/usr/include/ql/experimental/credit/homogeneouspooldef.hpp is in libquantlib0-dev 1.7.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Roland Lichters
Copyright (C) 2009, 2014 Jose Aparicio
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#ifndef quantlib_homogenous_pool_default_model_hpp
#define quantlib_homogenous_pool_default_model_hpp
#include <ql/experimental/credit/lossdistribution.hpp>
#include <ql/experimental/credit/basket.hpp>
#include <ql/experimental/credit/constantlosslatentmodel.hpp>
#include <ql/experimental/credit/defaultlossmodel.hpp>
// Intended to replace HomogeneousPoolCDOEngine in syntheticcdoengines.hpp
namespace QuantLib {
//-------------------------------------------------------------------------
//! Default loss distribution convolution for finite homogeneous pool
/* A note on the number of buckets: As it is now the code goes splitting
losses into buckets from loses equal to zero to losses up to the value of
the underlying basket. This is in view of a stochastic loss given default
but in a constant LGD situation this is a waste and it is more efficient to
go up to the attainable losses.
\todo Extend to the multifactor case for a generic LM
*/
template<class copulaPolicy>
class HomogeneousPoolLossModel : public DefaultLossModel {
private:
void resetModel();
public:
HomogeneousPoolLossModel(
const boost::shared_ptr<ConstantLossLatentmodel<copulaPolicy> >&
copula,
Size nBuckets,
Real max = 5.,
Real min = -5.,
Real nSteps = 50)
: copula_(copula),
nBuckets_(nBuckets),
max_(max), min_(min), nSteps_(nSteps), delta_((max - min)/nSteps)
{
QL_REQUIRE(copula->numFactors() == 1,
"Inhomogeneous model not implemented for multifactor");
}
protected:
Distribution lossDistrib(const Date& d) const;
public:
Real expectedTrancheLoss(const Date& d) const {
return lossDistrib(d).cumulativeExcessProbability(attachAmount_,
detachAmount_);
// This one if the distribution is over the whole loss structure:
// but it becomes very expensive
/*
return lossDistrib(d).trancheExpectedValue(attach_ * notional_,
detach_ * notional_);
*/
}
Real percentile(const Date& d, Real percentile) const {
Real portfLoss = lossDistrib(d).confidenceLevel(percentile);
return std::min(std::max(portfLoss - attachAmount_, 0.),
detachAmount_ - attachAmount_);
}
Real expectedShortfall(const Date& d, Probability percentile) const {
Distribution dist = lossDistrib(d);
dist.tranche(attachAmount_, detachAmount_);
return dist.expectedShortfall(percentile);
}
protected:
const boost::shared_ptr<ConstantLossLatentmodel<copulaPolicy> > copula_;
Size nBuckets_;
mutable Real attach_, detach_, notional_, attachAmount_, detachAmount_;
mutable std::vector<Real> notionals_;
private:
// integration:
// \todo move integration to latent model types when moving to a
// multifactor version
const Real max_;// redundant?
const Real min_;
const Real nSteps_;
const Real delta_;
};
// \todo Add other loss distribution statistics
typedef HomogeneousPoolLossModel<GaussianCopulaPolicy>
HomogGaussPoolLossModel;
typedef HomogeneousPoolLossModel<TCopulaPolicy> HomogTPoolLossModel;
//-----------------------------------------------------------------------
template<class CP>
void HomogeneousPoolLossModel<CP>::resetModel()
{
// need to be capped now since the limit amounts might be over the
// remaining notional (think amortizing)
attach_ = std::min(basket_->remainingAttachmentAmount() /
basket_->remainingNotional(), 1.);
detach_ = std::min(basket_->remainingDetachmentAmount() /
basket_->remainingNotional(), 1.);
notional_ = basket_->remainingNotional();
notionals_ = basket_->remainingNotionals();
attachAmount_ = basket_->remainingAttachmentAmount();
detachAmount_ = basket_->remainingDetachmentAmount();
copula_->resetBasket(basket_.currentLink());
}
template<class CP>
Distribution HomogeneousPoolLossModel<CP>::lossDistrib(
const Date& d) const
{
LossDistHomogeneous bucktLDistBuff(nBuckets_, detachAmount_);
std::vector<Real> lgd;// switch to a mutable cache member
std::vector<Real> recoveries = copula_->recoveries();
std::transform(recoveries.begin(), recoveries.end(),
std::back_inserter(lgd), std::bind1st(std::minus<Real>(), 1.));
std::transform(lgd.begin(), lgd.end(), notionals_.begin(),
lgd.begin(), std::multiplies<Real>());
std::vector<Real> prob = basket_->remainingProbabilities(d);
for(Size iName=0; iName<prob.size(); iName++)
prob[iName] = copula_->inverseCumulativeY(prob[iName], iName);
// integrate locally (1 factor).
// use explicitly a 1D latent model object?
Distribution dist(nBuckets_, 0.0,
detachAmount_);
//notional_);
std::vector<Real> mkft(1, min_ + delta_ /2.);
for (Size i = 0; i < nSteps_; i++) {
std::vector<Real> conditionalProbs;
for(Size iName=0; iName<notionals_.size(); iName++)
conditionalProbs.push_back(
copula_->conditionalDefaultProbabilityInvP(prob[iName], iName,
mkft));
Distribution d = bucktLDistBuff(lgd, conditionalProbs);
Real densitydm = delta_ * copula_->density(mkft);
// also, instead of calling the static method it could be wrapped
// through an inlined call in the latent model
for (Size j = 0; j < nBuckets_; j++)
dist.addDensity(j, d.density(j) * densitydm);
mkft[0] += delta_;
}
return dist;
}
}
#endif
|