/usr/include/ql/experimental/credit/lossdistribution.hpp is in libquantlib0-dev 1.7.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Roland Lichters
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file lossdistribution.hpp
\brief Loss distributions and probability of n defaults
*/
#ifndef quantlib_loss_distribution_hpp
#define quantlib_loss_distribution_hpp
#include <ql/math/distributions/binomialdistribution.hpp>
#include <ql/experimental/credit/distribution.hpp>
#include <ql/experimental/credit/onefactorcopula.hpp>
namespace QuantLib {
//! Probability formulas and algorithms
/*!
\ingroup probability
*/
class LossDist {
public:
LossDist() {}
virtual ~LossDist() {}
virtual Distribution operator()(const std::vector<Real>& volumes,
const std::vector<Real>& probabilities) const = 0;
virtual Size buckets () const = 0;
virtual Real maximum () const = 0;
/*! Binomial probability of n defaults using prob[0]
*/
static Real binomialProbabilityOfNEvents(int n, std::vector<Real>& p);
/*! Binomial probability of at least n defaults using prob[0]
*/
static Real binomialProbabilityOfAtLeastNEvents(int n,
std::vector<Real>& p);
/*! Probability of exactly n default events
Xiaofong Ma, "Numerical Methods for the Valuation of Synthetic
Collateralized Debt Obligations", PhD Thesis,
Graduate Department of Computer Science, University of Toronto, 2007
http://www.cs.toronto.edu/pub/reports/na/ma-07-phd.pdf (formula 2.1)
*/
static std::vector<Real> probabilityOfNEvents(std::vector<Real>& p);
static Real probabilityOfNEvents(int n, std::vector<Real>& p);
/*! Probability of at least n defaults
*/
static Real probabilityOfAtLeastNEvents(int n, std::vector<Real>& p);
};
//! Probability of N events
class ProbabilityOfNEvents {
public:
ProbabilityOfNEvents (int n) : n_(n) {}
Real operator()(std::vector<Real> p) const;
private:
Size n_;
};
//! Probability of at least N events
class ProbabilityOfAtLeastNEvents {
public:
ProbabilityOfAtLeastNEvents (int n) : n_(n) {}
Real operator()(std::vector<Real> p) const;
private:
Size n_;
};
//! Probability of at least N events
class BinomialProbabilityOfAtLeastNEvents {
public:
BinomialProbabilityOfAtLeastNEvents(int n) : n_(n) {}
Real operator()(std::vector<Real> p);
private:
int n_;
};
//! Binomial loss distribution
/*! Binomial loss distribution
\ingroup probability
*/
class LossDistBinomial : public LossDist {
public:
LossDistBinomial (Size nBuckets, Real maximum)
: nBuckets_(nBuckets), maximum_(maximum) {}
Distribution operator()(Size n, Real volume, Real probability) const;
Distribution operator()(const std::vector<Real>& volumes,
const std::vector<Real>& probabilities) const;
Size buckets () const { return nBuckets_; }
Real maximum () const { return maximum_; }
Real volume() const { return volume_; }
Size size () const { return n_; }
std::vector<Real> probability() const { return probability_; }
std::vector<Real> excessProbability() const { return excessProbability_; }
private:
Size nBuckets_;
Real maximum_;
mutable Real volume_;
mutable Size n_;
mutable std::vector<Real> probability_;
mutable std::vector<Real> excessProbability_;
};
//! Loss Distribution for Homogeneous Pool
/*! Loss Distribution for Homogeneous Pool
Loss distribution for equal volumes but varying probabilities of
default.
The method builds the exact loss distribution for a homogeneous pool
of underlyings iteratively by computing the convolution of the given
loss distribution with the "loss distribution" of an additional credit
following
Xiaofong Ma, "Numerical Methods for the Valuation of Synthetic
Collateralized Debt Obligations", PhD Thesis,
Graduate Department of Computer Science, University of Toronto, 2007
http://www.cs.toronto.edu/pub/reports/na/ma-07-phd.pdf (formula 2.1)
avoiding numerical instability of the algorithm by
John Hull and Alan White, "Valuation of a CDO and nth to default CDS
without Monte Carlo simulation", Journal of Derivatives 12, 2, 2004
\ingroup probability
*/
class LossDistHomogeneous : public LossDist {
public:
LossDistHomogeneous (Size nBuckets, Real maximum)
: nBuckets_(nBuckets), maximum_(maximum),
n_(0), volume_(0.0) {}
Distribution operator()(Real volume,
const std::vector<Real>& probabilities) const;
Distribution operator()(const std::vector<Real>& volumes,
const std::vector<Real>& probabilities) const;
Size buckets () const { return nBuckets_; }
Real maximum () const { return maximum_; }
Size size () const { return n_; }
Real volume() const { return volume_; }
std::vector<Real> probability() const { return probability_; }
std::vector<Real> excessProbability() const { return excessProbability_; }
private:
Size nBuckets_;
Real maximum_;
mutable Size n_;
mutable Real volume_;
mutable std::vector<Real> probability_;
mutable std::vector<Real> excessProbability_;
};
//! Loss distribution with Hull-White bucketing
/*! Loss distribution with Hull-White bucketing
Loss distribution for varying volumes and probabilities of default,
independence assumed.
The implementation of the loss distribution follows
John Hull and Alan White, "Valuation of a CDO and nth to default CDS
without Monte Carlo simulation", Journal of Derivatives 12, 2, 2004.
\ingroup probability
*/
class LossDistBucketing : public LossDist {
public:
LossDistBucketing (Size nBuckets, Real maximum,
Real epsilon = 1e-6)
: nBuckets_(nBuckets), maximum_(maximum), epsilon_(epsilon) {}
Distribution operator()(const std::vector<Real>& volumes,
const std::vector<Real>& probabilities) const;
Size buckets () const { return nBuckets_; }
Real maximum () const { return maximum_; }
private:
int locateTargetBucket (Real loss, Size i0 = 0) const;
Size nBuckets_;
Real maximum_;
Real epsilon_;
};
//! Loss distribution with Monte Carlo simulation
/*!
Loss distribution for varying volumes and probabilities of default
via Monte Carlo simulation of independent default events.
\ingroup probability
*/
class LossDistMonteCarlo : public LossDist {
public:
LossDistMonteCarlo (Size nBuckets, Real maximum, Size simulations,
long seed = 42, Real epsilon = 1e-6)
: nBuckets_(nBuckets), maximum_(maximum),
simulations_(simulations), seed_(seed), epsilon_(epsilon) {}
Distribution operator()(const std::vector<Real>& volumes,
const std::vector<Real>& probabilities) const;
Size buckets () const { return nBuckets_; }
Real maximum () const { return maximum_; }
private:
Size nBuckets_;
Real maximum_;
Size simulations_;
long seed_;
Real epsilon_;
};
}
#endif
|