/usr/include/ql/experimental/credit/randomlosslatentmodel.hpp is in libquantlib0-dev 1.7.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2014 Jose Aparicio
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#ifndef quantlib_randomloss_latent_model_hpp
#define quantlib_randomloss_latent_model_hpp
#include <ql/math/solvers1d/brent.hpp>
#include <ql/experimental/credit/basket.hpp>
#include <ql/experimental/math/latentmodel.hpp>
#include <ql/experimental/math/gaussiancopulapolicy.hpp>
#include <ql/experimental/math/tcopulapolicy.hpp>
#include <ql/experimental/credit/randomdefaultlatentmodel.hpp>
#include <ql/experimental/credit/spotlosslatentmodel.hpp>
#include <ql/math/randomnumbers/mt19937uniformrng.hpp>
namespace QuantLib {
template<class , class > class RandomLossLM;
template<class copulaPolicy, class USNG>
struct simEvent<RandomLossLM<copulaPolicy, USNG> > {
simEvent(unsigned int n, unsigned int d, Real r)
: nameIdx(n), dayFromRef(d),
// truncates the value:
compactRR(static_cast<unsigned int>(r/rrGranular+.5)) {}
unsigned int nameIdx : 12; // can index up to 4095 names
unsigned int dayFromRef : 12; // can index up to 4095 days = 11 yrs
private:
unsigned int compactRR : 8;
public:
// ..............still one bit left
bool operator<(const simEvent& evt) const {
return dayFromRef < evt.dayFromRef;
}
Real recovery() const {
/* we pay the price of this product (plus the division at
construction) for the memory we save. Precission is lost though,
e.g. figures from 0.0 to 0.00390625/2. are stored as 0.0
*/
return rrGranular * compactRR;
}
static const Real rrGranular;// = 1./256.;// 2^8
};
template <class C, class G> const Real
simEvent<RandomLossLM<C, G> >::rrGranular = 1./256.;// 2^8
/*! Random spot recovery rate loss model simulation for an arbitrary copula.
*/
template<class copulaPolicy, class USNG = SobolRsg>
class RandomLossLM : public RandomLM<RandomLossLM, copulaPolicy, USNG>
{
private:
typedef simEvent<RandomLossLM> defaultSimEvent;
const boost::shared_ptr<SpotRecoveryLatentModel<copulaPolicy> > copula_;
// for time inversion:
Real accuracy_;
public:
RandomLossLM(
const boost::shared_ptr<SpotRecoveryLatentModel<copulaPolicy> >&
copula,
Size nSims = 0,
Real accuracy = 1.e-6,
BigNatural seed = 2863311530)
: RandomLM< ::QuantLib::RandomLossLM, copulaPolicy, USNG>
(copula->numFactors(), copula->size(), copula->copula(),
nSims, seed),
copula_(copula), accuracy_(accuracy)
{
// redundant through basket?
this->registerWith(Settings::instance().evaluationDate());
}
// grant access to static polymorphism:
/* While this works on g++, VC9 refuses to compile it.
Not completely sure whos right; individually making friends of the
calling members or writting explicitly the derived class T parameters
throws the same errors.
The access is then open to the member fucntions.
*/
friend class RandomLM< ::QuantLib::RandomLossLM, copulaPolicy, USNG>;
protected:
void nextSample(const std::vector<Real>& values) const;
// see note on randomdefaultlatentmodel
void initDates() const {
/* Precalculate horizon time default probabilities (used to
determine if the default took place and subsequently compute its
event time)
*/
Date today = Settings::instance().evaluationDate();
Date maxHorizonDate = today + Period(this->maxHorizon_, Days);
const boost::shared_ptr<Pool>& pool = this->basket_->pool();
for(Size iName=0; iName < this->basket_->size(); ++iName)//use'live'
horizonDefaultPs_.push_back(pool->get(pool->names()[iName]).
defaultProbability(this->basket_->defaultKeys()[iName])
->defaultProbability(maxHorizonDate, true));
}
Real getEventRecovery(const defaultSimEvent& evt) const {
return evt.recovery();
}
protected:
Real latentVarValue(const std::vector<Real>& factorsSample,
Size iVar) const {
return copula_->latentVarValue(factorsSample, iVar);
}
Size basketSize() const { return this->basket_->size(); }
// conditional to default, defined as spot-recovery.
Real conditionalRecovery(Real latentVarSample, Size iName,
const Date& d) const;
private:
void resetModel() {
/* Explore: might save recalculation if the basket is the same
(some situations, like BC or control variates) in that case do not
update, only reset the copula's basket.
*/
copula_->resetBasket(this->basket_.currentLink());
QL_REQUIRE(2 * this->basket_->size() == copula_->size(),
"Incompatible basket and model sizes.");
// invalidate current calculations if any and notify observers
LazyObject::update();
}
// Default probabilities for each name at the time of the maximun
// horizon date. Cached for perf.
mutable std::vector<Probability> horizonDefaultPs_;
};
// --------------------------------------------------------------
template<class C, class URNG>
void RandomLossLM<C, URNG>::nextSample(
const std::vector<Real>& values) const
{
const boost::shared_ptr<Pool>& pool = this->basket_->pool();
this->simsBuffer_.push_back(std::vector<defaultSimEvent> ());
// half the model is defaults, the other half are RRs...
for(Size iName=0; iName<copula_->size()/2; iName++) {
// ...but samples must be full
/* This is really a trick, we are passing a longer than
expected set of values in the sample but the last idiosyncratic
values corresponding to the RR are not used. They are used below
only if we are in default. This works due to the way the SpotLossLM
is split in two almost disjoint latent models and that theres no
check on the vector size in the LM base class.
*/
Real latentVarSample =
copula_->latentVarValue(values, iName);
Probability simDefaultProb =
copula_->cumulativeY(latentVarSample, iName);
// If the default simulated lies before the max date:
if (horizonDefaultPs_[iName] >= simDefaultProb) {
const Handle<DefaultProbabilityTermStructure>& dfts =
pool->get(pool->names()[iName]). // use 'live' names
defaultProbability(this->basket_->defaultKeys()[iName]);
// compute and store default time with respect to the
// curve ref date:
Size dateSTride =
static_cast<Size>(Brent().solve(// casted from Real:
detail::Root(dfts, simDefaultProb), accuracy_, 0., 1.));
/*
// value if one approximates to a flat HR;
// faster (>x2) but it introduces an error:..
// \todo: see how to include this 'polymorphically'. While
// not the case in pricing in risk metrics/real
// probabilities the curves are often flat
static_cast<Size>(ceil(maxHorizon_ *
std::log(1.-simDefaultProb)
/std::log(1.-data_.horizonDefaultPs_[iName])));
*/
// Determine the realized recovery rate:
/* For this; 'conditionalRecovery' needs to compute the pdef on
the realized def event date from the simulation. Yet, this might
have fallen between todays date and the default TS reference
date(usually a two day gap) To avoid requesting a negative time
probability the date is moved to the TS date
Unless the gap is ridiculous this has no practical effect for
the RR value*/
Date today = Settings::instance().evaluationDate();
Date eventDate = today+Period(static_cast<Integer>(dateSTride),
Days);
if(eventDate<dfts->referenceDate())
eventDate = dfts->referenceDate();
Real latentRRVarSample =
copula_->latentRRVarValue(values, iName);
Real recovery =
copula_->conditionalRecovery(latentRRVarSample,
iName, eventDate);
this->simsBuffer_.back().push_back(
defaultSimEvent(iName, dateSTride, recovery));
//emplace_back
}
/* Used to remove sims with no events. Uses less memory, faster
post-statistics. But only if all names in the portfolio have low
default probability, otherwise is more expensive and sim access has
to be modified. However low probability is also an indicator that
variance reduction is needed. */
//if(simsBuffer.back().empty()) {
// emptySims_++;// Size; intilzd to zero
// simsBuffer.pop_back();
//}
}
}
// Common uses: Not valid in multithread version.
// ---------- Gaussian default generators options ------------------------
/* Uses copula direct normal inversion and MT generator
typedef RandomLossLM<GaussianCopulaPolicy,
RandomSequenceGenerator<MersenneTwisterUniformRng> >
GaussianRandomLossLM;
*/
/* Uses BoxMuller for gaussian generation, bypassing copula inversions
typedef RandomLossLM<GaussianCopulaPolicy, RandomSequenceGenerator<
BoxMullerGaussianRng<MersenneTwisterUniformRng> > >
GaussianRandomLossLM;
*/
/* Default case, uses the copula inversion directly and sobol sequence */
typedef RandomLossLM<GaussianCopulaPolicy> GaussianRandomLossLM;
// ---------- T default generators options ----------------------------
/*
typedef RandomLossLM<TCopulaPolicy,
RandomSequenceGenerator<MersenneTwisterUniformRng> > TRandomLossLM;
*/
/*
typedef RandomLossLM<TCopulaPolicy,
RandomSequenceGenerator<PolarStudentTRng<MersenneTwisterUniformRng> > >
TRandomLossLM;
*/
typedef RandomLossLM<TCopulaPolicy> TRandomLossLM;
}
#endif
|