!
Computes <CODE>(x.*lwm)(y, cs, tp)</CODE>, where \p lwm and \p cs
are the limited widening method and the constraint system stored
at construction time.
*/
void operator()(PSET& x, const PSET& y, unsigned* tp = 0) const;
private:
//! The limited widening method.
Limited_Widening_Method lw_method;
//! A constant reference to the constraint system limiting the widening.
const CSYS& limiting_cs;
};
namespace Parma_Polyhedra_Library {
//! Wraps a widening method into a function object.
/*!
\relates Pointset_Powerset
\param wm
The widening method.
*/
template <typename PSET>
Widening_Function<PSET>
widen_fun_ref(void (PSET::* wm)(const PSET&, unsigned*));
//! Wraps a limited widening method into a function object.
/*!
\relates Pointset_Powerset
\param lwm
The limited widening method.
\param cs
The constraint system limiting the widening.
*/
template <typename PSET, typename CSYS>
Limited_Widening_Function<PSET, CSYS>
widen_fun_ref(void (PSET::* lwm)(const PSET&, const CSYS&, unsigned*),
const CSYS& cs);
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Widening_Function_inlines.hh line 1. */
/* Widening_Function class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Widening_Function_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
template <typename PSET>
Widening_Function<PSET>::Widening_Function(Widening_Method wm)
: w_method(wm) {
}
template <typename PSET>
inline void
Widening_Function<PSET>::
operator()(PSET& x, const PSET& y, unsigned* tp) const {
(x.*w_method)(y, tp);
}
template <typename PSET, typename CSYS>
Limited_Widening_Function<PSET, CSYS>::
Limited_Widening_Function(Limited_Widening_Method lwm,
const CSYS& cs)
: lw_method(lwm), limiting_cs(cs) {
}
template <typename PSET, typename CSYS>
inline void
Limited_Widening_Function<PSET, CSYS>::
operator()(PSET& x, const PSET& y, unsigned* tp) const {
(x.*lw_method)(y, limiting_cs, tp);
}
/*! \relates Pointset_Powerset */
template <typename PSET>
inline Widening_Function<PSET>
widen_fun_ref(void (PSET::* wm)(const PSET&, unsigned*)) {
return Widening_Function<PSET>(wm);
}
/*! \relates Pointset_Powerset */
template <typename PSET, typename CSYS>
inline Limited_Widening_Function<PSET, CSYS>
widen_fun_ref(void (PSET::* lwm)(const PSET&, const CSYS&, unsigned*),
const CSYS& cs) {
return Limited_Widening_Function<PSET, CSYS>(lwm, cs);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Widening_Function_defs.hh line 126. */
/* Automatically generated from PPL source file ../src/max_space_dimension.hh line 1. */
/* Definition of functions yielding maximal space dimensions.
*/
/* Automatically generated from PPL source file ../src/NNC_Polyhedron_defs.hh line 1. */
/* NNC_Polyhedron class declaration.
*/
/* Automatically generated from PPL source file ../src/NNC_Polyhedron_defs.hh line 31. */
//! A not necessarily closed convex polyhedron.
/*! \ingroup PPL_CXX_interface
An object of the class NNC_Polyhedron represents a
<EM>not necessarily closed</EM> (NNC) convex polyhedron
in the vector space \f$\Rset^n\f$.
\note
Since NNC polyhedra are a generalization of closed polyhedra,
any object of the class C_Polyhedron can be (explicitly) converted
into an object of the class NNC_Polyhedron.
The reason for defining two different classes is that objects of
the class C_Polyhedron are characterized by a more efficient
implementation, requiring less time and memory resources.
*/
class Parma_Polyhedra_Library::NNC_Polyhedron : public Polyhedron {
public:
//! Builds either the universe or the empty NNC polyhedron.
/*!
\param num_dimensions
The number of dimensions of the vector space enclosing the NNC polyhedron;
\param kind
Specifies whether a universe or an empty NNC polyhedron should be built.
\exception std::length_error
Thrown if \p num_dimensions exceeds the maximum allowed space dimension.
Both parameters are optional:
by default, a 0-dimension space universe NNC polyhedron is built.
*/
explicit NNC_Polyhedron(dimension_type num_dimensions = 0,
Degenerate_Element kind = UNIVERSE);
//! Builds an NNC polyhedron from a system of constraints.
/*!
The polyhedron inherits the space dimension of the constraint system.
\param cs
The system of constraints defining the polyhedron.
*/
explicit NNC_Polyhedron(const Constraint_System& cs);
//! Builds an NNC polyhedron recycling a system of constraints.
/*!
The polyhedron inherits the space dimension of the constraint system.
\param cs
The system of constraints defining the polyhedron. It is not
declared <CODE>const</CODE> because its data-structures may be
recycled to build the polyhedron.
\param dummy
A dummy tag to syntactically differentiate this one
from the other constructors.
*/
NNC_Polyhedron(Constraint_System& cs, Recycle_Input dummy);
//! Builds an NNC polyhedron from a system of generators.
/*!
The polyhedron inherits the space dimension of the generator system.
\param gs
The system of generators defining the polyhedron.
\exception std::invalid_argument
Thrown if the system of generators is not empty but has no points.
*/
explicit NNC_Polyhedron(const Generator_System& gs);
//! Builds an NNC polyhedron recycling a system of generators.
/*!
The polyhedron inherits the space dimension of the generator system.
\param gs
The system of generators defining the polyhedron. It is not
declared <CODE>const</CODE> because its data-structures may be
recycled to build the polyhedron.
\param dummy
A dummy tag to syntactically differentiate this one
from the other constructors.
\exception std::invalid_argument
Thrown if the system of generators is not empty but has no points.
*/
NNC_Polyhedron(Generator_System& gs, Recycle_Input dummy);
//! Builds an NNC polyhedron from a system of congruences.
/*!
The polyhedron inherits the space dimension of the congruence system.
\param cgs
The system of congruences defining the polyhedron. It is not
declared <CODE>const</CODE> because its data-structures may be
recycled to build the polyhedron.
*/
explicit NNC_Polyhedron(const Congruence_System& cgs);
//! Builds an NNC polyhedron recycling a system of congruences.
/*!
The polyhedron inherits the space dimension of the congruence
system.
\param cgs
The system of congruences defining the polyhedron. It is not
declared <CODE>const</CODE> because its data-structures may be
recycled to build the polyhedron.
\param dummy
A dummy tag to syntactically differentiate this one
from the other constructors.
*/
NNC_Polyhedron(Congruence_System& cgs, Recycle_Input dummy);
//! Builds an NNC polyhedron from the C polyhedron \p y.
/*!
\param y
The C polyhedron to be used;
\param complexity
This argument is ignored.
*/
explicit NNC_Polyhedron(const C_Polyhedron& y,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds an NNC polyhedron out of a box.
/*!
The polyhedron inherits the space dimension of the box
and is the most precise that includes the box.
\param box
The box representing the polyhedron to be built;
\param complexity
This argument is ignored as the algorithm used has
polynomial complexity.
\exception std::length_error
Thrown if the space dimension of \p box exceeds the maximum allowed
space dimension.
*/
template <typename Interval>
explicit NNC_Polyhedron(const Box<Interval>& box,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds an NNC polyhedron out of a grid.
/*!
The polyhedron inherits the space dimension of the grid
and is the most precise that includes the grid.
\param grid
The grid used to build the polyhedron.
\param complexity
This argument is ignored as the algorithm used has
polynomial complexity.
*/
explicit NNC_Polyhedron(const Grid& grid,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a NNC polyhedron out of a BD shape.
/*!
The polyhedron inherits the space dimension of the BD shape
and is the most precise that includes the BD shape.
\param bd
The BD shape used to build the polyhedron.
\param complexity
This argument is ignored as the algorithm used has
polynomial complexity.
*/
template <typename U>
explicit NNC_Polyhedron(const BD_Shape<U>& bd,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a NNC polyhedron out of an octagonal shape.
/*!
The polyhedron inherits the space dimension of the octagonal shape
and is the most precise that includes the octagonal shape.
\param os
The octagonal shape used to build the polyhedron.
\param complexity
This argument is ignored as the algorithm used has
polynomial complexity.
*/
template <typename U>
explicit NNC_Polyhedron(const Octagonal_Shape<U>& os,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Ordinary copy constructor.
NNC_Polyhedron(const NNC_Polyhedron& y,
Complexity_Class complexity = ANY_COMPLEXITY);
/*! \brief
The assignment operator.
(\p *this and \p y can be dimension-incompatible.)
*/
NNC_Polyhedron& operator=(const NNC_Polyhedron& y);
//! Assigns to \p *this the C polyhedron \p y.
NNC_Polyhedron& operator=(const C_Polyhedron& y);
//! Destructor.
~NNC_Polyhedron();
/*! \brief
If the poly-hull of \p *this and \p y is exact it is assigned
to \p *this and <CODE>true</CODE> is returned,
otherwise <CODE>false</CODE> is returned.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
bool poly_hull_assign_if_exact(const NNC_Polyhedron& y);
//! Same as poly_hull_assign_if_exact(y).
bool upper_bound_assign_if_exact(const NNC_Polyhedron& y);
/*! \brief
Assigns to \p *this (the best approximation of) the result of
computing the
\ref Positive_Time_Elapse_Operator "positive time-elapse"
between \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void positive_time_elapse_assign(const Polyhedron& y);
};
/* Automatically generated from PPL source file ../src/NNC_Polyhedron_inlines.hh line 1. */
/* NNC_Polyhedron class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/NNC_Polyhedron_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
inline
NNC_Polyhedron::~NNC_Polyhedron() {
}
inline
NNC_Polyhedron::NNC_Polyhedron(dimension_type num_dimensions,
Degenerate_Element kind)
: Polyhedron(NOT_NECESSARILY_CLOSED,
check_space_dimension_overflow(num_dimensions,
NOT_NECESSARILY_CLOSED,
"NNC_Polyhedron(n, k)",
"n exceeds the maximum "
"allowed space dimension"),
kind) {
}
inline
NNC_Polyhedron::NNC_Polyhedron(const Constraint_System& cs)
: Polyhedron(NOT_NECESSARILY_CLOSED,
check_obj_space_dimension_overflow(cs, NOT_NECESSARILY_CLOSED,
"NNC_Polyhedron(cs)",
"the space dimension of cs "
"exceeds the maximum allowed "
"space dimension")) {
}
inline
NNC_Polyhedron::NNC_Polyhedron(Constraint_System& cs, Recycle_Input)
: Polyhedron(NOT_NECESSARILY_CLOSED,
check_obj_space_dimension_overflow(cs, NOT_NECESSARILY_CLOSED,
"NNC_Polyhedron(cs, recycle)",
"the space dimension of cs "
"exceeds the maximum allowed "
"space dimension"),
Recycle_Input()) {
}
inline
NNC_Polyhedron::NNC_Polyhedron(const Generator_System& gs)
: Polyhedron(NOT_NECESSARILY_CLOSED,
check_obj_space_dimension_overflow(gs, NOT_NECESSARILY_CLOSED,
"NNC_Polyhedron(gs)",
"the space dimension of gs "
"exceeds the maximum allowed "
"space dimension")) {
}
inline
NNC_Polyhedron::NNC_Polyhedron(Generator_System& gs, Recycle_Input)
: Polyhedron(NOT_NECESSARILY_CLOSED,
check_obj_space_dimension_overflow(gs, NOT_NECESSARILY_CLOSED,
"NNC_Polyhedron(gs, recycle)",
"the space dimension of gs "
"exceeds the maximum allowed "
"space dimension"),
Recycle_Input()) {
}
template <typename Interval>
inline
NNC_Polyhedron::NNC_Polyhedron(const Box<Interval>& box, Complexity_Class)
: Polyhedron(NOT_NECESSARILY_CLOSED,
check_obj_space_dimension_overflow(box, NOT_NECESSARILY_CLOSED,
"NNC_Polyhedron(box)",
"the space dimension of box "
"exceeds the maximum allowed "
"space dimension")) {
}
template <typename U>
inline
NNC_Polyhedron::NNC_Polyhedron(const BD_Shape<U>& bd, Complexity_Class)
: Polyhedron(NOT_NECESSARILY_CLOSED,
check_space_dimension_overflow(bd.space_dimension(),
NOT_NECESSARILY_CLOSED,
"NNC_Polyhedron(bd)",
"the space dimension of bd "
"exceeds the maximum allowed "
"space dimension"),
UNIVERSE) {
add_constraints(bd.constraints());
}
template <typename U>
inline
NNC_Polyhedron::NNC_Polyhedron(const Octagonal_Shape<U>& os, Complexity_Class)
: Polyhedron(NOT_NECESSARILY_CLOSED,
check_space_dimension_overflow(os.space_dimension(),
NOT_NECESSARILY_CLOSED,
"NNC_Polyhedron(os)",
"the space dimension of os "
"exceeds the maximum allowed "
"space dimension"),
UNIVERSE) {
add_constraints(os.constraints());
}
inline
NNC_Polyhedron::NNC_Polyhedron(const NNC_Polyhedron& y, Complexity_Class)
: Polyhedron(y) {
}
inline NNC_Polyhedron&
NNC_Polyhedron::operator=(const NNC_Polyhedron& y) {
Polyhedron::operator=(y);
return *this;
}
inline NNC_Polyhedron&
NNC_Polyhedron::operator=(const C_Polyhedron& y) {
NNC_Polyhedron nnc_y(y);
m_swap(nnc_y);
return *this;
}
inline bool
NNC_Polyhedron::upper_bound_assign_if_exact(const NNC_Polyhedron& y) {
return poly_hull_assign_if_exact(y);
}
inline void
NNC_Polyhedron::positive_time_elapse_assign(const Polyhedron& y) {
Polyhedron::positive_time_elapse_assign_impl(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/NNC_Polyhedron_defs.hh line 266. */
/* Automatically generated from PPL source file ../src/Rational_Box.hh line 1. */
/* Rational_Box class declaration and implementation.
*/
/* Automatically generated from PPL source file ../src/Rational_Box.hh line 29. */
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! A box with rational, possibly open boundaries.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
typedef Box<Rational_Interval> Rational_Box;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/max_space_dimension.hh line 34. */
#include <algorithm>
namespace Parma_Polyhedra_Library {
//! Returns the maximum space dimension this library can handle.
inline dimension_type
max_space_dimension() {
// Note: we assume that the powerset and the ask-and-tell construction
// do not limit the space dimension more than their parameters.
static bool computed = false;
static dimension_type d = not_a_dimension();
if (!computed) {
d = Variable::max_space_dimension();
d = std::min(d, C_Polyhedron::max_space_dimension());
d = std::min(d, NNC_Polyhedron::max_space_dimension());
d = std::min(d, Grid::max_space_dimension());
// FIXME: what about all other boxes?
d = std::min(d, Rational_Box::max_space_dimension());
d = std::min(d, BD_Shape<int8_t>::max_space_dimension());
d = std::min(d, BD_Shape<int16_t>::max_space_dimension());
d = std::min(d, BD_Shape<int32_t>::max_space_dimension());
d = std::min(d, BD_Shape<int64_t>::max_space_dimension());
d = std::min(d, BD_Shape<float>::max_space_dimension());
d = std::min(d, BD_Shape<double>::max_space_dimension());
d = std::min(d, BD_Shape<long double>::max_space_dimension());
d = std::min(d, BD_Shape<mpz_class>::max_space_dimension());
d = std::min(d, BD_Shape<mpq_class>::max_space_dimension());
d = std::min(d, Octagonal_Shape<int8_t>::max_space_dimension());
d = std::min(d, Octagonal_Shape<int16_t>::max_space_dimension());
d = std::min(d, Octagonal_Shape<int32_t>::max_space_dimension());
d = std::min(d, Octagonal_Shape<int64_t>::max_space_dimension());
d = std::min(d, Octagonal_Shape<float>::max_space_dimension());
d = std::min(d, Octagonal_Shape<double>::max_space_dimension());
d = std::min(d, Octagonal_Shape<long double>::max_space_dimension());
d = std::min(d, Octagonal_Shape<mpz_class>::max_space_dimension());
d = std::min(d, Octagonal_Shape<mpq_class>::max_space_dimension());
computed = true;
}
return d;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/algorithms.hh line 1. */
/* A collection of useful convex polyhedra algorithms: inline functions.
*/
/* Automatically generated from PPL source file ../src/Pointset_Powerset_defs.hh line 1. */
/* Pointset_Powerset class declaration.
*/
/* Automatically generated from PPL source file ../src/Pointset_Powerset_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename PSET>
class Pointset_Powerset;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Partially_Reduced_Product_defs.hh line 1. */
/* Partially_Reduced_Product class declaration.
*/
/* Automatically generated from PPL source file ../src/Partially_Reduced_Product_defs.hh line 49. */
namespace Parma_Polyhedra_Library {
namespace IO_Operators {
//! Output operator.
/*!
\relates Parma_Polyhedra_Library::Partially_Reduced_Product
Writes a textual representation of \p dp on \p s.
*/
template <typename D1, typename D2, typename R>
std::ostream&
operator<<(std::ostream& s, const Partially_Reduced_Product<D1, D2, R>& dp);
} // namespace IO_Operators
//! Swaps \p x with \p y.
/*! \relates Partially_Reduced_Product */
template <typename D1, typename D2, typename R>
void swap(Partially_Reduced_Product<D1, D2, R>& x,
Partially_Reduced_Product<D1, D2, R>& y);
/*! \brief
Returns <CODE>true</CODE> if and only if the components of \p x and \p y
are pairwise equal.
\relates Partially_Reduced_Product
Note that \p x and \p y may be dimension-incompatible: in
those cases, the value <CODE>false</CODE> is returned.
*/
template <typename D1, typename D2, typename R>
bool operator==(const Partially_Reduced_Product<D1, D2, R>& x,
const Partially_Reduced_Product<D1, D2, R>& y);
/*! \brief
Returns <CODE>true</CODE> if and only if the components of \p x and \p y
are not pairwise equal.
\relates Partially_Reduced_Product
Note that \p x and \p y may be dimension-incompatible: in
those cases, the value <CODE>true</CODE> is returned.
*/
template <typename D1, typename D2, typename R>
bool operator!=(const Partially_Reduced_Product<D1, D2, R>& x,
const Partially_Reduced_Product<D1, D2, R>& y);
} // namespace Parma_Polyhedra_Library
/*! \brief
This class provides the reduction method for the Smash_Product
domain.
\ingroup PPL_CXX_interface
The reduction classes are used to instantiate the Partially_Reduced_Product
domain. This class propagates emptiness between its components.
*/
template <typename D1, typename D2>
class Parma_Polyhedra_Library::Smash_Reduction {
public:
//! Default constructor.
Smash_Reduction();
/*! \brief
The smash reduction operator for propagating emptiness between the
domain elements \p d1 and \p d2.
If either of the the domain elements \p d1 or \p d2 is empty
then the other is also set empty.
\param d1
A pointset domain element;
\param d2
A pointset domain element;
*/
void product_reduce(D1& d1, D2& d2);
//! Destructor.
~Smash_Reduction();
};
/*! \brief
This class provides the reduction method for the Constraints_Product
domain.
\ingroup PPL_CXX_interface
The reduction classes are used to instantiate the Partially_Reduced_Product
domain. This class adds the constraints defining each of the component
domains to the other component.
*/
template <typename D1, typename D2>
class Parma_Polyhedra_Library::Constraints_Reduction {
public:
//! Default constructor.
Constraints_Reduction();
/*! \brief
The constraints reduction operator for sharing constraints between the
domains.
The minimized constraint system defining the domain element \p d1
is added to \p d2 and the minimized constraint system defining \p d2
is added to \p d1.
In each case, the donor domain must provide a constraint system
in minimal form; this must define a polyhedron in which the
donor element is contained.
The recipient domain selects a subset of these constraints
that it can add to the recipient element.
For example: if the domain \p D1 is the Grid domain and \p D2
the NNC Polyhedron domain, then only the equality constraints are copied
from \p d1 to \p d2 and from \p d2 to \p d1.
\param d1
A pointset domain element;
\param d2
A pointset domain element;
*/
void product_reduce(D1& d1, D2& d2);
//! Destructor.
~Constraints_Reduction();
};
/*! \brief
This class provides the reduction method for the Congruences_Product
domain.
\ingroup PPL_CXX_interface
The reduction classes are used to instantiate the Partially_Reduced_Product
domain.
This class uses the minimized congruences defining each of the components.
For each of the congruences, it checks if the other component
intersects none, one or more than one hyperplane defined by the congruence
and adds equalities or emptiness as appropriate; in more detail:
Letting the components be d1 and d2, then, for each congruence cg
representing d1:
- if more than one hyperplane defined by cg intersects
d2, then d1 and d2 are unchanged;
- if exactly one hyperplane intersects d2, then d1 and d2 are
refined with the corresponding equality ;
- otherwise, d1 and d2 are set to empty.
Unless d1 and d2 are already empty, the process is repeated where the
roles of d1 and d2 are reversed.
If d1 or d2 is empty, then the emptiness is propagated.
*/
template <typename D1, typename D2>
class Parma_Polyhedra_Library::Congruences_Reduction {
public:
//! Default constructor.
Congruences_Reduction();
/*! \brief
The congruences reduction operator for detect emptiness or any equalities
implied by each of the congruences defining one of the components
and the bounds of the other component. It is assumed that the
components are already constraints reduced.
The minimized congruence system defining the domain element \p d1
is used to check if \p d2 intersects none, one or more than one
of the hyperplanes defined by the congruences: if it intersects none,
then product is set empty; if it intersects one, then the equality
defining this hyperplane is added to both components; otherwise,
the product is unchanged.
In each case, the donor domain must provide a congruence system
in minimal form.
\param d1
A pointset domain element;
\param d2
A pointset domain element;
*/
void product_reduce(D1& d1, D2& d2);
//! Destructor.
~Congruences_Reduction();
};
/*! \brief
This class provides the reduction method for the Shape_Preserving_Product
domain.
\ingroup PPL_CXX_interface
The reduction classes are used to instantiate the Partially_Reduced_Product
domain.
This reduction method includes the congruences reduction.
This class uses the minimized constraints defining each of the components.
For each of the constraints, it checks the frequency and value for the same
linear expression in the other component. If the constraint does not satisfy
the implied congruence, the inhomogeneous term is adjusted so that it does.
Note that, unless the congruences reduction adds equalities, the
shapes of the domains are unaltered.
*/
template <typename D1, typename D2>
class Parma_Polyhedra_Library::Shape_Preserving_Reduction {
public:
//! Default constructor.
Shape_Preserving_Reduction();
/*! \brief
The congruences reduction operator for detect emptiness or any equalities
implied by each of the congruences defining one of the components
and the bounds of the other component. It is assumed that the
components are already constraints reduced.
The minimized congruence system defining the domain element \p d1
is used to check if \p d2 intersects none, one or more than one
of the hyperplanes defined by the congruences: if it intersects none,
then product is set empty; if it intersects one, then the equality
defining this hyperplane is added to both components; otherwise,
the product is unchanged.
In each case, the donor domain must provide a congruence system
in minimal form.
\param d1
A pointset domain element;
\param d2
A pointset domain element;
*/
void product_reduce(D1& d1, D2& d2);
//! Destructor.
~Shape_Preserving_Reduction();
};
/*! \brief
This class provides the reduction method for the Direct_Product domain.
\ingroup PPL_CXX_interface
The reduction classes are used to instantiate the Partially_Reduced_Product
domain template parameter \p R. This class does no reduction at all.
*/
template <typename D1, typename D2>
class Parma_Polyhedra_Library::No_Reduction {
public:
//! Default constructor.
No_Reduction();
/*! \brief
The null reduction operator.
The parameters \p d1 and \p d2 are ignored.
*/
void product_reduce(D1& d1, D2& d2);
//! Destructor.
~No_Reduction();
};
//! The partially reduced product of two abstractions.
/*! \ingroup PPL_CXX_interface
\warning
At present, the supported instantiations for the
two domain templates \p D1 and \p D2 are the simple pointset domains:
<CODE>C_Polyhedron</CODE>,
<CODE>NNC_Polyhedron</CODE>,
<CODE>Grid</CODE>,
<CODE>Octagonal_Shape\<T\></CODE>,
<CODE>BD_Shape\<T\></CODE>,
<CODE>Box\<T\></CODE>.
An object of the class <CODE>Partially_Reduced_Product\<D1, D2, R\></CODE>
represents the (partially reduced) product of two pointset domains \p D1
and \p D2 where the form of any reduction is defined by the
reduction class \p R.
Suppose \f$D_1\f$ and \f$D_2\f$ are two abstract domains
with concretization functions:
\f$\fund{\gamma_1}{D_1}{\Rset^n}\f$ and
\f$\fund{\gamma_2}{D_2}{\Rset^n}\f$, respectively.
The partially reduced product \f$D = D_1 \times D_2\f$,
for any reduction class \p R, has a concretization
\f$\fund{\gamma}{D}{\Rset^n}\f$
where, if \f$d = (d_1, d_2) \in D\f$
\f[
\gamma(d) = \gamma_1(d_1) \inters \gamma_2(d_2).
\f]
The operations are defined to be the result of applying the corresponding
operations on each of the components provided the product is already reduced
by the reduction method defined by \p R.
In particular, if \p R is the <CODE>No_Reduction\<D1, D2\></CODE> class,
then the class <CODE>Partially_Reduced_Product\<D1, D2, R\></CODE> domain
is the direct product as defined in \ref CC79 "[CC79]".
How the results on the components are interpreted and
combined depend on the specific test.
For example, the test for emptiness will first make sure
the product is reduced (using the reduction method provided by \p R
if it is not already known to be reduced) and then test if either component
is empty; thus, if \p R defines no reduction between its components and
\f$d = (G, P) \in (\Gset \times \Pset)\f$
is a direct product in one dimension where \f$G\f$ denotes the set of
numbers that are integral multiples of 3 while \f$P\f$ denotes the
set of numbers between 1 and 2, then an operation that tests for
emptiness should return false.
However, the test for the universe returns true if and only if the
test <CODE>is_universe()</CODE> on both components returns true.
\par
In all the examples it is assumed that the template \c R is the
<CODE>No_Reduction\<D1, D2\></CODE> class and that variables
\c x and \c y are defined (where they are used) as follows:
\code
Variable x(0);
Variable y(1);
\endcode
\par Example 1
The following code builds a direct product of a Grid and NNC Polyhedron,
corresponding to the positive even integer
pairs in \f$\Rset^2\f$, given as a system of congruences:
\code
Congruence_System cgs;
cgs.insert((x %= 0) / 2);
cgs.insert((y %= 0) / 2);
Partially_Reduced_Product<Grid, NNC_Polyhedron, No_Reduction<D1, D2> >
dp(cgs);
dp.add_constraint(x >= 0);
dp.add_constraint(y >= 0);
\endcode
\par Example 2
The following code builds the same product
in \f$\Rset^2\f$:
\code
Partially_Reduced_Product<Grid, NNC_Polyhedron, No_Reduction<D1, D2> > dp(2);
dp.add_constraint(x >= 0);
dp.add_constraint(y >= 0);
dp.add_congruence((x %= 0) / 2);
dp.add_congruence((y %= 0) / 2);
\endcode
\par Example 3
The following code will write "dp is empty":
\code
Partially_Reduced_Product<Grid, NNC_Polyhedron, No_Reduction<D1, D2> > dp(1);
dp.add_congruence((x %= 0) / 2);
dp.add_congruence((x %= 1) / 2);
if (dp.is_empty())
cout << "dp is empty." << endl;
else
cout << "dp is not empty." << endl;
\endcode
\par Example 4
The following code will write "dp is not empty":
\code
Partially_Reduced_Product<Grid, NNC_Polyhedron, No_Reduction<D1, D2> > dp(1);
dp.add_congruence((x %= 0) / 2);
dp.add_constraint(x >= 1);
dp.add_constraint(x <= 1);
if (dp.is_empty())
cout << "dp is empty." << endl;
else
cout << "dp is not empty." << endl;
\endcode
*/
template <typename D1, typename D2, typename R>
class Parma_Polyhedra_Library::Partially_Reduced_Product {
public:
/*! \brief
Returns the maximum space dimension this product
can handle.
*/
static dimension_type max_space_dimension();
//! Builds an object having the specified properties.
/*!
\param num_dimensions
The number of dimensions of the vector space enclosing the pair;
\param kind
Specifies whether a universe or an empty pair has to be built.
\exception std::length_error
Thrown if \p num_dimensions exceeds the maximum allowed space
dimension.
*/
explicit Partially_Reduced_Product(dimension_type num_dimensions = 0,
Degenerate_Element kind = UNIVERSE);
//! Builds a pair, copying a system of congruences.
/*!
The pair inherits the space dimension of the congruence system.
\param cgs
The system of congruences to be approximated by the pair.
\exception std::length_error
Thrown if \p num_dimensions exceeds the maximum allowed space
dimension.
*/
explicit Partially_Reduced_Product(const Congruence_System& cgs);
//! Builds a pair, recycling a system of congruences.
/*!
The pair inherits the space dimension of the congruence system.
\param cgs
The system of congruences to be approximates by the pair.
Its data-structures may be recycled to build the pair.
\exception std::length_error
Thrown if \p num_dimensions exceeds the maximum allowed space
dimension.
*/
explicit Partially_Reduced_Product(Congruence_System& cgs);
//! Builds a pair, copying a system of constraints.
/*!
The pair inherits the space dimension of the constraint system.
\param cs
The system of constraints to be approximated by the pair.
\exception std::length_error
Thrown if \p num_dimensions exceeds the maximum allowed space
dimension.
*/
explicit Partially_Reduced_Product(const Constraint_System& cs);
//! Builds a pair, recycling a system of constraints.
/*!
The pair inherits the space dimension of the constraint system.
\param cs
The system of constraints to be approximated by the pair.
\exception std::length_error
Thrown if the space dimension of \p cs exceeds the maximum allowed
space dimension.
*/
explicit Partially_Reduced_Product(Constraint_System& cs);
//! Builds a product, from a C polyhedron.
/*!
Builds a product containing \p ph using algorithms whose
complexity does not exceed the one specified by \p complexity.
If \p complexity is \p ANY_COMPLEXITY, then the built product is the
smallest one containing \p ph.
The product inherits the space dimension of the polyhedron.
\param ph
The polyhedron to be approximated by the product.
\param complexity
The complexity that will not be exceeded.
\exception std::length_error
Thrown if the space dimension of \p ph exceeds the maximum allowed
space dimension.
*/
explicit
Partially_Reduced_Product(const C_Polyhedron& ph,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a product, from an NNC polyhedron.
/*!
Builds a product containing \p ph using algorithms whose
complexity does not exceed the one specified by \p complexity.
If \p complexity is \p ANY_COMPLEXITY, then the built product is the
smallest one containing \p ph.
The product inherits the space dimension of the polyhedron.
\param ph
The polyhedron to be approximated by the product.
\param complexity
The complexity that will not be exceeded.
\exception std::length_error
Thrown if the space dimension of \p ph exceeds the maximum allowed
space dimension.
*/
explicit
Partially_Reduced_Product(const NNC_Polyhedron& ph,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a product, from a grid.
/*!
Builds a product containing \p gr.
The product inherits the space dimension of the grid.
\param gr
The grid to be approximated by the product.
\param complexity
The complexity is ignored.
\exception std::length_error
Thrown if the space dimension of \p gr exceeds the maximum allowed
space dimension.
*/
explicit
Partially_Reduced_Product(const Grid& gr,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a product out of a box.
/*!
Builds a product containing \p box.
The product inherits the space dimension of the box.
\param box
The box representing the pair to be built.
\param complexity
The complexity is ignored.
\exception std::length_error
Thrown if the space dimension of \p box exceeds the maximum
allowed space dimension.
*/
template <typename Interval>
Partially_Reduced_Product(const Box<Interval>& box,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a product out of a BD shape.
/*!
Builds a product containing \p bd.
The product inherits the space dimension of the BD shape.
\param bd
The BD shape representing the product to be built.
\param complexity
The complexity is ignored.
\exception std::length_error
Thrown if the space dimension of \p bd exceeds the maximum
allowed space dimension.
*/
template <typename U>
Partially_Reduced_Product(const BD_Shape<U>& bd,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a product out of an octagonal shape.
/*!
Builds a product containing \p os.
The product inherits the space dimension of the octagonal shape.
\param os
The octagonal shape representing the product to be built.
\param complexity
The complexity is ignored.
\exception std::length_error
Thrown if the space dimension of \p os exceeds the maximum
allowed space dimension.
*/
template <typename U>
Partially_Reduced_Product(const Octagonal_Shape<U>& os,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Ordinary copy constructor.
Partially_Reduced_Product(const Partially_Reduced_Product& y,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a conservative, upward approximation of \p y.
/*!
The complexity argument is ignored.
*/
template <typename E1, typename E2, typename S>
explicit
Partially_Reduced_Product(const Partially_Reduced_Product<E1, E2, S>& y,
Complexity_Class complexity = ANY_COMPLEXITY);
/*! \brief
The assignment operator. (\p *this and \p y can be
dimension-incompatible.)
*/
Partially_Reduced_Product& operator=(const Partially_Reduced_Product& y);
//! \name Member Functions that Do Not Modify the Partially_Reduced_Product
//@{
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
/*! \brief
Returns the minimum \ref Affine_Independence_and_Affine_Dimension
"affine dimension"
(see also \ref Grid_Affine_Dimension "grid affine dimension")
of the components of \p *this.
*/
dimension_type affine_dimension() const;
//! Returns a constant reference to the first of the pair.
const D1& domain1() const;
//! Returns a constant reference to the second of the pair.
const D2& domain2() const;
//! Returns a system of constraints which approximates \p *this.
Constraint_System constraints() const;
/*! \brief
Returns a system of constraints which approximates \p *this, in
reduced form.
*/
Constraint_System minimized_constraints() const;
//! Returns a system of congruences which approximates \p *this.
Congruence_System congruences() const;
/*! \brief
Returns a system of congruences which approximates \p *this, in
reduced form.
*/
Congruence_System minimized_congruences() const;
//! Returns the relations holding between \p *this and \p c.
/*
\exception std::invalid_argument
Thrown if \p *this and congruence \p cg are dimension-incompatible.
Returns the Poly_Con_Relation \p r for \p *this:
suppose the first component returns \p r1 and the second \p r2,
then \p r implies <CODE>is_included()</CODE>
if and only if one or both of \p r1 and \p r2 imply
<CODE>is_included()</CODE>;
\p r implies <CODE>saturates()</CODE>
if and only if one or both of \p r1 and \p r2 imply
<CODE>saturates()</CODE>;
\p r implies <CODE>is_disjoint()</CODE>
if and only if one or both of \p r1 and \p r2 imply
<CODE>is_disjoint()</CODE>;
and \p r implies <CODE>nothing()</CODE>
if and only if both \p r1 and \p r2 imply
<CODE>strictly_intersects()</CODE>.
*/
Poly_Con_Relation relation_with(const Constraint& c) const;
//! Returns the relations holding between \p *this and \p cg.
/*
\exception std::invalid_argument
Thrown if \p *this and congruence \p cg are dimension-incompatible.
*/
Poly_Con_Relation relation_with(const Congruence& cg) const;
//! Returns the relations holding between \p *this and \p g.
/*
\exception std::invalid_argument
Thrown if \p *this and generator \p g are dimension-incompatible.
Returns the Poly_Gen_Relation \p r for \p *this:
suppose the first component returns \p r1 and the second \p r2,
then \p r = <CODE>subsumes()</CODE>
if and only if \p r1 = \p r2 = <CODE>subsumes()</CODE>;
and \p r = <CODE>nothing()</CODE>
if and only if one or both of \p r1 and \p r2 = <CODE>nothing()</CODE>;
*/
Poly_Gen_Relation relation_with(const Generator& g) const;
/*! \brief
Returns <CODE>true</CODE> if and only if either of the components
of \p *this are empty.
*/
bool is_empty() const;
/*! \brief
Returns <CODE>true</CODE> if and only if both of the components
of \p *this are the universe.
*/
bool is_universe() const;
/*! \brief
Returns <CODE>true</CODE> if and only if both of the components
of \p *this are topologically closed subsets of the vector space.
*/
bool is_topologically_closed() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this and \p y are
componentwise disjoint.
\exception std::invalid_argument
Thrown if \p x and \p y are dimension-incompatible.
*/
bool is_disjoint_from(const Partially_Reduced_Product& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if a component of \p *this
is discrete.
*/
bool is_discrete() const;
/*! \brief
Returns <CODE>true</CODE> if and only if a component of \p *this
is bounded.
*/
bool is_bounded() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p var is constrained in
\p *this.
\exception std::invalid_argument
Thrown if \p var is not a space dimension of \p *this.
*/
bool constrains(Variable var) const;
//! Returns <CODE>true</CODE> if and only if \p expr is bounded in \p *this.
/*!
This method is the same as bounds_from_below.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds_from_above(const Linear_Expression& expr) const;
//! Returns <CODE>true</CODE> if and only if \p expr is bounded in \p *this.
/*!
This method is the same as bounds_from_above.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds_from_below(const Linear_Expression& expr) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty and
\p expr is bounded from above in \p *this, in which case the
supremum value is computed.
\param expr
The linear expression to be maximized subject to \p *this;
\param sup_n
The numerator of the supremum value;
\param sup_d
The denominator of the supremum value;
\param maximum
<CODE>true</CODE> if the supremum value can be reached in \p this.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded by \p *this,
<CODE>false</CODE> is returned and \p sup_n, \p sup_d and \p
maximum are left untouched.
*/
bool maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty and
\p expr is bounded from above in \p *this, in which case the
supremum value and a point where \p expr reaches it are computed.
\param expr
The linear expression to be maximized subject to \p *this;
\param sup_n
The numerator of the supremum value;
\param sup_d
The denominator of the supremum value;
\param maximum
<CODE>true</CODE> if the supremum value can be reached in \p this.
\param g
When maximization succeeds, will be assigned the point or
closure point where \p expr reaches its supremum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded by \p *this,
<CODE>false</CODE> is returned and \p sup_n, \p sup_d, \p maximum
and \p g are left untouched.
*/
bool maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum,
Generator& g) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty and
\p expr is bounded from below i \p *this, in which case the
infimum value is computed.
\param expr
The linear expression to be minimized subject to \p *this;
\param inf_n
The numerator of the infimum value;
\param inf_d
The denominator of the infimum value;
\param minimum
<CODE>true</CODE> if the infimum value can be reached in \p this.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from below,
<CODE>false</CODE> is returned and \p inf_n, \p inf_d
and \p minimum are left untouched.
*/
bool minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty and
\p expr is bounded from below in \p *this, in which case the
infimum value and a point where \p expr reaches it are computed.
\param expr
The linear expression to be minimized subject to \p *this;
\param inf_n
The numerator of the infimum value;
\param inf_d
The denominator of the infimum value;
\param minimum
<CODE>true</CODE> if the infimum value can be reached in \p this.
\param g
When minimization succeeds, will be assigned the point or closure
point where \p expr reaches its infimum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from below,
<CODE>false</CODE> is returned and \p inf_n, \p inf_d, \p minimum
and \p point are left untouched.
*/
bool minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum,
Generator& g) const;
/*! \brief
Returns <CODE>true</CODE> if and only if each component of \p *this
contains the corresponding component of \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
bool contains(const Partially_Reduced_Product& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if each component of \p *this
strictly contains the corresponding component of \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
bool strictly_contains(const Partially_Reduced_Product& y) const;
//! Checks if all the invariants are satisfied.
bool OK() const;
//@} // Member Functions that Do Not Modify the Partially_Reduced_Product
//! \name Space Dimension Preserving Member Functions that May Modify the Partially_Reduced_Product
//@{
//! Adds constraint \p c to \p *this.
/*!
\exception std::invalid_argument
Thrown if \p *this and \p c are dimension-incompatible.
*/
void add_constraint(const Constraint& c);
/*! \brief
Use the constraint \p c to refine \p *this.
\param c
The constraint to be used for refinement.
\exception std::invalid_argument
Thrown if \p *this and \p c are dimension-incompatible.
*/
void refine_with_constraint(const Constraint& c);
//! Adds a copy of congruence \p cg to \p *this.
/*!
\exception std::invalid_argument
Thrown if \p *this and congruence \p cg are
dimension-incompatible.
*/
void add_congruence(const Congruence& cg);
/*! \brief
Use the congruence \p cg to refine \p *this.
\param cg
The congruence to be used for refinement.
\exception std::invalid_argument
Thrown if \p *this and \p cg are dimension-incompatible.
*/
void refine_with_congruence(const Congruence& cg);
//! Adds a copy of the congruences in \p cgs to \p *this.
/*!
\param cgs
The congruence system to be added.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible.
*/
void add_congruences(const Congruence_System& cgs);
/*! \brief
Use the congruences in \p cgs to refine \p *this.
\param cgs
The congruences to be used for refinement.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible.
*/
void refine_with_congruences(const Congruence_System& cgs);
//! Adds the congruences in \p cgs to *this.
/*!
\param cgs
The congruence system to be added that may be recycled.
\exception std::invalid_argument
Thrown if \p *this and \p cs are dimension-incompatible.
\warning
The only assumption that can be made about \p cgs upon successful
or exceptional return is that it can be safely destroyed.
*/
void add_recycled_congruences(Congruence_System& cgs);
//! Adds a copy of the constraint system in \p cs to \p *this.
/*!
\param cs
The constraint system to be added.
\exception std::invalid_argument
Thrown if \p *this and \p cs are dimension-incompatible.
*/
void add_constraints(const Constraint_System& cs);
/*! \brief
Use the constraints in \p cs to refine \p *this.
\param cs
The constraints to be used for refinement.
\exception std::invalid_argument
Thrown if \p *this and \p cs are dimension-incompatible.
*/
void refine_with_constraints(const Constraint_System& cs);
//! Adds the constraint system in \p cs to \p *this.
/*!
\param cs
The constraint system to be added that may be recycled.
\exception std::invalid_argument
Thrown if \p *this and \p cs are dimension-incompatible.
\warning
The only assumption that can be made about \p cs upon successful
or exceptional return is that it can be safely destroyed.
*/
void add_recycled_constraints(Constraint_System& cs);
/*! \brief
Computes the \ref Cylindrification "cylindrification" of \p *this with
respect to space dimension \p var, assigning the result to \p *this.
\param var
The space dimension that will be unconstrained.
\exception std::invalid_argument
Thrown if \p var is not a space dimension of \p *this.
*/
void unconstrain(Variable var);
/*! \brief
Computes the \ref Cylindrification "cylindrification" of \p *this with
respect to the set of space dimensions \p vars,
assigning the result to \p *this.
\param vars
The set of space dimension that will be unconstrained.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with one of the
Variable objects contained in \p vars.
*/
void unconstrain(const Variables_Set& vars);
/*! \brief
Assigns to \p *this the componentwise intersection of \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void intersection_assign(const Partially_Reduced_Product& y);
/*! \brief
Assigns to \p *this an upper bound of \p *this and \p y
computed on the corresponding components.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void upper_bound_assign(const Partially_Reduced_Product& y);
/*! \brief
Assigns to \p *this an upper bound of \p *this and \p y
computed on the corresponding components.
If it is exact on each of the components of \p *this, <CODE>true</CODE>
is returned, otherwise <CODE>false</CODE> is returned.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
bool upper_bound_assign_if_exact(const Partially_Reduced_Product& y);
/*! \brief
Assigns to \p *this an approximation of the set-theoretic difference
of \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void difference_assign(const Partially_Reduced_Product& y);
/*! \brief
Assigns to \p *this the \ref Single_Update_Affine_Functions
"affine image" of \p
*this under the function mapping variable \p var to the affine
expression specified by \p expr and \p denominator.
\param var
The variable to which the affine expression is assigned;
\param expr
The numerator of the affine expression;
\param denominator
The denominator of the affine expression (optional argument with
default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of
\p *this.
*/
void affine_image(Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the \ref Single_Update_Affine_Functions
"affine preimage" of
\p *this under the function mapping variable \p var to the affine
expression specified by \p expr and \p denominator.
\param var
The variable to which the affine expression is substituted;
\param expr
The numerator of the affine expression;
\param denominator
The denominator of the affine expression (optional argument with
default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of \p *this.
*/
void affine_preimage(Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the image of \p *this with respect to the
\ref Generalized_Affine_Relations "generalized affine relation"
\f$\mathrm{var}' \relsym \frac{\mathrm{expr}}{\mathrm{denominator}}\f$,
where \f$\mathord{\relsym}\f$ is the relation symbol encoded
by \p relsym
(see also \ref Grid_Generalized_Image "generalized affine relation".)
\param var
The left hand side variable of the generalized affine relation;
\param relsym
The relation symbol;
\param expr
The numerator of the right hand side affine expression;
\param denominator
The denominator of the right hand side affine expression (optional
argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of \p *this
or if \p *this is a C_Polyhedron and \p relsym is a strict
relation symbol.
*/
void generalized_affine_image(Variable var,
Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Generalized_Affine_Relations "generalized affine relation"
\f$\mathrm{var}' \relsym \frac{\mathrm{expr}}{\mathrm{denominator}}\f$,
where \f$\mathord{\relsym}\f$ is the relation symbol encoded
by \p relsym.
(see also \ref Grid_Generalized_Image "generalized affine relation".)
\param var
The left hand side variable of the generalized affine relation;
\param relsym
The relation symbol;
\param expr
The numerator of the right hand side affine expression;
\param denominator
The denominator of the right hand side affine expression (optional
argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of \p *this
or if \p *this is a C_Polyhedron and \p relsym is a strict
relation symbol.
*/
void
generalized_affine_preimage(Variable var,
Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the image of \p *this with respect to the
\ref Generalized_Affine_Relations "generalized affine relation"
\f$\mathrm{lhs}' \relsym \mathrm{rhs}\f$, where
\f$\mathord{\relsym}\f$ is the relation symbol encoded by \p relsym.
(see also \ref Grid_Generalized_Image "generalized affine relation".)
\param lhs
The left hand side affine expression;
\param relsym
The relation symbol;
\param rhs
The right hand side affine expression.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p lhs or \p rhs
or if \p *this is a C_Polyhedron and \p relsym is a strict
relation symbol.
*/
void generalized_affine_image(const Linear_Expression& lhs,
Relation_Symbol relsym,
const Linear_Expression& rhs);
/*! \brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Generalized_Affine_Relations "generalized affine relation"
\f$\mathrm{lhs}' \relsym \mathrm{rhs}\f$, where
\f$\mathord{\relsym}\f$ is the relation symbol encoded by \p relsym.
(see also \ref Grid_Generalized_Image "generalized affine relation".)
\param lhs
The left hand side affine expression;
\param relsym
The relation symbol;
\param rhs
The right hand side affine expression.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p lhs or \p rhs
or if \p *this is a C_Polyhedron and \p relsym is a strict
relation symbol.
*/
void generalized_affine_preimage(const Linear_Expression& lhs,
Relation_Symbol relsym,
const Linear_Expression& rhs);
/*!
\brief
Assigns to \p *this the image of \p *this with respect to the
\ref Single_Update_Bounded_Affine_Relations "bounded affine relation"
\f$\frac{\mathrm{lb\_expr}}{\mathrm{denominator}}
\leq \mathrm{var}'
\leq \frac{\mathrm{ub\_expr}}{\mathrm{denominator}}\f$.
\param var
The variable updated by the affine relation;
\param lb_expr
The numerator of the lower bounding affine expression;
\param ub_expr
The numerator of the upper bounding affine expression;
\param denominator
The (common) denominator for the lower and upper bounding
affine expressions (optional argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p lb_expr (resp., \p ub_expr)
and \p *this are dimension-incompatible or if \p var is not a space
dimension of \p *this.
*/
void bounded_affine_image(Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*!
\brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Single_Update_Bounded_Affine_Relations "bounded affine relation"
\f$\frac{\mathrm{lb\_expr}}{\mathrm{denominator}}
\leq \mathrm{var}'
\leq \frac{\mathrm{ub\_expr}}{\mathrm{denominator}}\f$.
\param var
The variable updated by the affine relation;
\param lb_expr
The numerator of the lower bounding affine expression;
\param ub_expr
The numerator of the upper bounding affine expression;
\param denominator
The (common) denominator for the lower and upper bounding
affine expressions (optional argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p lb_expr (resp., \p ub_expr)
and \p *this are dimension-incompatible or if \p var is not a space
dimension of \p *this.
*/
void bounded_affine_preimage(Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the result of computing the \ref Time_Elapse_Operator
"time-elapse" between \p *this and \p y.
(See also \ref Grid_Time_Elapse "time-elapse".)
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void time_elapse_assign(const Partially_Reduced_Product& y);
//! Assigns to \p *this its topological closure.
void topological_closure_assign();
// TODO: Add a way to call other widenings.
// CHECKME: This may not be a real widening; it depends on the reduction
// class R and the widening used.
/*! \brief
Assigns to \p *this the result of computing the
"widening" between \p *this and \p y.
This widening uses either the congruence or generator systems
depending on which of the systems describing x and y
are up to date and minimized.
\param y
A product that <EM>must</EM> be contained in \p *this;
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void widening_assign(const Partially_Reduced_Product& y,
unsigned* tp = NULL);
/*! \brief
Possibly tightens \p *this by dropping some points with non-integer
coordinates.
\param complexity
The maximal complexity of any algorithms used.
\note
Currently there is no optimality guarantee, not even if
\p complexity is <CODE>ANY_COMPLEXITY</CODE>.
*/
void drop_some_non_integer_points(Complexity_Class complexity
= ANY_COMPLEXITY);
/*! \brief
Possibly tightens \p *this by dropping some points with non-integer
coordinates for the space dimensions corresponding to \p vars.
\param vars
Points with non-integer coordinates for these variables/space-dimensions
can be discarded.
\param complexity
The maximal complexity of any algorithms used.
\note
Currently there is no optimality guarantee, not even if
\p complexity is <CODE>ANY_COMPLEXITY</CODE>.
*/
void drop_some_non_integer_points(const Variables_Set& vars,
Complexity_Class complexity
= ANY_COMPLEXITY);
//@} // Space Dimension Preserving Member Functions that May Modify [...]
//! \name Member Functions that May Modify the Dimension of the Vector Space
//@{
/*! \brief
Adds \p m new space dimensions and embeds the components
of \p *this in the new vector space.
\param m
The number of dimensions to add.
\exception std::length_error
Thrown if adding \p m new space dimensions would cause the vector
space to exceed dimension <CODE>max_space_dimension()</CODE>.
*/
void add_space_dimensions_and_embed(dimension_type m);
/*! \brief
Adds \p m new space dimensions and does not embed the components
in the new vector space.
\param m
The number of space dimensions to add.
\exception std::length_error
Thrown if adding \p m new space dimensions would cause the
vector space to exceed dimension <CODE>max_space_dimension()</CODE>.
*/
void add_space_dimensions_and_project(dimension_type m);
/*! \brief
Assigns to the first (resp., second) component of \p *this
the "concatenation" of the first (resp., second) components
of \p *this and \p y, taken in this order.
See also \ref Concatenating_Polyhedra.
\exception std::length_error
Thrown if the concatenation would cause the vector space
to exceed dimension <CODE>max_space_dimension()</CODE>.
*/
void concatenate_assign(const Partially_Reduced_Product& y);
//! Removes all the specified dimensions from the vector space.
/*!
\param vars
The set of Variable objects corresponding to the space dimensions
to be removed.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with one of the
Variable objects contained in \p vars.
*/
void remove_space_dimensions(const Variables_Set& vars);
/*! \brief
Removes the higher dimensions of the vector space so that the
resulting space will have dimension \p new_dimension.
\exception std::invalid_argument
Thrown if \p new_dimensions is greater than the space dimension of
\p *this.
*/
void remove_higher_space_dimensions(dimension_type new_dimension);
/*! \brief
Remaps the dimensions of the vector space according to
a \ref Mapping_the_Dimensions_of_the_Vector_Space "partial function".
If \p pfunc maps only some of the dimensions of \p *this then the
rest will be projected away.
If the highest dimension mapped to by \p pfunc is higher than the
highest dimension in \p *this then the number of dimensions in \p
*this will be increased to the highest dimension mapped to by \p
pfunc.
\param pfunc
The partial function specifying the destiny of each space
dimension.
The template class <CODE>Partial_Function</CODE> must provide the following
methods.
\code
bool has_empty_codomain() const
\endcode
returns <CODE>true</CODE> if and only if the represented partial
function has an empty codomain (i.e., it is always undefined).
The <CODE>has_empty_codomain()</CODE> method will always be called
before the methods below. However, if
<CODE>has_empty_codomain()</CODE> returns <CODE>true</CODE>, none
of the functions below will be called.
\code
dimension_type max_in_codomain() const
\endcode
returns the maximum value that belongs to the codomain of the
partial function.
The <CODE>max_in_codomain()</CODE> method is called at most once.
\code
bool maps(dimension_type i, dimension_type& j) const
\endcode
Let \f$f\f$ be the represented function and \f$k\f$ be the value
of \p i. If \f$f\f$ is defined in \f$k\f$, then \f$f(k)\f$ is
assigned to \p j and <CODE>true</CODE> is returned. If \f$f\f$ is
undefined in \f$k\f$, then <CODE>false</CODE> is returned.
This method is called at most \f$n\f$ times, where \f$n\f$ is the
dimension of the vector space enclosing \p *this.
The result is undefined if \p pfunc does not encode a partial
function with the properties described in
\ref Mapping_the_Dimensions_of_the_Vector_Space
"specification of the mapping operator".
*/
template <typename Partial_Function>
void map_space_dimensions(const Partial_Function& pfunc);
//! Creates \p m copies of the space dimension corresponding to \p var.
/*!
\param var
The variable corresponding to the space dimension to be replicated;
\param m
The number of replicas to be created.
\exception std::invalid_argument
Thrown if \p var does not correspond to a dimension of the vector
space.
\exception std::length_error
Thrown if adding \p m new space dimensions would cause the vector
space to exceed dimension <CODE>max_space_dimension()</CODE>.
If \p *this has space dimension \f$n\f$, with \f$n > 0\f$,
and <CODE>var</CODE> has space dimension \f$k \leq n\f$,
then the \f$k\f$-th space dimension is
\ref Expanding_One_Dimension_of_the_Vector_Space_to_Multiple_Dimensions
"expanded" to \p m new space dimensions
\f$n\f$, \f$n+1\f$, \f$\dots\f$, \f$n+m-1\f$.
*/
void expand_space_dimension(Variable var, dimension_type m);
//! Folds the space dimensions in \p vars into \p dest.
/*!
\param vars
The set of Variable objects corresponding to the space dimensions
to be folded;
\param dest
The variable corresponding to the space dimension that is the
destination of the folding operation.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p dest or with
one of the Variable objects contained in \p vars. Also
thrown if \p dest is contained in \p vars.
If \p *this has space dimension \f$n\f$, with \f$n > 0\f$,
<CODE>dest</CODE> has space dimension \f$k \leq n\f$,
\p vars is a set of variables whose maximum space dimension
is also less than or equal to \f$n\f$, and \p dest is not a member
of \p vars, then the space dimensions corresponding to
variables in \p vars are
\ref Folding_Multiple_Dimensions_of_the_Vector_Space_into_One_Dimension
"folded" into the \f$k\f$-th space dimension.
*/
void fold_space_dimensions(const Variables_Set& vars, Variable dest);
//@} // Member Functions that May Modify the Dimension of the Vector Space
friend bool operator==<>(const Partially_Reduced_Product<D1, D2, R>& x,
const Partially_Reduced_Product<D1, D2, R>& y);
friend std::ostream&
Parma_Polyhedra_Library::IO_Operators::
operator<<<>(std::ostream& s, const Partially_Reduced_Product<D1, D2, R>& dp);
//! \name Miscellaneous Member Functions
//@{
//! Destructor.
~Partially_Reduced_Product();
/*! \brief
Swaps \p *this with product \p y. (\p *this and \p y can be
dimension-incompatible.)
*/
void m_swap(Partially_Reduced_Product& y);
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
/*! \brief
Returns a 32-bit hash code for \p *this.
If \p x and \p y are such that <CODE>x == y</CODE>,
then <CODE>x.hash_code() == y.hash_code()</CODE>.
*/
int32_t hash_code() const;
//@} // Miscellaneous Member Functions
//! Reduce.
/*
\return
<CODE>true</CODE> if and only if either of the resulting component
is strictly contained in the respective original.
*/
bool reduce() const;
protected:
//! The type of the first component.
typedef D1 Domain1;
//! The type of the second component.
typedef D2 Domain2;
//! The first component.
D1 d1;
//! The second component.
D2 d2;
protected:
//! Clears the reduced flag.
void clear_reduced_flag() const;
//! Sets the reduced flag.
void set_reduced_flag() const;
//! Return <CODE>true</CODE> if and only if the reduced flag is set.
bool is_reduced() const;
/*! \brief
Flag to record whether the components are reduced with respect
to each other and the reduction class.
*/
bool reduced;
private:
void throw_space_dimension_overflow(const char* method,
const char* reason);
};
namespace Parma_Polyhedra_Library {
/*! \brief
This class is temporary and will be removed when template typedefs will
be supported in C++.
When template typedefs will be supported in C++, what now is verbosely
denoted by <CODE>Domain_Product\<Domain1, Domain2\>::%Direct_Product</CODE>
will simply be denoted by <CODE>Direct_Product\<Domain1, Domain2\></CODE>.
*/
template <typename D1, typename D2>
class Domain_Product {
public:
typedef Partially_Reduced_Product<D1, D2, No_Reduction<D1, D2> >
Direct_Product;
typedef Partially_Reduced_Product<D1, D2, Smash_Reduction<D1, D2> >
Smash_Product;
typedef Partially_Reduced_Product<D1, D2, Constraints_Reduction<D1, D2> >
Constraints_Product;
typedef Partially_Reduced_Product<D1, D2, Congruences_Reduction<D1, D2> >
Congruences_Product;
typedef Partially_Reduced_Product<D1, D2, Shape_Preserving_Reduction<D1, D2> >
Shape_Preserving_Product;
};
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Partially_Reduced_Product_inlines.hh line 1. */
/* Partially_Reduced_Product class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Partially_Reduced_Product_inlines.hh line 32. */
namespace Parma_Polyhedra_Library {
template <typename D1, typename D2, typename R>
inline dimension_type
Partially_Reduced_Product<D1, D2, R>::max_space_dimension() {
return (D1::max_space_dimension() < D2::max_space_dimension())
? D1::max_space_dimension()
: D2::max_space_dimension();
}
template <typename D1, typename D2, typename R>
inline
Partially_Reduced_Product<D1, D2, R>
::Partially_Reduced_Product(dimension_type num_dimensions,
const Degenerate_Element kind)
: d1(num_dimensions <= max_space_dimension()
? num_dimensions
: (throw_space_dimension_overflow("Partially_Reduced_Product(n, k)",
"n exceeds the maximum "
"allowed space dimension"),
num_dimensions),
kind),
d2(num_dimensions, kind) {
set_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline
Partially_Reduced_Product<D1, D2, R>
::Partially_Reduced_Product(const Congruence_System& cgs)
: d1(cgs), d2(cgs) {
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline
Partially_Reduced_Product<D1, D2, R>
::Partially_Reduced_Product(Congruence_System& cgs)
: d1(const_cast<const Congruence_System&>(cgs)), d2(cgs) {
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline
Partially_Reduced_Product<D1, D2, R>
::Partially_Reduced_Product(const Constraint_System& cs)
: d1(cs), d2(cs) {
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline
Partially_Reduced_Product<D1, D2, R>
::Partially_Reduced_Product(Constraint_System& cs)
: d1(const_cast<const Constraint_System&>(cs)), d2(cs) {
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline
Partially_Reduced_Product<D1, D2, R>
::Partially_Reduced_Product(const C_Polyhedron& ph,
Complexity_Class complexity)
: d1(ph, complexity), d2(ph, complexity) {
set_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline
Partially_Reduced_Product<D1, D2, R>
::Partially_Reduced_Product(const NNC_Polyhedron& ph,
Complexity_Class complexity)
: d1(ph, complexity), d2(ph, complexity) {
set_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline
Partially_Reduced_Product<D1, D2, R>
::Partially_Reduced_Product(const Grid& gr, Complexity_Class)
: d1(gr), d2(gr) {
set_reduced_flag();
}
template <typename D1, typename D2, typename R>
template <typename Interval>
inline
Partially_Reduced_Product<D1, D2, R>
::Partially_Reduced_Product(const Box<Interval>& box, Complexity_Class)
: d1(box), d2(box) {
set_reduced_flag();
}
template <typename D1, typename D2, typename R>
template <typename U>
inline
Partially_Reduced_Product<D1, D2, R>
::Partially_Reduced_Product(const BD_Shape<U>& bd, Complexity_Class)
: d1(bd), d2(bd) {
set_reduced_flag();
}
template <typename D1, typename D2, typename R>
template <typename U>
inline
Partially_Reduced_Product<D1, D2, R>
::Partially_Reduced_Product(const Octagonal_Shape<U>& os, Complexity_Class)
: d1(os), d2(os) {
set_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline
Partially_Reduced_Product<D1, D2, R>
::Partially_Reduced_Product(const Partially_Reduced_Product& y,
Complexity_Class)
: d1(y.d1), d2(y.d2) {
reduced = y.reduced;
}
template <typename D1, typename D2, typename R>
template <typename E1, typename E2, typename S>
inline
Partially_Reduced_Product<D1, D2, R>
::Partially_Reduced_Product(const Partially_Reduced_Product<E1, E2, S>& y,
Complexity_Class complexity)
: d1(y.space_dimension()), d2(y.space_dimension()), reduced(false) {
Partially_Reduced_Product<D1, D2, R> pg1(y.domain1(), complexity);
Partially_Reduced_Product<D1, D2, R> pg2(y.domain2(), complexity);
pg1.intersection_assign(pg2);
m_swap(pg1);
}
template <typename D1, typename D2, typename R>
inline
Partially_Reduced_Product<D1, D2, R>::~Partially_Reduced_Product() {
}
template <typename D1, typename D2, typename R>
inline memory_size_type
Partially_Reduced_Product<D1, D2, R>::external_memory_in_bytes() const {
return d1.external_memory_in_bytes() + d2.external_memory_in_bytes();
}
template <typename D1, typename D2, typename R>
inline memory_size_type
Partially_Reduced_Product<D1, D2, R>::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
template <typename D1, typename D2, typename R>
inline dimension_type
Partially_Reduced_Product<D1, D2, R>::space_dimension() const {
PPL_ASSERT(d1.space_dimension() == d2.space_dimension());
return d1.space_dimension();
}
template <typename D1, typename D2, typename R>
inline dimension_type
Partially_Reduced_Product<D1, D2, R>::affine_dimension() const {
reduce();
const dimension_type d1_dim = d1.affine_dimension();
const dimension_type d2_dim = d2.affine_dimension();
return std::min(d1_dim, d2_dim);
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::unconstrain(const Variable var) {
reduce();
d1.unconstrain(var);
d2.unconstrain(var);
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>::unconstrain(const Variables_Set& vars) {
reduce();
d1.unconstrain(vars);
d2.unconstrain(vars);
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::intersection_assign(const Partially_Reduced_Product& y) {
d1.intersection_assign(y.d1);
d2.intersection_assign(y.d2);
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::difference_assign(const Partially_Reduced_Product& y) {
reduce();
y.reduce();
d1.difference_assign(y.d1);
d2.difference_assign(y.d2);
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::upper_bound_assign(const Partially_Reduced_Product& y) {
reduce();
y.reduce();
d1.upper_bound_assign(y.d1);
d2.upper_bound_assign(y.d2);
}
template <typename D1, typename D2, typename R>
inline bool
Partially_Reduced_Product<D1, D2, R>
::upper_bound_assign_if_exact(const Partially_Reduced_Product& y) {
reduce();
y.reduce();
D1 d1_copy = d1;
bool ub_exact = d1_copy.upper_bound_assign_if_exact(y.d1);
if (!ub_exact)
return false;
ub_exact = d2.upper_bound_assign_if_exact(y.d2);
if (!ub_exact)
return false;
using std::swap;
swap(d1, d1_copy);
return true;
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::affine_image(Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator) {
d1.affine_image(var, expr, denominator);
d2.affine_image(var, expr, denominator);
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::affine_preimage(Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator) {
d1.affine_preimage(var, expr, denominator);
d2.affine_preimage(var, expr, denominator);
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::generalized_affine_image(Variable var,
const Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator) {
d1.generalized_affine_image(var, relsym, expr, denominator);
d2.generalized_affine_image(var, relsym, expr, denominator);
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::generalized_affine_preimage(Variable var,
const Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator) {
d1.generalized_affine_preimage(var, relsym, expr, denominator);
d2.generalized_affine_preimage(var, relsym, expr, denominator);
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::generalized_affine_image(const Linear_Expression& lhs,
const Relation_Symbol relsym,
const Linear_Expression& rhs) {
d1.generalized_affine_image(lhs, relsym, rhs);
d2.generalized_affine_image(lhs, relsym, rhs);
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::generalized_affine_preimage(const Linear_Expression& lhs,
const Relation_Symbol relsym,
const Linear_Expression& rhs) {
d1.generalized_affine_preimage(lhs, relsym, rhs);
d2.generalized_affine_preimage(lhs, relsym, rhs);
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::bounded_affine_image(Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator) {
d1.bounded_affine_image(var, lb_expr, ub_expr, denominator);
d2.bounded_affine_image(var, lb_expr, ub_expr, denominator);
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::bounded_affine_preimage(Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator) {
d1.bounded_affine_preimage(var, lb_expr, ub_expr, denominator);
d2.bounded_affine_preimage(var, lb_expr, ub_expr, denominator);
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::time_elapse_assign(const Partially_Reduced_Product& y) {
reduce();
y.reduce();
d1.time_elapse_assign(y.d1);
d2.time_elapse_assign(y.d2);
PPL_ASSERT_HEAVY(OK());
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>::topological_closure_assign() {
d1.topological_closure_assign();
d2.topological_closure_assign();
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>::m_swap(Partially_Reduced_Product& y) {
using std::swap;
swap(d1, y.d1);
swap(d2, y.d2);
swap(reduced, y.reduced);
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>::add_constraint(const Constraint& c) {
d1.add_constraint(c);
d2.add_constraint(c);
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>::refine_with_constraint(const Constraint& c) {
d1.refine_with_constraint(c);
d2.refine_with_constraint(c);
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>::add_congruence(const Congruence& cg) {
d1.add_congruence(cg);
d2.add_congruence(cg);
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>::refine_with_congruence(const Congruence& cg) {
d1.refine_with_congruence(cg);
d2.refine_with_congruence(cg);
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::add_constraints(const Constraint_System& cs) {
d1.add_constraints(cs);
d2.add_constraints(cs);
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::refine_with_constraints(const Constraint_System& cs) {
d1.refine_with_constraints(cs);
d2.refine_with_constraints(cs);
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::add_congruences(const Congruence_System& cgs) {
d1.add_congruences(cgs);
d2.add_congruences(cgs);
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::refine_with_congruences(const Congruence_System& cgs) {
d1.refine_with_congruences(cgs);
d2.refine_with_congruences(cgs);
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::drop_some_non_integer_points(Complexity_Class complexity) {
reduce();
d1.drop_some_non_integer_points(complexity);
d2.drop_some_non_integer_points(complexity);
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::drop_some_non_integer_points(const Variables_Set& vars,
Complexity_Class complexity) {
reduce();
d1.drop_some_non_integer_points(vars, complexity);
d2.drop_some_non_integer_points(vars, complexity);
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline Partially_Reduced_Product<D1, D2, R>&
Partially_Reduced_Product<D1, D2, R>
::operator=(const Partially_Reduced_Product& y) {
d1 = y.d1;
d2 = y.d2;
reduced = y.reduced;
return *this;
}
template <typename D1, typename D2, typename R>
inline const D1&
Partially_Reduced_Product<D1, D2, R>::domain1() const {
reduce();
return d1;
}
template <typename D1, typename D2, typename R>
inline const D2&
Partially_Reduced_Product<D1, D2, R>::domain2() const {
reduce();
return d2;
}
template <typename D1, typename D2, typename R>
inline bool
Partially_Reduced_Product<D1, D2, R>::is_empty() const {
reduce();
return d1.is_empty() || d2.is_empty();
}
template <typename D1, typename D2, typename R>
inline bool
Partially_Reduced_Product<D1, D2, R>::is_universe() const {
return d1.is_universe() && d2.is_universe();
}
template <typename D1, typename D2, typename R>
inline bool
Partially_Reduced_Product<D1, D2, R>::is_topologically_closed() const {
reduce();
return d1.is_topologically_closed() && d2.is_topologically_closed();
}
template <typename D1, typename D2, typename R>
inline bool
Partially_Reduced_Product<D1, D2, R>
::is_disjoint_from(const Partially_Reduced_Product& y) const {
reduce();
y.reduce();
return d1.is_disjoint_from(y.d1) || d2.is_disjoint_from(y.d2);
}
template <typename D1, typename D2, typename R>
inline bool
Partially_Reduced_Product<D1, D2, R>::is_discrete() const {
reduce();
return d1.is_discrete() || d2.is_discrete();
}
template <typename D1, typename D2, typename R>
inline bool
Partially_Reduced_Product<D1, D2, R>::is_bounded() const {
reduce();
return d1.is_bounded() || d2.is_bounded();
}
template <typename D1, typename D2, typename R>
inline bool
Partially_Reduced_Product<D1, D2, R>
::bounds_from_above(const Linear_Expression& expr) const {
reduce();
return d1.bounds_from_above(expr) || d2.bounds_from_above(expr);
}
template <typename D1, typename D2, typename R>
inline bool
Partially_Reduced_Product<D1, D2, R>
::bounds_from_below(const Linear_Expression& expr) const {
reduce();
return d1.bounds_from_below(expr) || d2.bounds_from_below(expr);
}
template <typename D1, typename D2, typename R>
inline bool
Partially_Reduced_Product<D1, D2, R>::constrains(Variable var) const {
reduce();
return d1.constrains(var) || d2.constrains(var);
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::widening_assign(const Partially_Reduced_Product& y,
unsigned* tp) {
// FIXME(0.10.1): In general this is _NOT_ a widening since the reduction
// may mean that the sequence does not satisfy the ascending
// chain condition.
// However, for the direct, smash and constraints product
// it may be ok - but this still needs checking.
reduce();
y.reduce();
d1.widening_assign(y.d1, tp);
d2.widening_assign(y.d2, tp);
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::add_space_dimensions_and_embed(dimension_type m) {
d1.add_space_dimensions_and_embed(m);
d2.add_space_dimensions_and_embed(m);
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::add_space_dimensions_and_project(dimension_type m) {
d1.add_space_dimensions_and_project(m);
d2.add_space_dimensions_and_project(m);
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::concatenate_assign(const Partially_Reduced_Product& y) {
d1.concatenate_assign(y.d1);
d2.concatenate_assign(y.d2);
if (!is_reduced() || !y.is_reduced())
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::remove_space_dimensions(const Variables_Set& vars) {
d1.remove_space_dimensions(vars);
d2.remove_space_dimensions(vars);
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::remove_higher_space_dimensions(dimension_type new_dimension) {
d1.remove_higher_space_dimensions(new_dimension);
d2.remove_higher_space_dimensions(new_dimension);
}
template <typename D1, typename D2, typename R>
template <typename Partial_Function>
inline void
Partially_Reduced_Product<D1, D2, R>
::map_space_dimensions(const Partial_Function& pfunc) {
d1.map_space_dimensions(pfunc);
d2.map_space_dimensions(pfunc);
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::expand_space_dimension(Variable var, dimension_type m) {
d1.expand_space_dimension(var, m);
d2.expand_space_dimension(var, m);
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>
::fold_space_dimensions(const Variables_Set& vars,
Variable dest) {
d1.fold_space_dimensions(vars, dest);
d2.fold_space_dimensions(vars, dest);
}
template <typename D1, typename D2, typename R>
inline bool
Partially_Reduced_Product<D1, D2, R>
::contains(const Partially_Reduced_Product& y) const {
reduce();
y.reduce();
return d1.contains(y.d1) && d2.contains(y.d2);
}
template <typename D1, typename D2, typename R>
inline bool
Partially_Reduced_Product<D1, D2, R>
::strictly_contains(const Partially_Reduced_Product& y) const {
reduce();
y.reduce();
return (d1.contains(y.d1) && d2.strictly_contains(y.d2))
|| (d2.contains(y.d2) && d1.strictly_contains(y.d1));
}
template <typename D1, typename D2, typename R>
inline bool
Partially_Reduced_Product<D1, D2, R>::reduce() const {
Partially_Reduced_Product& dp
= const_cast<Partially_Reduced_Product&>(*this);
if (dp.is_reduced())
return false;
R r;
r.product_reduce(dp.d1, dp.d2);
set_reduced_flag();
return true;
}
template <typename D1, typename D2, typename R>
inline bool
Partially_Reduced_Product<D1, D2, R>::is_reduced() const {
return reduced;
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>::clear_reduced_flag() const {
const_cast<Partially_Reduced_Product&>(*this).reduced = false;
}
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>::set_reduced_flag() const {
const_cast<Partially_Reduced_Product&>(*this).reduced = true;
}
PPL_OUTPUT_3_PARAM_TEMPLATE_DEFINITIONS(D1, D2, R, Partially_Reduced_Product)
template <typename D1, typename D2, typename R>
inline void
Partially_Reduced_Product<D1, D2, R>::ascii_dump(std::ostream& s) const {
const char yes = '+';
const char no = '-';
s << "Partially_Reduced_Product\n";
s << (reduced ? yes : no) << "reduced\n";
s << "Domain 1:\n";
d1.ascii_dump(s);
s << "Domain 2:\n";
d2.ascii_dump(s);
}
template <typename D1, typename D2, typename R>
inline int32_t
Partially_Reduced_Product<D1, D2, R>::hash_code() const {
return hash_code_from_dimension(space_dimension());
}
/*! \relates Parma_Polyhedra_Library::Partially_Reduced_Product */
template <typename D1, typename D2, typename R>
inline bool
operator==(const Partially_Reduced_Product<D1, D2, R>& x,
const Partially_Reduced_Product<D1, D2, R>& y) {
x.reduce();
y.reduce();
return x.d1 == y.d1 && x.d2 == y.d2;
}
/*! \relates Parma_Polyhedra_Library::Partially_Reduced_Product */
template <typename D1, typename D2, typename R>
inline bool
operator!=(const Partially_Reduced_Product<D1, D2, R>& x,
const Partially_Reduced_Product<D1, D2, R>& y) {
return !(x == y);
}
/*! \relates Parma_Polyhedra_Library::Partially_Reduced_Product */
template <typename D1, typename D2, typename R>
inline std::ostream&
IO_Operators::operator<<(std::ostream& s,
const Partially_Reduced_Product<D1, D2, R>& dp) {
return s << "Domain 1:\n"
<< dp.d1
<< "Domain 2:\n"
<< dp.d2;
}
} // namespace Parma_Polyhedra_Library
namespace Parma_Polyhedra_Library {
template <typename D1, typename D2>
inline
No_Reduction<D1, D2>::No_Reduction() {
}
template <typename D1, typename D2>
void No_Reduction<D1, D2>::product_reduce(D1&, D2&) {
}
template <typename D1, typename D2>
inline
No_Reduction<D1, D2>::~No_Reduction() {
}
template <typename D1, typename D2>
inline
Smash_Reduction<D1, D2>::Smash_Reduction() {
}
template <typename D1, typename D2>
inline
Smash_Reduction<D1, D2>::~Smash_Reduction() {
}
template <typename D1, typename D2>
inline
Constraints_Reduction<D1, D2>::Constraints_Reduction() {
}
template <typename D1, typename D2>
inline
Constraints_Reduction<D1, D2>::~Constraints_Reduction() {
}
template <typename D1, typename D2>
inline
Congruences_Reduction<D1, D2>::Congruences_Reduction() {
}
template <typename D1, typename D2>
inline
Congruences_Reduction<D1, D2>::~Congruences_Reduction() {
}
template <typename D1, typename D2>
inline
Shape_Preserving_Reduction<D1, D2>::Shape_Preserving_Reduction() {
}
template <typename D1, typename D2>
inline
Shape_Preserving_Reduction<D1, D2>::~Shape_Preserving_Reduction() {
}
/*! \relates Partially_Reduced_Product */
template <typename D1, typename D2, typename R>
inline void
swap(Partially_Reduced_Product<D1, D2, R>& x,
Partially_Reduced_Product<D1, D2, R>& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Partially_Reduced_Product_templates.hh line 1. */
/* Partially_Reduced_Product class implementation:
non-inline template functions.
*/
/* Automatically generated from PPL source file ../src/Partially_Reduced_Product_templates.hh line 31. */
#include <algorithm>
#include <deque>
namespace Parma_Polyhedra_Library {
template <typename D1, typename D2, typename R>
void
Partially_Reduced_Product<D1, D2, R>
::throw_space_dimension_overflow(const char* method,
const char* reason) {
std::ostringstream s;
s << "PPL::Partially_Reduced_Product::" << method << ":" << std::endl
<< reason << ".";
throw std::length_error(s.str());
}
template <typename D1, typename D2, typename R>
Constraint_System
Partially_Reduced_Product<D1, D2, R>::constraints() const {
reduce();
Constraint_System cs = d2.constraints();
const Constraint_System& cs1 = d1.constraints();
for (Constraint_System::const_iterator i = cs1.begin(),
cs_end = cs1.end(); i != cs_end; ++i)
cs.insert(*i);
return cs;
}
template <typename D1, typename D2, typename R>
Constraint_System
Partially_Reduced_Product<D1, D2, R>::minimized_constraints() const {
reduce();
Constraint_System cs = d2.constraints();
const Constraint_System& cs1 = d1.constraints();
for (Constraint_System::const_iterator i = cs1.begin(),
cs_end = cs1.end(); i != cs_end; ++i)
cs.insert(*i);
if (cs.has_strict_inequalities()) {
NNC_Polyhedron ph(cs);
return ph.minimized_constraints();
}
else {
C_Polyhedron ph(cs);
return ph.minimized_constraints();
}
}
template <typename D1, typename D2, typename R>
Congruence_System
Partially_Reduced_Product<D1, D2, R>::congruences() const {
reduce();
Congruence_System cgs = d2.congruences();
const Congruence_System& cgs1 = d1.congruences();
for (Congruence_System::const_iterator i = cgs1.begin(),
cgs_end = cgs1.end(); i != cgs_end; ++i)
cgs.insert(*i);
return cgs;
}
template <typename D1, typename D2, typename R>
Congruence_System
Partially_Reduced_Product<D1, D2, R>::minimized_congruences() const {
reduce();
Congruence_System cgs = d2.congruences();
const Congruence_System& cgs1 = d1.congruences();
for (Congruence_System::const_iterator i = cgs1.begin(),
cgs_end = cgs1.end(); i != cgs_end; ++i)
cgs.insert(*i);
Grid gr(cgs);
return gr.minimized_congruences();
}
template <typename D1, typename D2, typename R>
void
Partially_Reduced_Product<D1, D2, R>
::add_recycled_constraints(Constraint_System& cs) {
if (d1.can_recycle_constraint_systems()) {
d2.refine_with_constraints(cs);
d1.add_recycled_constraints(cs);
}
else
if (d2.can_recycle_constraint_systems()) {
d1.refine_with_constraints(cs);
d2.add_recycled_constraints(cs);
}
else {
d1.add_constraints(cs);
d2.add_constraints(cs);
}
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
void
Partially_Reduced_Product<D1, D2, R>
::add_recycled_congruences(Congruence_System& cgs) {
if (d1.can_recycle_congruence_systems()) {
d2.refine_with_congruences(cgs);
d1.add_recycled_congruences(cgs);
}
else
if (d2.can_recycle_congruence_systems()) {
d1.refine_with_congruences(cgs);
d2.add_recycled_congruences(cgs);
}
else {
d1.add_congruences(cgs);
d2.add_congruences(cgs);
}
clear_reduced_flag();
}
template <typename D1, typename D2, typename R>
Poly_Gen_Relation
Partially_Reduced_Product<D1, D2, R>
::relation_with(const Generator& g) const {
reduce();
if (Poly_Gen_Relation::nothing() == d1.relation_with(g)
|| Poly_Gen_Relation::nothing() == d2.relation_with(g))
return Poly_Gen_Relation::nothing();
else
return Poly_Gen_Relation::subsumes();
}
template <typename D1, typename D2, typename R>
Poly_Con_Relation
Partially_Reduced_Product<D1, D2, R>
::relation_with(const Constraint& c) const {
reduce();
Poly_Con_Relation relation1 = d1.relation_with(c);
Poly_Con_Relation relation2 = d2.relation_with(c);
Poly_Con_Relation result = Poly_Con_Relation::nothing();
if (relation1.implies(Poly_Con_Relation::is_included()))
result = result && Poly_Con_Relation::is_included();
else if (relation2.implies(Poly_Con_Relation::is_included()))
result = result && Poly_Con_Relation::is_included();
if (relation1.implies(Poly_Con_Relation::saturates()))
result = result && Poly_Con_Relation::saturates();
else if (relation2.implies(Poly_Con_Relation::saturates()))
result = result && Poly_Con_Relation::saturates();
if (relation1.implies(Poly_Con_Relation::is_disjoint()))
result = result && Poly_Con_Relation::is_disjoint();
else if (relation2.implies(Poly_Con_Relation::is_disjoint()))
result = result && Poly_Con_Relation::is_disjoint();
return result;
}
template <typename D1, typename D2, typename R>
Poly_Con_Relation
Partially_Reduced_Product<D1, D2, R>
::relation_with(const Congruence& cg) const {
reduce();
Poly_Con_Relation relation1 = d1.relation_with(cg);
Poly_Con_Relation relation2 = d2.relation_with(cg);
Poly_Con_Relation result = Poly_Con_Relation::nothing();
if (relation1.implies(Poly_Con_Relation::is_included()))
result = result && Poly_Con_Relation::is_included();
else if (relation2.implies(Poly_Con_Relation::is_included()))
result = result && Poly_Con_Relation::is_included();
if (relation1.implies(Poly_Con_Relation::saturates()))
result = result && Poly_Con_Relation::saturates();
else if (relation2.implies(Poly_Con_Relation::saturates()))
result = result && Poly_Con_Relation::saturates();
if (relation1.implies(Poly_Con_Relation::is_disjoint()))
result = result && Poly_Con_Relation::is_disjoint();
else if (relation2.implies(Poly_Con_Relation::is_disjoint()))
result = result && Poly_Con_Relation::is_disjoint();
return result;
}
template <typename D1, typename D2, typename R>
bool
Partially_Reduced_Product<D1, D2, R>
::maximize(const Linear_Expression& expr,
Coefficient& sup_n,
Coefficient& sup_d,
bool& maximum) const {
reduce();
if (is_empty())
return false;
PPL_DIRTY_TEMP_COEFFICIENT(sup1_n);
PPL_DIRTY_TEMP_COEFFICIENT(sup1_d);
PPL_DIRTY_TEMP_COEFFICIENT(sup2_n);
PPL_DIRTY_TEMP_COEFFICIENT(sup2_d);
bool maximum1;
bool maximum2;
bool r1 = d1.maximize(expr, sup1_n, sup1_d, maximum1);
bool r2 = d2.maximize(expr, sup2_n, sup2_d, maximum2);
// If neither is bounded from above, return false.
if (!r1 && !r2)
return false;
// If only d2 is bounded from above, then use the values for d2.
if (!r1) {
sup_n = sup2_n;
sup_d = sup2_d;
maximum = maximum2;
return true;
}
// If only d1 is bounded from above, then use the values for d1.
if (!r2) {
sup_n = sup1_n;
sup_d = sup1_d;
maximum = maximum1;
return true;
}
// If both d1 and d2 are bounded from above, then use the minimum values.
if (sup2_d * sup1_n >= sup1_d * sup2_n) {
sup_n = sup1_n;
sup_d = sup1_d;
maximum = maximum1;
}
else {
sup_n = sup2_n;
sup_d = sup2_d;
maximum = maximum2;
}
return true;
}
template <typename D1, typename D2, typename R>
bool
Partially_Reduced_Product<D1, D2, R>
::minimize(const Linear_Expression& expr,
Coefficient& inf_n,
Coefficient& inf_d,
bool& minimum) const {
reduce();
if (is_empty())
return false;
PPL_ASSERT(reduced);
PPL_DIRTY_TEMP_COEFFICIENT(inf1_n);
PPL_DIRTY_TEMP_COEFFICIENT(inf1_d);
PPL_DIRTY_TEMP_COEFFICIENT(inf2_n);
PPL_DIRTY_TEMP_COEFFICIENT(inf2_d);
bool minimum1;
bool minimum2;
bool r1 = d1.minimize(expr, inf1_n, inf1_d, minimum1);
bool r2 = d2.minimize(expr, inf2_n, inf2_d, minimum2);
// If neither is bounded from below, return false.
if (!r1 && !r2)
return false;
// If only d2 is bounded from below, then use the values for d2.
if (!r1) {
inf_n = inf2_n;
inf_d = inf2_d;
minimum = minimum2;
return true;
}
// If only d1 is bounded from below, then use the values for d1.
if (!r2) {
inf_n = inf1_n;
inf_d = inf1_d;
minimum = minimum1;
return true;
}
// If both d1 and d2 are bounded from below, then use the minimum values.
if (inf2_d * inf1_n <= inf1_d * inf2_n) {
inf_n = inf1_n;
inf_d = inf1_d;
minimum = minimum1;
}
else {
inf_n = inf2_n;
inf_d = inf2_d;
minimum = minimum2;
}
return true;
}
template <typename D1, typename D2, typename R>
bool
Partially_Reduced_Product<D1, D2, R>
::maximize(const Linear_Expression& expr,
Coefficient& sup_n,
Coefficient& sup_d,
bool& maximum,
Generator& g) const {
reduce();
if (is_empty())
return false;
PPL_ASSERT(reduced);
PPL_DIRTY_TEMP_COEFFICIENT(sup1_n);
PPL_DIRTY_TEMP_COEFFICIENT(sup1_d);
PPL_DIRTY_TEMP_COEFFICIENT(sup2_n);
PPL_DIRTY_TEMP_COEFFICIENT(sup2_d);
bool maximum1;
bool maximum2;
Generator g1(point());
Generator g2(point());
bool r1 = d1.maximize(expr, sup1_n, sup1_d, maximum1, g1);
bool r2 = d2.maximize(expr, sup2_n, sup2_d, maximum2, g2);
// If neither is bounded from above, return false.
if (!r1 && !r2)
return false;
// If only d2 is bounded from above, then use the values for d2.
if (!r1) {
sup_n = sup2_n;
sup_d = sup2_d;
maximum = maximum2;
g = g2;
return true;
}
// If only d1 is bounded from above, then use the values for d1.
if (!r2) {
sup_n = sup1_n;
sup_d = sup1_d;
maximum = maximum1;
g = g1;
return true;
}
// If both d1 and d2 are bounded from above, then use the minimum values.
if (sup2_d * sup1_n >= sup1_d * sup2_n) {
sup_n = sup1_n;
sup_d = sup1_d;
maximum = maximum1;
g = g1;
}
else {
sup_n = sup2_n;
sup_d = sup2_d;
maximum = maximum2;
g = g2;
}
return true;
}
template <typename D1, typename D2, typename R>
bool
Partially_Reduced_Product<D1, D2, R>
::minimize(const Linear_Expression& expr,
Coefficient& inf_n,
Coefficient& inf_d,
bool& minimum,
Generator& g) const {
reduce();
if (is_empty())
return false;
PPL_ASSERT(reduced);
PPL_DIRTY_TEMP_COEFFICIENT(inf1_n);
PPL_DIRTY_TEMP_COEFFICIENT(inf1_d);
PPL_DIRTY_TEMP_COEFFICIENT(inf2_n);
PPL_DIRTY_TEMP_COEFFICIENT(inf2_d);
bool minimum1;
bool minimum2;
Generator g1(point());
Generator g2(point());
bool r1 = d1.minimize(expr, inf1_n, inf1_d, minimum1, g1);
bool r2 = d2.minimize(expr, inf2_n, inf2_d, minimum2, g2);
// If neither is bounded from below, return false.
if (!r1 && !r2)
return false;
// If only d2 is bounded from below, then use the values for d2.
if (!r1) {
inf_n = inf2_n;
inf_d = inf2_d;
minimum = minimum2;
g = g2;
return true;
}
// If only d1 is bounded from below, then use the values for d1.
if (!r2) {
inf_n = inf1_n;
inf_d = inf1_d;
minimum = minimum1;
g = g1;
return true;
}
// If both d1 and d2 are bounded from below, then use the minimum values.
if (inf2_d * inf1_n <= inf1_d * inf2_n) {
inf_n = inf1_n;
inf_d = inf1_d;
minimum = minimum1;
g = g1;
}
else {
inf_n = inf2_n;
inf_d = inf2_d;
minimum = minimum2;
g = g2;
}
return true;
}
template <typename D1, typename D2, typename R>
inline bool
Partially_Reduced_Product<D1, D2, R>::OK() const {
if (reduced) {
Partially_Reduced_Product<D1, D2, R> dp1 = *this;
Partially_Reduced_Product<D1, D2, R> dp2 = *this;
/* Force dp1 reduction */
dp1.clear_reduced_flag();
dp1.reduce();
if (dp1 != dp2)
return false;
}
return d1.OK() && d2.OK();
}
template <typename D1, typename D2, typename R>
bool
Partially_Reduced_Product<D1, D2, R>::ascii_load(std::istream& s) {
const char yes = '+';
const char no = '-';
std::string str;
if (!(s >> str) || str != "Partially_Reduced_Product")
return false;
if (!(s >> str)
|| (str[0] != yes && str[0] != no)
|| str.substr(1) != "reduced")
return false;
reduced = (str[0] == yes);
if (!(s >> str) || str != "Domain")
return false;
if (!(s >> str) || str != "1:")
return false;
if (!d1.ascii_load(s))
return false;
if (!(s >> str) || str != "Domain")
return false;
if (!(s >> str) || str != "2:")
return false;
return d2.ascii_load(s);
}
template <typename D1, typename D2>
void Smash_Reduction<D1, D2>::product_reduce(D1& d1, D2& d2) {
using std::swap;
if (d2.is_empty()) {
if (!d1.is_empty()) {
D1 new_d1(d1.space_dimension(), EMPTY);
swap(d1, new_d1);
}
}
else if (d1.is_empty()) {
D2 new_d2(d2.space_dimension(), EMPTY);
swap(d2, new_d2);
}
}
template <typename D1, typename D2>
void Constraints_Reduction<D1, D2>::product_reduce(D1& d1, D2& d2) {
if (d1.is_empty() || d2.is_empty()) {
// If one of the components is empty, do the smash reduction and return.
Parma_Polyhedra_Library::Smash_Reduction<D1, D2> sr;
sr.product_reduce(d1, d2);
return;
}
else {
using std::swap;
dimension_type space_dim = d1.space_dimension();
d1.refine_with_constraints(d2.minimized_constraints());
if (d1.is_empty()) {
D2 new_d2(space_dim, EMPTY);
swap(d2, new_d2);
return;
}
d2.refine_with_constraints(d1.minimized_constraints());
if (d2.is_empty()) {
D1 new_d1(space_dim, EMPTY);
swap(d1, new_d1);
}
}
}
/* Auxiliary procedure for the Congruences_Reduction() method.
If more than one hyperplane defined by congruence cg intersect
d2, then d1 and d2 are unchanged; if exactly one intersects d2, then
the corresponding equality is added to d1 and d2;
otherwise d1 and d2 are set empty. */
template <typename D1, typename D2>
bool shrink_to_congruence_no_check(D1& d1, D2& d2, const Congruence& cg) {
// It is assumed that cg is a proper congruence.
PPL_ASSERT(cg.modulus() != 0);
// It is assumed that cg is satisfied by all points in d1.
PPL_ASSERT(d1.relation_with(cg) == Poly_Con_Relation::is_included());
Linear_Expression e(cg.expression());
// Find the maximum and minimum bounds for the domain element d with the
// linear expression e.
PPL_DIRTY_TEMP_COEFFICIENT(max_numer);
PPL_DIRTY_TEMP_COEFFICIENT(max_denom);
bool max_included;
PPL_DIRTY_TEMP_COEFFICIENT(min_numer);
PPL_DIRTY_TEMP_COEFFICIENT(min_denom);
if (d2.maximize(e, max_numer, max_denom, max_included)) {
bool min_included;
if (d2.minimize(e, min_numer, min_denom, min_included)) {
// Adjust values to allow for the denominators max_denom and min_denom.
max_numer *= min_denom;
min_numer *= max_denom;
PPL_DIRTY_TEMP_COEFFICIENT(denom);
PPL_DIRTY_TEMP_COEFFICIENT(mod);
denom = max_denom * min_denom;
mod = cg.modulus() * denom;
// If the difference between the maximum and minimum bounds is more than
// twice the modulus, then there will be two neighboring hyperplanes
// defined by cg that are intersected by the domain element d;
// there is no possible reduction in this case.
PPL_DIRTY_TEMP_COEFFICIENT(mod2);
mod2 = 2 * mod;
if (max_numer - min_numer < mod2
|| (max_numer - min_numer == mod2 && (!max_included || !min_included)))
{
PPL_DIRTY_TEMP_COEFFICIENT(shrink_amount);
PPL_DIRTY_TEMP_COEFFICIENT(max_decreased);
PPL_DIRTY_TEMP_COEFFICIENT(min_increased);
// Find the amount by which the maximum value may be decreased.
shrink_amount = max_numer % mod;
if (!max_included && shrink_amount == 0)
shrink_amount = mod;
if (shrink_amount < 0)
shrink_amount += mod;
max_decreased = max_numer - shrink_amount;
// Find the amount by which the minimum value may be increased.
shrink_amount = min_numer % mod;
if (!min_included && shrink_amount == 0)
shrink_amount = - mod;
if (shrink_amount > 0)
shrink_amount -= mod;
min_increased = min_numer - shrink_amount;
if (max_decreased == min_increased) {
// The domain element d2 intersects exactly one hyperplane
// defined by cg, so add the equality to d1 and d2.
Constraint new_c(denom * e == min_increased);
d1.refine_with_constraint(new_c);
d2.refine_with_constraint(new_c);
return true;
}
else {
if (max_decreased < min_increased) {
using std::swap;
// In this case, d intersects no hyperplanes defined by cg,
// so set d to empty and return false.
D1 new_d1(d1.space_dimension(), EMPTY);
swap(d1, new_d1);
D2 new_d2(d2.space_dimension(), EMPTY);
swap(d2, new_d2);
return false;
}
}
}
}
}
return true;
}
template <typename D1, typename D2>
void
Congruences_Reduction<D1, D2>::product_reduce(D1& d1, D2& d2) {
if (d1.is_empty() || d2.is_empty()) {
// If one of the components is empty, do the smash reduction and return.
Parma_Polyhedra_Library::Smash_Reduction<D1, D2> sr;
sr.product_reduce(d1, d2);
return;
}
// Use the congruences representing d1 to shrink both components.
const Congruence_System cgs1 = d1.minimized_congruences();
for (Congruence_System::const_iterator i = cgs1.begin(),
cgs_end = cgs1.end(); i != cgs_end; ++i) {
const Congruence& cg1 = *i;
if (cg1.is_equality())
d2.refine_with_congruence(cg1);
else
if (!Parma_Polyhedra_Library::
shrink_to_congruence_no_check(d1, d2, cg1))
// The product is empty.
return;
}
// Use the congruences representing d2 to shrink both components.
const Congruence_System cgs2 = d2.minimized_congruences();
for (Congruence_System::const_iterator i = cgs2.begin(),
cgs_end = cgs2.end(); i != cgs_end; ++i) {
const Congruence& cg2 = *i;
if (cg2.is_equality())
d1.refine_with_congruence(cg2);
else
if (!Parma_Polyhedra_Library::
shrink_to_congruence_no_check(d2, d1, cg2))
// The product is empty.
return;
}
}
template <typename D1, typename D2>
void
Shape_Preserving_Reduction<D1, D2>::product_reduce(D1& d1, D2& d2) {
// First do the congruences reduction.
Parma_Polyhedra_Library::Congruences_Reduction<D1, D2> cgr;
cgr.product_reduce(d1, d2);
if (d1.is_empty())
return;
PPL_DIRTY_TEMP_COEFFICIENT(freq_n);
PPL_DIRTY_TEMP_COEFFICIENT(freq_d);
PPL_DIRTY_TEMP_COEFFICIENT(val_n);
PPL_DIRTY_TEMP_COEFFICIENT(val_d);
// Use the constraints representing d2.
Constraint_System cs = d2.minimized_constraints();
Constraint_System refining_cs;
for (Constraint_System::const_iterator i = cs.begin(),
cs_end = cs.end(); i != cs_end; ++i) {
const Constraint& c = *i;
if (c.is_equality())
continue;
// Check the frequency and value of the linear expression for
// the constraint `c'.
Linear_Expression le(c.expression());
if (!d1.frequency(le, freq_n, freq_d, val_n, val_d))
// Nothing to do.
continue;
if (val_n == 0)
// Nothing to do.
continue;
// Adjust the value of the inhomogeneous term to satisfy
// the implied congruence.
if (val_n < 0) {
val_n = val_n*freq_d + val_d*freq_n;
val_d *= freq_d;
}
le *= val_d;
le -= val_n;
refining_cs.insert(le >= 0);
}
d2.refine_with_constraints(refining_cs);
// Use the constraints representing d1.
cs = d1.minimized_constraints();
refining_cs.clear();
for (Constraint_System::const_iterator i = cs.begin(),
cs_end = cs.end(); i != cs_end; ++i) {
const Constraint& c = *i;
if (c.is_equality())
// Equalities already shared.
continue;
// Check the frequency and value of the linear expression for
// the constraint `c'.
Linear_Expression le(c.expression());
if (!d2.frequency(le, freq_n, freq_d, val_n, val_d))
// Nothing to do.
continue;
if (val_n == 0)
// Nothing to do.
continue;
// Adjust the value of the inhomogeneous term to satisfy
// the implied congruence.
if (val_n < 0) {
val_n = val_n*freq_d + val_d*freq_n;
val_d *= freq_d;
}
le *= val_d;
le -= val_n;
refining_cs.insert(le >= 0);
}
d1.refine_with_constraints(refining_cs);
// The reduction may have introduced additional equalities
// so these must be shared with the other component.
Parma_Polyhedra_Library::Constraints_Reduction<D1, D2> cr;
cr.product_reduce(d1, d2);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Partially_Reduced_Product_defs.hh line 1688. */
/* Automatically generated from PPL source file ../src/Determinate_defs.hh line 1. */
/* Determinate class declaration.
*/
/* Automatically generated from PPL source file ../src/Determinate_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename PSET>
class Determinate;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Determinate_defs.hh line 32. */
#include <iosfwd>
/* Automatically generated from PPL source file ../src/Determinate_defs.hh line 34. */
namespace Parma_Polyhedra_Library {
//! Swaps \p x with \p y.
/*! \relates Determinate */
template <typename PSET>
void swap(Determinate<PSET>& x, Determinate<PSET>& y);
/*! \brief
Returns <CODE>true</CODE> if and only if \p x and \p y are the same
COW-wrapped pointset.
\relates Determinate
*/
template <typename PSET>
bool operator==(const Determinate<PSET>& x, const Determinate<PSET>& y);
/*! \brief
Returns <CODE>true</CODE> if and only if \p x and \p y are different
COW-wrapped pointsets.
\relates Determinate
*/
template <typename PSET>
bool operator!=(const Determinate<PSET>& x, const Determinate<PSET>& y);
namespace IO_Operators {
//! Output operator.
/*! \relates Parma_Polyhedra_Library::Determinate */
template <typename PSET>
std::ostream&
operator<<(std::ostream&, const Determinate<PSET>&);
} // namespace IO_Operators
} // namespace Parma_Polyhedra_Library
/*! \brief
A wrapper for PPL pointsets, providing them with a
<EM>determinate constraint system</EM> interface, as defined
in \ref Bag98 "[Bag98]".
The implementation uses a copy-on-write optimization, making the
class suitable for constructions, like the <EM>finite powerset</EM>
and <EM>ask-and-tell</EM> of \ref Bag98 "[Bag98]", that are likely
to perform many copies.
\ingroup PPL_CXX_interface
*/
template <typename PSET>
class Parma_Polyhedra_Library::Determinate {
public:
//! \name Constructors and Destructor
//@{
/*! \brief
Constructs a COW-wrapped object corresponding to the pointset \p pset.
*/
Determinate(const PSET& pset);
/*! \brief
Constructs a COW-wrapped object corresponding to the pointset
defined by \p cs.
*/
Determinate(const Constraint_System& cs);
/*! \brief
Constructs a COW-wrapped object corresponding to the pointset
defined by \p cgs.
*/
Determinate(const Congruence_System& cgs);
//! Copy constructor.
Determinate(const Determinate& y);
//! Destructor.
~Determinate();
//@} // Constructors and Destructor
//! \name Member Functions that Do Not Modify the Domain Element
//@{
//! Returns a const reference to the embedded pointset.
const PSET& pointset() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this embeds the universe
element \p PSET.
*/
bool is_top() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this embeds the empty
element of \p PSET.
*/
bool is_bottom() const;
//! Returns <CODE>true</CODE> if and only if \p *this entails \p y.
bool definitely_entails(const Determinate& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this and \p y
are definitely equivalent.
*/
bool is_definitely_equivalent_to(const Determinate& y) const;
/*! \brief
Returns a lower bound to the total size in bytes of the memory
occupied by \p *this.
*/
memory_size_type total_memory_in_bytes() const;
/*! \brief
Returns a lower bound to the size in bytes of the memory
managed by \p *this.
*/
memory_size_type external_memory_in_bytes() const;
/*!
Returns <CODE>true</CODE> if and only if this domain
has a nontrivial weakening operator.
*/
static bool has_nontrivial_weakening();
//! Checks if all the invariants are satisfied.
bool OK() const;
//@} // Member Functions that Do Not Modify the Domain Element
//! \name Member Functions that May Modify the Domain Element
//@{
//! Assigns to \p *this the upper bound of \p *this and \p y.
void upper_bound_assign(const Determinate& y);
//! Assigns to \p *this the meet of \p *this and \p y.
void meet_assign(const Determinate& y);
//! Assigns to \p *this the result of weakening \p *this with \p y.
void weakening_assign(const Determinate& y);
/*! \brief
Assigns to \p *this the \ref Concatenating_Polyhedra "concatenation"
of \p *this and \p y, taken in this order.
*/
void concatenate_assign(const Determinate& y);
//! Returns a reference to the embedded element.
PSET& pointset();
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
On return from this method, the representation of \p *this
is not shared by different Determinate objects.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
void mutate();
//! Assignment operator.
Determinate& operator=(const Determinate& y);
//! Swaps \p *this with \p y.
void m_swap(Determinate& y);
//@} // Member Functions that May Modify the Domain Element
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! A function adapter for the Determinate class.
/*! \ingroup PPL_CXX_interface
It lifts a Binary_Operator_Assign function object, taking arguments
of type PSET, producing the corresponding function object taking
arguments of type Determinate<PSET>.
The template parameter Binary_Operator_Assign is supposed to
implement an <EM>apply and assign</EM> function, i.e., a function
having signature <CODE>void foo(PSET& x, const PSET& y)</CODE> that
applies an operator to \c x and \c y and assigns the result to \c x.
For instance, such a function object is obtained by
<CODE>std::mem_fun_ref(&C_Polyhedron::intersection_assign)</CODE>.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Binary_Operator_Assign>
class Binary_Operator_Assign_Lifter {
public:
//! Explicit unary constructor.
explicit
Binary_Operator_Assign_Lifter(Binary_Operator_Assign op_assign);
//! Function-application operator.
void operator()(Determinate& x, const Determinate& y) const;
private:
//! The function object to be lifted.
Binary_Operator_Assign op_assign_;
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Helper function returning a Binary_Operator_Assign_Lifter object,
also allowing for the deduction of template arguments.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Binary_Operator_Assign>
static Binary_Operator_Assign_Lifter<Binary_Operator_Assign>
lift_op_assign(Binary_Operator_Assign op_assign);
private:
//! The possibly shared representation of a Determinate object.
/*! \ingroup PPL_CXX_interface
By adopting the <EM>copy-on-write</EM> technique, a single
representation of the base-level object may be shared by more than
one object of the class Determinate.
*/
class Rep {
private:
/*! \brief
Count the number of references:
- 0: leaked, \p pset is non-const;
- 1: one reference, \p pset is non-const;
- > 1: more than one reference, \p pset is const.
*/
mutable unsigned long references;
//! Private and unimplemented: assignment not allowed.
Rep& operator=(const Rep& y);
//! Private and unimplemented: copies not allowed.
Rep(const Rep& y);
//! Private and unimplemented: default construction not allowed.
Rep();
public:
//! The possibly shared, embedded pointset.
PSET pset;
/*! \brief
Builds a new representation by creating a pointset
of the specified kind, in the specified vector space.
*/
Rep(dimension_type num_dimensions, Degenerate_Element kind);
//! Builds a new representation by copying the pointset \p p.
Rep(const PSET& p);
//! Builds a new representation by copying the constraints in \p cs.
Rep(const Constraint_System& cs);
//! Builds a new representation by copying the constraints in \p cgs.
Rep(const Congruence_System& cgs);
//! Destructor.
~Rep();
//! Registers a new reference.
void new_reference() const;
/*! \brief
Unregisters one reference; returns <CODE>true</CODE> if and only if
the representation has become unreferenced.
*/
bool del_reference() const;
//! True if and only if this representation is currently shared.
bool is_shared() const;
/*! \brief
Returns a lower bound to the total size in bytes of the memory
occupied by \p *this.
*/
memory_size_type total_memory_in_bytes() const;
/*! \brief
Returns a lower bound to the size in bytes of the memory
managed by \p *this.
*/
memory_size_type external_memory_in_bytes() const;
};
/*! \brief
A pointer to the possibly shared representation of
the base-level domain element.
*/
Rep* prep;
friend bool
operator==<PSET>(const Determinate<PSET>& x, const Determinate<PSET>& y);
friend bool
operator!=<PSET>(const Determinate<PSET>& x, const Determinate<PSET>& y);
};
/* Automatically generated from PPL source file ../src/Determinate_inlines.hh line 1. */
/* Determinate class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Determinate_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
template <typename PSET>
inline
Determinate<PSET>::Rep::Rep(dimension_type num_dimensions,
Degenerate_Element kind)
: references(0), pset(num_dimensions, kind) {
}
template <typename PSET>
inline
Determinate<PSET>::Rep::Rep(const PSET& p)
: references(0), pset(p) {
}
template <typename PSET>
inline
Determinate<PSET>::Rep::Rep(const Constraint_System& cs)
: references(0), pset(cs) {
}
template <typename PSET>
inline
Determinate<PSET>::Rep::Rep(const Congruence_System& cgs)
: references(0), pset(cgs) {
}
template <typename PSET>
inline
Determinate<PSET>::Rep::~Rep() {
PPL_ASSERT(references == 0);
}
template <typename PSET>
inline void
Determinate<PSET>::Rep::new_reference() const {
++references;
}
template <typename PSET>
inline bool
Determinate<PSET>::Rep::del_reference() const {
return --references == 0;
}
template <typename PSET>
inline bool
Determinate<PSET>::Rep::is_shared() const {
return references > 1;
}
template <typename PSET>
inline memory_size_type
Determinate<PSET>::Rep::external_memory_in_bytes() const {
return pset.external_memory_in_bytes();
}
template <typename PSET>
inline memory_size_type
Determinate<PSET>::Rep::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
template <typename PSET>
inline
Determinate<PSET>::Determinate(const PSET& pset)
: prep(new Rep(pset)) {
prep->new_reference();
}
template <typename PSET>
inline
Determinate<PSET>::Determinate(const Constraint_System& cs)
: prep(new Rep(cs)) {
prep->new_reference();
}
template <typename PSET>
inline
Determinate<PSET>::Determinate(const Congruence_System& cgs)
: prep(new Rep(cgs)) {
prep->new_reference();
}
template <typename PSET>
inline
Determinate<PSET>::Determinate(const Determinate& y)
: prep(y.prep) {
prep->new_reference();
}
template <typename PSET>
inline
Determinate<PSET>::~Determinate() {
if (prep->del_reference())
delete prep;
}
template <typename PSET>
inline Determinate<PSET>&
Determinate<PSET>::operator=(const Determinate& y) {
y.prep->new_reference();
if (prep->del_reference())
delete prep;
prep = y.prep;
return *this;
}
template <typename PSET>
inline void
Determinate<PSET>::m_swap(Determinate& y) {
using std::swap;
swap(prep, y.prep);
}
template <typename PSET>
inline void
Determinate<PSET>::mutate() {
if (prep->is_shared()) {
Rep* const new_prep = new Rep(prep->pset);
(void) prep->del_reference();
new_prep->new_reference();
prep = new_prep;
}
}
template <typename PSET>
inline const PSET&
Determinate<PSET>::pointset() const {
return prep->pset;
}
template <typename PSET>
inline PSET&
Determinate<PSET>::pointset() {
mutate();
return prep->pset;
}
template <typename PSET>
inline void
Determinate<PSET>::upper_bound_assign(const Determinate& y) {
pointset().upper_bound_assign(y.pointset());
}
template <typename PSET>
inline void
Determinate<PSET>::meet_assign(const Determinate& y) {
pointset().intersection_assign(y.pointset());
}
template <typename PSET>
inline bool
Determinate<PSET>::has_nontrivial_weakening() {
// FIXME: the following should be turned into a query to PSET. This
// can be postponed until the time the ask-and-tell construction is
// revived.
return false;
}
template <typename PSET>
inline void
Determinate<PSET>::weakening_assign(const Determinate& y) {
// FIXME: the following should be turned into a proper
// implementation. This can be postponed until the time the
// ask-and-tell construction is revived.
pointset().difference_assign(y.pointset());
}
template <typename PSET>
inline void
Determinate<PSET>::concatenate_assign(const Determinate& y) {
pointset().concatenate_assign(y.pointset());
}
template <typename PSET>
inline bool
Determinate<PSET>::definitely_entails(const Determinate& y) const {
return prep == y.prep || y.prep->pset.contains(prep->pset);
}
template <typename PSET>
inline bool
Determinate<PSET>::is_definitely_equivalent_to(const Determinate& y) const {
return prep == y.prep || prep->pset == y.prep->pset;
}
template <typename PSET>
inline bool
Determinate<PSET>::is_top() const {
return prep->pset.is_universe();
}
template <typename PSET>
inline bool
Determinate<PSET>::is_bottom() const {
return prep->pset.is_empty();
}
template <typename PSET>
inline memory_size_type
Determinate<PSET>::external_memory_in_bytes() const {
return prep->total_memory_in_bytes();
}
template <typename PSET>
inline memory_size_type
Determinate<PSET>::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
template <typename PSET>
inline bool
Determinate<PSET>::OK() const {
return prep->pset.OK();
}
namespace IO_Operators {
/*! \relates Parma_Polyhedra_Library::Determinate */
template <typename PSET>
inline std::ostream&
operator<<(std::ostream& s, const Determinate<PSET>& x) {
s << x.pointset();
return s;
}
} // namespace IO_Operators
/*! \relates Determinate */
template <typename PSET>
inline bool
operator==(const Determinate<PSET>& x, const Determinate<PSET>& y) {
return x.prep == y.prep || x.prep->pset == y.prep->pset;
}
/*! \relates Determinate */
template <typename PSET>
inline bool
operator!=(const Determinate<PSET>& x, const Determinate<PSET>& y) {
return x.prep != y.prep && x.prep->pset != y.prep->pset;
}
template <typename PSET>
template <typename Binary_Operator_Assign>
inline
Determinate<PSET>::Binary_Operator_Assign_Lifter<Binary_Operator_Assign>::
Binary_Operator_Assign_Lifter(Binary_Operator_Assign op_assign)
: op_assign_(op_assign) {
}
template <typename PSET>
template <typename Binary_Operator_Assign>
inline void
Determinate<PSET>::Binary_Operator_Assign_Lifter<Binary_Operator_Assign>::
operator()(Determinate& x, const Determinate& y) const {
op_assign_(x.pointset(), y.pointset());
}
template <typename PSET>
template <typename Binary_Operator_Assign>
inline
Determinate<PSET>::Binary_Operator_Assign_Lifter<Binary_Operator_Assign>
Determinate<PSET>::lift_op_assign(Binary_Operator_Assign op_assign) {
return Binary_Operator_Assign_Lifter<Binary_Operator_Assign>(op_assign);
}
/*! \relates Determinate */
template <typename PSET>
inline void
swap(Determinate<PSET>& x, Determinate<PSET>& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Determinate_defs.hh line 330. */
/* Automatically generated from PPL source file ../src/Powerset_defs.hh line 1. */
/* Powerset class declaration.
*/
/* Automatically generated from PPL source file ../src/Powerset_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename D>
class Powerset;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/iterator_to_const_defs.hh line 1. */
/* iterator_to_const and const_iterator_to_const class declarations.
*/
/* Automatically generated from PPL source file ../src/iterator_to_const_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename Container>
class iterator_to_const;
template <typename Container>
class const_iterator_to_const;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/iterator_to_const_defs.hh line 29. */
//#include "Ask_Tell_types.hh"
#include <iterator>
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! An iterator on a sequence of read-only objects.
/*! \ingroup PPL_CXX_interface
This template class implements a bidirectional <EM>read-only</EM>
iterator on the sequence of objects <CODE>Container</CODE>.
By using this iterator class it is not possible to modify the objects
contained in <CODE>Container</CODE>; rather, object modification has
to be implemented by object replacement, i.e., by using the methods
provided by <CODE>Container</CODE> to remove/insert objects.
Such a policy (a modifiable container of read-only objects) allows
for a reliable enforcement of invariants (such as sortedness of the
objects in the sequence).
\note
For any developers' need, suitable friend declarations allow for
accessing the low-level iterators on the sequence of objects.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Container>
class Parma_Polyhedra_Library::iterator_to_const {
private:
//! The type of the underlying mutable iterator.
typedef typename Container::iterator Base;
//! A shortcut for naming the const_iterator traits.
typedef typename
std::iterator_traits<typename Container::const_iterator> Traits;
//! A (mutable) iterator on the sequence of elements.
Base base;
//! Constructs from the lower-level iterator.
iterator_to_const(const Base& b);
friend class const_iterator_to_const<Container>;
template <typename T> friend class Powerset;
public:
// Same traits of the const_iterator, therefore
// forbidding the direct modification of sequence elements.
typedef typename Traits::iterator_category iterator_category;
typedef typename Traits::value_type value_type;
typedef typename Traits::difference_type difference_type;
typedef typename Traits::pointer pointer;
typedef typename Traits::reference reference;
//! Default constructor.
iterator_to_const();
//! Copy constructor.
iterator_to_const(const iterator_to_const& y);
//! Dereference operator.
reference operator*() const;
//! Indirect access operator.
pointer operator->() const;
//! Prefix increment operator.
iterator_to_const& operator++();
//! Postfix increment operator.
iterator_to_const operator++(int);
//! Prefix decrement operator.
iterator_to_const& operator--();
//! Postfix decrement operator.
iterator_to_const operator--(int);
/*! \brief
Returns <CODE>true</CODE> if and only if
\p *this and \p y are identical.
*/
bool operator==(const iterator_to_const& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if
\p *this and \p y are different.
*/
bool operator!=(const iterator_to_const& y) const;
};
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! A %const_iterator on a sequence of read-only objects.
/*! \ingroup PPL_CXX_interface
This class, besides implementing a read-only bidirectional iterator
on a read-only sequence of objects, ensures interoperability
with template class iterator_to_const.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Container>
class Parma_Polyhedra_Library::const_iterator_to_const {
private:
//! The type of the underlying %const_iterator.
typedef typename Container::const_iterator Base;
//! A shortcut for naming traits.
typedef typename std::iterator_traits<Base> Traits;
//! A %const_iterator on the sequence of elements.
Base base;
//! Constructs from the lower-level const_iterator.
const_iterator_to_const(const Base& b);
friend class iterator_to_const<Container>;
template <typename T> friend class Powerset;
public:
// Same traits of the underlying const_iterator.
typedef typename Traits::iterator_category iterator_category;
typedef typename Traits::value_type value_type;
typedef typename Traits::difference_type difference_type;
typedef typename Traits::pointer pointer;
typedef typename Traits::reference reference;
//! Default constructor.
const_iterator_to_const();
//! Copy constructor.
const_iterator_to_const(const const_iterator_to_const& y);
//! Constructs from the corresponding non-const iterator.
const_iterator_to_const(const iterator_to_const<Container>& y);
//! Dereference operator.
reference operator*() const;
//! Indirect member selector.
pointer operator->() const;
//! Prefix increment operator.
const_iterator_to_const& operator++();
//! Postfix increment operator.
const_iterator_to_const operator++(int);
//! Prefix decrement operator.
const_iterator_to_const& operator--();
//! Postfix decrement operator.
const_iterator_to_const operator--(int);
/*! \brief
Returns <CODE>true</CODE> if and only if
\p *this and \p y are identical.
*/
bool operator==(const const_iterator_to_const& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if
\p *this and \p y are different.
*/
bool operator!=(const const_iterator_to_const& y) const;
};
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Mixed comparison operator: returns <CODE>true</CODE> if and only
if (the const version of) \p x is identical to \p y.
\relates const_iterator_to_const
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Container>
bool
operator==(const iterator_to_const<Container>& x,
const const_iterator_to_const<Container>& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Mixed comparison operator: returns <CODE>true</CODE> if and only
if (the const version of) \p x is different from \p y.
\relates const_iterator_to_const
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename Container>
bool
operator!=(const iterator_to_const<Container>& x,
const const_iterator_to_const<Container>& y);
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/iterator_to_const_inlines.hh line 1. */
/* iterator_to_const and const_iterator_to_const class implementations:
inline functions.
*/
namespace Parma_Polyhedra_Library {
template <typename Container>
inline
iterator_to_const<Container>::iterator_to_const()
: base() {
}
template <typename Container>
inline
iterator_to_const<Container>::iterator_to_const(const iterator_to_const& y)
: base(y.base) {
}
template <typename Container>
inline
iterator_to_const<Container>::iterator_to_const(const Base& b)
: base(b) {
}
template <typename Container>
inline typename iterator_to_const<Container>::reference
iterator_to_const<Container>::operator*() const {
return *base;
}
template <typename Container>
inline typename iterator_to_const<Container>::pointer
iterator_to_const<Container>::operator->() const {
return &*base;
}
template <typename Container>
inline iterator_to_const<Container>&
iterator_to_const<Container>::operator++() {
++base;
return *this;
}
template <typename Container>
inline iterator_to_const<Container>
iterator_to_const<Container>::operator++(int) {
iterator_to_const tmp = *this;
operator++();
return tmp;
}
template <typename Container>
inline iterator_to_const<Container>&
iterator_to_const<Container>::operator--() {
--base;
return *this;
}
template <typename Container>
inline iterator_to_const<Container>
iterator_to_const<Container>::operator--(int) {
iterator_to_const tmp = *this;
operator--();
return tmp;
}
template <typename Container>
inline bool
iterator_to_const<Container>::operator==(const iterator_to_const& y) const {
return base == y.base;
}
template <typename Container>
inline bool
iterator_to_const<Container>::operator!=(const iterator_to_const& y) const {
return !operator==(y);
}
template <typename Container>
inline
const_iterator_to_const<Container>::const_iterator_to_const()
: base() {
}
template <typename Container>
inline
const_iterator_to_const<Container>
::const_iterator_to_const(const const_iterator_to_const& y)
: base(y.base) {
}
template <typename Container>
inline
const_iterator_to_const<Container>::const_iterator_to_const(const Base& b)
: base(b) {
}
template <typename Container>
inline typename const_iterator_to_const<Container>::reference
const_iterator_to_const<Container>::operator*() const {
return *base;
}
template <typename Container>
inline typename const_iterator_to_const<Container>::pointer
const_iterator_to_const<Container>::operator->() const {
return &*base;
}
template <typename Container>
inline const_iterator_to_const<Container>&
const_iterator_to_const<Container>::operator++() {
++base;
return *this;
}
template <typename Container>
inline const_iterator_to_const<Container>
const_iterator_to_const<Container>::operator++(int) {
const_iterator_to_const tmp = *this;
operator++();
return tmp;
}
template <typename Container>
inline const_iterator_to_const<Container>&
const_iterator_to_const<Container>::operator--() {
--base;
return *this;
}
template <typename Container>
inline const_iterator_to_const<Container>
const_iterator_to_const<Container>::operator--(int) {
const_iterator_to_const tmp = *this;
operator--();
return tmp;
}
template <typename Container>
inline bool
const_iterator_to_const<Container>
::operator==(const const_iterator_to_const& y) const {
return base == y.base;
}
template <typename Container>
inline bool
const_iterator_to_const<Container>
::operator!=(const const_iterator_to_const& y) const {
return !operator==(y);
}
template <typename Container>
inline
const_iterator_to_const<Container>
::const_iterator_to_const(const iterator_to_const<Container>& y)
: base(y.base) {
}
/*! \relates const_iterator_to_const */
template <typename Container>
inline bool
operator==(const iterator_to_const<Container>& x,
const const_iterator_to_const<Container>& y) {
return const_iterator_to_const<Container>(x).operator==(y);
}
/*! \relates const_iterator_to_const */
template <typename Container>
inline bool
operator!=(const iterator_to_const<Container>& x,
const const_iterator_to_const<Container>& y) {
return !(x == y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/iterator_to_const_defs.hh line 220. */
/* Automatically generated from PPL source file ../src/Powerset_defs.hh line 30. */
#include <iosfwd>
#include <iterator>
#include <list>
namespace Parma_Polyhedra_Library {
//! Swaps \p x with \p y.
/*! \relates Powerset */
template <typename D>
void swap(Powerset<D>& x, Powerset<D>& y);
//! Returns <CODE>true</CODE> if and only if \p x and \p y are equivalent.
/*! \relates Powerset */
template <typename D>
bool
operator==(const Powerset<D>& x, const Powerset<D>& y);
//! Returns <CODE>true</CODE> if and only if \p x and \p y are not equivalent.
/*! \relates Powerset */
template <typename D>
bool
operator!=(const Powerset<D>& x, const Powerset<D>& y);
namespace IO_Operators {
//! Output operator.
/*! \relates Parma_Polyhedra_Library::Powerset */
template <typename D>
std::ostream&
operator<<(std::ostream& s, const Powerset<D>& x);
} // namespace IO_Operators
} // namespace Parma_Polyhedra_Library
//! The powerset construction on a base-level domain.
/*! \ingroup PPL_CXX_interface
This class offers a generic implementation of a
<EM>powerset</EM> domain as defined in Section \ref powerset.
Besides invoking the available methods on the disjuncts of a Powerset,
this class also provides bidirectional iterators that allow for a
direct inspection of these disjuncts. For a consistent handling of
Omega-reduction, all the iterators are <EM>read-only</EM>, meaning
that the disjuncts cannot be overwritten. Rather, by using the class
<CODE>iterator</CODE>, it is possible to drop one or more disjuncts
(possibly so as to later add back modified versions). As an example
of iterator usage, the following template function drops from
powerset \p ps all the disjuncts that would have become redundant by
the addition of an external element \p d.
\code
template <typename D>
void
drop_subsumed(Powerset<D>& ps, const D& d) {
for (typename Powerset<D>::iterator i = ps.begin(),
ps_end = ps.end(), i != ps_end; )
if (i->definitely_entails(d))
i = ps.drop_disjunct(i);
else
++i;
}
\endcode
The template class D must provide the following methods.
\code
memory_size_type total_memory_in_bytes() const
\endcode
Returns a lower bound on the total size in bytes of the memory
occupied by the instance of D.
\code
bool is_top() const
\endcode
Returns <CODE>true</CODE> if and only if the instance of D is the top
element of the domain.
\code
bool is_bottom() const
\endcode
Returns <CODE>true</CODE> if and only if the instance of D is the
bottom element of the domain.
\code
bool definitely_entails(const D& y) const
\endcode
Returns <CODE>true</CODE> if the instance of D definitely entails
<CODE>y</CODE>. Returns <CODE>false</CODE> if the instance may not
entail <CODE>y</CODE> (i.e., if the instance does not entail
<CODE>y</CODE> or if entailment could not be decided).
\code
void upper_bound_assign(const D& y)
\endcode
Assigns to the instance of D an upper bound of the instance and
<CODE>y</CODE>.
\code
void meet_assign(const D& y)
\endcode
Assigns to the instance of D the meet of the instance and
<CODE>y</CODE>.
\code
bool OK() const
\endcode
Returns <CODE>true</CODE> if the instance of D is in a consistent
state, else returns <CODE>false</CODE>.
The following operators on the template class D must be defined.
\code
operator<<(std::ostream& s, const D& x)
\endcode
Writes a textual representation of the instance of D on
<CODE>s</CODE>.
\code
operator==(const D& x, const D& y)
\endcode
Returns <CODE>true</CODE> if and only if <CODE>x</CODE> and
<CODE>y</CODE> are equivalent D's.
\code
operator!=(const D& x, const D& y)
\endcode
Returns <CODE>true</CODE> if and only if <CODE>x</CODE> and
<CODE>y</CODE> are different D's.
*/
template <typename D>
class Parma_Polyhedra_Library::Powerset {
public:
//! \name Constructors and Destructor
//@{
/*! \brief
Default constructor: builds the bottom of the powerset constraint
system (i.e., the empty powerset).
*/
Powerset();
//! Copy constructor.
Powerset(const Powerset& y);
/*! \brief
If \p d is not bottom, builds a powerset containing only \p d.
Builds the empty powerset otherwise.
*/
explicit Powerset(const D& d);
//! Destructor.
~Powerset();
//@} // Constructors and Destructor
//! \name Member Functions that Do Not Modify the Powerset Object
//@{
/*! \brief
Returns <CODE>true</CODE> if \p *this definitely entails \p y.
Returns <CODE>false</CODE> if \p *this may not entail \p y
(i.e., if \p *this does not entail \p y or if entailment could
not be decided).
*/
bool definitely_entails(const Powerset& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is the top
element of the powerset constraint system (i.e., it represents
the universe).
*/
bool is_top() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is the bottom
element of the powerset constraint system (i.e., it represents
the empty set).
*/
bool is_bottom() const;
/*! \brief
Returns a lower bound to the total size in bytes of the memory
occupied by \p *this.
*/
memory_size_type total_memory_in_bytes() const;
/*! \brief
Returns a lower bound to the size in bytes of the memory
managed by \p *this.
*/
memory_size_type external_memory_in_bytes() const;
//! Checks if all the invariants are satisfied.
// FIXME: document and perhaps use an enum instead of a bool.
bool OK(bool disallow_bottom = false) const;
//@} // Member Functions that Do Not Modify the Powerset Object
protected:
//! A powerset is implemented as a sequence of elements.
/*!
The particular sequence employed must support efficient deletion
in any position and efficient back insertion.
*/
typedef std::list<D> Sequence;
//! Alias for the low-level iterator on the disjuncts.
typedef typename Sequence::iterator Sequence_iterator;
//! Alias for the low-level %const_iterator on the disjuncts.
typedef typename Sequence::const_iterator Sequence_const_iterator;
//! The sequence container holding powerset's elements.
Sequence sequence;
//! If <CODE>true</CODE>, \p *this is Omega-reduced.
mutable bool reduced;
public:
// Sequence manipulation types, accessors and modifiers
typedef typename Sequence::size_type size_type;
typedef typename Sequence::value_type value_type;
/*! \brief
Alias for a <EM>read-only</EM> bidirectional %iterator on the
disjuncts of a Powerset element.
By using this iterator type, the disjuncts cannot be overwritten,
but they can be removed using methods
<CODE>drop_disjunct(iterator position)</CODE> and
<CODE>drop_disjuncts(iterator first, iterator last)</CODE>,
while still ensuring a correct handling of Omega-reduction.
*/
typedef iterator_to_const<Sequence> iterator;
//! A bidirectional %const_iterator on the disjuncts of a Powerset element.
typedef const_iterator_to_const<Sequence> const_iterator;
//! The reverse iterator type built from Powerset::iterator.
typedef std::reverse_iterator<iterator> reverse_iterator;
//! The reverse iterator type built from Powerset::const_iterator.
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
//! \name Member Functions for the Direct Manipulation of Disjuncts
//@{
/*! \brief
Drops from the sequence of disjuncts in \p *this all the
non-maximal elements so that \p *this is non-redundant.
This method is declared <CODE>const</CODE> because, even though
Omega-reduction may change the syntactic representation of \p *this,
its semantics will be unchanged.
*/
void omega_reduce() const;
//! Returns the number of disjuncts.
size_type size() const;
/*! \brief
Returns <CODE>true</CODE> if and only if there are no disjuncts in
\p *this.
*/
bool empty() const;
/*! \brief
Returns an iterator pointing to the first disjunct, if \p *this
is not empty; otherwise, returns the past-the-end iterator.
*/
iterator begin();
//! Returns the past-the-end iterator.
iterator end();
/*! \brief
Returns a const_iterator pointing to the first disjunct, if \p *this
is not empty; otherwise, returns the past-the-end const_iterator.
*/
const_iterator begin() const;
//! Returns the past-the-end const_iterator.
const_iterator end() const;
/*! \brief
Returns a reverse_iterator pointing to the last disjunct, if \p *this
is not empty; otherwise, returns the before-the-start reverse_iterator.
*/
reverse_iterator rbegin();
//! Returns the before-the-start reverse_iterator.
reverse_iterator rend();
/*! \brief
Returns a const_reverse_iterator pointing to the last disjunct,
if \p *this is not empty; otherwise, returns the before-the-start
const_reverse_iterator.
*/
const_reverse_iterator rbegin() const;
//! Returns the before-the-start const_reverse_iterator.
const_reverse_iterator rend() const;
//! Adds to \p *this the disjunct \p d.
void add_disjunct(const D& d);
/*! \brief
Drops the disjunct in \p *this pointed to by \p position, returning
an iterator to the disjunct following \p position.
*/
iterator drop_disjunct(iterator position);
//! Drops all the disjuncts from \p first to \p last (excluded).
void drop_disjuncts(iterator first, iterator last);
//! Drops all the disjuncts, making \p *this an empty powerset.
void clear();
//@} // Member Functions for the Direct Manipulation of Disjuncts
//! \name Member Functions that May Modify the Powerset Object
//@{
//! The assignment operator.
Powerset& operator=(const Powerset& y);
//! Swaps \p *this with \p y.
void m_swap(Powerset& y);
//! Assigns to \p *this the least upper bound of \p *this and \p y.
void least_upper_bound_assign(const Powerset& y);
//! Assigns to \p *this an upper bound of \p *this and \p y.
/*!
The result will be the least upper bound of \p *this and \p y.
*/
void upper_bound_assign(const Powerset& y);
/*! \brief
Assigns to \p *this the least upper bound of \p *this and \p y
and returns \c true.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
bool upper_bound_assign_if_exact(const Powerset& y);
//! Assigns to \p *this the meet of \p *this and \p y.
void meet_assign(const Powerset& y);
/*! \brief
If \p *this is not empty (i.e., it is not the bottom element),
it is reduced to a singleton obtained by computing an upper-bound
of all the disjuncts.
*/
void collapse();
//@} // Member Functions that May Modify the Powerset element
protected:
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this does not contain
non-maximal elements.
*/
bool is_omega_reduced() const;
/*! \brief Upon return, \p *this will contain at most \p
max_disjuncts elements; the set of disjuncts in positions greater
than or equal to \p max_disjuncts, will be replaced at that
position by their upper-bound.
*/
void collapse(unsigned max_disjuncts);
/*! \brief
Adds to \p *this the disjunct \p d,
assuming \p d is not the bottom element and ensuring
partial Omega-reduction.
If \p d is not the bottom element and is not Omega-redundant with
respect to elements in positions between \p first and \p last, all
elements in these positions that would be made Omega-redundant by the
addition of \p d are dropped and \p d is added to the reduced
sequence.
If \p *this is reduced before an invocation of this method,
it will be reduced upon successful return from the method.
*/
iterator add_non_bottom_disjunct_preserve_reduction(const D& d,
iterator first,
iterator last);
/*! \brief
Adds to \p *this the disjunct \p d, assuming \p d is not the
bottom element and preserving Omega-reduction.
If \p *this is reduced before an invocation of this method,
it will be reduced upon successful return from the method.
*/
void add_non_bottom_disjunct_preserve_reduction(const D& d);
/*! \brief
Assigns to \p *this the result of applying \p op_assign pairwise
to the elements in \p *this and \p y.
The elements of the powerset result are obtained by applying
\p op_assign to each pair of elements whose components are drawn
from \p *this and \p y, respectively.
*/
template <typename Binary_Operator_Assign>
void pairwise_apply_assign(const Powerset& y,
Binary_Operator_Assign op_assign);
private:
/*! \brief
Does the hard work of checking whether \p *this contains non-maximal
elements and returns <CODE>true</CODE> if and only if it does not.
*/
bool check_omega_reduced() const;
/*! \brief
Replaces the disjunct \p *sink by an upper bound of itself and
all the disjuncts following it.
*/
void collapse(Sequence_iterator sink);
};
/* Automatically generated from PPL source file ../src/Powerset_inlines.hh line 1. */
/* Powerset class implementation: inline functions.
*/
#include <algorithm>
/* Automatically generated from PPL source file ../src/Powerset_inlines.hh line 29. */
namespace Parma_Polyhedra_Library {
template <typename D>
inline typename Powerset<D>::iterator
Powerset<D>::begin() {
return sequence.begin();
}
template <typename D>
inline typename Powerset<D>::iterator
Powerset<D>::end() {
return sequence.end();
}
template <typename D>
inline typename Powerset<D>::const_iterator
Powerset<D>::begin() const {
return sequence.begin();
}
template <typename D>
inline typename Powerset<D>::const_iterator
Powerset<D>::end() const {
return sequence.end();
}
template <typename D>
inline typename Powerset<D>::reverse_iterator
Powerset<D>::rbegin() {
return reverse_iterator(end());
}
template <typename D>
inline typename Powerset<D>::reverse_iterator
Powerset<D>::rend() {
return reverse_iterator(begin());
}
template <typename D>
inline typename Powerset<D>::const_reverse_iterator
Powerset<D>::rbegin() const {
return const_reverse_iterator(end());
}
template <typename D>
inline typename Powerset<D>::const_reverse_iterator
Powerset<D>::rend() const {
return const_reverse_iterator(begin());
}
template <typename D>
inline typename Powerset<D>::size_type
Powerset<D>::size() const {
return sequence.size();
}
template <typename D>
inline bool
Powerset<D>::empty() const {
return sequence.empty();
}
template <typename D>
inline typename Powerset<D>::iterator
Powerset<D>::drop_disjunct(iterator position) {
return sequence.erase(position.base);
}
template <typename D>
inline void
Powerset<D>::drop_disjuncts(iterator first, iterator last) {
sequence.erase(first.base, last.base);
}
template <typename D>
inline void
Powerset<D>::clear() {
sequence.clear();
}
template <typename D>
inline
Powerset<D>::Powerset(const Powerset& y)
: sequence(y.sequence), reduced(y.reduced) {
}
template <typename D>
inline Powerset<D>&
Powerset<D>::operator=(const Powerset& y) {
sequence = y.sequence;
reduced = y.reduced;
return *this;
}
template <typename D>
inline void
Powerset<D>::m_swap(Powerset& y) {
using std::swap;
swap(sequence, y.sequence);
swap(reduced, y.reduced);
}
template <typename D>
inline
Powerset<D>::Powerset()
: sequence(), reduced(true) {
}
template <typename D>
inline
Powerset<D>::Powerset(const D& d)
: sequence(), reduced(false) {
sequence.push_back(d);
PPL_ASSERT_HEAVY(OK());
}
template <typename D>
inline
Powerset<D>::~Powerset() {
}
template <typename D>
inline void
Powerset<D>::add_non_bottom_disjunct_preserve_reduction(const D& d) {
// !d.is_bottom() is asserted by the callee.
add_non_bottom_disjunct_preserve_reduction(d, begin(), end());
}
template <typename D>
inline void
Powerset<D>::add_disjunct(const D& d) {
sequence.push_back(d);
reduced = false;
}
/*! \relates Powerset */
template <typename D>
inline
bool operator!=(const Powerset<D>& x, const Powerset<D>& y) {
return !(x == y);
}
template <typename D>
inline bool
Powerset<D>::is_top() const {
// Must perform omega-reduction for correctness.
omega_reduce();
const_iterator xi = begin();
const_iterator x_end = end();
return xi != x_end && xi->is_top() && ++xi == x_end;
}
template <typename D>
inline bool
Powerset<D>::is_bottom() const {
// Must perform omega-reduction for correctness.
omega_reduce();
return empty();
}
template <typename D>
inline void
Powerset<D>::collapse() {
if (!empty())
collapse(sequence.begin());
}
template <typename D>
inline void
Powerset<D>::meet_assign(const Powerset& y) {
pairwise_apply_assign(y, std::mem_fun_ref(&D::meet_assign));
}
template <typename D>
inline void
Powerset<D>::upper_bound_assign(const Powerset& y) {
least_upper_bound_assign(y);
}
template <typename D>
inline bool
Powerset<D>::upper_bound_assign_if_exact(const Powerset& y) {
least_upper_bound_assign(y);
return true;
}
template <typename D>
inline memory_size_type
Powerset<D>::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
/*! \relates Powerset */
template <typename D>
inline void
swap(Powerset<D>& x, Powerset<D>& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Powerset_templates.hh line 1. */
/* Powerset class implementation: non-inline template functions.
*/
/* Automatically generated from PPL source file ../src/Powerset_templates.hh line 28. */
#include <algorithm>
/* Automatically generated from PPL source file ../src/Powerset_templates.hh line 30. */
#include <iostream>
namespace Parma_Polyhedra_Library {
template <typename D>
void
Powerset<D>::collapse(const Sequence_iterator sink) {
PPL_ASSERT(sink != sequence.end());
D& d = *sink;
iterator x_sink = sink;
iterator next_x_sink = x_sink;
++next_x_sink;
iterator x_end = end();
for (const_iterator xi = next_x_sink; xi != x_end; ++xi)
d.upper_bound_assign(*xi);
// Drop the surplus disjuncts.
drop_disjuncts(next_x_sink, x_end);
// Ensure omega-reduction.
for (iterator xi = begin(); xi != x_sink; )
if (xi->definitely_entails(d))
xi = drop_disjunct(xi);
else
++xi;
PPL_ASSERT_HEAVY(OK());
}
template <typename D>
void
Powerset<D>::omega_reduce() const {
if (reduced)
return;
Powerset& x = const_cast<Powerset&>(*this);
// First remove all bottom elements.
for (iterator xi = x.begin(), x_end = x.end(); xi != x_end; )
if (xi->is_bottom())
xi = x.drop_disjunct(xi);
else
++xi;
// Then remove non-maximal elements.
for (iterator xi = x.begin(); xi != x.end(); ) {
const D& xv = *xi;
bool dropping_xi = false;
for (iterator yi = x.begin(); yi != x.end(); )
if (xi == yi)
++yi;
else {
const D& yv = *yi;
if (yv.definitely_entails(xv))
yi = x.drop_disjunct(yi);
else if (xv.definitely_entails(yv)) {
dropping_xi = true;
break;
}
else
++yi;
}
if (dropping_xi)
xi = x.drop_disjunct(xi);
else
++xi;
if (abandon_expensive_computations != 0 && xi != x.end()) {
// Hurry up!
x.collapse(xi.base);
break;
}
}
reduced = true;
PPL_ASSERT_HEAVY(OK());
}
template <typename D>
void
Powerset<D>::collapse(const unsigned max_disjuncts) {
PPL_ASSERT(max_disjuncts > 0);
// Omega-reduce before counting the number of disjuncts.
omega_reduce();
size_type n = size();
if (n > max_disjuncts) {
// Let `i' point to the last disjunct that will survive.
iterator i = begin();
std::advance(i, max_disjuncts-1);
// This disjunct will be assigned an upper-bound of itself and of
// all the disjuncts that follow.
collapse(i.base);
}
PPL_ASSERT_HEAVY(OK());
PPL_ASSERT(is_omega_reduced());
}
template <typename D>
bool
Powerset<D>::check_omega_reduced() const {
for (const_iterator x_begin = begin(), x_end = end(),
xi = x_begin; xi != x_end; ++xi) {
const D& xv = *xi;
if (xv.is_bottom())
return false;
for (const_iterator yi = x_begin; yi != x_end; ++yi) {
if (xi == yi)
continue;
const D& yv = *yi;
if (xv.definitely_entails(yv) || yv.definitely_entails(xv))
return false;
}
}
return true;
}
template <typename D>
bool
Powerset<D>::is_omega_reduced() const {
if (!reduced && check_omega_reduced())
reduced = true;
return reduced;
}
template <typename D>
typename Powerset<D>::iterator
Powerset<D>::add_non_bottom_disjunct_preserve_reduction(const D& d,
iterator first,
iterator last) {
PPL_ASSERT_HEAVY(!d.is_bottom());
for (iterator xi = first; xi != last; ) {
const D& xv = *xi;
if (d.definitely_entails(xv))
return first;
else if (xv.definitely_entails(d)) {
if (xi == first)
++first;
xi = drop_disjunct(xi);
}
else
++xi;
}
sequence.push_back(d);
PPL_ASSERT_HEAVY(OK());
return first;
}
template <typename D>
bool
Powerset<D>::definitely_entails(const Powerset& y) const {
const Powerset<D>& x = *this;
bool found = true;
for (const_iterator xi = x.begin(),
x_end = x.end(); found && xi != x_end; ++xi) {
found = false;
for (const_iterator yi = y.begin(),
y_end = y.end(); !found && yi != y_end; ++yi)
found = (*xi).definitely_entails(*yi);
}
return found;
}
/*! \relates Powerset */
template <typename D>
bool
operator==(const Powerset<D>& x, const Powerset<D>& y) {
x.omega_reduce();
y.omega_reduce();
if (x.size() != y.size())
return false;
// Take a copy of `y' and work with it.
Powerset<D> z = y;
for (typename Powerset<D>::const_iterator xi = x.begin(),
x_end = x.end(); xi != x_end; ++xi) {
typename Powerset<D>::iterator zi = z.begin();
typename Powerset<D>::iterator z_end = z.end();
zi = std::find(zi, z_end, *xi);
if (zi == z_end)
return false;
else
z.drop_disjunct(zi);
}
return true;
}
template <typename D>
template <typename Binary_Operator_Assign>
void
Powerset<D>::pairwise_apply_assign(const Powerset& y,
Binary_Operator_Assign op_assign) {
// Ensure omega-reduction here, since what follows has quadratic complexity.
omega_reduce();
y.omega_reduce();
Sequence new_sequence;
for (const_iterator xi = begin(), x_end = end(),
y_begin = y.begin(), y_end = y.end(); xi != x_end; ++xi)
for (const_iterator yi = y_begin; yi != y_end; ++yi) {
D zi = *xi;
op_assign(zi, *yi);
if (!zi.is_bottom())
new_sequence.push_back(zi);
}
// Put the new sequence in place.
using std::swap;
swap(sequence, new_sequence);
reduced = false;
PPL_ASSERT_HEAVY(OK());
}
template <typename D>
void
Powerset<D>::least_upper_bound_assign(const Powerset& y) {
// Ensure omega-reduction here, since what follows has quadratic complexity.
omega_reduce();
y.omega_reduce();
iterator old_begin = begin();
iterator old_end = end();
for (const_iterator i = y.begin(), y_end = y.end(); i != y_end; ++i)
old_begin = add_non_bottom_disjunct_preserve_reduction(*i,
old_begin,
old_end);
PPL_ASSERT_HEAVY(OK());
}
namespace IO_Operators {
/*! \relates Parma_Polyhedra_Library::Powerset */
template <typename D>
std::ostream&
operator<<(std::ostream& s, const Powerset<D>& x) {
if (x.is_bottom())
s << "false";
else if (x.is_top())
s << "true";
else
for (typename Powerset<D>::const_iterator i = x.begin(),
x_end = x.end(); i != x_end; ) {
s << "{ " << *i << " }";
++i;
if (i != x_end)
s << ", ";
}
return s;
}
} // namespace IO_Operators
template <typename D>
memory_size_type
Powerset<D>::external_memory_in_bytes() const {
memory_size_type bytes = 0;
for (const_iterator xi = begin(), x_end = end(); xi != x_end; ++xi) {
bytes += xi->total_memory_in_bytes();
// We assume there is at least a forward and a backward link, and
// that the pointers implementing them are at least the size of
// pointers to `D'.
bytes += 2*sizeof(D*);
}
return bytes;
}
template <typename D>
bool
Powerset<D>::OK(const bool disallow_bottom) const {
for (const_iterator xi = begin(), x_end = end(); xi != x_end; ++xi) {
if (!xi->OK())
return false;
if (disallow_bottom && xi->is_bottom()) {
#ifndef NDEBUG
std::cerr << "Bottom element in powerset!"
<< std::endl;
#endif
return false;
}
}
if (reduced && !check_omega_reduced()) {
#ifndef NDEBUG
std::cerr << "Powerset claims to be reduced, but it is not!"
<< std::endl;
#endif
return false;
}
return true;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Powerset_defs.hh line 449. */
/* Automatically generated from PPL source file ../src/Pointset_Powerset_defs.hh line 44. */
#include <iosfwd>
#include <list>
#include <map>
//! The powerset construction instantiated on PPL pointset domains.
/*! \ingroup PPL_CXX_interface
\warning
At present, the supported instantiations for the
disjunct domain template \p PSET are the simple pointset domains:
<CODE>C_Polyhedron</CODE>,
<CODE>NNC_Polyhedron</CODE>,
<CODE>Grid</CODE>,
<CODE>Octagonal_Shape\<T\></CODE>,
<CODE>BD_Shape\<T\></CODE>,
<CODE>Box\<T\></CODE>.
*/
template <typename PSET>
class Parma_Polyhedra_Library::Pointset_Powerset
: public Parma_Polyhedra_Library::Powerset
<Parma_Polyhedra_Library::Determinate<PSET> > {
public:
typedef PSET element_type;
private:
typedef Determinate<PSET> Det_PSET;
typedef Powerset<Det_PSET> Base;
public:
//! Returns the maximum space dimension a Pointset_Powerset<PSET> can handle.
static dimension_type max_space_dimension();
//! \name Constructors
//@{
//! Builds a universe (top) or empty (bottom) Pointset_Powerset.
/*!
\param num_dimensions
The number of dimensions of the vector space enclosing the powerset;
\param kind
Specifies whether the universe or the empty powerset has to be built.
*/
explicit
Pointset_Powerset(dimension_type num_dimensions = 0,
Degenerate_Element kind = UNIVERSE);
//! Ordinary copy constructor.
/*!
The complexity argument is ignored.
*/
Pointset_Powerset(const Pointset_Powerset& y,
Complexity_Class complexity = ANY_COMPLEXITY);
/*! \brief
Conversion constructor: the type <CODE>QH</CODE> of the disjuncts
in the source powerset is different from <CODE>PSET</CODE>.
\param y
The powerset to be used to build the new powerset.
\param complexity
The maximal complexity of any algorithms used.
*/
template <typename QH>
explicit Pointset_Powerset(const Pointset_Powerset<QH>& y,
Complexity_Class complexity = ANY_COMPLEXITY);
/*! \brief
Creates a Pointset_Powerset from a product
This will be created as a single disjunct of type PSET that
approximates the product.
*/
template <typename QH1, typename QH2, typename R>
explicit
Pointset_Powerset(const Partially_Reduced_Product<QH1, QH2, R>& prp,
Complexity_Class complexity = ANY_COMPLEXITY);
/*! \brief
Creates a Pointset_Powerset with a single disjunct approximating
the system of constraints \p cs.
*/
explicit Pointset_Powerset(const Constraint_System& cs);
/*! \brief
Creates a Pointset_Powerset with a single disjunct approximating
the system of congruences \p cgs.
*/
explicit Pointset_Powerset(const Congruence_System& cgs);
//! Builds a pointset_powerset out of a closed polyhedron.
/*!
Builds a powerset that is either empty (if the polyhedron is found
to be empty) or contains a single disjunct approximating the
polyhedron; this must only use algorithms that do not exceed the
specified complexity. The powerset inherits the space dimension
of the polyhedron.
\param ph
The closed polyhedron to be used to build the powerset.
\param complexity
The maximal complexity of any algorithms used.
\exception std::length_error
Thrown if the space dimension of \p ph exceeds the maximum
allowed space dimension.
*/
explicit Pointset_Powerset(const C_Polyhedron& ph,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a pointset_powerset out of an nnc polyhedron.
/*!
Builds a powerset that is either empty (if the polyhedron is found
to be empty) or contains a single disjunct approximating the
polyhedron; this must only use algorithms that do not exceed the
specified complexity. The powerset inherits the space dimension
of the polyhedron.
\param ph
The closed polyhedron to be used to build the powerset.
\param complexity
The maximal complexity of any algorithms used.
\exception std::length_error
Thrown if the space dimension of \p ph exceeds the maximum
allowed space dimension.
*/
explicit Pointset_Powerset(const NNC_Polyhedron& ph,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a pointset_powerset out of a grid.
/*!
If the grid is nonempty, builds a powerset containing a single
disjunct approximating the grid. Builds the empty powerset
otherwise. The powerset inherits the space dimension of the grid.
\param gr
The grid to be used to build the powerset.
\param complexity
This argument is ignored.
\exception std::length_error
Thrown if the space dimension of \p gr exceeds the maximum
allowed space dimension.
*/
explicit Pointset_Powerset(const Grid& gr,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a pointset_powerset out of an octagonal shape.
/*!
If the octagonal shape is nonempty, builds a powerset
containing a single disjunct approximating the octagonal
shape. Builds the empty powerset otherwise. The powerset
inherits the space dimension of the octagonal shape.
\param os
The octagonal shape to be used to build the powerset.
\param complexity
This argument is ignored.
\exception std::length_error
Thrown if the space dimension of \p os exceeds the maximum
allowed space dimension.
*/
template <typename T>
explicit Pointset_Powerset(const Octagonal_Shape<T>& os,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a pointset_powerset out of a bd shape.
/*!
If the bd shape is nonempty, builds a powerset containing a
single disjunct approximating the bd shape. Builds the empty
powerset otherwise. The powerset inherits the space dimension
of the bd shape.
\param bds
The bd shape to be used to build the powerset.
\param complexity
This argument is ignored.
\exception std::length_error
Thrown if the space dimension of \p bds exceeds the maximum
allowed space dimension.
*/
template <typename T>
explicit Pointset_Powerset(const BD_Shape<T>& bds,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a pointset_powerset out of a box.
/*!
If the box is nonempty, builds a powerset containing a single
disjunct approximating the box. Builds the empty powerset
otherwise. The powerset inherits the space dimension of the box.
\param box
The box to be used to build the powerset.
\param complexity
This argument is ignored.
\exception std::length_error
Thrown if the space dimension of \p box exceeds the maximum
allowed space dimension.
*/
template <typename Interval>
explicit Pointset_Powerset(const Box<Interval>& box,
Complexity_Class complexity = ANY_COMPLEXITY);
//@} // Constructors and Destructor
//! \name Member Functions that Do Not Modify the Pointset_Powerset
//@{
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type affine_dimension() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is
an empty powerset.
*/
bool is_empty() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
is the top element of the powerset lattice.
*/
bool is_universe() const;
/*! \brief
Returns <CODE>true</CODE> if and only if all the disjuncts
in \p *this are topologically closed.
*/
bool is_topologically_closed() const;
/*! \brief
Returns <CODE>true</CODE> if and only if all elements in \p *this
are bounded.
*/
bool is_bounded() const;
//! Returns <CODE>true</CODE> if and only if \p *this and \p y are disjoint.
/*!
\exception std::invalid_argument
Thrown if \p x and \p y are topology-incompatible or
dimension-incompatible.
*/
bool is_disjoint_from(const Pointset_Powerset& y) const;
//! Returns <CODE>true</CODE> if and only if \p *this is discrete.
bool is_discrete() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p var is constrained in
\p *this.
\exception std::invalid_argument
Thrown if \p var is not a space dimension of \p *this.
\note
A variable is constrained if there exists a non-redundant disjunct
that is constraining the variable: this definition relies on the
powerset lattice structure and may be somewhat different from the
geometric intuition.
For instance, variable \f$x\f$ is constrained in the powerset
\f[
\mathit{ps} = \bigl\{ \{ x \geq 0 \}, \{ x \leq 0 \} \bigr\},
\f]
even though \f$\mathit{ps}\f$ is geometrically equal to the
whole vector space.
*/
bool constrains(Variable var) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p expr is
bounded from above in \p *this.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds_from_above(const Linear_Expression& expr) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p expr is
bounded from below in \p *this.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds_from_below(const Linear_Expression& expr) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from above in \p *this, in which case
the supremum value is computed.
\param expr
The linear expression to be maximized subject to \p *this;
\param sup_n
The numerator of the supremum value;
\param sup_d
The denominator of the supremum value;
\param maximum
<CODE>true</CODE> if and only if the supremum is also the maximum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from above,
<CODE>false</CODE> is returned and \p sup_n, \p sup_d
and \p maximum are left untouched.
*/
bool maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from above in \p *this, in which case
the supremum value and a point where \p expr reaches it are computed.
\param expr
The linear expression to be maximized subject to \p *this;
\param sup_n
The numerator of the supremum value;
\param sup_d
The denominator of the supremum value;
\param maximum
<CODE>true</CODE> if and only if the supremum is also the maximum value;
\param g
When maximization succeeds, will be assigned the point or
closure point where \p expr reaches its supremum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from above,
<CODE>false</CODE> is returned and \p sup_n, \p sup_d, \p maximum
and \p g are left untouched.
*/
bool maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum,
Generator& g) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from below in \p *this, in which case
the infimum value is computed.
\param expr
The linear expression to be minimized subject to \p *this;
\param inf_n
The numerator of the infimum value;
\param inf_d
The denominator of the infimum value;
\param minimum
<CODE>true</CODE> if and only if the infimum is also the minimum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from below,
<CODE>false</CODE> is returned and \p inf_n, \p inf_d
and \p minimum are left untouched.
*/
bool minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from below in \p *this, in which case
the infimum value and a point where \p expr reaches it are computed.
\param expr
The linear expression to be minimized subject to \p *this;
\param inf_n
The numerator of the infimum value;
\param inf_d
The denominator of the infimum value;
\param minimum
<CODE>true</CODE> if and only if the infimum is also the minimum value;
\param g
When minimization succeeds, will be assigned a point or
closure point where \p expr reaches its infimum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from below,
<CODE>false</CODE> is returned and \p inf_n, \p inf_d, \p minimum
and \p g are left untouched.
*/
bool minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum,
Generator& g) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this geometrically
covers \p y, i.e., if any point (in some element) of \p y is also
a point (of some element) of \p *this.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
\warning
This may be <EM>really</EM> expensive!
*/
bool geometrically_covers(const Pointset_Powerset& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is geometrically
equal to \p y, i.e., if (the elements of) \p *this and \p y
contain the same set of points.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
\warning
This may be <EM>really</EM> expensive!
*/
bool geometrically_equals(const Pointset_Powerset& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if each disjunct
of \p y is contained in a disjunct of \p *this.
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
bool contains(const Pointset_Powerset& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if each disjunct
of \p y is strictly contained in a disjunct of \p *this.
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
bool strictly_contains(const Pointset_Powerset& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
contains at least one integer point.
*/
bool contains_integer_point() const;
/*! \brief
Returns the relations holding between the powerset \p *this
and the constraint \p c.
\exception std::invalid_argument
Thrown if \p *this and constraint \p c are dimension-incompatible.
*/
Poly_Con_Relation relation_with(const Constraint& c) const;
/*! \brief
Returns the relations holding between the powerset \p *this
and the generator \p g.
\exception std::invalid_argument
Thrown if \p *this and generator \p g are dimension-incompatible.
*/
Poly_Gen_Relation relation_with(const Generator& g) const;
/*! \brief
Returns the relations holding between the powerset \p *this
and the congruence \p c.
\exception std::invalid_argument
Thrown if \p *this and congruence \p c are dimension-incompatible.
*/
Poly_Con_Relation relation_with(const Congruence& cg) const;
/*! \brief
Returns a lower bound to the total size in bytes of the memory
occupied by \p *this.
*/
memory_size_type total_memory_in_bytes() const;
/*! \brief
Returns a lower bound to the size in bytes of the memory
managed by \p *this.
*/
memory_size_type external_memory_in_bytes() const;
/*! \brief
Returns a 32-bit hash code for \p *this.
If \p x and \p y are such that <CODE>x == y</CODE>,
then <CODE>x.hash_code() == y.hash_code()</CODE>.
*/
int32_t hash_code() const;
//! Checks if all the invariants are satisfied.
bool OK() const;
//@} // Member Functions that Do Not Modify the Pointset_Powerset
//! \name Space Dimension Preserving Member Functions that May Modify the Pointset_Powerset
//@{
//! Adds to \p *this the disjunct \p ph.
/*!
\exception std::invalid_argument
Thrown if \p *this and \p ph are dimension-incompatible.
*/
void add_disjunct(const PSET& ph);
//! Intersects \p *this with constraint \p c.
/*!
\exception std::invalid_argument
Thrown if \p *this and constraint \p c are topology-incompatible
or dimension-incompatible.
*/
void add_constraint(const Constraint& c);
/*! \brief
Use the constraint \p c to refine \p *this.
\param c
The constraint to be used for refinement.
\exception std::invalid_argument
Thrown if \p *this and \p c are dimension-incompatible.
*/
void refine_with_constraint(const Constraint& c);
//! Intersects \p *this with the constraints in \p cs.
/*!
\param cs
The constraints to intersect with.
\exception std::invalid_argument
Thrown if \p *this and \p cs are topology-incompatible or
dimension-incompatible.
*/
void add_constraints(const Constraint_System& cs);
/*! \brief
Use the constraints in \p cs to refine \p *this.
\param cs
The constraints to be used for refinement.
\exception std::invalid_argument
Thrown if \p *this and \p cs are dimension-incompatible.
*/
void refine_with_constraints(const Constraint_System& cs);
//! Intersects \p *this with congruence \p cg.
/*!
\exception std::invalid_argument
Thrown if \p *this and congruence \p cg are topology-incompatible
or dimension-incompatible.
*/
void add_congruence(const Congruence& cg);
/*! \brief
Use the congruence \p cg to refine \p *this.
\param cg
The congruence to be used for refinement.
\exception std::invalid_argument
Thrown if \p *this and \p cg are dimension-incompatible.
*/
void refine_with_congruence(const Congruence& cg);
//! Intersects \p *this with the congruences in \p cgs.
/*!
\param cgs
The congruences to intersect with.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are topology-incompatible or
dimension-incompatible.
*/
void add_congruences(const Congruence_System& cgs);
/*! \brief
Use the congruences in \p cgs to refine \p *this.
\param cgs
The congruences to be used for refinement.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible.
*/
void refine_with_congruences(const Congruence_System& cgs);
/*! \brief
Computes the \ref Cylindrification "cylindrification" of \p *this with
respect to space dimension \p var, assigning the result to \p *this.
\param var
The space dimension that will be unconstrained.
\exception std::invalid_argument
Thrown if \p var is not a space dimension of \p *this.
*/
void unconstrain(Variable var);
/*! \brief
Computes the \ref Cylindrification "cylindrification" of \p *this with
respect to the set of space dimensions \p vars,
assigning the result to \p *this.
\param vars
The set of space dimension that will be unconstrained.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with one of the
Variable objects contained in \p vars.
*/
void unconstrain(const Variables_Set& vars);
/*! \brief
Possibly tightens \p *this by dropping some points with non-integer
coordinates.
\param complexity
The maximal complexity of any algorithms used.
\note
Currently there is no optimality guarantee, not even if
\p complexity is <CODE>ANY_COMPLEXITY</CODE>.
*/
void drop_some_non_integer_points(Complexity_Class complexity
= ANY_COMPLEXITY);
/*! \brief
Possibly tightens \p *this by dropping some points with non-integer
coordinates for the space dimensions corresponding to \p vars.
\param vars
Points with non-integer coordinates for these variables/space-dimensions
can be discarded.
\param complexity
The maximal complexity of any algorithms used.
\note
Currently there is no optimality guarantee, not even if
\p complexity is <CODE>ANY_COMPLEXITY</CODE>.
*/
void drop_some_non_integer_points(const Variables_Set& vars,
Complexity_Class complexity
= ANY_COMPLEXITY);
//! Assigns to \p *this its topological closure.
void topological_closure_assign();
//! Assigns to \p *this the intersection of \p *this and \p y.
/*!
The result is obtained by intersecting each disjunct in \p *this
with each disjunct in \p y and collecting all these intersections.
*/
void intersection_assign(const Pointset_Powerset& y);
/*! \brief
Assigns to \p *this an (a smallest)
over-approximation as a powerset of the disjunct domain of the
set-theoretical difference of \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void difference_assign(const Pointset_Powerset& y);
/*! \brief
Assigns to \p *this a \ref Powerset_Meet_Preserving_Simplification
"meet-preserving simplification" of \p *this with respect to \p y.
If \c false is returned, then the intersection is empty.
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
bool simplify_using_context_assign(const Pointset_Powerset& y);
/*! \brief
Assigns to \p *this the
\ref Single_Update_Affine_Functions "affine image"
of \p *this under the function mapping variable \p var to the
affine expression specified by \p expr and \p denominator.
\param var
The variable to which the affine expression is assigned;
\param expr
The numerator of the affine expression;
\param denominator
The denominator of the affine expression (optional argument with
default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of
\p *this.
*/
void affine_image(Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the
\ref Single_Update_Affine_Functions "affine preimage"
of \p *this under the function mapping variable \p var to the
affine expression specified by \p expr and \p denominator.
\param var
The variable to which the affine expression is assigned;
\param expr
The numerator of the affine expression;
\param denominator
The denominator of the affine expression (optional argument with
default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of
\p *this.
*/
void affine_preimage(Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the image of \p *this with respect to the
\ref Generalized_Affine_Relations "generalized affine relation"
\f$\mathrm{var}' \relsym \frac{\mathrm{expr}}{\mathrm{denominator}}\f$,
where \f$\mathord{\relsym}\f$ is the relation symbol encoded
by \p relsym.
\param var
The left hand side variable of the generalized affine relation;
\param relsym
The relation symbol;
\param expr
The numerator of the right hand side affine expression;
\param denominator
The denominator of the right hand side affine expression (optional
argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of \p *this
or if \p *this is a C_Polyhedron and \p relsym is a strict
relation symbol.
*/
void generalized_affine_image(Variable var,
Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Generalized_Affine_Relations "generalized affine relation"
\f$\mathrm{var}' \relsym \frac{\mathrm{expr}}{\mathrm{denominator}}\f$,
where \f$\mathord{\relsym}\f$ is the relation symbol encoded
by \p relsym.
\param var
The left hand side variable of the generalized affine relation;
\param relsym
The relation symbol;
\param expr
The numerator of the right hand side affine expression;
\param denominator
The denominator of the right hand side affine expression (optional
argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of \p *this
or if \p *this is a C_Polyhedron and \p relsym is a strict
relation symbol.
*/
void
generalized_affine_preimage(Variable var,
Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the image of \p *this with respect to the
\ref Generalized_Affine_Relations "generalized affine relation"
\f$\mathrm{lhs}' \relsym \mathrm{rhs}\f$, where
\f$\mathord{\relsym}\f$ is the relation symbol encoded by \p relsym.
\param lhs
The left hand side affine expression;
\param relsym
The relation symbol;
\param rhs
The right hand side affine expression.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p lhs or \p rhs
or if \p *this is a C_Polyhedron and \p relsym is a strict
relation symbol.
*/
void generalized_affine_image(const Linear_Expression& lhs,
Relation_Symbol relsym,
const Linear_Expression& rhs);
/*! \brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Generalized_Affine_Relations "generalized affine relation"
\f$\mathrm{lhs}' \relsym \mathrm{rhs}\f$, where
\f$\mathord{\relsym}\f$ is the relation symbol encoded by \p relsym.
\param lhs
The left hand side affine expression;
\param relsym
The relation symbol;
\param rhs
The right hand side affine expression.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p lhs or \p rhs
or if \p *this is a C_Polyhedron and \p relsym is a strict
relation symbol.
*/
void generalized_affine_preimage(const Linear_Expression& lhs,
Relation_Symbol relsym,
const Linear_Expression& rhs);
/*!
\brief
Assigns to \p *this the image of \p *this with respect to the
\ref Single_Update_Bounded_Affine_Relations "bounded affine relation"
\f$\frac{\mathrm{lb\_expr}}{\mathrm{denominator}}
\leq \mathrm{var}'
\leq \frac{\mathrm{ub\_expr}}{\mathrm{denominator}}\f$.
\param var
The variable updated by the affine relation;
\param lb_expr
The numerator of the lower bounding affine expression;
\param ub_expr
The numerator of the upper bounding affine expression;
\param denominator
The (common) denominator for the lower and upper bounding
affine expressions (optional argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p lb_expr (resp., \p ub_expr)
and \p *this are dimension-incompatible or if \p var is not a space
dimension of \p *this.
*/
void bounded_affine_image(Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*!
\brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Single_Update_Bounded_Affine_Relations "bounded affine relation"
\f$\frac{\mathrm{lb\_expr}}{\mathrm{denominator}}
\leq \mathrm{var}'
\leq \frac{\mathrm{ub\_expr}}{\mathrm{denominator}}\f$.
\param var
The variable updated by the affine relation;
\param lb_expr
The numerator of the lower bounding affine expression;
\param ub_expr
The numerator of the upper bounding affine expression;
\param denominator
The (common) denominator for the lower and upper bounding
affine expressions (optional argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p lb_expr (resp., \p ub_expr)
and \p *this are dimension-incompatible or if \p var is not a space
dimension of \p *this.
*/
void bounded_affine_preimage(Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the result of computing the
\ref Time_Elapse_Operator "time-elapse" between \p *this and \p y.
The result is obtained by computing the pairwise
\ref Time_Elapse_Operator "time elapse" of each disjunct
in \p *this with each disjunct in \p y.
*/
void time_elapse_assign(const Pointset_Powerset& y);
/*! \brief
\ref Wrapping_Operator "Wraps" the specified dimensions of the
vector space.
\param vars
The set of Variable objects corresponding to the space dimensions
to be wrapped.
\param w
The width of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param r
The representation of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param o
The overflow behavior of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param cs_p
Possibly null pointer to a constraint system whose variables
are contained in \p vars. If <CODE>*cs_p</CODE> depends on
variables not in \p vars, the behavior is undefined.
When non-null, the pointed-to constraint system is assumed to
represent the conditional or looping construct guard with respect
to which wrapping is performed. Since wrapping requires the
computation of upper bounds and due to non-distributivity of
constraint refinement over upper bounds, passing a constraint
system in this way can be more precise than refining the result of
the wrapping operation with the constraints in <CODE>*cs_p</CODE>.
\param complexity_threshold
A precision parameter of the \ref Wrapping_Operator "wrapping operator":
higher values result in possibly improved precision.
\param wrap_individually
<CODE>true</CODE> if the dimensions should be wrapped individually
(something that results in much greater efficiency to the detriment of
precision).
\exception std::invalid_argument
Thrown if <CODE>*cs_p</CODE> is dimension-incompatible with
\p vars, or if \p *this is dimension-incompatible \p vars or with
<CODE>*cs_p</CODE>.
*/
void wrap_assign(const Variables_Set& vars,
Bounded_Integer_Type_Width w,
Bounded_Integer_Type_Representation r,
Bounded_Integer_Type_Overflow o,
const Constraint_System* cs_p = 0,
unsigned complexity_threshold = 16,
bool wrap_individually = true);
/*! \brief
Assign to \p *this the result of (recursively) merging together
the pairs of disjuncts whose upper-bound is the same as their
set-theoretical union.
On exit, for all the pairs \f$\cP\f$, \f$\cQ\f$ of different disjuncts
in \p *this, we have \f$\cP \uplus \cQ \neq \cP \union \cQ\f$.
*/
void pairwise_reduce();
/*! \brief
Assigns to \p *this the result of applying the
\ref pps_bgp99_extrapolation "BGP99 extrapolation operator"
to \p *this and \p y, using the widening function \p widen_fun
and the cardinality threshold \p max_disjuncts.
\param y
A powerset that <EM>must</EM> definitely entail \p *this;
\param widen_fun
The widening function to be used on polyhedra objects. It is obtained
from the corresponding widening method by using the helper function
Parma_Polyhedra_Library::widen_fun_ref. Legal values are, e.g.,
<CODE>widen_fun_ref(&Polyhedron::H79_widening_assign)</CODE> and
<CODE>widen_fun_ref(&Polyhedron::limited_H79_extrapolation_assign, cs)</CODE>;
\param max_disjuncts
The maximum number of disjuncts occurring in the powerset \p *this
<EM>before</EM> starting the computation. If this number is exceeded,
some of the disjuncts in \p *this are collapsed (i.e., joined together).
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
For a description of the extrapolation operator,
see \ref BGP99 "[BGP99]" and \ref BHZ03b "[BHZ03b]".
*/
template <typename Widening>
void BGP99_extrapolation_assign(const Pointset_Powerset& y,
Widening widen_fun,
unsigned max_disjuncts);
/*! \brief
Assigns to \p *this the result of computing the
\ref pps_certificate_widening "BHZ03-widening"
between \p *this and \p y, using the widening function \p widen_fun
certified by the convergence certificate \p Cert.
\param y
The finite powerset computed in the previous iteration step.
It <EM>must</EM> definitely entail \p *this;
\param widen_fun
The widening function to be used on disjuncts.
It is obtained from the corresponding widening method by using
the helper function widen_fun_ref. Legal values are, e.g.,
<CODE>widen_fun_ref(&Polyhedron::H79_widening_assign)</CODE> and
<CODE>widen_fun_ref(&Polyhedron::limited_H79_extrapolation_assign, cs)</CODE>.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
\warning
In order to obtain a proper widening operator, the template parameter
\p Cert should be a finite convergence certificate for the base-level
widening function \p widen_fun; otherwise, an extrapolation operator is
obtained.
For a description of the methods that should be provided
by \p Cert, see BHRZ03_Certificate or H79_Certificate.
*/
template <typename Cert, typename Widening>
void BHZ03_widening_assign(const Pointset_Powerset& y, Widening widen_fun);
//@} // Space Dimension Preserving Member Functions that May Modify [...]
//! \name Member Functions that May Modify the Dimension of the Vector Space
//@{
/*! \brief
The assignment operator
(\p *this and \p y can be dimension-incompatible).
*/
Pointset_Powerset& operator=(const Pointset_Powerset& y);
/*! \brief
Conversion assignment: the type <CODE>QH</CODE> of the disjuncts
in the source powerset is different from <CODE>PSET</CODE>
(\p *this and \p y can be dimension-incompatible).
*/
template <typename QH>
Pointset_Powerset& operator=(const Pointset_Powerset<QH>& y);
//! Swaps \p *this with \p y.
void m_swap(Pointset_Powerset& y);
/*! \brief
Adds \p m new dimensions to the vector space containing \p *this
and embeds each disjunct in \p *this in the new space.
*/
void add_space_dimensions_and_embed(dimension_type m);
/*! \brief
Adds \p m new dimensions to the vector space containing \p *this
without embedding the disjuncts in \p *this in the new space.
*/
void add_space_dimensions_and_project(dimension_type m);
//! Assigns to \p *this the concatenation of \p *this and \p y.
/*!
The result is obtained by computing the pairwise
\ref Concatenating_Polyhedra "concatenation" of each disjunct
in \p *this with each disjunct in \p y.
*/
void concatenate_assign(const Pointset_Powerset& y);
//! Removes all the specified space dimensions.
/*!
\param vars
The set of Variable objects corresponding to the space dimensions
to be removed.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with one of the
Variable objects contained in \p vars.
*/
void remove_space_dimensions(const Variables_Set& vars);
/*! \brief
Removes the higher space dimensions so that the resulting space
will have dimension \p new_dimension.
\exception std::invalid_argument
Thrown if \p new_dimensions is greater than the space dimension
of \p *this.
*/
void remove_higher_space_dimensions(dimension_type new_dimension);
/*! \brief
Remaps the dimensions of the vector space according to
a partial function.
See also Polyhedron::map_space_dimensions.
*/
template <typename Partial_Function>
void map_space_dimensions(const Partial_Function& pfunc);
//! Creates \p m copies of the space dimension corresponding to \p var.
/*!
\param var
The variable corresponding to the space dimension to be replicated;
\param m
The number of replicas to be created.
\exception std::invalid_argument
Thrown if \p var does not correspond to a dimension of the vector
space.
\exception std::length_error
Thrown if adding \p m new space dimensions would cause the vector
space to exceed dimension <CODE>max_space_dimension()</CODE>.
If \p *this has space dimension \f$n\f$, with \f$n > 0\f$,
and <CODE>var</CODE> has space dimension \f$k \leq n\f$,
then the \f$k\f$-th space dimension is
\ref Expanding_One_Dimension_of_the_Vector_Space_to_Multiple_Dimensions
"expanded" to \p m new space dimensions
\f$n\f$, \f$n+1\f$, \f$\dots\f$, \f$n+m-1\f$.
*/
void expand_space_dimension(Variable var, dimension_type m);
//! Folds the space dimensions in \p vars into \p dest.
/*!
\param vars
The set of Variable objects corresponding to the space dimensions
to be folded;
\param dest
The variable corresponding to the space dimension that is the
destination of the folding operation.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p dest or with
one of the Variable objects contained in \p vars. Also
thrown if \p dest is contained in \p vars.
If \p *this has space dimension \f$n\f$, with \f$n > 0\f$,
<CODE>dest</CODE> has space dimension \f$k \leq n\f$,
\p vars is a set of variables whose maximum space dimension
is also less than or equal to \f$n\f$, and \p dest is not a member
of \p vars, then the space dimensions corresponding to
variables in \p vars are
\ref Folding_Multiple_Dimensions_of_the_Vector_Space_into_One_Dimension
"folded" into the \f$k\f$-th space dimension.
*/
void fold_space_dimensions(const Variables_Set& vars, Variable dest);
//@} // Member Functions that May Modify the Dimension of the Vector Space
public:
typedef typename Base::size_type size_type;
typedef typename Base::value_type value_type;
typedef typename Base::iterator iterator;
typedef typename Base::const_iterator const_iterator;
typedef typename Base::reverse_iterator reverse_iterator;
typedef typename Base::const_reverse_iterator const_reverse_iterator;
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
private:
typedef typename Base::Sequence Sequence;
typedef typename Base::Sequence_iterator Sequence_iterator;
typedef typename Base::Sequence_const_iterator Sequence_const_iterator;
//! The number of dimensions of the enclosing vector space.
dimension_type space_dim;
/*! \brief
Assigns to \p dest a \ref Powerset_Meet_Preserving_Simplification
"powerset meet-preserving enlargement" of itself with respect to
\p *this. If \c false is returned, then the intersection is empty.
\note
It is assumed that \p *this and \p dest are topology-compatible
and dimension-compatible.
*/
bool intersection_preserving_enlarge_element(PSET& dest) const;
/*! \brief
Assigns to \p *this the result of applying the BGP99 heuristics
to \p *this and \p y, using the widening function \p widen_fun.
*/
template <typename Widening>
void BGP99_heuristics_assign(const Pointset_Powerset& y, Widening widen_fun);
//! Records in \p cert_ms the certificates for this set of disjuncts.
template <typename Cert>
void collect_certificates(std::map<Cert, size_type,
typename Cert::Compare>& cert_ms) const;
/*! \brief
Returns <CODE>true</CODE> if and only if the current set of disjuncts
is stabilizing with respect to the multiset of certificates \p y_cert_ms.
*/
template <typename Cert>
bool is_cert_multiset_stabilizing(const std::map<Cert, size_type,
typename Cert::Compare>&
y_cert_ms) const;
// FIXME: here it should be enough to befriend the template constructor
// template <typename QH>
// Pointset_Powerset(const Pointset_Powerset<QH>&),
// but, apparently, this cannot be done.
friend class Pointset_Powerset<NNC_Polyhedron>;
};
namespace Parma_Polyhedra_Library {
//! Swaps \p x with \p y.
/*! \relates Pointset_Powerset */
template <typename PSET>
void swap(Pointset_Powerset<PSET>& x, Pointset_Powerset<PSET>& y);
//! Partitions \p q with respect to \p p.
/*! \relates Pointset_Powerset
Let \p p and \p q be two polyhedra.
The function returns an object <CODE>r</CODE> of type
<CODE>std::pair\<PSET, Pointset_Powerset\<NNC_Polyhedron\> \></CODE>
such that
- <CODE>r.first</CODE> is the intersection of \p p and \p q;
- <CODE>r.second</CODE> has the property that all its elements are
pairwise disjoint and disjoint from \p p;
- the set-theoretical union of <CODE>r.first</CODE> with all the
elements of <CODE>r.second</CODE> gives \p q (i.e., <CODE>r</CODE>
is the representation of a partition of \p q).
\if Include_Implementation_Details
See
<A HREF="http://bugseng.com/products/ppl/Documentation/bibliography#Srivastava93">
this paper</A> for more information about the implementation.
\endif
*/
template <typename PSET>
std::pair<PSET, Pointset_Powerset<NNC_Polyhedron> >
linear_partition(const PSET& p, const PSET& q);
/*! \brief
Returns <CODE>true</CODE> if and only if the union of
the NNC polyhedra in \p ps contains the NNC polyhedron \p ph.
\relates Pointset_Powerset
*/
bool
check_containment(const NNC_Polyhedron& ph,
const Pointset_Powerset<NNC_Polyhedron>& ps);
/*! \brief
Partitions the grid \p q with respect to grid \p p if and only if
such a partition is finite.
\relates Parma_Polyhedra_Library::Pointset_Powerset
Let \p p and \p q be two grids.
The function returns an object <CODE>r</CODE> of type
<CODE>std::pair\<PSET, Pointset_Powerset\<Grid\> \></CODE>
such that
- <CODE>r.first</CODE> is the intersection of \p p and \p q;
- If there is a finite partition of \p q with respect to \p p
the Boolean <CODE>finite_partition</CODE> is set to true and
<CODE>r.second</CODE> has the property that all its elements are
pairwise disjoint and disjoint from \p p and the set-theoretical
union of <CODE>r.first</CODE> with all the elements of
<CODE>r.second</CODE> gives \p q (i.e., <CODE>r</CODE>
is the representation of a partition of \p q).
- Otherwise the Boolean <CODE>finite_partition</CODE> is set to false
and the singleton set that contains \p q is stored in
<CODE>r.second</CODE>r.
*/
std::pair<Grid, Pointset_Powerset<Grid> >
approximate_partition(const Grid& p, const Grid& q, bool& finite_partition);
/*! \brief
Returns <CODE>true</CODE> if and only if the union of
the grids \p ps contains the grid \p g.
\relates Pointset_Powerset
*/
bool
check_containment(const Grid& ph,
const Pointset_Powerset<Grid>& ps);
/*! \brief
Returns <CODE>true</CODE> if and only if the union of
the objects in \p ps contains \p ph.
\relates Pointset_Powerset
\note
It is assumed that the template parameter PSET can be converted
without precision loss into an NNC_Polyhedron; otherwise,
an incorrect result might be obtained.
*/
template <typename PSET>
bool
check_containment(const PSET& ph, const Pointset_Powerset<PSET>& ps);
// CHECKME: according to the Intel compiler, the declaration of the
// following specialization (of the class template parameter) should come
// before the declaration of the corresponding full specialization
// (where the member template parameter is specialized too).
template <>
template <typename QH>
Pointset_Powerset<NNC_Polyhedron>
::Pointset_Powerset(const Pointset_Powerset<QH>& y,
Complexity_Class);
// Non-inline full specializations should be declared here
// so as to inhibit multiple instantiations of the generic template.
template <>
template <>
Pointset_Powerset<NNC_Polyhedron>
::Pointset_Powerset(const Pointset_Powerset<C_Polyhedron>& y,
Complexity_Class);
template <>
template <>
Pointset_Powerset<NNC_Polyhedron>
::Pointset_Powerset(const Pointset_Powerset<Grid>& y,
Complexity_Class);
template <>
template <>
Pointset_Powerset<C_Polyhedron>
::Pointset_Powerset(const Pointset_Powerset<NNC_Polyhedron>& y,
Complexity_Class);
template <>
void
Pointset_Powerset<NNC_Polyhedron>
::difference_assign(const Pointset_Powerset& y);
template <>
void
Pointset_Powerset<Grid>
::difference_assign(const Pointset_Powerset& y);
template <>
bool
Pointset_Powerset<NNC_Polyhedron>
::geometrically_covers(const Pointset_Powerset& y) const;
template <>
bool
Pointset_Powerset<Grid>
::geometrically_covers(const Pointset_Powerset& y) const;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Pointset_Powerset_inlines.hh line 1. */
/* Pointset_Powerset class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Pointset_Powerset_inlines.hh line 35. */
#include <algorithm>
#include <deque>
namespace Parma_Polyhedra_Library {
template <typename PSET>
inline dimension_type
Pointset_Powerset<PSET>::space_dimension() const {
return space_dim;
}
template <typename PSET>
inline dimension_type
Pointset_Powerset<PSET>::max_space_dimension() {
return PSET::max_space_dimension();
}
template <typename PSET>
inline
Pointset_Powerset<PSET>::Pointset_Powerset(dimension_type num_dimensions,
Degenerate_Element kind)
: Base(), space_dim(num_dimensions) {
Pointset_Powerset& x = *this;
if (kind == UNIVERSE)
x.sequence.push_back(Determinate<PSET>(PSET(num_dimensions, kind)));
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
inline
Pointset_Powerset<PSET>::Pointset_Powerset(const Pointset_Powerset& y,
Complexity_Class)
: Base(y), space_dim(y.space_dim) {
}
template <typename PSET>
inline
Pointset_Powerset<PSET>::Pointset_Powerset(const C_Polyhedron& ph,
Complexity_Class complexity)
: Base(), space_dim(ph.space_dimension()) {
Pointset_Powerset& x = *this;
if (complexity == ANY_COMPLEXITY) {
if (ph.is_empty())
return;
}
else
x.reduced = false;
x.sequence.push_back(Determinate<PSET>(PSET(ph, complexity)));
x.reduced = false;
PPL_ASSERT_HEAVY(OK());
}
template <typename PSET>
inline
Pointset_Powerset<PSET>::Pointset_Powerset(const NNC_Polyhedron& ph,
Complexity_Class complexity)
: Base(), space_dim(ph.space_dimension()) {
Pointset_Powerset& x = *this;
if (complexity == ANY_COMPLEXITY) {
if (ph.is_empty())
return;
}
else
x.reduced = false;
x.sequence.push_back(Determinate<PSET>(PSET(ph, complexity)));
PPL_ASSERT_HEAVY(OK());
}
template <typename PSET>
inline
Pointset_Powerset<PSET>::Pointset_Powerset(const Grid& gr,
Complexity_Class)
: Base(), space_dim(gr.space_dimension()) {
Pointset_Powerset& x = *this;
if (!gr.is_empty()) {
x.sequence.push_back(Determinate<PSET>(PSET(gr)));
}
PPL_ASSERT_HEAVY(OK());
}
template <typename PSET>
template <typename QH1, typename QH2, typename R>
inline
Pointset_Powerset<PSET>
::Pointset_Powerset(const Partially_Reduced_Product<QH1, QH2, R>& prp,
Complexity_Class complexity)
: Base(), space_dim(prp.space_dimension()) {
Pointset_Powerset& x = *this;
if (complexity == ANY_COMPLEXITY) {
if (prp.is_empty())
return;
}
else
x.reduced = false;
x.sequence.push_back(Determinate<PSET>(PSET(prp, complexity)));
x.reduced = false;
PPL_ASSERT_HEAVY(OK());
}
template <typename PSET>
template <typename Interval>
Pointset_Powerset<PSET>::Pointset_Powerset(const Box<Interval>& box,
Complexity_Class)
: Base(), space_dim(box.space_dimension()) {
Pointset_Powerset& x = *this;
if (!box.is_empty())
x.sequence.push_back(Determinate<PSET>(PSET(box)));
PPL_ASSERT_HEAVY(OK());
}
template <typename PSET>
template <typename T>
Pointset_Powerset<PSET>::Pointset_Powerset(const Octagonal_Shape<T>& os,
Complexity_Class)
: Base(), space_dim(os.space_dimension()) {
Pointset_Powerset& x = *this;
if (!os.is_empty())
x.sequence.push_back(Determinate<PSET>(PSET(os)));
PPL_ASSERT_HEAVY(OK());
}
template <typename PSET>
template <typename T>
Pointset_Powerset<PSET>::Pointset_Powerset(const BD_Shape<T>& bds,
Complexity_Class)
: Base(), space_dim(bds.space_dimension()) {
Pointset_Powerset& x = *this;
if (!bds.is_empty())
x.sequence.push_back(Determinate<PSET>(PSET(bds)));
PPL_ASSERT_HEAVY(OK());
}
template <typename PSET>
inline
Pointset_Powerset<PSET>::Pointset_Powerset(const Constraint_System& cs)
: Base(Determinate<PSET>(cs)), space_dim(cs.space_dimension()) {
PPL_ASSERT_HEAVY(OK());
}
template <typename PSET>
inline
Pointset_Powerset<PSET>::Pointset_Powerset(const Congruence_System& cgs)
: Base(Determinate<PSET>(cgs)), space_dim(cgs.space_dimension()) {
PPL_ASSERT_HEAVY(OK());
}
template <typename PSET>
inline Pointset_Powerset<PSET>&
Pointset_Powerset<PSET>::operator=(const Pointset_Powerset& y) {
Pointset_Powerset& x = *this;
x.Base::operator=(y);
x.space_dim = y.space_dim;
return x;
}
template <typename PSET>
inline void
Pointset_Powerset<PSET>::m_swap(Pointset_Powerset& y) {
Pointset_Powerset& x = *this;
x.Base::m_swap(y);
using std::swap;
swap(x.space_dim, y.space_dim);
}
template <typename PSET>
template <typename QH>
inline Pointset_Powerset<PSET>&
Pointset_Powerset<PSET>::operator=(const Pointset_Powerset<QH>& y) {
Pointset_Powerset& x = *this;
Pointset_Powerset<PSET> ps(y);
swap(x, ps);
return x;
}
template <typename PSET>
inline void
Pointset_Powerset<PSET>::intersection_assign(const Pointset_Powerset& y) {
Pointset_Powerset& x = *this;
x.pairwise_apply_assign
(y,
Det_PSET::lift_op_assign(std::mem_fun_ref(&PSET::intersection_assign)));
}
template <typename PSET>
inline void
Pointset_Powerset<PSET>::time_elapse_assign(const Pointset_Powerset& y) {
Pointset_Powerset& x = *this;
x.pairwise_apply_assign
(y,
Det_PSET::lift_op_assign(std::mem_fun_ref(&PSET::time_elapse_assign)));
}
template <typename PSET>
inline bool
Pointset_Powerset<PSET>
::geometrically_covers(const Pointset_Powerset& y) const {
// This code is only used when PSET is an abstraction of NNC_Polyhedron.
const Pointset_Powerset<NNC_Polyhedron> xx(*this);
const Pointset_Powerset<NNC_Polyhedron> yy(y);
return xx.geometrically_covers(yy);
}
template <typename PSET>
inline bool
Pointset_Powerset<PSET>
::geometrically_equals(const Pointset_Powerset& y) const {
// This code is only used when PSET is an abstraction of NNC_Polyhedron.
const Pointset_Powerset<NNC_Polyhedron> xx(*this);
const Pointset_Powerset<NNC_Polyhedron> yy(y);
return xx.geometrically_covers(yy) && yy.geometrically_covers(xx);
}
template <>
inline bool
Pointset_Powerset<Grid>
::geometrically_equals(const Pointset_Powerset& y) const {
const Pointset_Powerset& x = *this;
return x.geometrically_covers(y) && y.geometrically_covers(x);
}
template <>
inline bool
Pointset_Powerset<NNC_Polyhedron>
::geometrically_equals(const Pointset_Powerset& y) const {
const Pointset_Powerset& x = *this;
return x.geometrically_covers(y) && y.geometrically_covers(x);
}
template <typename PSET>
inline memory_size_type
Pointset_Powerset<PSET>::external_memory_in_bytes() const {
return Base::external_memory_in_bytes();
}
template <typename PSET>
inline memory_size_type
Pointset_Powerset<PSET>::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
template <typename PSET>
inline int32_t
Pointset_Powerset<PSET>::hash_code() const {
return hash_code_from_dimension(space_dimension());
}
template <typename PSET>
inline void
Pointset_Powerset<PSET>
::difference_assign(const Pointset_Powerset& y) {
// This code is only used when PSET is an abstraction of NNC_Polyhedron.
Pointset_Powerset<NNC_Polyhedron> nnc_this(*this);
Pointset_Powerset<NNC_Polyhedron> nnc_y(y);
nnc_this.difference_assign(nnc_y);
*this = nnc_this;
}
/*! \relates Pointset_Powerset */
template <typename PSET>
inline bool
check_containment(const PSET& ph, const Pointset_Powerset<PSET>& ps) {
// This code is only used when PSET is an abstraction of NNC_Polyhedron.
const NNC_Polyhedron ph_nnc = NNC_Polyhedron(ph.constraints());
const Pointset_Powerset<NNC_Polyhedron> ps_nnc(ps);
return check_containment(ph_nnc, ps_nnc);
}
/*! \relates Pointset_Powerset */
template <>
inline bool
check_containment(const C_Polyhedron& ph,
const Pointset_Powerset<C_Polyhedron>& ps) {
return check_containment(NNC_Polyhedron(ph),
Pointset_Powerset<NNC_Polyhedron>(ps));
}
/*! \relates Pointset_Powerset */
template <typename PSET>
inline void
swap(Pointset_Powerset<PSET>& x, Pointset_Powerset<PSET>& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Pointset_Powerset_templates.hh line 1. */
/* Pointset_Powerset class implementation: non-inline template functions.
*/
/* Automatically generated from PPL source file ../src/Pointset_Powerset_templates.hh line 33. */
#include <algorithm>
#include <deque>
#include <string>
#include <iostream>
#include <sstream>
#include <stdexcept>
namespace Parma_Polyhedra_Library {
template <typename PSET>
void
Pointset_Powerset<PSET>::add_disjunct(const PSET& ph) {
Pointset_Powerset& x = *this;
if (x.space_dimension() != ph.space_dimension()) {
std::ostringstream s;
s << "PPL::Pointset_Powerset<PSET>::add_disjunct(ph):\n"
<< "this->space_dimension() == " << x.space_dimension() << ", "
<< "ph.space_dimension() == " << ph.space_dimension() << ".";
throw std::invalid_argument(s.str());
}
x.sequence.push_back(Determinate<PSET>(ph));
x.reduced = false;
PPL_ASSERT_HEAVY(x.OK());
}
template <>
template <typename QH>
Pointset_Powerset<NNC_Polyhedron>
::Pointset_Powerset(const Pointset_Powerset<QH>& y,
Complexity_Class complexity)
: Base(), space_dim(y.space_dimension()) {
Pointset_Powerset& x = *this;
for (typename Pointset_Powerset<QH>::const_iterator i = y.begin(),
y_end = y.end(); i != y_end; ++i)
x.sequence.push_back(Determinate<NNC_Polyhedron>
(NNC_Polyhedron(i->pointset(), complexity)));
// FIXME: If the domain elements can be represented _exactly_ as NNC
// polyhedra, then having x.reduced = y.reduced is correct. This is
// the case if the domains are both linear and convex which holds
// for all the currently supported instantiations except for
// Grids; for this reason the Grid specialization has a
// separate implementation. For any non-linear or non-convex
// domains (e.g., a domain of Intervals with restrictions or a
// domain of circles) that may be supported in the future, the
// assignment x.reduced = y.reduced will be a bug.
x.reduced = y.reduced;
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
template <typename QH>
Pointset_Powerset<PSET>
::Pointset_Powerset(const Pointset_Powerset<QH>& y,
Complexity_Class complexity)
: Base(), space_dim(y.space_dimension()) {
Pointset_Powerset& x = *this;
for (typename Pointset_Powerset<QH>::const_iterator i = y.begin(),
y_end = y.end(); i != y_end; ++i)
x.sequence.push_back(Determinate<PSET>(PSET(i->pointset(), complexity)));
// Note: this might be non-reduced even when `y' is known to be
// omega-reduced, because the constructor of PSET may have made
// different QH elements to become comparable.
x.reduced = false;
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>::concatenate_assign(const Pointset_Powerset& y) {
Pointset_Powerset& x = *this;
// Ensure omega-reduction here, since what follows has quadratic complexity.
x.omega_reduce();
y.omega_reduce();
Pointset_Powerset<PSET> new_x(x.space_dim + y.space_dim, EMPTY);
for (const_iterator xi = x.begin(), x_end = x.end(),
y_begin = y.begin(), y_end = y.end(); xi != x_end; ) {
for (const_iterator yi = y_begin; yi != y_end; ++yi) {
Det_PSET zi = *xi;
zi.concatenate_assign(*yi);
PPL_ASSERT_HEAVY(!zi.is_bottom());
new_x.sequence.push_back(zi);
}
++xi;
if ((abandon_expensive_computations != 0)
&& (xi != x_end) && (y_begin != y_end)) {
// Hurry up!
PSET x_ph = xi->pointset();
for (++xi; xi != x_end; ++xi)
x_ph.upper_bound_assign(xi->pointset());
const_iterator yi = y_begin;
PSET y_ph = yi->pointset();
for (++yi; yi != y_end; ++yi)
y_ph.upper_bound_assign(yi->pointset());
x_ph.concatenate_assign(y_ph);
swap(x, new_x);
x.add_disjunct(x_ph);
PPL_ASSERT_HEAVY(x.OK());
return;
}
}
swap(x, new_x);
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>::add_constraint(const Constraint& c) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si)
si->pointset().add_constraint(c);
x.reduced = false;
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>::refine_with_constraint(const Constraint& c) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si)
si->pointset().refine_with_constraint(c);
x.reduced = false;
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>::add_constraints(const Constraint_System& cs) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si)
si->pointset().add_constraints(cs);
x.reduced = false;
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>::refine_with_constraints(const Constraint_System& cs) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si)
si->pointset().refine_with_constraints(cs);
x.reduced = false;
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>::add_congruence(const Congruence& cg) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si)
si->pointset().add_congruence(cg);
x.reduced = false;
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>::refine_with_congruence(const Congruence& cg) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si)
si->pointset().refine_with_congruence(cg);
x.reduced = false;
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>::add_congruences(const Congruence_System& cgs) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si)
si->pointset().add_congruences(cgs);
x.reduced = false;
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>::refine_with_congruences(const Congruence_System& cgs) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si)
si->pointset().refine_with_congruences(cgs);
x.reduced = false;
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>::unconstrain(const Variable var) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si) {
si->pointset().unconstrain(var);
x.reduced = false;
}
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>::unconstrain(const Variables_Set& vars) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si) {
si->pointset().unconstrain(vars);
x.reduced = false;
}
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>::add_space_dimensions_and_embed(dimension_type m) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si)
si->pointset().add_space_dimensions_and_embed(m);
x.space_dim += m;
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>::add_space_dimensions_and_project(dimension_type m) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si)
si->pointset().add_space_dimensions_and_project(m);
x.space_dim += m;
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>::remove_space_dimensions(const Variables_Set& vars) {
Pointset_Powerset& x = *this;
Variables_Set::size_type num_removed = vars.size();
if (num_removed > 0) {
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si) {
si->pointset().remove_space_dimensions(vars);
x.reduced = false;
}
x.space_dim -= num_removed;
PPL_ASSERT_HEAVY(x.OK());
}
}
template <typename PSET>
void
Pointset_Powerset<PSET>
::remove_higher_space_dimensions(dimension_type new_dimension) {
Pointset_Powerset& x = *this;
if (new_dimension < x.space_dim) {
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si) {
si->pointset().remove_higher_space_dimensions(new_dimension);
x.reduced = false;
}
x.space_dim = new_dimension;
PPL_ASSERT_HEAVY(x.OK());
}
}
template <typename PSET>
template <typename Partial_Function>
void
Pointset_Powerset<PSET>::map_space_dimensions(const Partial_Function& pfunc) {
Pointset_Powerset& x = *this;
if (x.is_bottom()) {
dimension_type n = 0;
for (dimension_type i = x.space_dim; i-- > 0; ) {
dimension_type new_i;
if (pfunc.maps(i, new_i))
++n;
}
x.space_dim = n;
}
else {
Sequence_iterator s_begin = x.sequence.begin();
for (Sequence_iterator si = s_begin,
s_end = x.sequence.end(); si != s_end; ++si)
si->pointset().map_space_dimensions(pfunc);
x.space_dim = s_begin->pointset().space_dimension();
x.reduced = false;
}
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>::expand_space_dimension(Variable var,
dimension_type m) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si)
si->pointset().expand_space_dimension(var, m);
x.space_dim += m;
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>::fold_space_dimensions(const Variables_Set& vars,
Variable dest) {
Pointset_Powerset& x = *this;
Variables_Set::size_type num_folded = vars.size();
if (num_folded > 0) {
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si)
si->pointset().fold_space_dimensions(vars, dest);
}
x.space_dim -= num_folded;
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>::affine_image(Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference
denominator) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si) {
si->pointset().affine_image(var, expr, denominator);
// Note that the underlying domain can apply conservative approximation:
// that is why it would not be correct to make the loss of reduction
// conditional on `var' and `expr'.
x.reduced = false;
}
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>::affine_preimage(Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference
denominator) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si) {
si->pointset().affine_preimage(var, expr, denominator);
// Note that the underlying domain can apply conservative approximation:
// that is why it would not be correct to make the loss of reduction
// conditional on `var' and `expr'.
x.reduced = false;
}
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>
::generalized_affine_image(const Linear_Expression& lhs,
const Relation_Symbol relsym,
const Linear_Expression& rhs) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si) {
si->pointset().generalized_affine_image(lhs, relsym, rhs);
x.reduced = false;
}
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>
::generalized_affine_preimage(const Linear_Expression& lhs,
const Relation_Symbol relsym,
const Linear_Expression& rhs) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si) {
si->pointset().generalized_affine_preimage(lhs, relsym, rhs);
x.reduced = false;
}
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>
::generalized_affine_image(Variable var,
const Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si) {
si->pointset().generalized_affine_image(var, relsym, expr, denominator);
x.reduced = false;
}
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>
::generalized_affine_preimage(Variable var,
const Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference
denominator) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si) {
si->pointset().generalized_affine_preimage(var, relsym, expr, denominator);
x.reduced = false;
}
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>
::bounded_affine_image(Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si) {
si->pointset().bounded_affine_image(var, lb_expr, ub_expr, denominator);
x.reduced = false;
}
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>
::bounded_affine_preimage(Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si) {
si->pointset().bounded_affine_preimage(var, lb_expr, ub_expr,
denominator);
x.reduced = false;
}
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
dimension_type
Pointset_Powerset<PSET>::affine_dimension() const {
// The affine dimension of the powerset is the affine dimension of
// the smallest vector space in which it can be embedded.
const Pointset_Powerset& x = *this;
C_Polyhedron x_ph(space_dim, EMPTY);
for (Sequence_const_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si) {
PSET pi(si->pointset());
if (!pi.is_empty()) {
C_Polyhedron phi(space_dim);
const Constraint_System& cs = pi.minimized_constraints();
for (Constraint_System::const_iterator i = cs.begin(),
cs_end = cs.end(); i != cs_end; ++i) {
const Constraint& c = *i;
if (c.is_equality())
phi.add_constraint(c);
}
x_ph.poly_hull_assign(phi);
}
}
return x_ph.affine_dimension();
}
template <typename PSET>
bool
Pointset_Powerset<PSET>::is_universe() const {
const Pointset_Powerset& x = *this;
// Exploit omega-reduction, if already computed.
if (x.is_omega_reduced())
return x.size() == 1 && x.begin()->pointset().is_universe();
// A powerset is universe iff one of its disjuncts is.
for (const_iterator x_i = x.begin(), x_end = x.end(); x_i != x_end; ++x_i)
if (x_i->pointset().is_universe()) {
// Speculative omega-reduction, if it is worth.
if (x.size() > 1) {
Pointset_Powerset<PSET> universe(x.space_dimension(), UNIVERSE);
Pointset_Powerset& xx = const_cast<Pointset_Powerset&>(x);
swap(xx, universe);
}
return true;
}
return false;
}
template <typename PSET>
bool
Pointset_Powerset<PSET>::is_empty() const {
const Pointset_Powerset& x = *this;
for (Sequence_const_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si)
if (!si->pointset().is_empty())
return false;
return true;
}
template <typename PSET>
bool
Pointset_Powerset<PSET>::is_discrete() const {
const Pointset_Powerset& x = *this;
for (Sequence_const_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si)
if (!si->pointset().is_discrete())
return false;
return true;
}
template <typename PSET>
bool
Pointset_Powerset<PSET>::is_topologically_closed() const {
const Pointset_Powerset& x = *this;
// The powerset must be omega-reduced before checking
// topological closure.
x.omega_reduce();
for (Sequence_const_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si)
if (!si->pointset().is_topologically_closed())
return false;
return true;
}
template <typename PSET>
bool
Pointset_Powerset<PSET>::is_bounded() const {
const Pointset_Powerset& x = *this;
for (Sequence_const_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si)
if (!si->pointset().is_bounded())
return false;
return true;
}
template <typename PSET>
bool
Pointset_Powerset<PSET>::constrains(Variable var) const {
const Pointset_Powerset& x = *this;
// `var' should be one of the dimensions of the powerset.
const dimension_type var_space_dim = var.space_dimension();
if (x.space_dimension() < var_space_dim) {
std::ostringstream s;
s << "PPL::Pointset_Powerset<PSET>::constrains(v):\n"
<< "this->space_dimension() == " << x.space_dimension() << ", "
<< "v.space_dimension() == " << var_space_dim << ".";
throw std::invalid_argument(s.str());
}
// omega_reduction needed, since a redundant disjunct may constrain var.
x.omega_reduce();
// An empty powerset constrains all variables.
if (x.is_empty())
return true;
for (const_iterator x_i = x.begin(), x_end = x.end(); x_i != x_end; ++x_i)
if (x_i->pointset().constrains(var))
return true;
return false;
}
template <typename PSET>
bool
Pointset_Powerset<PSET>::is_disjoint_from(const Pointset_Powerset& y) const {
const Pointset_Powerset& x = *this;
for (Sequence_const_iterator si = x.sequence.begin(),
x_s_end = x.sequence.end(); si != x_s_end; ++si) {
const PSET& pi = si->pointset();
for (Sequence_const_iterator sj = y.sequence.begin(),
y_s_end = y.sequence.end(); sj != y_s_end; ++sj) {
const PSET& pj = sj->pointset();
if (!pi.is_disjoint_from(pj))
return false;
}
}
return true;
}
template <typename PSET>
void
Pointset_Powerset<PSET>
::drop_some_non_integer_points(const Variables_Set& vars,
Complexity_Class complexity) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si)
si->pointset().drop_some_non_integer_points(vars, complexity);
x.reduced = false;
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>
::drop_some_non_integer_points(Complexity_Class complexity) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si)
si->pointset().drop_some_non_integer_points(complexity);
x.reduced = false;
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>::topological_closure_assign() {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si)
si->pointset().topological_closure_assign();
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
bool
Pointset_Powerset<PSET>
::intersection_preserving_enlarge_element(PSET& dest) const {
// FIXME: this is just an executable specification.
const Pointset_Powerset& context = *this;
PPL_ASSERT(context.space_dimension() == dest.space_dimension());
bool nonempty_intersection = false;
// TODO: maybe use a *sorted* constraint system?
PSET enlarged(context.space_dimension(), UNIVERSE);
for (Sequence_const_iterator si = context.sequence.begin(),
s_end = context.sequence.end(); si != s_end; ++si) {
PSET context_i(si->pointset());
context_i.intersection_assign(enlarged);
PSET enlarged_i(dest);
if (enlarged_i.simplify_using_context_assign(context_i))
nonempty_intersection = true;
// TODO: merge the sorted constraints of `enlarged' and `enlarged_i'?
enlarged.intersection_assign(enlarged_i);
}
swap(dest, enlarged);
return nonempty_intersection;
}
template <typename PSET>
bool
Pointset_Powerset<PSET>
::simplify_using_context_assign(const Pointset_Powerset& y) {
Pointset_Powerset& x = *this;
// Omega reduction is required.
// TODO: check whether it would be more efficient to Omega-reduce x
// during the simplification process: when examining *si, we check
// if it has been made redundant by any of the elements preceding it
// (which have been already simplified).
x.omega_reduce();
if (x.is_empty())
return false;
y.omega_reduce();
if (y.is_empty()) {
x = y;
return false;
}
if (y.size() == 1) {
// More efficient, special handling of the singleton context case.
const PSET& y_i = y.sequence.begin()->pointset();
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ) {
PSET& x_i = si->pointset();
if (x_i.simplify_using_context_assign(y_i))
++si;
else
// Intersection is empty: drop the disjunct.
si = x.sequence.erase(si);
}
}
else {
// The context is not a singleton.
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ) {
if (y.intersection_preserving_enlarge_element(si->pointset()))
++si;
else
// Intersection with `*si' is empty: drop the disjunct.
si = x.sequence.erase(si);
}
}
x.reduced = false;
PPL_ASSERT_HEAVY(x.OK());
return !x.sequence.empty();
}
template <typename PSET>
bool
Pointset_Powerset<PSET>::contains(const Pointset_Powerset& y) const {
const Pointset_Powerset& x = *this;
for (Sequence_const_iterator si = y.sequence.begin(),
y_s_end = y.sequence.end(); si != y_s_end; ++si) {
const PSET& pi = si->pointset();
bool pi_is_contained = false;
for (Sequence_const_iterator sj = x.sequence.begin(),
x_s_end = x.sequence.end();
(sj != x_s_end && !pi_is_contained);
++sj) {
const PSET& pj = sj->pointset();
if (pj.contains(pi))
pi_is_contained = true;
}
if (!pi_is_contained)
return false;
}
return true;
}
template <typename PSET>
bool
Pointset_Powerset<PSET>::strictly_contains(const Pointset_Powerset& y) const {
/* omega reduction ensures that a disjunct of y cannot be strictly
contained in one disjunct and also contained but not strictly
contained in another disjunct of *this */
const Pointset_Powerset& x = *this;
x.omega_reduce();
for (Sequence_const_iterator si = y.sequence.begin(),
y_s_end = y.sequence.end(); si != y_s_end; ++si) {
const PSET& pi = si->pointset();
bool pi_is_strictly_contained = false;
for (Sequence_const_iterator sj = x.sequence.begin(),
x_s_end = x.sequence.end();
(sj != x_s_end && !pi_is_strictly_contained); ++sj) {
const PSET& pj = sj->pointset();
if (pj.strictly_contains(pi))
pi_is_strictly_contained = true;
}
if (!pi_is_strictly_contained)
return false;
}
return true;
}
template <typename PSET>
Poly_Con_Relation
Pointset_Powerset<PSET>::relation_with(const Congruence& cg) const {
const Pointset_Powerset& x = *this;
/* *this is included in cg if every disjunct is included in cg */
bool is_included = true;
/* *this is disjoint with cg if every disjunct is disjoint with cg */
bool is_disjoint = true;
/* *this strictly_intersects with cg if some disjunct strictly
intersects with cg */
bool is_strictly_intersecting = false;
/* *this saturates cg if some disjunct saturates cg and
every disjunct is either disjoint from cg or saturates cg */
bool saturates_once = false;
bool may_saturate = true;
for (Sequence_const_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si) {
Poly_Con_Relation relation_i = si->pointset().relation_with(cg);
if (!relation_i.implies(Poly_Con_Relation::is_included()))
is_included = false;
if (!relation_i.implies(Poly_Con_Relation::is_disjoint()))
is_disjoint = false;
if (relation_i.implies(Poly_Con_Relation::strictly_intersects()))
is_strictly_intersecting = true;
if (relation_i.implies(Poly_Con_Relation::saturates()))
saturates_once = true;
else if (!relation_i.implies(Poly_Con_Relation::is_disjoint()))
may_saturate = false;
}
Poly_Con_Relation result = Poly_Con_Relation::nothing();
if (is_included)
result = result && Poly_Con_Relation::is_included();
if (is_disjoint)
result = result && Poly_Con_Relation::is_disjoint();
if (is_strictly_intersecting)
result = result && Poly_Con_Relation::strictly_intersects();
if (saturates_once && may_saturate)
result = result && Poly_Con_Relation::saturates();
return result;
}
template <typename PSET>
Poly_Con_Relation
Pointset_Powerset<PSET>::relation_with(const Constraint& c) const {
const Pointset_Powerset& x = *this;
/* *this is included in c if every disjunct is included in c */
bool is_included = true;
/* *this is disjoint with c if every disjunct is disjoint with c */
bool is_disjoint = true;
/* *this strictly_intersects with c if some disjunct strictly
intersects with c */
bool is_strictly_intersecting = false;
/* *this saturates c if some disjunct saturates c and
every disjunct is either disjoint from c or saturates c */
bool saturates_once = false;
bool may_saturate = true;
for (Sequence_const_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si) {
Poly_Con_Relation relation_i = si->pointset().relation_with(c);
if (!relation_i.implies(Poly_Con_Relation::is_included()))
is_included = false;
if (!relation_i.implies(Poly_Con_Relation::is_disjoint()))
is_disjoint = false;
if (relation_i.implies(Poly_Con_Relation::strictly_intersects()))
is_strictly_intersecting = true;
if (relation_i.implies(Poly_Con_Relation::saturates()))
saturates_once = true;
else if (!relation_i.implies(Poly_Con_Relation::is_disjoint()))
may_saturate = false;
}
Poly_Con_Relation result = Poly_Con_Relation::nothing();
if (is_included)
result = result && Poly_Con_Relation::is_included();
if (is_disjoint)
result = result && Poly_Con_Relation::is_disjoint();
if (is_strictly_intersecting)
result = result && Poly_Con_Relation::strictly_intersects();
if (saturates_once && may_saturate)
result = result && Poly_Con_Relation::saturates();
return result;
}
template <typename PSET>
Poly_Gen_Relation
Pointset_Powerset<PSET>::relation_with(const Generator& g) const {
const Pointset_Powerset& x = *this;
for (Sequence_const_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si) {
Poly_Gen_Relation relation_i = si->pointset().relation_with(g);
if (relation_i.implies(Poly_Gen_Relation::subsumes()))
return Poly_Gen_Relation::subsumes();
}
return Poly_Gen_Relation::nothing();
}
template <typename PSET>
bool
Pointset_Powerset<PSET>
::bounds_from_above(const Linear_Expression& expr) const {
const Pointset_Powerset& x = *this;
x.omega_reduce();
for (Sequence_const_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si)
if (!si->pointset().bounds_from_above(expr))
return false;
return true;
}
template <typename PSET>
bool
Pointset_Powerset<PSET>
::bounds_from_below(const Linear_Expression& expr) const {
const Pointset_Powerset& x = *this;
x.omega_reduce();
for (Sequence_const_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si)
if (!si->pointset().bounds_from_below(expr))
return false;
return true;
}
template <typename PSET>
bool
Pointset_Powerset<PSET>::maximize(const Linear_Expression& expr,
Coefficient& sup_n,
Coefficient& sup_d,
bool& maximum) const {
const Pointset_Powerset& x = *this;
x.omega_reduce();
if (x.is_empty())
return false;
bool first = true;
PPL_DIRTY_TEMP_COEFFICIENT(best_sup_n);
PPL_DIRTY_TEMP_COEFFICIENT(best_sup_d);
best_sup_n = 0;
best_sup_d = 1;
bool best_max = false;
PPL_DIRTY_TEMP_COEFFICIENT(iter_sup_n);
PPL_DIRTY_TEMP_COEFFICIENT(iter_sup_d);
iter_sup_n = 0;
iter_sup_d = 1;
bool iter_max = false;
PPL_DIRTY_TEMP_COEFFICIENT(tmp);
for (Sequence_const_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si) {
if (!si->pointset().maximize(expr, iter_sup_n, iter_sup_d, iter_max))
return false;
else
if (first) {
first = false;
best_sup_n = iter_sup_n;
best_sup_d = iter_sup_d;
best_max = iter_max;
}
else {
tmp = (best_sup_n * iter_sup_d) - (iter_sup_n * best_sup_d);
if (tmp < 0) {
best_sup_n = iter_sup_n;
best_sup_d = iter_sup_d;
best_max = iter_max;
}
else if (tmp == 0)
best_max = (best_max || iter_max);
}
}
sup_n = best_sup_n;
sup_d = best_sup_d;
maximum = best_max;
return true;
}
template <typename PSET>
bool
Pointset_Powerset<PSET>::maximize(const Linear_Expression& expr,
Coefficient& sup_n,
Coefficient& sup_d,
bool& maximum,
Generator& g) const {
const Pointset_Powerset& x = *this;
x.omega_reduce();
if (x.is_empty())
return false;
bool first = true;
PPL_DIRTY_TEMP_COEFFICIENT(best_sup_n);
PPL_DIRTY_TEMP_COEFFICIENT(best_sup_d);
best_sup_n = 0;
best_sup_d = 1;
bool best_max = false;
Generator best_g = point();
PPL_DIRTY_TEMP_COEFFICIENT(iter_sup_n);
PPL_DIRTY_TEMP_COEFFICIENT(iter_sup_d);
iter_sup_n = 0;
iter_sup_d = 1;
bool iter_max = false;
Generator iter_g = point();
PPL_DIRTY_TEMP_COEFFICIENT(tmp);
for (Sequence_const_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si) {
if (!si->pointset().maximize(expr,
iter_sup_n, iter_sup_d, iter_max, iter_g))
return false;
else
if (first) {
first = false;
best_sup_n = iter_sup_n;
best_sup_d = iter_sup_d;
best_max = iter_max;
best_g = iter_g;
}
else {
tmp = (best_sup_n * iter_sup_d) - (iter_sup_n * best_sup_d);
if (tmp < 0) {
best_sup_n = iter_sup_n;
best_sup_d = iter_sup_d;
best_max = iter_max;
best_g = iter_g;
}
else if (tmp == 0) {
best_max = (best_max || iter_max);
best_g = iter_g;
}
}
}
sup_n = best_sup_n;
sup_d = best_sup_d;
maximum = best_max;
g = best_g;
return true;
}
template <typename PSET>
bool
Pointset_Powerset<PSET>::minimize(const Linear_Expression& expr,
Coefficient& inf_n,
Coefficient& inf_d,
bool& minimum) const {
const Pointset_Powerset& x = *this;
x.omega_reduce();
if (x.is_empty())
return false;
bool first = true;
PPL_DIRTY_TEMP_COEFFICIENT(best_inf_n);
PPL_DIRTY_TEMP_COEFFICIENT(best_inf_d);
best_inf_n = 0;
best_inf_d = 1;
bool best_min = false;
PPL_DIRTY_TEMP_COEFFICIENT(iter_inf_n);
PPL_DIRTY_TEMP_COEFFICIENT(iter_inf_d);
iter_inf_n = 0;
iter_inf_d = 1;
bool iter_min = false;
PPL_DIRTY_TEMP_COEFFICIENT(tmp);
for (Sequence_const_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si) {
if (!si->pointset().minimize(expr, iter_inf_n, iter_inf_d, iter_min))
return false;
else
if (first) {
first = false;
best_inf_n = iter_inf_n;
best_inf_d = iter_inf_d;
best_min = iter_min;
}
else {
tmp = (best_inf_n * iter_inf_d) - (iter_inf_n * best_inf_d);
if (tmp > 0) {
best_inf_n = iter_inf_n;
best_inf_d = iter_inf_d;
best_min = iter_min;
}
else if (tmp == 0)
best_min = (best_min || iter_min);
}
}
inf_n = best_inf_n;
inf_d = best_inf_d;
minimum = best_min;
return true;
}
template <typename PSET>
bool
Pointset_Powerset<PSET>::minimize(const Linear_Expression& expr,
Coefficient& inf_n,
Coefficient& inf_d,
bool& minimum,
Generator& g) const {
const Pointset_Powerset& x = *this;
x.omega_reduce();
if (x.is_empty())
return false;
bool first = true;
PPL_DIRTY_TEMP_COEFFICIENT(best_inf_n);
PPL_DIRTY_TEMP_COEFFICIENT(best_inf_d);
best_inf_n = 0;
best_inf_d = 1;
bool best_min = false;
Generator best_g = point();
PPL_DIRTY_TEMP_COEFFICIENT(iter_inf_n);
PPL_DIRTY_TEMP_COEFFICIENT(iter_inf_d);
iter_inf_n = 0;
iter_inf_d = 1;
bool iter_min = false;
Generator iter_g = point();
PPL_DIRTY_TEMP_COEFFICIENT(tmp);
for (Sequence_const_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si) {
if (!si->pointset().minimize(expr,
iter_inf_n, iter_inf_d, iter_min, iter_g))
return false;
else
if (first) {
first = false;
best_inf_n = iter_inf_n;
best_inf_d = iter_inf_d;
best_min = iter_min;
best_g = iter_g;
}
else {
tmp = (best_inf_n * iter_inf_d) - (iter_inf_n * best_inf_d);
if (tmp > 0) {
best_inf_n = iter_inf_n;
best_inf_d = iter_inf_d;
best_min = iter_min;
best_g = iter_g;
}
else if (tmp == 0) {
best_min = (best_min || iter_min);
best_g = iter_g;
}
}
}
inf_n = best_inf_n;
inf_d = best_inf_d;
minimum = best_min;
g = best_g;
return true;
}
template <typename PSET>
bool
Pointset_Powerset<PSET>::contains_integer_point() const {
const Pointset_Powerset& x = *this;
for (Sequence_const_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si)
if (si->pointset().contains_integer_point())
return true;
return false;
}
template <typename PSET>
void
Pointset_Powerset<PSET>::wrap_assign(const Variables_Set& vars,
Bounded_Integer_Type_Width w,
Bounded_Integer_Type_Representation r,
Bounded_Integer_Type_Overflow o,
const Constraint_System* cs_p,
unsigned complexity_threshold,
bool wrap_individually) {
Pointset_Powerset& x = *this;
for (Sequence_iterator si = x.sequence.begin(),
s_end = x.sequence.end(); si != s_end; ++si)
si->pointset().wrap_assign(vars, w, r, o, cs_p,
complexity_threshold, wrap_individually);
x.reduced = false;
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
void
Pointset_Powerset<PSET>::pairwise_reduce() {
Pointset_Powerset& x = *this;
// It is wise to omega-reduce before pairwise-reducing.
x.omega_reduce();
size_type n = x.size();
size_type deleted;
do {
Pointset_Powerset new_x(x.space_dim, EMPTY);
std::deque<bool> marked(n, false);
deleted = 0;
Sequence_iterator s_begin = x.sequence.begin();
Sequence_iterator s_end = x.sequence.end();
unsigned si_index = 0;
for (Sequence_iterator si = s_begin; si != s_end; ++si, ++si_index) {
if (marked[si_index])
continue;
PSET& pi = si->pointset();
Sequence_const_iterator sj = si;
unsigned sj_index = si_index;
for (++sj, ++sj_index; sj != s_end; ++sj, ++sj_index) {
if (marked[sj_index])
continue;
const PSET& pj = sj->pointset();
if (pi.upper_bound_assign_if_exact(pj)) {
marked[si_index] = true;
marked[sj_index] = true;
new_x.add_non_bottom_disjunct_preserve_reduction(pi);
++deleted;
goto next;
}
}
next:
;
}
iterator new_x_begin = new_x.begin();
iterator new_x_end = new_x.end();
unsigned xi_index = 0;
for (const_iterator xi = x.begin(),
x_end = x.end(); xi != x_end; ++xi, ++xi_index)
if (!marked[xi_index])
new_x_begin
= new_x.add_non_bottom_disjunct_preserve_reduction(*xi,
new_x_begin,
new_x_end);
using std::swap;
swap(x.sequence, new_x.sequence);
n -= deleted;
} while (deleted > 0);
PPL_ASSERT_HEAVY(x.OK());
}
template <typename PSET>
template <typename Widening>
void
Pointset_Powerset<PSET>::
BGP99_heuristics_assign(const Pointset_Powerset& y, Widening widen_fun) {
// `x' is the current iteration value.
Pointset_Powerset& x = *this;
#ifndef NDEBUG
{
// We assume that `y' entails `x'.
const Pointset_Powerset<PSET> x_copy = x;
const Pointset_Powerset<PSET> y_copy = y;
PPL_ASSERT_HEAVY(y_copy.definitely_entails(x_copy));
}
#endif
size_type n = x.size();
Pointset_Powerset new_x(x.space_dim, EMPTY);
std::deque<bool> marked(n, false);
const_iterator x_begin = x.begin();
const_iterator x_end = x.end();
unsigned i_index = 0;
for (const_iterator i = x_begin,
y_begin = y.begin(), y_end = y.end(); i != x_end; ++i, ++i_index)
for (const_iterator j = y_begin; j != y_end; ++j) {
const PSET& pi = i->pointset();
const PSET& pj = j->pointset();
if (pi.contains(pj)) {
PSET pi_copy = pi;
widen_fun(pi_copy, pj);
new_x.add_non_bottom_disjunct_preserve_reduction(pi_copy);
marked[i_index] = true;
}
}
iterator new_x_begin = new_x.begin();
iterator new_x_end = new_x.end();
i_index = 0;
for (const_iterator i = x_begin; i != x_end; ++i, ++i_index)
if (!marked[i_index])
new_x_begin
= new_x.add_non_bottom_disjunct_preserve_reduction(*i,
new_x_begin,
new_x_end);
using std::swap;
swap(x.sequence, new_x.sequence);
PPL_ASSERT_HEAVY(x.OK());
PPL_ASSERT(x.is_omega_reduced());
}
template <typename PSET>
template <typename Widening>
void
Pointset_Powerset<PSET>::
BGP99_extrapolation_assign(const Pointset_Powerset& y,
Widening widen_fun,
unsigned max_disjuncts) {
// `x' is the current iteration value.
Pointset_Powerset& x = *this;
#ifndef NDEBUG
{
// We assume that `y' entails `x'.
const Pointset_Powerset<PSET> x_copy = x;
const Pointset_Powerset<PSET> y_copy = y;
PPL_ASSERT_HEAVY(y_copy.definitely_entails(x_copy));
}
#endif
x.pairwise_reduce();
if (max_disjuncts != 0)
x.collapse(max_disjuncts);
x.BGP99_heuristics_assign(y, widen_fun);
}
template <typename PSET>
template <typename Cert>
void
Pointset_Powerset<PSET>::
collect_certificates(std::map<Cert, size_type,
typename Cert::Compare>& cert_ms) const {
const Pointset_Powerset& x = *this;
PPL_ASSERT(x.is_omega_reduced());
PPL_ASSERT(cert_ms.size() == 0);
for (const_iterator i = x.begin(), end = x.end(); i != end; ++i) {
Cert ph_cert(i->pointset());
++cert_ms[ph_cert];
}
}
template <typename PSET>
template <typename Cert>
bool
Pointset_Powerset<PSET>::
is_cert_multiset_stabilizing(const std::map<Cert, size_type,
typename Cert::Compare>& y_cert_ms) const {
typedef std::map<Cert, size_type, typename Cert::Compare> Cert_Multiset;
Cert_Multiset x_cert_ms;
collect_certificates(x_cert_ms);
typename Cert_Multiset::const_iterator xi = x_cert_ms.begin();
typename Cert_Multiset::const_iterator x_cert_ms_end = x_cert_ms.end();
typename Cert_Multiset::const_iterator yi = y_cert_ms.begin();
typename Cert_Multiset::const_iterator y_cert_ms_end = y_cert_ms.end();
while (xi != x_cert_ms_end && yi != y_cert_ms_end) {
const Cert& xi_cert = xi->first;
const Cert& yi_cert = yi->first;
switch (xi_cert.compare(yi_cert)) {
case 0:
// xi_cert == yi_cert: check the number of multiset occurrences.
{
const size_type& xi_count = xi->second;
const size_type& yi_count = yi->second;
if (xi_count == yi_count) {
// Same number of occurrences: compare the next pair.
++xi;
++yi;
}
else
// Different number of occurrences: can decide ordering.
return xi_count < yi_count;
break;
}
case 1:
// xi_cert > yi_cert: it is not stabilizing.
return false;
case -1:
// xi_cert < yi_cert: it is stabilizing.
return true;
}
}
// Here xi == x_cert_ms_end or yi == y_cert_ms_end.
// Stabilization is achieved if `y_cert_ms' still has other elements.
return yi != y_cert_ms_end;
}
template <typename PSET>
template <typename Cert, typename Widening>
void
Pointset_Powerset<PSET>::BHZ03_widening_assign(const Pointset_Powerset& y,
Widening widen_fun) {
// `x' is the current iteration value.
Pointset_Powerset& x = *this;
#ifndef NDEBUG
{
// We assume that `y' entails `x'.
const Pointset_Powerset<PSET> x_copy = x;
const Pointset_Powerset<PSET> y_copy = y;
PPL_ASSERT_HEAVY(y_copy.definitely_entails(x_copy));
}
#endif
// First widening technique: do nothing.
// If `y' is the empty collection, do nothing.
PPL_ASSERT(x.size() > 0);
if (y.size() == 0)
return;
// Compute the poly-hull of `x'.
PSET x_hull(x.space_dim, EMPTY);
for (const_iterator i = x.begin(), x_end = x.end(); i != x_end; ++i)
x_hull.upper_bound_assign(i->pointset());
// Compute the poly-hull of `y'.
PSET y_hull(y.space_dim, EMPTY);
for (const_iterator i = y.begin(), y_end = y.end(); i != y_end; ++i)
y_hull.upper_bound_assign(i->pointset());
// Compute the certificate for `y_hull'.
const Cert y_hull_cert(y_hull);
// If the hull is stabilizing, do nothing.
int hull_stabilization = y_hull_cert.compare(x_hull);
if (hull_stabilization == 1)
return;
// Multiset ordering is only useful when `y' is not a singleton.
const bool y_is_not_a_singleton = y.size() > 1;
// The multiset certificate for `y':
// we want to be lazy about its computation.
typedef std::map<Cert, size_type, typename Cert::Compare> Cert_Multiset;
Cert_Multiset y_cert_ms;
bool y_cert_ms_computed = false;
if (hull_stabilization == 0 && y_is_not_a_singleton) {
// Collect the multiset certificate for `y'.
y.collect_certificates(y_cert_ms);
y_cert_ms_computed = true;
// If multiset ordering is stabilizing, do nothing.
if (x.is_cert_multiset_stabilizing(y_cert_ms))
return;
}
// Second widening technique: try the BGP99 powerset heuristics.
Pointset_Powerset<PSET> bgp99_heuristics = x;
bgp99_heuristics.BGP99_heuristics_assign(y, widen_fun);
// Compute the poly-hull of `bgp99_heuristics'.
PSET bgp99_heuristics_hull(x.space_dim, EMPTY);
for (const_iterator i = bgp99_heuristics.begin(),
b_h_end = bgp99_heuristics.end(); i != b_h_end; ++i)
bgp99_heuristics_hull.upper_bound_assign(i->pointset());
// Check for stabilization and, if successful,
// commit to the result of the extrapolation.
hull_stabilization = y_hull_cert.compare(bgp99_heuristics_hull);
if (hull_stabilization == 1) {
// The poly-hull is stabilizing.
swap(x, bgp99_heuristics);
return;
}
else if (hull_stabilization == 0 && y_is_not_a_singleton) {
// If not already done, compute multiset certificate for `y'.
if (!y_cert_ms_computed) {
y.collect_certificates(y_cert_ms);
y_cert_ms_computed = true;
}
if (bgp99_heuristics.is_cert_multiset_stabilizing(y_cert_ms)) {
swap(x, bgp99_heuristics);
return;
}
// Third widening technique: pairwise-reduction on `bgp99_heuristics'.
// Note that pairwise-reduction does not affect the computation
// of the poly-hulls, so that we only have to check the multiset
// certificate relation.
Pointset_Powerset<PSET> reduced_bgp99_heuristics(bgp99_heuristics);
reduced_bgp99_heuristics.pairwise_reduce();
if (reduced_bgp99_heuristics.is_cert_multiset_stabilizing(y_cert_ms)) {
swap(x, reduced_bgp99_heuristics);
return;
}
}
// Fourth widening technique: this is applicable only when
// `y_hull' is a proper subset of `bgp99_heuristics_hull'.
if (bgp99_heuristics_hull.strictly_contains(y_hull)) {
// Compute (y_hull \widen bgp99_heuristics_hull).
PSET ph = bgp99_heuristics_hull;
widen_fun(ph, y_hull);
// Compute the difference between `ph' and `bgp99_heuristics_hull'.
ph.difference_assign(bgp99_heuristics_hull);
x.add_disjunct(ph);
return;
}
// Fall back to the computation of the poly-hull.
Pointset_Powerset<PSET> x_hull_singleton(x.space_dim, EMPTY);
x_hull_singleton.add_disjunct(x_hull);
swap(x, x_hull_singleton);
}
template <typename PSET>
void
Pointset_Powerset<PSET>::ascii_dump(std::ostream& s) const {
const Pointset_Powerset& x = *this;
s << "size " << x.size()
<< "\nspace_dim " << x.space_dim
<< "\n";
for (const_iterator xi = x.begin(), x_end = x.end(); xi != x_end; ++xi)
xi->pointset().ascii_dump(s);
}
PPL_OUTPUT_TEMPLATE_DEFINITIONS(PSET, Pointset_Powerset<PSET>)
template <typename PSET>
bool
Pointset_Powerset<PSET>::ascii_load(std::istream& s) {
Pointset_Powerset& x = *this;
std::string str;
if (!(s >> str) || str != "size")
return false;
size_type sz;
if (!(s >> sz))
return false;
if (!(s >> str) || str != "space_dim")
return false;
if (!(s >> x.space_dim))
return false;
Pointset_Powerset new_x(x.space_dim, EMPTY);
while (sz-- > 0) {
PSET ph;
if (!ph.ascii_load(s))
return false;
new_x.add_disjunct(ph);
}
swap(x, new_x);
// Check invariants.
PPL_ASSERT_HEAVY(x.OK());
return true;
}
template <typename PSET>
bool
Pointset_Powerset<PSET>::OK() const {
const Pointset_Powerset& x = *this;
for (const_iterator xi = x.begin(), x_end = x.end(); xi != x_end; ++xi) {
const PSET& pi = xi->pointset();
if (pi.space_dimension() != x.space_dim) {
#ifndef NDEBUG
std::cerr << "Space dimension mismatch: is " << pi.space_dimension()
<< " in an element of the sequence,\nshould be "
<< x.space_dim << "."
<< std::endl;
#endif
return false;
}
}
return x.Base::OK();
}
namespace Implementation {
namespace Pointset_Powersets {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Partitions polyhedron \p pset according to constraint \p c.
/*! \relates Parma_Polyhedra_Library::Pointset_Powerset
On exit, the intersection of \p pset and constraint \p c is stored
in \p pset, whereas the intersection of \p pset with the negation of \p c
is added as a new disjunct of the powerset \p r.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename PSET>
void
linear_partition_aux(const Constraint& c,
PSET& pset,
Pointset_Powerset<NNC_Polyhedron>& r) {
const Linear_Expression le(c.expression());
const Constraint& neg_c = c.is_strict_inequality() ? (le <= 0) : (le < 0);
NNC_Polyhedron nnc_ph_pset(pset);
nnc_ph_pset.add_constraint(neg_c);
if (!nnc_ph_pset.is_empty())
r.add_disjunct(nnc_ph_pset);
pset.add_constraint(c);
}
} // namespace Pointset_Powersets
} // namespace Implementation
/*! \relates Pointset_Powerset */
template <typename PSET>
std::pair<PSET, Pointset_Powerset<NNC_Polyhedron> >
linear_partition(const PSET& p, const PSET& q) {
using Implementation::Pointset_Powersets::linear_partition_aux;
Pointset_Powerset<NNC_Polyhedron> r(p.space_dimension(), EMPTY);
PSET pset = q;
const Constraint_System& p_constraints = p.constraints();
for (Constraint_System::const_iterator i = p_constraints.begin(),
p_constraints_end = p_constraints.end();
i != p_constraints_end;
++i) {
const Constraint& c = *i;
if (c.is_equality()) {
const Linear_Expression le(c.expression());
linear_partition_aux(le <= 0, pset, r);
linear_partition_aux(le >= 0, pset, r);
}
else
linear_partition_aux(c, pset, r);
}
return std::make_pair(pset, r);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Pointset_Powerset_defs.hh line 1448. */
/* Automatically generated from PPL source file ../src/algorithms.hh line 29. */
#include <utility>
/* Automatically generated from PPL source file ../src/algorithms.hh line 31. */
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
If the poly-hull of \p p and \p q is exact it is assigned
to \p p and <CODE>true</CODE> is returned,
otherwise <CODE>false</CODE> is returned.
\relates Polyhedron
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename PH>
bool
poly_hull_assign_if_exact(PH& p, const PH& q);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \relates Polyhedron */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename PH>
bool
poly_hull_assign_if_exact(PH& p, const PH& q) {
PH poly_hull = p;
NNC_Polyhedron nnc_p(p);
poly_hull.poly_hull_assign(q);
std::pair<PH, Pointset_Powerset<NNC_Polyhedron> >
partition = linear_partition(q, poly_hull);
const Pointset_Powerset<NNC_Polyhedron>& s = partition.second;
typedef Pointset_Powerset<NNC_Polyhedron>::const_iterator iter;
for (iter i = s.begin(), s_end = s.end(); i != s_end; ++i)
// The polyhedral hull is exact if and only if all the elements
// of the partition of the polyhedral hull of `p' and `q' with
// respect to `q' are included in `p'
if (!nnc_p.contains(i->pointset()))
return false;
p = poly_hull;
return true;
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/termination_defs.hh line 1. */
/* Utilities for termination analysis: declarations.
*/
/* Automatically generated from PPL source file ../src/termination_defs.hh line 28. */
/* Automatically generated from PPL source file ../src/termination_defs.hh line 33. */
namespace Parma_Polyhedra_Library {
class Termination_Helpers {
public:
static void
all_affine_ranking_functions_PR(const Constraint_System& cs_before,
const Constraint_System& cs_after,
NNC_Polyhedron& mu_space);
static bool
one_affine_ranking_function_PR(const Constraint_System& cs_before,
const Constraint_System& cs_after,
Generator& mu);
static bool
one_affine_ranking_function_PR_original(const Constraint_System& cs,
Generator& mu);
static void
all_affine_ranking_functions_PR_original(const Constraint_System& cs,
NNC_Polyhedron& mu_space);
template <typename PSET>
static void
assign_all_inequalities_approximation(const PSET& pset_before,
const PSET& pset_after,
Constraint_System& cs);
}; // class Termination_Helpers
//! \name Functions for the Synthesis of Linear Rankings
//@{
/*! \ingroup PPL_CXX_interface \brief
Termination test using an improvement of the method by Mesnard and
Serebrenik \ref BMPZ10 "[BMPZ10]".
\tparam PSET
Any pointset supported by the PPL that provides the
<CODE>minimized_constraints()</CODE> method.
\param pset
A pointset approximating the behavior of a loop whose termination
is being analyzed. The variables indices are allocated as follows:
- \f$ x'_1, \ldots, x'_n \f$ go onto space dimensions
\f$ 0, \ldots, n-1 \f$,
- \f$ x_1, \ldots, x_n \f$ go onto space dimensions
\f$ n, \ldots, 2n-1 \f$,
.
where unprimed variables represent the values of the loop-relevant
program variables before the update performed in the loop body,
and primed variables represent the values of those program variables
after the update.
\return
<CODE>true</CODE> if any loop approximated by \p pset definitely
terminates; <CODE>false</CODE> if the test is inconclusive.
However, if \p pset <EM>precisely</EM> characterizes the effect
of the loop body onto the loop-relevant program variables,
then <CODE>true</CODE> is returned <EM>if and only if</EM>
the loop terminates.
*/
template <typename PSET>
bool
termination_test_MS(const PSET& pset);
/*! \ingroup PPL_CXX_interface \brief
Termination test using an improvement of the method by Mesnard and
Serebrenik \ref BMPZ10 "[BMPZ10]".
\tparam PSET
Any pointset supported by the PPL that provides the
<CODE>minimized_constraints()</CODE> method.
\param pset_before
A pointset approximating the values of loop-relevant variables
<EM>before</EM> the update performed in the loop body that is being
analyzed. The variables indices are allocated as follows:
- \f$ x_1, \ldots, x_n \f$ go onto space dimensions
\f$ 0, \ldots, n-1 \f$.
\param pset_after
A pointset approximating the values of loop-relevant variables
<EM>after</EM> the update performed in the loop body that is being
analyzed. The variables indices are allocated as follows:
- \f$ x'_1, \ldots, x'_n \f$ go onto space dimensions
\f$ 0, \ldots, n-1 \f$,
- \f$ x_1, \ldots, x_n \f$ go onto space dimensions
\f$ n, \ldots, 2n-1 \f$,
Note that unprimed variables represent the values of the loop-relevant
program variables before the update performed in the loop body,
and primed variables represent the values of those program variables
after the update. Note also that unprimed variables are assigned
to different space dimensions in \p pset_before and \p pset_after.
\return
<CODE>true</CODE> if any loop approximated by \p pset definitely
terminates; <CODE>false</CODE> if the test is inconclusive.
However, if \p pset_before and \p pset_after <EM>precisely</EM>
characterize the effect of the loop body onto the loop-relevant
program variables, then <CODE>true</CODE> is returned
<EM>if and only if</EM> the loop terminates.
*/
template <typename PSET>
bool
termination_test_MS_2(const PSET& pset_before, const PSET& pset_after);
/*! \ingroup PPL_CXX_interface \brief
Termination test with witness ranking function using an improvement
of the method by Mesnard and Serebrenik \ref BMPZ10 "[BMPZ10]".
\tparam PSET
Any pointset supported by the PPL that provides the
<CODE>minimized_constraints()</CODE> method.
\param pset
A pointset approximating the behavior of a loop whose termination
is being analyzed. The variables indices are allocated as follows:
- \f$ x'_1, \ldots, x'_n \f$ go onto space dimensions
\f$ 0, \ldots, n-1 \f$,
- \f$ x_1, \ldots, x_n \f$ go onto space dimensions
\f$ n, \ldots, 2n-1 \f$,
.
where unprimed variables represent the values of the loop-relevant
program variables before the update performed in the loop body,
and primed variables represent the values of those program variables
after the update.
\param mu
When <CODE>true</CODE> is returned, this is assigned a point
of space dimension \f$ n+1 \f$ encoding one (not further specified)
affine ranking function for the loop being analyzed.
The ranking function is of the form \f$ \mu_0 + \sum_{i=1}^n \mu_i x_i \f$
where \f$ \mu_0, \mu_1, \ldots, \mu_n \f$ are the coefficients
of \p mu corresponding to the space dimensions \f$ n, 0, \ldots, n-1 \f$,
respectively.
\return
<CODE>true</CODE> if any loop approximated by \p pset definitely
terminates; <CODE>false</CODE> if the test is inconclusive.
However, if \p pset <EM>precisely</EM> characterizes the effect
of the loop body onto the loop-relevant program variables,
then <CODE>true</CODE> is returned <EM>if and only if</EM>
the loop terminates.
*/
template <typename PSET>
bool
one_affine_ranking_function_MS(const PSET& pset, Generator& mu);
/*! \ingroup PPL_CXX_interface \brief
Termination test with witness ranking function using an improvement
of the method by Mesnard and Serebrenik \ref BMPZ10 "[BMPZ10]".
\tparam PSET
Any pointset supported by the PPL that provides the
<CODE>minimized_constraints()</CODE> method.
\param pset_before
A pointset approximating the values of loop-relevant variables
<EM>before</EM> the update performed in the loop body that is being
analyzed. The variables indices are allocated as follows:
- \f$ x_1, \ldots, x_n \f$ go onto space dimensions
\f$ 0, \ldots, n-1 \f$.
\param pset_after
A pointset approximating the values of loop-relevant variables
<EM>after</EM> the update performed in the loop body that is being
analyzed. The variables indices are allocated as follows:
- \f$ x'_1, \ldots, x'_n \f$ go onto space dimensions
\f$ 0, \ldots, n-1 \f$,
- \f$ x_1, \ldots, x_n \f$ go onto space dimensions
\f$ n, \ldots, 2n-1 \f$,
Note that unprimed variables represent the values of the loop-relevant
program variables before the update performed in the loop body,
and primed variables represent the values of those program variables
after the update. Note also that unprimed variables are assigned
to different space dimensions in \p pset_before and \p pset_after.
\param mu
When <CODE>true</CODE> is returned, this is assigned a point
of space dimension \f$ n+1 \f$ encoding one (not further specified)
affine ranking function for the loop being analyzed.
The ranking function is of the form \f$ \mu_0 + \sum_{i=1}^n \mu_i x_i \f$
where \f$ \mu_0, \mu_1, \ldots, \mu_n \f$ are the coefficients
of \p mu corresponding to the space dimensions \f$ n, 0, \ldots, n-1 \f$,
respectively.
\return
<CODE>true</CODE> if any loop approximated by \p pset definitely
terminates; <CODE>false</CODE> if the test is inconclusive.
However, if \p pset_before and \p pset_after <EM>precisely</EM>
characterize the effect of the loop body onto the loop-relevant
program variables, then <CODE>true</CODE> is returned
<EM>if and only if</EM> the loop terminates.
*/
template <typename PSET>
bool
one_affine_ranking_function_MS_2(const PSET& pset_before,
const PSET& pset_after,
Generator& mu);
/*! \ingroup PPL_CXX_interface \brief
Termination test with ranking function space using an improvement
of the method by Mesnard and Serebrenik \ref BMPZ10 "[BMPZ10]".
\tparam PSET
Any pointset supported by the PPL that provides the
<CODE>minimized_constraints()</CODE> method.
\param pset
A pointset approximating the behavior of a loop whose termination
is being analyzed. The variables indices are allocated as follows:
- \f$ x'_1, \ldots, x'_n \f$ go onto space dimensions
\f$ 0, \ldots, n-1 \f$,
- \f$ x_1, \ldots, x_n \f$ go onto space dimensions
\f$ n, \ldots, 2n-1 \f$,
.
where unprimed variables represent the values of the loop-relevant
program variables before the update performed in the loop body,
and primed variables represent the values of those program variables
after the update.
\param mu_space
This is assigned a closed polyhedron of space dimension \f$ n+1 \f$
representing the space of all the affine ranking functions for the loops
that are precisely characterized by \p pset.
These ranking functions are of the form
\f$ \mu_0 + \sum_{i=1}^n \mu_i x_i \f$
where \f$ \mu_0, \mu_1, \ldots, \mu_n \f$ identify any point of the
\p mu_space polyhedron.
The variables \f$ \mu_0, \mu_1, \ldots, \mu_n \f$
correspond to the space dimensions of \p mu_space
\f$ n, 0, \ldots, n-1 \f$, respectively.
When \p mu_space is empty, it means that the test is inconclusive.
However, if \p pset <EM>precisely</EM> characterizes the effect
of the loop body onto the loop-relevant program variables,
then \p mu_space is empty <EM>if and only if</EM>
the loop does <EM>not</EM> terminate.
*/
template <typename PSET>
void
all_affine_ranking_functions_MS(const PSET& pset, C_Polyhedron& mu_space);
/*! \ingroup PPL_CXX_interface \brief
Termination test with ranking function space using an improvement
of the method by Mesnard and Serebrenik \ref BMPZ10 "[BMPZ10]".
\tparam PSET
Any pointset supported by the PPL that provides the
<CODE>minimized_constraints()</CODE> method.
\param pset_before
A pointset approximating the values of loop-relevant variables
<EM>before</EM> the update performed in the loop body that is being
analyzed. The variables indices are allocated as follows:
- \f$ x_1, \ldots, x_n \f$ go onto space dimensions
\f$ 0, \ldots, n-1 \f$.
\param pset_after
A pointset approximating the values of loop-relevant variables
<EM>after</EM> the update performed in the loop body that is being
analyzed. The variables indices are allocated as follows:
- \f$ x'_1, \ldots, x'_n \f$ go onto space dimensions
\f$ 0, \ldots, n-1 \f$,
- \f$ x_1, \ldots, x_n \f$ go onto space dimensions
\f$ n, \ldots, 2n-1 \f$,
Note that unprimed variables represent the values of the loop-relevant
program variables before the update performed in the loop body,
and primed variables represent the values of those program variables
after the update. Note also that unprimed variables are assigned
to different space dimensions in \p pset_before and \p pset_after.
\param mu_space
This is assigned a closed polyhedron of space dimension \f$ n+1 \f$
representing the space of all the affine ranking functions for the loops
that are precisely characterized by \p pset.
These ranking functions are of the form
\f$ \mu_0 + \sum_{i=1}^n \mu_i x_i \f$
where \f$ \mu_0, \mu_1, \ldots, \mu_n \f$ identify any point of the
\p mu_space polyhedron.
The variables \f$ \mu_0, \mu_1, \ldots, \mu_n \f$
correspond to the space dimensions of \p mu_space
\f$ n, 0, \ldots, n-1 \f$, respectively.
When \p mu_space is empty, it means that the test is inconclusive.
However, if \p pset_before and \p pset_after <EM>precisely</EM>
characterize the effect of the loop body onto the loop-relevant
program variables, then \p mu_space is empty <EM>if and only if</EM>
the loop does <EM>not</EM> terminate.
*/
template <typename PSET>
void
all_affine_ranking_functions_MS_2(const PSET& pset_before,
const PSET& pset_after,
C_Polyhedron& mu_space);
/*! \ingroup PPL_CXX_interface \brief
Computes the spaces of affine \e quasi ranking functions
using an improvement of the method by Mesnard and Serebrenik
\ref BMPZ10 "[BMPZ10]".
\tparam PSET
Any pointset supported by the PPL that provides the
<CODE>minimized_constraints()</CODE> method.
\param pset
A pointset approximating the behavior of a loop whose termination
is being analyzed. The variables indices are allocated as follows:
- \f$ x'_1, \ldots, x'_n \f$ go onto space dimensions
\f$ 0, \ldots, n-1 \f$,
- \f$ x_1, \ldots, x_n \f$ go onto space dimensions
\f$ n, \ldots, 2n-1 \f$,
.
where unprimed variables represent the values of the loop-relevant
program variables before the update performed in the loop body,
and primed variables represent the values of those program variables
after the update.
\param decreasing_mu_space
This is assigned a closed polyhedron of space dimension \f$ n+1 \f$
representing the space of all the decreasing affine functions
for the loops that are precisely characterized by \p pset.
\param bounded_mu_space
This is assigned a closed polyhedron of space dimension \f$ n+1 \f$
representing the space of all the lower bounded affine functions
for the loops that are precisely characterized by \p pset.
These quasi-ranking functions are of the form
\f$ \mu_0 + \sum_{i=1}^n \mu_i x_i \f$
where \f$ \mu_0, \mu_1, \ldots, \mu_n \f$ identify any point of the
\p decreasing_mu_space and \p bounded_mu_space polyhedrons.
The variables \f$ \mu_0, \mu_1, \ldots, \mu_n \f$
correspond to the space dimensions \f$ n, 0, \ldots, n-1 \f$, respectively.
When \p decreasing_mu_space (resp., \p bounded_mu_space) is empty,
it means that the test is inconclusive.
However, if \p pset <EM>precisely</EM> characterizes the effect
of the loop body onto the loop-relevant program variables,
then \p decreasing_mu_space (resp., \p bounded_mu_space) will be empty
<EM>if and only if</EM> there is no decreasing (resp., lower bounded)
affine function, so that the loop does not terminate.
*/
template <typename PSET>
void
all_affine_quasi_ranking_functions_MS(const PSET& pset,
C_Polyhedron& decreasing_mu_space,
C_Polyhedron& bounded_mu_space);
/*! \ingroup PPL_CXX_interface \brief
Computes the spaces of affine \e quasi ranking functions
using an improvement of the method by Mesnard and Serebrenik
\ref BMPZ10 "[BMPZ10]".
\tparam PSET
Any pointset supported by the PPL that provides the
<CODE>minimized_constraints()</CODE> method.
\param pset_before
A pointset approximating the values of loop-relevant variables
<EM>before</EM> the update performed in the loop body that is being
analyzed. The variables indices are allocated as follows:
- \f$ x_1, \ldots, x_n \f$ go onto space dimensions
\f$ 0, \ldots, n-1 \f$.
\param pset_after
A pointset approximating the values of loop-relevant variables
<EM>after</EM> the update performed in the loop body that is being
analyzed. The variables indices are allocated as follows:
- \f$ x'_1, \ldots, x'_n \f$ go onto space dimensions
\f$ 0, \ldots, n-1 \f$,
- \f$ x_1, \ldots, x_n \f$ go onto space dimensions
\f$ n, \ldots, 2n-1 \f$,
Note that unprimed variables represent the values of the loop-relevant
program variables before the update performed in the loop body,
and primed variables represent the values of those program variables
after the update. Note also that unprimed variables are assigned
to different space dimensions in \p pset_before and \p pset_after.
\param decreasing_mu_space
This is assigned a closed polyhedron of space dimension \f$ n+1 \f$
representing the space of all the decreasing affine functions
for the loops that are precisely characterized by \p pset.
\param bounded_mu_space
This is assigned a closed polyhedron of space dimension \f$ n+1 \f$
representing the space of all the lower bounded affine functions
for the loops that are precisely characterized by \p pset.
These ranking functions are of the form
\f$ \mu_0 + \sum_{i=1}^n \mu_i x_i \f$
where \f$ \mu_0, \mu_1, \ldots, \mu_n \f$ identify any point of the
\p decreasing_mu_space and \p bounded_mu_space polyhedrons.
The variables \f$ \mu_0, \mu_1, \ldots, \mu_n \f$
correspond to the space dimensions \f$ n, 0, \ldots, n-1 \f$, respectively.
When \p decreasing_mu_space (resp., \p bounded_mu_space) is empty,
it means that the test is inconclusive.
However, if \p pset_before and \p pset_after <EM>precisely</EM>
characterize the effect of the loop body onto the loop-relevant
program variables, then \p decreasing_mu_space (resp., \p bounded_mu_space)
will be empty <EM>if and only if</EM> there is no decreasing
(resp., lower bounded) affine function, so that the loop does not terminate.
*/
template <typename PSET>
void
all_affine_quasi_ranking_functions_MS_2(const PSET& pset_before,
const PSET& pset_after,
C_Polyhedron& decreasing_mu_space,
C_Polyhedron& bounded_mu_space);
/*! \ingroup PPL_CXX_interface \brief
Like termination_test_MS() but using the method by Podelski and
Rybalchenko \ref BMPZ10 "[BMPZ10]".
*/
template <typename PSET>
bool
termination_test_PR(const PSET& pset);
/*! \ingroup PPL_CXX_interface \brief
Like termination_test_MS_2() but using an alternative formalization
of the method by Podelski and Rybalchenko \ref BMPZ10 "[BMPZ10]".
*/
template <typename PSET>
bool
termination_test_PR_2(const PSET& pset_before, const PSET& pset_after);
/*! \ingroup PPL_CXX_interface \brief
Like one_affine_ranking_function_MS() but using the method by Podelski
and Rybalchenko \ref BMPZ10 "[BMPZ10]".
*/
template <typename PSET>
bool
one_affine_ranking_function_PR(const PSET& pset, Generator& mu);
/*! \ingroup PPL_CXX_interface \brief
Like one_affine_ranking_function_MS_2() but using an alternative
formalization of the method by Podelski and Rybalchenko
\ref BMPZ10 "[BMPZ10]".
*/
template <typename PSET>
bool
one_affine_ranking_function_PR_2(const PSET& pset_before,
const PSET& pset_after,
Generator& mu);
/*! \ingroup PPL_CXX_interface \brief
Like all_affine_ranking_functions_MS() but using the method by Podelski
and Rybalchenko \ref BMPZ10 "[BMPZ10]".
*/
template <typename PSET>
void
all_affine_ranking_functions_PR(const PSET& pset, NNC_Polyhedron& mu_space);
/*! \ingroup PPL_CXX_interface \brief
Like all_affine_ranking_functions_MS_2() but using an alternative
formalization of the method by Podelski and Rybalchenko
\ref BMPZ10 "[BMPZ10]".
*/
template <typename PSET>
void
all_affine_ranking_functions_PR_2(const PSET& pset_before,
const PSET& pset_after,
NNC_Polyhedron& mu_space);
//@} // Functions for the Synthesis of Linear Rankings
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/termination_templates.hh line 1. */
/* Utilities for termination analysis: template functions.
*/
/* Automatically generated from PPL source file ../src/termination_templates.hh line 33. */
#include <stdexcept>
#define PRINT_DEBUG_INFO 0
#if PRINT_DEBUG_INFO
#include <iostream>
#endif
namespace Parma_Polyhedra_Library {
namespace Implementation {
namespace Termination {
#if PRINT_DEBUG_INFO
static dimension_type output_function_MS_n;
static dimension_type output_function_MS_m;
/* Encodes which object are we printing:
0 means input constraint system;
1 means first output constraint system;
2 means second output constraint system;
3 means only output constraint system
(i.e., when first and second are the same);
4 means mu space.
*/
static int output_function_MS_which = -1;
/*
Debugging output function. See the documentation of
fill_constraint_systems_MS() for the allocation of variable indices.
*/
inline void
output_function_MS(std::ostream& s, const Variable v) {
dimension_type id = v.id();
switch (output_function_MS_which) {
case 0:
if (id < output_function_MS_n)
s << "x'" << id + 1;
else if (id < 2*output_function_MS_n)
s << "x" << id - output_function_MS_n + 1;
else
s << "WHAT?";
break;
case 1:
if (id < output_function_MS_n)
s << "mu" << id + 1;
else if (id == output_function_MS_n)
s << "WHAT?";
else if (id <= output_function_MS_n + output_function_MS_m)
s << "y" << id - output_function_MS_n;
else
s << "WHAT?";
break;
case 2:
case 4:
if (id < output_function_MS_n)
s << "mu" << id + 1;
else if (id == output_function_MS_n)
s << "mu0";
else if (output_function_MS_which == 2
&& id <= output_function_MS_n + output_function_MS_m + 2)
s << "z" << id - output_function_MS_n;
else
s << "WHAT?";
break;
case 3:
if (id < output_function_MS_n)
s << "mu" << id + 1;
else if (id == output_function_MS_n)
s << "mu0";
else if (id <= output_function_MS_n + output_function_MS_m)
s << "y" << id - output_function_MS_n;
else if (id <= output_function_MS_n + 2*output_function_MS_m + 2)
s << "z" << id - (output_function_MS_n + output_function_MS_m);
else
s << "WHAT?";
break;
default:
abort();
break;
}
}
static dimension_type output_function_PR_s;
static dimension_type output_function_PR_r;
/*
Debugging output function. See the documentation of
fill_constraint_system_PR() for the allocation of variable indices.
*/
inline void
output_function_PR(std::ostream& s, const Variable v) {
dimension_type id = v.id();
if (id < output_function_PR_s)
s << "u3_" << id + 1;
else if (id < output_function_PR_s + output_function_PR_r)
s << "u2_" << id - output_function_PR_s + 1;
else if (id < output_function_PR_s + 2*output_function_PR_r)
s << "u1_" << id - (output_function_PR_s + output_function_PR_r) + 1;
else
s << "WHAT?";
}
#endif
void
assign_all_inequalities_approximation(const Constraint_System& cs_in,
Constraint_System& cs_out);
template <typename PSET>
inline void
assign_all_inequalities_approximation(const PSET& pset,
Constraint_System& cs) {
assign_all_inequalities_approximation(pset.minimized_constraints(), cs);
}
template <>
void
assign_all_inequalities_approximation(const C_Polyhedron& ph,
Constraint_System& cs);
bool
termination_test_MS(const Constraint_System& cs);
bool
one_affine_ranking_function_MS(const Constraint_System& cs,
Generator& mu);
void
all_affine_ranking_functions_MS(const Constraint_System& cs,
C_Polyhedron& mu_space);
void
all_affine_quasi_ranking_functions_MS(const Constraint_System& cs,
C_Polyhedron& decreasing_mu_space,
C_Polyhedron& bounded_mu_space);
bool
termination_test_PR(const Constraint_System& cs_before,
const Constraint_System& cs_after);
bool
one_affine_ranking_function_PR(const Constraint_System& cs_before,
const Constraint_System& cs_after,
Generator& mu);
void
all_affine_ranking_functions_PR(const Constraint_System& cs_before,
const Constraint_System& cs_after,
NNC_Polyhedron& mu_space);
bool
termination_test_PR_original(const Constraint_System& cs);
bool
one_affine_ranking_function_PR_original(const Constraint_System& cs,
Generator& mu);
void
all_affine_ranking_functions_PR_original(const Constraint_System& cs,
NNC_Polyhedron& mu_space);
} // namespace Termination
} // namespace Implementation
template <typename PSET>
void
Termination_Helpers
::assign_all_inequalities_approximation(const PSET& pset_before,
const PSET& pset_after,
Constraint_System& cs) {
Implementation::Termination
::assign_all_inequalities_approximation(pset_before, cs);
cs.shift_space_dimensions(Variable(0), cs.space_dimension());
Constraint_System cs_after;
Implementation::Termination
::assign_all_inequalities_approximation(pset_after, cs_after);
// FIXME: provide an "append" for constraint systems.
for (Constraint_System::const_iterator i = cs_after.begin(),
cs_after_end = cs_after.end(); i != cs_after_end; ++i)
cs.insert(*i);
}
template <typename PSET>
bool
termination_test_MS(const PSET& pset) {
const dimension_type space_dim = pset.space_dimension();
if (space_dim % 2 != 0) {
std::ostringstream s;
s << "PPL::termination_test_MS(pset):\n"
"pset.space_dimension() == " << space_dim
<< " is odd.";
throw std::invalid_argument(s.str());
}
using namespace Implementation::Termination;
Constraint_System cs;
assign_all_inequalities_approximation(pset, cs);
return termination_test_MS(cs);
}
template <typename PSET>
bool
termination_test_MS_2(const PSET& pset_before, const PSET& pset_after) {
const dimension_type before_space_dim = pset_before.space_dimension();
const dimension_type after_space_dim = pset_after.space_dimension();
if (after_space_dim != 2*before_space_dim) {
std::ostringstream s;
s << "PPL::termination_test_MS_2(pset_before, pset_after):\n"
"pset_before.space_dimension() == " << before_space_dim
<< ", pset_after.space_dimension() == " << after_space_dim
<< ";\nthe latter should be twice the former.";
throw std::invalid_argument(s.str());
}
using namespace Implementation::Termination;
Constraint_System cs;
Termination_Helpers
::assign_all_inequalities_approximation(pset_before, pset_after, cs);
return termination_test_MS(cs);
}
template <typename PSET>
bool
one_affine_ranking_function_MS(const PSET& pset, Generator& mu) {
const dimension_type space_dim = pset.space_dimension();
if (space_dim % 2 != 0) {
std::ostringstream s;
s << "PPL::one_affine_ranking_function_MS(pset, mu):\n"
"pset.space_dimension() == " << space_dim
<< " is odd.";
throw std::invalid_argument(s.str());
}
using namespace Implementation::Termination;
Constraint_System cs;
assign_all_inequalities_approximation(pset, cs);
return one_affine_ranking_function_MS(cs, mu);
}
template <typename PSET>
bool
one_affine_ranking_function_MS_2(const PSET& pset_before,
const PSET& pset_after,
Generator& mu) {
const dimension_type before_space_dim = pset_before.space_dimension();
const dimension_type after_space_dim = pset_after.space_dimension();
if (after_space_dim != 2*before_space_dim) {
std::ostringstream s;
s << "PPL::one_affine_ranking_function_MS_2(pset_before, pset_after, mu):\n"
"pset_before.space_dimension() == " << before_space_dim
<< ", pset_after.space_dimension() == " << after_space_dim
<< ";\nthe latter should be twice the former.";
throw std::invalid_argument(s.str());
}
using namespace Implementation::Termination;
Constraint_System cs;
Termination_Helpers
::assign_all_inequalities_approximation(pset_before, pset_after, cs);
return one_affine_ranking_function_MS(cs, mu);
}
template <typename PSET>
void
all_affine_ranking_functions_MS(const PSET& pset, C_Polyhedron& mu_space) {
const dimension_type space_dim = pset.space_dimension();
if (space_dim % 2 != 0) {
std::ostringstream s;
s << "PPL::all_affine_ranking_functions_MS(pset, mu_space):\n"
"pset.space_dimension() == " << space_dim
<< " is odd.";
throw std::invalid_argument(s.str());
}
if (pset.is_empty()) {
mu_space = C_Polyhedron(1 + space_dim/2, UNIVERSE);
return;
}
using namespace Implementation::Termination;
Constraint_System cs;
assign_all_inequalities_approximation(pset, cs);
all_affine_ranking_functions_MS(cs, mu_space);
}
template <typename PSET>
void
all_affine_ranking_functions_MS_2(const PSET& pset_before,
const PSET& pset_after,
C_Polyhedron& mu_space) {
const dimension_type before_space_dim = pset_before.space_dimension();
const dimension_type after_space_dim = pset_after.space_dimension();
if (after_space_dim != 2*before_space_dim) {
std::ostringstream s;
s << "PPL::all_affine_ranking_functions_MS_2"
<< "(pset_before, pset_after, mu_space):\n"
<< "pset_before.space_dimension() == " << before_space_dim
<< ", pset_after.space_dimension() == " << after_space_dim
<< ";\nthe latter should be twice the former.";
throw std::invalid_argument(s.str());
}
if (pset_before.is_empty()) {
mu_space = C_Polyhedron(1 + before_space_dim, UNIVERSE);
return;
}
using namespace Implementation::Termination;
Constraint_System cs;
Termination_Helpers
::assign_all_inequalities_approximation(pset_before, pset_after, cs);
all_affine_ranking_functions_MS(cs, mu_space);
}
template <typename PSET>
void
all_affine_quasi_ranking_functions_MS(const PSET& pset,
C_Polyhedron& decreasing_mu_space,
C_Polyhedron& bounded_mu_space) {
const dimension_type space_dim = pset.space_dimension();
if (space_dim % 2 != 0) {
std::ostringstream s;
s << "PPL::all_affine_quasi_ranking_functions_MS"
<< "(pset, decr_space, bounded_space):\n"
<< "pset.space_dimension() == " << space_dim
<< " is odd.";
throw std::invalid_argument(s.str());
}
if (pset.is_empty()) {
decreasing_mu_space = C_Polyhedron(1 + space_dim/2, UNIVERSE);
bounded_mu_space = decreasing_mu_space;
return;
}
using namespace Implementation::Termination;
Constraint_System cs;
assign_all_inequalities_approximation(pset, cs);
all_affine_quasi_ranking_functions_MS(cs,
decreasing_mu_space,
bounded_mu_space);
}
template <typename PSET>
void
all_affine_quasi_ranking_functions_MS_2(const PSET& pset_before,
const PSET& pset_after,
C_Polyhedron& decreasing_mu_space,
C_Polyhedron& bounded_mu_space) {
const dimension_type before_space_dim = pset_before.space_dimension();
const dimension_type after_space_dim = pset_after.space_dimension();
if (after_space_dim != 2*before_space_dim) {
std::ostringstream s;
s << "PPL::all_affine_quasi_ranking_functions_MS_2"
<< "(pset_before, pset_after, decr_space, bounded_space):\n"
<< "pset_before.space_dimension() == " << before_space_dim
<< ", pset_after.space_dimension() == " << after_space_dim
<< ";\nthe latter should be twice the former.";
throw std::invalid_argument(s.str());
}
if (pset_before.is_empty()) {
decreasing_mu_space = C_Polyhedron(1 + before_space_dim, UNIVERSE);
bounded_mu_space = decreasing_mu_space;
return;
}
using namespace Implementation::Termination;
Constraint_System cs;
Termination_Helpers
::assign_all_inequalities_approximation(pset_before, pset_after, cs);
all_affine_quasi_ranking_functions_MS(cs,
decreasing_mu_space,
bounded_mu_space);
}
template <typename PSET>
bool
termination_test_PR_2(const PSET& pset_before, const PSET& pset_after) {
const dimension_type before_space_dim = pset_before.space_dimension();
const dimension_type after_space_dim = pset_after.space_dimension();
if (after_space_dim != 2*before_space_dim) {
std::ostringstream s;
s << "PPL::termination_test_PR_2(pset_before, pset_after):\n"
<< "pset_before.space_dimension() == " << before_space_dim
<< ", pset_after.space_dimension() == " << after_space_dim
<< ";\nthe latter should be twice the former.";
throw std::invalid_argument(s.str());
}
using namespace Implementation::Termination;
Constraint_System cs_before;
Constraint_System cs_after;
assign_all_inequalities_approximation(pset_before, cs_before);
assign_all_inequalities_approximation(pset_after, cs_after);
return termination_test_PR(cs_before, cs_after);
}
template <typename PSET>
bool
termination_test_PR(const PSET& pset) {
const dimension_type space_dim = pset.space_dimension();
if (space_dim % 2 != 0) {
std::ostringstream s;
s << "PPL::termination_test_PR(pset):\n"
<< "pset.space_dimension() == " << space_dim
<< " is odd.";
throw std::invalid_argument(s.str());
}
using namespace Implementation::Termination;
Constraint_System cs;
assign_all_inequalities_approximation(pset, cs);
return termination_test_PR_original(cs);
}
template <typename PSET>
bool
one_affine_ranking_function_PR_2(const PSET& pset_before,
const PSET& pset_after,
Generator& mu) {
const dimension_type before_space_dim = pset_before.space_dimension();
const dimension_type after_space_dim = pset_after.space_dimension();
if (after_space_dim != 2*before_space_dim) {
std::ostringstream s;
s << "PPL::one_affine_ranking_function_PR_2"
<< "(pset_before, pset_after, mu):\n"
<< "pset_before.space_dimension() == " << before_space_dim
<< ", pset_after.space_dimension() == " << after_space_dim
<< ";\nthe latter should be twice the former.";
throw std::invalid_argument(s.str());
}
using namespace Implementation::Termination;
Constraint_System cs_before;
Constraint_System cs_after;
assign_all_inequalities_approximation(pset_before, cs_before);
assign_all_inequalities_approximation(pset_after, cs_after);
return one_affine_ranking_function_PR(cs_before, cs_after, mu);
}
template <typename PSET>
bool
one_affine_ranking_function_PR(const PSET& pset, Generator& mu) {
const dimension_type space_dim = pset.space_dimension();
if (space_dim % 2 != 0) {
std::ostringstream s;
s << "PPL::one_affine_ranking_function_PR(pset, mu):\n"
<< "pset.space_dimension() == " << space_dim
<< " is odd.";
throw std::invalid_argument(s.str());
}
using namespace Implementation::Termination;
Constraint_System cs;
assign_all_inequalities_approximation(pset, cs);
return one_affine_ranking_function_PR_original(cs, mu);
}
template <typename PSET>
void
all_affine_ranking_functions_PR_2(const PSET& pset_before,
const PSET& pset_after,
NNC_Polyhedron& mu_space) {
const dimension_type before_space_dim = pset_before.space_dimension();
const dimension_type after_space_dim = pset_after.space_dimension();
if (after_space_dim != 2*before_space_dim) {
std::ostringstream s;
s << "PPL::all_affine_ranking_functions_MS_2"
<< "(pset_before, pset_after, mu_space):\n"
<< "pset_before.space_dimension() == " << before_space_dim
<< ", pset_after.space_dimension() == " << after_space_dim
<< ";\nthe latter should be twice the former.";
throw std::invalid_argument(s.str());
}
if (pset_before.is_empty()) {
mu_space = NNC_Polyhedron(1 + before_space_dim);
return;
}
using namespace Implementation::Termination;
Constraint_System cs_before;
Constraint_System cs_after;
assign_all_inequalities_approximation(pset_before, cs_before);
assign_all_inequalities_approximation(pset_after, cs_after);
all_affine_ranking_functions_PR(cs_before, cs_after, mu_space);
}
template <typename PSET>
void
all_affine_ranking_functions_PR(const PSET& pset,
NNC_Polyhedron& mu_space) {
const dimension_type space_dim = pset.space_dimension();
if (space_dim % 2 != 0) {
std::ostringstream s;
s << "PPL::all_affine_ranking_functions_PR(pset, mu_space):\n"
<< "pset.space_dimension() == " << space_dim
<< " is odd.";
throw std::invalid_argument(s.str());
}
if (pset.is_empty()) {
mu_space = NNC_Polyhedron(1 + space_dim/2);
return;
}
using namespace Implementation::Termination;
Constraint_System cs;
assign_all_inequalities_approximation(pset, cs);
all_affine_ranking_functions_PR_original(cs, mu_space);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/termination_defs.hh line 501. */
/* Automatically generated from PPL source file ../src/wrap_string.hh line 1. */
/* Declaration of string wrapping function.
*/
/* Automatically generated from PPL source file ../src/wrap_string.hh line 28. */
namespace Parma_Polyhedra_Library {
namespace IO_Operators {
//! Utility function for the wrapping of lines of text.
/*!
\param src_string
The source string holding the lines to wrap.
\param indent_depth
The indentation depth.
\param preferred_first_line_length
The preferred length for the first line of text.
\param preferred_line_length
The preferred length for all the lines but the first one.
\return
The wrapped string.
*/
std::string
wrap_string(const std::string& src_string,
unsigned indent_depth,
unsigned preferred_first_line_length,
unsigned preferred_line_length);
} // namespace IO_Operators
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Cast_Floating_Point_Expression_defs.hh line 1. */
/* Declarations for the Cast_Floating_Point_Expression class and
its constituents.
*/
/* Automatically generated from PPL source file ../src/Cast_Floating_Point_Expression_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type, typename FP_Format>
class Cast_Floating_Point_Expression;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Cast_Floating_Point_Expression_defs.hh line 31. */
#include <map>
namespace Parma_Polyhedra_Library {
//! Swaps \p x with \p y.
/*! \relates Cast_Floating_Point_Expression */
template<typename FP_Interval_Type, typename FP_Format>
void
swap(Cast_Floating_Point_Expression<FP_Interval_Type, FP_Format>& x,
Cast_Floating_Point_Expression<FP_Interval_Type, FP_Format>& y);
/*! \brief
A generic Cast Floating Point Expression.
\ingroup PPL_CXX_interface
\par Template type parameters
- The class template type parameter \p FP_Interval_Type represents the type
of the intervals used in the abstract domain.
- The class template type parameter \p FP_Format represents the floating
point format used in the concrete domain.
\par Linearization of floating-point cast expressions
Let \f$i + \sum_{v \in \cV}i_{v}v \f$ and
\f$i' + \sum_{v \in \cV}i'_{v}v \f$
be two linear forms and \f$\aslf\f$ a sound abstract operator on linear
forms such that:
\f[
\left(i + \sum_{v \in \cV}i_{v}v \right)
\aslf
\left(i' + \sum_{v \in \cV}i'_{v}v \right)
=
\left(i \asifp i'\right)
+ \sum_{v \in \cV}\left(i_{v} \asifp i'_{v} \right)v.
\f]
Given a floating point expression \f$e\f$ and a composite abstract store
\f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right \rrbracket\f$,
we construct the interval linear form
\f$\linexprenv{cast(e)}{\rho^{\#}}{\rho^{\#}_l}\f$ as follows:
\f[
\linexprenv{cast(e)}{\rho^{\#}}{\rho^{\#}_l}
=
\linexprenv{e}{\rho^{\#}}{\rho^{\#}_l}
\aslf
\varepsilon_{\mathbf{f}}\left(\linexprenv{e}{\rho^{\#}}{\rho^{\#}_l}
\right)
\aslf
mf_{\mathbf{f}}[-1, 1]
\f]
where \f$\varepsilon_{\mathbf{f}}(l)\f$ is the linear form computed by
calling method <CODE>Floating_Point_Expression::relative_error</CODE>
on \f$l\f$ and \f$mf_{\mathbf{f}}\f$ is a rounding error defined in
<CODE>Floating_Point_Expression::absolute_error</CODE>.
*/
template <typename FP_Interval_Type, typename FP_Format>
class Cast_Floating_Point_Expression
: public Floating_Point_Expression<FP_Interval_Type, FP_Format> {
public:
/*! \brief
Alias for the Linear_Form<FP_Interval_Type> from
Floating_Point_Expression
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::
FP_Linear_Form FP_Linear_Form;
/*! \brief
Alias for the Box<FP_Interval_Type> from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::
FP_Interval_Abstract_Store FP_Interval_Abstract_Store;
/*! \brief
Alias for the std::map<dimension_type, FP_Linear_Form> from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::
FP_Linear_Form_Abstract_Store FP_Linear_Form_Abstract_Store;
//! \name Constructors and Destructor
//@{
/*! \brief
Builds a cast floating point expression with the value
expressed by \p expr.
*/
Cast_Floating_Point_Expression(
Floating_Point_Expression<FP_Interval_Type, FP_Format>* const expr);
//! Destructor.
~Cast_Floating_Point_Expression();
//@} // Constructors and Destructor
/*! \brief
Linearizes the expression in a given astract store.
Makes \p result become the linearization of \p *this in the given
composite abstract store.
\param int_store The interval abstract store.
\param lf_store The linear form abstract store.
\param result The modified linear form.
\return <CODE>true</CODE> if the linearization succeeded,
<CODE>false</CODE> otherwise.
See the class description for an explanation of how \p result is computed.
*/
bool linearize(const FP_Interval_Abstract_Store& int_store,
const FP_Linear_Form_Abstract_Store& lf_store,
FP_Linear_Form& result) const;
//! Swaps \p *this with \p y.
void m_swap(Cast_Floating_Point_Expression& y);
private:
//! Pointer to the casted expression.
Floating_Point_Expression<FP_Interval_Type, FP_Format>* expr;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Inhibited copy constructor.
*/
#endif // PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
Cast_Floating_Point_Expression(
const Cast_Floating_Point_Expression& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Inhibited assignment operator.
*/
#endif // PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAIL
Cast_Floating_Point_Expression& operator=(
const Cast_Floating_Point_Expression& y);
}; // class Cast_Floating_Point_Expression
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Cast_Floating_Point_Expression_inlines.hh line 1. */
/* Cast_Floating_Point_Expression class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Cast_Floating_Point_Expression_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type, typename FP_Format>
inline
Cast_Floating_Point_Expression<FP_Interval_Type, FP_Format>::
Cast_Floating_Point_Expression(
Floating_Point_Expression<FP_Interval_Type, FP_Format>* const e)
: expr(e) {
assert(e != 0);
}
template <typename FP_Interval_Type, typename FP_Format>
inline
Cast_Floating_Point_Expression<FP_Interval_Type, FP_Format>::
~Cast_Floating_Point_Expression() {
delete expr;
}
template <typename FP_Interval_Type, typename FP_Format>
inline void
Cast_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::m_swap(Cast_Floating_Point_Expression& y) {
swap(expr, y.expr);
}
/*! \relates Cast_Floating_Point_Expression */
template <typename FP_Interval_Type, typename FP_Format>
inline void
swap(Cast_Floating_Point_Expression<FP_Interval_Type, FP_Format>& x,
Cast_Floating_Point_Expression<FP_Interval_Type, FP_Format>& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Cast_Floating_Point_Expression_defs.hh line 181. */
/* Automatically generated from PPL source file ../src/Cast_Floating_Point_Expression_templates.hh line 1. */
/* Cast_Floating_Point_Expression class implementation:
non-inline template functions.
*/
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type, typename FP_Format>
bool Cast_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::linearize(const FP_Interval_Abstract_Store& int_store,
const FP_Linear_Form_Abstract_Store& lf_store,
FP_Linear_Form& result) const {
if (!expr->linearize(int_store, lf_store, result))
return false;
FP_Linear_Form rel_error;
relative_error(result, rel_error);
result += rel_error;
result += this->absolute_error;
return !this->overflows(result);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Constant_Floating_Point_Expression_defs.hh line 1. */
/* Declarations for the Constant_Floating_Point_Expression class and
its constituents.
*/
/* Automatically generated from PPL source file ../src/Constant_Floating_Point_Expression_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type, typename FP_Format>
class Constant_Floating_Point_Expression;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Constant_Floating_Point_Expression_defs.hh line 31. */
#include <map>
namespace Parma_Polyhedra_Library {
//! Swaps \p x with \p y.
/*! \relates Constant_Floating_Point_Expression */
template<typename FP_Interval_Type, typename FP_Format>
void swap(Constant_Floating_Point_Expression<FP_Interval_Type, FP_Format>& x,
Constant_Floating_Point_Expression<FP_Interval_Type, FP_Format>& y);
/*! \brief
A generic Constant Floating Point Expression.
\ingroup PPL_CXX_interface
\par Template type parameters
- The class template type parameter \p FP_Interval_Type represents the type
of the intervals used in the abstract domain.
- The class template type parameter \p FP_Format represents the floating
point format used in the concrete domain.
\par Linearization of floating-point constant expressions
The linearization of a constant floating point expression results in a
linear form consisting of only the inhomogeneous term
\f$[l, u]\f$, where \f$l\f$ and \f$u\f$ are the lower
and upper bounds of the constant value given to the class constructor.
*/
template <typename FP_Interval_Type, typename FP_Format>
class Constant_Floating_Point_Expression
: public Floating_Point_Expression<FP_Interval_Type, FP_Format> {
public:
/*! \brief
Alias for the Linear_Form<FP_Interval_Type> from
Floating_Point_Expression
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::
FP_Linear_Form FP_Linear_Form;
/*! \brief
Alias for the Box<FP_Interval_Type> from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::
FP_Interval_Abstract_Store FP_Interval_Abstract_Store;
/*! \brief
Alias for the std::map<dimension_type, FP_Linear_Form> from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::
FP_Linear_Form_Abstract_Store FP_Linear_Form_Abstract_Store;
/*! \brief
Alias for the FP_Interval_Type::boundary_type from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::boundary_type
boundary_type;
/*! \brief
Alias for the FP_Interval_Type::info_type from Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::info_type info_type;
//! \name Constructors and Destructor
//@{
/*! \brief
Constructor with two parameters: builds the constant floating point
expression from a \p lower_bound and an \p upper_bound of its
value in the concrete domain.
*/
Constant_Floating_Point_Expression(const boundary_type lower_bound,
const boundary_type upper_bound);
/*! \brief
Builds a constant floating point expression with the value
expressed by the string \p str_value.
*/
Constant_Floating_Point_Expression(const char* str_value);
//! Destructor.
~Constant_Floating_Point_Expression();
//@} // Constructors and Destructor
/*! \brief
Linearizes the expression in a given astract store.
Makes \p result become the linearization of \p *this in the given
composite abstract store.
\param int_store The interval abstract store.
\param lf_store The linear form abstract store.
\param result The modified linear form.
\return <CODE>true</CODE> if the linearization succeeded,
<CODE>false</CODE> otherwise.
See the class description for an explanation of how \p result is computed.
*/
bool linearize(const FP_Interval_Abstract_Store& int_store,
const FP_Linear_Form_Abstract_Store& lf_store,
FP_Linear_Form& result) const;
//! Swaps \p *this with \p y.
void m_swap(Constant_Floating_Point_Expression& y);
private:
FP_Interval_Type value;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Inhibited copy constructor.
*/
#endif // PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
Constant_Floating_Point_Expression(
const Constant_Floating_Point_Expression& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Inhibited assignment operator.
*/
#endif // PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAIL
Constant_Floating_Point_Expression& operator=(
const Constant_Floating_Point_Expression& y);
}; // class Constant_Floating_Point_Expression
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Constant_Floating_Point_Expression_inlines.hh line 1. */
/* Constant_Floating_Point_Expression class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Constant_Floating_Point_Expression_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type, typename FP_Format>
inline
Constant_Floating_Point_Expression<FP_Interval_Type, FP_Format>::
Constant_Floating_Point_Expression(const char* str_value)
: value(str_value) {}
template <typename FP_Interval_Type, typename FP_Format>
inline
Constant_Floating_Point_Expression<FP_Interval_Type, FP_Format>::
Constant_Floating_Point_Expression(const boundary_type lb,
const boundary_type ub) {
assert(lb <= ub);
value.build(i_constraint(GREATER_OR_EQUAL, lb),
i_constraint(LESS_OR_EQUAL, ub));
}
template <typename FP_Interval_Type, typename FP_Format>
inline
Constant_Floating_Point_Expression<FP_Interval_Type, FP_Format>::
~Constant_Floating_Point_Expression() {}
template <typename FP_Interval_Type, typename FP_Format>
inline void
Constant_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::m_swap(Constant_Floating_Point_Expression& y) {
using std::swap;
swap(value, y.value);
}
template <typename FP_Interval_Type, typename FP_Format>
inline bool
Constant_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::linearize(const FP_Interval_Abstract_Store&,
const FP_Linear_Form_Abstract_Store&,
FP_Linear_Form& result) const {
result = FP_Linear_Form(value);
return true;
}
/*! \relates Constant_Floating_Point_Expression */
template <typename FP_Interval_Type, typename FP_Format>
inline void
swap(Constant_Floating_Point_Expression<FP_Interval_Type, FP_Format>& x,
Constant_Floating_Point_Expression<FP_Interval_Type, FP_Format>& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Constant_Floating_Point_Expression_defs.hh line 172. */
/* Automatically generated from PPL source file ../src/Variable_Floating_Point_Expression_defs.hh line 1. */
/* Declarations for the Variable_Floating_Point_Expression class and
its constituents.
*/
/* Automatically generated from PPL source file ../src/Variable_Floating_Point_Expression_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type, typename FP_Format>
class Variable_Floating_Point_Expression;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Variable_Floating_Point_Expression_defs.hh line 31. */
#include <map>
#include <utility>
namespace Parma_Polyhedra_Library {
//! Swaps \p x with \p y.
/*! \relates Variable_Floating_Point_Expression */
template<typename FP_Interval_Type, typename FP_Format>
void swap(Variable_Floating_Point_Expression<FP_Interval_Type, FP_Format>& x,
Variable_Floating_Point_Expression<FP_Interval_Type, FP_Format>& y);
/*! \brief
A generic Variable Floating Point Expression.
\ingroup PPL_CXX_interface
\par Template type parameters
- The class template type parameter \p FP_Interval_Type represents the type
of the intervals used in the abstract domain.
- The class template type parameter \p FP_Format represents the floating
point format used in the concrete domain.
\par Linearization of floating-point variable expressions
Given a variable expression \f$v\f$ and a composite
abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right
\rrbracket\f$, we construct the interval
linear form \f$\linexprenv{v}{\rho^{\#}}{\rho^{\#}_l}\f$ as
\f$\rho^{\#}_l(v)\f$ if it is defined; otherwise we construct it as
\f$[-1, 1]v\f$.
*/
template <typename FP_Interval_Type, typename FP_Format>
class Variable_Floating_Point_Expression
: public Floating_Point_Expression<FP_Interval_Type, FP_Format> {
public:
/*! \brief
Alias for the Linear_Form<FP_Interval_Type> from
Floating_Point_Expression
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::
FP_Linear_Form FP_Linear_Form;
/*! \brief
Alias for the Box<FP_Interval_Type> from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::
FP_Interval_Abstract_Store FP_Interval_Abstract_Store;
/*! \brief
Alias for the std::map<dimension_type, FP_Linear_Form> from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::
FP_Linear_Form_Abstract_Store FP_Linear_Form_Abstract_Store;
/*! \brief
Alias for the FP_Interval_Type::boundary_type from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::boundary_type
boundary_type;
/*! \brief
Alias for the FP_Interval_Type::info_type from Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::info_type info_type;
//! \name Constructors and Destructor
//@{
/*! \brief
Constructor with a parameter: builds the variable floating point
expression corresponding to the variable having \p v_index as its index.
*/
explicit Variable_Floating_Point_Expression(const dimension_type v_index);
//! Destructor.
~Variable_Floating_Point_Expression();
//@} // Constructors and Destructor
/*! \brief
Linearizes the expression in a given abstract store.
Makes \p result become the linearization of \p *this in the given
composite abstract store.
\param int_store The interval abstract store.
\param lf_store The linear form abstract store.
\param result The modified linear form.
\return <CODE>true</CODE> if the linearization succeeded,
<CODE>false</CODE> otherwise.
Note that the variable in the expression MUST have an associated value
in \p int_store. If this precondition is not met, calling the method
causes an undefined behavior.
See the class description for a detailed explanation of how \p result is
computed.
*/
bool linearize(const FP_Interval_Abstract_Store& int_store,
const FP_Linear_Form_Abstract_Store& lf_store,
FP_Linear_Form& result) const;
/*! \brief
Assigns a linear form to the variable with the same index of
\p *this in a given linear form abstract store.
\param lf The linear form assigned to the variable.
\param lf_store The linear form abstract store.
Note that once \p lf is assigned to a variable, all the other entries
of \p lf_store which contain that variable are discarded.
*/
void linear_form_assign(const FP_Linear_Form& lf,
FP_Linear_Form_Abstract_Store& lf_store) const;
//! Swaps \p *this with \p y.
void m_swap(Variable_Floating_Point_Expression& y);
private:
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Inhibited copy constructor.
*/
#endif // PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
Variable_Floating_Point_Expression(
const Variable_Floating_Point_Expression& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Inhibited assignment operator.
*/
#endif // PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
Variable_Floating_Point_Expression& operator=(
const Variable_Floating_Point_Expression& y);
//! The index of the variable.
dimension_type variable_index;
}; // class Variable_Floating_Point_Expression
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Variable_Floating_Point_Expression_inlines.hh line 1. */
/* Variable_Floating_Point_Expression class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Variable_Floating_Point_Expression_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type, typename FP_Format>
inline
Variable_Floating_Point_Expression<FP_Interval_Type, FP_Format>::
Variable_Floating_Point_Expression(const dimension_type v_index)
: variable_index(v_index) {}
template <typename FP_Interval_Type, typename FP_Format>
inline
Variable_Floating_Point_Expression<FP_Interval_Type, FP_Format>::
~Variable_Floating_Point_Expression() {}
template <typename FP_Interval_Type, typename FP_Format>
inline void
Variable_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::m_swap(Variable_Floating_Point_Expression& y) {
using std::swap;
swap(variable_index, y.variable_index);
}
template <typename FP_Interval_Type, typename FP_Format>
inline bool
Variable_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::linearize(const FP_Interval_Abstract_Store&,
const FP_Linear_Form_Abstract_Store& lf_store,
FP_Linear_Form& result) const {
typename FP_Linear_Form_Abstract_Store::const_iterator
variable_value = lf_store.find(variable_index);
if (variable_value == lf_store.end()) {
result = FP_Linear_Form(Variable(variable_index));
return true;
}
result = FP_Linear_Form(variable_value->second);
return !this->overflows(result);
}
template <typename FP_Interval_Type, typename FP_Format>
inline void
Variable_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::linear_form_assign(const FP_Linear_Form& lf,
FP_Linear_Form_Abstract_Store& lf_store) const {
for (typename FP_Linear_Form_Abstract_Store::iterator
i = lf_store.begin(); i != lf_store.end(); ) {
if ((i->second).coefficient(Variable(variable_index)) != 0)
i = lf_store.erase(i);
else
++i;
}
lf_store[variable_index] = lf;
return;
}
/*! \relates Variable_Floating_Point_Expression */
template <typename FP_Interval_Type, typename FP_Format>
inline void
swap(Variable_Floating_Point_Expression<FP_Interval_Type, FP_Format>& x,
Variable_Floating_Point_Expression<FP_Interval_Type, FP_Format>& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Variable_Floating_Point_Expression_defs.hh line 186. */
/* Automatically generated from PPL source file ../src/Sum_Floating_Point_Expression_defs.hh line 1. */
/* Declarations for the Sum_Floating_Point_Expression class and
its constituents.
*/
/* Automatically generated from PPL source file ../src/Sum_Floating_Point_Expression_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type, typename FP_Format>
class Sum_Floating_Point_Expression;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Sum_Floating_Point_Expression_defs.hh line 31. */
#include <map>
namespace Parma_Polyhedra_Library {
//! Swaps \p x with \p y.
/*! \relates Sum_Floating_Point_Expression */
template <typename FP_Interval_Type, typename FP_Format>
void swap(Sum_Floating_Point_Expression<FP_Interval_Type, FP_Format>& x,
Sum_Floating_Point_Expression<FP_Interval_Type, FP_Format>& y);
/*! \brief
A generic Sum Floating Point Expression.
\ingroup PPL_CXX_interface
\par Template type parameters
- The class template type parameter \p FP_Interval_Type represents the type
of the intervals used in the abstract domain.
- The class template type parameter \p FP_Format represents the floating
point format used in the concrete domain.
\par Linearization of sum floating-point expressions
Let \f$i + \sum_{v \in \cV}i_{v}v \f$ and
\f$i' + \sum_{v \in \cV}i'_{v}v \f$
be two linear forms and \f$\aslf\f$ a sound abstract operator on linear
forms such that:
\f[
\left(i + \sum_{v \in \cV}i_{v}v \right)
\aslf
\left(i' + \sum_{v \in \cV}i'_{v}v \right)
=
\left(i \asifp i'\right)
+ \sum_{v \in \cV}\left(i_{v} \asifp i'_{v} \right)v.
\f]
Given an expression \f$e_{1} \oplus e_{2}\f$ and a composite
abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right
\rrbracket\f$, we construct the interval linear form
\f$\linexprenv{e_{1} \oplus e_{2}}{\rho^{\#}}{\rho^{\#}_l}\f$
as follows:
\f[
\linexprenv{e_{1} \oplus e_{2}}{\rho^{\#}}{\rho^{\#}_l}
=
\linexprenv{e_{1}}{\rho^{\#}}{\rho^{\#}_l}
\aslf
\linexprenv{e_{2}}{\rho^{\#}}{\rho^{\#}_l}
\aslf
\varepsilon_{\mathbf{f}}\left(\linexprenv{e_{1}}{\rho^{\#}}{\rho^{\#}_l}
\right)
\aslf
\varepsilon_{\mathbf{f}}\left(\linexprenv{e_{2}}{\rho^{\#}}{\rho^{\#}_l}
\right)
\aslf
mf_{\mathbf{f}}[-1, 1]
\f]
where \f$\varepsilon_{\mathbf{f}}(l)\f$ is the linear form computed by
calling method <CODE>Floating_Point_Expression::relative_error</CODE>
on \f$l\f$ and \f$mf_{\mathbf{f}}\f$ is a rounding error defined in
<CODE>Floating_Point_Expression::absolute_error</CODE>.
*/
template <typename FP_Interval_Type, typename FP_Format>
class Sum_Floating_Point_Expression
: public Floating_Point_Expression<FP_Interval_Type, FP_Format> {
public:
/*! \brief
Alias for the Linear_Form<FP_Interval_Type> from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>
::FP_Linear_Form FP_Linear_Form;
/*! \brief
Alias for the Box<FP_Interval_Type> from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>
::FP_Interval_Abstract_Store FP_Interval_Abstract_Store;
/*! \brief
Alias for the std::map<dimension_type, FP_Linear_Form> from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::
FP_Linear_Form_Abstract_Store FP_Linear_Form_Abstract_Store;
/*! \brief
Alias for the FP_Interval_Type::boundary_type from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::boundary_type
boundary_type;
/*! \brief
Alias for the FP_Interval_Type::info_type from Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::info_type info_type;
//! \name Constructors and Destructor
//@{
/*! \brief
Constructor with two parameters: builds the sum floating point expression
corresponding to \p x \f$\oplus\f$ \p y.
*/
Sum_Floating_Point_Expression(
Floating_Point_Expression<FP_Interval_Type, FP_Format>* const x,
Floating_Point_Expression<FP_Interval_Type, FP_Format>* const y);
//! Destructor.
~Sum_Floating_Point_Expression();
//@} // Constructors and Destructor
/*! \brief
Linearizes the expression in a given astract store.
Makes \p result become the linearization of \p *this in the given
composite abstract store.
\param int_store The interval abstract store.
\param lf_store The linear form abstract store.
\param result The modified linear form.
\return <CODE>true</CODE> if the linearization succeeded,
<CODE>false</CODE> otherwise.
Note that all variables occuring in the expressions represented
by \p first_operand and \p second_operand MUST have an associated value in
\p int_store. If this precondition is not met, calling the method
causes an undefined behavior.
See the class description for a detailed explanation of how \p result
is computed.
*/
bool linearize(const FP_Interval_Abstract_Store& int_store,
const FP_Linear_Form_Abstract_Store& lf_store,
FP_Linear_Form& result) const;
//! Swaps \p *this with \p y.
void m_swap(Sum_Floating_Point_Expression<FP_Interval_Type, FP_Format>& y);
private:
//! Pointer to the first operand.
Floating_Point_Expression<FP_Interval_Type, FP_Format>* first_operand;
//! Pointer to the second operand.
Floating_Point_Expression<FP_Interval_Type, FP_Format>* second_operand;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Inhibited copy constructor.
*/
#endif // PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
Sum_Floating_Point_Expression(
const Sum_Floating_Point_Expression<FP_Interval_Type, FP_Format>& e);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Inhibited assignment operator.
*/
#endif // PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
Sum_Floating_Point_Expression<FP_Interval_Type, FP_Format>&
operator=(const Sum_Floating_Point_Expression<FP_Interval_Type,
FP_Format>& e);
}; // class Sum_Floating_Point_Expression
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Sum_Floating_Point_Expression_inlines.hh line 1. */
/* Sum_Floating_Point_Expression class implementation: inline
functions.
*/
/* Automatically generated from PPL source file ../src/Sum_Floating_Point_Expression_inlines.hh line 29. */
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type, typename FP_Format>
inline
Sum_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::Sum_Floating_Point_Expression(
Floating_Point_Expression<FP_Interval_Type, FP_Format>* const x,
Floating_Point_Expression<FP_Interval_Type, FP_Format>* const y)
: first_operand(x), second_operand(y) {
assert(x != 0);
assert(y != 0);
}
template <typename FP_Interval_Type, typename FP_Format>
inline
Sum_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::~Sum_Floating_Point_Expression() {
delete first_operand;
delete second_operand;
}
template <typename FP_Interval_Type, typename FP_Format>
inline void
Sum_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::m_swap(Sum_Floating_Point_Expression<FP_Interval_Type, FP_Format>& y) {
using std::swap;
swap(first_operand, y.first_operand);
swap(second_operand, y.second_operand);
}
/*! \relates Sum_Floating_Point_Expression */
template <typename FP_Interval_Type, typename FP_Format>
inline void
swap(Sum_Floating_Point_Expression<FP_Interval_Type, FP_Format>& x,
Sum_Floating_Point_Expression<FP_Interval_Type, FP_Format>& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Sum_Floating_Point_Expression_templates.hh line 1. */
/* Sum_Floating_Point_Expression class implementation:
non-inline template functions.
*/
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type, typename FP_Format>
bool Sum_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::linearize(const FP_Interval_Abstract_Store& int_store,
const FP_Linear_Form_Abstract_Store& lf_store,
FP_Linear_Form& result) const {
if (!first_operand->linearize(int_store, lf_store, result))
return false;
FP_Linear_Form rel_error;
relative_error(result, rel_error);
result += rel_error;
FP_Linear_Form linearized_second_operand;
if (!second_operand->linearize(int_store, lf_store,
linearized_second_operand))
return false;
result += linearized_second_operand;
relative_error(linearized_second_operand, rel_error);
result += rel_error;
result += this->absolute_error;
return !this->overflows(result);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Sum_Floating_Point_Expression_defs.hh line 212. */
/* Automatically generated from PPL source file ../src/Difference_Floating_Point_Expression_defs.hh line 1. */
/* Declarations for the Difference_Floating_Point_Expression class and
its constituents.
*/
/* Automatically generated from PPL source file ../src/Difference_Floating_Point_Expression_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type, typename FP_Format>
class Difference_Floating_Point_Expression;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Difference_Floating_Point_Expression_defs.hh line 31. */
#include <map>
namespace Parma_Polyhedra_Library {
//! Swaps \p x with \p y.
/*! \relates Difference_Floating_Point_Expression */
template <typename FP_Interval_Type, typename FP_Format>
void
swap(Difference_Floating_Point_Expression<FP_Interval_Type, FP_Format>& x,
Difference_Floating_Point_Expression<FP_Interval_Type, FP_Format>& y);
/*! \brief
A generic Difference Floating Point Expression.
\ingroup PPL_CXX_interface
\par Template type parameters
- The class template type parameter \p FP_Interval_Type represents the type
of the intervals used in the abstract domain.
- The class template type parameter \p FP_Format represents the floating
point format used in the concrete domain.
\par Linearization of difference floating-point expressions
Let \f$i + \sum_{v \in \cV}i_{v}v \f$ and
\f$i' + \sum_{v \in \cV}i'_{v}v \f$
be two linear forms, \f$\aslf\f$ and \f$\adlf\f$ two sound abstract
operators on linear form such that:
\f[
\left(i + \sum_{v \in \cV}i_{v}v\right)
\aslf
\left(i' + \sum_{v \in \cV}i'_{v}v\right)
=
\left(i \asifp i'\right)
+ \sum_{v \in \cV}\left(i_{v} \asifp i'_{v}\right)v,
\f]
\f[
\left(i + \sum_{v \in \cV}i_{v}v\right)
\adlf
\left(i' + \sum_{v \in \cV}i'_{v}v\right)
=
\left(i \adifp i'\right)
+ \sum_{v \in \cV}\left(i_{v} \adifp i'_{v}\right)v.
\f]
Given an expression \f$e_{1} \ominus e_{2}\f$ and a composite
abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right
\rrbracket\f$, we construct the interval linear form
\f$\linexprenv{e_{1} \ominus e_{2}}{\rho^{\#}}{\rho^{\#}_l}\f$
on \f$\cV\f$ as follows:
\f[
\linexprenv{e_{1} \ominus e_{2}}{\rho^{\#}}{\rho^{\#}_l}
=
\linexprenv{e_{1}}{\rho^{\#}}{\rho^{\#}_l}
\adlf
\linexprenv{e_{2}}{\rho^{\#}}{\rho^{\#}_l}
\aslf
\varepsilon_{\mathbf{f}}\left(\linexprenv{e_{1}}{\rho^{\#}}{\rho^{\#}_l}
\right)
\aslf
\varepsilon_{\mathbf{f}}\left(\linexprenv{e_{2}}{\rho^{\#}}{\rho^{\#}_l}
\right)
\aslf
mf_{\mathbf{f}}[-1, 1]
\f]
where \f$\varepsilon_{\mathbf{f}}(l)\f$ is the linear form computed by
calling method <CODE>Floating_Point_Expression::relative_error</CODE>
on \f$l\f$ and \f$mf_{\mathbf{f}}\f$ is a rounding error defined in
<CODE>Floating_Point_Expression::absolute_error</CODE>.
*/
template <typename FP_Interval_Type, typename FP_Format>
class Difference_Floating_Point_Expression
: public Floating_Point_Expression<FP_Interval_Type, FP_Format> {
public:
/*! \brief
Alias for the Linear_Form<FP_Interval_Type> from
Floating_Point_Expression
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>
::FP_Linear_Form FP_Linear_Form;
/*! \brief
Alias for the Box<FP_Interval_Type> from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>
::FP_Interval_Abstract_Store FP_Interval_Abstract_Store;
/*! \brief
Alias for the std::map<dimension_type, FP_Linear_Form> from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>
::FP_Linear_Form_Abstract_Store FP_Linear_Form_Abstract_Store;
/*! \brief
Alias for the FP_Interval_Type::boundary_type from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::boundary_type
boundary_type;
/*! \brief
Alias for the FP_Interval_Type::info_type from Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::info_type info_type;
//! \name Constructors and Destructor
//@{
/*! \brief
Constructor with two parameters: builds the difference floating point
expression corresponding to \p x \f$\ominus\f$ \p y.
*/
Difference_Floating_Point_Expression(
Floating_Point_Expression<FP_Interval_Type, FP_Format>* const x,
Floating_Point_Expression<FP_Interval_Type, FP_Format>* const y);
//! Destructor.
~Difference_Floating_Point_Expression();
//@} // Constructors and Destructor
/*! \brief
Linearizes the expression in a given astract store.
Makes \p result become the linearization of \p *this in the given
composite abstract store.
\param int_store The interval abstract store.
\param lf_store The linear form abstract store.
\param result The modified linear form.
\return <CODE>true</CODE> if the linearization succeeded,
<CODE>false</CODE> otherwise.
Note that all variables occuring in the expressions represented
by \p first_operand and \p second_operand MUST have an associated value in
\p int_store. If this precondition is not met, calling the method
causes an undefined behavior.
See the class description for a detailed explanation of how \p result
is computed.
*/
bool linearize(const FP_Interval_Abstract_Store& int_store,
const FP_Linear_Form_Abstract_Store& lf_store,
FP_Linear_Form& result) const;
//! Swaps \p *this with \p y.
void m_swap(Difference_Floating_Point_Expression<FP_Interval_Type,
FP_Format>& y);
private:
//! Pointer to the first operand.
Floating_Point_Expression<FP_Interval_Type, FP_Format>* first_operand;
//! Pointer to the second operand.
Floating_Point_Expression<FP_Interval_Type, FP_Format>* second_operand;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Inhibited copy constructor.
*/
#endif // PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
Difference_Floating_Point_Expression(
const Difference_Floating_Point_Expression<FP_Interval_Type,
FP_Format>& e);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Inhibited asssignment operator.
*/
#endif // PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
Difference_Floating_Point_Expression<FP_Interval_Type, FP_Format>&
operator=(const Difference_Floating_Point_Expression<FP_Interval_Type,
FP_Format>& e);
}; // class Difference_Floating_Point_Expression
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Difference_Floating_Point_Expression_inlines.hh line 1. */
/* Difference_Floating_Point_Expression class implementation: inline
functions.
*/
/* Automatically generated from PPL source file ../src/Difference_Floating_Point_Expression_inlines.hh line 29. */
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type, typename FP_Format>
inline
Difference_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::Difference_Floating_Point_Expression(
Floating_Point_Expression<FP_Interval_Type, FP_Format>* const x,
Floating_Point_Expression<FP_Interval_Type, FP_Format>* const y)
: first_operand(x), second_operand(y){
assert(x != 0);
assert(y != 0);
}
template <typename FP_Interval_Type, typename FP_Format>
inline
Difference_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::~Difference_Floating_Point_Expression() {
delete first_operand;
delete second_operand;
}
template <typename FP_Interval_Type, typename FP_Format>
inline void
Difference_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::m_swap(Difference_Floating_Point_Expression<FP_Interval_Type, FP_Format>& y) {
using std::swap;
swap(first_operand, y.first_operand);
swap(second_operand, y.second_operand);
}
/*! \relates Difference_Floating_Point_Expression */
template <typename FP_Interval_Type, typename FP_Format>
inline void
swap(Difference_Floating_Point_Expression<FP_Interval_Type, FP_Format>& x,
Difference_Floating_Point_Expression<FP_Interval_Type, FP_Format>& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Difference_Floating_Point_Expression_templates.hh line 1. */
/* Difference_Floating_Point_Expression class implementation:
non-inline template functions.
*/
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type, typename FP_Format>
bool Difference_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::linearize(const FP_Interval_Abstract_Store& int_store,
const FP_Linear_Form_Abstract_Store& lf_store,
FP_Linear_Form& result) const {
if (!first_operand->linearize(int_store, lf_store, result))
return false;
FP_Linear_Form rel_error;
relative_error(result, rel_error);
result += rel_error;
FP_Linear_Form linearized_second_operand;
if (!second_operand->linearize(int_store, lf_store,
linearized_second_operand))
return false;
result -= linearized_second_operand;
relative_error(linearized_second_operand, rel_error);
result += rel_error;
result += this->absolute_error;
return !this->overflows(result);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Difference_Floating_Point_Expression_defs.hh line 220. */
/* Automatically generated from PPL source file ../src/Multiplication_Floating_Point_Expression_defs.hh line 1. */
/* Declarations for the Multiplication_Floating_Point_Expression class and
its constituents.
*/
/* Automatically generated from PPL source file ../src/Multiplication_Floating_Point_Expression_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type, typename FP_Format>
class Multiplication_Floating_Point_Expression;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Multiplication_Floating_Point_Expression_defs.hh line 31. */
#include <map>
namespace Parma_Polyhedra_Library {
//! Swaps \p x with \p y.
/*! \relates Multiplication_Floating_Point_Expression */
template <typename FP_Interval_Type, typename FP_Format>
void
swap(Multiplication_Floating_Point_Expression<FP_Interval_Type, FP_Format>& x,
Multiplication_Floating_Point_Expression<FP_Interval_Type, FP_Format>& y);
/*! \brief
A generic Multiplication Floating Point Expression.
\ingroup PPL_CXX_interface
\par Template type parameters
- The class template type parameter \p FP_Interval_Type represents the type
of the intervals used in the abstract domain.
- The class template type parameter \p FP_Format represents the floating
point format used in the concrete domain.
\par Linearization of multiplication floating-point expressions
Let \f$i + \sum_{v \in \cV}i_{v}v \f$ and
\f$i' + \sum_{v \in \cV}i'_{v}v \f$
be two linear forms, \f$\aslf\f$ and \f$\amlf\f$ two sound abstract
operators on linear forms such that:
\f[
\left(i + \sum_{v \in \cV}i_{v}v\right)
\aslf
\left(i' + \sum_{v \in \cV}i'_{v}v\right)
=
\left(i \asifp i'\right)
+ \sum_{v \in \cV}\left(i_{v} \asifp i'_{v}\right)v,
\f]
\f[
i
\amlf
\left(i' + \sum_{v \in \cV}i'_{v}v\right)
=
\left(i \amifp i'\right)
+ \sum_{v \in \cV}\left(i \amifp i'_{v}\right)v.
\f]
Given an expression \f$[a, b] \otimes e_{2}\f$ and a composite
abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right
\rrbracket\f$, we construct the interval linear form
\f$\linexprenv{[a, b] \otimes e_{2}}{\rho^{\#}}{\rho^{\#}_l}\f$
as follows:
\f[
\linexprenv{[a, b] \otimes e_{2}}{\rho^{\#}}{\rho^{\#}_l}
=
\left([a, b]
\amlf
\linexprenv{e_{2}}{\rho^{\#}}{\rho^{\#}_l}\right)
\aslf
\left([a, b]
\amlf
\varepsilon_{\mathbf{f}}\left(\linexprenv{e_{2}}{\rho^{\#}}{\rho^{\#}_l}
\right)\right)
\aslf
mf_{\mathbf{f}}[-1, 1].
\f].
Given an expression \f$e_{1} \otimes [a, b]\f$ and a composite
abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right
\rrbracket\f$, we construct the interval linear form
\f$\linexprenv{e_{1} \otimes [a, b]}{\rho^{\#}}{\rho^{\#}_l}\f$
as follows:
\f[
\linexprenv{e_{1} \otimes [a, b]}{\rho^{\#}}{\rho^{\#}_l}
=
\linexprenv{[a, b] \otimes e_{1}}{\rho^{\#}}{\rho^{\#}_l}.
\f]
Given an expression \f$e_{1} \otimes e_{2}\f$ and a composite
abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right
\rrbracket\f$, we construct the interval linear form
\f$\linexprenv{e_{1} \otimes e_{2}}{\rho^{\#}}{\rho^{\#}_l}\f$
as follows:
\f[
\linexprenv{e_{1} \otimes e_{2}}{\rho^{\#}}{\rho^{\#}_l}
=
\linexprenv{\iota\left(\linexprenv{e_{1}}{\rho^{\#}}{\rho^{\#}_l}
\right)\rho^{\#}
\otimes e_{2}}{\rho^{\#}}{\rho^{\#}_l},
\f]
where \f$\varepsilon_{\mathbf{f}}(l)\f$ is the linear form computed by
calling method <CODE>Floating_Point_Expression::relative_error</CODE>
on \f$l\f$, \f$\iota(l)\rho^{\#}\f$ is the linear form computed by calling
method <CODE>Floating_Point_Expression::intervalize</CODE> on \f$l\f$
and \f$\rho^{\#}\f$, and \f$mf_{\mathbf{f}}\f$ is a rounding error defined in
<CODE>Floating_Point_Expression::absolute_error</CODE>.
Even though we intervalize the first operand in the above example, the
actual implementation utilizes an heuristics for choosing which of the two
operands must be intervalized in order to obtain the most precise result.
*/
template <typename FP_Interval_Type, typename FP_Format>
class Multiplication_Floating_Point_Expression
: public Floating_Point_Expression<FP_Interval_Type, FP_Format> {
public:
/*! \brief
Alias for the Linear_Form<FP_Interval_Type> from
Floating_Point_Expression
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>
::FP_Linear_Form FP_Linear_Form;
/*! \brief
Alias for the Box<FP_Interval_Type> from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>
::FP_Interval_Abstract_Store FP_Interval_Abstract_Store;
/*! \brief
Alias for the std::map<dimension_type, FP_Linear_Form> from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::
FP_Linear_Form_Abstract_Store FP_Linear_Form_Abstract_Store;
/*! \brief
Alias for the FP_Interval_Type::boundary_type from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::boundary_type
boundary_type;
/*! \brief
Alias for the FP_Interval_Type::info_type from Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::info_type info_type;
//! \name Constructors and Destructor
//@{
/*! \brief
Constructor with two parameters: builds the multiplication floating point
expression corresponding to \p x \f$\otimes\f$ \p y.
*/
Multiplication_Floating_Point_Expression(
Floating_Point_Expression<FP_Interval_Type, FP_Format>* const x,
Floating_Point_Expression<FP_Interval_Type, FP_Format>* const y);
//! Destructor.
~Multiplication_Floating_Point_Expression();
//@} // Constructors and Destructor.
/*! \brief
Linearizes the expression in a given astract store.
Makes \p result become the linearization of \p *this in the given
composite abstract store.
\param int_store The interval abstract store.
\param lf_store The linear form abstract store.
\param result The modified linear form.
\return <CODE>true</CODE> if the linearization succeeded,
<CODE>false</CODE> otherwise.
Note that all variables occuring in the expressions represented
by \p first_operand and \p second_operand MUST have an associated value in
\p int_store. If this precondition is not met, calling the method
causes an undefined behavior.
See the class description for a detailed explanation of how \p result
is computed.
*/
bool linearize(const FP_Interval_Abstract_Store& int_store,
const FP_Linear_Form_Abstract_Store& lf_store,
FP_Linear_Form& result) const;
//! Swaps \p *this with \p y.
void m_swap(Multiplication_Floating_Point_Expression<FP_Interval_Type,
FP_Format>& y);
private:
//! Pointer to the first operand.
Floating_Point_Expression<FP_Interval_Type, FP_Format>* first_operand;
//! Pointer to the second operand.
Floating_Point_Expression<FP_Interval_Type, FP_Format>* second_operand;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Inhibited copy constructor.
*/
#endif // PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
Multiplication_Floating_Point_Expression(
const Multiplication_Floating_Point_Expression<FP_Interval_Type,
FP_Format>& e);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Inhibited assignment operator.
*/
#endif // PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
Multiplication_Floating_Point_Expression<FP_Interval_Type, FP_Format>&
operator=(const Multiplication_Floating_Point_Expression<FP_Interval_Type,
FP_Format>& e);
}; // class Multiplication_Floating_Point_Expression
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Multiplication_Floating_Point_Expression_inlines.hh line 1. */
/* Multiplication_Floating_Point_Expression class implementation: inline
functions.
*/
/* Automatically generated from PPL source file ../src/Multiplication_Floating_Point_Expression_inlines.hh line 29. */
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type, typename FP_Format>
inline
Multiplication_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::Multiplication_Floating_Point_Expression(
Floating_Point_Expression<FP_Interval_Type, FP_Format>* const x,
Floating_Point_Expression<FP_Interval_Type, FP_Format>* const y)
: first_operand(x), second_operand(y) {
assert(x != 0);
assert(y != 0);
}
template <typename FP_Interval_Type, typename FP_Format>
inline
Multiplication_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::~Multiplication_Floating_Point_Expression() {
delete first_operand;
delete second_operand;
}
template <typename FP_Interval_Type, typename FP_Format>
inline void
Multiplication_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::m_swap(Multiplication_Floating_Point_Expression<FP_Interval_Type,
FP_Format>& y) {
using std::swap;
swap(first_operand, y.first_operand);
swap(second_operand, y.second_operand);
}
/*! \relates Multiplication_Floating_Point_Expression */
template <typename FP_Interval_Type, typename FP_Format>
inline void
swap(Multiplication_Floating_Point_Expression<FP_Interval_Type, FP_Format>& x,
Multiplication_Floating_Point_Expression<FP_Interval_Type, FP_Format>& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Multiplication_Floating_Point_Expression_templates.hh line 1. */
/* Multiplication_Floating_Point_Expression class implementation:
non-inline template functions.
*/
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type, typename FP_Format>
bool Multiplication_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::linearize(const FP_Interval_Abstract_Store& int_store,
const FP_Linear_Form_Abstract_Store& lf_store,
FP_Linear_Form& result) const {
/*
FIXME: We currently adopt the "Interval-Size Local" strategy in order to
decide which of the two linear forms must be intervalized, as described
in Section 6.2.4 ("Multiplication Strategies") of Antoine Mine's Ph.D.
thesis "Weakly Relational Numerical Abstract Domains".
In this Section are also described other multiplication strategies, such
as All-Cases, Relative-Size Local, Simplification-Driven Global and
Homogeneity Global.
*/
// Here we choose which of the two linear forms must be intervalized.
// true if we intervalize the first form, false if we intervalize the second.
bool intervalize_first;
FP_Linear_Form linearized_first_operand;
if (!first_operand->linearize(int_store, lf_store,
linearized_first_operand))
return false;
FP_Interval_Type intervalized_first_operand;
this->intervalize(linearized_first_operand, int_store,
intervalized_first_operand);
FP_Linear_Form linearized_second_operand;
if (!second_operand->linearize(int_store, lf_store,
linearized_second_operand))
return false;
FP_Interval_Type intervalized_second_operand;
this->intervalize(linearized_second_operand, int_store,
intervalized_second_operand);
// FIXME: we are not sure that what we do here is policy-proof.
if (intervalized_first_operand.is_bounded()) {
if (intervalized_second_operand.is_bounded()) {
boundary_type first_interval_size
= intervalized_first_operand.upper()
- intervalized_first_operand.lower();
boundary_type second_interval_size
= intervalized_second_operand.upper()
- intervalized_second_operand.lower();
if (first_interval_size <= second_interval_size)
intervalize_first = true;
else
intervalize_first = false;
}
else
intervalize_first = true;
}
else {
if (intervalized_second_operand.is_bounded())
intervalize_first = false;
else
return false;
}
// Here we do the actual computation.
// For optimizing, we store the relative error directly into result.
if (intervalize_first) {
relative_error(linearized_second_operand, result);
linearized_second_operand *= intervalized_first_operand;
result *= intervalized_first_operand;
result += linearized_second_operand;
}
else {
relative_error(linearized_first_operand, result);
linearized_first_operand *= intervalized_second_operand;
result *= intervalized_second_operand;
result += linearized_first_operand;
}
result += this->absolute_error;
return !this->overflows(result);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Multiplication_Floating_Point_Expression_defs.hh line 250. */
/* Automatically generated from PPL source file ../src/Division_Floating_Point_Expression_defs.hh line 1. */
/* Declarations for the Division_Floating_Point_Expression class and its
constituents.
*/
/* Automatically generated from PPL source file ../src/Division_Floating_Point_Expression_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type, typename FP_Format>
class Division_Floating_Point_Expression;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Division_Floating_Point_Expression_defs.hh line 31. */
#include <map>
namespace Parma_Polyhedra_Library {
//! Swaps \p x with \p y.
/*! \relates Division_Floating_Point_Expression */
template <typename FP_Interval_Type, typename FP_Format>
void swap(Division_Floating_Point_Expression<FP_Interval_Type, FP_Format>& x,
Division_Floating_Point_Expression<FP_Interval_Type, FP_Format>& y);
/*! \brief
A generic Division Floating Point Expression.
\ingroup PPL_CXX_interface
\par Template type parameters
- The class template type parameter \p FP_Interval_Type represents the type
of the intervals used in the abstract domain.
- The class template type parameter \p FP_Format represents the floating
point format used in the concrete domain.
\par Linearizationd of division floating-point expressions
Let \f$i + \sum_{v \in \cV}i_{v}v \f$ and
\f$i' + \sum_{v \in \cV}i'_{v}v \f$
be two linear forms, \f$\aslf\f$ and \f$\adivlf\f$ two sound abstract
operator on linear forms such that:
\f[
\left(i + \sum_{v \in \cV}i_{v}v\right)
\aslf
\left(i' + \sum_{v \in \cV}i'_{v}v\right)
=
\left(i \asifp i'\right)
+ \sum_{v \in \cV}\left(i_{v} \asifp i'_{v}\right)v,
\f]
\f[
\left(i + \sum_{v \in \cV}i_{v}v\right)
\adivlf
i'
=
\left(i \adivifp i'\right)
+ \sum_{v \in \cV}\left(i_{v} \adivifp i'\right)v.
\f]
Given an expression \f$e_{1} \oslash [a, b]\f$ and a composite
abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right
\rrbracket\f$,
we construct the interval linear form
\f$
\linexprenv{e_{1} \oslash [a, b]}{\rho^{\#}}{\rho^{\#}_l}
\f$
as follows:
\f[
\linexprenv{e_{1} \oslash [a, b]}{\rho^{\#}}{\rho^{\#}_l}
=
\left(\linexprenv{e_{1}}{\rho^{\#}}{\rho^{\#}_l}
\adivlf
[a, b]\right)
\aslf
\left(\varepsilon_{\mathbf{f}}\left(
\linexprenv{e_{1}}{\rho^{\#}}{\rho^{\#}_l}
\right)
\adivlf
[a, b]\right)
\aslf
mf_{\mathbf{f}}[-1, 1],
\f]
given an expression \f$e_{1} \oslash e_{2}\f$ and a composite
abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right
\rrbracket\f$, we construct the interval linear form
\f$\linexprenv{e_{1} \oslash e_{2}}{\rho^{\#}}{\rho^{\#}_l}\f$
as follows:
\f[
\linexprenv{e_{1} \oslash e_{2}}{\rho^{\#}}{\rho^{\#}_l}
=
\linexprenv{e_{1} \oslash \iota\left(
\linexprenv{e_{2}}{\rho^{\#}}{\rho^{\#}_l}
\right)\rho^{\#}}{\rho^{\#}}{\rho^{\#}_l},
\f]
where \f$\varepsilon_{\mathbf{f}}(l)\f$ is the linear form computed by
calling method <CODE>Floating_Point_Expression::relative_error</CODE>
on \f$l\f$, \f$\iota(l)\rho^{\#}\f$ is the linear form computed by calling
method <CODE>Floating_Point_Expression::intervalize</CODE> on \f$l\f$
and \f$\rho^{\#}\f$, and \f$mf_{\mathbf{f}}\f$ is a rounding error defined in
<CODE>Floating_Point_Expression::absolute_error</CODE>.
*/
template <typename FP_Interval_Type, typename FP_Format>
class Division_Floating_Point_Expression
: public Floating_Point_Expression<FP_Interval_Type, FP_Format> {
public:
/*! \brief
Alias for the Linear_Form<FP_Interval_Type> from
Floating_Point_Expression
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>
::FP_Linear_Form FP_Linear_Form;
/*! \brief
Alias for the Box<FP_Interval_Type> from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>
::FP_Interval_Abstract_Store FP_Interval_Abstract_Store;
/*! \brief
Alias for the std::map<dimension_type, FP_Linear_Form> from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::
FP_Linear_Form_Abstract_Store FP_Linear_Form_Abstract_Store;
/*! \brief
Alias for the FP_Interval_Type::boundary_type from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::boundary_type
boundary_type;
/*! \brief
Alias for the FP_Interval_Type::info_type from Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::info_type info_type;
//! \name Constructors and Destructor
//@{
/*! \brief
Constructor with two parameters: builds the division floating point
expression corresponding to \p num \f$\oslash\f$ \p den.
*/
Division_Floating_Point_Expression(
Floating_Point_Expression<FP_Interval_Type, FP_Format>* const num,
Floating_Point_Expression<FP_Interval_Type, FP_Format>* const den);
//! Destructor.
~Division_Floating_Point_Expression();
//@} // Constructors and Destructor
/*! \brief
Linearizes the expression in a given astract store.
Makes \p result become the linearization of \p *this in the given
composite abstract store.
\param int_store The interval abstract store.
\param lf_store The linear form abstract store.
\param result The modified linear form.
\return <CODE>true</CODE> if the linearization succeeded,
<CODE>false</CODE> otherwise.
Note that all variables occuring in the expressions represented
by \p first_operand and \p second_operand MUST have an associated value in
\p int_store. If this precondition is not met, calling the method
causes an undefined behavior.
See the class description for a detailed explanation of how \p result
is computed.
*/
bool linearize(const FP_Interval_Abstract_Store& int_store,
const FP_Linear_Form_Abstract_Store& lf_store,
FP_Linear_Form& result) const;
//! Swaps \p *this with \p y.
void m_swap(Division_Floating_Point_Expression<FP_Interval_Type,
FP_Format>& y);
private:
//! Pointer to the first operand.
Floating_Point_Expression<FP_Interval_Type, FP_Format>* first_operand;
//! Pointer to the second operand.
Floating_Point_Expression<FP_Interval_Type, FP_Format>* second_operand;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Copy constructor: temporary inhibited.
*/
#endif // PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
Division_Floating_Point_Expression(
const Division_Floating_Point_Expression<FP_Interval_Type,
FP_Format>& e);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Assignment operator: temporary inhibited.
*/
#endif // PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
Division_Floating_Point_Expression<FP_Interval_Type, FP_Format>&
operator=(const Division_Floating_Point_Expression<FP_Interval_Type,
FP_Format>& e);
}; // class Division_Floating_Point_Expression
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Division_Floating_Point_Expression_inlines.hh line 1. */
/* Division_Floating_Point_Expression class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Division_Floating_Point_Expression_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type, typename FP_Format>
inline
Division_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::Division_Floating_Point_Expression(
Floating_Point_Expression<FP_Interval_Type, FP_Format>* const num,
Floating_Point_Expression<FP_Interval_Type, FP_Format>* const den)
: first_operand(num), second_operand(den) {
assert(num != 0);
assert(den != 0);
}
template <typename FP_Interval_Type, typename FP_Format>
inline
Division_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::~Division_Floating_Point_Expression() {
delete first_operand;
delete second_operand;
}
template <typename FP_Interval_Type, typename FP_Format>
inline void
Division_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::m_swap(Division_Floating_Point_Expression<FP_Interval_Type, FP_Format>& y) {
using std::swap;
swap(first_operand, y.first_operand);
swap(second_operand, y.second_operand);
}
/*! \relates Division_Floating_Point_Expression */
template <typename FP_Interval_Type, typename FP_Format>
inline void
swap(Division_Floating_Point_Expression<FP_Interval_Type, FP_Format>& x,
Division_Floating_Point_Expression<FP_Interval_Type, FP_Format>& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Division_Floating_Point_Expression_templates.hh line 1. */
/* Division_Floating_Point_Expression class implementation:
non-inline template functions.
*/
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type, typename FP_Format>
bool Division_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::linearize(const FP_Interval_Abstract_Store& int_store,
const FP_Linear_Form_Abstract_Store& lf_store,
FP_Linear_Form& result) const {
FP_Linear_Form linearized_second_operand;
if (!second_operand->linearize(int_store, lf_store,
linearized_second_operand))
return false;
FP_Interval_Type intervalized_second_operand;
this->intervalize(linearized_second_operand, int_store,
intervalized_second_operand);
// Check if we may divide by zero.
if (intervalized_second_operand.lower() <= 0
&& intervalized_second_operand.upper() >= 0)
return false;
if (!first_operand->linearize(int_store, lf_store, result))
return false;
FP_Linear_Form rel_error;
relative_error(result, rel_error);
result /= intervalized_second_operand;
rel_error /= intervalized_second_operand;
result += rel_error;
result += this->absolute_error;
return !this->overflows(result);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Division_Floating_Point_Expression_defs.hh line 236. */
/* Automatically generated from PPL source file ../src/Opposite_Floating_Point_Expression_defs.hh line 1. */
/* Declarations for the Opposite_Floating_Point_Expression class and
its constituents.
*/
/* Automatically generated from PPL source file ../src/Opposite_Floating_Point_Expression_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type, typename FP_Format>
class Opposite_Floating_Point_Expression;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Opposite_Floating_Point_Expression_defs.hh line 31. */
#include <map>
namespace Parma_Polyhedra_Library {
//! Swaps \p x with \p y.
/*! \relates Opposite_Floating_Point_Expression */
template<typename FP_Interval_Type, typename FP_Format>
void swap(Opposite_Floating_Point_Expression<FP_Interval_Type, FP_Format>& x,
Opposite_Floating_Point_Expression<FP_Interval_Type, FP_Format>& y);
/*! \brief
A generic Opposite Floating Point Expression.
\ingroup PPL_CXX_interface
\par Template type parameters
- The class template type parameter \p FP_Interval_Type represents the type
of the intervals used in the abstract domain.
- The class template type parameter \p FP_Format represents the floating
point format used in the concrete domain.
\par Linearization of opposite floating-point expressions
Let \f$i + \sum_{v \in \cV}i_{v}v \f$ be an interval linear form and
let \f$\adlf\f$ be a sound unary operator on linear forms such that:
\f[
\adlf
\left(i + \sum_{v \in \cV}i_{v}v\right)
=
\left(\adifp i\right)
+ \sum_{v \in \cV}\left(\adifp i_{v} \right)v,
\f]
Given a floating point expression \f$\ominus e\f$ and a composite
abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right
\rrbracket\f$, we construct the interval linear form
\f$\linexprenv{\ominus e}{\rho^{\#}}{\rho^{\#}_l}\f$
as follows:
\f[
\linexprenv{\ominus e}{\rho^{\#}}{\rho^{\#}_l}
=
\adlf
\left(
\linexprenv{e}{\rho^{\#}}{\rho^{\#}_l}
\right).
\f]
*/
template <typename FP_Interval_Type, typename FP_Format>
class Opposite_Floating_Point_Expression
: public Floating_Point_Expression<FP_Interval_Type, FP_Format> {
public:
/*! \brief
Alias for the Linear_Form<FP_Interval_Type> from
Floating_Point_Expression
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::
FP_Linear_Form FP_Linear_Form;
/*! \brief
Alias for the std::map<dimension_type, FP_Interval_Type> from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::
FP_Interval_Abstract_Store FP_Interval_Abstract_Store;
/*! \brief
Alias for the std::map<dimension_type, FP_Linear_Form> from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::
FP_Linear_Form_Abstract_Store FP_Linear_Form_Abstract_Store;
/*! \brief
Alias for the FP_Interval_Type::boundary_type from
Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::boundary_type
boundary_type;
/*! \brief
Alias for the FP_Interval_Type::info_type from Floating_Point_Expression.
*/
typedef typename
Floating_Point_Expression<FP_Interval_Type, FP_Format>::info_type info_type;
//! \name Constructors and Destructor
//@{
/*! \brief
Constructor with one parameter: builds the opposite floating point
expression \f$\ominus\f$ \p op.
*/
explicit Opposite_Floating_Point_Expression(
Floating_Point_Expression<FP_Interval_Type, FP_Format>* const op);
//! Destructor.
~Opposite_Floating_Point_Expression();
//@} // Constructors and Destructor
/*! \brief
Linearizes the expression in a given astract store.
Makes \p result become the linearization of \p *this in the given
composite abstract store.
\param int_store The interval abstract store.
\param lf_store The linear form abstract store.
\param result The modified linear form.
\return <CODE>true</CODE> if the linearization succeeded,
<CODE>false</CODE> otherwise.
Note that all variables occuring in the expression represented
by \p operand MUST have an associated value in \p int_store.
If this precondition is not met, calling the method
causes an undefined behavior.
See the class description for a detailed explanation of how \p result
is computed.
*/
bool linearize(const FP_Interval_Abstract_Store& int_store,
const FP_Linear_Form_Abstract_Store& lf_store,
FP_Linear_Form& result) const;
//! Swaps \p *this with \p y.
void m_swap(Opposite_Floating_Point_Expression& y);
private:
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Inhibited copy constructor.
*/
#endif // PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
Opposite_Floating_Point_Expression(
const Opposite_Floating_Point_Expression& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Inhibited assignment operator.
*/
#endif // PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
Opposite_Floating_Point_Expression& operator=(
const Opposite_Floating_Point_Expression& y);
//! Pointer to the operand.
Floating_Point_Expression<FP_Interval_Type, FP_Format>* operand;
}; // class Opposite_Floating_Point_Expression
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Opposite_Floating_Point_Expression_inlines.hh line 1. */
/* Opposite_Floating_Point_Expression class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Opposite_Floating_Point_Expression_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
template <typename FP_Interval_Type, typename FP_Format>
inline
Opposite_Floating_Point_Expression<FP_Interval_Type, FP_Format>::
Opposite_Floating_Point_Expression(
Floating_Point_Expression<FP_Interval_Type, FP_Format>* const op)
: operand(op)
{
assert(op != 0);
}
template <typename FP_Interval_Type, typename FP_Format>
inline
Opposite_Floating_Point_Expression<FP_Interval_Type, FP_Format>::
~Opposite_Floating_Point_Expression() {
delete operand;
}
template <typename FP_Interval_Type, typename FP_Format>
inline void
Opposite_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::m_swap(Opposite_Floating_Point_Expression& y) {
using std::swap;
swap(operand, y.operand);
}
template <typename FP_Interval_Type, typename FP_Format>
inline bool
Opposite_Floating_Point_Expression<FP_Interval_Type, FP_Format>
::linearize(const FP_Interval_Abstract_Store& int_store,
const FP_Linear_Form_Abstract_Store& lf_store,
FP_Linear_Form& result) const {
if (!operand->linearize(int_store, lf_store, result))
return false;
result.negate();
return true;
}
/*! \relates Opposite_Floating_Point_Expression */
template <typename FP_Interval_Type, typename FP_Format>
inline void
swap(Opposite_Floating_Point_Expression<FP_Interval_Type, FP_Format>& x,
Opposite_Floating_Point_Expression<FP_Interval_Type, FP_Format>& y) {
x.m_swap(y);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Opposite_Floating_Point_Expression_defs.hh line 192. */
/* Automatically generated from PPL source file ../src/Watchdog_defs.hh line 1. */
/* Watchdog and associated classes' declaration and inline functions.
*/
/* Automatically generated from PPL source file ../src/Watchdog_types.hh line 1. */
namespace Parma_Polyhedra_Library {
class Watchdog;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Time_defs.hh line 1. */
/* Time class declaration.
*/
/* Automatically generated from PPL source file ../src/Time_types.hh line 1. */
namespace Parma_Polyhedra_Library {
namespace Implementation {
namespace Watchdog {
class Time;
} // namespace Watchdog
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Time_defs.hh line 28. */
namespace Parma_Polyhedra_Library {
namespace Implementation {
namespace Watchdog {
//! Returns <CODE>true</CODE> if and only if \p x and \p y are equal.
bool operator==(const Time& x, const Time& y);
//! Returns <CODE>true</CODE> if and only if \p x and \p y are different.
bool operator!=(const Time& x, const Time& y);
//! Returns <CODE>true</CODE> if and only if \p x is shorter than \p y.
bool operator<(const Time& x, const Time& y);
/*! \brief
Returns <CODE>true</CODE> if and only if \p x is shorter than
or equal to \p y.
*/
bool operator<=(const Time& x, const Time& y);
//! Returns <CODE>true</CODE> if and only if \p x is longer than \p y.
bool operator>(const Time& x, const Time& y);
/*! \brief
Returns <CODE>true</CODE> if and only if \p x is longer than
or equal to \p y.
*/
bool operator>=(const Time& x, const Time& y);
//! Returns the sum of \p x and \p y.
Time operator+(const Time& x, const Time& y);
/*! \brief
Returns the difference of \p x and \p y or the null interval,
if \p x is shorter than \p y.
*/
Time operator-(const Time& x, const Time& y);
} // namespace Watchdog
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
//! A class for representing and manipulating positive time intervals.
class Parma_Polyhedra_Library::Implementation::Watchdog::Time {
public:
//! Zero seconds.
Time();
//! Constructor taking a number of centiseconds.
explicit Time(long centisecs);
//! Constructor with seconds and microseconds.
Time(long s, long m);
/*! \brief
Returns the number of whole seconds contained in the represented
time interval.
*/
long seconds() const;
/*! \brief
Returns the number of microseconds that, when added to the number
of seconds returned by seconds(), give the represent time interval.
*/
long microseconds() const;
//! Adds \p y to \p *this.
Time& operator+=(const Time& y);
/*! \brief
Subtracts \p y from \p *this; if \p *this is shorter than \p y,
\p *this is set to the null interval.
*/
Time& operator-=(const Time& y);
//! Checks if all the invariants are satisfied.
bool OK() const;
private:
//! Number of microseconds in a second.
static const long USECS_PER_SEC = 1000000L;
//! Number of centiseconds in a second.
static const long CSECS_PER_SEC = 100L;
//! Number of seconds.
long secs;
//! Number of microseconds.
long microsecs;
};
/* Automatically generated from PPL source file ../src/Time_inlines.hh line 1. */
/* Time class implementation: inline functions.
*/
#include <cassert>
namespace Parma_Polyhedra_Library {
namespace Implementation {
namespace Watchdog {
inline
Time::Time()
: secs(0), microsecs(0) {
assert(OK());
}
inline
Time::Time(long centisecs)
: secs(centisecs / CSECS_PER_SEC),
microsecs((centisecs % CSECS_PER_SEC) * (USECS_PER_SEC/CSECS_PER_SEC)) {
assert(OK());
}
inline
Time::Time(long s, long m)
: secs(s),
microsecs(m) {
if (microsecs >= USECS_PER_SEC) {
secs += microsecs / USECS_PER_SEC;
microsecs %= USECS_PER_SEC;
}
assert(OK());
}
inline long
Time::seconds() const {
return secs;
}
inline long
Time::microseconds() const {
return microsecs;
}
inline Time&
Time::operator+=(const Time& y) {
long r_secs = secs + y.secs;
long r_microsecs = microsecs + y.microsecs;
if (r_microsecs >= USECS_PER_SEC) {
++r_secs;
r_microsecs %= USECS_PER_SEC;
}
secs = r_secs;
microsecs = r_microsecs;
assert(OK());
return *this;
}
inline Time&
Time::operator-=(const Time& y) {
long r_secs = secs - y.secs;
long r_microsecs = microsecs - y.microsecs;
if (r_microsecs < 0) {
--r_secs;
r_microsecs += USECS_PER_SEC;
}
if (r_secs < 0) {
r_secs = 0;
r_microsecs = 0;
}
secs = r_secs;
microsecs = r_microsecs;
assert(OK());
return *this;
}
inline Time
operator+(const Time& x, const Time& y) {
Time z = x;
z += y;
return z;
}
inline Time
operator-(const Time& x, const Time& y) {
Time z = x;
z -= y;
return z;
}
inline bool
operator==(const Time& x, const Time& y) {
assert(x.OK() && y.OK());
return x.seconds() == y.seconds() && y.microseconds() == y.microseconds();
}
inline bool
operator!=(const Time& x, const Time& y) {
assert(x.OK() && y.OK());
return !(x == y);
}
inline bool
operator<(const Time& x, const Time& y) {
assert(x.OK() && y.OK());
return x.seconds() < y.seconds()
|| (x.seconds() == y.seconds() && x.microseconds() < y.microseconds());
}
inline bool
operator<=(const Time& x, const Time& y) {
return x < y || x == y;
}
inline bool
operator>(const Time& x, const Time& y) {
return y < x;
}
inline bool
operator>=(const Time& x, const Time& y) {
return y <= x;
}
} // namespace Watchdog
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Time_defs.hh line 125. */
/* Automatically generated from PPL source file ../src/Handler_types.hh line 1. */
namespace Parma_Polyhedra_Library {
namespace Implementation {
namespace Watchdog {
class Handler;
template <typename Flag_Base, typename Flag>
class Handler_Flag;
class Handler_Function;
} // namespace Watchdog
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Pending_List_defs.hh line 1. */
/* Pending_List class declaration.
*/
/* Automatically generated from PPL source file ../src/Pending_List_types.hh line 1. */
namespace Parma_Polyhedra_Library {
namespace Implementation {
namespace Watchdog {
template <typename Traits>
class Pending_List;
} // namespace Watchdog
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Pending_Element_defs.hh line 1. */
/* Pending_Element class declaration.
*/
/* Automatically generated from PPL source file ../src/Pending_Element_types.hh line 1. */
namespace Parma_Polyhedra_Library {
namespace Implementation {
namespace Watchdog {
template <class Threshold>
class Pending_Element;
} // namespace Watchdog
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Doubly_Linked_Object_defs.hh line 1. */
/* Doubly_Linked_Object class declaration.
*/
/* Automatically generated from PPL source file ../src/Doubly_Linked_Object_types.hh line 1. */
namespace Parma_Polyhedra_Library {
namespace Implementation {
class Doubly_Linked_Object;
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/EList_types.hh line 1. */
namespace Parma_Polyhedra_Library {
namespace Implementation {
template <typename T>
class EList;
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/EList_Iterator_types.hh line 1. */
namespace Parma_Polyhedra_Library {
namespace Implementation {
template <typename T>
class EList_Iterator;
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Doubly_Linked_Object_defs.hh line 30. */
//! A (base) class for doubly linked objects.
class Parma_Polyhedra_Library::Implementation::Doubly_Linked_Object {
public:
//! Default constructor.
Doubly_Linked_Object();
//! Creates a chain element with forward link \p f and backward link \p b.
Doubly_Linked_Object(Doubly_Linked_Object* f, Doubly_Linked_Object* b);
//! Inserts \p y before \p *this.
void insert_before(Doubly_Linked_Object& y);
//! Inserts \p y after \p *this.
void insert_after(Doubly_Linked_Object& y);
//! Erases \p *this from the chain and returns a pointer to the next element.
Doubly_Linked_Object* erase();
//! Erases \p *this from the chain.
~Doubly_Linked_Object();
private:
//! Forward link.
Doubly_Linked_Object* next;
//! Backward link.
Doubly_Linked_Object* prev;
template <typename T> friend class EList;
template <typename T> friend class EList_Iterator;
};
/* Automatically generated from PPL source file ../src/Doubly_Linked_Object_inlines.hh line 1. */
/* Doubly_Linked_Object class implementation: inline functions.
*/
namespace Parma_Polyhedra_Library {
namespace Implementation {
inline
Doubly_Linked_Object::Doubly_Linked_Object() {
}
inline
Doubly_Linked_Object::Doubly_Linked_Object(Doubly_Linked_Object* f,
Doubly_Linked_Object* b)
: next(f),
prev(b) {
}
inline void
Doubly_Linked_Object::insert_before(Doubly_Linked_Object& y) {
y.next = this;
y.prev = prev;
prev->next = &y;
prev = &y;
}
inline void
Doubly_Linked_Object::insert_after(Doubly_Linked_Object& y) {
y.next = next;
y.prev = this;
next->prev = &y;
next = &y;
}
inline Doubly_Linked_Object*
Doubly_Linked_Object::erase() {
next->prev = prev;
prev->next = next;
return next;
}
inline
Doubly_Linked_Object::~Doubly_Linked_Object() {
erase();
}
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Doubly_Linked_Object_defs.hh line 64. */
/* Automatically generated from PPL source file ../src/Pending_Element_defs.hh line 30. */
//! A class for pending watchdog events with embedded links.
/*!
Each pending watchdog event is characterized by a deadline (a positive
time interval), an associated handler that will be invoked upon event
expiration, and a Boolean flag that indicates whether the event has already
expired or not.
*/
template <typename Threshold>
class Parma_Polyhedra_Library::Implementation::Watchdog::Pending_Element
: public Doubly_Linked_Object {
public:
//! Constructs an element with the given attributes.
Pending_Element(const Threshold& deadline,
const Handler& handler,
bool& expired_flag);
//! Modifies \p *this so that it has the given attributes.
void assign(const Threshold& deadline,
const Handler& handler,
bool& expired_flag);
//! Returns the deadline of the event.
const Threshold& deadline() const;
//! Returns the handler associated to the event.
const Handler& handler() const;
//! Returns a reference to the "event-expired" flag.
bool& expired_flag() const;
//! Checks if all the invariants are satisfied.
bool OK() const;
private:
//! The deadline of the event.
Threshold d;
//! A pointer to the handler associated to the event.
const Handler* p_h;
//! A pointer to a flag saying whether the event has already expired or not.
bool* p_f;
};
/* Automatically generated from PPL source file ../src/Pending_Element_inlines.hh line 1. */
/* Pending_Element class implementation: inline functions.
*/
#include <cassert>
namespace Parma_Polyhedra_Library {
namespace Implementation {
namespace Watchdog {
template <typename Threshold>
inline bool
Pending_Element<Threshold>::OK() const {
return true;
}
template <typename Threshold>
inline
Pending_Element<Threshold>::Pending_Element(const Threshold& deadline,
const Handler& handler,
bool& expired_flag)
: d(deadline), p_h(&handler), p_f(&expired_flag) {
assert(OK());
}
template <typename Threshold>
inline void
Pending_Element<Threshold>::assign(const Threshold& deadline,
const Handler& handler,
bool& expired_flag) {
d = deadline;
p_h = &handler;
p_f = &expired_flag;
assert(OK());
}
template <typename Threshold>
inline const Threshold&
Pending_Element<Threshold>::deadline() const {
return d;
}
template <typename Threshold>
inline const Handler&
Pending_Element<Threshold>::handler() const {
return *p_h;
}
template <typename Threshold>
inline bool&
Pending_Element<Threshold>::expired_flag() const {
return *p_f;
}
} // namespace Watchdog
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Pending_Element_defs.hh line 76. */
/* Automatically generated from PPL source file ../src/EList_defs.hh line 1. */
/* EList class declaration.
*/
/* Automatically generated from PPL source file ../src/EList_Iterator_defs.hh line 1. */
/* EList_Iterator class declaration.
*/
/* Automatically generated from PPL source file ../src/EList_Iterator_defs.hh line 29. */
namespace Parma_Polyhedra_Library {
namespace Implementation {
//! Returns <CODE>true</CODE> if and only if \p x and \p y are equal.
template <typename T>
bool operator==(const EList_Iterator<T>& x, const EList_Iterator<T>& y);
//! Returns <CODE>true</CODE> if and only if \p x and \p y are different.
template <typename T>
bool operator!=(const EList_Iterator<T>& x, const EList_Iterator<T>& y);
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
//! A class providing iterators for embedded lists.
template <typename T>
class Parma_Polyhedra_Library::Implementation::EList_Iterator {
public:
//! Constructs an iterator pointing to nothing.
EList_Iterator();
//! Constructs an iterator pointing to \p p.
explicit EList_Iterator(Doubly_Linked_Object* p);
//! Changes \p *this so that it points to \p p.
EList_Iterator& operator=(Doubly_Linked_Object* p);
//! Indirect member selector.
T* operator->();
//! Dereference operator.
T& operator*();
//! Preincrement operator.
EList_Iterator& operator++();
//! Postincrement operator.
EList_Iterator operator++(int);
//! Predecrement operator.
EList_Iterator& operator--();
//! Postdecrement operator.
EList_Iterator operator--(int);
private:
//! Embedded pointer.
Doubly_Linked_Object* ptr;
friend bool operator==<T>(const EList_Iterator& x, const EList_Iterator& y);
friend bool operator!=<T>(const EList_Iterator& x, const EList_Iterator& y);
};
/* Automatically generated from PPL source file ../src/EList_Iterator_inlines.hh line 1. */
/* EList_Iterator class implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/EList_Iterator_inlines.hh line 28. */
namespace Parma_Polyhedra_Library {
namespace Implementation {
template <typename T>
inline
EList_Iterator<T>::EList_Iterator() {
}
template <typename T>
inline
EList_Iterator<T>::EList_Iterator(Doubly_Linked_Object* p)
: ptr(p) {
}
template <typename T>
inline EList_Iterator<T>&
EList_Iterator<T>::operator=(Doubly_Linked_Object* p) {
ptr = p;
return *this;
}
template <typename T>
inline T*
EList_Iterator<T>::operator->() {
return static_cast<T*>(ptr);
}
template <typename T>
inline T&
EList_Iterator<T>::operator*() {
return *operator->();
}
template <typename T>
inline EList_Iterator<T>&
EList_Iterator<T>::operator++() {
ptr = ptr->next;
return *this;
}
template <typename T>
inline EList_Iterator<T>
EList_Iterator<T>::operator++(int) {
EList_Iterator tmp = *this;
++*this;
return tmp;
}
template <typename T>
inline EList_Iterator<T>&
EList_Iterator<T>::operator--() {
ptr = ptr->prev;
return *this;
}
template <typename T>
inline EList_Iterator<T>
EList_Iterator<T>::operator--(int) {
EList_Iterator tmp = *this;
--*this;
return tmp;
}
template <typename T>
inline bool
operator==(const EList_Iterator<T>& x, const EList_Iterator<T>& y) {
return x.ptr == y.ptr;
}
template <typename T>
inline bool
operator!=(const EList_Iterator<T>& x, const EList_Iterator<T>& y) {
return x.ptr != y.ptr;
}
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/EList_Iterator_defs.hh line 87. */
/* Automatically generated from PPL source file ../src/EList_defs.hh line 30. */
/*! \brief
A simple kind of embedded list (i.e., a doubly linked objects
where the links are embedded in the objects themselves).
*/
template <typename T>
class Parma_Polyhedra_Library::Implementation::EList
: private Doubly_Linked_Object {
public:
//! A const iterator to traverse the list.
typedef EList_Iterator<const T> const_iterator;
//! A non-const iterator to traverse the list.
typedef EList_Iterator<T> iterator;
//! Constructs an empty list.
EList();
//! Destructs the list and all the elements in it.
~EList();
//! Pushes \p obj to the front of the list.
void push_front(T& obj);
//! Pushes \p obj to the back of the list.
void push_back(T& obj);
/*! \brief
Inserts \p obj just before \p position and returns an iterator
that points to the inserted object.
*/
iterator insert(iterator position, T& obj);
/*! \brief
Removes the element pointed to by \p position, returning
an iterator pointing to the next element, if any, or end(), otherwise.
*/
iterator erase(iterator position);
//! Returns <CODE>true</CODE> if and only if the list is empty.
bool empty() const;
//! Returns an iterator pointing to the beginning of the list.
iterator begin();
//! Returns an iterator pointing one past the last element in the list.
iterator end();
//! Returns a const iterator pointing to the beginning of the list.
const_iterator begin() const;
//! Returns a const iterator pointing one past the last element in the list.
const_iterator end() const;
//! Checks if all the invariants are satisfied.
bool OK() const;
};
/* Automatically generated from PPL source file ../src/EList_inlines.hh line 1. */
/* EList class implementation: inline functions.
*/
#include <cassert>
namespace Parma_Polyhedra_Library {
namespace Implementation {
template <typename T>
inline
EList<T>::EList()
: Doubly_Linked_Object(this, this) {
}
template <typename T>
inline void
EList<T>::push_front(T& obj) {
next->insert_before(obj);
}
template <typename T>
inline void
EList<T>::push_back(T& obj) {
prev->insert_after(obj);
}
template <typename T>
inline typename EList<T>::iterator
EList<T>::insert(iterator position, T& obj) {
position->insert_before(obj);
return iterator(&obj);
}
template <typename T>
inline typename EList<T>::iterator
EList<T>::begin() {
return iterator(next);
}
template <typename T>
inline typename EList<T>::iterator
EList<T>::end() {
return iterator(this);
}
template <typename T>
inline typename EList<T>::const_iterator
EList<T>::begin() const {
return const_iterator(next);
}
template <typename T>
inline typename EList<T>::const_iterator
EList<T>::end() const {
return const_iterator(const_cast<EList<T>*>(this));
}
template <typename T>
inline bool
EList<T>::empty() const {
return begin() == end();
}
template <typename T>
inline typename EList<T>::iterator
EList<T>::erase(iterator position) {
assert(!empty());
return iterator(position->erase());
}
template <typename T>
inline
EList<T>::~EList() {
// Erase and deallocate all the elements.
for (iterator i = begin(), lend = end(), next; i != lend; i = next) {
next = erase(i);
delete &*i;
}
}
template <typename T>
inline bool
EList<T>::OK() const {
for (const_iterator i = begin(), lend = end(); i != lend; ++i)
if (!i->OK())
return false;
return true;
}
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/EList_defs.hh line 89. */
/* Automatically generated from PPL source file ../src/Pending_List_defs.hh line 31. */
//! An ordered list for recording pending watchdog events.
template <typename Traits>
class Parma_Polyhedra_Library::Implementation::Watchdog::Pending_List {
public:
//! A non-const iterator to traverse the list.
typedef typename EList<Pending_Element<typename Traits::Threshold> >::iterator iterator;
//! A const iterator to traverse the list.
typedef typename EList<Pending_Element<typename Traits::Threshold> >::const_iterator const_iterator;
//! Constructs an empty list.
Pending_List();
//! Destructor.
~Pending_List();
//! Inserts a new Pending_Element object with the given attributes.
iterator insert(const typename Traits::Threshold& deadline,
const Handler& handler,
bool& expired_flag);
/*! \brief
Removes the element pointed to by \p position, returning
an iterator pointing to the next element, if any, or end(), otherwise.
*/
iterator erase(iterator position);
//! Returns <CODE>true</CODE> if and only if the list is empty.
bool empty() const;
//! Returns an iterator pointing to the beginning of the list.
iterator begin();
//! Returns an iterator pointing one past the last element in the list.
iterator end();
//! Checks if all the invariants are satisfied.
bool OK() const;
private:
EList<Pending_Element<typename Traits::Threshold> > active_list;
EList<Pending_Element<typename Traits::Threshold> > free_list;
};
/* Automatically generated from PPL source file ../src/Pending_List_inlines.hh line 1. */
/* Pending_List class implementation: inline functions.
*/
#include <cassert>
namespace Parma_Polyhedra_Library {
namespace Implementation {
namespace Watchdog {
template <typename Traits>
inline
Pending_List<Traits>::Pending_List()
: active_list(),
free_list() {
assert(OK());
}
template <typename Traits>
inline
Pending_List<Traits>::~Pending_List() {
}
template <typename Traits>
inline typename Pending_List<Traits>::iterator
Pending_List<Traits>::begin() {
return active_list.begin();
}
template <typename Traits>
inline typename Pending_List<Traits>::iterator
Pending_List<Traits>::end() {
return active_list.end();
}
template <typename Traits>
inline bool
Pending_List<Traits>::empty() const {
return active_list.empty();
}
template <typename Traits>
inline typename Pending_List<Traits>::iterator
Pending_List<Traits>::erase(iterator position) {
assert(!empty());
iterator next = active_list.erase(position);
free_list.push_back(*position);
assert(OK());
return next;
}
} // namespace Watchdog
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Pending_List_templates.hh line 1. */
/* Pending_List class implementation.
*/
#include <iostream>
namespace Parma_Polyhedra_Library {
namespace Implementation {
namespace Watchdog {
template <typename Traits>
typename Pending_List<Traits>::iterator
Pending_List<Traits>::insert(const typename Traits::Threshold& deadline,
const Handler& handler,
bool& expired_flag) {
iterator position = active_list.begin();
for (iterator active_list_end = active_list.end();
position != active_list_end
&& Traits::less_than(position->deadline(), deadline);
++position)
;
iterator pending_element_p;
// Only allocate a new element if the free list is empty.
if (free_list.empty())
pending_element_p
= new Pending_Element<typename Traits::Threshold>(deadline,
handler,
expired_flag);
else {
pending_element_p = free_list.begin();
free_list.erase(pending_element_p);
pending_element_p->assign(deadline, handler, expired_flag);
}
iterator r = active_list.insert(position, *pending_element_p);
assert(OK());
return r;
}
template <typename Traits>
bool
Pending_List<Traits>::OK() const {
if (!active_list.OK())
return false;
if (!free_list.OK())
return false;
const typename Traits::Threshold* old;
const_iterator i = active_list.begin();
old = &i->deadline();
++i;
for (const_iterator active_list_end = active_list.end(); i != active_list_end; ++i) {
const typename Traits::Threshold& t = i->deadline();
if (Traits::less_than(t, *old)) {
#ifndef NDEBUG
std::cerr << "The active list is not sorted!"
<< std::endl;
#endif
return false;
}
old = &t;
}
return true;
}
} // namespace Watchdog
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Pending_List_defs.hh line 78. */
/* Automatically generated from PPL source file ../src/Watchdog_defs.hh line 31. */
#include <cassert>
#include <functional>
#ifdef PPL_HAVE_SYS_TIME_H
# include <sys/time.h>
#endif
namespace Parma_Polyhedra_Library {
// Set linkage now to declare it friend later.
extern "C" void PPL_handle_timeout(int signum);
struct Watchdog_Traits {
typedef Implementation::Watchdog::Time Threshold;
static bool less_than(const Threshold& a, const Threshold& b) {
return a < b;
}
};
//! A watchdog timer.
class Watchdog {
public:
template <typename Flag_Base, typename Flag>
Watchdog(long csecs, const Flag_Base* volatile& holder, Flag& flag);
/*! \brief
Constructor: if not reset, the watchdog will trigger after \p csecs
centiseconds, invoking handler \p function.
*/
Watchdog(long csecs, void (* const function)());
//! Destructor.
~Watchdog();
#if PPL_HAVE_DECL_SETITIMER && PPL_HAVE_DECL_SIGACTION
//! Static class initialization.
static void initialize();
//! Static class finalization.
static void finalize();
private:
//! Whether or not this watchdog has expired.
bool expired;
typedef Implementation::Watchdog::Pending_List<Watchdog_Traits>
WD_Pending_List;
typedef Implementation::Watchdog::Handler
WD_Handler;
const WD_Handler& handler;
WD_Pending_List::iterator pending_position;
// Private and not implemented: copy construction is not allowed.
Watchdog(const Watchdog&);
// Private and not implemented: copy assignment is not allowed.
Watchdog& operator=(const Watchdog&);
// Pass this to getitimer().
static itimerval current_timer_status;
//! Reads the timer value into \p time.
static void get_timer(Implementation::Watchdog::Time& time);
// Pass this to setitimer().
static itimerval signal_once;
// Last time value we set the timer to.
static Implementation::Watchdog::Time last_time_requested;
//! Sets the timer value to \p time.
static void set_timer(const Implementation::Watchdog::Time& time);
//! Stops the timer.
static void stop_timer();
//! Quick reschedule to avoid race conditions.
static void reschedule();
// Used by the above.
static Implementation::Watchdog::Time reschedule_time;
// Records the time elapsed since last fresh start.
static Implementation::Watchdog::Time time_so_far;
//! The ordered queue of pending watchdog events.
static WD_Pending_List pending;
//! The actual signal handler.
static void handle_timeout(int);
//! Handles the addition of a new watchdog event.
static WD_Pending_List::iterator
new_watchdog_event(long csecs,
const WD_Handler& handler,
bool& expired_flag);
//! Handles the removal of the watchdog event referred by \p position.
void remove_watchdog_event(WD_Pending_List::iterator position);
//! Whether the alarm clock is running.
static volatile bool alarm_clock_running;
//! Whether we are changing data that is also changed by the signal handler.
static volatile bool in_critical_section;
friend void PPL_handle_timeout(int signum);
#endif // PPL_HAVE_DECL_SETITIMER && PPL_HAVE_DECL_SIGACTION
};
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Watchdog_inlines.hh line 1. */
/* Watchdog and associated classes' implementation: inline functions.
*/
/* Automatically generated from PPL source file ../src/Handler_defs.hh line 1. */
/* Handler and derived classes' declaration.
*/
/* Automatically generated from PPL source file ../src/Handler_defs.hh line 28. */
//! Abstract base class for handlers of the watchdog events.
class Parma_Polyhedra_Library::Implementation::Watchdog::Handler {
public:
//! Does the job.
virtual void act() const = 0;
//! Virtual destructor.
virtual ~Handler();
};
//! A kind of Handler that installs a flag onto a flag-holder.
/*!
The template class <CODE>Handler_Flag\<Flag_Base, Flag\></CODE>
is an handler whose job is to install a flag onto an <EM>holder</EM>
for the flag.
The flag is of type \p Flag and the holder is a (volatile) pointer
to \p Flag_Base. Installing the flag onto the holder means making
the holder point to the flag, so that it must be possible to assign
a value of type <CODE>Flag*</CODE> to an entity of type
<CODE>Flag_Base*</CODE>.
The class \p Flag must provide the method
\code
int priority() const
\endcode
returning an integer priority associated to the flag.
The handler will install its flag onto the holder only if the holder
is empty, namely, it is the null pointer, or if the holder holds a
flag of strictly lower priority.
*/
template <typename Flag_Base, typename Flag>
class Parma_Polyhedra_Library::Implementation::Watchdog::Handler_Flag
: public Handler {
public:
//! Constructor with a given function.
Handler_Flag(const Flag_Base* volatile& holder, Flag& flag);
/*! \brief
Does its job: installs the flag onto the holder, if a flag with
an higher priority has not already been installed.
*/
virtual void act() const;
private:
// declare holder as reference to volatile pointer to const Flag_Base
const Flag_Base* volatile& h;
Flag& f;
};
//! A kind of Handler calling a given function.
class Parma_Polyhedra_Library::Implementation::Watchdog::Handler_Function
: public Handler {
public:
//! Constructor with a given function.
Handler_Function(void (* const function)());
//! Does its job: calls the embedded function.
virtual void act() const;
private:
//! Pointer to the embedded function.
void (* const f)();
};
/* Automatically generated from PPL source file ../src/Handler_inlines.hh line 1. */
/* Handler and derived classes' implementation: inline functions.
*/
namespace Parma_Polyhedra_Library {
namespace Implementation {
namespace Watchdog {
inline
Handler::~Handler() {
}
template <typename Flag_Base, typename Flag>
Handler_Flag<Flag_Base, Flag>::Handler_Flag(const Flag_Base* volatile& holder,
Flag& flag)
: h(holder), f(flag) {
}
template <typename Flag_Base, typename Flag>
void
Handler_Flag<Flag_Base, Flag>::act() const {
if (h == 0 || static_cast<const Flag&>(*h).priority() < f.priority())
h = &f;
}
inline
Handler_Function::Handler_Function(void (* const function)())
: f(function) {
}
inline void
Handler_Function::act() const {
(*f)();
}
} // namespace Watchdog
} // namespace Implementation
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Handler_defs.hh line 95. */
/* Automatically generated from PPL source file ../src/Watchdog_inlines.hh line 28. */
#include <stdexcept>
namespace Parma_Polyhedra_Library {
#if PPL_HAVE_DECL_SETITIMER && PPL_HAVE_DECL_SIGACTION
template <typename Flag_Base, typename Flag>
Watchdog::Watchdog(long csecs,
const Flag_Base* volatile& holder,
Flag& flag)
: expired(false),
handler(*new
Implementation::Watchdog::Handler_Flag<Flag_Base, Flag>(holder,
flag)) {
if (csecs == 0)
throw std::invalid_argument("Watchdog constructor called with a"
" non-positive number of centiseconds");
in_critical_section = true;
pending_position = new_watchdog_event(csecs, handler, expired);
in_critical_section = false;
}
inline
Watchdog::Watchdog(long csecs, void (* const function)())
: expired(false),
handler(*new Implementation::Watchdog::Handler_Function(function)) {
if (csecs == 0)
throw std::invalid_argument("Watchdog constructor called with a"
" non-positive number of centiseconds");
in_critical_section = true;
pending_position = new_watchdog_event(csecs, handler, expired);
in_critical_section = false;
}
inline
Watchdog::~Watchdog() {
if (!expired) {
in_critical_section = true;
remove_watchdog_event(pending_position);
in_critical_section = false;
}
delete &handler;
}
inline void
Watchdog::reschedule() {
set_timer(reschedule_time);
}
#else // !PPL_HAVE_DECL_SETITIMER !! !PPL_HAVE_DECL_SIGACTION
template <typename Flag_Base, typename Flag>
Watchdog::Watchdog(long /* csecs */,
const Flag_Base* volatile& /* holder */,
Flag& /* flag */) {
throw std::logic_error("PPL::Watchdog::Watchdog objects not supported:"
" system does not provide setitimer()");
}
inline
Watchdog::Watchdog(long /* csecs */, void (* /* function */)()) {
throw std::logic_error("PPL::Watchdog::Watchdog objects not supported:"
" system does not provide setitimer()");
}
inline
Watchdog::~Watchdog() {
}
#endif // !PPL_HAVE_DECL_SETITIMER !! !PPL_HAVE_DECL_SIGACTION
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Watchdog_defs.hh line 146. */
/* Automatically generated from PPL source file ../src/Threshold_Watcher_defs.hh line 1. */
/* Threshold_Watcher and associated classes' declaration and inline functions.
*/
/* Automatically generated from PPL source file ../src/Threshold_Watcher_types.hh line 1. */
namespace Parma_Polyhedra_Library {
template <typename Traits>
class Threshold_Watcher;
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Threshold_Watcher_defs.hh line 30. */
#include <cassert>
/*! \brief
A class of watchdogs controlling the exceeding of a threshold.
\tparam Traits
A class to set data types and functions for the threshold handling.
See \c Parma_Polyhedra_Library::Weightwatch_Traits for an example.
*/
template <typename Traits>
class Parma_Polyhedra_Library::Threshold_Watcher {
public:
template <typename Flag_Base, typename Flag>
Threshold_Watcher(const typename Traits::Delta& delta,
const Flag_Base* volatile& holder,
Flag& flag);
Threshold_Watcher(const typename Traits::Delta& delta,
void (*function)());
~Threshold_Watcher();
private:
typedef Implementation::Watchdog::Pending_List<Traits> TW_Pending_List;
typedef Implementation::Watchdog::Handler TW_Handler;
bool expired;
const TW_Handler& handler;
typename TW_Pending_List::iterator pending_position;
// Just to prevent their use.
Threshold_Watcher(const Threshold_Watcher&);
Threshold_Watcher& operator=(const Threshold_Watcher&);
struct Initialize {
//! The ordered queue of pending thresholds.
TW_Pending_List pending;
};
static Initialize init;
// Handle the addition of a new threshold.
static typename TW_Pending_List::iterator
add_threshold(typename Traits::Threshold threshold,
const TW_Handler& handler,
bool& expired_flag);
// Handle the removal of a threshold.
static typename TW_Pending_List::iterator
remove_threshold(typename TW_Pending_List::iterator position);
//! Check threshold reaching.
static void check();
}; // class Parma_Polyhedra_Library::Threshold_Watcher
// Templatic initialization of static data member.
template <typename Traits>
typename
Parma_Polyhedra_Library::Threshold_Watcher<Traits>::Initialize
Parma_Polyhedra_Library::Threshold_Watcher<Traits>::init;
/* Automatically generated from PPL source file ../src/Threshold_Watcher_inlines.hh line 1. */
/* Threshold_Watcher and associated classes' implementation: inline functions.
*/
#include <stdexcept>
/* Automatically generated from PPL source file ../src/Threshold_Watcher_inlines.hh line 30. */
namespace Parma_Polyhedra_Library {
template <typename Traits>
template <typename Flag_Base, typename Flag>
Threshold_Watcher<Traits>
::Threshold_Watcher(const typename Traits::Delta& delta,
const Flag_Base* volatile& holder,
Flag& flag)
: expired(false),
handler(*new
Implementation::Watchdog::Handler_Flag<Flag_Base, Flag>(holder,
flag)) {
typename Traits::Threshold threshold;
Traits::from_delta(threshold, delta);
if (!Traits::less_than(Traits::get(), threshold))
throw std::invalid_argument("Threshold_Watcher constructor called with a"
" threshold already reached");
pending_position = add_threshold(threshold, handler, expired);
}
template <typename Traits>
inline
Threshold_Watcher<Traits>::Threshold_Watcher(const typename Traits::Delta& delta, void (*function)())
: expired(false),
handler(*new Implementation::Watchdog::Handler_Function(function)) {
typename Traits::Threshold threshold;
Traits::from_delta(threshold, delta);
if (!Traits::less_than(Traits::get(), threshold))
throw std::invalid_argument("Threshold_Watcher constructor called with a"
" threshold already reached");
pending_position = add_threshold(threshold, handler, expired);
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Threshold_Watcher_templates.hh line 1. */
/* Threshold_Watcher and associated classes'.
*/
namespace Parma_Polyhedra_Library {
template <typename Traits>
typename Threshold_Watcher<Traits>::TW_Pending_List::iterator
Threshold_Watcher<Traits>::add_threshold(typename Traits::Threshold threshold,
const TW_Handler& handler,
bool& expired_flag) {
Traits::check_function = Threshold_Watcher::check;
return init.pending.insert(threshold, handler, expired_flag);
}
template <typename Traits>
typename Threshold_Watcher<Traits>::TW_Pending_List::iterator
Threshold_Watcher<Traits>
::remove_threshold(typename TW_Pending_List::iterator position) {
typename TW_Pending_List::iterator i = init.pending.erase(position);
if (init.pending.empty())
Traits::check_function = 0;
return i;
}
template <typename Traits>
Threshold_Watcher<Traits>::~Threshold_Watcher() {
if (!expired)
remove_threshold(pending_position);
delete &handler;
}
template <typename Traits>
void
Threshold_Watcher<Traits>::check() {
typename TW_Pending_List::iterator i = init.pending.begin();
assert(i != init.pending.end());
const typename Traits::Threshold& current = Traits::get();
while (!Traits::less_than(current, i->deadline())) {
i->handler().act();
i->expired_flag() = true;
i = remove_threshold(i);
if (i == init.pending.end())
break;
}
}
} // namespace Parma_Polyhedra_Library
/* Automatically generated from PPL source file ../src/Threshold_Watcher_defs.hh line 94. */
//! Defined to 1 if PPL::Watchdog objects are supported, to 0 otherwise.
#define PPL_WATCHDOG_OBJECTS_ARE_SUPPORTED \
(PPL_HAVE_DECL_SETITIMER && PPL_HAVE_DECL_SIGACTION)
#undef PPL_SPECIALIZE_ABS
#undef PPL_SPECIALIZE_ADD
#undef PPL_SPECIALIZE_ADD_MUL
#undef PPL_SPECIALIZE_ASSIGN
#undef PPL_SPECIALIZE_ASSIGN_SPECIAL
#undef PPL_SPECIALIZE_CEIL
#undef PPL_SPECIALIZE_CLASSIFY
#undef PPL_SPECIALIZE_CMP
#undef PPL_SPECIALIZE_CONSTRUCT
#undef PPL_SPECIALIZE_CONSTRUCT_SPECIAL
#undef PPL_SPECIALIZE_COPY
#undef PPL_SPECIALIZE_DIV
#undef PPL_SPECIALIZE_DIV2EXP
#undef PPL_SPECIALIZE_FLOOR
#undef PPL_SPECIALIZE_FUN1_0_0
#undef PPL_SPECIALIZE_FUN1_0_1
#undef PPL_SPECIALIZE_FUN1_0_2
#undef PPL_SPECIALIZE_FUN1_0_3
#undef PPL_SPECIALIZE_FUN1_1_1
#undef PPL_SPECIALIZE_FUN1_1_2
#undef PPL_SPECIALIZE_FUN1_2_2
#undef PPL_SPECIALIZE_FUN2_0_0
#undef PPL_SPECIALIZE_FUN2_0_1
#undef PPL_SPECIALIZE_FUN2_0_2
#undef PPL_SPECIALIZE_FUN3_0_1
#undef PPL_SPECIALIZE_FUN5_0_1
#undef PPL_SPECIALIZE_GCD
#undef PPL_SPECIALIZE_GCDEXT
#undef PPL_SPECIALIZE_IDIV
#undef PPL_SPECIALIZE_INPUT
#undef PPL_SPECIALIZE_IS_INT
#undef PPL_SPECIALIZE_IS_MINF
#undef PPL_SPECIALIZE_IS_NAN
#undef PPL_SPECIALIZE_IS_PINF
#undef PPL_SPECIALIZE_LCM
#undef PPL_SPECIALIZE_MUL
#undef PPL_SPECIALIZE_MUL2EXP
#undef PPL_SPECIALIZE_NEG
#undef PPL_SPECIALIZE_OUTPUT
#undef PPL_SPECIALIZE_REM
#undef PPL_SPECIALIZE_SGN
#undef PPL_SPECIALIZE_SQRT
#undef PPL_SPECIALIZE_SUB
#undef PPL_SPECIALIZE_SUB_MUL
#undef PPL_SPECIALIZE_TRUNC
#undef PPL_COMPILE_TIME_CHECK
#undef PPL_COMPILE_TIME_CHECK_AUX
#undef PPL_COMPILE_TIME_CHECK_NAME
#ifdef __STDC_LIMIT_MACROS
# undef __STDC_LIMIT_MACROS
#endif
#ifdef PPL_SAVE_STDC_LIMIT_MACROS
# define __STDC_LIMIT_MACROS PPL_SAVE_STDC_LIMIT_MACROS
# undef PPL_SAVE_STDC_LIMIT_MACROS
#endif
#ifdef PPL_SAVE_NDEBUG
# ifndef NDEBUG
# define NDEBUG PPL_SAVE_NDEBUG
# endif
# undef PPL_SAVE_NDEBUG
#else
# ifdef NDEBUG
# undef NDEBUG
# endif
#endif
// Must include <cassert> again in order to make the latest changes to
// NDEBUG effective.
#include <cassert>
#ifdef PPL_NO_AUTOMATIC_INITIALIZATION
#undef PPL_NO_AUTOMATIC_INITIALIZATION
#endif
#endif // !defined(PPL_ppl_hh)
|