This file is indexed.

/usr/include/ql/experimental/credit/randomdefaultlatentmodel.hpp is in libquantlib0-dev 1.7.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2008 Roland Lichters
 Copyright (C) 2009, 2014 Jose Aparicio

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/
#ifndef quantlib_randomdefault_latent_model_hpp
#define quantlib_randomdefault_latent_model_hpp

#include <ql/math/beta.hpp>
#include <ql/math/statistics/histogram.hpp>
#include <ql/math/statistics/riskstatistics.hpp>
#include <ql/math/solvers1d/brent.hpp>
#include <ql/math/randomnumbers/sobolrsg.hpp>
#include <ql/experimental/credit/basket.hpp>
#include <ql/experimental/credit/defaultlossmodel.hpp>

#include <ql/experimental/math/latentmodel.hpp>
#include <ql/experimental/credit/constantlosslatentmodel.hpp>

#include <ql/experimental/math/gaussiancopulapolicy.hpp>
#include <ql/experimental/math/tcopulapolicy.hpp>

#include <ql/math/randomnumbers/mt19937uniformrng.hpp>

/* Intended to replace
    ql\experimental\credit\randomdefaultmodel.Xpp
*/

namespace QuantLib {

    /*! Simulation event trait class template forward declaration.
    Each latent model will be modelling different entities according to the
    meaning of the model function which depends on the random \$ Y_i\$
    variables. Still the generation of the factors and variables it is common to
    any model. Only within a given transformation function the model and event
    generated becomes concrete.

    However here these simulations are already made specific to a default event.
    Yet other variables contingent to default can be modelled (recovery,
    market...) So we are placed in a less generic stage where default is
    modelled possibly jointly with other unespecified magnitudes.

    Another role of this trait class is to compact in memory the simulation
    data. The statistic post processing needs to have the results stored in
    memory and simulations can not be consumed at generation time, typically
    because some statistics are conditional on others (e.g. ESF) or/and
    parametric (percentile, etc...)

    Simulation events do not derive from each other, and they are specialized
    for each type; duck typing applies for variable names (see the statistic
    methods)
    */
    // replaces class Loss
    template <class simEventOwner> struct simEvent;


    /*! Base class for latent model monte carlo simulation. Independent of the
    copula type and the generator.
    Generates the factors and variable samples and determines event threshold
    but it is not responsible for actual event specification; thats the derived
    classes responsibility according to what they model.
    Derived classes need mainly to implement nextSample (Worker::nextSample in
    the multithreaded version) to compute the simulation event generated, if
    any, from the latent variables sample. They also have the accompanying
    event trait to specify.
    */
    /* CRTP used for performance to avoid virtual table resolution in the Monte
    Carlo. Not only in sample generation but access; quite an amount of time can
    go into statistics computation, for a portfolio of tens of thousands
    positions that part of the problem will be starting to overtake the
    simulation costs.

    \todo: someone with sound experience on cache misses look into this, the
    statistics will be getting memory in and out of the cpu heavily and it
    might be possible to get performance out of that.
    \todo: parallelize the statistics computation, things like Var/ESF splits
    are very expensive.
    \todo: consider another design, taking the statistics outside the models.
    */
    template<template <class, class> class derivedRandomLM, class copulaPolicy,
        class USNG = SobolRsg>
    class RandomLM : public virtual LazyObject,
                     public virtual DefaultLossModel {
    private:
        // Takes the parents type, all children have the same type, the
        // random generation is performed in this class only.
        typedef typename LatentModel<copulaPolicy>::template FactorSampler<USNG>
            copulaRNG_type;
    protected:
        RandomLM(Size numFactors,
            Size numLMVars,
            const copulaPolicy& copula,
            Size nSims,
            BigNatural seed)
        : seed_(seed), numFactors_(numFactors), numLMVars_(numLMVars),
          nSims_(nSims), copula_(copula) {}

        void update() {
            simsBuffer_.clear();
            // tell basket to notify instruments, etc, we are invalid
            if(!basket_.empty()) basket_->notifyObservers();
            LazyObject::update();
        }

        void performCalculations() const {
            static_cast<const derivedRandomLM<copulaPolicy, USNG>* >(
                this)->initDates();//in update?
            copulasRng_ = boost::make_shared<copulaRNG_type>(copula_, seed_);
            performSimulations();
        }

        void performSimulations() const {
            // Next sequence should determine the event and push it into buffer
            for(Size i=nSims_; i; i--) {
                const std::vector<Real>& sample =
                    copulasRng_->nextSequence().value;
                static_cast<const derivedRandomLM<copulaPolicy, USNG>* >(
                    this)->nextSample(sample);
            // alternatively make call an explicit local method...
            }
        }

        /* Method to access simulation results and avoiding a copy of
        each thread results buffer. PerformCalculations should have been called.
        Here in the monothread version this method is redundant/trivial but
        serves to detach the statistics access to the way the simulations are
        stored.
        */
        const std::vector<simEvent<derivedRandomLM<copulaPolicy, USNG> > >&
            getSim(const Size iSim) const { return simsBuffer_[iSim]; }

        /* Allows statistics to be written generically for fixed and random
        recovery rates. */
        Real getEventRecovery(
            const simEvent<derivedRandomLM<copulaPolicy, USNG> >& evt) const
        {
            return static_cast<const derivedRandomLM<copulaPolicy, USNG>* >(
                this)->getEventRecovery(evt);
        }

        //! \name Statistics, DefaultLossModel interface.
        // These are virtual and allow for children-specific optimization and
        //   variance reduction. The virtual table is ok, they are not part
        //   of the simulation.
        //@{
        /*! Returns the probaility of having a given or larger number of
        defaults in the basket portfolio at a given time.
        */
        virtual Probability probAtLeastNEvents(Size n, const Date& d) const;
        /*! Order of results refers to the simulated (super)pool not the
        basket's pool.
        Notice that this statistic suffers from heavy dispersion. To see
        techniques to improve it (not implemented here) see:
        Joshi, M., D. Kainth. 2004. Rapid and accurate development of prices
        and Greeks for nth to default credit swaps in the Li model. Quantitative
        Finance, Vol. 4. Institute of Physics Publishing, London, UK, 266�275
        and:
        Chen, Z., Glasserman, P. 'Fast pricing of basket default swaps' in
        Operations Research Vol. 56, No. 2, March�April 2008, pp. 286�303
        */
        virtual Disposable<std::vector<Probability> > probsBeingNthEvent(Size n,
            const Date& d) const;
        //! Pearsons' default probability correlation.
        virtual Real defaultCorrelation(const Date& d, Size iName,
            Size jName) const;
        virtual Real expectedTrancheLoss(const Date& d) const;
        virtual std::pair<Real, Real> expectedTrancheLossInterval(const Date& d,
            Probability confidencePerc) const;
        virtual Disposable<std::map<Real, Probability> >
            lossDistribution(const Date& d) const;
        virtual Histogram computeHistogram(const Date& d) const;
        virtual Real expectedShortfall(const Date& d, Real percent) const;
        virtual Real percentile(const Date& d, Real percentile) const;
        /*! Returns the VaR value for a given percentile and the 95 confidence
        interval of that value. */
        virtual boost::tuples::tuple<Real, Real, Real> percentileAndInterval(
            const Date& d, Real percentile) const;
        /*! Distributes the total VaR amount along the portfolio counterparties.
        @param loss Loss amount (in loss units).
        */
        virtual Disposable<std::vector<Real> > splitVaRLevel(const Date& date,
            Real loss) const;
        /*! Distributes the total VaR amount along the portfolio counterparties.
        Provides confidence interval for split so that portfolio optimization
        can be performed outside those limits.
        @param loss Loss amount (in loss units).
        */
        virtual Disposable<std::vector<std::vector<Real> > > splitVaRAndError(
            const Date& date, Real loss, Probability confInterval) const;
        //@}
    public:
        virtual ~RandomLM() {}
    private:
        BigNatural seed_;
    protected:
        const Size numFactors_;
        const Size numLMVars_;

        const Size nSims_;

        mutable std::vector<std::vector<simEvent<derivedRandomLM<copulaPolicy,
            USNG > > > > simsBuffer_;

        mutable copulaPolicy copula_;
        mutable boost::shared_ptr<copulaRNG_type> copulasRng_;

        // Maximum time inversion horizon
        static const Size maxHorizon_ = 4050; // over 11 years
        // Inversion probability limits are computed by children in initdates()
    };


    /* ---- Statistics ---------------------------------------------------  */

    template<template <class, class> class D, class C, class URNG>
    Probability RandomLM<D, C, URNG>::probAtLeastNEvents(Size n,
        const Date& d) const
    {
        calculate();
        Date today = Settings::instance().evaluationDate();

        QL_REQUIRE(d>today, "Date for statistic must be in the future.");
        // casted to natural to avoid warning, we have just checked the sign
        Natural val = d.serialNumber() - today.serialNumber();

        if(n==0) return 1.;

        Real counts = 0.;
        for(Size iSim=0; iSim < nSims_; iSim++) {
            Size simCount = 0;
            const std::vector<simEvent<D<C, URNG> > >& events =
                getSim(iSim);
            for(Size iEvt=0; iEvt < events.size(); iEvt++)
                // duck type on the members:
                if(val > events[iEvt].dayFromRef) simCount++;
                if(simCount >= n) counts++;
        }
        return counts/nSims_;
        // \todo Provide confidence interval
    }

    template<template <class, class> class D, class C, class URNG>
    Disposable<std::vector<Probability> >
        RandomLM<D, C, URNG>::probsBeingNthEvent(Size n,
            const Date& d) const
    {
        calculate();
        Size basketSize = basket_->size();

        QL_REQUIRE(n>0 && n<=basketSize, "Impossible number of defaults.");
        Date today = Settings::instance().evaluationDate();

        QL_REQUIRE(d>today, "Date for statistic must be in the future.");
        // casted to natural to avoid warning, we have just checked the sign
        Natural val = d.serialNumber() - today.serialNumber();

        std::vector<Probability> hitsByDate(basketSize, 0.);
        for(Size iSim=0; iSim < nSims_; iSim++) {
            const std::vector<simEvent<D<C, URNG> > >& events = getSim(iSim);
            std::map<unsigned short, unsigned short> namesDefaulting;
            for(Size iEvt=0; iEvt < events.size(); iEvt++) {
                // if event is within time horizon...
                if(val > events[iEvt].dayFromRef)
                    //...count it. notice insertion sorts by date.
                    namesDefaulting.insert(std::make_pair<unsigned short,
                      unsigned short>(events[iEvt].dayFromRef,
                        events[iEvt].nameIdx));
            }
            if(namesDefaulting.size() >= n) {
                std::map<unsigned short, unsigned short>::const_iterator
                    itdefs = namesDefaulting.begin();
                // locate nth default in time:
                std::advance(itdefs, n-1);
                // update statistic:
                hitsByDate[itdefs->second]++;
            }
        }
        std::transform(hitsByDate.begin(), hitsByDate.end(),
            hitsByDate.begin(), std::bind2nd(std::divides<Real>(), nSims_));
        return hitsByDate;
        // \todo Provide confidence interval
    }


    template<template <class, class> class D, class C, class URNG>
    Real RandomLM<D, C, URNG>::defaultCorrelation(const Date& d,
        Size iName, Size jName) const
    {
        // a control variate with the probabilities is possible
        calculate();
        Date today = Settings::instance().evaluationDate();

        QL_REQUIRE(d>today, "Date for statistic must be in the future.");
        // casted to natural to avoid warning, we have just checked the sign
        Natural val = d.serialNumber() - today.serialNumber();

        Real expectedDefiDefj = 0.;// E[1_i 1_j]
        // the rest of magnitudes have known values (probabilities) but that
        //   would distort the simulation results.
        Real expectedDefi = 0.;
        Real expectedDefj = 0.;
        for(Size iSim=0; iSim < nSims_; iSim++) {
            const std::vector<simEvent<D<C, URNG> > >& events = getSim(iSim);
            Real imatch = 0., jmatch = 0.;
            for(Size iEvt=0; iEvt < events.size(); iEvt++) {
                if((val > events[iEvt].dayFromRef) &&
                   (events[iEvt].nameIdx == iName)) imatch = 1.;
                if((val > events[iEvt].dayFromRef) &&
                   (events[iEvt].nameIdx == jName)) jmatch = 1.;
            }
            expectedDefiDefj += imatch * jmatch;
            expectedDefi += imatch;
            expectedDefj += jmatch;
        }
        expectedDefiDefj = expectedDefiDefj / (nSims_-1);// unbiased
        expectedDefi = expectedDefi / nSims_;
        expectedDefj = expectedDefj / nSims_;

        return (expectedDefiDefj - expectedDefi*expectedDefj) /
            std::sqrt((expectedDefi*expectedDefj*(1.-expectedDefi)
                *(1.-expectedDefj)));
        // \todo Provide confidence interval
    }


    template<template <class, class> class D, class C, class URNG>
    Real RandomLM<D, C, URNG>::expectedTrancheLoss(
        const Date& d) const {
            return expectedTrancheLossInterval(d, 0.95).first;
    }


    template<template <class, class> class D, class C, class URNG>
    std::pair<Real, Real> RandomLM<D, C, URNG>::expectedTrancheLossInterval(
        const Date& d, Probability confidencePerc) const
    {
        calculate();
        Date today = Settings::instance().evaluationDate();
        BigInteger val = d.serialNumber() - today.serialNumber();

        Real attachAmount = basket_->attachmentAmount();
        Real detachAmount = basket_->detachmentAmount();

        // Real trancheLoss= 0.;
        GeneralStatistics lossStats;
        for(Size iSim=0; iSim < nSims_; iSim++) {
            const std::vector<simEvent<D<C, URNG> > >& events = getSim(iSim);

            Real portfSimLoss=0.;
            for(Size iEvt=0; iEvt < events.size(); iEvt++) {
                // if event is within time horizon...
                if(val > static_cast<BigInteger>(events[iEvt].dayFromRef)) {
                    Size iName = events[iEvt].nameIdx;
                    // ...and is contained in the basket.
                        portfSimLoss +=
                            basket_->exposure(basket_->names()[iName],
                                Date(events[iEvt].dayFromRef +
                                    today.serialNumber())) *
                                        (1.-getEventRecovery(events[iEvt]));
               }
            }
            lossStats.add(// d  ates? current losses? realized defaults, not yet
                std::min(std::max(portfSimLoss - attachAmount, 0.),
                    detachAmount - attachAmount) );
        }
        return std::make_pair(lossStats.mean(), lossStats.errorEstimate() *
            InverseCumulativeNormal::standard_value(0.5*(1.+confidencePerc)));
    }


    template<template <class, class> class D, class C, class URNG>
    Disposable<std::map<Real, Probability> >
        RandomLM<D, C, URNG>::lossDistribution(const Date& d) const {

        Histogram hist = computeHistogram(d);
        std::map<Real, Probability> distrib;

        // prob of losses less or equal to
        Real suma = hist.frequency(0);
        distrib.insert(std::make_pair(0., suma));
        for(Size i=1; i<hist.bins(); i++) {
            suma += hist.frequency(i);
            distrib.insert(std::make_pair( hist.breaks()[i-1], suma ));
        }
        return distrib;
    }


    template<template <class, class> class D, class C, class URNG>
    Histogram RandomLM<D, C, URNG>::computeHistogram(const Date& d) const {
        std::vector<Real> data;
        std::set<Real> keys;// attainable loss values
        keys.insert(0.);
        Date today = Settings::instance().evaluationDate();
        BigInteger val = d.serialNumber() - today.serialNumber();
        // redundant test? should have been tested by the basket caller?
        QL_REQUIRE(d >= today,
            "Requested percentile date must lie after computation date.");
        calculate();

        Real attachAmount = basket_->attachmentAmount();
        Real detachAmount = basket_->detachmentAmount();

        for(Size iSim=0; iSim < nSims_; iSim++) {
            const std::vector<simEvent<D<C, URNG> > >& events = getSim(iSim);

            Real portfSimLoss=0.;
            for(Size iEvt=0; iEvt < events.size(); iEvt++) {
                if(val > static_cast<BigInteger>(events[iEvt].dayFromRef)) {
                    Size iName = events[iEvt].nameIdx;
          // test needed (here and the others) to reuse simulations:
          //          if(basket_->pool()->has(copula_->pool()->names()[iName]))
                        portfSimLoss +=
                            basket_->exposure(basket_->names()[iName],
                                Date(events[iEvt].dayFromRef +
                                    today.serialNumber())) *
                                        (1.-getEventRecovery(events[iEvt]));
                }
            }
            data.push_back(std::min(std::max(portfSimLoss - attachAmount, 0.),
                detachAmount - attachAmount));
            keys.insert(data.back());
        }
        // avoid using as many points as in the simulation.
        Size nPts = std::min<Size>(data.size(), 150);// fix
        return Histogram(data.begin(), data.end(), nPts);
    }


    template<template <class, class> class D, class C, class URNG>
    Real RandomLM<D, C, URNG>::expectedShortfall(const Date& d,
        Real percent) const {

        const Date today = Settings::instance().evaluationDate();
        QL_REQUIRE(d >= today,
            "Requested percentile date must lie after computation date.");
        calculate();

        Real attachAmount = basket_->attachmentAmount();
        Real detachAmount = basket_->detachmentAmount();

        BigInteger val = d.serialNumber() - today.serialNumber();
        if(val <= 0) return 0.;// plus basket realized losses

        //GenericRiskStatistics<GeneralStatistics> statsX;
        std::vector<Real> losses;
        for(Size iSim=0; iSim < nSims_; iSim++) {
            const std::vector<simEvent<D<C, URNG> > >& events = getSim(iSim);
            Real portfSimLoss=0.;
            for(Size iEvt=0; iEvt < events.size(); iEvt++) {
                if(val > static_cast<BigInteger>(events[iEvt].dayFromRef)) {
                    Size iName = events[iEvt].nameIdx;
                    // ...and is contained in the basket.
                    //if(basket_->pool()->has(copula_->pool()->names()[iName]))
                        portfSimLoss +=
                            basket_->exposure(basket_->names()[iName],
                                Date(events[iEvt].dayFromRef +
                                    today.serialNumber())) *
                                        (1.-getEventRecovery(events[iEvt]));
                }
            }
            portfSimLoss = std::min(std::max(portfSimLoss - attachAmount, 0.),
                detachAmount - attachAmount);
            losses.push_back(portfSimLoss);
        }

        std::sort(losses.begin(), losses.end());
        Real posit = std::ceil(percent * nSims_);
        posit = posit >= 0. ? posit : 0.;
        Size position = static_cast<Size>(posit);
        Real perctlInf = losses[position];//q_{\alpha}

        // the prob of values strictly larger than the quantile value.
        Probability probOverQ =
            static_cast<Real>(std::distance(losses.begin() + position,
                losses.end())) / static_cast<Real>(nSims_);

        return ( perctlInf * (1.-percent-probOverQ) +//<-correction term
            std::accumulate(losses.begin() + position, losses.end(), Real(0.))/nSims_
                )/(1.-percent);

        /* Alternative ESF definition; find the first loss larger than the
        one of the percentile. Notice the choice here, the expected shortfall
        is understood in the sense that we are looking for the average given
        than losses are above a certain value rather than above a certain
        probability:
        (Unlikely to be the algorithm of choice)*/
        /*
        std::vector<Real>::iterator itPastPerc =
            std::find_if(losses.begin() + position, losses.end(),
                std::bind1st(std::less<Real>(), perctlInf));
        // notice if the sample is flat at the end this might be zero
        Size pointsOverVal = nSims_ - std::distance(itPastPerc, losses.end());
        return pointsOverVal == 0 ? 0. :
            std::accumulate(itPastPerc, losses.end(), 0.) / pointsOverVal;
        */

        /* For the definition of ESF see for instance: 'Quantitative Risk
        Management' by A.J. McNeil, R.Frey and P.Embrechts, princeton series in
        finance, 2005; equations on page 39 sect 2.12:
        $q_{\alpha}(F) = inf{x \in R : F(x) \le \alpha}$
        and equation 2.25 on p. 45:
        $ESF_{\alpha} = \frac{1}{1-\alpha} [E(L; L \ge q_{\alpha} ) +
            q_{\alpha} (1-\alpha-P(L \ge q_{\alpha})) ]$
        The second term accounts for non continuous distributions.
        */
    }


    template<template <class, class> class D, class C, class URNG>
    Real RandomLM<D, C, URNG>::percentile(const Date& d, Real perc) const {
        // need to specify return type in tuples' get is parametric
        return percentileAndInterval(d, perc).template get<0>();
    }


    /* See Appendix-A of "Evaluating value-at-risk methodologies: Accuracy
        versus computational time.", M. Pritsker, Wharton FIC, November 1996
    Strictly speaking this gives the interval with a 95% probability of
    the true value being within the interval; which is different to the error
    of the stimator just computed. See the reference for a discussion.
    */
    template<template <class, class> class D, class C, class URNG>
    boost::tuples::tuple<Real, Real, Real> // disposable?
        RandomLM<D, C, URNG>::percentileAndInterval(const Date& d,
            Real percentile) const {

        QL_REQUIRE(percentile >= 0. && percentile <= 1.,
            "Incorrect percentile");
        calculate();

        Real attachAmount = basket_->attachmentAmount();
        Real detachAmount = basket_->detachmentAmount();

        std::vector<Real> rankLosses;
        Date today = Settings::instance().evaluationDate();
        BigInteger val = d.serialNumber() - today.serialNumber();
        for(Size iSim=0; iSim < nSims_; iSim++) {
            const std::vector<simEvent<D<C, URNG> > >& events = getSim(iSim);
            Real portfSimLoss=0.;
            for(Size iEvt=0; iEvt < events.size(); iEvt++) {
                if(val > static_cast<BigInteger>(events[iEvt].dayFromRef)) {
                    Size iName = events[iEvt].nameIdx;
                 //   if(basket_->pool()->has(copula_->pool()->names()[iName]))
                        portfSimLoss +=
                            basket_->exposure(basket_->names()[iName],
                                Date(events[iEvt].dayFromRef +
                                    today.serialNumber())) *
                                        (1.-getEventRecovery(events[iEvt]));
                }
            }
            portfSimLoss = std::min(std::max(portfSimLoss - attachAmount, 0.),
                detachAmount - attachAmount);
            // update dataset for rank stat:
            rankLosses.push_back(portfSimLoss);
        }

        std::sort(rankLosses.begin(), rankLosses.end());
        Size quantilePosition = static_cast<Size>(floor(nSims_*percentile));
        Real quantileValue = rankLosses[quantilePosition];

        // compute confidence interval:
        const Probability confInterval = 0.95;// as an argument?
        Real lowerPercentile, upperPercentile;
        Size r = quantilePosition - 1;
        Size s = quantilePosition + 1;
        bool rLocked = false,
            sLocked = false;
        // Size rfinal = 0,
        //      sfinal = 0;
        for(Size delta=1; delta < quantilePosition; delta++) {
            Real cached =
                incompleteBetaFunction(Real(s), Real(nSims_+1-s),
                                       percentile, 1.e-8, 500);
            Real pMinus =
            /* There was a fix in the repository on the gammadistribution. It
            might impact these, it might be neccesary to multiply these values
            by '-1'*/
                incompleteBetaFunction(Real(r+1), Real(nSims_-r),
                                       percentile, 1.e-8, 500)
                - cached;
            Real pPlus  =
                incompleteBetaFunction(Real(r), Real(nSims_-r+1),
                                       percentile, 1.e-8, 500)
                - cached;
            if((pMinus > confInterval) && !rLocked ) {
                // rfinal = r + 1;
               rLocked = true;
            }
            if((pPlus >= confInterval) && !sLocked) {
                // sfinal = s;
                sLocked = true;
            }
            if(rLocked && sLocked) break;
            r--;
            s++;
            s = std::min(nSims_-1, s);
        }
        lowerPercentile = rankLosses[r];
        upperPercentile = rankLosses[s];

        return boost::tuples::tuple<Real, Real, Real>(quantileValue,
            lowerPercentile, upperPercentile);
    }


    template<template <class, class> class D, class C, class URNG>
    Disposable<std::vector<Real> > RandomLM<D, C, URNG>::splitVaRLevel(
        const Date& date, Real loss) const
    {
        std::vector<Real> varLevels = splitVaRAndError(date, loss, 0.95)[0];
        // turn relative units into absolute:
        std::transform(varLevels.begin(), varLevels.end(), varLevels.begin(),
            std::bind1st(std::multiplies<Real>(), loss));
        return varLevels;
    }


    // parallelize this one(if possible), it is really expensive
    template<template <class, class> class D, class C, class URNG>
    /* FIX ME: some trouble on limit cases, like zero loss or no losses over the
    requested level.*/
    Disposable<std::vector<std::vector<Real> > >
        RandomLM<D, C, URNG>::splitVaRAndError(const Date& date, Real loss,
            Probability confInterval) const
    {
        /* Check 'loss' value integrity: i.e. is within tranche limits? (should
            have been done basket...)*/
        calculate();

        Real attachAmount = basket_->attachmentAmount();
        Real detachAmount = basket_->detachmentAmount();
        Size numLiveNames = basket_->remainingSize();

        std::vector<Real> split(numLiveNames, 0.);
        std::vector<GeneralStatistics> splitStats(numLiveNames,
            GeneralStatistics());
        Date today = Settings::instance().evaluationDate();
        BigInteger val = date.serialNumber() - today.serialNumber();

        for(Size iSim=0; iSim < nSims_; iSim++) {
            const std::vector<simEvent<D<C, URNG> > >& events = getSim(iSim);
            Real portfSimLoss=0.;
            //std::vector<Real> splitBuffer(numLiveNames_, 0.);
            std::vector<simEvent<D<C, URNG> > > splitEventsBuffer;

            for(Size iEvt=0; iEvt < events.size(); iEvt++) {
                if(val > static_cast<BigInteger>(events[iEvt].dayFromRef)) {
                    Size iName = events[iEvt].nameIdx;
                // if(basket_->pool()->has(copula_->pool()->names()[iName])) {
                        portfSimLoss +=
                            basket_->exposure(basket_->names()[iName],
                                Date(events[iEvt].dayFromRef +
                                    today.serialNumber())) *
                                        (1.-getEventRecovery(events[iEvt]));
                        //and will sort later if buffer applies:
                        splitEventsBuffer.push_back(events[iEvt]);
                }
            }
            portfSimLoss = std::min(std::max(portfSimLoss - attachAmount, 0.),
                detachAmount - attachAmount);

            /* second pass; split is conditional to total losses within target
            losses/percentile:  */
            Real ptflCumulLoss = 0.;
            if(portfSimLoss > loss) {
                std::sort(splitEventsBuffer.begin(), splitEventsBuffer.end());
                //NOW THIS:
                split.assign(numLiveNames, 0.);
                /*  if the name triggered a loss in the portf limits assign
                this loss to that name..  */
                for(Size i=0; i<splitEventsBuffer.size(); i++) {
                    Size iName = splitEventsBuffer[i].nameIdx;
                    Real lossName =
            // allows amortizing (others should be like this)
            // basket_->remainingNotionals(Date(simsBuffer_[i].dayFromRef +
            //      today.serialNumber()))[iName] *
                        basket_->exposure(basket_->names()[iName],
                            Date(splitEventsBuffer[i].dayFromRef +
                                today.serialNumber())) *
                                (1.-getEventRecovery(splitEventsBuffer[i]));

                    Real tranchedLossBefore =
                        std::min(std::max(ptflCumulLoss - attachAmount, 0.),
                        detachAmount - attachAmount);
                    ptflCumulLoss += lossName;
                    Real tranchedLossAfter =
                        std::min(std::max(ptflCumulLoss - attachAmount, 0.),
                        detachAmount - attachAmount);
                    // assign new losses:
                    split[iName] += tranchedLossAfter - tranchedLossBefore;
                }
                for(Size iName=0; iName<numLiveNames; iName++) {
                    splitStats[iName].add(split[iName] /
                        std::min(std::max(ptflCumulLoss - attachAmount, 0.),
                            detachAmount - attachAmount) );
                }
            }
        }

        // Compute error in VaR split
        std::vector<Real> means, rangeUp, rangeDown;
        Real confidFactor = InverseCumulativeNormal()(0.5+confInterval/2.);
        for(Size iName=0; iName<numLiveNames; iName++) {
            means.push_back(splitStats[iName].mean());
            Real error = confidFactor * splitStats[iName].errorEstimate() ;
            rangeDown.push_back(means.back() - error);
            rangeUp.push_back(means.back() + error);
        }

        std::vector<std::vector<Real> > results;
        results.push_back(means);
        results.push_back(rangeDown);
        results.push_back(rangeUp);

        return results;
    }




    // --------- Time inversion solver target function: -----------------------

    /* It could be argued that this concept is part of the copula (more generic).
    In general when the modelled magnitude is parametric one can solve for
    inversion to get the parameter value for a given magnitude value (provided
    the modelled variable dependence in invertible). In this particular problem
    the parameter is Time and it is solved here where we are alredy in the
    context of default
    See default transition models for another instance of this inversion.
    Alternatively use the faster trick (flat HR) mentioned in the code or make
    the algorithm parametric on the type of interpolation in the DefautlTS
    */
    namespace detail {// not template dependent .....move it
        //! Utility for the numerical time solver
        class Root {
          public:
            /* See a faster algorithm (neeeds to locate the points) in
            D.O'KANE p.249 sect 13.5 */
            Root(const Handle<DefaultProbabilityTermStructure> dts, Real pd)
                : dts_(dts), pd_(pd), curveRef_(dts->referenceDate()) {}
            /* The cast I am forcing here comes from the requirement of 1D
            solvers to take in a target (cost) function of Real domain. It could
            be possible to change the template arg F in the 1D solvers to a
            boost function and then use the (template arg) domain argument type
            of the function for use with the 'guess' and operator() ?
             */
            Real operator()(Real t) const {
                QL_REQUIRE (t >= 0.0, "t < 0");
                /* As long as this doesnt involve modifying a mutable member
                it should be thread safe (they are const methods and access is
                read only)
                */
                return dts_->defaultProbability(curveRef_ +
                    Period(static_cast<Integer>(t), Days), true) - pd_;
            }
          private:
            const Handle<DefaultProbabilityTermStructure> dts_;
            Real pd_;
            const Date curveRef_;
        };
    }

    /*
    ---------------------------------------------------------------------------
    ---------------------------------------------------------------------------
    */

    // move this one to a separte file?
    /*! Random default with deterministic recovery event type.\par
    Stores sims results in a bitfield buffer for lean memory storage.
    Although strictly speaking this is not guaranteed by the compiler it
    amounts to reducing the memory storage by half.
    Some computations, like conditional statistics, precise that all sims
    results be available.
    */
    template<class , class > class RandomDefaultLM;
    template<class copulaPolicy, class USNG>
    struct simEvent<RandomDefaultLM<copulaPolicy, USNG> > {
        simEvent(unsigned int n, unsigned int d)
        : nameIdx(n), dayFromRef(d){}
        unsigned int nameIdx : 16; // can index up to 65535 names
        unsigned int dayFromRef : 16; //indexes up to 65535 days ~179 years
        bool operator<(const simEvent& evt) const {
            return dayFromRef < evt.dayFromRef;
        }
    };

    /*! Default only latent model simulation with trivially fixed recovery
        amounts.
    */
    template<class copulaPolicy, class USNG = SobolRsg>
    class RandomDefaultLM : public RandomLM<RandomDefaultLM, copulaPolicy, USNG>
    {
    private:
        typedef simEvent<RandomDefaultLM> defaultSimEvent;

        // \todo Consider this to be only a ConstantLossLM instead
        const boost::shared_ptr<DefaultLatentModel<copulaPolicy> > copula_;
        const std::vector<Real> recoveries_;
        // for time inversion:
        Real accuracy_;
    public:
        // \todo: Allow a constructor building its own default latent model.
        RandomDefaultLM(
            const boost::shared_ptr<DefaultLatentModel<copulaPolicy> >& copula,
            const std::vector<Real>& recoveries = std::vector<Real>(),
            Size nSims = 0,// stats will crash on div by zero, FIX ME.
            Real accuracy = 1.e-6,
            BigNatural seed = 2863311530)
        : RandomLM< ::QuantLib::RandomDefaultLM, copulaPolicy, USNG>
            (copula->numFactors(), copula->size(), copula->copula(),
                nSims, seed ),
          copula_(copula), //<- renmae to latentModel_ or defautlLM_;
          recoveries_(recoveries.size()==0 ? std::vector<Real>(copula->size(),
            0.) : recoveries),
          accuracy_(accuracy)
        {
            // redundant through basket?
            this->registerWith(Settings::instance().evaluationDate());
            this->registerWith(copula_);
        }
        RandomDefaultLM(
            const boost::shared_ptr<ConstantLossLatentmodel<copulaPolicy> >&
                copula,
            Size nSims = 0,// stats will crash on div by zero, FIX ME.
            Real accuracy = 1.e-6,
            BigNatural seed = 2863311530)
        : RandomLM< ::QuantLib::RandomDefaultLM, copulaPolicy, USNG>
            (copula->numFactors(), copula->size(), copula->copula(),
                nSims, seed ),
          copula_(copula),
          recoveries_(copula->recoveries()),
          accuracy_(accuracy)
        {
            // redundant through basket?
            this->registerWith(Settings::instance().evaluationDate());
            this->registerWith(copula_);
        }

        // grant access to static polymorphism:
        /* While this works on g++, VC9 refuses to compile it.
        Not completely sure whos right; individually making friends of the
        calling members or writting explicitly the derived class T parameters
        throws the same errors.
        The access is then open to the member fucntions.
        Another solution is to use this http://accu.org/index.php/journals/296

        It might well be that gcc is allowing some c11 features silently, which
        wont pass on a lower gcc version.
        */
        friend class RandomLM< ::QuantLib::RandomDefaultLM, copulaPolicy, USNG>;
    protected:
        void nextSample(const std::vector<Real>& values) const;
        void initDates() const {
            /* Precalculate horizon time default probabilities (used to
              determine if the default took place and subsequently compute its
              event time)
            */
            Date today = Settings::instance().evaluationDate();
            Date maxHorizonDate = today  + Period(this->maxHorizon_, Days);

            const boost::shared_ptr<Pool>& pool = this->basket_->pool();
            for(Size iName=0; iName < this->basket_->size(); ++iName)//use'live'
                horizonDefaultPs_.push_back(pool->get(pool->names()[iName]).
                    defaultProbability(this->basket_->defaultKeys()[iName])
                        ->defaultProbability(maxHorizonDate, true));
        }
        Real getEventRecovery(const defaultSimEvent& evt) const {
            return recoveries_[evt.nameIdx];
        }
        Real expectedRecovery(const Date&, Size iName,
                    const DefaultProbKey&) const {
            // deterministic
            return recoveries_[iName];
        }
    protected:
        Real latentVarValue(const std::vector<Real>& factorsSample,
            Size iVar) const {
            return copula_->latentVarValue(factorsSample, iVar);
        }
        //allows statistics to know the portfolio size (could be moved to parent
        //invoking duck typing on the variable name or a handle to the basket)
        Size basketSize() const { return copula_->size(); }
    private:
        void resetModel() /*const*/ {
            /* Explore: might save recalculation if the basket is the same
            (some situations, like BC or control variates) in that case do not
            update, only reset the copula's basket.
            */
            copula_->resetBasket(this->basket_.currentLink());

            QL_REQUIRE(this->basket_->size() == copula_->size(),
                "Incompatible basket and model sizes.");
            QL_REQUIRE(recoveries_.size() == this->basket_->size(),
                "Incompatible basket and recovery sizes.");
            // invalidate current calculations if any and notify observers
            LazyObject::update();
        }
        // This one and the buffer might be moved to the parent, only some
        //   dates might be specific to a particular model.
        // Default probabilities for each name at the time of the maximun
        //   horizon date. Cached for perf.
        mutable std::vector<Probability> horizonDefaultPs_;
    };





    template<class C, class URNG>
    void RandomDefaultLM<C, URNG>::nextSample(
        const std::vector<Real>& values) const
    {
        const boost::shared_ptr<Pool>& pool = this->basket_->pool();
        // starts with no events
        this->simsBuffer_.push_back(std::vector<defaultSimEvent> ());

        for(Size iName=0; iName<copula_->size(); iName++) {
            Real latentVarSample =
                copula_->latentVarValue(values, iName);
            Probability simDefaultProb =
               copula_->cumulativeY(latentVarSample, iName);
            // If the default simulated lies before the max date:
            if (horizonDefaultPs_[iName] >= simDefaultProb) {
                const Handle<DefaultProbabilityTermStructure>& dfts =
                    pool->get(pool->names()[iName]).// use 'live' names
                    defaultProbability(this->basket_->defaultKeys()[iName]);
                // compute and store default time with respect to the
                //  curve ref date:
                Size dateSTride =
                    static_cast<Size>(Brent().solve(// casted from Real:
                        detail::Root(dfts, simDefaultProb),
                            accuracy_,0.,1.));
                   /*
                   // value if one approximates to a flat HR;
                   //   faster (>x2) but it introduces an error:..
                   // \todo: see how to include this 'polymorphically'.
                   // While not the case in pricing in risk metrics/real
                   //   probabilities the curves are often flat
                    static_cast<Size>(ceil(maxHorizon_ *
                                        std::log(1.-simDefaultProb)
                    /std::log(1.-data_.horizonDefaultPs_[iName])));
                   */
                this->simsBuffer_.back().push_back(defaultSimEvent(iName,
                    dateSTride));
               //emplace_back
            }
        /* Used to remove sims with no events. Uses less memory, faster
        post-statistics. But only if all names in the portfolio have low
        default probability, otherwise is more expensive and sim access has
        to be modified. However low probability is also an indicator that
        variance reduction is needed. */
        }
    }




    // Common usage typedefs (notice they vary in the multithread version)
    // ---------- Gaussian default generators options ------------------------
    /* Uses copula direct normal inversion and MT generator
    typedef RandomDefaultLM<GaussianCopulaPolicy,
        RandomSequenceGenerator<MersenneTwisterUniformRng> >
            GaussianRandomDefaultLM;
    */
    /* Uses BoxMuller for gaussian generation, bypassing copula inversions
    typedef RandomDefaultLM<GaussianCopulaPolicy, RandomSequenceGenerator<
        BoxMullerGaussianRng<MersenneTwisterUniformRng> > >
            GaussianRandomDefaultLM;
    */
    /* Default case, uses the copula inversion directly and sobol sequence */
    typedef RandomDefaultLM<GaussianCopulaPolicy> GaussianRandomDefaultLM;

    // ---------- T default generators options ----------------------------
    /* Uses copula inversion and MT base generation
    typedef RandomDefaultLM<TCopulaPolicy,
      RandomSequenceGenerator<MersenneTwisterUniformRng> > TRandomDefaultLM;
    */
    /* Uses MT and polar direct strudent-T generation
    typedef RandomDefaultLM<TCopulaPolicy,
        RandomSequenceGenerator<PolarStudentTRng<MersenneTwisterUniformRng> > >
            TRandomDefaultLM;
    */
    /* Default case, uses sobol sequence and copula inversion */
    typedef RandomDefaultLM<TCopulaPolicy> TRandomDefaultLM;

}

#endif