This file is indexed.

/usr/include/ql/experimental/barrieroption/binomialdoublebarrierengine.hpp is in libquantlib0-dev 1.7.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2015 Thema Consulting SA

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file binomialdoublebarrierengine.hpp
    \brief Binomial Double Barrier option engine
*/

#ifndef quantlib_binomial_double_barrier_engine_hpp
#define quantlib_binomial_double_barrier_engine_hpp

#include <ql/methods/lattices/binomialtree.hpp>
#include <ql/methods/lattices/bsmlattice.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/experimental/barrieroption/discretizeddoublebarrieroption.hpp>
#include <ql/processes/blackscholesprocess.hpp>
#include <ql/termstructures/yield/flatforward.hpp>
#include <ql/termstructures/volatility/equityfx/blackconstantvol.hpp>

namespace QuantLib {

    //! Pricing engine for double barrier options using binomial trees
    /*! \ingroup barrierengines

        \note This engine requires a the discretized option classes. 
        By default uses a standard binomial implementation, but it can
        also work with DiscretizedDermanKaniDoubleBarrierOption to
        implement a Derman-Kani optimization.

        \test the correctness of the returned values is tested by
              checking it against analytic results.
    */
    template <class T, class D = DiscretizedDoubleBarrierOption>
    class BinomialDoubleBarrierEngine : public DoubleBarrierOption::engine {
      public:
        BinomialDoubleBarrierEngine(
             const boost::shared_ptr<GeneralizedBlackScholesProcess>& process,
             Size timeSteps)
        : process_(process), timeSteps_(timeSteps) {
            QL_REQUIRE(timeSteps>0,
                       "timeSteps must be positive, " << timeSteps <<
                       " not allowed");
            registerWith(process_);
        }
        void calculate() const;
      private:
        boost::shared_ptr<GeneralizedBlackScholesProcess> process_;
        Size timeSteps_;
    };


    // template definitions

    template <class T, class D>
    void BinomialDoubleBarrierEngine<T,D>::calculate() const {

        DayCounter rfdc  = process_->riskFreeRate()->dayCounter();
        DayCounter divdc = process_->dividendYield()->dayCounter();
        DayCounter voldc = process_->blackVolatility()->dayCounter();
        Calendar volcal = process_->blackVolatility()->calendar();

        Real s0 = process_->stateVariable()->value();
        QL_REQUIRE(s0 > 0.0, "negative or null underlying given");
        Volatility v = process_->blackVolatility()->blackVol(
            arguments_.exercise->lastDate(), s0);
        Date maturityDate = arguments_.exercise->lastDate();
        Rate r = process_->riskFreeRate()->zeroRate(maturityDate,
            rfdc, Continuous, NoFrequency);
        Rate q = process_->dividendYield()->zeroRate(maturityDate,
            divdc, Continuous, NoFrequency);
        Date referenceDate = process_->riskFreeRate()->referenceDate();

        // binomial trees with constant coefficient
        Handle<YieldTermStructure> flatRiskFree(
            boost::shared_ptr<YieldTermStructure>(
                new FlatForward(referenceDate, r, rfdc)));
        Handle<YieldTermStructure> flatDividends(
            boost::shared_ptr<YieldTermStructure>(
                new FlatForward(referenceDate, q, divdc)));
        Handle<BlackVolTermStructure> flatVol(
            boost::shared_ptr<BlackVolTermStructure>(
                new BlackConstantVol(referenceDate, volcal, v, voldc)));

        boost::shared_ptr<StrikedTypePayoff> payoff =
            boost::dynamic_pointer_cast<StrikedTypePayoff>(arguments_.payoff);
        QL_REQUIRE(payoff, "non-striked payoff given");

        Time maturity = rfdc.yearFraction(referenceDate, maturityDate);

        boost::shared_ptr<StochasticProcess1D> bs(
                         new GeneralizedBlackScholesProcess(
                                      process_->stateVariable(),
                                      flatDividends, flatRiskFree, flatVol));

        TimeGrid grid(maturity, timeSteps_);

        boost::shared_ptr<T> tree(new T(bs, maturity, timeSteps_,
                                        payoff->strike()));

        boost::shared_ptr<BlackScholesLattice<T> > lattice(
            new BlackScholesLattice<T>(tree, r, maturity, timeSteps_));
        
        D option(arguments_, *process_, grid);
        option.initialize(lattice, maturity);

        // Partial derivatives calculated from various points in the
        // binomial tree 
        // (see J.C.Hull, "Options, Futures and other derivatives", 6th edition, pp 397/398)

        // Rollback to third-last step, and get underlying prices (s2) &
        // option values (p2) at this point
        option.rollback(grid[2]);
        Array va2(option.values());
        QL_ENSURE(va2.size() == 3, "Expect 3 nodes in grid at second step");
        Real p2u = va2[2]; // up
        Real p2m = va2[1]; // mid
        Real p2d = va2[0]; // down (low)
        Real s2u = lattice->underlying(2, 2); // up price
        Real s2m = lattice->underlying(2, 1); // middle price
        Real s2d = lattice->underlying(2, 0); // down (low) price

        // calculate gamma by taking the first derivate of the two deltas
        Real delta2u = (p2u - p2m)/(s2u-s2m);
        Real delta2d = (p2m-p2d)/(s2m-s2d);
        Real gamma = (delta2u - delta2d) / ((s2u-s2d)/2);

        // Rollback to second-last step, and get option values (p1) at
        // this point
        option.rollback(grid[1]);
        Array va(option.values());
        QL_ENSURE(va.size() == 2, "Expect 2 nodes in grid at first step");
        Real p1u = va[1];
        Real p1d = va[0];
        Real s1u = lattice->underlying(1, 1); // up (high) price
        Real s1d = lattice->underlying(1, 0); // down (low) price

        Real delta = (p1u - p1d) / (s1u - s1d);

        // Finally, rollback to t=0
        option.rollback(0.0);
        Real p0 = option.presentValue();

        results_.value = p0;
        results_.delta = delta;
        results_.gamma = gamma;
        // theta can be approximated by calculating the numerical derivative
        // between mid value at third-last step and at t0. The underlying price
        // is the same, only time varies.
        results_.theta = (p2m - p0) / grid[2];
    }

}


#endif